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Abstract
Smartphones have become an important utility that affects many aspects of our daily life.
Due to their large dissemination and the tasks that are performed with them, they have
also become a valuable target for criminals. Their specific capabilities and the way they
are used introduce new threats in terms of information security.
The research field of smartphone security has gained a lot of momentum in the past

eight years. Approaches that have been presented so far focus on investigating design
flaws of smartphone operating systems as well as their potential misuse by an adversary.
Countermeasures are often realized based upon extensions made to the operating system
itself, following a host-based design approach. However, there is a lack of network-based
mechanisms that allow a secure integration of smartphones into existing IT infrastruc-
tures. This topic is especially relevant for companies whose employees use smartphones
for business tasks.
This thesis presents a novel, network-based approach for smartphone security called

CADS: Context-related Signature and Anomaly Detection for Smartphones.
It allows to determine the security status of smartphones by analyzing three aspects: (1)
their current configuration in terms of installed software and available hardware, (2) their
behavior and (3) the context they are currently used in. Depending on the determined
security status, enforcement actions can be defined in order to allow or to deny access
to services provided by the respective IT infrastructure. The approach is based upon the
distributed collection and central analysis of data about smartphones. In contrast to other
approaches, it explicitly supports to leverage existing security services both for analysis
and enforcement purposes.
A proof of concept is implemented based upon the IF-MAP protocol for network security

and the Google Android platform. An evaluation verifies (1) that the CADS approach is
able to detect so-called sensor sniffing attacks and (2) that reactions can be triggered based
on detection results to counter ongoing attacks. Furthermore, it is demonstrated that
the functionality of an existing, host-based approach that relies on modifications of the
Android smartphone platform can be mimicked by the CADS approach. The advantage
of CADS is that it does not need any modifications of the Android platform itself.
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Zusammenfassung
Smartphones sind zu einem wichtigen Werkzeug geworden, welches viele Aspekte in un-
serem täglichen Leben betrifft. Da Smartphones auch für sensitive Aufgaben verwendet
werden, sind sie ebenfalls zu einem begehrten Ziel für Kriminelle geworden. Durch ihre
Funktionsvielfalt entstehen neue Bedrohungen im Bereich der Informationssicherheit.
In den letzten acht Jahren wurden daher zahlreiche Forschungsarbeiten veröffentlicht,

die sich mit dem Thema Smartphone-Sicherheit befassen. Viele der aktuellen Arbeiten
basieren darauf, Schwächen in der auf Smartphones eingesetzten Software zu finden,
um diese wiederum für Angriffe auszunutzen. Gegenmaßnahmen werden oft durch Host-
basierte Erweiterungen realisiert, in der Regel durch Modifikationen an dem Betriebssys-
tem des Smartphones selbst. Im Gegensatz dazu existieren nur wenige Netzwerk-basierte
Ansätze, die sich mit der sicheren Anbindung von Smartphones an vorhandene IT-Infra-
strukturen befassen. Dabei ist das Thema insbesondere dann relevant, wenn Smartphones
innerhalb eines Unternehmens eingesetzt werden.
In dieser Arbeit wird ein neuer, Netzwerk-basierter Ansatz zur sicheren Integration von

Smartphones in vorhandene IT-Infrastrukturen vorgestellt: CADS: Context-related
Signature and Anomaly Detection for Smartphones. CADS basiert auf einer
verteilten Sammlung und zentralen Auswertung von Daten, mit denen sich der Sicher-
heitsstatus eines Smartphones ermitteln lässt. Zur Ermittlung dieses Sicherheitsstatus
werden drei Eigenschaften von Smartphones betrachtet: (1) ihre aktuelle Konfiguration
im Sinne von installierter Software und verwendeter Hardware, (2) ihr Verhalten und
(3) der Kontext, in dem Smartphones verwendet werden. Abhängig von dem ermittel-
ten Sicherheitsstatus können Reaktionen definiert werden, um den Zugriff auf bestimmte
Bereiche der IT-Infrastruktur, in dem das Smartphone verwendet wird, zuzulassen oder
zu unterbinden. Im Gegensatz zu existierenden Ansätzen unterstützt CADS explizit die
Integration vorhandener Sicherheitslösungen.
Im Rahmen der Arbeit wird ein Prototyp des CADS Ansatzes vorgestellt, der basierend

auf dem IF-MAP Protokoll und der Google Android Smartphone-Plattform entwickelt
worden ist. Eine Evaluation zeigt, (1) dass mit dem CADS Ansatz so genannte Sensor
Sniffing Angriffe erfolgreich erkannt werden können und (2) dass Reaktionen ausgelöst
werden können, um stattfindende Angriffe zu unterbinden. Außerdem wird demonstri-
ert, wie mit CADS die Funktionalität eines existierenden, Host-basierten Ansatzes für
Smartphone-Sicherheit nachgebildet werden kann. Der Vorteil bei der Verwendung von
CADS ist, dass auf Modifikationen der Smartphone-Plattform selbst verzichtet werden
kann.
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1 Introduction
“The beginning is the most
important part of the work.”

(Plato)

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Today, the importance of secure and reliable information technology (IT) infrastructures
is obvious. Almost any domain of our everyday life depends on IT services. Social net-
working, online banking and e-commerce are some examples. The Internet is the crucial
backbone that enables the necessary communication between the participating computer
systems. Nowadays, news about attacks on IT services and infrastructures are common.
Some recent targets of cyber attacks include the Sony PlayStation Network (PSN) [1]
and newspapers like the New York Times [2]. The relevance of information security has
become even more severe, as coordinated online attacks between different countries can
be considered as an act of war [3].
Over the past years, the dissemination of a new type of computing device has changed

the IT landscape: the so-called smartphones. Besides ordinary telephony services known
from mobile phones, one key aspect of these devices is the support of Internet based
communication. There is a trend already observed in 2008 that in developed countries
mobile handsets are going to outnumber the country’s population [4]. According to the

1



1 Introduction

International Data Corporation (IDC), more than 494 million smartphone devices have
been shipped alone in 2011 [5]. A recent study conducted by Google in partnership with
Ipsos OTX MediaCT proves the significance of smartphones, as 89% of the surveyed
people state that they use their phone for their daily life activities, such as shopping or
performing searches for local information [6].
Today’s smartphones provide a wide range of features such as

1. mobile access to the Internet,

2. the support of sensors to capture data about the physical environment the smart-
phone is used in (such as video, audio and position data) and

3. the support of third-party applications (apps). Those apps allow users to customize
their smartphones according to their personal needs.

Companies can use smartphones for business tasks [7]. Since smartphones support mo-
bile access to the Internet, employees can react faster on emails and the scheduling of
appointments. Although the usefulness of smartphones in corporate environments is ob-
vious, their impact in terms of information security is an open question. Smartphones
have specific characteristics that change the attack surface of the environment they are
used in. For example, they provide a rich set of built-in sensors in order to obtain the
current location, record audio via the microphone or capture pictures via the camera. Fur-
thermore, the way smartphones are extended by third-party apps is distinct from other
computing devices. For example, on a laptop running a standard operating system such as
Linux, Windows or OS X, usually a single web browser is used in order to view arbitrary
websites. On smartphones, this situation is different. A general purpose web browser is
also available. However, it is common that websites provide third-party apps in order to
deliver their content in a way that is more suitable for smartphones, both in terms of
usability and functionality. Examples include social networks like Facebook1 or Google+2

as well as news portals. That is, instead of using just a single, general purpose app for
surfing the Internet, smartphones usually have additional apps installed in order to access
specific websites or services.

1http://www.facebook.com
2http://plus.google.com

2
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1.1 Motivation

Companies have to deal with smartphones as new type of devices whether they choose
to use them for business tasks or not. There are basically three options for a company to
address and regulate the use of smartphones:

1. Allow smartphones for business tasks and provide corporate owned devices to the
employees.

2. Allow smartphones for business tasks but allow employees to use their privately
owned devices. This is commonly referred to as Bring Your Own Device (BYOD)
policy.

3. Forbid the use of smartphones for business tasks. In environments where highly
sensitive information is available (such as a company’s research and development
department), this might lead to policies that forbid employees to even bring their
privately owned devices with them.

If smartphones are allowed to be used, the challenge is to integrate them into the
company’s existing IT infrastructure in a secure way. What “secure” actually means in
this context is discussed in the remainder of this thesis.
No matter whether smartphones are used for business tasks or not, sensitive data is

processed by them. Common examples include credit card information that needs to be
entered by the user to buy goods such as new apps. In addition, a user has to enter his
credentials to access online services like his email account. As a consequence, smartphones
have become a valuable target for attackers. Third-party apps turn out to be one major
threat for modern smartphones. Malware as it is known from other computing platforms
has become a real threat for smartphones as well. The research community has pro-
posed several proof of concept malware prototypes for various platforms [8, 9, 10, 4, 11].
Furthermore, malware has also hit the “real world”, spreading itself by leveraging the
respective platform’s online market stores [12, 13]. The malicious functionality is diverse,
ranging from simple denial of service attacks (for example by draining the smartphone’s
battery) to more sophisticated attacks that aim to steal sensitive data by leveraging the
smartphone’s built-in sensors.
Approaches that aim to improve the security of smartphone platforms have been pro-

posed as well (such as [14, 15, 16, 17, 18]). Most of them suggest host-based security
extensions that are able to prevent certain types of attacks or to detect the presence of

3



1 Introduction

malicious apps. They tackle the field of smartphone security from the perspective of the
smartphones themselves, focusing on improving the security of the smartphone platforms
that are used. However, there are only few network-based approaches that engage the field
of smartphone security from the perspective of the IT infrastructures the smartphones
are used in. One reason for favoring host-based approaches is that they allow to add
security mechanisms at several layers of the respective smartphone platform. However,
it also means that unmodified versions of the smartphone platforms cannot benefit from
this type of host-based extensions. For example, approaches like BizzTrust3 modify both
the Linux kernel and the middleware of the Android smartphone platform. Although this
allows to easily add security related functionality like better isolation of apps, it comes at
the cost of rendering the use of unmodified Android versions infeasible. Especially when
a company allows to use privately owned devices, those approaches are not suitable. In-
stead, a more lightweight approach that at most requires to install additional third-party
apps but omits the need for modifying the smartphone platform itself is often desired.
The thesis proposes a novel, network-based approach for the secure integration of smart-

phones into existing IT infrastructures. It allows to determine the security status of smart-
phones by analyzing three aspects: (1) their current configuration in terms of installed
software and available hardware, (2) their behavior and (3) the context they are currently
used in. Depending on the determined security status, enforcement actions can be de-
fined in order to allow or to deny access to services provided by the IT infrastructure.
The approach is based upon the distributed collection and central analysis of data about
smartphones. In contrast to other approaches, it explicitly supports to leverage existing
security services both for analysis and enforcement purposes.

1.2 Research Questions
The following research questions are addressed in the remainder of this thesis:

1. What approach is appropriate to enable a secure integration of smartphones into
existing IT infrastructures?

The field of smartphone security is dominated by host-based approaches that add
specific security extensions to current smartphone platforms. However, an approach

3http://www.bizztrust.de/

4
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1.3 Outline of the Thesis

that addresses the problem of securely integrating smartphones into existing IT
infrastructures from the infrastructure’s perspective is still missing. By answering
this question a set of requirements is derived that must be fulfilled to enable a secure
integration of smartphones into existing IT infrastructures.

2. What data should be collected and how should the collected data be analyzed in
order to determine the security status of smartphones?

Smartphones can be customized by users via third-party apps, have various built-in
sensors and support Internet-based communication. As a consequence, smartphones
can be in a status that is considered to be insecure from the perspective of the IT
infrastructure they are used in. An open research question is what data is appropri-
ate for determining the security status of smartphones. Furthermore, to know what
data is needed is not sufficient. It is also necessary to use appropriate methods in
order to analyze the data. Both aspects are addressed by answering this question.

3. How can the context of smartphones be obtained and used in order to contribute
to their secure integration into existing IT infrastructures?

Smartphones accompany their users throughout the day. As a consequence, they
are used in a number of different contexts. A context is defined as “the situation
in which something happens and that helps you to understand it” [19]. One goal
of this thesis is to investigate how the context, a smartphone is currently used in,
can be captured. Furthermore, it is investigated to what extent information about
a smartphone’s context can contribute to its secure integration into existing IT
infrastructures.

The research questions stated above are reflected in Chapter 7, with respect to the
results that were achieved within this thesis.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows (cf. Figure 1.1). Chapter 2 presents a
set of scenarios that form the motivating background for the remainder of this thesis. They
are formulated with respect to the reference IT infrastructure of a company. Based on
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the identified scenarios, requirements are derived that must be fulfilled by the developed
approach. These requirements especially define the necessary functionalities for a secure
integration of smartphones into existing IT infrastructures. Thus, Chapter 2 addresses
research question 1.
An analysis of the state of the art in the field of smartphone security is conducted in

Chapter 3. The analysis covers both standard security mechanisms that are supported
by today’s smartphone platforms as well as approaches that have been proposed by the
research community. Furthermore, the IF-MAP protocol [20] for network security is in-
troduced. It is used in the remainder of this thesis to implement a prototype of the
developed approach. Based on the literature review, an assessment is done with respect
to the requirements that were derived in Chapter 2. The assessment reveals that existing
approaches are not able to fulfill the stated requirements in a sufficient manner.
A novel, network-based approach for smartphone security is developed and presented

in Chapter 4. It is referred to as CADS: Context-related Signature and Anomaly
Detection for Smartphones and represents the main contribution of this thesis. The
approach is composed of four parts: (1) a conceptual model that defines its main building
blocks and the relationships between them, (2) an architecture that defines logical roles
that must be fulfilled by components in order to support the distributed collection and
central analysis of data about smartphones, (3) a correlation model that defines how
the collected data can be analyzed and (4) a process to create so-called domain-specific
instances. Thus, this chapter addresses the research questions 2 and 3.
A prototype of the CADS approach is presented in Chapter 5. It is implemented based

on the previously mentioned IF-MAP protocol. The chapter discusses how the CADS
approach can be realized by leveraging IF-MAP and presents the software components
that have been developed for that purpose.
An evaluation of the CADS approach is presented in Chapter 6. It investigates to what

extent the CADS approach is able to ensure the secure integration of smartphones into
existing IT infrastructures.
Finally, conclusions are drawn in Chapter 7. The results of the thesis are discussed

regarding the research questions that were stated in Section 1.2. Furthermore, directions
for future work are given.
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1.3 Outline of the Thesis

Figure 1.1: Outline of the thesis. Blue boxes represent chapters, yellow boxes represent
sections. Arrows indicate the sequence of chapters, respectively the sequence
of sections within a single chapter.
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2 Scenarios and Requirements

“Do, or do not. There is no ’try’.”

(Yoda)
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This chapter introduces the scenarios that form the motivating background for the re-
mainder of this thesis. In the first place, a reference IT infrastructure is defined. After
that, four scenarios are presented. These scenarios were developed as part of the anal-
ysis phase within the ESUKOM research project [21]. They depict use cases that the
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participating companies agreed upon to be relevant in terms of the secure integration of
smartphones into their IT infrastructures. Based on the scenarios, a terminology that is
used within the remainder of this thesis is defined. Furthermore, assumptions regarding
the trustworthiness of some components are described within a trust model.
Given the scenarios, the terminology and the trust model, a list of requirements is de-

rived that define the functionality which is needed for a secure integration of smartphones
into existing IT infrastructures. The requirements will be used in the remainder of this
thesis to assess related work that has been conducted in the field of smartphone security
and to assess the novel, network-based approach for smartphone security that is developed
within this thesis.

2.1 Reference IT Infrastructure

Today, virtually any company uses some sort of IT infrastructure to support their business
activities. The details and the complexity of such infrastructures vary greatly, depend-
ing on factors like the company size and its main business model. For example, a large
company with departments distributed across Europe is likely to have a more complex
infrastructure compared to a small to medium sized company with just one local depart-
ment. Furthermore, a company that provides general consulting services will have different
IT systems in use compared to a company that provides hosting services for their cus-
tomers, or even offer their own developed services to the public like social networks or
cloud service providers.
Although there is a certain degree of diversity in terms of current IT infrastructures,

there are also lots of common aspects that are shared across them. Therefore standards
like the IT-Grundschutz1 methodology [23, 24, 25, 26] of the Federal Office for Information
Security (BSI) can be used effectively.
In order to limit the scope of the following scenario definitions and to provide a set

of common terms, a reference IT infrastructure is defined. It models a generic IT infras-
tructure that explicitly addresses the integration of smartphones. It basically defines a
network topology, mentions smartphones as special type of endpoints, and highlights a
set of services that are common in most IT infrastructures. The description aims to be

1IT-Grundschutz is also referred to as IT Baseline Protection in some BSI publications [22].

10



2.1 Reference IT Infrastructure
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Figure 2.1: Reference IT Infrastructure. Icons taken from Openclipart [27].

independent of concrete technologies and rather focuses on the purpose that the deployed
services fulfill. The reference IT infrastructure is depicted in Figure 2.1. The basic net-
work topology, the notion of endpoints and the set of available services are detailed in the
following.

2.1.1 Network Topology

The reference IT infrastructure defines a very basic network topology. It follows the well-
known approach of establishing a Demilitarized Zone (DMZ) with firewalls in order to
separate the internal network from the Internet. The approach is widely adopted and can
be seen as baseline in order to manage and secure access from the Internet to services in
the internal network and vice versa.
In real IT infrastructures, the network topology is likely to be more complex. Especially

the internal network is often partitioned into further subnetworks, either for security pur-
poses (like isolation of productive from testing environments) or to provide quality of
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service aspects (for example in order to handle voice over IP with higher priority). Isola-
tion between these subnetworks can be enforced by different technical means, including
simple routing, dedicated firewall systems or by establishing Virtual Local Area Networks
(VLANs) according to IEEE 802.1Q [28].

2.1.2 Endpoints

Endpoints are computing devices that are used by employees within the IT infrastructure
of a company. They make use of available services, but do not provide services on their
own. Examples include classical desktop computers, laptops, tablets and smartphones.
The latter ones are of special interest for the remainder of this thesis. Although some
concepts can be adopted for other types of endpoints, the approach focuses on those.
Thus, only smartphones are depicted in Figure 2.1.
Basically, smartphones can access the IT infrastructure in two different ways. The

first one is to establish access locally via a Wireless Local Area Network (WLAN). The
WLAN is provided by dedicated infrastructure components referred to as Wireless Access
Points (WAPs). Depending on the configuration of the WAP and its physical location,
the smartphone has either access to the public zone or to the internal zone. The wireless
communication is often based on the IEEE 802.11 set of standards. The second way is to
access the IT infrastructure remotely over the Internet. This typically involves a remote
access technology like a Virtual Private Network (VPN).
It should be noted that the use of VPNs is not limited to enabling remote access. When

smartphones access the IT infrastructure locally via the WLAN, the use of additional
VPNs can be reasonable as well. A common use case for the combination of both access
technologies is to establish isolated environments within a company network via dedicated
VPNs.

2.1.3 Services

An IT infrastructure is composed of a set of services. The purpose and the functionality of
such services varies. For example, common services that are deployed in virtually any IT
infrastructure are the dynamic assignment of IP addresses to endpoints via the Dynamic
Host Configuration Protocol (DHCP) or the mapping between domain names and IP
addresses via the Domain Name System (DNS).
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Services that are relevant in terms of information security are of special interest for the
remainder of this thesis. They are referred to as security services. Most companies that
plan to integrate smartphones into their IT infrastructure in a secure way will already have
existing security services deployed. However, those services will have little or no specific
functionality to address smartphone specific threats. The approach that is developed
within this thesis shall allow to leverage these existing security services in order to achieve
a secure integration of smartphones. In the following, a list of relevant security services is
given (cf. Figure 2.1):

AAA AAA refers to authentication, authorization and accounting. Services that provide
AAA functionality are used to verify the user’s identity (authentication), grant
access to other services based on the user’s identity (authorization) and also track
the consumption of services by the user (accounting). Today, two protocols are
commonly used in order to implement AAA services: Remote Authentication Dial
In User Service (RADIUS) [29] and its successor Diameter [30].

Flow Controller The term flow controller refers to any service that can actively modify or
block the network traffic. The notion of a flow controller is derived from the Trusted
Network Connect (TNC) specifications published by the Trusted Computing Group
(TCG). Examples include packet filters that operate on the network and transport
layer according to the Open Systems Interconnection (OSI) model [31]. In terms
of the reference IT infrastructure, there are two types of flow controllers. First, a
firewall is used in order to establish the DMZ. Note that additional firewalls can
be added to protect services that are of special interest or that operate on sensitive
data. The second type of flow controllers are WAPs that support IEEE 802.1X [32].

IDS An Intrusion Detection System (IDS) monitors the behavior of a computer system
or the traffic within a network in order to detect malicious activities. According to
the National Institute of Standards and Technology (NIST), an IDS “... is software
that automates the intrusion detection process.” [33]. One popular example for a
network-based open source IDS is Snort2.

Remote Access Companies often require that employees get remote access to their IT
infrastructure, either completely or to a subset of the provided services. If the ser-

2http://www.snort.org/
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vices themselves should not be exposed to the Internet, a VPN is usually deployed.
Various protocols exist in order to implement a VPN. Among others the Internet
Protocol Security (IPsec) protocol suite is popular to realize a VPN at the OSI
layer 3. The systems that provide services for remote access are typically deployed
within the DMZ.

NAC The term Network Access Control (NAC) is not precisely defined. The term is com-
monly used in order to refer to protocols, components and software that grant access
to the local network based on the users identity and the software configuration of
the endpoint. Different vendors provide products that implement NAC functionality,
including Microsoft3 [34] and Cisco4 [35]. Furthermore, the TCG has published the
TNC standards [36] in order to provide an open, interoperable and vendor-neutral
framework for implementing NAC services.

Vulnerability Scanner Vulnerability scanners are used in order to search computer sys-
tems, networks and applications for known vulnerabilities. The notion of a vulner-
ability in terms of information security is not globally defined. RFC 4949 defines it
as follows: “A flaw or weakness in a system’s design, implementation, or operation
and management that could be exploited to violate the system’s security policy.” [37].
Examples for network vulnerability scanners are Nessus5 and OpenVAS6.

The set of described security services aims to form a baseline for the following definition
of scenarios. Furthermore, the network-based approach for smartphone security that is
developed in the remainder of this thesis will leverage some of these services for the
secure integration of smartphones into existing IT infrastructures.

2.2 Scenario Definition
Four scenarios are described in the following. They form the motivating background for
the remainder of this thesis. As already mentioned, these scenarios were developed as part
of the analysis phase within the ESUKOM research project [21]. In terms of smartphone

3Instead of NAC, the term Network Access Protection (NAP) is used by Microsoft.
4Cisco refers to the term NAC as Network Admission Control.
5http://www.tenable.com/
6http://www.openvas.org/
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security, the first three scenarios focus on detection tasks, whereas the fourth scenario
addresses the need for appropriate reaction capabilities.

2.2.1 Scenario I: Smartphone Visibility

From the perspective of a companies’ IT infrastructure, smartphones are quite similar
to other endpoints. They can connect to WAPs, log in to the corporate VPN and ac-
cess virtually any service that supports the IP communication protocol. Assuming that
a smartphone is connected to a wireless network based on the IEEE 802.11 set of stan-
dards, they send the same datagrams composed of source and destination Media Access
Control (MAC) addresses, source and destination IP addresses and optionally Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP) port numbers plus an
arbitrary payload as other endpoints connected to the same wireless network. That is,
from a network point of view, smartphones cannot directly by differentiated from other
endpoints.
However, to know if a certain request originates from a smartphone or not can be

beneficial. For example, it allows smartphone specific provisioning of services. A service
that presents its result in a graphical way might adjust its layout depending on the type
of device that sent the request. This is already done frequently by websites that pro-
vide special mobile versions for smartphones (for example by using a subdomain like
http://m.example.com for the mobile version of http://www.example.com). Further-
more, a company might want to deny access to a service from a smartphone due to
security concerns.
Thus, the objective of this scenario is to enable application services within an infras-

tructure to determine whether a certain request was issued by a smartphone or not. This
will primarily require to express the fact that a certain device is a smartphone (binary
yes/no) in an efficient way and to propagate this knowledge within the infrastructure of
the company.

Example Use Case A company provides employees with smartphones in order to process
business emails and to manage their time schedule. However, it is not allowed to access
certain application services that process more sensitive data with them (like project spe-
cific deliverables, version control systems or servers that process personal data). In this
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case, the developed solution needs to be able to block access to those critical services
and the sensitive data when the corresponding requests originate from a smartphone.
The definition whether a service is too critical to be processed by a smartphone or not is
domain-specific.

2.2.2 Scenario II: Context-related Service Provisioning

This scenario addresses the need to provision services with respect to the context of the
endpoint that accesses them. Following the first scenario, in addition to know whether
a certain request was issued by a smartphone or not, further information regarding the
context of the device is needed to allow or deny a certain access request.
A context in this scenario is defined by a set of variables and their associated values.

Examples for such variables are a geographical location (for example Global Positioning
System (GPS) coordinates), a time interval (like from 8am to 16pm) or the presence of
other devices (like nearby WAPs). The notion of a context is derived from CRePE [38].
However, this scenario uses a context for a different purpose. In contrast to CRePE, which
basically extends the Android framework to allow additional security checks depending
on policies that are pushed to the smartphone (more precisely additional checks for the
use of Android permissions), this scenario focuses on the provision of services based on
the smartphone’s context.
This scenario covers mechanisms to identify the current set of contexts a smartphone

is used in. Similar to the first scenario, it must be possible to distribute this knowledge
within the infrastructure of a company in an efficient way.

Example Use Case Again, a company provides their employees with smartphones.
Those devices can be used both for business as well as for private tasks. The company
wants to enforce a policy that ensures that business data is only exposed to a phone if and
only if the following contexts are fulfilled: the employee uses the smartphone on-site at
the company and the access takes place during the normal working hours. The approach
developed in this thesis must provide means to capture the smartphone’s context and to
propagate this context within the IT infrastructure. Furthermore, a service that is about
to be consumed must be able to check the context of the requesting device and allow or
deny its consumption according to a policy defined by the respective company.
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2.2.3 Scenario III: Detection of Malicious and Unwanted Apps

One crucial aspect of modern smartphones is their support for third-party software. Users
can customize their smartphones by installing apps. While the majority of available apps
provides benign functionalities, malicious apps that aim to harm the user exist too. Their
malicious functionality ranges from simple defacement capabilities over blackmailing the
user to more sophisticated approaches that aim to sniff for sensitive data by leveraging
the built-in sensors of smartphones. The latter category of malicious apps is also referred
to as sensory malware [10].

The presence of third-party apps can impose risks both for the smartphone itself and
the IT infrastructure it is used in. It is therefore necessary to detect both the presence
and the activity of apps on smartphones. For the depicted scenario, it is not sufficient to
use existing, host-based security tools like anti virus scanners that specifically search for
malicious apps. Instead, it depends on the policy of the respective company to specify the
characteristics of an unwanted or malicious app. That is, a genuine app that is popular,
provides correct functionality and that is used by a lot of different users might nevertheless
be unwanted by a company under certain circumstances and must thus be detectable by
the developed approach. It is an open question which data and approaches are best suited
in order to find malicious and unwanted apps. The approach will investigate methods in
order to leverage the capabilities of existing security services, in conjunction with new
developed software components, in order to find adequate answers.

Example Use Case A company provides their employees with smartphones. Smart-
phones are primarily used for business tasks. However, the employees are also allowed to
use the smartphones for private purposes. This directly implies that third-party apps are
installed by the employees. Thus, it is also possible that malicious and unwanted apps
are installed. In this scenario, the term malicious refers especially to apps that try to
snoop for sensitive data by leveraging a smartphone’s built-in sensors (like audio, video
or position data), and then try to sent the gathered data to a remote destination under
the control of an adversary for further processing. The developed solution should detect
such malicious apps by analyzing data that describe the current status and activities of
the smartphone.
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2.2.4 Scenario IV: Policy-based Enforcement

The first three scenarios focused on detection capabilities that must be supported in order
to ensure a secure integration of smartphones into existing IT infrastructures. In contrast
to that, the fourth scenario explicitly addresses the question how the endpoints and ser-
vices within an IT infrastructure can be protected once a policy violation is detected.
Regarding the first scenarios, such a policy violation can manifest itself in different ways:

1. A smartphone tries to access a service that is not allowed to be accessed by this
type of endpoints.

2. A smartphone tries to access a service while being within a context that disallows
the service consumption.

3. A smartphone has malicious or unwanted apps installed while being connected to
the IT infrastructure of the respective company.

In order to react on such policy violations, the approach must support to distribute
the detection results throughout the corporate IT infrastructure. Thus, services that are
capable of mitigating the detected policy violation can respond accordingly. Referring to
the previously defined reference IT infrastructure, especially flow controllers are expected
to be used for this purpose.

Example Use Case Flow controllers are part of the reference IT infrastructure (cf. Fig-
ure 2.1). They are primarily firewall systems and layer 3 switches. However, also NAC
solutions and VPN gateways can provide some sort of flow controlling functionality. For
this use case, again a smartphone is used by an employee both for private and business
tasks. Thus, the employee is allowed to customize the smartphone by installing third-party
apps. Since he did not limit himself to the official app stores of his respective smartphone
platform but also installed apps from unofficial web sites, the device was compromised
with a sensory malware app as mentioned in Section 2.2.3. The presence of this malicious
app is detected based on the approach developed within this thesis. This detection result
must be propagated transparently to other parties in the network. Flow controllers are
expected to consume these results in order to limit the potential damage that can be
caused by the smartphone and the respective, malicious app. For example, a packet filter
can be configured to block any outgoing traffic that originates from the smartphone. A
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Figure 2.2: Organizational roles, technical terms and their relationships depicted as UML
class diagram.

WAP that supports IEEE 802.1X [32] can be used to isolate the connected smartphone
to a specific VLAN. If the policy violation is critical, the respective smartphone might
also be disabled remotely.

2.3 Terminology

In the following, a set of organizational roles, technical terms and their relationships are
defined in order to provide a consistent vocabulary for the remainder of this thesis. These
terms allow to express the previously defined scenarios in a more generic way. Furthermore,
the notion of administrative domains is introduced. They are used to clearly specify the
scope of this thesis.
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2.3.1 Organizational Roles

The following organizational roles are defined for the remainder of this thesis as depicted
in Figure 2.2. Their notion was derived based on the online Oxford Advanced Learner’s
Dictionary7.

Company A company represents an organization that conducts business in order to make
profit. Regarding the relevant scenarios, a company wants to use smartphones in
order to support their business tasks.

Owner This is the actual owner of the physical smartphone device. That is, the owner has
paid money in order to buy the smartphone. Thus, it is his property. A smartphone
is either owned by a company or by an employee.

Employee An employee works for a company in order to earn money. There are two types
of relevant employees that are distinguished: users and administrators. Employees
that are not appropriately represented by those two types are not of interest.

User A user is an employee that uses a smartphone for various tasks. The smartphone in
use can be his own (which means that the user is also the owner) or can be provided
by a company (which is then considered to be the owner).

Administrator An administrator is responsible for managing the IT infrastructure of the
company he is working for.

It is important to note that an employee can be a user, an administrator and an owner
at the same time.

2.3.2 Technical Terms

IT Infrastructure For the remainder of this thesis, an IT infrastructure is primarily com-
posed of smartphones and services. Smartphones are used within the IT infrastruc-
ture, services are provided by the IT infrastructure. An IT infrastructure has a
security policy. Furthermore, an IT infrastructure is administered by a number of
admins.

7http://oxfordlearnersdictionaries.com/
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Service A service provides a certain functionality within an IT infrastructure. As already
stated in Section 2.1, security services are of special interest for this thesis. However,
there might also be further services available that provide arbitrary functionality.
Those services might be considered as valuable assets, and thus need appropriate
protection from threats as well.

Security Policy A security policy defines how information security shall be established
within an organization. This is usually done on an abstract level, omitting technical
details. The security policy must be kept up to date. Changes to the security policy
are necessary if the addressed IT infrastructure changes [24]. The introduction of
a new type of devices like smartphones is an event that demands to update the
corresponding security policy.

Smartphone The term smartphone refers to the physical device. It is owned by an owner
and used by an user. Due to its mobility, a smartphone can be used in numerous IT
infrastructures.

App Apps are software components specifically developed for a certain smartphone plat-
form. They are installed on and executed by a smartphone. Apps can either be
shipped with the smartphone platform itself or can be installed later.

App Store An app store represents a service that is normally provided by the maintainer
of a concrete smartphone platform. In this case, it is referred to as official app store.
However, there are also unofficial app stores that are maintained by other parties.
This type of service enables the user of a smartphone to install third-party apps on
demand. App stores are usually web-based services and are thus accessed via the
Internet.

Sensor Smartphones come with a set of built-in sensors. A sensor is able to capture a
certain aspect of the smartphone’s physical environment (such as audio, video or
position data). The exact number and functionality of sensors vary depending on
the smartphone model and platform.

Context Generally, the term context is defined as “the situation in which something
happens and that helps you to understand it” [19]. Within this thesis, a context en-
capsulates information about the physical environment of a smartphone. Examples
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for concrete contexts are given in Section 2.2.2. A smartphone is either within a
certain context or not. That is, there is no way that a smartphone can be partially
within a concrete context. However, it can be within multiple contexts at the same
time.

Further details on the technical terms related to smartphones are given in Section 3.1
and 3.2 while discussing the state of the art in smartphone security.

2.3.3 The Notion of Administrative Domains

The last important building block is the notion of administrative domains. The term
is used in order to address all organizational roles and technical terms that belong to
the same organizational entity. Referring to a company, all components within the IT
infrastructure and all employees belong to the same administrative domain (the one of
the respective company). The company is responsible for making decisions that affect
the way the infrastructure is maintained and used. In contrast to that, an employee or
a smartphone from another company or a customer is considered to belong to another
administrative domain.
Administrative domains are important in order to clearly specify the scope of this thesis.

Any further discussion focuses on issues that are relevant within a single administrative
domain. Questions that introduce or require interaction across multiple administrative
domains are not completely ignored. However, it is not the focus of this work. For example,
app stores are usually web-based services that are maintained by the manufacturer of the
smartphone platform. Thus, those services usually do not belong to the administrative
domain of a company (as long as they do not host their own app store). However, as
app stores are a crucial part of modern smartphone’s ecosystem, they are also considered
within the remainder of this thesis.
On the other hand, the secure integration of smartphones that belong to another ad-

ministrative domain is not specifically addressed. Consider two companies A and B. Em-
ployees of company B might bring their smartphones to a meeting that is held within the
buildings of company A. The secure integration of smartphones from company B within
the IT infrastructure of company A is not directly addressed within this thesis. This use
case is more related to the problem of integrating guest devices into an IT infrastructure
in a secure way.
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With the set of organizational roles and technical terms defined above, all of the concrete
scenarios can be expressed in a more abstract way. Furthermore, the roles and terms help
to prevent ambiguity during the remainder of this thesis. In each of the concrete scenarios,
employees use smartphones within an IT infrastructure provided by their company. The
smartphone can either be their own or can be provided by the company. In each case, the
smartphone will be used for both business and private tasks. This situation covers the
current challenge that companies have to face due to the ubiquitousness and high usage
of smartphones.

Administrative domains are used to define the scope of this thesis. As stated above,
the focus of this work is to investigate what impact smartphones have with respect to
security while considering one single administrative domain. This is sufficient to cover
the scenarios stated above where employees use smartphones within the IT infrastructure
of their company. Investigations that cover multiple administrative domains are not ad-
dressed within this thesis. However, the achieved results may form the basis for future
work that addresses multi domain scenarios. If smartphones can be securely integrated
into existing IT infrastructures of a single administrative domain, further work can be
conducted to aim for a secure integration among multiple administrative domains.

That is, use cases where an employee uses his smartphone outside of his company’s
administrative domain (for example by using a public hotspot within a coffee shop) are
considered to be out of scope. This is analogues to a user that tries to access a company’s
IT infrastructure with his smartphone although he is not an employee. In order to pro-
tect an IT infrastructure from unknown devices, several well-known techniques can be
employed. Authentication of users and devices and strong encryption of wireless networks
are two of them. To protect a company’s smartphone in foreign administrative domains is
not that trivial. However, this research question belongs primarily to the field of system
security and will most likely lead to solutions that harden the smartphone platform in use.
Although these use cases are not the focus of this work, the approach that is presented
in the following might also provide some benefits for them.
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2.4 Trust Model
Some assumptions are made regarding the trustworthiness of networks, smartphones and
the type of attacks that are considered within this thesis. They are described in the
following:

Untrusted Networks Any network is untrusted. An attacker can modify or eavesdrop
any traffic that is carried over the network. This holds both for known (that is a
company’s) network as well as for unknown networks (such as the Internet). Thus,
measures in order to ensure confidentiality and integrity of data that is transmitted
over networks are mandatory.

Trusted Smartphone Platforms The smartphone platform (that is the hardware, the
firmware, the operating system and the smartphone platform’s middleware software
stack) form the Trusted Computing Base (TCB) as defined by Lampson et al. [39]
for the remainder of this thesis. Hardware-based attacks and attacks that modify
the smartphone platform itself are not the focus of this work. This thesis primarily
addresses threats that are caused by third-party apps that either are benign but
unwanted from the perspective of a company or apps that implement malicious
functionality.

No Insider Attacks Insider attacks are out of scope. It is expected that employees behave
in accordance to policies defined by their company. However, they can be fooled with
social engineering techniques to perform actions that violate the security policy of
their company. The detection and prevention of insider attacks is a separate field of
current research [40].

2.5 Requirements Analysis
In the following, a requirements analysis based on the presented scenarios is performed.
The analysis highlights the most important requirements that have been identified and
omits those that are considered trivial in a sense that they are virtually relevant for any
approach in any domain (for example the requirement to have an adequate documenta-
tion). Each of the stated requirements is equally important (that is, there is no weighting
of individual requirements).
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R-01 Detection of unwanted and malicious configurations of smartphones The devel-
oped approach must support to detect unwanted and/or malicious configurations
of smartphones that are connected to the IT infrastructure. This requirement is
directly derived from the scenarios I and III (Sections 2.2.1 and 2.2.3). The term
configuration refers to the status of the smartphone’s hardware and software. In
general, the presence of malicious apps leads to a malicious configuration. The same
holds if a smartphone’s built-in sensors are activated although it is not permitted.
The approach must support to capture the current configuration of a smartphone
and to reason about it.

R-02 Detection of abnormal smartphone behavior The approach must detect if a smart-
phone behaves abnormal. Such a behavioral change can be caused by malicious apps,
which impose great risks for an IT infrastructure and the smartphone itself. How-
ever, malicious apps are just one possible factor that can cause abnormal behavior.
Others include physical loss of the device (which is then potentially used by an unau-
thorized user) or the effects of apps that are generally benign but are considered
to cause abnormal behavior under certain circumstances (like streaming video data
from a sensitive environment within an IT infrastructure). Thus, the requirement is
derived from scenario III (Section 2.2.3).

R-03 Consideration of context information for detection This requirement is primar-
ily derived from scenario II (Section 2.2.2). The approach must provide mechanisms
to easily capture the context of each smartphone. This information will also be
used to support the fulfillment of the first two requirements. That is, based on the
context of a smartphone, it is decided whether a certain configuration is malicious
respectively unwanted or if the observed behavior is considered as being abnormal.

R-04 Policy-based reaction on detection results This requirement is derived from sce-
nario IV (Section 2.2.4). It is necessary that the approach allows to react on detec-
tion results in a flexible way based on defined policies. Simple notifications without
initiating countermeasures to mitigate identified threats are not sufficient.

R-05 Dynamic analysis at runtime The approach must support dynamic analysis at
runtime. That is, any analysis, detection and enforcement capabilities must be em-
ployed while smartphones are actually used within an IT infrastructure. Techniques
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that are limited to analyze data offline (like inspecting the code of installed apps) can
be used in addition. In this case, they have to be integrated in such a way that their
results can be used at runtime without any delays, for example by precomputing
them.

R-06 Extensibility of processed data and used methods The approach must be exten-
sible. This refers both to the data that is processed in order to detect unwanted
configurations and abnormal behavior as well as to the methods that are used for
processing. The same requirement applies for the data that is used in order to de-
termine a smartphone’s context.

R-07 Ability to integrate the approach in existing environments Another requirement
is the capability to integrate the developed approach into existing environments. As
companies will have a wide range of IT systems and security services already in use,
the goal is to find ways to leverage the functionality of available components for
the described scenarios. For example, existing services can be used to provide data
about a smartphone. This data can then be used to detect malicious apps and ab-
normal smartphone behavior. Furthermore, existing services should be used to react
on detection results. Another aspect is the fact that strategies like BYOD should
be supported as well. Thus, approaches that need modifications of the smartphone
platform itself are generally not well suited.

Table 2.1 summarizes the list of requirements. They will be used in the remainder of this
thesis in order to review related work and existing approaches. Furthermore, the require-
ments will be used in order to assess the novel, network-based approach for smartphone
security that is developed within this thesis.
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Table 2.1: Requirements that must be fulfilled in order to enable a secure integration of
smartphones into existing IT infrastructures.

ID Requirement
R-01 Detection of unwanted and malicious configurations of smartphones
R-02 Detection of abnormal smartphone behavior
R-03 Consideration of context information for detection
R-04 Policy-based reaction on detection results
R-05 Dynamic analysis at runtime
R-06 Extensibility of processed data and used methods
R-07 Ability to integrate the approach in existing environments
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3 State of the Art and Related Work
“Motivation is what gets you
started. Habit is what keeps you
going.”

(Jim Rohn)
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This chapter discusses the state of the art and related work in the field of smartphone
security. Based on a literature review, an assessment of existing approaches is done with
respect to the requirements that were identified in Chapter 2. It reveals that current
approaches fail to meet all of the requirements for a secure integration of smartphones
into existing IT infrastructures.

3.1 Introduction to Smartphones

3.1.1 Definition

The field of smartphone security has gained a lot of momentum during the past six years.
Both researchers and companies have started to work on related topics in parallel. This
development and the rapid change of the capabilities of devices led to a certain amount of
ambiguity when it comes to actually name relevant concepts. This caused some confusion,
especially regarding the distinction between mobile devices, mobile phones, feature phones
and smartphones. The terminology that is defined in the following is based on the work
of Becher [41] and Zheng et al. [42] while using some of the terms defined in Section 2.1.

Mobile Device A mobile device is any endpoint that is powered by a battery. This in-
cludes laptops, PDAs, tablets and mobile phones.

Mobile Phone Mobile phones are mobile devices that provide a limited but essential set
of features. They are primarily used to make phone calls and to send Short Message
Service (SMS) messages. As they have only low processing power and small displays,
they provide a long battery life. The terms cell phone and mobile phone are used
interchangeably. Any mobile phone contains a so-called subscriber identity module
(SIM) card that is controlled by a mobile network operator (MNO).

Feature Phone In contrast to mobile phones, feature phones provide larger displays,
larger processing power and are able to browse the Internet. This comes at the
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cost of reduced battery life. Feature phones are based on closed operating systems
and although generally support the concept of apps that can be provided by their
manufacturer, they cannot be extended by adding third-party apps.

Smartphone The main aspect that differentiates smartphones from feature phones is their
support for third-party apps. Smartphones have operating systems that provide a
rich application programming interfaces (APIs) to allow those third-party apps tight
integration with the rest of the platform. As already mentioned in Section 2.3, those
apps are obtained from web-based services called app stores.

Since 2011, there is a legal dispute whether the term “app store” (and variations
thereof like “appstore”) is a official trademark of the company Apple Inc. or not [43].
Furthermore, app stores recently also provide other assets besides apps like music,
videos and books. Thus, other terms like mobile markets, mobile marketplaces or
just app markets have evolved. However, since this thesis is primarily concerned
about smartphones and their extensibility by third-party apps, the generic term
app store will be used. When explicitly addressing the store maintained by Apple,
the phrase Apple App Store will be used.

In addition to the extensibility, there are further aspects that differentiate a smart-
phone from a feature phone. Smartphones provide even more processing power than
feature phones and achieve better connectivity via various interfaces such as Blue-
tooth and near field communication (NFC). They support to access the Internet
both via WLANs that are based on the IEEE 802.11 set of standards as well as
directly via cellular phone networks. Additionally, they incorporate various sensors
in order to obtain data from their physical environment. For example, the phone’s
location can be obtained via GPS sensors, audio data via the microphone and video
data via built-in cameras. As also smartphones evolve, more sophisticated sensors
like accelerometers, gyroscopes and barometers are now also common in new devices
like the Google Nexus 4. Due to their versatility, smartphones are used for a wide
range of tasks (besides telephony and web-based services). Especially the support of
NFC has yielded new use cases such as NFC-based access tokens [44] and identity
verification techniques [45].
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3.1.2 Overview of Current Smartphone Platforms

As smartphones have evolved over the past years by means of additional processing power,
larger displays and more sophisticated built-in sensors, so have their operating systems.
Thus, there has been a wide range of both commercial and open source platforms for
smartphones. Some projects even aimed to specify both the hardware and the software of
smartphones, like the Openmoko project1.
Today, there are two major smartphone platforms of importance: Google Android and

Apple iOS. According to the “Worldwide Quarterly Mobile Phone Tracker” maintained by
IDC, those two platforms had a market share of 75% and 14.9% respectively in the third
quarter 2012 in terms of shipped units [46]. Further platforms that are still available and
that were considered by the study include BlackBerry from Research in Motion (RIM)
(4.3%), Symbian from Symbian Ltd. (2.3%) and Windows Phone 7 from Microsoft (2.0%).
These numbers proof that the presence of smartphones based on Android or iOS is

predominant. However, they are also somewhat misleading, implying that the importance
of Apple’s iOS devices is almost irrelevant compared to Android. Two side notes should
be taken into account before reasoning about the given numbers:

• The new iPhone 5 was launched late in the third quarter (September 12th 2012).
Given the fact that the demand for the new model was very high [47], the market
share will likely change accordingly.

• Although the market share of Android is predominant, the platform’s app store
generates less revenue compared to the official Apple App Store. In 2011, the Apple
App Store for iPhone generated nearly four times more revenue [48]. This even
excludes apps that are only available for the Apple iPad.

Furthermore, there might be a shift of market shares from Android and iOS to smart-
phones that use Microsoft’s Windows Phone 8, once these devices are widely available in
the fourth quarter of 2012. Nevertheless, Google Android has become the market leader
for smartphone platforms. Some of its details will be presented in Section 3.2 with a focus
on its security mechanisms. However, a lot of the concepts used in Google Android are
also available for other smartphone platforms.

1http://www.openmoko.org/
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3.2 The Android Platform
The first version of the Android platform was announced in 2007. Its development is
mainly driven by Google and other members of the Open Handset Alliance. The source
code is released under the Apache License [49]. The progress of the open source develop-
ment is tracked within the Android Open Source Project (AOSP)2, which is also led by
Google. The first Android smartphone was the HTC Dream (also known as T-Mobile G1),
which was released in October 2008. Since then, the Android platform has encountered
several extensions and improvements. This also includes specific security mechanisms like
the support for address space layout randomization (ASLR). Since version 1.5, each major
Android version is named after a dessert. The latest version at the time of this writing
was 4.2 codename “Jelly Bean” released in November 2012. The complete version history
of Android is summarized in Table A.1 in the appendix.
Since its initial release in 2008, there have been 32 updates released for Android. Most

of them included bug fixes. There have been eight larger updates, each one introducing
a new Android version with an associated codename. Those major updates normally
introduced a set of new features, including security features like updated kernel versions,
the support for VPNs, a full implementation of ASLR or the support of SELinux3. The
version history proofs that the Android platform is actively maintained, and still under
a rapid development. In addition to the official Android version, there are also projects
that provide customized Android versions, for example CyanogenMod4.
However, the plethora of Android versions also introduces some issues in terms of secu-

rity, commonly referred to as Android Update Problem [50]. Smartphone manufacturers
like HTC and Samsung provide customized versions of Android for their phones, primar-
ily to ensure their own look and feel and to adapt Android to their specific hardware
platforms. Due to the rapid frequency of updates provided by Google, manufacturers fall
behind to actually adapt the updates for their needs and to deploy them on their devices.
As a result, most of the Android devices run outdated versions of the Android platform,
thus lacking the latest bug fixes and security updates. Google provides data regarding the
distribution of Android versions on a regular basis [51]. Data that was collected during
a 14-day period ending on November 1st 2012 is depicted in Table 3.1. Only 2,7% of

2http://source.android.com/
3http://selinuxproject.org/
4http://www.cyanogenmod.org/
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Table 3.1: Distribution of Android versions. Data obtained within a 14-day period ending
on November 1st, 2012 [51].
Version Codename API Level Distribution

1.5 Cupcake 3 0.1%
1.6 Donut 4 0.3%
2.1 Éclair 7 3.1%
2.2 Froyo 8 12%

2.3 - 2.3.2 Gingerbread 9 0.3%
2.3.3 - 2.3.7 10 53.9%

3.1 Honeycomb 12 0.4%
3.2 13 1.4%

4.0.3 - 4.0.4 Ice Cream Sandwich 15 25.8%
4.1 Jelly Bean 16 2.7%

devices were running the latest Android version “Jelly Bean” that was released in July
2012. In contrast, more than 50% of the devices were still running Android “Gingerbread”
which was initially released in 2010. This problem is unique to the Google platform. For
example, when Apple releases a new version of their iOS platform, all supported devices
are updated by default (as long as the user does not choose to prevent the update). At
the Google I/O conference 2012, Google announced that it will release a special Platform
Development Kit (PDK) for hardware developers in order to mitigate this problem. The
PDK will be made available two to three months before each major Android update.
The following sections detail certain aspects of the Android platform. An overview

of its architecture is given in Section 3.2.1. Google Play, the app store for the Android
platform, is introduced in Section 3.2.2. The fundamentals of Android apps are described
in Section 3.2.3. The main part is a discussion of Android’s built-in security mechanisms
in Section 3.2.4.

3.2.1 Architecture

The architecture of the Android platform consists of five main building blocks. They are
briefly described in the following.

Linux Kernel The fundamental basis for the Android platform is a customized Linux ker-
nel. Enhancements that are added for Android primarily address the power manage-
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ment and the support of inter-process communication (IPC) via the Binder driver.
The first Android releases including Honeycomb were based upon a Linux kernel in
version 2.6.x. Since Android Ice Cream Sandwich, a Linux kernel in version 3.x is
used.

Libraries Android includes a set of native libraries for various purposes, including SS-
L/TLS for secure connections, SQLite databases and WebKit for rendering HTML
and JavaScript. As standard C library, Android uses the Bionic libc instead of the
GNU C library.

Android Runtime The Android runtime environment consists of the Dalvik Virtual Ma-
chine (Dalvik VM) and a set of Java core libraries. Apps for Android are normally
written in Java and executed by the Dalvik VM. Java .class files are converted
to .dex (Dalvik Executable) files before they are executed by the Dalvik VM on
a device. The Java core libraries provide developers with a familiar environment,
comparable to ordinary Java Development Kits (JDKs).

Application Framework The application framework includes a set of services that are es-
sential for the Android platform in order to handle telephony, resource management
and location based tasks. Apps can use these services via a simple Java API.

Applications The applications building block includes any app that is installed and ex-
ecuted on the device. This includes so-called system apps that are directly shipped
with the device as well as third-party apps that are installed afterwards. Apps are
written in Java and make normally use of services provided by the application frame-
work. However, it is also possible to use native code within an app by leveraging
the Java Native Interface (JNI).

These components form the basic architecture of the Android platform. A more detailed
introduction to Android and its architecture is given by Reto Meier [52].

3.2.2 Google Play

Google Play5 is the official app store for the Android platform. It was formerly known
as the Android Market. It was renamed in March 2012 as Google added further digi-

5http://play.google.com/
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tal content besides apps, including music, movies and books. The store can be accessed
directly from smartphones with the corresponding app named Google Play Store. Fur-
thermore, Google Play can also be accessed with an ordinary web browser. Users can
browse through available apps based on aspects like their category or whether they are
free or cost money. For each app, further information like the developer, the average user
rating and the number of downloads are provided as well. Currently, there are 34 different
categories supported. Those categories are itself divided into categories for “applications”
and categories for “games”. Within this thesis, both applications and games are referred
to as apps.
In October 2012, Google announced that there were more than 700,000 apps available

in their app store [53], which is a similar number as the main competitor Apple features
in its own App Store for iOS devices. Although the total numbers of available apps
are comparable, the distribution model of Google and Apple varies greatly. Whereas
Apple employs a closed approach, restricting its users solely to its official app store,
Android supports a more open model that explicitly allows unofficial app stores (such as
AndroidPIT6).

3.2.3 App Fundamentals

The extensibility through third-party apps is one major success factor of modern smart-
phones. Thus, the fundamentals of Android’s app development framework will be intro-
duced in the following. Android apps are written in Java and bundled, together with
all further resources like images or sound files, into an Android Package archive with a
(.apk) suffix. Multiple apps are executed in isolated environments, each belonging to its
own security sandbox. Section 3.2.4 gives further details on the sandboxing mechanisms
of Android. According to the Google API Guides [54], each app is composed of one or
more of the following components:

Activities An Activity is the main component for building user interfaces on Android.
Each Activity represents a single screen that is shown to the user on the smart-
phone’s display. A single app is usually composed of multiple Activities. For exam-
ple, a camera app can have one Activity in order to display the current picture and
another Activity that allows the user to specify configuration settings.

6http://www.androidpit.de/de/android-market
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Services Services do not provide a user interface screen. Instead, they are used for per-
forming long running tasks in the background. For example, in order to continuously
play a music file, a Service component should be implemented. The user interface
however would be realized by implementing an appropriate Activity.

Content Providers Content Providers are responsible for providing and controlling access
to data. The data can be private for one app or can be shared among multiple apps.
For example, each Android smartphone ships with a standard Content Provider that
manages access to the users address book.

Broadcast Receivers Android heavily relies on broadcast messages that are sent both
by third-party apps and system services. For example, when the screen is turned off
or an SMS message is received, appropriate broadcast messages are sent. Broadcast
Receivers are components that are responsible for receiving and reacting on such
broadcast messages.

Android supports inter-component communication (ICC). Generally, any app can start
not only its own components, but also the components of another app. For example, if a
third-party app wants to take a picture, it will likely start the corresponding activity of the
standard camera app provided as part of the Android platform. Communication between
components, whether within a single app or across multiple apps, is primarily realized by
asynchronous messages referred to as Intents. Activities, Services and Broadcast Receivers
make use of Intents. An Intent declares a recipient and optionally contains further data as
payload. The recipient can be named explicitly, ensuring that the Intent is transmitted to a
specific, known component, or implicitly by specifying a so-called action string. Receiving
components can define Intent Filters based on these action strings in order to get started
when an Intent occurs whose action string is covered by their Intent Filter. After the
called component receives the Intent, it can make use of its payload. Content Providers
are not accessed by means of Intents. Instead, they receive requests from so-called Content
Resolvers. This introduces another layer of abstraction, primarily for security reasons [54].
In order to protect an app’s components, they can be declared public or private. Fur-

thermore, permissions can be named that the calling app must have requested in order
to access the respective component. If not explicitly declared as public or private, the
Android platform infers a default setting based on other parameters provided as part of
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the app’s manifest file [55] which is detailed below. However, recent work has shown that
these default inference rules cause many developers to implement app’s that unintention-
ally provide access to components that should remain private [56].

The last crucial building block of Android’s app framework that is presented here
is the so-called manifest file. The manifest is a Extensible Markup Language (XML)
configuration file that is contained within each .apk package. Among other parameters,
it declares all of the app’s components. Furthermore, the manifest contains the list of
permissions that the corresponding app requests to use and the list of Intents that it
wants to receive. Both of them are expressed by specific XML elements referred to as
<uses-permission> and <intent-filter> respectively.

3.2.4 Security Mechanisms

The Android platform includes several security mechanisms. Most of them aim to protect
the user and its data from malicious third-party apps or in case the device is lost. Although
their concrete implementation is specific for the Android platform, the general security
mechanisms are also common on other platforms like Apple iOS. In order to describe
the security mechanisms of Android, terminologies that have been proposed in the past
[57, 58, 59] will be used. The description covers all Android versions that were available
at the time of writing, including Android 4.2.

Kernel Security

At the kernel level, Android provides basic security mechanisms that are known from clas-
sical Linux-based computing platforms such as discretionary access control (DAC) for files
based on user identities and the isolation of concurrently running processes. Furthermore,
the kernel provides protection from runtime exploits that work based on corrupting the
stack or heap memory. This includes a full ASLR implementation since Android version
4.1 and hardware-based No eXecute (NX) to prevent code execution on the stack and
heap since Android version 2.3. Furthermore, support of SELinux was added in Android
version 4.2.
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Device Access Control

Device access control mechanisms enable to control which users are allowed to use a
smartphone. The purpose is to prevent unauthorized access to the smartphone, especially
when the device is lost. Thus, in contrast to other security mechanisms, this one does
not primarily target the threats introduced by malicious apps. Protected smartphones
are “locked” when they are not actively used. In order to “un-lock” a device, Android
supports various techniques, including passwords, patterns and personal identification
numbers (PINs). Furthermore, since Android version 4.0 it is also possible to un-lock a
device by taking a picture of the user (referred to as Face Unlock). However, it is also
possible to completely disable the device access control mechanism or to configure weak
techniques that simply rely on the physical presence of any user (finger swipe). Apple iOS
provides similar device access control mechanisms as Android.

Filesystem Encryption

Filesystem encryption seeks to protect data that is stored on the smartphone in case it is
stolen or lost. Since Android version 3.0, full filesystem encryption is supported. Thus, any
smartphones that use prior Android versions are not able to protect their data this way.
Given the distribution of Android versions presented in Table A.1, more than half of the
devices are unable to appropriately protect data at rest. On Android, encryption is done
in the Linux kernel by using the dmcrypt7 implementation of the Advanced Encryption
Standard (AES) [60, 61]. Apple iOS supports a similar level of filesystem encryption.

Sandboxing

A crucial security concept of Android (and many other smartphone platforms) is the iso-
lation of third-party apps by means of so-called application sandboxes. Apps are both
isolated from accessing each other as well as from accessing the smartphones resources in
an uncontrolled way. Application sandboxing on Android is realized based on the features
provided by the Linux kernel. Each Android app is assigned a unique user id (UID), runs
in its own process and has its own directory. The permissions of the directory are set in
such a way that the app’s UID is the owner and only owner filesystem permissions are

7http://code.google.com/p/cryptsetup/wiki/DMCrypt
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set. Furthermore, each app runs in its own instance of the Dalvik Virtual Machine. This
sandboxing mechanism also applies for native code used by the app. Since the interaction
of apps both with other apps and with resources provided by the smartphone is essential,
Android supports mechanisms to “exit” an app’s sandbox in a defined way. These mech-
anisms are controlled by a permission-based access control model that is detailed below.
Apple’s iOS platform supports similar sandboxing mechanisms.

Permission-based Access Control

In order to enable apps to access resources and data that is not contained within their
sandbox, modern smartphone platforms implement permission-based access control mod-
els. Basically, apps are allowed to access a smartphone’s resources such as location sen-
sors and components of other apps if they have the necessary permissions to do so. The
permission model is enforced by the smartphone platform at runtime and can gener-
ally not be circumvented. Android provides a sophisticated permission framework in
order to realize mandatory access control for ICC between different apps and for the
access to the smartphone’s resources [62]. It is based upon more than 100 predefined
permissions [63] that enforce control to the smartphones resources. For example, permis-
sions that are often requested by apps include INTERNET for accessing the Internet and
ACCESS_COARSE_LOCATION respectively ACCESS_FINE_LOCATION in order to obtain the
current location of the smartphone. Actually, each of the standard Android permissions
also has the prefix android.permission. However, it is omitted here for readability.
Permissions are primarily enforced by a reference monitor in the Android middleware.
However, some permissions like INTERNET are enforced by the Linux kernel.

In addition to the predefined set of permissions, developers can also define their own
permissions. These self defined permissions are normally used in order to control access
to components of an app. For example, a developer that has published many apps can
define its own set of permissions in order to limit access to exported components within
its own set of apps.

Permissions are classified according to protection levels. The purpose of a protection
level is twofold. First, it characterizes the general risk that is implied by the respective
permission. Second, it determines how the Android platform handles the process when
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apps request the respective permission. Permissions on Android are categorized into four
protection levels [64]:

1. Normal permissions impose negligible risks to the smartphone and its user. If re-
quested by an app, they are always granted by default without the user’s confir-
mation. An example for such a permission is VIBRATE, which allows access to the
vibrator of the smartphone.

2. Dangerous permissions are potentially harmful. Granting this type of permission
gives apps access to the user’s private data and to actions that can cost money. Thus,
user confirmation at install time is necessary in order to grant these permissions to
apps. An example for such a permission is SEND_SMS, which allows an app to sent a
SMS message.

3. Signature permissions are only granted to apps that have been cryptographically
signed with the same certificate as the app that initially declared the permission.
User confirmation is not necessary in this case. An example for such a permission
is CLEAR_APP_USER_DATA. It basically allows the requesting app to delete all of the
user’s data. Note that although this might seem like a severe threat, it is not. The
permission is declared by an app that was signed by a certificate owned by Google.
Thus, no third-party app can successfully request this permission.

4. SignatureOrSystem permissions are granted only to apps that are part of the default
system image or are signed with the same certificate as these apps are. According
to the official developer documentation, this protection level should not be used at
all by developers: “Please avoid using this option, as the signature protection level
should be sufficient for most needs and works regardless of exactly where applica-
tions are installed.” [65]. Permissions with this protection level are primarily used
by the Android platform in order to protect access to background services that
should not be used by ordinary third-party apps. An example is the permission
DELETE_PACKAGES that allows an app to delete installed apps.

On Android, the granting of permissions to apps is done at install time. It is an all-or-
nothing decision made by the user. That is, an app is either granted all permissions that
it requests, or it is not installed. It is not possible to just grant a subset of the requested
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permissions. Although Android’s permission model has been effective in limiting the access
of apps to resources that are within the scope of their requested permissions, it has also
some drawbacks that have been recently identified by researchers[66]:

• For users, it is difficult to interpret the meaning of some permissions.

• It is not transparent whether a certain combination of permissions might be dan-
gerous.

• Overdeclaration is an issue, that is many apps request more permissions than they
would actually need to function properly.

In contrast to the model described above, the permission model that is supported by
Apple’s iOS platform is rather limited. Basically, all apps share the same permissions.
There is no user confirmation required at install time. Instead, the system requests the
confirmation of the user when an app aims to access sensitive data in the device at runtime.
This includes data such as the users address book, the calendar and the smartphones
location.

Application Provenance

The term “application provenance” basically refers to two concepts that are employed in
order to mitigate the threats introduced by third-party apps. First, application prove-
nance includes mechanisms that aim to ensure the integrity of an app and to authenticate
its author. This way, users can decide whether they want to install a certain app based
on the identity of the author and they can be assured that the app has not been tam-
pered. Furthermore, software developers can be made accountable for apps that behave
maliciously. Second, additional security checks are performed by the platform’s app store,
either before or after an app has been made publicly available for download.
Android supports both concepts by using digital signatures [67]. In order to fulfill

the first concept, any Android app must be digitally signed by the developer before it
can be installed on a device. This shall ensure both the integrity of the app an the
authenticity of the app developer. However, the Android app signing model is pretty
open. That is, apps can be signed by virtually any digital certificate, including self signed
ones. There is no need for a certificate authority that is trusted by Google. Consequently,
the certificate chain is not checked. The only prerequisite that must be fulfilled is that a
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corresponding developer profile is created via the Google Play Android developer console8.
That is, any developer that is willing to pay 25USD is able to publish apps with self-signed
certificates to Google Play. Regarding the used certificate, Google Play only enforces that
the expiration date is in the distant future9. Other contents of the certificate are ignored.
Furthermore, the contents of the certificate used for signing are not transparent for the
smartphone user that install the apps. As a consequence, malicious software developers
can easily create developer accounts for Google Play as needed.
An implementation of the second concept was recently introduced for Android, referred

to as Google Bouncer. It ensures that each app which is uploaded to Google Play is
executed in a virtual environment in order to detect malicious behavior. Furthermore,
new apps are compared against known malicious apps. If an app is flagged as potentially
malicious, it is further investigated manually and if necessary removed from Google Play.
The existence of Google Bouncer was only mentioned in a Blogpost [68]. According to
Google, Bouncer decreased the number of malicious downloads in the first half of 2011 by
40%. Technical details are not provided by Google. At BlackHat USA 2012, researchers
demonstrated that it is easy to circumvent Google Bouncer by making malicious apps
context-aware, thus hiding their malicious behavior when they are analyzed [69]. Thus,
although Bouncer certainly is a step forward compared to having no vetting process at
Google Play at all, there is room for future improvements. However, since there are at
least basic security checks, the security level of apps installed from Google Play is higher
compared to those obtained from unofficial app stores.
With Android version 4.2, Google added a so-called “application verification service”. It

allows to perform security scans of third-party apps that have been obtained form unoffi-
cial sources. Thus, the general idea of Google Bouncer is extended beyond the scope of the
Google Play app store. Although this additional security service is certainly reasonable,
first studies reveal that its detection rate is rather low (approximately 15%) compared to
those of other anti virus services [70].
In contrast to the open approach followed by Google Play for Android, the Apple App

Store is far more restrictive. First, Apple does not support to install apps from unofficial
app stores. User that want to install apps from unofficial stores need to gain root privileges
by willingly performing a privilege escalation attack. This process is also referred to as

8https://play.google.com/apps/publish/signup
9After October 22nd 2033.
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“jailbreaking”. Second, developers must officially register at Apple and pay an annual
license fee. In response, they are issued with a digital certificate that must be used to
sign their apps. Third, each app must undergo a review conducted by Apple before it is
released in the official App Store. Details of the review process are not publicly available.

3.2.5 Summary

The previous sections gave a brief overview of the Android platform. The focus was set on
the security mechanisms that are supported by the platform. Android supports features
that are well known from other computing platforms such as kernel security features,
sandboxing techniques and filesystem encryption. Furthermore, it supports a sophisticated
and complex access control model based on so-called permissions. Among other aspects,
the permissions that are requested by installed apps will be used in the remainder of
this thesis to determine the security status of smartphones. Finally, the discussion of the
Android application provenance model revealed that it differs from the provenance model
of other smartphone platforms. Android follows an open approach. Reactive measures
such as Google Bouncer are used to counter malicious apps.
For more detailed information, especially concerning the development of apps and the

implementation of Android’s security mechanisms, the reader is referred to the official
developer documentation [54] and related work conducted by Enck et al. [55] and Shabtai
et al. [58].

3.3 Related Work on Smartphone Security
In the past years, the field of smartphone security, also referred to as mobile phone security,
has gained a lot of momentum and was extensively studied by the research community.
Starting from the first papers that began to examine the threat of malware for mobile
devices [71, 72], the number of publications has grown steadily. The topics and challenges
that have been addressed by other researchers are diverse. In order to provide a com-
plete overview of relevant related approaches, the presentation of related work is basically
structured by means of three categories:

1. The first category covers all research papers whose main contribution is to provide
a basic analysis of certain smartphone security issues. Furthermore, survey articles

44



3.3 Related Work on Smartphone Security

that aim to provide a scientific view on the special aspects of smartphones and the
ecosystem they are used in are presented as well.

2. The second category of presented research approaches covers work that addresses the
specific threats of smartphones in detail. Those articles usually include approaches
for exemplary attacks in order to abuse the discovered threats. This kind of work
often builds on or refers to results that were accomplished within research papers
of the first category.

3. The third category focuses on approaches that introduce countermeasures in order
to mitigate various threats that were identified for smartphones. Some approaches
also include a simple proof-of-concept attack in order to emphasize their motivation.
This third category is especially important in order to compare existing approaches
against the requirements defined in Chapter 2.

A mind map that visualizes the related work is depicted in Figure 3.1. It will be shown
that the existing approaches cover a wide range of topics in the field of smartphone se-
curity. However, no approach does sufficiently address all requirements for the scenarios
defined in Chapter 2. The analysis covers approaches that have been published from 2000
to October 2012 at conferences that employed a peer-review of the submitted papers.
Primarily, conferences held by ACM10 and IEEE11 with a good ranking were considered.
Furthermore, workshops that were held in conjunction with well-known conferences were
considered as well. Technical reports of universities and research institutions were consid-
ered if they match the scope of this thesis and provide a major contribution. Some of the
presented research papers address aspects that belong to more than just one of the men-
tioned categories. For example, a research paper can discuss a new type of attack (thus
matching category 2) and provide appropriate countermeasures (matching category 3). In
these cases, the categorization is made based on the focus of the contributions.

10www.acm.org
11www.ieee.org
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Figure 3.1: Mind map of related work in the field of smartphone security.
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3.3.1 Analysis and Survey Articles

General Analysis of Smartphone Security

The first articles that address the field of smartphone security focus on the threat of
mobile malware [71, 72, 73, 74, 8, 75, 76]. At that time (from 2000 to 2007), the term
smartphone was not even widely established. Instead, the devices were also called mobile
phones, cell phones or feature phones. It was claimed that malicious software for mobile
phones will be a crucial future threat. Given the latest news on mobile malware that
have been seen, the assumption made years ago was true. Jamaluddin et al. [74] provide
a proof of concept malware that supports SMS spamming. They emphasize that such
mobile malware has a great potential for actually causing a financial loss to the user. This
is different from malware for classical platforms. Dagon et al. [8] provide a taxonomy for
new smartphone threats. One of the new threats that was not addressed before is called
battery exhaustion. Corresponding attacks aim to deplete the battery of a smartphone in
a short time. Thus, they can be seen as kind of a Denial of Service (DoS) attack specific
for smartphones.
An state of the art survey that explicitly addresses the differences between mobile se-

curity and classical fields of information security is contributed by Becher et al. [77]. They
argue that the specifics of mobile devices is crucial for research in the field of smartphone
security. Three examples for such specifics are (1) the limited resources of the device,
(2) the ability of an attacker to easily create financial damage to the user (referred to as
creation of costs) and (3) users that are generally unaware of any security issues. Fur-
thermore, they define a classification of attack vectors for smartphones, distinguishing
between hardware-centric, device-independent, software-centric and user layer attacks.
They especially elaborate the category of software-centric attacks employed by using mo-
bile malware. In terms of the specifics of mobile devices, they conclude that some of them
will remain relevant in the long term (such as the creation of costs ) whereas others might
change (such as the device’s resource limitations).
Shabtai et al. [58] provide a detailed security analysis of the Android platform that

identifies risks and suggest appropriate countermeasures on a conceptual level. Since they
do not provide any details regarding the highlighted countermeasures, their work is cat-
egorized as analysis and survey article. They group the security mechanisms that are
incorporated in Android into three categories: (1) Linux mechanisms that are provided
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by the Linux kernel (such as app specific user IDs), (2) environmental features such as SIM
card based user authentication and (3) Android-specific mechanisms like the permission
framework. Based on their own taxonomy for Android that covers 18 potential threats,
a risk analysis is performed that maps the identified threats to a risk matrix according
to their likelihood of occurrence and their potential impact. Based on this analysis, they
derive five high-risk threat clusters and suggest appropriate countermeasures. Two of the
most important recommendations are (1) to harden the Linux kernel by leveraging access
control mechanisms such as SELinux and (2) to extend the permissions framework in order
to prevent misuse of granted permissions. Their first recommendation has been meanwhile
addressed with the release of Android version 4.2. Their second recommendation however
still remains open. A similar study about the security mechanisms of Android was also
performed by Enck et al. [55].
Oberheide et al. [78] examine the general challenges of securing mobile environments,

especially when approaches from non-mobile domains are adopted. In order to compare
existing mobile platforms in terms of security, they introduce a taxonomy for mobile se-
curity models that consists of three components: (1) app delivery refers to the ability to
verify the authenticity of an app that is deployed on a smartphone, (2) trust levels de-
scribe the ability of a platform to assign privileges to apps to access the phone’s resources
or to perform specific tasks and (3) system isolation refers to the capability of a platform
to isolate apps from each other. Five smartphone platforms are compared based on the
three mentioned categories, including Google Android and Apple iOS. Android gets the
best overall rating. In the end, the authors suggest five general commandments for fu-
ture smartphone security research like to take forward lessons and to consider multiple
platforms when developing new security concepts.
Dixon et al. [79] claim that there is a strong correlation between the location of a

smartphone and its power consumption. Depending on the location, smartphones are used
differently by their users, leading to specific, location based power consumption profiles.
The authors have gathered reference data from 20 users over a period of three months
in order to proof their hypothesis. They further claim that malicious code is likely to
increase the power consumption of smartphones (primarily due to the use of peripherals
like Bluetooth, the radio or built-in sensors). Thus, they propose to implement a malware
detection tool based on the location based power consumption of smartphones. Although
their approach sounds reasonable, it has two obvious drawbacks: (1) Other features aside
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from location and power consumption are not considered. (2) The approach fails at times
where the smartphone’s battery is charged.
Studies that address the question if smartphone users are concerned about security and

privacy have been performed as well. A study that investigates if users are willing to pay
premiums when installing apps, given that the additional costs will limit their personal
information exposure, was conducted by Egelman et al. [80] . Their results show that users
are concerned about their privacy and would pay extra money for apps that do not request
access to personal information. A more general study that investigates the perceptions of
users in terms of smartphone security was recently conducted by Chin et al. [81].

Permission Models

Permission-based access control models are one main security mechanism of modern
smartphone platforms and web browsers. Thus, this field has also gained a lot of at-
tention from the research community. The approaches to analyze permission-based access
control models vary. Shin et al. [82, 83, 84] propose a formal approach for analyzing the
Android permission model. They identify several drawbacks. Namely that (1) the user is
responsible for making informed decisions on permissions that are requested by an app,
(2) there are no naming conventions for permissions and (3) once granted, permissions
cannot be revoked without uninstalling the respective app. Another formal approach was
recently conducted by Fragkaki et al. [85]. Based on their analysis, they propose SORBET,
an extended permission system for Android. Besides other features, SORBET prevents
confused deputy attacks [86].
Barrera et al. [87] have developed a methodology for the empirical analysis of permission-

based security models. Their approach is based on Self-Organizing Maps (SOM) [88]. To
proof the feasibility of their approach, they have analyzed 1,100 Android apps in order to
learn how permissions are used and to identify the strengths and weaknesses of this im-
plemented security model. Their findings show that permissions are used diversely: there
are predominant permissions that are used very frequently (like the INTERNET permission
used by more than 60% of the apps) whereas others are requested far less frequently (like
the RECEIVE_BOOT_COMPLETED permission requested by 5% of the apps). Furthermore,
their findings show that apps of a certain category tend to request similar permissions.
In addition, there are permission pairs that provide similar functionality (like READ_SMS

49



3 State of the Art and Related Work

and WRITE_SMS). The authors consider the INTERNET permission to provide insufficient
semantics in terms of how an app actually uses the Internet and suggest to split it up
in more fine-grained permissions. Another identified drawback is the large number of
available permissions (more than 100), leading to developers that tend to “over-request”
permissions just to be sure that their app works properly. Thus, it is even more difficult
for users to understand the meaning of a large set of requested permissions at install time.
In order to circumvent these drawbacks, the authors suggest to introduce a hierarchical
permission structure in order to achieve a logical grouping according to the semantics of
permissions.
The problem of over-requesting permissions identified by Barrera et al. [87] has also been

addressed as the problem of permission overdeclaration. Developers often declare more
permissions than their app actually uses due to (1) the complex and partially ambiguous
permission system and (2) due to the lack of assistance in determining the right permis-
sions for specific function calls. Overdeclaration violates the principle of least privilege
[89]. The problem was recently tackled by Felt et al. [90] and Vidas et al. [91]. Both have
developed tools that help developers to infer the minimal set of necessary permissions by
performing a static analysis of the respective apps. The Permission Check Tool by Vidas
et al. is realized as an Eclipse IDE plugin that parses the source code and thus infers
the set of necessary permissions. The mapping between the Android API calls and the
actually needed permissions was derived by analyzing the available Android SDK docu-
mentation. In contrast, Felt et al. propose a tool that performs static analysis of compiled
Android apps called Stowaway. The tool maps API calls to permission checks. The map-
ping was derived by leveraging automated testing techniques on the Android API. Their
experiment with 940 apps shows that about one-third are overprivileged. Their findings
show that developers try to follow least privilege but fail due to poor API documentation
and the overall complexity of the permission model.
A general analysis of smartphone permission models is conducted by Au et al. [66].

They provide a taxonomy for the most popular smartphone platforms according to (1)
the amount of control the user has, (2) the amount of information that is conveyed to the
user which forms the basis for his decision making and (3) the level of interactivity that is
required from the user. Their results show that Android has the most complex permission
model due to the number of available standard permissions (more than 100) compared
to Blackberry OS (24 permissions), Windows Phone 7 (15 permissions) and Apple iOS
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(1 permission). Furthermore, younger smartphone platforms like Android (first release in
2008) and Windows Phone 7 (first release in 2010) have very similar permissions models,
giving the user some information based on (more or less) fine-grained permissions but
limiting the level of control and interactivity to an all-or-nothing decision at install time.
The authors claim that this trend is the cause for the problem of permission overdeclara-
tion. Similar to Felt et al. [90], they propose to use static-analysis of an app’s source code
in order to automatically derive the set of permissions that are actually used, and thus
need to be requested by the app. Their system is a work-in-progress.
The effectiveness of app permissions for the Google Chrome Extension system and the

Android platform was investigated by Felt et al. [64] as well. They notice that Android
apps request an average of less than four dangerous permissions. The most popular per-
mission is the INTERNET permission. Apps frequently access permissions that allow them
to obtain personal information (such as the location) in conjunction with the permission
to access the Internet. A security measure that solely focuses on this type of permissions
(for example that denies the installation of such apps) will thus likely fail. However, there
are also permissions that are request far less frequently, such as those of the category
COST_MONEY. The presence of such permissions can be leveraged in order to provide secu-
rity warnings to the user or implement more sophisticated security measures. The authors
further suggest that coarse permissions like INTERNET on Android would benefit from a
more fine-grained approach as it is implemented in the Google Chrome Extensions system
(where Internet access can be restricted to a set of domains).
A study that examines whether the Android permission system is effective in warning

the user about risks associated with the installation of third-party apps is conducted
by Felt et al. [92]. They performed structured interviews with participants, both on-site
and online via the Internet. The authors state that only a minority of the participants
were able to fully understand the implications of permissions that are requested by apps.
Guidelines for improving permission granting mechanisms are presented in a separate
publication [93].
Extensive analysis of the Android permission system has revealed its vulnerability to

confused deputy attacks [86]. That this is not a problem of poorly implemented, third-
party apps alone was recently proven by Grace et al. [94]. With their analysis tool Wood-
pecker, they found several apps in the stock images of Android phones that unsafely
expose permissions to other apps.
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Smartphone Usage Studies

Recently, some studies have been conducted in order to learn how users actually use their
smartphones. To learn the normal behavior of smartphone users can be beneficial for a
wide range of use cases. Within the scope of this thesis, this is especially true for any kind
of anomaly detection. Anomaly detection is a common technique that has been widely
adopted in the field of information security, especially for intrusion detection systems
(IDS) [95, 96, 97]. The concept is to built a model that expresses the normal behavior
of a system (in our case smartphones). Then, based on observations of that system, one
aims to find patterns that do not conform to the expected behavior. Observations that
deviate from the expected or normal behavior are treated as anomalies. This approach
is complementary to misuse detection which is also commonly employed by IDS. Misuse
detection aims to model bad or malicious behavior based on signatures of known attacks.
Observations of the modeled system are then compared to the list of known signatures.

Xu et al. [98] perform the first large scale study in this field, covering smartphone users
across the whole United States of America. They provide various insightful findings that
are not directly related to the field of smartphone security. For example, they state that
certain apps tend to be used in pairs. That is, if a user has installed one app of a pair,
he will likely have installed the second app as well. Furthermore, they conclude that the
context of a user has impact on the type of apps he uses. For example, social networking
apps are used more frequently when the user is moving around. Furthermore, the location
of the user has great impact on the set of apps he uses.

Another study that is still in progress is conducted by the University of Cambridge12.
Their Device Analyzer app for Android collects various data on the phone, including
apps in use, when the user makes phone calls and the coarse, network-based location.
Although there have been more than 10,000 contributors, there is still no publication
available. Furthermore, even preliminary results are not published yet.

Although there have been some studies that tackle the question of smartphone usage,
the effort that is put into this research field is limited compared to other areas.

12http://deviceanalyzer.cl.cam.ac.uk/
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App Analysis

As already stated, third-party apps impose a major threat for smartphones. Thus, a lot of
work that explicitly studies smartphone apps and the corresponding app store platforms
has been done.

A major contribution in this field was conducted by Enck et al. [99]. They provide an
in-depth study of 1,100 popular, free Android apps. That is, they did not limit their study
on data which can be easily obtained from the Android app store (such as app rating,
category or the use of permissions). Instead, they developed the ded decompiler to recover
the source code from binary .apk files. The recovered code is analyzed by automated tests
and manual inspection. They contribute four main findings: (1) apps misuse sensitive
information such as phone identifiers or geographic locations, (2) background recording
of audio or video data was not observed, (3) advertisement libraries are common for
free apps and (4) developers fail to use the Android APIs in a secure way. The PiOS
study conducted by Egele et al. [100] yields similar results in terms of misuse of sensitive
information and the use of advertisement libraries for iOS apps by using static analysis
techniques as well.

The first survey discussing mobile malware was conducted by Felt at al. [101]. They
focus on mobile malware for Android, iOS and Symbian that was seen in the wild from
January 2009 to June 2011. Their work basically provides three key findings: First, ma-
licious apps can be classified according to their behavior. The most common malicious
activities include the collection of user information and the sending of premium-rate SMS
messages. Future malware is expected to exploit new features of smartphones, such as
NFC. Second, the detection of malicious apps based upon their requested permissions is
in general feasible. For example, 73% of the malicious Android apps requested the per-
mission to send SMS messages, which also allows them to send such messages silently
without user notification. Benign apps normally do not request that permission (96%).
Even if they need to send SMS messages, they would use the built-in SMS messenger,
allowing them to send SMS messages without the need to request any special permission.
In this case, the user will be notified about each SMS message that is sent. Other permis-
sions are less obvious in terms of their potential for malicious abuse (like the permission
to access the Internet). Hence, future work is needed in order to derive meaningful per-
mission sets that reliably indicate malicious behavior. Third, root exploits are used both
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by authors of malicious apps and benign users in order to gain privileged access to a
smartphone. Their analysis shows for at least 74% of a smartphone’s lifetime, a working
root exploit is available. Thus, approaches that tackle the field of smartphone security,
especially in terms of integration them into existing IT infrastructures, should also aim
to leverage network-based measures.
Chin et al. [56] investigate vulnerabilities of Android apps with a focus on inter app

communication. They present ComDroid, a tool that performs static analysis of disas-
sembled Android apps. Their findings show that many apps include components that
are unintentionally accessible by other apps, enabling Broadcast injection and Activity
hijacking attacks among others. This attack vector can be abused by malicious apps in
order to employ attacks on the device against benign apps.
Fahl et al. [102] analyzed the 13,500 most popular, free Android apps. Their analysis fo-

cuses on how apps make use of the SSL/TLS protocols in order to protect data in transit.
With their static code analyzer MalloDroid, they find severe programming flaws in the
SSL/TLS code in 8% of the apps. A manual inspection of a subset of those apps showed
that 41 of 100 inspected apps were vulnerable to Man-in-the-Middle (MITM) attacks.
Thus, the authors were able to capture various sensitive data, including credit card num-
bers and login credentials. Their study shows that there is need for better education of
developers and for better tools to support secure development of Android apps. Further-
more, it again proofs that companies who want to securely integrate smartphones within
their IT infrastructure must be concerned about the threats imposed by third-party apps.
The recent work of Sanz et al. [103] aims at classifying apps into categories (like game,

travel, etc.) by using machine learning techniques. They considered features that were
directly obtained from the app’s package (contained strings and permissions) as well as
features obtained from the Google Play app store (rating, number of ratings and size of
the app). They provide an empirical evaluation of several machine learning classifiers,
including Bayesian Networks [104], Decision Trees [105], K-Nearest Neighbour [106] and
Support Vector Machines [107], where Bayesian Networks perform best.
Zhou et al. [108] perform an evaluation of apps obtained from non-official, third-party

app stores. They explicitly aim to detect malicious apps that have been created by repack-
aging benign apps. For this purpose, they have developed a system called DroidMOSS
that can measure the similarity of Android apps. Their findings show that up to 13%
of apps hosted in unofficial app stores fall into this category. Although the main focus
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of such repackaged apps is to change the in-app advertisements in order to re-route ad-
vertisement revenues, the technique can also be employed for other malicious tasks like
stealing sensitive information from the smartphone. Thus, the authors claim that there is
a need to improve the vetting process for third-party app stores. When integrating smart-
phones into existing IT infrastructures, the knowledge whether a certain smartphone uses
apps from unofficial app stores might be beneficial in order to reason about the devices
security status.
The latest, large scale analysis of Android malware was conducted by Zhou et al. [109] as

well. They were able to collect 1,200 malware samples between August 2010 and October
2011. Based on these collected samples, they provide an characterization based on aspects
like installation methods, activation techniques, the concrete malicious payload and the
permission use. Their findings show that malicious apps tend to request more permissions
than benign apps (11 versus 4 in average). Furthermore, the majority of malware families
(68%) were obtained from unofficial app stores. Repackaging is the predominant installa-
tion method for malicious apps (86%). Furthermore, more than one third (36,7%) try to
employ privilege escalation attacks once installed. Based on their dataset, they evaluated
several mobile anti-virus tools. Detection rates varied from 79,6% to only 20,2%. The au-
thors conclude that there is a need for better anti-mobile-malware solutions. In addition,
they made their dataset publicly available13.
In order to examine the overall “health” of both official and unofficial Android app

stores, Zhou et al. propose DroidRanger [110]. The term health refers to the ratio of
benign to malicious apps that are provided within the respective app store. DroidRanger
allows to classify apps as benign or malicious based on two schemes: (1) permission-based
behavioral footprinting and (2) heuristics-based filtering. The first one aims to detect
known malware by analyzing the app’s requested permissions retrieved from the manifest
file. Furthermore, they employ a static code analysis in order to detect suspicious API
call patterns (like Broadcast Receivers whose Intent Filter allows to be notified about
received SMS messages and that subsequently hinder the respective Intent from further
dissemination by calling an appropriate API function (abortBroadcast). The second
scheme aims to detect unknown malware (that is malware without any sample apps).
This is done by using heuristics during the static code analysis of apps. The heuristics
are based on the assumption that the dynamic loading and execution of code is a strong
13http://www.malgenomeproject.org/
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indicator for a potentially malicious app. Apps that match the heuristics are further
analyzed by dynamic execution and function call monitoring. Their system uncovered 211
malicious apps and two zero-day malware samples from 204,040 apps collected from May
to June 2011. The infection rates of the analyzed app stores are generally low (ranging
from 0,02% to 0,47%). However, this study proofs that unofficial app stores impose a
higher threat level due to the fact that their infection rates are more than a magnitude
higher (0,2% to 0,47%) compared to the official Android app store (0,02%).
A system that works very similar but specifically aims to find Zero-day malware for

Android is RiskRanker [111]. Among the 118,318 apps collected from multiple Android
app stores from September to October 2011, their system found 718 malicious apps,
including 322 being zero-day.
Research in the field of app analysis strongly focuses on the Android platform. Probably

because of its more open approach compared to other platforms. However, Egele et al. [100]
conducted a study of iOS apps. They developed PiOS, a tool that aims to detect potential
privacy leaks in Mach-0 binaries that were compiled from Objective-C code. They found
that the majority of apps leak the smartphone’s unique device identifier. However, they
were not able to find instances of apps that secretly leak sensitive information that can
directly be attributed to a person.

3.3.2 Attacks

Besides the analysis of smartphone platforms and their security mechanisms, a lot of effort
has been put into performing actual attacks.

Taxonomy for Attacks

Vidas et al. [112] provide a survey on current attacks for the Android platform. They
contribute a taxonomy for mobile attack classes, give concrete examples of attacks and
present guidelines for mitigations where possible. They claim that one of Android’s vul-
nerabilities is the combination of an open, less restrictive app store to purchase apps with
the long patch cycle durations (as already introduced as Android Update Problem in Sec-
tion 3.2). They classify attacks according to five classes, basically differentiating between
unprivileged attacks carried out by fooling the user to install malicious apps, remote ex-
ploitation attacks that aim to get privileged access and attacks that need physical access
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to the device. Concerning mitigations, among others a reduction of the patch cycle length
and the usage of a Trusted Platform Module (TPM) [113, 114, 115] are proposed.

Sensory Malware

The first sensor sniffing attack was performed by Xu et al. [11]. They implemented SVC,
the Stealthy Video Capturer for Windows Mobile. SVC captures video data which in turn
can be sent to a remote party via email. While doing so, SVC behaves stealthy, limiting
costly operations to a minimum. At that time, none of the established anti virus tools
was able to detect SVC. This early work proofs that the built-in sensors of smartphones
can be abused to compromise the user’s privacy.
Schlegel et al. [10] have presented Soundcomber, a stealthy sensory Trojan for Android.

Soundcomber can retrieve sensitive data such as credit card numbers and PINs when
the user is interacting with a so-called interactive voice response (IVR) system and can
send the gathered data to a remote system. It is composed of two colluding apps, one
responsible for data collection and processing, the second responsible for data transmission
to the attacker. Since both apps communicate on the device via covert channels, they
have only a limited set of unsuspicious permissions on their own. Speech recognition and
exfiltration of sensitive data is done on the device, thus limiting the amount of data that
is transmitted to the attacker over the Internet. The authors discuss multiple defense
mechanisms, including a more fine-grained permission model. The authors claim that
monitoring the network traffic for anomalies will likely fail to detect Soundcomber, given
the fact that it only transmits very few data over any communication channel.
The first malware for Android was developed by Schmidt et al. [116]. They abuse func-

tions of the Android API that were undocumented in its early versions in order to execute
native code on retail devices. Their attacks are based on Android’s support for execut-
ing native code from the Java environment by using the JNI. This way, it was possible
to bypass some parts of the Android permission system (for example the permission
BATTERY_STATS). Although the authors state that their first findings are not critical, it
proofs that the support of using native code from any third-party app is a potential attack
vector.
Bickford et al. [117] investigate rootkits for smartphones. They perform exemplary at-

tacks that allow an attacker to (1) snoop for sensitive data (conversations and geographic
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location) and (2) to perform a DoS attack by depleting the phone’s battery. Their proof-
of-concept rootkits are targeting the Openmoko platform.

Distributed Denial of Service Attacks and Botnets

Liu et al. [118] were the first who discussed the potential of Distributed Denial of Service
(DDoS) attacks performed by smartphones in detail. They describe how smartphones that
are infected by malicious apps can be used in order to attack the public 911 emergency
service. A similar study was done by Traynor et al. [119], focusing on the threats of
mobile botnets. Furthermore, Singh et al. [120] investigate the feasibility to use Bluetooth
as communication channel for botnet command and control on mobile phones.

Privilege Escalation Attacks

Davi et al. [9] have successfully performed privilege escalation attacks on Android. In gen-
eral, this type of attacks circumvent Android’s mandatory permission system by enabling
unprivileged apps to use resources of the smartphone although they do not have sufficient
permissions (like sending SMS messages). The proposed attacks are based upon the run-
time compromise concept of return-oriented programming (ROP) without returns [121].
Egners et al. [122] recently presented a sequence of attacks that abuse vulnerabilities

of the Android permission model. They allow them to establish a bidirectional commu-
nication channel to the Internet, without using the INTERNET permission. It is another
example for privilege escalation attacks on Android.
Luo et al. [123] have identified that one critical attack vector for modern smartphones

is their support of a technology referred to as WebView. It enables third-party apps to
easily render and interact with content from web servers by using the HTTP protocol.
The integration of JavaScript is supported as well. As already stated in Section 3.1, one
important aspect of smartphones is that instead of using a general purpose browser for
browsing the Internet, dedicated apps to interact with single web pages are common. The
authors describe numerous attacks, either employed by malicious web sites or by malicious
apps. Their work proofs that smartphones have a different attack surface compared to
other computing platforms.
Orthacker et al. [124] provide an analysis of the Android permission framework. They

especially describe the problem of permission spreading. The problem refers to the fact
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that collaborating, malicious apps are able to disguise the total set of their granted per-
missions. In this case, the user can still reason about the subset of permissions that are
requested by each app. However, it is not transparent for him whether installed apps col-
laborate with each other in such a way that functionality which is protected by a certain
permission is exposed via custom interfaces or covert channels. In this case, an app could
access a phone’s resources although it does not have the required permissions. Permission
spreading is especially useful to separate suspicious permissions from each other: For ex-
ample, a third-party app that can both access the Internet and is able to read the user’s
private contacts would be considered to possibly leak private data. If the permissions are
spread across two collaborating apps, this observation cannot be made anymore by the
user. The authors provide a demo implementation of a permission spreading attack where
two collaborating apps leak the phone’s GPS position to a Twitter account. Their re-
sults show that apps can access phone resources although they do not have the necessary
permissions.

Phishing

The threat of phishing attacks on mobile devices was first investigated by Felt and Wag-
ner [125]. Their findings show that phishing attacks on Google Android and Apple iOS are
feasible due to the lack of so-called application identity indicators. A user has little means
to verify that the current screen belongs to an app that he considers to be trustworthy for
a specific task (such as logging into his social network account). Since users are used to
enter credentials as part of their normal workflow (for example when sharing information
on social networks, when purchasing music or when updating already installed apps), it
is easy to fool them to enter their sensitive information to a phishing app that fakes a
benign app.

3.3.3 Countermeasures

Several countermeasures have been proposed in order to mitigate threats that smartphones
have to face. Most approaches address mobile malware. In the following, countermeasures
are presented and grouped according to their architecture as being either host-based,
network-based or hybrid. Host-based approaches focus on extending existing smartphone
platforms with additional security mechanisms. Network-based approaches aim to limit
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the necessary changes that need to be made to an existing smartphone platform, while
introducing new components whose functionality is accessible via the network. Hybrid
approaches combine both host- and network-based ideas.

Host-based

Some major contributions have been made by members of the Systems and Internet In-
frastructure Security Laboratory (SIIS)14 in the department of Computer Science and
Engineering (CSE) at Pennsylvania State University. Their work primarily aims at miti-
gating the threats that are introduced by third-party apps.
One of their first approaches is called the Policy Reduced Integrity Measurement Archi-

tecture (PRIMA) for the Symbian platform and was introduced by Muthukumaran et al.
[126]. PRIMA enables to protect the phone’s integrity by isolating trusted code (like an
app for online banking) from untrusted code (like a game). This is achieved by enforcing a
mandatory access control policy which is based on SELinux that encapsulates the allowed
information flows between the phone’s components (both trusted and untrusted). The
term reduced refers to the fact that PRIMA uses a coarse-grained policy with only three
types describing the levels of integrity (namely kernel, trusted and untrusted), whereas
default SELinux policies leverage hundreds of types in order to achieve the least privilege
principle. PRIMA implements the CW-Lite integrity model [127] which is less restrictive
than the classical Biba model [128]. More precisely, CW-Lite requires filtering methods
for processes that allow them to drop or upgrade their integrity level based upon the
data they have read. For PRIMA this is necessary in order to support the installation
of both trusted and untrusted apps while maintaining the desired isolation. The installer
component is generally trusted. If it installs an untrusted app (like one that has not been
digitally signed), the installer drops its integrity level to untrusted, with all the impli-
cations in terms of access to the phone’s resources. PRIMA also supports to attest the
enforced policy to a remote party.
Their first work that explicitly addresses the Android platform is the Kirin security

service [129, 14]. Kirin aims to mitigate malware at install time by checking the respec-
tive app’s security configuration against a predefined policy. The policy is like a blacklist
that encapsulates undesired properties of third-party apps. If an app that is about to

14http://siis.cse.psu.edu
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be installed matches one of these properties, the user is informed about the potential
threat and the installation of the app is denied. The policies are written in the Kirin
Security Language (KSL). The authors provide nine example policy rules that render
undesired example properties. Each rule encapsulates a list of Android permission labels
(like SEND_SMS) and Intent Filter action strings (like CALL) that are combined by logical
and operators. According to their evaluation based on the example policy, five out of 311
apps from the official Google Play app store implement potentially dangerous functional-
ity. This work proves that it is worth to take the security configuration of Android apps
into account in order to determine the security status of a smartphone, especially in terms
of mitigating malicious apps.
Ongtang et al. introduce the Secure Application INTeraction (Saint) framework for

Android [15]. It addresses the fact that the Android platform does only provide very
limited means to regulate the interaction between apps that are running on a smartphone
based upon permission labels. However, application interaction is a core principle for
the Android platform in order to reuse existing functionality: in order to make a phone
call, an app developer would leverage the existing phone app by sending an appropriate
Intent message rather than implementing the functionality on its own. Saint generally
allows to specify two types of policies: install-time and runtime policies. The install-time
policy allows to define under which conditions a permission label P defined by an app A
is granted to another app B at install time. Once this permission label is granted, the
respective app can make use of it at any time (for example in order to access the phone’s
microphone), without referring to the corresponding policy again. Run-time policies on
the other hand allow to regulate the IPC that takes place at runtime. They allow to specify
access rules for the caller and expose rules for the callee. The IPC is only allowed if all
specified rules match. The concept is comparable to a stateful packet filter: the source and
the destination of each rule are Android apps (or components thereof), combined with
further conditions (like a minimum version of the destination component). A remarkable
feature of these runtime policies is that it is possible to include conditions based on context
information like location, time or the status of communication interfaces like Bluetooth.
Furthermore, conditions can cover requirements related to the app developer’s signature
key.
The TaintDroid system is another approach to detect malicious third-party apps that

was introduced by Enck et al. [16]. They adapted the idea of information flow tracking [130]
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for the Android platform. TaintDroid extends the Android core components in such a way
that allows tracking of privacy sensitive data (like location, audio, video and sensor data)
on a smartphone through third-party apps. TaintDroid notices when sensitive data leaves
the phone via untrusted apps and informs the user about it. Their results proof that
leaking privacy sensitive data through such third-party apps is a real issue: 20 out of 30
popular apps available on the Google Play app store leaked data in an undesired way.
Besides the SIIS laboratory, other research groups have also suggested host-based ap-

proaches in order to improve the security of smartphones.
The problem that many third-party apps tend to leak private data of the user to a

remote party [16] is also addressed by Hornyack et al. [131]. To counter this threat, they
propose an extension to the Android platform called AppFence. It basically adds two
benefits. First, when apps request access to sensitive data on the device, users can choose
to provide faked, so-called shadow data instead. This may break the correct functionality
of some apps that require valid sensitive data (such as the users contact list). Thus,
AppFence also supports to grant apps access to sensitive data, but prevents the data
from leaving the device over any communication channel. This functionality is referred to
as exfiltration blocking. In order to implement the additional security checks, the Android
platform must be extended. However, there is no need to modify third-party apps to work
on a device that uses AppFence.
Nauman et al. suggest Apex, a new policy enforcement framework for Android [132]. It

addresses one major drawback of Android: the “all-or-nothing” decision that a user must
make when a third-party app is installed. As already stated, the term “all-or-nothing”
refers to the fact that a user must either grant all permissions that the app requests, or
to decide to deny all of them, and thus abort the installation completely. Apex enables
the user to make more fine-grained decisions under which circumstances permissions shall
be granted to apps. Apex basically improves the Android framework in three ways: (1) at
install time, the user can choose to grant only a subset of the permissions requested by
the app, (2) at runtime, the usage of resources can be restricted based upon the phone’s
context (such as its location), (3) the access to resources protected by permissions can
also be restricted based on the app’s behavior and its current state (enabling policies that
cover aspects like a maximum amount of SMS messages an app is allowed to send). The
authors present a formal model for Apex policies and furthermore mention a prototype
implementation of their approach.
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Conti et al. [38] propose CRePE, a system that enables context-related enforcement of
fine-grained policies for Android. A context is defined by a set of variables (like location
or time), the presence of other devices, specific user interactions or a combination thereof.
A policy consists of rules that allow or deny access to resources. Resources are either
apps or system services. Policies can be defined both locally by the user and remotely
by a trusted third party and are always associated with a specific context. If the context
is active (such as the phone is within a specific location), the corresponding policy is
enforced. CRePE enables use cases such as a company that enforces a restricted set of
available apps for their employees when they are working. Their prototype implementation
imposes negligible time overhead (at most 0.6 ms for additional permission checks) but
a considerable overhead in terms of energy consumption (50% to 100% for permission
checks and context observation).
Ongtang et al. [133] introduce Porscha, a Digital Rights Management (DRM) exten-

sion for Android. They address the drawback that today’s smartphones, including Android
based phones, provide almost no means to enforce DRM policies on content that is de-
livered to the phone. Porscha supports to enforce policies within two separate phases: (1)
when the content is in transit, which means when it is delivered to the respective phone
and (2) when the content is located on the platform. Porscha allows to bind content both
to a particular phone as well as to a set of endorsed apps on the phone. Furthermore, the
use of delivered content can be constrained (for example allowing to play a video within
48h of the purchase date). The authors focus on SMS, Multimedia Messaging Service
(MMS) and Email as content providing communication channels. Content in transit is
protected by Identity-based encryption [134], an asymmetric encryption scheme. Content
on the phone is protected by adding a Porscha mediator to the Android middleware that
acts as reference monitor which enforces the content policies. Porscha’s DRM mechanism
could be leveraged in an enterprise environment in order to protect sensitive data.
Felt et al. [17] discuss the impact of permission re-delegation attacks for modern smart-

phone platforms. Permission re-delegation occurs when an unprivileged app accesses pro-
tected resources without the necessary permissions by abusing another, privileged app’s
vulnerable interface. It is a special case of a confused deputy attack [86]. Their survey of
popular Android apps shows that more than one third of the considered apps are vulner-
able to such attacks, including even core system apps that are directly shipped with the
smartphone. The authors also propose a possible defense mechanism called IPC Inspec-
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tion. When a communication is initiated between a caller and a callee, IPC Inspection
reduces the permissions of the callee to the intersection of the caller’s and the callee’s
permission set. Thus, permission re-delegation attacks can be prevented. However, this
approach places a burden on genuine apps to correctly request the permissions that they
use indirectly via deputies.
Quire [135] is another security extension for Android. Similar to IPC inspection in-

troduced before, Quire aims to prevent confused deputy attacks. It keeps track of the
IPC call chain, allowing an app to drop its privileges to those requested by the calling
app. Furthermore, Quire enables the called app to reason about the complete call chain
of preceding apps, instead of only seeing the last calling app. One major drawback of
the approach compared to others like IPC inspection is the fact that apps need to be
recompiled in order to support Quire.
Xie et al. [136] propose pBMDS, a behavior-based malware detection system. Their

approach aims to correlate user input characteristics (such as touchscreen usage) with
system calls at the kernel level in order to detect malicious behavior. pBMDS is a host-
based, probabilistic approach that leverages Hidden Markov Models in order to learn
normal user and system call behavior. It was primarily designed to detect malware that
propagates through MMS/SMS and Bluetooth. Their prototype implementation is based
on the Openmoko platform. Modern platforms such as Google Android are not specifically
addressed. The authors claim that their approach was one of the first that introduces
artificial intelligence (AI) for smartphone security.
Zhou et al. [137] address the threat of apps that leak sensitive, personal information of

the user to a third party. They argue that modern smartphones need a privacy mode that
enables the user to enforce fine-grained policies regarding which information can be used
by which apps. They present TISSA, a prototype of their system for the Android plat-
form. TISSA supports to specify the availability of sensitive information such as location,
contacts and the phone’s identity (IMEI) on a per app basis. For each type of sensitive
information, TISSA can be configured to either allow the access, return anonymous or
fake results or simply return nothing. The last option however will likely cause many
installed apps to not work properly. Although the approach is sound, it is questionable if
users really have the passion to maintain such policies on a per app basis.
Shabtai et al. [18] propose Andromaly, a lightweight, host-based IDS for Android-based

devices. In order to detect malicious apps, their framework is able to collect 88 features
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with different semantics (such as CPU Usage or Incoming SMS). Furthermore, it supports
different algorithms for both the selection of features (i.e. those that are used for further
analysis) and the detection of malicious apps (such as k-means and Bayesian Networks).
Their empirical findings show that machine learning techniques are a viable approach for
the detection of malicious software on Android powered devices. They conclude that a
reasonable enhancement would be to combine anomaly detection algorithms and misuse-
based detectors (such as rule-based approaches).
Bugiel et al. [138] propose XManDroid, a security framework for Android that is capa-

ble of detecting and preventing application-level privilege escalation attacks at runtime.
The authors particularly address the threat of sophisticated malware apps that use ad-
vanced techniques such as covert channels in order to hide their malicious functionality
(like Soundcomber [10]) as well as confused deputy attacks where vulnerable interfaces of
genuine apps are exploited [86, 135]. XManDroid extends the Android reference monitor
to enable runtime monitoring of communication between apps. Based on a system policy
which is consulted when a particular interaction between two apps is requested, these
communication links can either be allowed or denied. The system policy encapsulates
rules that are based on previous work done by Enck et al. [129, 14]. However, XMan-
Droid’s policies are not solely restricted to permissions. Instead, they also incorporate the
concepts of ICC content inspection and user confirmation. This allows more fine-grained
policy rules such as to allow the sending of text messages depending on the confirmation
of the user. XManDroid is an extension of the Android middleware and thus can only de-
tect malicious behavior that actually uses Android’s ICC mechanisms. This drawback is
addressed in a subsequent paper, where a kernel-level module is added to the XManDroid
approach [139]. Although they provide seven example rules, the engineering of reasonable
security policies remains a challenging task for future work.
Bugiel et al. [62] also propose TrustDroid, a security framework for Android that enables

to isolate installed apps based on their trustworthiness. Their motivating example is to
separate private apps from those that are used for business tasks, preventing unauthorized
communication and data access between them. TrustDroid adds security checks at several
layers of the Android stack: (1) the middleware layer, (2) the kernel layer and (3) the
network layer. Context-related policies are supported as well, enabling use cases such as
to prevent untrusted apps from using the Internet while an employee’s smartphone is
connected to the company’s IT infrastructure. Their trust model is similar to the one
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defined in Section 2.4. They provide a prototype implementation and proof that their
approach imposes negligible overhead in terms of battery consumption. Thus, TrustDroid
is well suited for isolating apps based on their trustworthiness, limiting the potential
damage that malicious apps can cause. Especially within a corporate scenario, TrustDroid
could be beneficial. However, the approach does not include any detection capabilities.
Furthermore, it requires extensive changes to the Android platform.
Pearce et al. [140] have conducted a study of the Google Play Store in order to inves-

tigate how advertising libraries (also referred to as ad libraries) impact the permission
usage of third-party apps. Advertising is a crucial part of the Android ecosystem. As
many apps are available for free, ad libraries are a convenient way for developers to gain
revenue by displaying in-app advertisements. They just have to bundle an appropriate
ad library together with their app. A side effect is that many apps tend to request pri-
vacy sensitive permissions only because of the bundled ad library (for example in order
to obtain the location of the smartphone). This is a clear instance of the over declara-
tion problem introduced before. In order to address this problem, the authors propose
AdDroid, a new advertisement framework for Android. It introduces a new API and a
set of new permissions, enabling third-party developers to display advertisement within
their apps without requesting otherwise unnecessary and privacy sensitive permissions.
Another study dealing with the impact of advertisement libraries that yield similar results
was also conducted by Grace et al. [141].

Network-based

Cheng et al. [142] present SmartSiren, a collaborative virus detection system. They ad-
dress the threat of mobile viruses that infect smartphones and try to spread themselves
by abusing the phone’s communication capabilities (for example SMS/MMS, Bluetooth
and IP-based communication). Their system includes an agent on the smartphone that
monitors the device’s communication activities, creates appropriate reports and sends
them to a remote server. Monitoring and detection capabilities are limited to SMS/MMS
messages, emails or messages sent via Bluetooth. The remote server tries to detect the
presence of viruses by processing the reports received from the agents. SmartSiren gen-
erally supports three detection strategies: (1) performing statistical calculations on the
overall amount of traffic (moving average), (2) counting the number of messages for each
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destination in order to detect highly frequented destinations and (3) the use of fake con-
tacts added to the smartphone’s address book. The last detection method is used in order
to detect viruses that try to disseminate themselves by a brute force strategy. Upon de-
tection, alerts are sent both to the infected smartphone as well as to smartphones that
are logically connected (via contact lists) or physically connected (that is via proximity)
to the infected device. This early work proofs that network-based approaches for mobile
malware detection are feasible.
The early work of Kim et al. [143] addresses mobile malware that targets the depletion

of battery energy. They propose a framework consisting of two components (1) a power
monitor that measures the power consumption on a mobile device and (2) a data analyzer
that generates power signatures based on the taken measurements. These signatures are
compared against a priori defined energy consumption profiles that express normal behav-
ior. The approach of Buennemeyer et al. [144] works similar. In contrast to the approach
that is developed within this thesis, they solely rely on the power consumption and do
not consider any further aspects of smartphones. Furthermore, these early approaches
can easily be circumvented if (1) mobile malware does not use a lot of resources or (2)
mobile malware is context-aware, thus performing costly tasks only at times when the
smartphone’s battery is currently charged.
Oberheide et al. [145] were one of the first that introduce the concept of providing cloud

security services for smartphones in order to circumvent their resource constraints. They
leverage their CloudAV malware detection engine and extended it with a mobile-specific
behavioral detection engine. This engine performs dynamic analysis of apps based on
system calls. Furthermore, they envision that their approach can offer more sophisticated
security services like SMS spam filtering that go beyond the classical anti virus detection.
Their prototype is realized based on Nokia smartphones.
The Paranoid Android system is proposed by Portokalidis et al. [7]. Their idea is to

host virtual replicas of the smartphones on remote servers. Based on these virtual repli-
cas, various security checks are performed. In order to establish security measures that
are independent of the smartphones resource constraints, the authors envision to provide
security in terms of attack detection as a cloud service. A monitoring component on the
smartphone, called tracer, gathers execution traces which are then send to a component
located on the remote server, called replayer. The execution trace covers all necessary
information to replay the execution that has taken place on the smartphone within its
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virtual replica (such as system calls that pass data from kernel to user space or operat-
ing system signals). The authors propose four categories of security methods that can be
employed on the remote server: (1) dynamic runtime analysis, (2) anti virus scanning, (3)
memory scanners and (4) system call anomaly detection. A prototype for the Android
platform is also presented which exemplary implements two security methods: Dynamic
Taint Analysis [146] (which falls in category 1) and a ClamAV anti virus scanner (be-
longing to category 2). The necessary execution trace is recorded by leveraging the Linux
ptrace system call. An evaluation of their prototype shows that their approach is feasible
in terms of introduced processing and data transmission overhead. The authors claim
that their approach is also capable of detection zero-day-exploits. However, they do not
provide concrete examples for detected attacks.
An approach to monitor Symbian OS smartphones for remote anomaly detection was

introduced by Schmidt et al. [147]. Their architecture consists of a monitoring component
located on a phone and a remote server that hosts the anomaly detection components.
The monitoring component sends the feature vectors to the remote server, which in turn
can leverage various methods from the field of artificial intelligence like Self-Organizing
Maps (SOM) [88] in order to detect anomalies. The proposed features that are extracted
include system properties like the amount of free RAM, usage properties like whether
the user is currently inactive and smartphone properties like the amount of sent SMS
messages. In order to capture the normal behavior of a phone, the authors specified 40
use cases (such as playing a specific game on the smartphone) with corresponding testing
protocols. The resulting feature vectors where aggregated and considered as being the
normal behavior. This way, they were able to proof quiet obvious facts, like that the
CPU usage is significantly higher when a game is played compared to when the user
writes a SMS message. In order to learn abnormal behavior, they monitored the features
when executing a known malicious app developed by Jamaluddin et al. [74]. This malware
sends an SMS every time the key “2” is pressed, which caused an abnormal increase of
the SMS_SENT_COUNT feature.
Another approach to detect malware on Android is the Android Application Sandbox

System (AASandbox) proposed by Bläsing et al. [148]. Besides static analysis features,
it also supports dynamic analysis of apps at runtime. Static analysis is done prior to
the installation of an app by decompressing and disassembling it. Dynamic analysis is
performed by leveraging the Android emulator in an isolated environment. The system
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is intended to be provided as a cloud service. AASandbox processes Android .apk files
and performs a two step detection approach: first, a simple static pre-check is performed
which basically scans the decompiled Java bytecode for suspicious patterns (like usage of
Java Native Interface to load native libraries or the presence of Java code that is capable
to spawn native child processes). Afterward, the dynamic analysis component monitors
the behavior of the respective app within an Android emulator. The component basi-
cally logs all system calls that take place to a separated log file. The authors evaluate
their approach based on a sample malicious app which they implemented on their own.
The malware basically launches a Denial of Service attack targeting the smartphone itself
by continuously creating new child processes. The static analysis component detects the
suspicious Java instructions that spawn the child processes. The dynamic analysis compo-
nent in turn detects that the behavior of the malicious app is suspicious compared to the
normal behavior of third-party apps. However, the authors do not provide suggestions for
concrete machine learning techniques in order to process the dynamically observed data
set.
Burguera et al. [149] propose the Crowdroid system for dynamic, behavior-based mal-

ware detection on Android powered smartphones. They specifically aim to detect trojan
horses that infect benign apps in order to spread themselves (like DroidDream in March
2011). Thus, they are focussing on finding apps that have the same name and version,
but behave differently due to the added malicious code. The Crowdroid client monitors
system calls on an Android device and sends the collected traces to a remote server. The
remote server then creates system call vectors based on the received traces. Afterwards,
partitional clustering by leveraging the k-means algorithm is applied on the system call
vectors in order to distinguish between benign and malicious samples. Their detection rate
of self-written malware was 100% and 85% to 100% against malware that was seen in the
wild. Aside from solely focusing on system calls as only features, the major limitation is
that Crowdroid can only detect malware samples that have a matching goodware sample
(that is a benign app).

Hybrid

One of the first papers on intrusion detection for smartphones that follow a hybrid ap-
proach was conducted by Miettinen et al. [95]. They propose a framework that leverages
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both host-based and network-based detection methods. An IDS module on the smart-
phone obtains relevant features and raises alerts if intrusions are detected. These alerts
are forwarded to a network-based IDS module, which in turn correlates them with other
alerts that have been observed due to monitoring the network traffic. Besides the architec-
ture of the framework, only little detail is given on the smartphone features that should
be used for intrusion detection. The authors provide three general categories of features
(operating system events, measurements and application level events) and give few ex-
amples of features that have been used in the past on commodity PC platforms (such as
system calls and CPU usage). However, in contrast to this thesis, they do not provide a
detailed analysis of features that should be obtained on smartphones. Furthermore, no
approach is presented in order to realize the network-based correlation engine. Their work
does not address any particular smartphone platform at all.
Schmidt et al. [150] introduce the concept to use static analysis of executable for col-

laborative malware detection on Android. Their system provides three main services: (1)
on device-analysis (2) collaboration and (3) remote analysis. The on-device analysis com-
ponent is responsible for extracting system and library calls from binaries by leveraging
the readelf command and can perform first analysis methods. When on-device analysis
is not feasible, the data can also be sent to a remote server which then performs the
analysis. Furthermore, the collaboration function enables to even share analysis results
directly between smartphones. In order to create reference data for a benign smartphone,
the function calls of all Executable and Linking Format (ELF) compliant Linux system
commands available on Android were extracted. Accordingly, to create malicious refer-
ence data, a set of known malware for Linux was processed in the same way. Although
not specifically targeted for Android, the authors argue that the malware examples would
only show minor differences when cross-compiled to Android’s ARM architecture, and
thus form a reasonable basis for malicious reference data. Based on the readelf output,
attribute sets were defined that basically encapsulate the names of the system functions
that were called. The data was then processed with three different classifiers: PART [151],
Prism [152] and a modified version of the Nearest Neighbor Algorithm. Their findings
show that classifying malware based on function calls is feasible. The classifiers in use
performed well, with high detection and low false positive rates.
Nauman et al. [153] introduce an approach to enable the concept of remote attestation

as defined by the TCG for the Android platform. They leverage the Integrity Measurement
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Architecture (IMA) for Linux in order to bootstrap a chain of trust from the kernel level.
Based on this chain of trust, they support two attestation schemes. The first one supports
to attest the integrity of complete apps. The second one enables the more fine-grained
attestation of individual class files. The approach can be used by administrators of an
IT infrastructure in order to obtain the software configuration of connected smartphones,
secured by leveraging the capabilities of a TPM. However, it requires extensive modifica-
tions to the Android platform itself. Furthermore, the authors do not address the problem
how informed decisions can be made based on the attested software configuration, which
is a fundamental challenge for all attestation approaches.
The number and variety of presented approaches proofs that smartphone security has

become and still is a hot topic in the research community. The focus of the presented publi-
cations ranges from survey and analysis papers over exemplary attacks to countermeasures
that aim to mitigate identified threats. An assessment of the discussed countermeasures
is provided in Section 3.5.

3.4 The IF-MAP Protocol for Network Security
In the following, the IF-MAP protocol for network security is introduced. Its major
strength is the ability to integrate existing security and management systems, enabling
them to share data about the network in order to employ collaborative efforts for mitigat-
ing potential threats. Although IF-MAP is not related to the field of smartphone security,
it will be used in the remainder of this thesis to implement the CADS approach which
is presented in Chapter 4. Details why IF-MAP is suitable for implementing the CADS
approach are discussed in Section 5.1.
The term IF-MAP refers to a set of specifications that were published by the Trusted

Computing Group (TCG) as part of the Trusted Network Connect (TNC) framework.
TNC defines and open set of standards and protocols for building interoperable Network
Access Control solutions. IF-MAP defines a network protocol for exchanging so-called
metadata among an arbitrary number of MAP clients (MAPCs) via a central MAP server
(MAPS) in real-time. The main motivating scenario for IF-MAP is to distribute security
related metadata between components within a network in a standard and thus interop-
erable way. The term metadata with respect to IF-MAP refers to data that describes the
overall status of the network, including attached devices and their users. Since the speci-
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fications include a flexible extension mechanism, IF-MAP can be customized to virtually
any scenario even beyond the classical network security domain.
IF-MAP in its latest version 2.1 is specified by two types of documents: One document

defines the core data model, the basic operations that MAPCs and the MAPS must
support and their encapsulation within SOAP [20]. The second type of documents specifies
metadata for specific domains. For example, there is currently one dedicated specification
that addresses metadata for the domain of network security [154] and another one that
addresses security in the domain of industrial control systems (ICS) [155]. Thus, it is easy
to integrate metadata for further domains, without the need to change the core protocol.
A specification that addresses the domain of smartphone security does not exist yet.

3.4.1 TNC Architecture

The TNC architecture is depicted in Figure 3.2. The architecture is organized in five
columns, each one representing a logical role:
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Figure 3.2: TNC Architecture [36].

1. An Access Requestor (AR) represents an endpoint that wants to get access to a
TNC protected network.

2. A Policy Decision Point (PDP) is located within the protected network and is
responsible for authenticating endpoints that try to access the network. This usually
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includes an authentication of the user as well as a check of the endpoint’s current
integrity state (that is its software configuration).

3. A Policy Enforcement Point (PEP) is located at the edge of a protected network.
The AR tries to access the protected network via the PEP. The PEP is responsible
for enforcing the access decision of the PDP.

4. A Metadata Access Point (MAP) is responsible for storing and providing state in-
formation about ARs (such as current integrity state, IP Address, authenticated
user) and other components of the TNC protected network. This state information
is generally referred to as metadata. It can be used for further policy decision mak-
ing and enforcement. The specification defines the role simply as MAP. However,
in order to emphasize that a MAP provides server functions to store and retrieve
arbitrary metadata, it is also referred to as Metadata Access Point Server (MAP
Server, or simply MAPS).

5. A MAP Client (MAPC) is able to publish metadata to and receive metadata from a
MAP Server. Examples for MAPCs include sensors like Intrusion Detection Systems
(IDS) that publish metadata that describes security alerts.

The PDP and the PEP can act as MAPCs as well. For example, a PDP that sup-
ports IF-MAP will publish metadata to the MAPS for each user and each device that
is authenticated by means of TNC. The logical roles are further subdivided in several
components that perform a specific task within the TNC framework. Three layers group
components that provide similar functionality. Dashed lines depict the interfaces between
those components that are specified within the TNC framework.

3.4.2 Data Model

The data model of IF-MAP is represented by an undirected graph where cycles and loops
are allowed. It is composed by three types of components:

1. Identifiers are represented by the nodes of the graph. Each identifier belongs to a
certain type as specified by an XML schema document. The type limits the potential
values of an identifier. There are five basic types of identifiers:
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a) ip-address to represent an IP address that is currently used within a network.

b) mac-address to represent a MAC address that is currently used within a net-
work.

c) identity primarily used to represent users who have been authenticated within
a network.

d) device to represent devices (servers and endpoints) that are connected to a
network.

e) access-request to represent a request for access to a network that was issued
by an endpoint.

2. Links are represented by the edges of the graph. A link establishes an undirected,
bi-directional relationship between two identifiers.

3. Metadata is specified by XML schema documents. Metadata can be attached both
to single identifiers or to links that connect two identifiers.

Depending on its actual type, metadata should or must be attached to a specific type
of identifier or on a link between two identifiers of a specific type respectively. For exam-
ple, one standard type of metadata is ip-mac. It can be attached on a link between an
mac-address and an ip-address identifier. This would express the fact that one device
is using the associated MAC and IP addresses (for example as provisioned by a DHCP
server). An example of an IF-MAP graph is depicted in Figure 3.3.

3.4.3 Communication Model

IF-MAP is a content-based publish-subscribe network protocol. In essence, a MAPC and
a MAPS exchange XML documents encapsulated within SOAP over HTTPS [156]. Thus,
the protocol is secured by means of TLS [157]. MAP clients and MAP servers must
mutually authenticate themselves. MAP clients must verify a MAP server’s certificate
and determine whether it is trustworthy or not. MAP servers in turn must authenticate
MAP clients either by (1) verifying a client’s certificate as part of the TLS handshake
or (2) by employing password based basic authentication as described in RFC 2617 [158]
after the TLS handshake was finished.
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access-request = tncfhh:123

identity = bob

role = employee

authenticated-as

layer2-information
VLAN = 96
Port = 12

device=tncfhh:456

ip-address = 10.0.0.2

device-ip

mac-address = 11:22:33:44:55:66

device=tncfhh:0

ip-address = 10.0.0.1

device-ip

authenticated-by

access-request-mac

ip-address = 10.0.0.99

event = p2p traffic

ip-mac

identifier

link

metadata

Figure 3.3: Example of an IF-MAP graph.

IF-MAP follows the request-response paradigm. A MAPC initiates the communication
by sending a request that expresses an IF-MAP operation. The MAPS performs the re-
quested operation and answers with an appropriate IF-MAP response, either immediately
or with a certain delay. The following operations are supported:

• The publish operation is used by a MAPC to create, change or delete metadata
stored in a MAPS.

• The search operation is used in order to search the current IF-MAP graph that is
stored in the MAPS. A single identifier must be specified that represents the root of
the search, that is where the search starts. The search algorithm can be implemented
either by following a depth-first or a breadth-first strategy. A couple of parameters
can be specified to customize the way the IF-MAP graph is traversed during the
search. This especially includes the maximum depth to which the graph is traversed
(relative to the root identifier). Furthermore, it can be specified that certain links
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in the graph are only traversed if they have a certain type of metadata attached to
them (also referred to as match-links filter).

• The subscribe operation is similar to the search operation. In fact, the syntax of
the operation is basically the same. It enables a MAPC to get notified immediately
when changes to the IF-MAP graph in the MAPS are made that match one of his
subscriptions. A MAPC can hold numerous subscriptions to one MAPS at the same
time. Basically, those subscriptions work like stored search operations.

• The poll operation is used by a MAP client to get notified as soon as changes to
the IF-MAP graph are made that match one of his previously issued subscriptions.
That is, the poll operation is a blocking operation. It returns in the event that a part
of the IF-MAP graph that is covered by the MAP client’s subscriptions is changed.
The subscribe/poll operations allow a MAP client to specify which metadata it is
interested in and to get notified immediately after the respective metadata has been
changed. Once a poll operation returns, the MAP client can process the received
metadata. Afterwards, it can issue another request that contains a poll operation in
order to get notified when the IF-MAP graph changes again.

IF-MAP distinguishes between two types of channels: a Synchronous Send and Receive
Channel (SSRC) and an Asynchronous Receive Channel (ARC). The latter one is only
used for the blocking poll operation. Any other IF-MAP operation is issued over the
SSRC. Further details regarding the IF-MAP protocol and its operations are provided by
the respective specification [20].

3.5 Assessment
In the following, the approaches in the field of smartphone security that have been pre-
sented in Section 3.3 are assessed regarding the requirements that have been identified in
Section 2.5. Approaches that solely focus on exemplary attacks or analysis of smartphone-
specific threats are omitted. The purpose of this assessment is twofold:

• First, general findings are discussed based on the presented approaches. The purpose
is to clarify the key aspects that have been addressed by the research community in
the past.
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• Second, the presented approaches are compared to the requirements defined in Sec-
tion 2.5. The goal is to analyze to what extend existing approaches are feasible to
fulfill the list of requirements.

The approaches that have been presented so far are summarized in Table 3.2. It is
subdivided into two parts:

• The left part summarizes general information of the respective approach. It includes
the name (or the name of the author), the focus of the approach, the architecture it
is based on and the platform it aims at. Architecture-wise, the approaches have been
classified as being host-based (H), network-based (N) or hybrid (X) or offline/out-
of-band (-). The last category encapsulates approaches that aim to enhance compo-
nents of a smartphone’s ecosystem like the platform’s app store. Relevant platforms
include Android (A), iOS (i), Openmoko (O), Symbian (S), Windows CE/Mobile
(W) and Maemo (M).

• The right part depicts to what extent each of the presented approaches fulfill the
requirements defined in Section 2.5. The fulfillment grade is classified into three
categories: complete (+), partial (o) and not fulfilled/addressed (-).

Table 3.2: Comparison of previous work in the field of smartphone security regarding the requirements defined in Section 2.5.
The focus is on related research approaches.
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Stowaway [90] Detect overdeclaration of apps - A o - - - - o o
Woodpecker [94] Detect permission leaks of apps - A o - - - - o o

PiOS [100] Detect information leaks of
apps

- i o - - - - o o

ComDroid [56] Detect permission leaks of apps - A o - - - - o o
MalloDroid [102] Detect SSL/TLS vulnerabili-

ties in apps
- A o - - - - o o

Sanz et al. [103] General classification of apps - A o - - - - o o
DroidMOSS [108] Detect repackaged apps - A o - - - - o o
DroidRanger [110] Examine overall health of app

stores
- A o - - - - o o
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RiskRanker [111] Detect zero-day malware - A o - - - - o o
SORBET [85] Prevent confused deputy at-

tacks
H A - - - - + - -

PRIMA [126] Isolate trusted and untrusted
code with SELinux based
mandatory access control

H S o - - o + - -

Kirin [129, 14] Detect suspicious apps at in-
stall time based on static prop-
erties

H A o - - o + - -

Saint [15] Enforce inter-app communica-
tion security policies

H A o - o o + - -

TaintDroid [16] Detect information leaks of
apps

H A - o - - + - -

Apex [132] Fine-grained, context-aware
runtime permissions

H A o - o o + - -

CRePE [38] Context-related policy enforce-
ment

H A o - + o + - -

Porscha [133] Digital Rights Management H A o - + - + - -
IPC Inspection [17] Prevent confused deputy at-

tacks
H A o - - - + - -

Quire [135] Prevent confused deputy at-
tacks

H A o - - - + - -

pBMDS [136] Behavior-based malware detec-
tion

H O - o - - + - -

TISSA [137] Prevent information leaks of
apps

H A o - - - + - -

Andromaly [18] Behavior-based malware detec-
tion

H A - + o - + - -

XManDroid [138, 139] Prevent application-level priv-
ilege escalation attacks

H A o - - o + - -

TrustDroid [62] Isolate apps based on their
trustworthiness

H A o - o o + - -

AppFence [131] Prevent information leaks of
apps

H A o - - - + - -

AdDroid [140] Prevent information leaks of
advertisement libraries

H A o - - - + - -

Dixon et al. [79] Location-based detection of
power anomalies

N A - o o - + o o

Kim et al. [143] Detection of power anomalies N S - o - - + o o
Buennemeyer et al. [144] Detection of power anomalies N W - o - - + o o
SmartSiren et al. [142] Behavior-based malware detec-

tion
N W - o - - + o o
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CloudAV [145] Cloud-based anti virus detec-
tion

N M o o - - + o o

Paranoid Android [7] Behavior-based malware detec-
tion

N A o o - - + o -

Schmidt et al. [147] Behavior-based malware detec-
tion

N S/W/A - o - - + o o

AASandbox [148] Static and dynamic analysis to
detect malware

N A o o - - + o o

Miettinen et al. [95] Position paper IDS for smart-
phones

X - - - - - - - -

Crowdroid [149] Behavior-based malware detec-
tion

X A - o - - + o o

Schmidt et al. [150] Collaborative malware detec-
tion via static analysis of apps

X A o - - - + o -

Nauman et al. [153] Remote Attestation X A + - - - + o -

3.5.1 General Findings

Based on the related work that has been discussed so far, the following general findings
can be made.

Host-based security extensions are predominant Most of the approaches that have
been proposed recently focus on host-based extensions for certain smartphone platforms.
Out of the 38 approaches listed in Table 3.2, 17 implement a host-based architecture.
Only 8 implement a network-based architecture and 4 follow a hybrid approach combin-
ing host- and network-based mechanisms. Since the majority of security extensions aim
to prevent some type of attack, it is reasonable to follow a host-based approach that
extends a concrete platform with the appropriate additional security mechanisms. The
distribution also proofs that the question how IT infrastructures can be protected from
threats introduced by smartphones has not gained a lot of attention. Recently, several
approaches have been proposed that do not match the classification as being host-based,
network-based or hybrid (9 out of 38). Instead, these approaches aim to improve aspects
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of the ecosystem of smartphones, namely the platform’s app stores. The primary goal of
these approaches is to analyze third-party apps in order to detect malware.

Android related research is predominant Early approaches have focused on the Sym-
bian platform. However, since the first release of Android in 2008, research focuses on
Android as smartphone platform. iOS is only addressed by one of the presented ap-
proaches. The same is true for the outdated Openmoko and Maemo platforms. Although
most of the developed concepts are platform independent, researchers tend to built their
prototypes on Android. One main reason is the accessibility and openness of the platform,
enabling researchers to add new security features based on the officially available source
code. Furthermore, the Google Play app store for Android is more opened compared to
its competitors, easing the deployment of apps that are subject of research.

Countermeasures focus on privilege escalation attacks, privacy leaks and malware
The countermeasures that have been developed thus far focus on three security problems
of modern smartphones.

1. To prevent privilege escalation attacks. Especially the Android platform is prone to
this kind of attacks due to the design of its permission model.

2. To prevent leakage of sensitive data (private contacts, messages, the users location)
to remote third parties. This problem is especially important since it is not restricted
to malicious apps. Also benign apps tend to leak sensitive data, either on purpose
or by accident.

3. To detect and mitigate malware. Third-party apps have been identified as the ma-
jor threat for modern smartphones. Thus, many approaches focus on the problem
to effectively detect malicious apps. Some of them even focus on the detection of
malware that exploits zero-day vulnerabilities.

Commonly known security mechanisms are applied to smartphones Although smart-
phones have special characteristics that need to be taken into account such as limited
battery power, mobile usage, and app-based architectures, many approaches are based on
known techniques that are adapted for smartphones. This especially include work that
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aims to detect malicious apps. These approaches are based on the static analysis of bina-
ries or the dynamic behavior of apps. The same techniques have also been used in order to
detect malicious software on other platforms. However, the main challenge is to determine
relevant features that are suitable for the specific problem. For example, which features
should be considered in order to distinguish malicious from benign apps.

Smartphone usage patterns are not well understood The question how users prefer-
ably use their smartphone, in terms of what tasks they perform under which circum-
stances, is only addressed by very few approaches. However, this knowledge can be bene-
ficial for various use cases, including smartphone security. Regarding the given scenarios
defined in Chapter 2, it is a precondition to know the normal behavior of a smartphone
in a certain IT infrastructure before any anomalies can be detected. If it is known how
users preferably use their smartphones in a given IT infrastructure, this knowledge can
be used to actually develop models that express the normal behavior of smartphones.

3.5.2 Fulfillment of Requirements

In the following, the discussed approaches will be compared to the requirements identified
in Section 2.5.

R-01 Detection of unwanted and malicious configurations of smartphones The
majority of the presented approaches fulfill this requirement partially. This is because
their focus lies on the detection of malicious apps and on the prevention of certain types
of attacks (primarily privilege escalation). The fact that benign apps can be unwanted
within an IT infrastructure under certain circumstances is not properly addressed by
these approaches. Furthermore, they do not cover the fact that the status of smartphones
itself can violate a company’s security policy (like the activation of the camera within a
sensitive environment). Only one approach fulfills this requirement completely due to the
adoption of remote attestation for smartphones. However, this comes at the cost of the
inherent drawbacks of remote attestation, namely certain hardware requirements (a TPM
is needed), scalability and privacy issues.

R-02 Detection of abnormal smartphone behavior Various anomaly detection tech-
niques have been applied to the field of smartphone security. Early approaches focused
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on detecting abnormal battery usage of smartphones as an indicator for malicious apps.
Other approaches rely on monitoring system calls instead. The requirement is partially
met by 11 of the presented approaches. They only meet this requirement partially because
they are either limited in the type of data that can be considered for anomaly detection or
the concrete anomaly detection techniques that can be used. Furthermore, the approaches
focus on detecting anomalies that are caused by malicious apps. They do not explicitly
address cases where anomalies are caused by benign apps. Only the Andromaly approach
completely fulfills this requirement. It supports to capture various types of data on a
smartphone which in turn can be processed by numerous anomaly detection methods.
However, it fails to meet almost all of the remaining requirements, thus renders itself as
not being applicable to the scenarios described before.

R-03 Consideration of context information for detection The context of a smart-
phone is only taken into account by few of the presented approaches (7 out of 38). Five of
the approaches partially meet this requirement as they leverage basic context information
for the detection of malicious apps. However, the use of context information is gener-
ally restricted to basic timestamps that enable to order sequences of observed events for
further processing. Only the approach proposed by Dixon et al. [79] aims to use sophisti-
cated context information for detection purposes. However, the authors lack of presenting
concrete results. The two approaches that completely meet this requirement use context
information in order to enforce policies on the smartphone itself rather than for analysis or
detection purposes. Furthermore, they do not consider to restrict access to services within
the IT infrastructure but rather focus on granting access to resources on the smartphone
depending on its context. That is, although context information has been taken into ac-
count, existing approaches either limit themselves to time-based context information or
use the context for different purposes as demanded by this requirement.

R-04 Policy-based reaction on detection results Similar to the previous requirement,
a policy-based reaction is only supported by few of the presented approaches. This re-
quirement is partially met by 7 out of 38 approaches. They provide the user with basic
means to react on a detection result. For example, if a potential privacy leak is detected,
the user can choose to supply no data at all, to supply anonymized data or to supply his
real data. However, the majority of the approaches focuses on the detection task and does
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not deal with the dissemination of the detection result. Thus, mechanisms that enable an
IT infrastructure to react on identified threats are generally not discussed at all. Since
existing IT infrastructures commonly provide a wide range of security services, it is an
open question how these can be effectively used to mitigate threats that are introduced
by smartphones.

R-05 Dynamic analysis at runtime The majority of approaches works at runtime (28
out of 38). Thus, they can employ their analysis or detection capabilities when the smart-
phone is actually used within an IT infrastructure, completely fulfilling this requirement.
The approaches generally impose negligible overhead in terms of resource consumption.
However, it must be noted that the runtime capabilities are restricted to the detection
of either malicious configurations or anomalies. The dissemination of detection results at
runtime within an IT infrastructure is generally not covered. Approaches that cannot be
used at runtime as required by the defined scenarios primarily aim to improve the secu-
rity of a smartphone platform’s app store. Thus, they are complementary to the approach
developed in this thesis.

R-06 Extensibility of processed data and used methods None of the presented ap-
proaches explicitly addresses the requirement to ensure extensibility in terms of data that
is processed and the methods that are employed for processing. However, approaches that
implement a network-based, hybrid or out-of-band architecture are generally extensible,
thus partially fulfilling the respective requirement. These approaches perform most of the
data processing remotely. This generally allows to add further detection methods without
changing the components that are deployed on the smartphones themselves. However, if
new data can be easily added for processing depends on the concrete implementation of
the approach. Still, there is no general framework that allows both to define what data
should be captured and what detection methods should be used in order to process them.
The host-based approaches fail to meet this requirement. In addition to the lack of a
sound framework, they also require extensive modifications to the respective smartphone
platform.

R-07 Ability to integrate the approach in existing environments The question how
new approaches for smartphone security can be integrated into existing IT infrastructures
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is generally not discussed at all. Host-based approaches are usually based upon low-level
modifications to the smartphone platform. Thus, they do not meet this requirement.
Out-of-band approaches can generally be added to existing IT infrastructures. However,
there is no defined way to make their detection results available to existing security
services. Thus, they only partially fulfill the requirement. The same generally also holds
for network-based and hybrid approaches. However, depending on the implementation of
the components that gather the data for processing, some of them also fail to meet this
requirement. Since some rely on agents that capture low level data on smartphones which
makes modifications to the smartphone platform itself necessary, those approaches fail to
fulfill this requirement.

3.6 Summary
This chapter provided an extensive presentation of related work in the field of smartphone
security. The assessment in Section 3.5 proofs that there is no suitable approach that
adequately addresses all requirements derived from the scenarios defined in Chapter 2.
Besides the drawbacks of existing approaches in fulfilling the stated requirements, the
analysis revealed that most of the related work focuses on detecting malicious apps or
on extending smartphone platforms with additional security mechanisms. However, the
question how smartphones can be securely integrated in existing IT infrastructures is not
addressed at all. In terms of detecting unwanted configurations and anomalies, there is no
extensible framework available that allows to define both the data that shall be collected
and the methods that should be used to process them in a flexible way. The context
of smartphones is often ignored by current approaches. Furthermore, there is a lack of
understanding how smartphones are actually used by their users due to the absence of
representative studies. Thus, the remainder of this thesis tackles these questions and aims
to answer them with a novel, network-based approach for smartphone security. During
the evaluation that is presented in Chapter 6, it will also be demonstrated that the
novel approach is capable of mimicking the functionality of the host-based Kirin security
service that has been presented above, while omitting the need for any modifications to
the Android platform.
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“You can’t defend. You can’t
prevent. The only thing you can
do is detect and respond.”

(Bruce Schneier)
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This chapter introduces a novel, network-based approach for smartphone security. The
approach addresses the requirements stated in Section 2.5 that have been identified based
on the scenarios defined in Section 2.2. Hence, the approach aims

• to detect unwanted configurations and abnormal behavior of smartphones,

• to use the context of smartphones for detection purposes and

• to enable immediate reactions on detected threats

in order to securely integrate smartphones into existing IT infrastructures. The approach
is referred to as CADS: Context-related Signature and Anomaly Detection for
Smartphones. It is composed of four main parts:

1. A generic, conceptual model that defines the main building blocks and the relation-
ships between them, especially the notion of signatures and anomalies.

2. A distributed architecture that identifies the components that need to be deployed
in the target IT infrastructure and their responsibilities.

3. A correlation model that defines how collected data is processed.

4. A process model that defines how the first three parts of the CADS approach can
be mapped to a specific problem domain. The domain-specific mapping presented
in this thesis targets the problem domain of securely integrating smartphones into
existing IT infrastructures as discussed in Chapter 2.
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4.1 Conceptual Model
In the following, the components of the conceptual model and their relationships are
defined (cf. Figure 4.1). The components are defined in order to meet the requirements
that were specified in Section 2.5. There are five different types of components:

1. Core Components. They are used to describe data about smartphones in an abstract
manner. The Core Components ensure that CADS is not limited to a certain type of
data. Therefore, they primarily address requirement “R-06 Extensibility of processed
data and used methods”.

2. Context-related Components. They are used to express the context of smartphones.
Therefore, they primarily address requirement “R-03 Consideration of context in-
formation for detection”.

3. Signature Components. They provide the functionality to express the configuration
of smartphones. Signature Components are primarily used to address requirement
“R-01 Detection of unwanted and malicious configurations of smartphones”.

4. Anomaly Detection Components. These components allow to detect abnormal be-
havior of smartphones. They are mainly used to address requirement “R-02 Detec-
tion of abnormal smartphone behavior”.

5. Policy Components. These components are used to express policies based on the
other types of components. They allow to define under which circumstances certain
reactions should be employed. Thus, they are primarily used to address requirement
“R-04 Policy-based reaction on detection results”.

It should be noted that two requirements (“R-05 Dynamic analysis at runtime” and “R-
07 Ability to integrate the approach in existing environments”) are not directly addressed
by the Conceptual Model. Instead, they are covered by the CADS architecture (Section
4.2) and the Correlation Model (Section 4.3).

4.1.1 Core Components

The Core Components form the most basic building blocks of the model. They are used in
order to describe the data that is collected and processed in a structured manner. One of

87



4 A Network-based Approach for Smartphone Security

Figure 4.1: CADS Conceptual Model.

the main challenges is the fact that the question what data should be collected and pro-
cessed in order to detect unwanted configurations and abnormal behavior of smartphones
cannot be generally answered. As discussed in Chapter 3, existing approaches have used
different types of data for the detection of malicious apps and abnormal behavior. Types
of data that have been used include system calls, data that describes static properties
of apps and data that represents low level aspects of the smartphone device itself (such
as the depletion rate of its battery). However, in order to fulfill the requirements defined
in Section 2.5, especially requirement R-06 “Extensibility of processed data and used
methods”, an extensible mechanism that allows to consider arbitrary data is necessary. In
this respect, the term “arbitrary data” means that the approach must not be limited to a
certain type of data (battery level, permissions of apps) for employing its detection tasks
as existing approaches are. Instead, it must provide a mechanism that allows to define on
demand what type of data should be considered for the detection tasks. This is achieved
by introducing the Core Components Feature and Category.

Feature A Feature describes the most basic building block of the model and thus forms
the fundamental basis for any further components. In essence, a Feature represents an
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issue of interest within a certain problem domain. The notion of the Feature component
is derived from the field of artificial intelligence, specifically the field of anomaly detec-
tion. There, the term “feature” is used to describe data instances that are used as input
for concrete anomaly detection techniques [96]. A Feature is composed of the following
elements:

• A globally unique identifier. This enables to unambiguously identify a certain Fea-
ture within the set of all potentially defined Features.

• A value that contains data to represent the issue of interest.

• A type that provides information regarding the data that is contained in the value
element. There are three different types of values that are distinguished: (1) qualified
(2) quantitative and (3) arbitrary.

– The content of qualified values stems from a limited list of possible values (such
as low, medium or high).

– Quantitative values contain numerical, ordinal data that can have a measure-
ment unit associated (such as percent).

– Regarding the content of arbitrary values, no restrictions are made. They are
not limited by an enumeration and have no associated measurement units. This
type of value is necessary to express arbitrary Features like the name of an app.

For convenience, the terms qualified, quantitative or arbitrary Feature refer to a
Feature whose value has the corresponding type (either qualified, quantitative or
arbitrary).

• A set of Context Parameters. They encapsulate data that describe the contextual
situation at the moment when the Feature’s value is set.

• A human readable description that provides the semantics of the Feature.

Thus, a Feature combines data with semantics. Regarding the conceptual model, a
Feature represents an atomic piece of information. At runtime, instances of Features are
created, transmitted, updated and deleted. The logical roles that are involved in these
operations are presented in Section 4.2. The elements of a Feature can be classified as
being either static or dynamic. The static part is set once when an instance of a Feature
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is created and never changes afterwards. The dynamic part of a Feature instance can
be changed during its lifetime. It is composed of the Features value and the referenced
Context Parameters. As there has been a lot of ambiguity regarding the terms data and
information, a definition that is used to distinguish the terms throughout the rest of this
thesis is provided now.
Information is defined as data attached with semantics. For example, a qualified Feature

has the value “false”. The value alone is just data representing the string “false”. However,
considering the Feature’s identifier and the description, semantic background is given that
enables to derive information based on the provided data. That is, information which is
derived from the data varies depending on the definition of the Feature. For example, the
value “false” can provide the information that the user is not present or that a certain
sensor of a smartphone is not active. A more involved discussion regarding the differences
between data and information that also covers the term knowledge is given by Boisot and
Canals [159].

Category Categories are used to structure the set of defined Features according to their
semantics. Thus, a Category contains Features that have similar semantics. Furthermore,
Categories themselves can be hierarchically structured as well. That is, a Category can
have multiple sub Categories in addition to the Features it contains. However, each Cat-
egory can only have a single parent Category. A Category is composed of the following
elements:

• A globally unique identifier. This enables to unambiguously identify a certain Cat-
egory within the infinite set of all potentially defined Categories.

• A value. As Categories primarily work as containers for Features and other Cate-
gories, a single value does not make much sense. Instead, the value of a Category is
the set of identifiers of all contained Features and Categories.

• A cardinality. It defines the cardinality of the contained Features and is set to either
1 or N . For example, a Feature that represents a smartphone’s current battery level
will be contained by a Category with a cardinality of 1 (as there is always one
single valid value for such a Feature at any given time). In contrast, a Feature that
represents the name of a permission requested by an app on a smartphone will be
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contained within a Category with the cardinality N (since apps likely request more
than a single permission). Thus, there will be multiple instances of this Feature at
the same time. As already stated, the components and the process that details the
instantiation of Features are presented in Section 4.2.

• A human readable description that provides the semantics of the Category.

Note that Categories do no have any Context Parameters. This is due to the fact that
their primary purpose is to structure the infinite set of Features that can be defined.

Identifier Generation for Core Components Both Features and Categories need a
globally unique identifier. Although those could be chosen totally random, the following
production rules should be followed when defining Features and Categories for a specific
problem domain.
The naming of identifiers should follow a similar, hierarchical approach as the naming

conventions of Java packages and classes do [160]. According to the naming conventions,
Java packages are named by lower case American Standard Code for Information Inter-
change (ASCII) letters. Each layer of the hierarchy is separated by a dot (.). Classes are
named by ASCII letters as well. However, at least the first letter is capitalized. Long
class names that constitute of more than one word may also follow the CamelCase nota-
tion, that is the first letter of each word is capitalized. This approach is adopted for the
definition of identifiers for Features and Categories. Categories are named like Java pack-
ages (lower case ASCII letters). Features are named like Java classes (ASCII letters with
CamelCase). The hierarchy of Categories is expressed by concatenating their respective
identifiers by dot notation.
Assuming there is a Category c with a sub Category s and assuming that this sub

Category includes a feature F , the fully qualified identifiers are as follows:

• The fully qualified identifier for Category c would simply be c.

• The fully qualified identifier for Category s would be c.s.

• The fully qualified identifier for Feature F would be c.s.F .

Thus, the fully qualified identifiers always represent the complete hierarchy of Categories
and the contained Feature. If there is no ambiguity, only the single identifiers of Categories
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and Features will be used in the remainder of this thesis in order to address them, omitting
their hierarchical relation ship. Regarding the example above, the phrase “the Feature F
is used” refers to the Feature whose fully qualified identifier is c.s.F .
However, a problem still exists if single instances of Features that are contained by

Categories with a cardinality of N should be referenced by their identifier. Given the
production rule above, this can lead to collisions as there might be more than one instance
of the same Feature F at the same moment in time. Given the production rule above, those
instances cannot be distinguished if necessary. Thus, in order to solve this problem, a slight
addition to the production of identifiers for Categories is made, referred to as instance
dispatch. If a Category is of cardinality N and single instances should be identified, its
identifier is attached with an instance counter. Referring to the example above, assume
that Category s is of cardinalityN . If multiple instances of the Category (and its contained
sub-categories and Features) must be distinguished, they can be identified as follows:

• The identifier for the first instance is c.s0.F .

• The identifier for the second instance is c.s1.F .

• The identifier for the nth instance is c.sn.F .

As discussed later in this thesis, there are circumstances where both the instance aware
and instance unaware identifiers are used. Again, the short form of identifiers will be
used throughout the remainder of this thesis as long as it unambiguously identifies the
respective Category and Feature (that is F instead of c.s.F or c.sn.F ).
With these two Core Component types it is possible to render issues that are of interest

for a specific problem domain in a structured manner, encapsulating both the semantics
and the actual data for later processing. An example for a Feature that represents the
name of an Android app could be defined as follows: smartphone.android.app.Name.
In this case, the Category smartphone.android.app would be the only one that is of
cardinality N , whereas smartphone and smartphone.android would be of cardinality
1. Thus, the identifier smartphone.android.app.Name would match all instances of the
respective Feature, whereas smartphone.android.app5.Name would only match the 6th
instance of the Feature.
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4.1.2 Context-related Components

This type of components is used to express the context of a Feature. More precisely, they
describe the context at the moment when the value of the respective Feature is set. There
are two components of this type: Context Parameter and the Context.

Context Parameter Context Parameter encapsulate data that describe the context of
a Feature at that moment when its value is set. Each Feature references a set of Context
Parameters. Examples for Context Parameter include timestamps and location data. Their
internal structure is similar to that of a Feature. However, there are two main differences:
(1) Context Parameters cannot be hierarchically structured by means of Categories and
(2) their only purpose is to form the basis for the definition of Context components as
described below. A Context Parameter is composed of the following elements:

• A type that provides the semantic background for the Context Parameter.

• A value that contains data to represent the contextual information.

For example, in order to express the geographical location at which the value of a
Feature was set, one can define Context Parameters that encapsulate the coordinates
obtained via GPS.

Context A Context is basically a Boolean expression that is formulated based on the
previously introduced Context Parameters. By evaluating the Boolean expression, it is
determined whether the Context is fulfilled (the Boolean expression evaluates to true) or
not (the Boolean expression evaluates to false). A Context is composed of the following
elements:

• A globally unique identifier. As for the Core Components, this is used to unambigu-
ously identify a certain Context. However, since there is no hierarchical structuring
of Context components, its generation is more simple. The identifier could be cho-
sen randomly. However, it is again advised to choose meaningful names composed
of ASCII letters, where the first letter is capitalized and an appropriate prefix is
used. That is, in order to identify a Context that expresses the time interval of a
company’s working hours, the identifier can be set as context.WorkingHours.
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• A Boolean expression which is formulated based on Context Parameters. The ex-
pression only uses basic binary Boolean operations, that is “and” (∧) and “or” (∨).
The Boolean expression itself is composed of numerous relational expressions which
are combined by the previously mentioned Boolean operators. Each relational ex-
pression is composed of a Context Parameter, a relational operator and a value. The
following relational operators can be used: <,>,≤,≥,=, 6=. In order to evaluate a
relational expression, the value of the respective Context Parameter is compared
against the value that is provided as part of the relational expression. The same
Context Parameter can be used in multiple relational expressions (thus comparing
its value against multiple other values).

• A flag that indicates whether the Context is a so-called sliding Context. This flag
is relevant during the evaluation of the Context’s Boolean expression and used for
Context definitions that are based on temporal Context Parameters. For example,
a sliding Context based on a temporal Context Parameter could define that only
Features whose values have been set within the last five minutes fulfill the Context
(thus ensuring their freshness). The different handling of sliding and normal Context
components is further detailed in Section 4.3.

That is, the general structure of the Boolean expression of a Context ctxExpr can be
formalized as follows: � denotes any binary Boolean operator, � denotes any relational
operator. Let N be the number of Context Parameters that are used by a Context. A
Context Parameter is denoted as ctxPi with 0 ≤ i < N . Each Context Parameter can be
used in multiple relational expressions. Let Mi be the number of relational expressions
the Context Parameter ctxPi is used in. Thus, the value of ctxPi is compared against Mi

other values denoted as vali,j with 0 ≤ j < Mi. Then, the formal definition of a Context’s
Boolean expression is as follows:
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ctxExpr :=

((ctxP0 � val0,0) � (ctxP0 � val0,1) � . . . � (ctxP0 � val0,M0) �

(ctxP1 � val1,0) � (ctxP1 � val1,1) � . . . � (ctxP1 � val1,M1) �
...

Boolean expression︷ ︸︸ ︷
(ctxPN−1 � valN−1,0︸ ︷︷ ︸

relational expression

) � (ctxPN−1 � valn1︸ ︷︷ ︸
relational expression

) � . . . � (ctxPN−1 � valN−1,MN−1︸ ︷︷ ︸
relational expression

))

Given the scenarios defined in Chapter 2, the number of Context Parameters that
are actually used by a Context will likely be small (not more than three). Furthermore,
the number of relational expressions used per Context Parameter is likely to be at most
two (in order to test a certain interval, for example (ctxP0 > 5) ∧ (ctxP0 < 10). If a
sliding Context is used, there will likely be only one relational expression. For example,
(ctxP0 < 00 : 03 : 00) in order to select Features whose values have been set within the
last three minutes.

The purpose of a Context is primarily to easily choose instances of Features that are
relevant for further processing. That is, it allows to easily select instances of Features
whose values have been set at a given time or at a given location (depending on which
Context Parameters are used). If the Boolean expression of a Context is true for a specific
Feature instance, it fulfills the respective Context. This is essential for the detection
capabilities of the introduced approach. For example, the use of a certain app might be
prohibited by the company’s security policy for smartphones. However, this only applies
if the smartphone is currently used on site at the company during working hours. The
question whether the smartphone is on site or not and whether the respective app was
used during working hours or not can be answered by using appropriate Contexts.

4.1.3 Signature Components

Signature components are used to express patterns based on Feature and Context com-
ponents. One essential requirement stated in Section 2.5 is the ability to detect unwanted
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configurations of smartphones. Signature components are the main components that en-
able to fulfill this requirement. There is one component of this type.

Signature The purpose of a Signature is to express a pattern based on a set of previously
defined Features. Furthermore, a Signature can reference a set of Contexts that have been
defined. Similar to a Context, the notion of a Signature is binary, that is the pattern which
is defined by a respective Signature actually matches or not. A Signature is composed of
the following elements:

• A globally unique identifier. As for the Core Components, this is used to unam-
biguously identify a certain Signature. Similar to the Context components described
above, there is no hierarchical structuring of Signatures. Thus, their identifier should
be composed following the rules defined for the Context component, with a different
prefix (sig).

• A Boolean expression which is formulated based on Features. The structure of the
expression is the same as the one used by a Context. The only difference is that Sig-
natures use Features instead of Context Parameters. That is the Boolean expression
for a Signature is composed of relational expressions that compare Features (more
precisely the values of Features) against values that are specified as part of the Sig-
nature definition. The same Feature can be used in multiple relational expressions
(thus comparing its value against multiple other values). During the evaluation of
the Boolean expression, all instances that are available for a referenced Feature are
considered. For example, if a Signature references a Feature that represents a re-
quested permission of an app, it could match multiple times depending on how many
apps have requested the respective permission. Further details on the evaluation of
Signatures are given in Section 4.3 as part of the Correlation Model.

• A list of referenced Context components. These are used in order to limit the set of
Feature instances that are considered during the evaluation of the Signature. That
is, only instances of Features that fulfill all of the referenced Context components
will be considered during the evaluation of the Boolean expression.

Similar to the Context component, the general structure of the Boolean expression of
a Signature sigExpr can be formalized. Let N be the number of Features that are used
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by a Signature. A Feature is denoted as ζi with 0 ≤ i < N , identified by means of its
global identifier. Each Feature can be used in multiple relational expressions. Let Mi be
the number of relational expressions for a Feature ζi. The value of each instance of the
Feature ζi is compared against Mi other values denoted as vali,j with 0 ≤ j < Mi. Thus,
the complete definition is as follows:

sigExpr :=

((ζ0 � val0,0) � (ζ0 � val0,1) � . . . � (ζ0 � val0,M0) �

(ζ1 � val1,0) � (ζ1 � val1,1) � . . . � (ζ1 � val1,M1) �
...

Boolean expression︷ ︸︸ ︷
(ζN−1 � valN−1,0︸ ︷︷ ︸

relational expression

) � ( ζN−1 � valn1︸ ︷︷ ︸
relational expression

) � . . . � (ζN−1 � valN−1,MN−1︸ ︷︷ ︸
relational expression

))

To summarize, a Signature is used to define patterns based on Features. In order to eval-
uate a Signature, its Boolean expression is evaluated based on a set of Feature instances.
Only those Feature instances are relevant for evaluation that (1) have an identifier that is
used within one of the Signatures relational expressions and (2) that fulfill the referenced
Context components.

One example for a Signature is to define a pattern to detect a suspicious app. A company
could define a Signature that states an app as being suspicious when it has (1) a certain
combination of dangerous permissions and (2) was obtained from an unofficial app store.
Furthermore, it could leverage Context components in order to specify that the presence
of such apps should only be detected within a certain time interval each day and at a
specific location (for example the company’s research facilities).

4.1.4 Anomaly Detection Components

As already stated in Chapter 3, anomaly detection techniques have been widely used in
the field of information security. According to Chandola et al. [96], an anomaly is defined
as follows:
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“At an abstract level, an anomaly is defined as a pattern that does not conform
to expected normal behavior.”

The goal of this approach is to model normal behavior based on the previously defined
Core Components (Section 4.1.1), primarily the Features, while leveraging the benefits
introduced by the Context-related Components. This is achieved by defining appropriate
Anomaly Detection Components in the following. One major challenge is that at this time,
the concrete technique that is used for detecting anomalies should not be specified. That
is, the model must be flexible in expressing which Features should be analyzed by which
methods in order to detect anomalies. This is achieved by introducing three components,
referred to as (1) Anomaly, (2) Hint and (3) Procedure. Anomaly components are defined
based on Hints, and Hints make use of Procedures. The details of the components are
described in the following.

Anomaly The Anomaly component is used to express that an abnormal behavior was
detected. This is not done by referencing Features directly (like the Signature does).
Instead, there are two intermediary components used in order to provide the necessary
flexibility to process arbitrary Features with arbitrary anomaly detection techniques. An
Anomaly is composed of the following elements:

• A globally unique identifier which should be generated similar to the identifier of a
Signature. However, instead of the prefix sig the prefix ano should be used.

• A Boolean expression which is formulated based on Hints. The structure of the
expression is comparable to the one used by a Signature, but less complex. This
time the relational expressions are using Hints instead of Features (more precisely
the scoring of each Hint that was returned by their respective Procedure as detailed
below). In contrast to a Signature, there can only be one relational expression for
each Hint. This limitation is possible since the relational expressions are only used
in order to verify to what extent a certain Hint is fulfilled (based on the scoring
result of its Procedure).

• A list of referenced Context components. These are used in order to limit the set
of Feature instances that are considered during the evaluation of an Anomaly. Note
that Anomaly components do not reference Features directly. Instead, this is done by
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the Hint components as detailed below. Thus, the referenced Context components
determine the set of Feature instances for all Hints that are used by an Anomaly.

A formal definition of an Anomaly’s Boolean expression anoExpr is given in the fol-
lowing. Let N be the number of Hints that are used by an Anomaly. Each Hint is denoted
as hi with 0 ≤ i < N . The definition is less complex since there is only exactly one rela-
tional expression for each Hint. Within each of the relational expressions, the score that
is returned by the Hint’s Procedure is compared against the given value denoted as vali
with 0 ≤ i < N . Thus, the complete definition is as follows:

anoExpr :=
Boolean expression︷ ︸︸ ︷

( h0 � val0︸ ︷︷ ︸
relational expression

) � ( h1 � val1︸ ︷︷ ︸
relational expression

) � . . . � ( hN−1 � valN−1︸ ︷︷ ︸
relational expression

)

If the Boolean expression of an Anomaly evaluates to true, an abnormal behavior was
detected. The use of Hints allows to specify which Features should be processed by which
anomaly detection techniques in a flexible way as detailed below. It is important to note
that many anomaly detection techniques have constraints, especially concerning the data
that they can process [96]. Since the conceptual model does not limit the nature of Features
and their semantics nor the anomaly detection methods that can be used, the flexibility
provided by Hints is essential.

Hint A Hint is a part of an Anomaly. A Hint generally expresses whether the value of
a set of Features differs from the expected values in such a way that it is considered as
being abnormal. The actual anomaly detection technique that is used in order to analyze
the set of Features is referred to as a so-called Procedure. Each Hint references exactly
one such Procedure. The same Hint can be referenced by multiple Anomaly components.
Each Hint is composed of the following elements:

• A globally unique identifier which should be generated similar to the identifier of
an Anomaly. However, instead of the prefix ano the prefix hint should be used.

• A list of Features that are referenced by their respective identifiers. The set of
Feature instances that are considered during the evaluation of a Hint is limited by
the Context components that are referenced by the respective Anomaly component.
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• A referenced Procedure. The Procedure is responsible for processing all Feature
instances (that is all Feature instances that have been referenced by the Hint and
that fulfill all Context components as defined by the respective Anomaly) in order
to detect abnormal behavior.

Thus, the main purpose of a Hint is to map a certain set of Feature instances to a
certain Procedure. The Procedure employs a concrete anomaly detection method. The
idea is that one Anomaly (that is a smartphone’s abnormal behavior) can manifest itself
in such a way that different Features must be processed by different anomaly detection
techniques. This is supported by the model by means of Hint components that make use
of Procedures.

Procedure A procedure is referenced by a Hint in order to process a set of Feature
instances to detect abnormal behavior. Within the conceptual model, a Procedure is a
generic component and does not rely on or propose a specific anomaly detection technique.
Instead, it models a generic interface with only minor assumptions that must be fulfilled.
These are

• the Procedure must be able to process a set of Feature instances as input data and

• the Procedure must support to map its detection result to an anomaly score in
the range of [−1, 1] indicating the amount of abnormal behavior that was detected.
−1 indicates that there was no abnormal behavior, 1 indicates that the Procedure
is certain to have observed abnormal behavior. Decimal values in between are also
possible (such as 0.75). Anomaly scores are a common approach to render the output
of anomaly detection techniques [96]. The score that is returned by a Procedure thus
indicates to what extent the respective Hint is fulfilled.

The range of [−1, 1] was chosen arbitrarily. Other ranges would work as well, as
long as it is defined which end of the range indicates abnormal behavior and which
range indicates normal behavior.

This allows to use virtually any anomaly detection method that might give reason-
able results for a specific set of Features. Examples include simple statistical analysis or
more sophisticated machine learning techniques. Thus, regarding the conceptual model,
a Procedure basically consists of only two elements:
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Figure 4.2: Configuration of a Procedure.

• A globally unique identifier which should be generated similar to the identifier of
an Anomaly. However, instead of the prefix ano the prefix proc should be used.

• A configuration that ensures that the assumptions stated above are met. The con-
figuration basically defines three aspects as depicted in Figure 4.2:

1. It defines an input mapping. This mapping handles how the set of Features,
their values and their Context Parameters are mapped to the concrete anomaly
detection technique (such as mapping the Features to input signals of a neural
network).

2. Similar to that, an output mapping is necessary as well. This mapping defines
how the result of the concrete anomaly detection technique is mapped to the
range [−1, 1].

3. Further configuration parameters that are specific for the concrete anomaly
detection technique. For a neural network, this would include parameters such
as the number of nodes and their associated weights.

The introduced components for anomaly detection enable to model the expected, nor-
mal behavior based on Features while providing the flexibility to use virtually any anomaly
detection technique that follows the stated assumptions.
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4.1.5 Policy Components

This type of components provides means in order to formulate policies based on the previ-
ously introduced components of the conceptual model. This ensures that the functionality
provided by the approach can be used in various companies with different requirements
in terms of the integration of smartphones. There are four components of this type. It is
important to note that the presented approach does not aim to make any major contri-
bution in the research fields related to policy design and policy languages but just applies
existing approaches.

Policy A Policy P within the conceptual model is composed of a set of Rules. An expert
is necessary in order to formulate reasonable Policies for a specific domain. Regarding the
scenarios described in Section 2.2, there will be one Policy for each administrative domain.
The purpose of a Policy is twofold: (1) it defines which Signatures and Anomalies should
be detected and (2) what Actions should be employed in order to react on detected
Signatures and Anomalies.

Rule A Rule R in the conceptual model is a simple statement of the form if Condition
do Actions. If the Condition is fulfilled, the associated Actions are performed.

Condition A Condition C is a Boolean expression that is used to trigger Actions. Condi-
tions in the conceptual model are formulated based on the previously introduced Signature
and Anomaly components. This way, a domain expert can specify which reactions are nec-
essary upon the occurrence of a Signature respectively an Anomaly. Both Signature and
Anomaly instances can be formulated based on Contexts, thus allowing Context-related
policies.

Action An action Act can change, create or delete a set of Feature instances once it
is triggered by its corresponding Rule. The idea is to model the consequences that are
associated to a rule that has fired by using the Core Components again. For example,
in order to render a notification about an intrusion that was detected, appropriate alert
Features can be created. Besides the general flexibility, this back coupling approach pro-
vides a major benefit: it allows to reuse Features that are created, changed or deleted by
Actions as basis for further Signature and Anomaly definitions.
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4.2 Architecture

The previous sections introduced the conceptual model of the CADS approach. Its main
purpose is to provide a domain independent model that defines the basic structure and no-
tion of Signatures, Anomalies and Contexts. The Feature was introduced as fundamental
basis for any further components. However, it has not yet been defined which components
are necessary in order to make use of the conceptual model.
This is done now by introducing the CADS architecture. It defines logical roles and their

responsibilities. These roles must be fulfilled by components that are deployed within an
IT infrastructure in order to benefit from the CADS approach. The idea to define an
architecture based on logical roles was adapted from the TNC Architecture for Interoper-
ability specification that was defined by the TCG [36]. The use of logical roles emphasizes
that the architecture is mostly independent from physical aspects. For example, the func-
tionality that is expected by a single logical role can be provided by numerous software
or hardware components.
In order to fulfill the defined logical roles, it is not necessarily required to deploy new

components or services to an existing IT infrastructure. Instead, it is expected that exist-
ing components and services (like those discussed as part of the reference IT infrastructure
in Section 2.1) are extended with additional functionality. Those extended components
and services can then fulfill some of the logical roles as defined by the CADS architecture.

4.2.1 Logical Roles

There are four logical roles defined by the CADS architecture:

1. Feature Collector,

2. Feature Provider,

3. Correlation Engine and

4. Feature Consumer.

They are detailed in the following.
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Figure 4.3: Architecture of the CADS approach.

Feature Collector The main responsibility of Feature Collectors is to collect Features
that are expected to be useful in order to detect unwanted configurations and abnor-
mal behavior of smartphones at runtime. Compared to known approaches in the field of
intrusion detection, Feature Collectors act as sensors in the CADS architecture. Thus,
Feature Collectors can reside at arbitrary components and services within the respective
corporate IT infrastructure. This also includes the smartphones themselves. The process
of collecting a Feature constitutes of two sub steps:

1. Feature Measurement. In order to be used, Features need to be instantiated at
runtime. This generally involves to observe a certain issue of interest (for example
like monitoring the outgoing traffic of a smartphone), create an instance of a Feature
that reflects the issue of interest and to set its value. Furthermore, a Feature Collec-
tor is required to tag each created Feature with appropriate information about its
context by setting the Feature’s Context Parameters accordingly (like the current
time or location of the Feature Collector). The same Feature Collector can measure
multiple Features, that is Features that have different identifiers. Furthermore, a
single Feature Collector can generally measure Features for multiple smartphones,
depending on where it is deployed in the target IT infrastructure. Depending on the
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cardinality of the Categories a Feature is contained in, the measurement step may
require to create multiple instances of the same Feature.

2. Feature Transmission. This involves to marshal the measured Feature instances
and to send the resulting message to the Feature Provider. The communication
protocol that is used for Feature Transmission is not specified by the CADS archi-
tecture. However, general requirements that must be met by a protocol that shall
be used for implementing the CADS approach are given in Section 4.2.2.

The collection of Features can be triggered by different means. Collecting Features at
predefined time intervals (like every 15 minutes) or based on certain events (like having
moved a specific distance) are two examples. There will be several components and services
acting as Feature Collectors in an IT infrastructure that implements the CADS approach.
In addition to measuring and transmitting Features, a Feature Collector can also choose to
delete Feature instances that have been collect before. In this case, the Feature Collector
is only required to transmit a list of identifiers corresponding to the Feature instances it
wishes to delete.

Feature Provider The Feature Provider acts as single point of storage for all Features
that have been collected. Communication among the logical roles always involves the par-
ticipation of the Feature Provider. It provides functionality to store, retrieve and delete
Feature instances based on their global identifier. Since Features describe issues of inter-
ests of smartphones, and since there will be numerous smartphones present within the
same IT infrastructure, the Feature Provider must provide means to distinguish the re-
ceived Features according to the smartphone they belong to. This is required for all three
operations supported by the Feature Provider (store, retrieve, delete).

1. Feature Storage. This is composed of three sub-steps. A set of Features must be
received (either from a Feature Collector or the Correlation Engine), unmarshalled
and then stored for later use. If the Feature Provider has received the same instance
of a Feature before, it simply updates the respective instance by setting its value and
Context Parameters accordingly. For each Feature instance, the Feature Provider
keeps track of all changes that have been applied until the respective instance is
deleted.
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2. Feature Retrieval. A Feature Provider includes functionality to retrieve Features
it has stored before. The retrieval is triggered by requests sent from either the
Correlation Engine or a Feature Consumer. The requests specify which Features
should be retrieved, thus acting like a search query. After receiving such a request,
the Feature Provider looks up the matching Feature instances it has stored, marshals
them and transmits the resulting message to the logical role that has issued the
request. Within CADS, this is either the Correlation Engine or a Feature Consumer.

3. Feature Deletion. A Feature Provider also supports to delete Feature instances
it has stored before. This involves to receive a set of Feature identifiers that spec-
ify which instances should be deleted, unmarshal them and perform the necessary
delete operations within the storage of the Feature Provider. That is, the previ-
ously stored Feature instances are flagged as being deleted. Deleted Features are
also covered by the retrieval functionality. This is necessary in order to let Feature
Consumers and the Correlation Engine know when a certain Feature was deleted.
For the deletion of Features, it is sufficient to sent the appropriate identifiers to the
Feature Provider. Again, similar to the storage functionality, the Feature Provider
must be able to distinguish between the numerous smartphones that are present in
an IT infrastructure. This functionality is used either by a Feature Collector or the
Correlation Engine.

Again, the concrete protocols that are used in order to access the Feature Provider’s
storage and retrieval functionalities are not specified at this point. However, referring to
the classical client-server model of distributed systems [161], the Feature Provider acts as
server (hosting Features), whereas the other logical roles act as clients that aim to access
the functionality provided by the Feature Provider.

Correlation Engine Within the CADS architecture, there is exactly one Correlation
Engine that is responsible for processing the set of collected Features. In order to do so,
it evaluates a Policy that has been defined according to the conceptual model described
in Section 4.1. In order to obtain the set of Features that are needed for processing,
the Correlation Engine leverages the retrieval functionality of the Feature Provider. The
evaluation of the Policy is done by checking the Condition of each Rule, thus looking for
matching Signatures and abnormal behavior. As for the anomaly detection, any technique
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can be used, as long as it meets the assumptions regarding the definition of a Procedure
in Section 4.1.4. For each Rule that fires, the associated Actions are performed. This
can trigger the creation of new Feature instances or the update / deletion of existing
Feature instances. Thus, the storage and deletion capabilities of the Feature Provider are
leveraged as well. Within the CADS architecture, the Correlation Engine is the only logical
role that both receives Features from and transmits Features to the Feature Provider. The
algorithms that are employed in order to evaluate the Policy based on the set of Feature
instances are detailed in Section 4.3.

Feature Consumer The last logical role within the CADS architecture is the Fea-
ture Consumer. Similar to the Correlation Engine, it requests Features from the Feature
Provider and processes them. However, the Consumer is not responsible for evaluating
the defined Policy. Instead, it is expected to react on Features that have been created,
updated or deleted by the Correlation Engine. This allows any component within the
IT infrastructure that acts as Feature Consumer to react on the detection results of the
Correlation Engine. The way a Feature Consumer receives new Feature from the Feature
Provider depends on the concrete communication protocol that is used in order to imple-
ment the CADS approach. For example, depending on the communication protocol and
its capabilities, the Feature Consumer is notified about new Features or needs to actively
poll the Feature Provider for any updates at a regular interval.

4.2.2 Communication Protocol

So far, the main logical roles of the CADS architecture have been defined. Components
and services that fulfill these roles must be deployed within an IT infrastructure in order
to benefit from the CADS approach. Whereas the Correlation Engine and the Feature
Provider will likely be implemented by new components and services which are added
to the respective IT infrastructure, Feature Collectors and Feature Consumers can be
realized by extending existing components and services. Communication between these
logical roles must be possible in order to exchange Features. As the logical roles will be
fulfilled by components that are distributed in the target IT infrastructure, this calls for
a network communication protocol.
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A concrete protocol is not chosen at this point. This would limit the CADS approach to
a specific technology. However, some requirements can be defined that a communication
protocol must fulfill in order to be used for implementing the CADS approach:

1. Request-Response Interaction. The communication protocol must allow a point-
to-point interaction between the Feature Provider (acting as server) and each of the
other logical roles (acting as clients). This interaction is based on requests that are
sent to the Feature Provider which in turn answers each request with an appropriate
response.

2. Proper Transmission of Features. The protocol must allow to transmit a set of
Features between the logical roles of the CADS architecture. That is, it must allow
proper marshalling and unmarshalling of Features and their transmission as payload.
Furthermore, the protocol must allow to distinguish which measured Features belong
to which smartphone.

3. Support for Remote Procedure Calls. The protocol must allow to encapsulate
remote procedure calls. This is necessary in order to specify which functionality of
the Feature Provider is desired by the requesting logical role on a per request basis.
That is, each request that is sent to the provider must be marked according to the
operation that should be triggered (either store, retrieve or delete). The arguments
of the remote procedure calls are Features that are encapsulated as payload.

4. Secure. The communication protocol must ensure a secure transmission of Features.
Secure means that the integrity and confidentiality of the transported Features must
be ensured. As stated in Section 2.4, it is assumed that an attacker can eavesdrop
and modify any traffic that is transported over the network.

5. Efficient and Scalable. The amount of Features that are exchanged between the
logical roles can be high. Depending on the concrete IT infrastructure the CADS
approach is deployed in, this amount might range from some tens of Features to
thousands of Features per second. Thus, the communication protocol must be effi-
cient and scalable in terms of Feature encapsulation and transmission.
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Figure 4.4: CADS Communication Flow Example.

As shown later in Chapter 5, the IF-MAP protocol for network security presented in
Section 3.4 completely fulfills all of the stated requirements and is thus well suited for
implementing the CADS approach.
With this basic definition of requirements regarding the communication protocol that

can be used for implementing the CADS approach, the generic interaction between com-
ponents and services that fulfill the logical roles can be specified. The sequence diagram
depicted in Figure 4.4 visualizes a generic example of such an interaction. The example
assumes that there are two Feature Collectors (FCol-1, FCol-2 ), the Feature Provider
(FP), the Correlation Engine (CE) and one Feature Consumer (FCon-1 ). Each one of
the Feature Collectors only collects one Feature (denoted as F-1 and F-2 respectively).
It is assumed that the Policy that is used by the Correlation Engine includes Signature
and Anomaly definitions that make use of these Features. Furthermore, it is assumed that
at least one of the defined Rules fires (as their Condition is fulfilled), which causes the
creation of a new Feature by the Correlation Engine (denoted as F-CE). This Feature in
turn is consumed by the Feature Consumer. The interaction among the logical roles is
detailed in the following:
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1. As the first step, the Feature Collector FCol-1 measures the Feature F-1. Depending
on the definition of the Feature, that is its encapsulation in Categories of cardinality
N and depending on the actual issue of interest that the Feature Collector can
observe, this leads to the creation of a set of appropriate Feature instances (denoted
as {F-1}). For example, a Feature Collector deployed on a smartphone that measures
a Feature which encapsulates the name of an app will create as many instances as
there are apps installed on the smartphone.

2. In the second step, the Feature Collector transmits all measured Features to the
Feature Provider. It does so by marshalling a message that encapsulates all Fea-
ture instances obtained in step 1 and the type of operation it requests from the
Feature Provider (store in this case). The resulting request message is sent to the
Feature Provider (likely via a network connection). The Feature Provider receives
the request, performs the operation (stores all contained Feature instances), and
acknowledges the request with a response. Throughout the example, it is assumed
that all operations are successful. Thus the Feature Provider simply acknowledges
the operation (OK).

3. Similar to the first step, the second Feature Collector now measures F-2, resulting
in M instances of the Feature (denoted as {F-2}).

4. Similar to the second step, Feature Collector FCol-2 sends a request to store the
instances to the Feature Provider, which is again successfully acknowledged (OK).

5. In the fifth step, the Correlation Engine sends a request to retrieve the Features F-1
and F-2 to the Feature Provider. Note that only Feature identifiers are mentioned
in the request, no Feature instances. The Feature Provider processes the request
and responds with the set of Feature instances that have been measured before.

6. Now the Correlation Engine can evaluate the Policy. Based on the set of Feature
instances that it has received in the previous step, it checks each Rule of the Pol-
icy. That is, the Condition of each Rule is evaluated. If the Condition is true, the
corresponding Rule fires. In this example, at least one Rule fires, which leads to the
creation of a set of Features (denoted as {F-CE}).
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7. Afterwards, the Correlation Engine sends a request to store the created Features to
the Feature Provider. Again, this is successful and acknowledged by a response.

8. In step eight, the Feature Consumer requests to retrieve the Feature F-CE from
the Feature Provider. The response contains all instances of the Feature that were
previously stored on behalf of the Correlation Engine.

9. In the last step, the Feature Consumer processes the received Features. The details
of this last step are out-of-scope for the CADS architecture. However, a common
example is to extend a flow controller with functionality to fulfill the role of a
Feature Consumer. Thus, the flow controller can adjust its configuration based on
the Features that were created by the Correlation Engine.

Note that this is an example for a communication flow. Aspects that vary depending
on the concrete implementation of CADS within an IT infrastructure include

• the number of Feature Collectors,

• the number of Features that are collected by each Feature Collector,

• the number of Feature Consumers,

• the number of Features that each Feature Consumer retrieves from the Feature
Provider,

• the number of Features that are actually used within the Policy of the Correlation
Engine,

• the number of Rules that fire and the Actions that they imply (create, update, delete
Features),

• the flow of communication may happen in a different temporal order. This means
that requests can be send in parallel to the Feature Provider.

4.3 Correlation Model
So far, two parts of the CADS approach have been described in detail: the CADS con-
ceptual model in Section 4.1 and the CADS architecture in Section 4.2. In the next step,
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the correlation model is defined. It details how the Correlation Engine evaluates its Pol-
icy based on Feature instances that are retrieved from the Feature Provider. Algorithms
are provided that specify how Signatures and Anomalies are evaluated. For the anomaly
detection, the notion of training and testing phases as well as profiles for smartphones are
introduced.

4.3.1 Policy Evaluation Overview

The general idea of the correlation model is that there is one Correlation Engine that eval-
uates one Policy. The Policy includes rules that encapsulate requirements for the secure
integration of smartphones within an IT infrastructure. With respect to the scenarios
defined in Section 2.2, these rules will enable to make smartphones visible throughout
the IT infrastructure, enable context-related service provisioning, support to detect un-
wanted and malicious software as well as enable immediate reaction on identified threats.
The same, single Policy is valid for all smartphones that are used within the respective
IT infrastructure.

In essence, evaluation of the Policy is generally necessary when the Correlation Engine
retrieves Feature instances for a smartphone from the Feature Provider. Evaluation is
performed on a per smartphone device basis. The Correlation Engine evaluates the Policy
for each smartphone separately and independently from each other. Based on the Feature
instances that have changed, the Correlation Engine determines which Rules need to
be evaluated. For each Rule, it checks whether its Condition (respectively its Signature
and Anomaly components) use Features that have changed according to the last Feature
instances retrieved from the Feature Provider. If that is true, the corresponding Rule is
evaluated (that is all of its Signatures and Anomalies are evaluated). For each Rule whose
Condition is true, the respective Actions are performed. Thus, it leads to a set of Feature
instances that will be stored or deleted in the Feature Provider. Algorithm 1 summarizes
the evaluation of the Policy.

The evaluation of a Rule’s Condition requires to evaluate the Signatures and Anomalies
that it is composed of. How these components are evaluated is detailed in the following.
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Algorithm 1: Evaluation of the Correlation Engine’s Policy
Data: Policy P , list of retrieved Feature instances featureList
Result: Actions that have been performed
foreach Rule r : P.ruleSet do

if r.uses(featureList) then
result = r.evaluate();
if result == true then

r.performActions();
end

end
end

Table 4.1: Exemplary Categories and Features.
Category Cardinality Features
app N Name, Rating
app.perm N Requested

4.3.2 Evaluation of Signatures

As defined in Section 4.1.3, a Signature is composed of Boolean and relational expressions
which are formulated based on Features, more precisely their identifiers. However, the
evaluation is performed against a set of Feature instances (with identifiers generated as
discussed in Section 4.1.1). In order to evaluate a Signature, all Feature instances that
match its Contexts must be considered. Depending on whether the Correlation Engine
implements some form of caching for Feature instances, this might require additional
retrieval requests that are sent to the Feature Provider. The resulting set of Feature
instances that have to be considered can be organized as a tree structure. Nodes represent
Categories, Features are represented as labels who are attached to the nodes. An example
of such a Feature instance tree is given in Figure 4.5. It includes two Categories (each
of cardinality N) with Features describing aspects of a smartphone app (name, rating,
requested permissions). They are listed in Table 4.1. The tree depicts the situation when
there are three apps, where the first one requests two permissions and the other two
request one permission each.
In the following, examples are given that emphasize the problem of a reasonable Signa-

ture evaluation. They are summarized in Table 4.2. If the Signature is only composed of
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Figure 4.5: Tree representing Feature instances. Categories are depicted as orange circles.
The text within the circles represents the identifier of the Category. Features
are depicted as blue boxes. The text within the boxes represents the Feature
identifier and the Feature’s value.

Table 4.2: Signature expressions and their respective number of matches according to the
Feature instance tree depicted in Figure 4.5.

Expression Scope Matches
app.Name = A 0 1
app.Rating > 3 0 2
app.perm.Requested = INTERNET 0 2
app.Name = A ∧ app.Rating > 3 0 0
app.Name = A ∨ app.Rating > 3 0 3
app.Name = A ∧ app.perm.Requested = INTERNET 0 1
app.perm.Requested = INTERNET ∧ app.perm.Requested = CAMERA 0 0
app.perm.Requested = INTERNET ∧ app.perm.Requested = CAMERA 1 1
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one relational expression, the evaluation basically requires to traverse the Feature instance
tree, searching for nodes that represent the Categories that are used by the expression.
For each matching node, it is checked whether it has a label attached that fulfills the
relational expression. For example, the relational expression app.Name = A leads to a
traversal of the tree that searches for nodes that represent an instance of the app Cate-
gory. In the example above, there are three such nodes (app-0, app-1, app-2). Then, for
each node it is checked whether it has a label that fulfills the relational expression. This
is only true for one node (app-0). Thus, the Signature matches. A Rule whose Condition
is only based on such a Signature would fire.
However, the evaluation of a Signature that is composed of more than one relational

expression is more complex and introduces subtle challenges. The expression (app.Name =
A∧app.Rating > 3) should match any app whose name is A and which has a rating that is
higher than three. In the example above, there is no instance that matches this expression.
This result is basically obtained by applying multiple traversals of the Feature tree. That
is, like for the first simple expression, the tree is searched for nodes that fulfill the first
relational expression. For each of these nodes, only their subgraph is traversed again in
order to find a match for the second relational expression. This process is repeated for each
relational expression. This behavior changes if instead of a logical ∧ the logical ∨ is used.
In this case, there is no subgraph reduction performed between the relational expressions.
Instead, it is always traversed from the root node for each relational expression. That
is, the Signature would match three times. If logical ∧ and ∨ are mixed, ∧ has a higher
precedence than ∨.
The algorithm presented so far introduces a problem when a Signature should match

any app that has the permissions INTERNET and CAMERA. The algorithm would
search the first matching permission node (perm-0) and consider only its subgraph for
the second relational expression. Thus, in contrast to what was expected by the Signature
definition, there would be no match. In order to circumvent this problem, the notion
of a scope for Signature evaluation is introduced. The scope defines how the evaluation
algorithm determines the subgraph that should be traversed once a matching node was
found when a logical ∧ is used to concatenate two relational expressions. The default
behavior described above uses a scope of zero. That is, only the subgraph whose root
node is the matching node is considered. A scope that is larger than zero causes that a
larger subgraph is considered for subsequent relational expressions. More precisely, the
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scope equals the number of parent nodes that are “traced back” in order to determine
the root node of the subgraph that is traversed for the subsequent evaluation. That is a
scope of “1” causes to consider the subgraph whose root node is the parent of the node
that caused the match. A scope of “2” makes the grandparent of the matching node the
root for the subgraph traversal. Thus, the previously mentioned Signature that aims to
find apps who have both the INTERNET and the CAMERA permission can be defined
with a scope that is set to 1. After the first matching node was found (perm-0), the root
for the subgraph that is considered for the next relational expression is set to (app-0).
Thus, the Correlation Engine can find the second matching node (perm-1). In contrast,
in order to specify a Rule that fires if there is at least one app that has the INTERNET
permission and at least one app that has the CAMERA permission, two Signatures that
are each composed of one single relational expression can be used.

In general, the exact number of matches for a certain Signature is not relevant to
evaluate the Condition of a Rule. The Correlation Engine considers a Signature to be
fulfilled in terms of evaluating the Boolean expression of the Condition if there is at least
one match. However, if there is need to determine the exact number of matches for a
certain Signature for further processing, the Correlation Engine can be configured to do
so as well. This generally allows to define further expressions that also consider how often
a certain Signature was matched against a certain Feature instance tree.

With the Signature evaluation as described in this section, it is possible to define com-
plex patterns based on Features. When a logical ∧ is used to concatenate two relational
expressions A and B within one Signature, the result of the first expression determines
the subgraphs that are considered in order to evaluate the second expression. This also
holds if there are more than two expressions. How these subgraphs are composed can be
adjusted by defining a scope parameter. The evaluation algorithm is sufficient to handle
expressions that are needed for the scenarios that are addressed in this thesis. Note that
efficiently evaluating complex Boolean expressions like those that are used within Sig-
natures is a subject of current research [162]. Algorithm 2 summarizes the evaluation of
Signatures at a high level.
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Algorithm 2: Evaluation of a Signature
Data: Signature S, Feature Instance Tree FIT
Result: true or false
relationalExpressions = S.getRelationalExpressions();
listOfNodes = FIT.getRootNode();
foreach RelationalExpression rExp : relationalExpressions do

listOfMatchingNodes = evaluateExpressionForNodesInList(rExp, listOfNodes);
if S.nextBooleanOp == AND then

listOfNodes = applyScopeForNodesInList(listOfMatchingNodes);
else if S.nextBooleanOp == OR then

if listOfMatchingNodes.size() > 0 then
return true;

end
listOfNodes = FIT.getRootNode();

else
return listOfMatchingNodes.size() > 0;

end
end

4.3.3 Evaluation of Anomalies

As defined in Section 4.1.4, an Anomaly is composed of Boolean and relational expressions
which are formulated based on Hints. Thus, its evaluation involves a two step process.
First, the Hints that are used in relational expressions by the Anomaly are evaluated.
Second, the overall Boolean expression of the Anomaly can be evaluated as well (based
on the results of the relational expressions).
The Anomaly defines which Contexts are relevant for the evaluation. That is, the same

Contexts apply for each one of the Hints. However, the Hints themselves may be defined
based on different Features and each can use a different Procedure. During the evaluation
of an Anomaly component, it is thus necessary to forward the Feature instances to the
respective Hints properly, which in turn will call their Procedure. That is, for each Hint
all Feature instances that match the Anomaly’s Contexts must be forwarded. Depending
on the implementation of the Correlation Engine, more precisely whether it supports
caching of Feature instances or not, this might require further requests for retrieval that
are send to the Feature Provider. Once all necessary Feature instances are available, the
Hint itself can be evaluated. This causes the Feature instances to be forwarded to the
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Hints Procedure. The details of how the Procedure itself handles the Feature instances is
out of scope. When the Procedure returns its scoring result, the relational expression the
respective Hint is used in can be evaluated. Once all relational expressions are evaluated,
the overall Boolean expression can be evaluated as well. Algorithm 3 summarizes the
evaluation of an Anomaly.

Algorithm 3: Evaluation of an Anomaly
Data: Anomaly A
Result: true or false
listOfContexts = A.getContexts();
listOfHints = A.getHints();
foreach Hint h : listOfHints do

featureIds = h.getFeatureSet();
featureInstances = getFeaturesByContext(listOfContexts);
score = h.evaluate(featureInstances, listOfContexts);
h.setScore(score);

end
return A.evaluateBooleanExpression();

4.3.4 Training and Testing Phases

The previous section described the basic evaluation of Anomalies. The details of the
anomaly detection techniques are part of the Procedure components. However, the gen-
eral concept of anomaly detection introduces another requirement that must be met by
the Correlation Engine: the ability to distinguish between training and testing phases.
Training phases are used by some anomaly detection techniques in order to learn the
normal behavior based on training data. Those are also referred to as supervised and
semi supervised anomaly detection techniques [96]. After the training is done, those tech-
niques can detect anomalies during the testing phase. In contrast to that, unsupervised
techniques do not require training at all. That is, they can be used to detect anomalies
directly during the testing phase. Nevertheless, in case training-based techniques should
be used, the Correlation Engine must be able to handle those two phases properly.
The challenge for CADS and the scenario of smartphone security is that each smart-

phone will have its own, normal behavior. This is due to the fact that smartphones are
normally used by a single user. However, the way each of them uses their smartphone
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will vary. Thus, the training of anomaly detection techniques must be device specific.
The CADS approach to employ proper training leverages the Correlation Engine’s Policy
that was engineered by a domain expert. For a given domain, the Policy especially men-
tions relevant Signatures and Anomalies, both in conjunction with associated Contexts.
The training as employed by the Correlation Engine is based on this Policy. More pre-
cisely, for each smartphone device that has provided training data, the Policy is parsed
for Condition statements that use Anomalies. Depending on these Anomalies (which are
formulated based on Features via Hints), the training data can be searched for match-
ing Feature instances. As already stated, defined Context instances can limit the set of
Feature instances that are considered for each Anomaly (for example when only Features
should be considered that were obtained during working hours).
Once the set of Features for an Anomaly has been identified, the Procedures that

are used by the Hints can train the normal behavior (for example the number of SMS
messages that are usually sent during working hours). This is done for each Rule that
includes Anomalies within its Condition statement. Within the CADS approach, the basic
algorithm that is used for training is the same as for evaluating an Anomaly (see Algorithm
3). There are just two major differences: (1) training is performed on training data and
(2) each Hint must indicate to its Procedure that it is currently called during the training
phase (for example by passing an appropriate flag).
The result of the training is a smartphone specific profile. It has the same structure

as the Correlation Engine’s Policy (that is the same set of Rules, Signatures, Anomalies,
etc.), but references trained instances of Procedures. That is, for each smartphone exists
a profile that encapsulates its normal behavior by means of trained Procedure instances.
Procedures that do not need any sort of training are simply omitted during the training
phase. Once a profile has been trained, it is used for any further evaluation tasks. That is
when the Correlation Engine retrieves new Feature instances from the Feature Provider,
it determines to which smartphone they belong to, looks up the respective profile and
evaluates the contained rules as described in Section 4.3.1. The Correlation Engine is
able to determine which Features belong to which smartphone based on the retrieval
functionality of the Feature Provider. After training has been done for all smartphones,
the training phase is finished and the testing phase starts. Note that it is not supported
to switch between these two phases. That is, if the training should be redone (for example
when better training data is available), this requires to end the testing phase and start
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Figure 4.6: Correlation Engine State Machine (UML state machine diagram).

over again with a new training phase. Trained Procedures are reset at the end of the
testing phase. That is, they do not maintain their state for the next training phase.

4.3.5 Correlation Engine Workflow

So far, the Correlation Model introduced the basic concept of evaluating Policies, Signa-
tures and Anomalies. Furthermore, the differences between testing and training phases
were discussed. However, it has not been defined yet how the Correlation Engine works
internally and by what events the evaluation can be triggered. This is done in the fol-
lowing by providing a simplified state machine of the Correlation Engine. It is depicted
in Figure 4.6. The state machine generally is separated into three branches: one for the
training phase, one for the testing phase and one for handling so-called Triggers. When
started, the Correlation Engine enters the “Idle” state. In this state, it basically waits
for events that cause a state change. There are two types of events that can cause such
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a state change: (1) events that indicate the availability of new Features (event type is
“feature”) and (2) events that express that a Trigger has fired (event type is “trigger”).
Thus, after the Correlation Engine has received a new event, it enters the state “Event
Received”. From there on, it dispatches the further processing based on the event type it
has received.

The first type of events occur when the Correlation Engine has retrieved new Feature
instances from the Feature Provider. The details on how the new Feature instances are
obtained are specific for the communication protocol that is used in order to implement
the CADS approach. However, the Correlation Engine must be able to determine to which
smartphone the Features belong to. As already stated in Section 4.3.1, the retrieval of
new Features is the most common case that requires to evaluate the Policy. In this case,
the Correlation Engine updates its own local storage of Feature instances and enters the
state “Feature Storage Updated”. The details on how the Correlation Engine implements
its local storage are not specified.

The further processing depends on whether the current phase is training or testing. This
is set as a configuration parameter in the Correlation Engine. That is it must be defined a
priori and does not depend on the occurrence of certain events. The workflow in case the
current phase is training is highlighted in Figure 4.7. In this case, the Correlation Engine
enters the state “Training”. Afterwards, it learns the profile for the respective smartphone
device as described in Section 4.3.4. Again note that the evaluation of Policies and thus
the learning of profiles is device specific. After the profile has been learned, the Correlation
Engine enters the state “Idle” again and waits for the next event.

The workflow that takes place in case the current phase is testing is depicted in Figure
4.8. After the Correlation Engine has updated its local storage, it enters the state “Test-
ing”. After that, it evaluates the profile for the respective smartphone that was obtained
from the Policy during the training phase. The general process of evaluating a Policy (re-
spectively a profile that has been derived from it through training) was detailed in Section
4.3.1. In contrast to the training phase, this might lead to Actions that are performed
when Conditions of Rules are fulfilled. After the profile has been evaluated, the last step
is to check if so-called Triggers need to be established. Triggers are another mechanism
that can cause the evaluation of a profile (besides the retrieval of new Features either
during training or testing phase). Triggers address the fact that some rules might need
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Figure 4.7: Correlation Engine Training Phase (UML state machine diagram).
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to be reevaluated although there have been no updates of any Feature instances. This is
always the case when Signatures or Anomalies use sliding Contexts (see Section 4.1.2).
Signatures and Anomalies reference Features. At evaluation time, the necessary Feature

instances are retrieved from the Feature Provider. Contexts that are used by Signatures
and Anomalies limit the set of Feature instances that are considered for further evalua-
tion. Let F be the set of Feature instances that have to be considered for evaluation of a
Signature or an Anomaly. If only normal Contexts are used, F does only change in the
event that either a Feature Collector or the Correlation Engine uses the storage function-
ality of the Feature Provider. That is F only changes if either new Feature instances are
created or existing ones are changed respectively deleted.
However, this is not true if sliding Contexts are used. Sliding Contexts are used in

order to express temporal expressions that are relative to the current moment in time.
For example, a normal Context can express that only Features who have been collected
between 8:00AM and 18:00PM are considered for evaluation purposes. In contrast, a
sliding Context can express that only Features who have been collected in the last 15
minutes should be considered. Thus, the set of Features F that are relevant during the
evaluation of a Signature or Anomaly can change without any events that indicate the
change of the Feature instances themselves.
Assume that a Signature or Anomaly which uses such a sliding Context was evaluated

at time t0, leading to the result rt0 . At that time, the set of Feature instances that
had to be considered is denoted as Ft0 . Further assume that an event that indicates a
change of Feature instances does not occur before tn, with ∆tn,0 = tn − t0. Then, the
result of the evaluation of the respective Signature or Anomaly can nevertheless change
in the time between t0 and tn as the set of Feature instances that match the sliding
Context can change. That is, at any time t1 with ∆t1,0 = t1 − t0 and ∆t1,0 < ∆tn,0,
evaluating the respective Signature or Anomaly can yield different results depending on
the definition of the sliding Context. The question that arises is at which moments in time
the Correlation Engine should reevaluate a certain Policy (respectively profile), although
there have been no events that indicate the change of any Feature instances. Simply
refusing to do additional evaluations and solely relying on the events of type “feature”
is not sufficient. In this case, the results of the last evaluation might contradict the real
situation. On the other hand, simply evaluating all profiles for all smartphones in an
infinite loop would minimize the delay between a change of the Feature instance set and
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the next evaluation process. However, this brute force approach is not practical as it
will exhaust the resources available on the system that fulfills the role of the Correlation
Engine.
The approach taken by CADS is a compromise of the two alternatives described above

and relies on the use of so-called Triggers. After a profile has been evaluated, the Corre-
lation Engine checks whether Signatures and Anomalies that use sliding Contexts were
involved. For each such Signature or Anomaly, a Trigger is created. This Trigger basi-
cally renders the moment in time when the respective Signature or Anomaly (and thus
the Rules that they are used in) should be reevaluated again. The exact amount of time
that should pass before a Trigger fires can be configured at will. However, it should be
taken into account that the lower this amount of time is, the more resources need to be
available for the Correlation Engine. Coming back to Figure 4.8, if sliding Contexts were
used, the necessary Triggers are created. After that, the Correlation Engine has reached
the “Triggers Created” state. From there on, it enters the “Idle” state again and waits for
the next event.
The last branch that is discussed here addresses the handling of Triggers that have fired

(depicted in Figure 4.9). In this case, the Correlation Engine receives an event of type
“trigger”. Thus, it enters the state “Trigger Event Received”. This causes the Correlation
Engine to evaluate the respective profile. The evaluation basically works similar to the one
that is carried out when an event of type “feature” would have been received. There are
only two major differences: (1) the evaluation does only evaluate one single Rule (the one
that initially caused the corresponding Trigger to be created) and (2) the evaluation does
not lead to the creation of new Triggers. Instead, the existing Triggers remain valid and
will fire again once the respective amount of time has passed again. Note that Triggers
are only created if the Correlation Engine is working in the testing phase.

4.4 Domain-specific Mapping
The previous sections introduced the generic parts of the CADS approach: its conceptual
model, its architecture and the correlation model. However, in order to actually use CADS
within an IT infrastructure, a crucial part is still missing: the domain-specific mapping.
That is, for any IT infrastructure that aims to secure their integration of smartphones
based on the CADS approach, a specific domain instance of the generic parts must be
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Figure 4.8: Correlation Engine Testing Phase Feature Event (UML state machine
diagram).
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Figure 4.9: Correlation Engine Testing Phase Trigger Event (UML state machine
diagram).
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derived. The generic questions that need to be addressed in order to derive such a do-
main instance are detailed in Section 4.4.1 by defining a process model. Afterwards, a
domain instance is derived for the reference IT infrastructure and the scenarios described
in Chapter 2.

4.4.1 Process Model to Derive Domain Instances

Any domain instance generally addresses the following questions:

• What Features should be collected? That is, what is the basis for any Signature and
Anomaly components that are used within the Policy of the Correlation Engine?

• How does the Correlation Engine react on Rules that have fired? That is, what
Features are created by the Correlation Engine itself?

• What Context Parameters that are relevant for the target domain need to be con-
sidered?

• How are the logical roles of the CADS approach mapped to the target IT infras-
tructure? Especially Feature Collectors and Feature Consumers should be deployed
in such a way that they can leverage the capabilities of existing services if possible.

• How does the Policy look like that is evaluated by the Correlation Engine? That is,
encapsulating the demands that the maintainer of an IT infrastructure has regarding
the secure integration of smartphones in appropriate Rules.

In order to answer these questions properly, a generic process model is specified that
defines how domain instances for the CADS approach should be derived (depicted in
Figure 4.10):

1. Definition of Features. In the first step, Features that are relevant for the specific
domain are defined. As mentioned in Section 4.1.1, the Feature space is hierarchically
structured by means of Categories. Since each domain will have its own specific
Policy regarding the secure integration of smartphones, it is not possible to provide a
single set of Features that is generally accepted. Instead, what Features are necessary
depends on the scenarios and use cases that are addressed. However, two types of
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Figure 4.10: Process Model for deriving domain instances.

Features can generally be distinguished: (1) those that are collected by arbitrary
Feature Collectors and (2) those that are created by the Correlation Engine when
a Rule of its Policy fires.

2. Definition of Context Parameters. A set of relevant Context Parameters needs
to be defined. Similar to the definition of Features in step 1, it cannot be assumed
that there is a generally accepted way that defines which context information should
be encapsulated by which Context Parameters. However, it is assumed that the
set of reasonable Context Parameters will be less diverse among different domains
compared to the set of Features.

3. Mapping of logical roles. In this step, the logical roles defined in Section 4.2
need to be mapped to the target IT infrastructure. It is expected that the Fea-
ture Provider and Correlation Engine roles will demand for new systems that are
deployed. However, existing systems are expected to fulfill the role of a Feature
Collector or a Feature Consumer. Based on this mapping, a gap analysis can be
performed in order to detect Features that have been defined in step 1 but that
cannot be collected in the absence of appropriate Feature Collectors. If there is a
gap, new systems need to be added to the target IT infrastructure that work as
Feature Collectors in order to collect the missing Features. If that is not possible,
the definition of Features needs to be revised. Note that multiple Feature Collectors
can be deployed in order to collect the same Feature.

4. Definition of a Policy. In the last step, the Policy that should be evaluated by the
Correlation Engine is defined. This basically requires to define Signature, Anomaly
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and Context components, make use of them as part of Rules and define appropriate
Actions for Rules that fire. Note that although the notion of the abnormal behavior
is mentioned in the Policy as part of the Anomaly definition, the concrete technique
that is used depends on the implementation of the approach. For example, where
the Policy states that an abnormal use of a smartphone’s sensors should be detected,
various methods (even combined ones) may be used within an implementation in
order to detect this.

Based on the domain instance, the CADS approach can be implemented for a target
IT infrastructure.

4.4.2 An Example for a Domain Instance Derivation

The process model described above is now applied to derive a domain instance for the
reference IT infrastructure and the scenarios defined in Chapter 2. Concerning the different
available smartphone platforms, the domain instance focuses on Google Android.

Definition of Features

The difficulty to define a set of reasonable Features is closely related to the scenarios
that should be addressed within a certain domain. For example, in order to come up with
Features for the scenarios “Smartphone Visibility”, “Context-related Service Provisioning”
and “Policy-based Enforcement” is pretty straight forward. However, to tackle scenario
“Detection of Malicious and Unwanted Apps” is more challenging as will be shown later
in this section. In the following, a brief overview of some Features and the respective
Categories is given. The hierarchy of the Categories is depicted in Figure 4.11, starting
from a virtual root Category. The sub Category relationship is denoted by directed arrows.
A full list of all defined Features for the domain is given in Table A.2.
In the scenario “Smartphone Visibility”, it is required that certain services are not

allowed to be accessed by a smartphone. Thus, the service itself must be able to determine
whether a certain request was issued from a smartphone or not. Rendering this fact as
a Feature is trivial. It simply requires one single Feature acting like a flag to indicate
that a certain device is a smartphone. For this domain mapping, the Feature is defined
as correlationresult.smartphonevisibility.IsASmartphone whose value can either be “true”

129



4 A Network-based Approach for Smartphone Security

Figure 4.11: Categories of the exemplary domain instance.

130



4.4 Domain-specific Mapping

or “false”. The Correlation Engine is responsible for creating this Feature based on other
Features that indicate the respective device is a smartphone, such as the presence of an
IMSI or IMEI number. The mapping which Features need to be present in order to flag
the respective device as a smartphone is defined in the Policy of the Correlation Engine
by defining appropriate Rules.
Scenario “Context-related Service Provisioning” is similar to the first one. However, in

this case a service that is accessed must consider the Context of the requesting smartphone.
In order to provide the latest values for the defined Context Parameters, a dedicated
“dummy” Feature is defined. That is, the value of this Feature is generally irrelevant, it is
only used in order to communicate updated values for Context Parameters from a Feature
Collector to the Feature Provider. Thus, it is referred to as smartphone.ContextP ing.
The Correlation Engine can retrieve this Feature in order to check if defined Contexts
are fulfilled or not. It does so by defining Signatures that make use of the ContextP ing
Feature and exactly one Context that is of interest. Depending on whether the Signa-
ture matches, the respective Context is fulfilled or not. By creating appropriate Rules
that use the Signature, the Correlation Engine can create new Features that render the
outcome of the respective Rule checks. For this purpose, two Features are defined: correla-
tionresult.context.IsFulfilled and correlationresult.context.IsNotFulfilled. The values of the
Features encapsulate the identifier for the respective Context. A service that also fulfills
the role of a Feature Consumer can retrieve these Features in order to reason about the
Context of the requesting smartphone.
In fact, both of the two described scenarios could also be realized without the partici-

pation of the Correlation Engine at all. As there are no complex Signatures required or
anomaly detection techniques involved, a Feature Consumer could easily implement logic
that allows to reason about whether a device is a smartphone or not and what Context it
is currently in on his own. However, involving the Correlation Engine provides the benefit
that the knowledge about what Features identify a smartphone and what Contexts are
relevant is maintained in one single Policy.
The scenario “Policy-based Enforcement” generally requires that an enforcement can

take place upon the detection of a threat. In terms of CADS, that means that appro-
priate Features that render the desired enforcement action need to be created when
Rules that encapsulate threats fire. In order to address this, a Feature called enforce-
ment.EnforcementAction is defined. Its value encapsulates the type of enforcement that
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should be employed. This value must be set in such a way that the receiving Feature
Consumer is able to interpret it correctly. For the given scenario, it is assumed that the
enforcement is done by a packet filter like iptables. Thus, the value to the Feature is set
to the command line string that should be executed. For example, it could trigger the
execution of a shell script that blocks traffic for the IP address that is currently used
by the smartphone. Of course, this requires that the Correlation Engine knows the IP
address of the smartphone, and thus an appropriate Feature for it is necessary as well. If
only alert messages should be distributed to Feature Consumers, Features of the Category
correlationresult.alert can be used.

Clearly, the most challenging scenario to address is “Detection of Malicious and Un-
wanted Apps”. As pointed out in Section 3, various approaches exist that aim to detect
malicious apps. However, the set of features1 that have been used for detection tasks
is diverse. As the scenario aims to primarily detect the presence of sensory malware,
Features that encapsulate information about installed apps and the status of the smart-
phone’s built-in sensors are primarily necessary. In general, Features are included that (1)
are obtained on the smartphone itself and (2) Features that originate from security and
management services that are present in the reference IT infrastructure.

Some of the presented Features are specific for the Android platform (such as those
to encapsulate an app’s requested permissions). However, the notion of those Features
can generally be adapted to other platforms as long as they provide a similar, permission
based access control model. The chosen Features are motivated by previous work that
has been published recently, primarily inspired by Enck et al. [129, 14], Barrera et al.
[87] and Shabtai et al. [18] for Android specific Features and Schmidt et al. [147] for user
specific and general platform features. The integration of events originated from network-
based monitoring systems (like an IDS), results of vulnerability scanners (like OpenVAS)
and Features obtained from app stores like Google Play is a contribution of this thesis.
Although the general idea to integrate both host-based and network-based approaches for
smartphone malware detection has already been proposed by Miettinen et al. [95], their
work does not provide any detailed concepts, especially no holistic model to capture both
smartphone and network-based Features as this thesis does.

1This refers to the general meaning of the term feature, not to the Feature defined as part of the
conceptual model.
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In order to benefit from Features that can be contributed by intrusion detection systems
(IDS) and vulnerability scanner, two dedicated categories are defined. Both have cardinal-
ity N and include Features that describe events generated by IDS respectively informa-
tion about vulnerability reports generated by vulnerability scanners. The most complex
category tree is started by the Category smartphone. It includes various sub-categories
to describe various Features of a smartphone. This especially includes basic informa-
tion about the smartphone (smartphone.system), its sensors (smartphone.sensor), its
communication capabilities (smartphone.communication) and the installed apps (smart-
phone.android.app).
Note that in general there is no “right or wrong” regarding the definition of Features

and Categories. That is, there will always be multiple possibilities to address a specific
scenario. However, the way the Features are defined and organized by means of Categories
affects the definition of the Policy.

Definition of Context Parameters

For the exemplary domain instance, there are only three Context Parameters defined:

• Timestamp: The moment in time when the respective Feature was measured.

• Longitude: The longitude coordinate from GPS position.

• Latitude: The latitude coordinate from GPS position.

These Context Parameters are sufficient in order to select Feature based on two aspects:
when they were measured and where they were measured. This only requires to specify
appropriate Context instances. The timestamp parameter is expected to be available at
any Feature Collector. However, the GPS coordinates will likely be only available for
Features that are measured on a smartphone.

Mapping of Logical Roles

In this step, the logical roles are mapped to the reference IT infrastructure described in
Section 2.1. The same infrastructure is depicted in Figure 4.12, with the logical roles of
the CADS approach added to it.
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Feature Collectors are mapped to services that can contribute Features that were de-
fined in the first step. This especially includes security services like the IDS and the
vulnerability scanner (which are responsible to collect the Features of the Categories ids
and vulnerability). Smartphones themselves are responsible for collecting Features of the
Category smartphone. However, not all of these defined Features can directly be collected
on a smartphone. For example, the Features smartphone.android.app.Rating and smart-
phone.android.app.Downloads are not directly available on a smartphone. Instead, it is
necessary to query the Google play app store to obtain up-to-date values for the respec-
tive Features. Thus, a new system that hosts a service to crawl the Google Play app store
was added to the reference IT infrastructure. The Correlation Engine and the Feature
Provider were added as new systems as well as none of the existing services is expected
to be able to fulfill these roles.
Feature Consumers are mapped to two types of services: (1) application services that

need to process results of the Correlation Engine in order to determine if a certain request
originated from a smartphone and in what Context the smartphone is currently operat-
ing in. (2) Services that can employ enforcement actions. Besides the Firewall, these also
includes the NAC and Remote Access services (as they can choose to interrupt the con-
nection of a smartphone). Note that NAC and Remote Access Services are also expected
to work as Feature Collectors as they can obtain Features like the current IP address of a
smartphone. This leads to a situation where the same Feature can generally be collected
by numerous Feature Collectors. There are generally three options to solve this issues:

1. Choose only one Feature Collector that is responsible to collect the respective Fea-
ture.

2. Allow multiple Feature Collectors to collect the same Feature. That is, Feature
Collector A can update the Feature that was collected by Feature Collector B and
vice versa. However, this approach will lead to a higher rate of Feature updates, and
thus to a higher amount of processing that must be done by the Feature Provider
and the Correlation Engine. As a consequence, this option should be omitted if
possible.

3. Refactor the modeling of Features and Categories so that there is no collision any-
more. This can for example be achieved by introducing sub Categories for each
Feature Collector.
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In general, the question whether a certain service should act as Feature Collector and/or
Feature Consumer can only be answered for a concrete domain. For example, the applica-
tion services themselves could generally also act as Feature Collectors if there is a scenario
in the concrete domain that demands it. For example, the scenario “Smartphone Visibil-
ity” states that some services are not allowed to be accessed by smartphones, requiring
them to fulfill the role of a Feature Consumer. However, building on top of that, another
scenario might require that smartphones who frequently try to access services they are
not allowed to access are identified. In this case, the respective services can also act as
Feature Collectors in order to collect Features that render unsuccessful access requests
performed by smartphones.

Definition of a Policy

The last step is to define a Policy that makes use of the previously defined Features,
Categories and Context Parameters. The following example will focus on the detection of
one type of sensory malware as described in Section 2.2.3. That is, an app aims to capture
sensor data and tries to sent this data to a remote destination under the control of the
attacker. The Policy depicted in listing 4.1 is formulated in pseudocode. A grammar for
the Policy language is defined as part of the prototype implementation in Chapter 5.

1 // d e f i n e a context f o r working hours
2 context . WorkingHours := Timestamp > " 08 :00 " and Timestamp < " 20 :00 " ;
3 // d e f i n e an anomaly to capture e x c e s s i v e outgoing t r a f f i c with in working hours
4 ano . H ighTra f f i c := hint . H ighTra f f i cWi f i > " 0 .5 " OR
5 hint . H ighTra f f i c3g > " 0 .5 " , context . WorkingHours ;
6 hint . H ighTra f f i cWi f i := " smartphone . communication . ip . TxOther " <procedure a>;
7 hint . H ighTra f f i c3g := " smartphone . communication . ip . Tx3g " <procedure a>;
8 // d e f i n e some s i gna tu r e s
9 // i s the camera cu r r en t l y used

10 s i g . Camera := " smartphone . s enso r . camera . IsUsed " = " true " , context . WorkingHours ;
11 // i s the re an app with s u sp i c i o u s pe rmi s s i ons that can l eak senso r data
12 s i g . SuspiciousApp ( scope=1) :=
13 " smartphone . android . app . permis s ion . Requested " = "RECEIVE_BOOT_COMPLETED" AND
14 " smartphone . android . app . permis s ion . Requested " = "CAMERA" AND
15 " smartphone . android . app . permis s ion . Requested " = "INTERNET" , context . WorkingHours ;
16 // open port detec ted
17 s i g . OpenPortDetected := " v u l n e r a b i l i t y .Name" = "Open Port " , context . WorkingHours ;
18 // d e f i n e a cond i t i on that uses the s i gna tu r e s and anomal ies
19 cond i t i on . SensorLeakage := ano . H ighTra f f i c AND s i g . Camera AND
20 s i g . SuspiciousApp AND s i g . OpenPortDetected ;
21 // d e f i n e an enforcement ac t i on
22 ac t i on . DropClient :=
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23 c r e a t e " c o r r e l a t i o n r e s u l t . enforcement . EnforcementAction " = " . / drop−c l i e n t . sh " ;
24 // d e f i n e a ru l e that puts a l l th ing s toge the r
25 i f ( c ond i t i on . SensorLeakage ) do ac t i on . DropClient ;

Listing 4.1: Example Policy to detect one kind of sensory malware (pseudocode).

For this domain example, only violations that happen during working hours are assumed
to be relevant. Thus, an appropriate Context is defined (line 2). Any other Anomaly and
Signature definitions make use of this Context. Afterwards, an Anomaly is defined in
order to detect excessive outgoing traffic originating from a smartphone (lines 4 to 5).
The assumption here is that captured sensor data needs to be transmitted to a remote
server, and thus will increase the outgoing traffic in an abnormal manner. The Anomaly
is formulated by using two Hints (lines 6 to 7), each one referring to a specific Feature
that encapsulates outgoing traffic. Note that each of the Hints makes use of the same
Procedure for detecting the abnormal behavior. However, this is not a must. A concrete
anomaly detection technique is not specified at this point. Chapter 5 will demonstrate
how abnormal traffic can be detected by means of statistical methods. The Anomaly is
defined in such a way that if one of the two Hints returns a score that is above 0.5, the
behavior is considered to be abnormal.

Abnormal traffic is not the only indicator that is used to identify a sensory malware. In
addition, a couple of Signatures are defined. They check if the camera of the smartphone
is currently in use (line 10), if an app is installed that has a suspicious set of permissions
(lines 12 to 15) and if the smartphone has an open port on which it accepts incoming
connections (line 17). For this Signature, the scope is adjusted (set from 0 to 1) in order
to match any app that has all of the permissions requested (as defined in Section 4.3.2).

In order to actually evaluate the Signature and the Anomaly, an appropriate rule is
defined (line 25). Its Condition (line 19 to 20) makes use of the previously defined Signa-
tures and the Anomaly. The associated Action that should be performed if the rule fires
is defined in line 22 and 23. It causes the creation of a new Feature which is stored in the
Feature Provider and retrieved by a Feature Consumer in order to drop the respective
smartphone from the network. In this example, this is done by encapsulating a command
that should be executed by the Feature Consumer (in this case a shell script).
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4.5 Assessment

In the following, an assessment of the CADS approach is performed. The purpose of this
assessment is twofold:

1. First, the CADS approach is compared to the requirements defined in Section 2.5.
It is shown that CADS fulfills these requirements better than any other related
approach.

2. Second, the inherent drawbacks of the CADS approach are discussed.

It is important to note that the assessment does not cover any benefits or drawbacks of
CADS that are related to implementation details.

4.5.1 Fulfillment of Requirements

R-01 Detection of unwanted and malicious configurations of smartphones The
CADS approach explicitly addresses this requirement by means of the Signature Com-
ponents defined within the conceptual model (see Section 4.1.3). Signatures are patterns
based on Features. When the Correlation Engine evaluates a Signature, the pattern is
searched in the set of relevant Feature instances as described in Section 4.3.2. In order
to detect a certain configuration (whether it is malicious or unwanted) with CADS, two
aspects need to be met: (1) Features that are suitable to express the configuration must
be available and (2) an appropriate Signature must be defined as part of the Correlation
Engine’s Policy. Since Features can be added transparently to the CADS approach, vir-
tually any configuration can be detected. However, Feature Collectors must be available
that collect the respective Features. Thus, the requirement is fulfilled.

R-02 Detection of abnormal smartphone behavior Abnormal behavior of smart-
phones can be detected by means of the CADS Anomaly Detection Components (defined
in Section 4.1.4). The normal behavior can be flexibly defined by composing an Anomaly
of several Hints, that in turn define which Features should be analyzed by which Proce-
dure. The Correlation Engine supports to process Features both for training and testing.
Training is performed based on the Correlation Engine’s Policy in order to derive device-
specific profiles. Again, Features need to be available that can be used for a reasonable
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anomaly detection. Furthermore, an implementation of the CADS approach must provide
concrete anomaly detection techniques. Thus, the requirement is fulfilled as well.

R-03 Consideration of context information for detection This requirement is ad-
dressed by the Context-related Components of the CADS conceptual model (see Section
4.1.2). In essence, Features are “tagged” with Context Parameters. Contexts can be spec-
ified based on these Context Parameters. This allows to (1) easily derive the Contexts
a smartphone is currently in and (2) limit the set of Feature instances that are consid-
ered during the evaluation of the Correlation Engine’s Policy based on the Context they
were obtained in. The variety of Contexts is only limited by the set of available Context
Parameters. CADS is the first approach that enables both context-related signature and
anomaly detection for smartphones. However, as Context Parameters are set by Feature
Collectors during the measurement of a Feature, some of them might not be reasonably
set by all of the Feature Collectors (like GPS coordinates). Nevertheless, the requirement
can generally be considered as fulfilled.

R-04 Policy-based reaction on detection results This requirement is primarily ad-
dressed by the Policy Components of the CADS conceptual model (see Section 4.1.5). It
allows to use Signature and Anomaly components to specify simple IF-THEN Rules. For
each Rule that fires, the associated Action is performed. This allows to flexibly react on
any detected configuration or abnormal behavior. The design of the Action component
allows to create, update or delete Features for the respective smartphone. This “feedback”
provides two main benefits: (1) it allows to disseminate detection results and thus requests
to employ an enforcement action to virtually any Feature Consumer, (2) it allows to define
Signatures and Anomalies that work based on Features which are created by the Correla-
tion Engine as part of performed Actions. The first benefit was used in order to address
the scenario “Policy-based Enforcement” in the exemplary domain-specific mapping. The
second benefit was not used yet. However, the general requirement to allow policy-based
reactions is fulfilled.

R-05 Dynamic analysis at runtime This requirement is primarily addressed by the
CADS architecture (Section 4.2) and the Correlation Model (Section 4.3). Feature Collec-
tors collect Features at runtime and store them in the Feature Provider. The Correlation
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Engine can retrieve the stored Features for each smartphone, evaluate the Policy and
create new Features if necessary. These Features are again stored properly in the Feature
Provider. Feature Consumers can retrieve those Features and react accordingly. Thus,
the requirement is generally met. However, a training phase should be performed before
the testing phase (and thus the dynamic analysis) starts. Furthermore, although the ap-
proach allows dynamic analysis on a conceptual level, the real latency between Feature
measurement, Policy evaluation and the reaction that is employed by a Feature Consumer
depends on the concrete implementation, especially on the communication protocol that
is used.

R-06 Extensibility of processed data and used methods A major drawback of ex-
isting approaches was the lack of extensibility, both in terms of data that is processed
and methods that are used for processing. In contrast, the CADS approach only names
generic concepts both for defining the structure of data that is processed and the methods
employed for anomaly detection. Data is expressed by means of Features, Categories and
Context Parameters. Techniques for anomaly detection are encapsulated as Procedures.
The only part of the Correlation Model that specifies a concrete algorithm for detection
purposes is the evaluation of Signatures (Section 4.3.2). Thus, the requirement is fulfilled.

R-07 Ability to integrate the approach in existing environments This requirement is
primarily addressed by the distributed CADS architecture. The logical roles define func-
tionality that must be present in any IT infrastructure that aims to implement the CADS
approach. The goal is to benefit from existing services by adding additional functionality
to them so that they can fulfill the role of a Feature Collector or a Feature Consumer.
Since CADS is a network-oriented approach and thus does not rely on extensive changes
to the smartphones themselves, this requirement is generally fulfilled on the conceptual
level. However, it depends on the concrete implementation how easy an integration into
a real IT infrastructure really is. Even more, a concrete implementation can cause the
CADS approach to fail this requirement. For example, if Features should be collected on
smartphones that require customized versions of the smartphone platform. In this case,
it is a domain-specific design decision to include such Features while sacrificing an easy
integration. Thus, the requirement is fulfilled as well on the conceptual level.
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4.5.2 Drawbacks

Despite the fact that the presented CADS approach fulfills all necessary requirements
at the conceptual level, there are also some inherent drawbacks that should be briefly
mentioned here.

Complexity of architecture integration The CADS architecture is composed of four log-
ical roles. Two of them are expected to be fulfilled by new systems that are added to
an IT infrastructure (Feature Provider and Correlation Engine). Feature Collectors
and Consumers on the other hand should be realized by extending existing systems
and services. Depending on the target IT infrastructure, the integration of these
roles can become a complex task.

Necessity of domain knowledge In order to detect unwanted configurations and abnor-
mal behavior with the CADS approach, knowledge about the domain CADS is
used in is required. In this respect, the term knowledge refers to the fact that the
domain-specific mapping as described in Section 4.4 basically requires to specify two
aspects:

1. What data is relevant and should be collected and processed. This is done by
defining Features and Categories.

2. How should the collected data be processed. This is done by defining a Policy
with Rules whose Conditions are formulated based on Signatures and Anoma-
lies.

The capability of CADS to enable a secure integration of smartphones into existing
IT infrastructures relies on the definition of an adequate Policy that renders the
domain knowledge. At the moment, there is no way to automatically generate a
Policy.

Further drawbacks and limitations which are related to implementation details are dis-
cussed in Chapter 5.
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4.6 Summary
This chapter presented a novel, network-oriented approach for smartphone security. The
approach is referred to as CADS: Context-related Signature and Anomaly Detec-
tion for Smartphones. It is composed of four main parts.

1. The CADS conceptual model was presented in Section 4.1. It defines the main
building blocks and the relationships between them, especially the notion of Features
and Categories and how they are used to express Signatures and Anomalies.

2. The CADS architecture was detailed in Section 4.2. It is mainly composed of logical
roles and their responsibilities. Components that fulfill these logical roles need to
be present in an IT infrastructure in order to implement the CADS approach.

3. The CADS correlation model that defines the general processing of collected data
was presented in Section 4.3. This part primarily defines the internal mechanisms
and algorithms that are used by the Correlation Engine to evaluate Signatures and
Anomalies.

4. Finally, a process model that defines how the first three parts of the CADS approach
can be mapped to a specific problem domain was presented in Section 4.4.

An assessment of the CADS approach was presented in Section 4.5. The results show
that CADS fulfills the requirements that were identified in Chapter 2 at a conceptual level.
The feasibility of the CADS approach will be demonstrated by presenting a prototype
implementation in Chapter 5, followed by an evaluation in Chapter 6.
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“Beware of bugs in the above
code; I have only proved it
correct, not tried it.”

(Donald Ervin Knuth)

Contents
5.1 IF-MAP as Communication Protocol . . . . . . . . . . . . . . 144

5.1.1 Fulfillment of Requirements . . . . . . . . . . . . . . . . . . . . 144

5.1.2 Encapsulation of Features within IF-MAP . . . . . . . . . . . . 145

5.1.3 Mapping the CADS Architecture to IF-MAP . . . . . . . . . . 154

5.1.4 Coordination of Multiple MAP Clients . . . . . . . . . . . . . . 155

5.1.5 Further Improvements based on IF-MAP Version 2.1 . . . . . . 158

5.1.6 Alternative Mapping Approaches . . . . . . . . . . . . . . . . . 159

5.2 Software Components . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.2 MAP Server irond as Feature Provider . . . . . . . . . . . . . . 161

5.2.3 MAP Client Library ifmapj . . . . . . . . . . . . . . . . . . . . 162

5.2.4 Correlation Engine . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.5 Feature Collectors . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2.6 Feature Consumer . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3 Identified Issues and Limitations . . . . . . . . . . . . . . . . . 173

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

143



5 Implementation

In the following, a proof of concept implementation of the CADS approach is presented.
The prototype uses IF-MAP (introduced in Section 3.4) as communication protocol. First,
Section 5.1 details how the generic CADS approach presented in Chapter 4 can be realized
based on IF-MAP. Afterwards, Section 5.2 describes the software components that were
developed for the prototype implementation. In the end, Section 5.3 mentions existing
drawbacks and limitations of the prototype.

5.1 IF-MAP as Communication Protocol

The IF-MAP protocol for network security was chosen as communication protocol for the
CADS prototype implementation. It meets all requirements that were identified in Section
4.2.2. Furthermore, its original purpose is to enhance network security by enabling existing
systems and services to share data at runtime. Thus, it matches the general idea of the
CADS approach which aims to improve smartphone security in enterprise environments
by leveraging existing systems and services.
Section 5.1.1 details why IF-MAP meets the requirements demanded by a communi-

cation protocol that is used for realizing the CADS approach. Section 5.1.2 explains how
Features are mapped to the IF-MAP data model. Section 5.1.3 elaborates how the CADS
logical roles are mapped to those defined as part of the IF-MAP specification. For the
prototype implementation, version 2.0 of the IF-MAP protocol is used [163]. An update of
the core protocol to version 2.1 [20] published in May 2012 introduced some improvements
that are considered in Section 5.1.5.

5.1.1 Fulfillment of Requirements

As already stated, the IF-MAP protocol fulfills all requirements that were mentioned in
Section 4.2.2. This is detailed in the following.

Request-Response Interaction IF-MAP uses SOAP via HTTPS and thus follows the
request-response paradigm.

Proper Transmission of Features IF-MAP is based on XML [164]. Thus, it allows proper
encapsulation of Features as long as they are represented as XML documents. In
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order to distinguish Features for numerous smartphones, IF-MAP identifiers can be
used (as detailed in Section 5.1.2).

Support for Remote Procedure Calls IF-MAP is based on remote procedure calls. Its
publish-search-subscribe operations can be used to store, retrieve or delete Features.

Secure As the use of HTTPS is mandatory for any IF-MAP communication, the pro-
tocol is sufficiently secure regarding the integrity and confidentiality of Features in
transit. However, the level of security varies depending on which method is used to
authenticate MAP clients to the MAP server (HTTP basic authentication versus
certificate-based authentication).

Efficient and Scalable The protocol is intended to be used in large IT infrastructures to
enable communication of thousands of network devices, with thousands of messages
communicated per second. Thus, it is designed to be able to scale in such environ-
ments. However, the actual performance depends on the concrete implementation
of the protocol.

It is important to note that other protocols and techniques could have been used to
build the prototype of CADS as well. This includes complex event processing Engines
like Esper1 or message oriented middlewares based on the Advanced Message Queuing
Protocol (AMQP)2.

5.1.2 Encapsulation of Features within IF-MAP

In order to transmit Features via the IF-MAP protocol, they need to be properly mapped
to the IF-MAP data model. That is, the core components Category and Feature as well
Context Parameters must be expressed as IF-MAP data types. As the other components
of the CADS conceptual model are only used locally by the Correlation Engine, they do
not need to be expressed by means of IF-MAP. As explained in Section 3.4, the IF-MAP
data model is composed of identifiers, links and metadata3 objects that are organized as
a graph structure. The structure of identifiers and metadata is specified via XML Schema
documents [165].

1http://esper.codehaus.org/
2http://www.amqp.org/
3The meaning of the term metadata with respect to IF-MAP was explained in Section 3.4.
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General Extensibility of IF-MAP

IF-MAP provides several mechanisms to extend and customize both the base protocol and
the metadata types that are transmitted. However, changes to the base protocol should
be omitted by third parties in order to ensure interoperability among arbitrary IF-MAP
implementations. Basically, there are two ways that can be used to map the components
of the CADS conceptual model to IF-MAP:

1. identity identifiers of type “other”. IF-MAP version 2.0 supports five distinct types
of identifiers. One of them is the identity identifier that is primarily used to rep-
resent users who are connected to a network. However, its XML Schema definition
(depicted in Listing 5.1) includes two attributes that can be leveraged to encapsu-
late arbitrary data within such an identifier: type and other-type-definition.
The type attribute must be set to “other”. The other-type-definition attribute
must be set to a non-empty string that unambiguously identifies the type of the
identity identifier. Its value must take one of two forms:

a) “Name”: In case the type is defined by the TCG, it is identified by specifying
an appropriate name.

b) “Vendor-ID:Name”: In case the type is defined by another, third party (referred
to as vendor), the name of the type is prefixed by a so-called Vendor-ID. It
is a Structure of Management Information (SMI) Private Enterprise Number
[166, 167] owned by the respective vendor that defines the type.

These two attributes provide the semantics to interpret the value of the name at-
tribute of the identifier.

1 <xsd : complexType name=" Ident ityType ">
2 <xsd : a t t r i b u t e name=" admin i s t ra t ive−domain " type=" xsd : s t r i n g "/>
3 <xsd : a t t r i b u t e name="name" type=" xsd : s t r i n g " use=" r equ i r ed "/>
4 <xsd : a t t r i b u t e name=" type " use=" r equ i r ed ">
5 <xsd : simpleType>
6 <xsd : r e s t r i c t i o n base=" xsd : s t r i n g ">
7 <xsd : enumeration value=" aik−name"/>
8 <xsd : enumeration value=" d i s t i ngu i shed−name"/>
9 <xsd : enumeration value=" dns−name"/>

10 <xsd : enumeration value=" email−address "/>
11 <xsd : enumeration value=" kerberos−p r i n c i p a l "/>
12 <xsd : enumeration value=" username "/>
13 <xsd : enumeration value=" s ip−u r i "/>
14 <xsd : enumeration value=" t e l−u r i "/>
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15 <xsd : enumeration value=" hip−h i t "/>
16 <xsd : enumeration value=" other "/>
17 </xsd : r e s t r i c t i o n >
18 </xsd : simpleType>
19 </xsd : a t t r i bu t e >
20 <xsd : a t t r i b u t e name=" other−type−d e f i n i t i o n " type=" xsd : s t r i n g "/>
21 </xsd : complexType>

Listing 5.1: IF-MAP XML Schema for identity identifier [163].

2. Vendor-specific Metadata. New types of metadata can be added by specifying ap-
propriate complex types in XML Schema documents. There are only two require-
ments that must be met: (1) the new complex types must be specified within
an XML namespace which is different from the default namespace used by the
TCG and (2) each newly defined complex type must reference one of two attribute
groups that are defined by the TCG (either singleValueMetadataAttributes or
multiValueMetadataAttributes).

A third way that was considered in the first place was to extend existing metadata
definitions by adding new attributes to an attribute group that is defined as part of the
IF-MAP base protocol. The XML Schema that defines the respective attribute group is
depicted in Listing 5.2.

1 <xsd : attr ibuteGroup name=" metadataAttr ibutes ">
2 <xsd : a t t r i b u t e name=" ifmap−pub l i she r−id "/>
3 <xsd : a t t r i b u t e name=" ifmap−timestamp " type=" xsd : dateTime "/>
4 <xsd : anyAttr ibute/>
5 </xsd : attr ibuteGroup>

Listing 5.2: IF-MAP metadata attribute group [163].

The element <xsd:anyAttribute/> allows to add any number of additional attributes
to the group. However, the specification explicitly denies to use this element for adding
vendor-specific attributes [20] p.48. Thus, adding attributes to standard metadata types
is not an option to map Features, Categories or Context Parameters to the IF-MAP data
model. Instead, they must be mapped by either using identity identifiers of type “other”
or by defining new, vendor-specific metadata.
The mapping approach that is presented in the following uses both of these two alterna-

tives. Features are mapped to new metadata types defined by an XML Schema document.
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Context Parameters are modeled as a new attribute group which is referenced by the com-
plex type of the Feature. Categories however are modeled by leveraging the previously
introduced identity identifier. Any newly defined metadata types use the namespaces
depicted in Listing 5.3.

1 <?xml ve r s i on=" 1 .0 " ?>
2 <xsd : schema
3 xmlns : xsd=" http ://www.w3 . org /2001/XMLSchema"
4 xmlns : ifmap=" http ://www. trustedcomputinggroup . org /2010/IFMAP/2 "
5 xmlns=" http ://www. esukom . de /2012/ ifmap−metadata/1 "
6 targetNamespace=" http ://www. esukom . de /2012/ ifmap−metadata/1 ">

Listing 5.3: Target namespace declaration for CADS components.

Mapping of Context Parameters

Context Parameters are mapped to a new XML Schema attribute group (depicted in
Listing 5.4). In the example, only the three Context Parameters that were introduced in
Section 4.4 are included. However, further attributes can be added if necessary due to the
xsd:anyAttribute element.

1 <xsd : attr ibuteGroup name=" contextParameters ">
2 <xsd : a t t r i b u t e name=" ctxp−timestamp " type=" xsd : dateTime "/>
3 <xsd : a t t r i b u t e name=" ctxp−l ong i tude " type=" xsd : s t r i n g "/>
4 <xsd : a t t r i b u t e name=" ctxp−l a t i t u d e " type=" xsd : s t r i n g "/>
5 <xsd : anyAttr ibute namespace="##targetNamespace "/>
6 </xsd : attr ibuteGroup>

Listing 5.4: Mapping of Context Parameters to XML attributes.

Mapping of Features

The complex type that is used to encapsulate a Feature is depicted in Listing 5.5. It
defines three elements to render the Features id, its type and its value. Furthermore, it
makes use of two attribute groups. The first one is used to include Context Parameters
as defined in the previous section. The second one is used to include further attributes
that are necessary for any IF-MAP metadata type. Note that the description of a Feature
is not mapped to the XML complex type. The description provides semantic background
regarding the Feature for human beings and is defined as part of the domain-specific

148



5.1 IF-MAP as Communication Protocol

instance. However, it is not intended to be processed by any logical role of the CADS
approach at runtime. Thus, it is omitted in the complex type definition.

1 <xsd : element name=" f e a tu r e ">
2 <xsd : complexType>
3 <xsd : sequence>
4 <xsd : element name=" id " type=" xsd : s t r i n g "/>
5 <xsd : element name=" type ">
6 <xsd : simpleType>
7 <xsd : r e s t r i c t i o n base=" xsd : s t r i n g ">
8 <xsd : enumeration value=" quan t i t i v e "/>
9 <xsd : enumeration value=" q u a l i f i e d "/>

10 <xsd : enumeration value=" a rb i t r a r y "/>
11 </xsd : r e s t r i c t i o n >
12 </xsd : simpleType>
13 </xsd : element>
14 <xsd : element name=" value " type=" xsd : s t r i n g "/>
15 </xsd : sequence>
16 <xsd : attr ibuteGroup r e f=" contextParameters "/>
17 <xsd : attr ibuteGroup r e f=" ifmap : mult iValueMetadataAttr ibutes "/>
18 </xsd : complexType>
19 </xsd : element>

Listing 5.5: Metadata to represent a Feature.

Basically, this complex type definition is already sufficient to use Features within IF-
MAP. That is, Features could be published by a MAP client to the MAP server, either
attaching it to an identifier or on a link between two identifiers. However, one part that is
still missing is the mapping of the hierarchical structure defined by means of Categories.

Mapping of Categories

In the CADS conceptual model, Categories are used to hierarchically structure the set of
defined Features. That is, they do not actually contain values that have been measured.
Instead, they provide the semantic background for Features. The relationship between IF-
MAP identifiers and metadata is similar: identifiers are the structuring, rather constant
components, whereas metadata components are used to render data that was obtained at
runtime and that frequently changes.
Thus, it is reasonable to map Categories to IF-MAP identifiers. More precisely, an

identity identifier of type “other” is used. The attribute other-type-definition is set
to the value “32939:category”. The number “32939” is the SMI Private Enterprise Number
of the Hochschule Hannover.
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It is important to note that two requirements must be considered by this mapping.
First, Categories can have a cardinality of either 1 or N . That is, any Feature that
is contained by a Category whose cardinality is N can have N instances at the same
time. These instances must be distinguishable within IF-MAP. Second, Features will be
collected for various smartphones simultaneously. That is, Feature instances must also be
distinguishable according to the smartphone they belong to.
In order to address both requirements, the attributes of an identity identifier that

represents a Category are set as follows:

• The attribute name is set to the fully qualified identifier of the Category instance
(as defined in Section 4.1.1).

• The attribute administrative-domain is set to a value that unambiguously identi-
fies the smartphone to which the respective Features and Categories belong. It can
either be chosen randomly or derived from information that is suitable to identify
a smartphone like its International Mobile Station Equipment Identity (IMEI).

An example of an identity identifier that represents a Category instance of the CADS
conceptual model is depicted in Listing 5.6. The identifier generally refers to the category
smartphone.android.app.permission as defined in Section 4.4. As both app and permission
are of cardinality N , appropriate instance counters are attached to them. The counters
are separated by a colon from the name of the respective Category. Thus, the example
refers to the Category instance that represents the 6th permission of the 4th app on the
smartphone which is identified by the string “f498ad8bdcc209dd”.

1 <id en t i t y type=" other "
2 other−type−d e f i n i t i o n=" 32939 : category "
3 <!−− unique id o f smartphone −−>
4 admin i s t ra t ive−domain=" f498ad8bdcc209dd "
5 <!−− f u l l y q u a l i f i e d i d e n t i f i e r o f category −−>
6 name=" smartphone . android . app : 3 . permis s ion : 5 " />

Listing 5.6: Mapping of Categories to IF-MAP identifiers.

Thus, Features that are expressed as IF-MAP metadata (leveraging the complex type
definition from above) can be attached to the identity identifier that represents their
respective Category. However, the tree structure that is defined by the hierarchy of Cate-
gories cannot be maintained yet within IF-MAP. Although the hierarchy is encapsulated
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as part of the name attribute, there is no way to associate two identity identifiers in or-
der to express their sub-category relationship. This makes traversing the IF-MAP graph
hard.
In order to address this issue, another new metadata type is introduced. Its only purpose

is to express the sub-category relationship between two Categories within IF-MAP. That
is, the metadata is published on a link between two identity identifiers that represent a
Category. Its complex type definition is depicted in Listing 5.7.

1 <xsd : element name=" subcategory−o f ">
2 <xsd : complexType>
3 <xsd : attr ibuteGroup r e f=" ifmap : s ing l eValueMetadataAttr ibutes "/>
4 </xsd : complexType>
5 </xsd : element>

Listing 5.7: Metadata to model sub-category relationship.

Distinguishing Features from Multiple Smartphones in IF-MAP

As already stated, numerous Features will be collected from multiple smartphones at the
same time by multiple Feature Collectors. In addition to be able to distinguish multiple
instances of the same Features, collected Features need also be distinguishable on a per
smartphone basis.
This is achieved by leveraging the standard device identifier of the IF-MAP data model.

For each smartphone that is used in an IT infrastructure, at least one such device identi-
fier is expected to be present. In order to associate this device identifier with the identity
identifiers for the Categories (and thus with the Feature metadata that is attached to
them), another new metadata type is necessary. Its structure is defined in Listing 5.8. It
is intended to be placed on a link between the smartphone’s device identifier and any
identifier that represents a top-level Category. In the exemplary domain-specific mapping
presented in Section 4.4, there are four such Categories (vulnerability, ids, smartphone,
correlationresult).

1 <xsd : element name=" device−category ">
2 <xsd : complexType>
3 <xsd : attr ibuteGroup r e f=" ifmap : s ing l eValueMetadataAttr ibutes "/>
4 </xsd : complexType>
5 </xsd : element>

Listing 5.8: Metadata to associate a device identifier with a Category identifier.
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Example for an IF-MAP Graph

Figure 5.1 depicts a sample IF-MAP graph that was created based on the mapping de-
scribed above. Standard identifiers and metadata types that are defined by the IF-MAP
specifications are depicted in yellow tones. Although the concrete structure depends on
the actual MAP clients that are used within an infrastructure, the Figure depicts an
example that is common.

Standard identifiers and standard metadata are primarily used to express which end-
points are currently connected to a network. In the example, two smartphones have es-
tablished a connection to the network of the IT infrastructure. Each smartphone is rep-
resented by a device identifier (“smartphone-23b3” and “smartphone-af0f”). The con-
nections that they have established are represented by access-request identifiers. The
relationship between a smartphone’s device identifier and its access-request identifier
is expressed by means of access-request-device metadata that is placed on the link be-
tween them. The graph further depicts that both connections have been authenticated by
another device referred to as “pdp”. This device fulfills the role of a Policy Decision Point
(PDP) as defined by the IF-MAP specification (as explained in Section 3.4). A single PDP
is responsible for handling connection requests of multiple endpoints. Normally, the PDP
authenticates the user and optionally the device before access to the protected network
is granted. In the following, the IF-MAP graph for the smartphone “smartphone-23b3” is
detailed. The subgraph for the second (or any other) smartphone looks similar.

The standard metadata is used to render basic information about the connected smart-
phone. The example graph depicts which IP address is currently in use, the smartphone’s
MAC address and the user that was authenticated while the connection was established
(in this case named “bob”). The set of standard metadata discussed so far is usually
published by the PDP himself.

Identifiers that are used to represent Categories and newly defined metadata types are
depicted in blue tones. All Features for a single smartphone are contained within one single
subtree of the IF-MAP graph. The root node of this subtree is defined by the smartphone’s
device identifier. Any identity identifier that represents a top-level Category is associ-
ated to the smartphone’s device identifier by a link that has device-category metadata
attached to it. Going further, any identity identifier that represents a sub Category is
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Figure 5.1: IF-MAP graph with CADS specific metadata and identifiers. Note that the
value of IF-MAP identifiers that represent Categories is set to the fully quali-
fied category ID. However, only the short form of the Category IDs is depicted
in the sample graph in order to ensure readability.
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associated to its parent Category by a link that has subcategory-of metadata attached.
Feature metadata can be published to any identity identifier that represents a Category.
It must be ensured that the attribute administrative-domain is set properly for each

identity identifier that is used to represent a Category. More precisely, its value must be
set to the same value that is used by the device identifier of the respective smartphone.
Referring to the example graph, each blue identifier has set its administrative-domain
attribute to the value “smartphone-23b3”.
Note that the example only depicts a small extract of an IF-MAP graph in order to

emphasize how the CADS components are encapsulated within IF-MAP. For example, it
only depicts very few Features for two apps on the respective smartphone. Features that
might have been created by the Correlation Engine are omitted as well.

5.1.3 Mapping the CADS Architecture to IF-MAP

So far, the necessary parts of the CADS conceptual model have been mapped to the
IF-MAP data model. In the next step, the logical roles of CADS are mapped to those
defined in the IF-MAP specification. That is, it is defined if a logical role of the CADS
architecture is either realized by implementing a MAP client (MAPC) or a MAP server
(MAPS).
For most of the logical roles, this mapping is straightforward. Feature Collectors and

Feature Consumers are mapped to the MAP client role, whereas the Feature Provider
is mapped to the MAP server role. A MAP server provides all the functionality that is
required by a Feature Provider, which is to store, retrieve and delete Features. Storage
and deletion of Features can be performed by leveraging the IF-MAP publish opera-
tion. Retrieval of Features can be performed by using IF-MAP search, subscribe and poll
operations. Feature Collectors that act as MAP clients can marshal measured Features
according to the IF-MAP data model (as described above) and use the IF-MAP publish
operation to transmit them to the MAP server. Feature Consumers on the other hand
can leverage IF-MAP search, subscribe and poll operations to retrieve measured Features
from the MAP server, unmarshal them and process them.
To answer the question how the Correlation Engine should be mapped to the IF-MAP

roles is not that straightforward. There are basically two options: (1) to implement it as an
extension within the MAP server and (2) to implement it as another MAP client. Both
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of these alternatives have their own benefits and drawbacks. Realizing the Correlation
Engine as an extension to the MAP server might sound as the most reasonable approach.
As the MAP server handles all measured Features of all smartphones, a module that
implements the Correlation Engine could easily have access to them as well. There would
be no overhead in terms of network communication between the Correlation Engine and
the MAP server. The Correlation Engine could work based on the internal data structures
that are used by the MAP server to represent measured Features.
However, extending a MAP server by a Correlation Engine module also introduces

some drawbacks. First, the implementation would be specific to a single MAP server.
That is, the module that realizes the Correlation Engine would not be able to work with
arbitrary MAP servers (despite the fact that IF-MAP was chosen as protocol to ensure
interoperability). Second, the Correlation Engine is required to create, change or delete
new/existing Features when Rules within their Policy fire. If it is realized as module, this
would require to “spawn” metadata within the MAP server. That is, metadata is changed
within the MAP server without the involvement of a MAP client. Although technically
feasible, it violates the operational model of the IF-MAP protocol.
In order to ensure compliance with the IF-MAP protocol and interoperability among

the implemented software components, the Correlation Engine is realized as another MAP
client. The drawbacks that are introduced by this approach are taken into account: namely
the processing overhead for marshalling and unmarshalling of Features and the latency
introduced by transmitting the marshalled Features over the network between the MAP
server and the Correlation Engine acting as MAP client. Figure 5.2 depicts the CADS
architecture with the adoption of IF-MAP roles.

5.1.4 Coordination of Multiple MAP Clients

Organizing Features for a smartphone under a single device identifier introduces some
challenges regarding the coordination of multiple MAP clients. When MAP clients that
act as Feature Collectors are distributed in the respective IT infrastructure are involved, it
cannot generally be assumed that all of them have access to information that is suitable for
unambiguously identifying a smartphone. For example, the IMEI can be used by a Feature
Collector that runs on the smartphone itself. However, it cannot be used if the Feature
Collector resides on a service in the IT infrastructure (like an IDS or a vulnerability
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Figure 5.2: CADS architecture with IF-MAP roles.

scanner). That introduces the question how arbitrary Feature Collectors can manage to
publish Features under a single device identifier.
This problem can be tackled by leveraging the inherent capabilities of the IF-MAP

protocol. When an endpoint (whether it is a smartphone or not) connects to the network,
it is assumed that a Policy Decision Point (PDP) publishes a minimum set of standard
metadata to the MAP server [154]. This includes

• access-request-device metadata to associate the access-request with the end-
point’s device identifier,

• authenticated-by metadata to associate the access-request identifier with the
device identifier that represents the PDP,

• access-request-mac and access-request-ip metadata to associate the access-re-
quest with the endpoint’s mac-address and ip-address identifiers if available,

• optionally, authenticated-as metadata in order to associate the access-request
with the identity identifier that represents the authenticated user of the endpoint.

Thus, a PDP is responsible for creating an appropriate device identifier for each connected
smartphone. As already stated, the value of the device identifier may be chosen randomly
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or derived from information that identifies a smartphone (if such information is available
to the PDP). In any case, other Feature Collectors can search the IF-MAP graph in order
to find the matching device identifier for a smartphone. The only requirement is that the
Feature Collector must provide an IF-MAP identifier that represents the root of the search
query. For example, a Feature Collector that extends an IDS or a vulnerability scanner
can use the IP address of the respective device. As the ip-address identifier is associated
to the access-request identifier, which in turn is associated to the smartphone’s device
identifier, the Feature metadata can be published appropriately.

However, there may also be Feature Collectors that have no means to specify a reason-
able IF-MAP identifier as root for a search query based on the data they process. Consider
a crawler of an app store that aims to publish Features such as number of downloads and
rating for apps that are installed on a smartphone. As already stated in Section 4.4.2,
such a Feature Collector can be realized as a service that is deployed within the target IT
infrastructure. In this case, it cannot be assumed that the service knows an IP address,
MAC address or other kind of information based on the data it processes that is suitable
to specify an appropriate IF-MAP identifier for a search query. The only solution is that
such Feature Collectors need additional configuration parameters that explicitly name
IF-MAP identifiers that can be used for search queries in order to find the respective
smartphone’s device identifier. For the prototype implementation, a device identifier
that represents the PDP will be used for this purpose. That is, any Feature Collector is
at least capable of searching the IF-MAP graph with the PDP’s device identifier as root.

The same issue is also relevant for MAP clients that fulfill the role of a Feature Consumer
or the Correlation Engine. As with Feature Collectors, configuration parameters ensure
that those MAP clients can at least search the IF-MAP graph based on the device
identifier of the PDP. However, a Feature Consumer that resides on a OSI layer 3 packet
filter might as well search the IF-MAP graph based on IP addresses he has seen traffic
for. Coordination of MAP clients is a general challenge that is inherent to the IF-MAP
protocol. However, it is beyond the scope of the respective specification to define concrete
mechanisms for it.
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5.1.5 Further Improvements based on IF-MAP Version 2.1

The most recent version 2.1 of the IF-MAP protocol was published in May 2012 [20]. It
introduced the concept of extended identifiers. Previous versions were limited to five types
of identifiers. However, it turned out that numerous use cases exist that would benefit
from customizable identifier types. That is, a mechanism to add new types of identifiers
similar to the way new metadata types can be added was desired.
Extended identifiers provide the desired flexibility. Basically, new types of identifiers

can be defined by XML Schema documents. The only requirement that must be met is
that new identifiers extend the IdentifierType complex type depicted in Listing 5.9.
Otherwise, they can contain virtually any XML data.

1 <xsd : complexType name=" Id en t i f i e rType ">
2 <xsd : a t t r i b u t e name=" admin i s t ra t ive−domain " type=" xsd : s t r i n g " use=" r equ i r ed "/>
3 </xsd : complexType>

Listing 5.9: Complex type for extended identifiers in IF-MAP 2.1 [20].

Extended identifiers can be used to implement an alternative mapping of Categories.
The structure of an extended identifier that represents a Category is depicted in Listing
5.10.

1 <xsd : schema xmlns : xsd=" http ://www.w3 . org /2001/XMLSchema"
2 xmlns : base−id=" http ://www. trustedcomputinggroup . org /2012/IFMAP− IDENTIFIER/1 "
3 xmlns=" http ://www. esukom . de/extended− i d e n t i f i e r s "
4 targetNamespace=" http ://www. esukom . de/extended− i d e n t i f i e r s ">
5 <xsd : element name=" category ">
6 <xsd : complexType>
7 <xsd : complexContent>
8 <xsd : ex tens i on base=" base−id : I d en t i f i e rType ">
9 <xsd : a t t r i b u t e name=" id " type=" xsd : s t r i n g " use=" r equ i r ed "/>

10 </xsd : extens ion>
11 </xsd : complexContent>
12 </xsd : complexType>
13 </xsd : element>

Listing 5.10: Extended identifier for Categories.

It basically adds an attribute id to the base type which should be set to the fully qualified
identifier of the respective Category instance. An example identifier that represents the
same Category instance as in Listing 5.6 is depicted in Listing 5.11.

1 <category
2 <!−− unique id o f smartphone −−>

158



5.1 IF-MAP as Communication Protocol

3 admin i s t ra t ive−domain=" f498ad8bdcc209dd "
4 <!−− f u l l y q u a l i f i e d i d e n t i f i e r o f category −−>
5 id=" smartphone . android . app : 3 . permis s ion : 5 " />

Listing 5.11: Mapping of Categories to IF-MAP identifiers.

Thus, the use of extended identifiers seems to be a reasonable alternative compared
to the use of identity identifiers as described in Section 5.1.2. There should be less
overhead as the attributes specific to identity identifiers can be omitted (type and
other-type-definition). Furthermore, the element name <category> matches the pur-
pose of the identifier more appropriately. However, these benefits are not existent given
the way how the IF-MAP specification version 2.1 encapsulates extended identifiers in IF-
MAP request and response messages. In order to ensure backwards compatibility with ex-
isting implementations, they demand that extended identifiers are again encapsulated by
identity identifiers whose type is set to “other”. The other-type-definition attribute
is set to the string “extended”. Finally, the name attribute of the respective identity iden-
tifier is set to a canonicalized form of its XML data. The details of how the canonicalized
form is generated are given in the IF-MAP specification [20] Section 3.2.3.3.
Thus, the use of extended identifiers as defined by version 2.1 of the IF-MAP speci-

fication would not provide any major benefits. In fact, it would make the creation and
processing of identity identifiers that represent Categories more complex and cumber-
some. Once the IF-MAP protocol allows to use extended identifiers without the need to
encapsulate them as identity identifiers, the CADS prototype implementation should
be changed accordingly.

5.1.6 Alternative Mapping Approaches

This section presented an approach to use IF-MAP as communication protocol for the
CADS prototype implementation. Categories, Features and Context Parameters have been
mapped to the IF-MAP data model. Furthermore, the logical roles of the CADS architec-
ture have been mapped to those defined within the IF-MAP specification. Several design
decisions had to be made, such as whether the Correlation Engine should be realized as
an extension to the MAP server or as dedicated MAP client. The benefits and drawbacks
of the two alternatives were discussed.
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Even more alternatives exist considering the mapping of Categories, Features and Con-
text Parameters to the IF-MAP data model. They have not been discussed in detail. The
taken approach enables to update the values of single Feature instances at a minimum
cost in terms of traffic on the network and processing power required by the components
that implement the logical roles. An alternative that quickly comes to mind is to encapsu-
late all Features, Categories and Context Parameters within one single complex type. The
corresponding metadata could be published directly to the device identifier of a smart-
phone. This approach does not require to render the hierarchy of Categories by means
of IF-MAP identifiers. Instead, it is encapsulated within the complex type definition of
the new metadata type. However, the main drawback of this approach becomes obvious
when the value of a single Feature instance needs to be updated. As the value is encap-
sulated as part of a larger XML document instance, any other Features of the same XML
document need to be republished as well (even if their values have not changed). That
is, although the structure of the IF-MAP graph would be less complex (considering the
number of identifiers and links that are used), updating values of single Features would be
too cumbersome. It is expected that updates of single Feature values will occur frequently
(for example when the status of a smartphone’s sensors change).
The coordination of multiple MAP clients was identified as a general challenge. It is

inherent to the IF-MAP protocol. The prototype implementation of the CADS approach
tackles this challenge by means of configuration parameters that can be used to specify
IF-MAP identifiers that are used as root nodes for search queries. The use of extended
identifiers as defined by version 2.1 of the IF-MAP specification does not provide any
major benefits compared to IF-MAP version 2.0.

5.2 Software Components

This section gives an overview of the software components that were developed in order
to realize the CADS prototype based on the IF-MAP protocol for network security.

5.2.1 Background

Most of the software components that are used for the prototype implementation have
been developed by the Trust@FHH research group. Some components were exclusively
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developed for this thesis (such as the Correlation Engine “irondetect”). Others were de-
veloped as part of the group’s overall effort to study the specifications that are published
by the TCG (such as the MAP server “irond”). In order to ensure platform interoperabil-
ity, the Java programming language was chosen for development. Any component that
is presented below is available as open source software licensed under the Apache Li-
cense version 2.0 [49]. They can be downloaded from the Trust@FHH website [168], the
Trust@FHH GitHub account [169] or the website of the ESUKOM research project [21].
It should be noted that the CADS approach can be used in any IT infrastructure where

the software components that are described in the following are deployed.

5.2.2 MAP Server irond as Feature Provider

The MAP server “irond” is used to fulfill the role of the Feature Provider. irond is an
experimental MAP server that supports IF-MAP version 2.0 and 2.1. Its development
began in 2009 as part of a project of bachelor students at the University of Applied
Sciences and Arts in Hannover. irond is now updated and maintained by the Trust@FHH
research group. It is one of the first MAP servers that were officially certified by the TCG
[170] for their specification compliance and interoperability among implementations of
different vendors.
irond is written in Java. One design goal was to rely on the Java Standard Edition

(JavaSE) and to omit the use of external libraries if possible. Thus, only three dependen-
cies to external libraries exist:

• Apache Commons Codec4 primarily used for Base64 encoding and decoding,

• Apache HttpCore5 used to implement basic HTTP server functionality and

• Apache log4j6 for logging.

Further details regarding the design and implementation of irond are provided as part of
the archives that are available for download. It is important to note that any other MAP
server implementation that supports IF-MAP 2.0 could be used as Feature Provider as
well. That is, implementations from different vendors can be used in order to seamlessly

4http://commons.apache.org/codec/
5http://hc.apache.org/httpcomponents-core-ga/
6http://logging.apache.org/log4j/1.2/
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replace irond. This especially includes omapd7, another open source MAP server, as well
as commercial products from Juniper Networks8 and Infoblox9. The other software com-
ponents of the CADS prototype will not be affected by this and thus do not need to be
changed in any way.

5.2.3 MAP Client Library ifmapj

In order to ease the development of MAP clients, a general purpose library called “ifmapj”
was implemented. It is basically a port of the C++ library libifmap2c10. It provides a sim-
ple interface to communicate with IF-MAP servers. Thus, clients that are implemented
based on ifmapj do not need to handle the details of the IF-MAP protocol themselves.
In fact, in order to publish Features according to the mapping defined in Section 5.1.2,
developers only need to create appropriate Document Object Model (DOM) [171] XML
documents within their application which can then be passed as parameters to the re-
spective methods provided by the ifmapj library.
ifmapj aims to provide a lightweight, yet flexible way to develop MAP clients. Similar

to irond, its design aims to rely only on a minimum set of external libraries. More pre-
cisely, only Apache HttpCore is used in order to ease the handling of HTTP requests and
responses. ifmapj can be used on any platform that supports a Java runtime environment.
This also includes the Google Android smartphone platform. ifmapj is used for any MAP
client that is implemented as part of the CADS prototype.

5.2.4 Correlation Engine

The main contribution of the prototype implementation is the development of the Corre-
lation Engine “irondetect”. This section provides an overview of its functionality.

IF-MAP Communication

The Correlation Engine uses IF-MAP subscribe and poll operations in order to get notified
when Feature metadata is changed in the MAP server. The challenge here is that all

7http://code.google.com/p/omapd/
8http://www.juniper.net/
9http://www.infoblox.com/en/products/orchestration-server-if-map.html

10http://code.google.com/p/libifmap2c/
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Feature metadata from all smartphones that are connected to the respective network must
be obtained. For this purpose, irondetect generally holds two types of subscriptions. The
first one is used to get notified in the event that a new smartphone joins the network. In
this case, it is assumed that a PDP publishes a set of standard metadata as mentioned in
Section 5.1.4. This especially includes access-request-device metadata that associate
the access-request identifier of the smartphone with its device identifier. The essential
parts of the subscription request that is used for this purpose and its parameters are
depicted in Listing 5.12.

1 <subscr ibe>
2 <update name=’ subs c r i p t i on−pdp ’
3 max−depth=’ 2 ’
4 match−l i n k s=’ authent icated−by or access−request−dev i ce ’>
5 <device>
6 <name>pdp</name>
7 </device>
8 </update>
9 </subscr ibe>

Listing 5.12: Subscription that allows irondetect to notice smartphones that join the
network. Namespace declarations and operational attributes are omitted for
readability.

The root identifier for the subscription is specified by the <device> element. It represents
the device identifier of the PDP who is named “pdp”. As outlined in Section 5.1.4,
the actual name of the PDP is a configuration parameter that needs to be provided to
the Correlation Engine. Further parameters are specified as attributes to the <update>
element. Their meaning is as follows:

• name: A name for the subscription. This is used internally by the MAP server in
order to distinguish multiple subscriptions. It must be chosen uniquely among all
subscriptions of a single MAP client.

• max-depth: The maximum depth of the subscription is set to 2. That is, starting
from the device identifier of the PDP, only the subgraph that is composed of links
and identifiers that have a distance of at most 2 are covered by the subscription. The
distance is measured by the number of links that are traversed. That is, a max-depth
of 0 only covers the root identifier. A max-depth of 1 additionally covers all identifiers
that are associated to the root identifier by one single link. Thus, a max-depth of two
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covers identifiers that can be reached from the root identifier by traversing at most
two links. Given the set of standard metadata as depicted in Figure 5.1, the distance
between a PDP’s device identifier and the device identifiers of smartphones that
joined the network is 2.

• match-links: In order to further constrain which links (and thus which identifiers)
are covered by a subscription, the match-links attribute is used. For example,
in order to get notified about new smartphones that join the network, it is only
necessary to consider links that have either the metadata authenticated-by or
access-request-device attached. Starting from the device identifier of the PDP,
following a link that has authenticated-by metadata attached will lead to the
access-request identifier of a smartphone. From there on, following a link that has
the access-request-device metadata attached will lead to the device identifier of
the respective smartphone. The rest of the IF-MAP graph can be ignored. Thus, the
attribute is set to express such a filter. The filter syntax is detailed in the IF-MAP
specification [20].

For each smartphone that has been noticed based on the first subscription, another
new subscription is created by the Correlation Engine. This second subscription is used in
order to get notified about any changes that are made to the sub graph that contains the
respective smartphone’s Feature metadata. An example of such a subscription is depicted
in Listing 5.13.

1 <subscr ibe>
2 <update name=’ subs c r i p t i on−smartphone−23b3 ’
3 match−l i n k s=’ device−category or subcategory−o f ’>
4 <device>
5 <name>smartphone−23b3</name>
6 </device>
7 </update>
8 </subscr ibe>

Listing 5.13: Subscription that covers Feature metadata for a single smartphone.
Namespace declarations and operational attributes are omitted for
readability.

Three major differences compared to the first subscription are important:

• The root identifier of the subscription is the device identifier of the smartphone.
This identifier was noticed thanks to the first subscription.
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• A maximum depth is not given.

• The match-links attribute is set in such a way that only links who have either
device-category or subcategory-of metadata attached are considered by the
subscription.

Thus, the subscription covers the complete sub graph that contains the Feature metadata
for a single smartphone. Referring to Figure 5.1, this is the sub graph that is depicted
in blue tones, with the device identifier for the smartphone “smartphone-23b3” as root
identifier.
In order to receive changes that affect one of the subscriptions as soon as possible,

irondetect ensures that there is always a blocking poll operation present. This is also
referred to as a pending poll. For this purpose, irondetect establishes an ARC to the
MAP server and issues a poll. If it receives a response on a pending poll, the data that is
contained in the response is forwarded internally for further processing. Immediately after
that, another request that contains a poll operation is issued via the ARC. Thus, changes
of the IF-MAP graph that match any of the subscriptions created by the Correlation
Engine are directly received.
Each time the results of a poll operation are received, the Policy of the Correlation

Engine is evaluated as described in Section 4.3.1. The Correlation Engine can easily
dispatch to which smartphone the received Feature metadata belongs to. This is possible
as the response contains the name of the subscriptions that have caused the results. For
example, consider that Feature metadata changes for the smartphone “smartphone-23b3”.
As the Correlation Engine holds a subscription for the respective device identifier, it will
get notified about the changes. All received changes will be labeled according to the
corresponding subscription, in this case “subscription-smartphone-23b3”.
Note that instead of using the subscribe/poll mechanisms, the Correlation Engine could

also make use of search operations. Analog to the approach above, one search is responsi-
ble for finding device identifiers of new smartphones, whereas the second type of search
operations is used to retrieve the Feature metadata for a single smartphone. Although this
approach would generally work as well, it has a major drawback. The responses to search
operations would always include the complete set of Feature metadata that is present in
the IF-MAP graph for a specific smartphone. That is, even Feature metadata that has not
been changed between two subsequently issued search operations would be encapsulated
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in the respective response. In contrast to that, the subscribe/poll approach only commu-
nicates changes of Feature metadata between the MAP server and the Correlation Engine.
If there are no changes, the poll operation blocks (that is the poll is pending). Since only
changes of Feature metadata are communicated, the Correlation Engine maintains its own
history of Feature metadata that it has received.

Policy Parser

The prototype implementation of irondetect supports to parse a basic Policy that follows
the structure as defined in Section 4.1.5 and the example given in Section 4.4.2. That is,
it is composed of IF-THEN Rules. The Condition of each Rule is formulated based on Sig-
natures and Anomalies. Actions are performed for each Rule that fires. The parser for the
Policy was generated by using the Java Compiler Compiler (JavaCC)11. The specification
for the grammar of the Policy is given in Listing A.1.
Note that the Policy language was designed in order to fulfill the basic requirements

for the prototype implementation. That is, simple rules should be expressed that work
based on Signatures and Anomalies. However, the language that is used to specify the
Policy for irondetect was not the main focus of the prototype implementation. During the
course of the development, the grammar for the Policy was subsequently extended in oder
to provide the required functionality. It might be beneficial to revise the policy language
in the future in order to improve its expressiveness and usability. Concrete examples for
policies that can be parsed by irondetect will be given as part of the evaluation of the
CADS approach in Chapter 6.

Supported Anomaly Detection Techniques

The CADS approach demands that arbitrary anomaly detection techniques can be used
to detect abnormal behavior. Thus, irondetect supports a plug-in mechanism for anomaly
detection techniques. Implementations of anomaly detection techniques must be provided
as Java Archives (JAR files). The archive must contain at least one class that implements
the Procedureable interface as it is defined by irondetect. Otherwise, it is ignored.
At startup, irondetect scans a predefined folder for appropriate JAR files. Each class

that implements the respective interface is loaded as a Procedure. Thus it can be used
11http://javacc.java.net/
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within irondetect’s policy in order to express hints and anomalies. In order to identify a
certain Procedure, the fully qualified name of the class that implements the Procedureable
interface is used. The interface basically defines methods that allow (1) to load the con-
figuration for a Procedure, (2) to train the Procedure in order to learn the profile for a
smartphone, (3) to calculate the result of a Procedure during testing mode and (4) to
tear down a Procedure when irondetect is terminated.
The prototype implementation of irondetect provides a set of Procedures that work

based on simple mathematical statistics. They are implemented based on the Apache
Commons Math library12. The Procedures allow to calculate the arithmetic mean, the
variance and the standard deviation of quantitative Features. Furthermore, one Proce-
dure supports to employ a simple linear regression [172] based on quantitative Features.
The result of the Procedure is calculated based on the slope of the fitted line. The Proce-
dure will be used during the evaluation in order to detect excessive outgoing traffic that
originates from a smartphone.
In general, all of the implemented Procedures calculate a value based on the available

Features during testing mode. The value is then compared against an expected value. The
expected value has either been trained or was predefined. In order to obtain a Procedure
result (and thus a result for the respective Hint that uses the Procedure), an output
mapping must be performed as described in Section 4.1.4. That is, based on the calculated
and the expected value, a score in the range of [−1, 1] must be returned. The prototype
implementation allows to flexibly define how this mapping should be done. The default
output mapping works based on two predefined values for the tolerance and the threshold:

• If the distance of the calculated and the expected value is less than the tolerance, a
score of 0 is returned.

• If the distance of the calculated value is greater than the tolerance but lesser than
the threshold, a score of 0.5 is returned.

• If the distance of the calculated value is greater than the threshold, a score of 1.0 is
returned.

Note that this basic output mapping can be customized if necessary.
12http://commons.apache.org/math/
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Training and Testing Mode

The prototype implementation also supports two operating modes for training and testing
as defined in Section 4.3.4. Training data can be provided to irondetect in two ways: (1)
via the Feature Provider and (2) via db4o13 database files that contain a set of previously
measured Features. In case the database files are used, a single file must be provided
for each smartphone. Based on the included Features, the Correlation Engine can create
smartphone-specific profiles. The option to provide training data in the form of database
files was implemented in order to allow easy collection of Features on smartphones, even
when they are not connected to the respective IT infrastructure, and thus cannot publish
the collected Features to the Feature provider.
The actual details on how the training is performed are specific for each Procedure.

For example, the mean Procedure simply calculates the mean over all Features that are
available for training. On the other hand, the Procedure that implements the simple linear
regression does not process all available Features at once for training. Instead, it sorts the
available Features based on their timestamp and sequentially performs a linear regression
for a subset of the Features. The default configuration is to use 10 Features for each linear
regression step. For each linear regression step, the calculated slope is recorded. After all
regression steps have been performed, the average of all calculated slope results is stored
as trained value for the respective Procedure.

5.2.5 Feature Collectors

For the prototype implementation, three kinds of Feature Collectors have been developed:

1. Feature Collectors that are deployed on smartphones with the Google Android op-
erating system,

2. a Feature Collector that extends the open source vulnerability scanner OpenVAS
and

3. a collection of command line tools that is capable of publishing arbitrary Feature
metadata based on command line arguments.

They are detailed in the following.
13http://en.wikipedia.org/wiki/Db4o
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Feature Collectors for Google Android

Most of the Features that are used within the prototype implementation are directly col-
lected on the smartphones themselves. Thus, Feature Collectors that can be deployed on
smartphones are necessary. The Google Android platform was chosen for development as
(1) it is the predominant platform for modern smartphones and (2) the Android Software
Development Kit14 is freely available. The Feature Collectors are implemented as ordinary
apps for Google Android. Thus, no modifications to the smartphone platform are neces-
sary. Two separate Feature Collectors have been developed for the Android platform: one
that is used to collect Features during the testing phase and another one that is used to
collect Features for the training phase. Although both Feature Collectors share similar
functionality, there are some differences that will be mentioned here.

Feature Collector for the Testing Phase The Feature Collector that is used to collect
Features during the testing phase was developed in collaboration with partners of the
ESUKOM research project [21], especially with the DECOIT GmbH. An except of the set
of Features that can be collected with it is depicted in Table 5.1. It is a subset of Features
that were defined as part of the exemplary domain instance derivation listed in Table
A.2. The focus of the implementation was to include Features that are most important in
order to address the scenarios defined in Section 2.2. Once started, the app runs in the
background and continuously measures the respective Features.

Table 5.1: A list of Features and Categories that are collected by the Feature Collector for Google Android.
Category/Feature Description
smartphone Top level Category for smartphone Features
ContextPing Used to get updated Context Parameters
smartphone.system Low level Features of the smartphone
MacAddress MAC address of the WiFi interface
IpAddress IP address of the interface used to access the Internet
Imei The smartphone’s IMEI
smartphone.android Category for Android specific Features
KernelVersion The version of the Linux kernel
FirmwareVersion The version of Android
smartphone.android.app Category that includes Features of an Android app

14http://developer.android.com/sdk/index.html
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Category/Feature Description
Name The name of the app
Installer The app store it was installed from
VersionName A string value that represents the release version of the appli-

cation code
VersionCode An integer value that represents the version of the application

code
IsRunning Indicates whether the app is running or not
smartphone.android.app.permission Category to encapsulate Features that describe an app’s per-

missions
Requested A permission that was requested by the app
smartphone.sensor.camera Category for Features that describe the smartphone’s camera
IsUsed Indicates that the camera is currently in use by an app
smartphone.communication.ip Category that includes Feature to describe the traffic that is

received and transmitted
Rx3g Traffic received via 3G
Tx3g Traffic transmitted via 3G
RxOther Traffic received via Wifi (or other interfaces)
TxOther Traffic transmitted via Wifi (or other interfaces)
smartphone.system.battery Category that includes Features to describe the battery status

of the smartphone
Level Battery level in percent

Features are transmitted to the Feature Provider via IF-MAP. Several aspects of the
Feature Collector can be configured within the app. This includes the set of Features
that actually should be collected and the interval at which periodic updates are sent to
the Feature Provider. The configuration parameters can be used to reduce the amount of
traffic that is generated by the Feature Collector. By default, the collected Features are
published to a device identifier which is derived from the smartphone’s IMEI.

Feature Collector for the Training Phase Features that are used as input for the
Correlation Engine in order to perform a training are collected with another app: the
FHH Device Analyzer. The development started as part of a master’s thesis [173] and is
now maintained by the Trust@FHH research group.
The FHH Device Analyzer does not make use of the IF-MAP protocol. Instead, it stores

collected Features in db4o database files. It is an exception compared to any other Feature
Collector. The training data should be collected over a potentially long period of time
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(several weeks). For this purpose, it is not necessary to transmit the collected Features
immediately to the Feature Provider, respectively the MAP server. Instead, the set of
Features can be provided at once when the collection of training data is finished.

The FHH Device Analyzer allows to capture all Features of the Category smartphone
and its sub Categories as depicted in Table A.2, excluding those that can only be ob-
tained by crawling the Google Play app store15. In order to unambiguously identify the
smartphone to which the collected Features belong to, an ID is derived from its IMEI.
The algorithm is the same as the one that is used by the other Feature Collector for
Android. Thus, Features that are obtained for training and those that are obtained dur-
ing testing mode can be mapped by the Correlation Engine whether they belong to the
same smartphone or not. The database files are sent to a remote server located in the
infrastructure of the Hochschule Hannover. From there, they can be copied to a location
that is accessible by the Correlation Engine. The user of the smartphone has to confirm
that it wishes to share the collected data. Further details on the app can be found at the
official project website [174].

Thus, there are two separate Feature Collectors for Google Android, each of them
having a different purpose. However, they share similar functionality, especially regarding
the code that measures Features on Android smartphones. Merging the functionality of
both Feature Collectors into a single app is a subject of future work.

Feature Collector for OpenVAS

In order to demonstrate the capability to integrate existing security services, a Feature
Collector for the OpenVAS vulnerability scanner was developed called “ironvas”. The
implementation began as part of a bachelor thesis [175] and is now maintained by the
Trust@FHH group. ironvas is capable of fetching the vulnerability reports that are stored
in an OpenVAS server, maps them to appropriate Feature metadata and publishes them
to the Feature Provider. That is, the latest results of vulnerability scans are reflected
as Features within the Feature Provider. As each vulnerability report contains the IP
address at which the vulnerability was detected, the correct device identifier to which the

15These Features are: GooglePlayCategory, Rating and Downloads.
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respective Feature metadata must be published to can be obtained16. Table 5.2 highlights
the Features that can be collected for each report that is stored on the OpenVAS server.

Table 5.2: A list of Features that are collected by the Feature Collector ironvas.
Category/Feature Description
vulnerability Category for vulnerability scan results from OpenVAS
Name The name of the Network Vulnerability Test (NVT)17 that was performed
Port The port at which the vulnerability was detected
CvssBase The CVSS18 base score that was defined for the vulnerability. Ranges

from 0 to 10.
Threat The threat level of the vulnerability as determined by OpenVAS
CveIdentifier The CVE19 number that identifies the vulnerability

The integration of OpenVAS allows to include information about the amount of known
vulnerabilities when reasoning about the security status of smartphones. Further details
on the configuration of ironvas can be found at the project documentation website [176].

General Purpose Feature Collector based on Command Line Tools

The third Feature Collector that was developed consists of a set of command line tools
referred to as “ifmapcli”. They allow to script the behavior of other security services (like
an IDS or a NAC solution) without adding the complexity to integrate even more existing
software components. There are basically three kinds of commands supported by ifmapcli:
(1) commands that allow to publish IF-MAP standard metadata to a MAP server, (2)
commands that allow to publish Feature metadata and (3) commands that allow to search
and subscribe for metadata.
ifmapcli will be used in the remainder of this thesis for two purposes: (1) to simulate a

PDP that publishes standard IF-MAP metadata for smartphones that access the network
and (2) to simulate an IDS that can publish Feature metadata of the Category ids. All
Features that have been defined for the ids Category are listed in Table 5.3.
16Starting a search from the ip-address identifier with depth 2 following links that have either

access-request-ip or access-request-device metadata attached will lead to the smartphone’s
device identifier.

17http://www.openvas.org/openvas-nvt-feed.html
18https://nvd.nist.gov/cvss.cfm
19http://cve.mitre.org/
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Table 5.3: List of Features of the Category ids (derived from [154]).
Category/Feature Description
ids Category that encapsulates Features from an IDS
EventType Type of an event
EventName Name of an event
EventSource Source of the event
EventThreat Threat level that is associated with the event
EventConfidence Confidence of the IDS that the event occurred
EventImpact Impact of the event
HighTraffic Special event that indicates that there was a high amount of

traffic

5.2.6 Feature Consumer

One generic Feature Consumer was developed as part of the prototype implementation.
It is referred to as “ironmonitor”. It provides means that allow the Correlation Engine to
trigger the execution of arbitrary commands on any system that has this respective soft-
ware component installed. ironmonitor includes basic functionality to issue subscriptions
based on single device identifiers that represent smartphones. The subscription can be
configured to match any type of Category and Feature metadata.
In the remainder of this thesis, ironmonitor will be used to process Features that have

been created by the Correlation Engine. That is, Features of the Category correlationresult.
Within the prototype implementation, this is used to invoke the iptables command in or-
der to adjust the configuration of a Linux-based firewall depending on the results of the
Correlation Engine.

5.3 Identified Issues and Limitations

During the course of the prototype implementation, some limitations and issues were
encountered. They are briefly mentioned in the following.
First, ensuring the consistency of the identifiers of Features and Categories was cum-

bersome. This became especially obvious during the parallel development of the Feature
Collectors for Android. Often, Features and Categories with the same semantics were
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named slightly differently (for example MAC vs. MacAddress). That is, implementers of
the CADS approach should employ consistency checks of the defined set of Features and
Categories on a regular basis.
Second, the effort that is necessary to coordinate multiple MAP clients should not

be underestimated. For the CADS prototype, this is achieved by leveraging the IMEI
of smartphones in order to derive a unique device identifier for each smartphone. MAP
clients that have no access to the IMEI need to search the IF-MAP graph for the respective
device identifier. If they cannot specify an appropriate root identifier for the search
operation based on the data they are processing, configuration parameters that are set
manually are needed.
Third, the collection of training data is currently limited to those Features that are

obtained directly on smartphones. For this purpose, a dedicated Feature Collector, the
FHH Device Analyzer, was developed. It does not make use of the IF-MAP protocol.
Instead, collected Features are (1) stored locally on the device in db4o database files
and (2) sent to a dedicated remote server via HTTP. This allows to collect a large set of
Features over a long period of time, without requiring access to a MAP server at any time.
In order to trigger the training of profiles by the Correlation Engine, the db4o database
files need to be manually copied to a location that is accessible by the Correlation Engine.

5.4 Summary
This chapter described a prototype implementation of the CADS approach based upon
the IF-MAP protocol. The fact that IF-MAP is a suitable communication protocol for im-
plementing the CADS approach was detailed in Section 5.1. In order to use IF-MAP, Fea-
tures, Categories and Context Parameters of the CADS conceptual model were mapped
to the IF-MAP data model. Furthermore, the CADS logical roles were mapped to those
roles that are defined by the IF-MAP specification. The mapping was detailed in Section
5.1. An overview about the implemented software components and their supported func-
tionality was given in Section 5.2. The main contribution was made by implementing the
Correlation Engine irondetect, the set of Feature Collectors and the Feature Consumer
ironmonitor. The existing MAP server irond could be used to fulfill the role of the Feature
Provider without any additional modifications. Issues that have been identified during the
course of the implementation were detailed in Section 5.3. Although these issues should
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be tackled by future work, the presented implementation of the CADS prototype allows
to successfully address the scenarios described in Section 2.2. This will be proven by an
evaluation of the CADS approach in the next chapter.
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“I love deadlines. I like the
whooshing sound they make as
they fly by.”

(Douglas Adams)
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In this chapter, an evaluation of the CADS approach is performed. Section 6.1 presents
an analysis of data that has been collected by the FHH Device Analyzer. Its purpose is
to provide insights regarding the question how users actually use their smartphones. Af-
ter that, the overall performance of the CADS prototype implementation is investigated.
As the MAP server is the single point responsible for storing and retrieving collected
Features, its performance is crucial. Thus, a performance analysis of the two currently
available open-source MAP servers is performed in Section 6.2. One of the Feature Col-
lectors developed as part of the prototype implementation is deployed directly on the
respective smartphones. In order to investigate if the amount of data that is needed to
transmit the measured Features to the Feature Provider is within reasonable bounds,
Section 6.3 details how much overhead in terms of generated traffic is caused by this Fea-
ture Collector. That the CADS approach is capable of detecting sensor sniffing attacks is
demonstrated in Section 6.4. Finally, the flexibility of the CADS approach is proven in
Section 6.5 by specifying a Policy that leads to a similar functionality as provided by the
Kirin security service for Android [14].

6.1 Analysis of Data Collected by the FHH Device
Analyzer

The FHH Device Analyzer was used to gather data from 13 smartphones over a period
of 2.5 months between August 8 2012 and October 22 2012. All of the participants were
affiliated with the Trust@FHH research group. In total, 1.3 GB of data were collected.
The amount of Features that were collected from the participants varies greatly. Some of
the participants chose to restrict the set of Features that should be collected. Figure 6.1
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Figure 6.1: Unique Features that have been measured for participating smartphones.

depicts how many different, unique Features have been measured for each participating
smartphone. For most of the smartphones, more than 70 different Features were mea-
sured. Only two smartphones (device 4 and 5) contributed fewer Features. The number
of Feature instances that were measured is depicted in Figure 6.2. In total, more than 4.5
million Feature instances haven been measured. Most of the smartphones uploaded more
than 100,000 Feature instances. One smartphone (device 8) even uploaded more than one
million Feature instances. Only two smartphones (device 5 and 9) contributed less than
20,000 Feature instances.

As already stated, not all of the collected Features are directly used within the scenar-
ios that are targeted in this thesis. However, a preliminary analysis of relevant collected
Features is performed in the following. More precisely, the gathered data will be ana-
lyzed in order to find out (1) what apps were installed on the smartphones, (2) how the
smartphones behaved in terms of traffic consumption and (3) in how many different envi-
ronments they were used. The latter is derived from analyzing how many different WAPs
a smartphone has “seen” respectively scanned while being used.
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Figure 6.2: Feature instances that have been measured for participating smartphones.

6.1.1 Installed Apps and Requested Permissions

The use of apps is one key aspect of modern smartphones. Thus, an analysis was performed
regarding how many apps were installed on the participating smartphones, and how these
apps make used of the Android permission system. Figure 6.3 depicts the distribution
of installed apps among the participating smartphones, and how many permissions these
apps requested for use.

Most of the the participants had more than 40 apps installed. Device 1 represents
the maximum with 369 apps. On the other hand, smartphone number 5 only had two
third-party apps installed. The sum of installed apps on all devices was 1103, which
gives an average of 84 apps per device. Together, they requested 6079 permissions, which
is an average of 5.5 permissions per app. However, this set includes a lot of dupli-
cates, meaning that many apps tend to request similar permissions. In total, the in-
stalled apps requested 283 different permissions. However, more than 40% of them were
only requested by just one of the installed apps at a time. This is due to the fact
that many permissions are vendor respectively app specific. For example, the permission
com.symantec.permission.ACCESS_NORTON_SECURITY was only requested by a single
app in the whole dataset. Another permission that was only requested once revealed that
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Figure 6.3: Installed apps and their requested permissions. Note that the exact number of
requested dangerous permissions for the first smartphone is 1792. The y-axis
has been truncated for readability.

the author of the corresponding app likely made a typing error during the development
phase (typing andorid instead of android in the permission label).

In contrast to those permissions that are only requested once, there are some permissions
that are requested far more often compared to others. The ten most frequently requested
permissions are listed in Table 6.1. As expected, the INTERNET permission is requested
most often.

An interesting observation could be made in terms of requested permissions and their
protection levels. Most of the requested permissions have a protection level of “dangerous”,
indicating that they are potentially harmful (as explained in Section 3.2.4). Note that the
exact number of requested dangerous permissions for the first smartphone is 1792. The
maximum value of the y-axis was limited to 550 in order to ensure readability. Permissions
with a protection level of “normal” are roughly requested half as often. Permissions with
a protection level of “signature” and “signature or system” are not widely used compared
to the other protection levels. For a significant number of permissions, the protection
level could not be determined. This is the case when developers have defined their own
permissions. The FHH Device Analyzer does not support to obtain the correct protection
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Table 6.1: The ten most frequently requested permissions in the dataset.
Permission Total Count %
android.permission.INTERNET 629 57
android.permission.ACCESS_NETWORK_STATE 528 47
android.permission.WRITE_EXTERNAL_STORAGE 497 45
android.permission.WAKE_LOCK 303 27
android.permission.READ_PHONE_STATE 261 23
android.permission.VIBRATE 252 22
android.permission.ACCESS_WIFI_STATE 225 20
android.permission.ACCESS_FINE_LOCATION 192 17
android.permission.ACCESS_COARSE_LOCATION 173 15
android.permission.BLUETOOTH 147 13

level for these permissions. However, it can be stated that developers make frequent use
of defining their own permissions.

6.1.2 Traffic Consumption

The FHH Device Analyzer supports to collect Features of the Category smartphone.-
communication.ip which allow to analyze how much data a smartphone transmits and
receives. More precisely, the Features encapsulate how much bytes were transmitted and
received either via the mobile network interface (Rx3g, Tx3g), or via any other interface,
including WiFi (RxOther, TxOther). The results were rendered as box plots [177]. The
colored box spans from the lower quartile (Q1, 25 percentile) to the upper quartile (Q3,
75 percentile). The band inside the box represents the median (Q2, 50 percentile). The
ends of the whiskers represent the lowest / highest values that are still within 1.5 times
of the interquartile range (IQR)1.
An overview of the received and transmitted amounts of data is depicted in Figure 6.4.

The box plots of devices 4, 7 and 10 have been truncated at 1,000 KB. Their upper whiskers
are at 1,250 KB, 2,300 KB and 1,100 KB respectively. Again, the results are diverse.
Independently of the interface that is being used, smartphones receive more data than
they transmit. However, peaks in terms of the amount of transmitted and received data
exist. This is especially true for device 7. Except for two devices (4 and 8), smartphones
made use of both the WiFi and the mobile network interface (3g) for transmitting and

1http://en.wikipedia.org/wiki/Interquartile_range
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Figure 6.4: Overview of received and transmitted data. The box plots of devices 4, 7 and
10 have been truncated at 1,000 KB. Their upper whiskers are at 1,250 KB,
2,300 KB and 1,100 KB respectively.

183



6 Evaluation

receiving data. The details of the box plots of each Feature are depicted in Figure 6.5,
6.6, 6.7 and 6.8. Note that each of them has a different scaling for the y-axis.
Outliers are omitted in the figures. Most of them were caused by very low measurement

values (below 0.1 KB) at times when the respective smartphone was not used at all (at
night). Upper outliers have been detected as well. Regarding the upper outliers for the
received data, they were likely caused when the smartphone was used for receiving emails
with attachments, installing respectively updating of installed apps or for consuming
services like Google Maps or YouTube which are expensive in terms of generated traffic.
The upper outliers of the outgoing traffic were mainly caused by the FHH Device Analyzer
itself (for example when the user waited a long time before uploading the first dataset of
collected Features).
Overall, the amount of data that is received and especially that is transmitted is low

(compared to the technical capabilities of modern smartphones). Median values of all
smartphones are lower than 300 KB per 15 minutes, which is a rate of 0.33 KB/s. When
only the Feature TxOther is considered, median values are always below 50 KB per 15
minutes. This corresponds to a rate of 0.06 KB/s. However, the upper whiskers indicate
that there are peaks in terms of a smartphone’s traffic consumption. The fact that smart-
phones usually do not transmit large amounts of data will be used for the detection of a
sensor sniffing attack in Section 6.4.

6.1.3 Scanned Wireless Access Points

In order to understand in what different environments smartphones are used, an analysis
based on WAPs that have been scanned by smartphones was conducted. Android smart-
phones scan for nearby WAPs on a regular basis as long as the WiFi interface is enabled.
The FHH Device Analyzer app gets notified after each scan and renders the results to
Features of the Category smartphone.communication.wifi.scan. This especially includes
the Basic Service Set Identification (BSSID) and the Service Set Identification (SSID) for
each scanned WAP. The number of different access points that have been scanned by each
participating smartphone is depicted in Figure 6.9. The results are diverse. Three of the
smartphones have scanned more than 1000 different access points. Device 1 even scanned
almost 2000 different access points. These numbers were higher than expected. On the
other hand, three devices scanned less than 10 different access points (device 5, 9 and
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Figure 6.5: Received traffic via Wifi or other interface except 3g.
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Figure 6.6: Transmitted traffic via Wifi or other interface except 3g.
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Figure 6.7: Received traffic via 3g.
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Figure 6.8: Transmitted traffic via 3g.
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Figure 6.9: Scanned WAPs per smartphone.

11). All scans were performed in the area of Hanover, Germany. The results proof that
individual smartphones are frequently being used in different environments. Note that the
scan results do not imply that the smartphone has also established a connection to the
respective WAP.

As a side effect, the analysis also revealed the configuration details of the scanned WAPs
(via the Feature smartphone.communication.wifi.scan.Capabilities). These results are not
relevant for the remainder of the thesis. Nevertheless, one aspect should be mentioned
here. More than half of the scanned access points had support for WiFi Protected Setup
(WPS) enabled. This protocol is prone to brute force attacks, as was recently proven
by Viehböck [178]. More details on the FHH Device Analyzer app are provided by the
master’s thesis of Tobias Ruhe [173].

This section provided an analysis of the data that was collected with the FHH Device
Analyzer. It provided some insights in terms of how smartphones are actually used. The
main conclusions that can be drawn and that is relevant for the remainder of this thesis
is that smartphones usually transmit and receive only low amounts of data compared to
the theoretically available bandwidth.

187



6 Evaluation

6.2 Performance Analysis of MAP Servers

IF-MAP was chosen as communication protocol for the CADS prototype. The respective
specifications demand that the protocol is scalable and efficient in order to be used in
environments with thousands of MAP clients where thousands of metadata updates occur
per second at a single MAP server [20]. The crucial bottleneck in terms of performance
is the MAP server. In order to check how a MAP server scales when Feature metadata is
published and retrieved for numerous smartphones, a performance analysis was conducted
for the two currently available open source MAP servers. irond, which is mainly used as
part of the CADS prototype implementation, and omapd.

6.2.1 Definition of Test Case

Within the CADS prototype implementation, there are generally two sorts of metadata
published to the MAP server: (1) standard metadata mainly published by a PDP and (2)
Feature metadata that is published by arbitrary Feature Collectors. The general structure
of the resulting MAP graph was already depicted in Figure 5.1. The test case aims to
simulate the interaction between the MAP server, a Feature Collector that publishes
numerous Feature metadata for a single smartphone and the Correlation Engine. The
general sequence of steps is as follows:

• The MAP server and the Correlation Engine are started. In order to get notified
when a new smartphone is authenticated by the PDP, the Correlation Engine creates
a single subscription for the PDP’s device identifier with max-depth set to “2” and
initiates a poll operation.

• For a certain number of different smartphones, the following operations are per-
formed in order:

1. The set of PDP standard metadata is published (including authenticated-by
and access-request-device metadata). This links the PDP’s device identi-
fier to the device identifier of the respective smartphone. The publish opera-
tion must be acknowledged by the MAP server.

2. A set of Feature metadata is published to the device identifier of the re-
spective smartphone. Again, the MAP server must acknowledge the successful
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publish operation before the test proceeds with publishing metadata for the
next smartphone.

For the performance tests, a MAP client that publishes both the standard and the Fea-
ture metadata for an arbitrary number of smartphones was implemented. The wall time
is measured for each of the two publish operations per simulated smartphone. It is impor-
tant to note that after the first publish operation was performed, the Correlation Engine
creates a new, smartphone specific subscription using the smartphone’s device identifier.
The details on the subscription handling of the Correlation Engine were discussed in Sec-
tion 5.2.4. Furthermore, it is expected that a publish operation is not acknowledged until
all currently available subscriptions have been processed by the MAP server. Both irond
and omapd work this way.
The following parameters can be adjusted in order to customized the test case:

• Smartphones: The number of smartphones for which metadata should be published.

• Three parameters can be used in order to change the size and the structure of the
sub graph that includes the Feature metadata and the Category identifiers:

– Categories: The number of child Category identifiers that are created for each
identifier in the sub tree, starting from the device identifier of the respective
smartphone.

– Features: The number of Feature metadata that is published to each Category
identifier.

– Depth: The depth of the sub tree. A depth of “0” means that only a single
level of Category identifiers is created which are directly linked to the device
identifier of the respective smartphone.

Note that the three parameters are set once and thus are valid for all smartphones
that are simulated by the test.

The performance tests were done with three different sets of parameters as listed in
Table 6.2. All tests were run by simulating 256 smartphones. The size of the sub graphs is
given in number of metadata objects. For the first test case, 401 metadata objects need to
be stored by the MAP server (400 metadata objects of type feature and a single metadata
object of type device-category). For the second test case, the number is almost equal.
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Table 6.2: Size of the sub graph depending on the parameters of the performance test
program. The size is given in metadata objects that must be stored by the
MAP server.

# Smartphones Categories Features Depth Size of sub graph
one all

1 256 1 400 0 401 102,656
2 256 1 200 1 402 102,656
3 256 2 10 4 682 174,592

Only one additional subcategory-of metadata object is needed in order to realize the
depth of “1”.
For the third test case, 682 metadata objects need to be stored per sub graph. As the

categories parameter is set to “2”, there are two links with device-category metadata
attached that connect each smartphone’s device identifier with a corresponding Category
identifier. Considering the sub graph that starts with one of these Category identifiers,
there are 2depth+1−1 = 31 identifiers and 2depth+1−2 = 30 links in it. Each link has attached
a metadata object of type subcategory-of. Furthermore, each Category identifier has
“10” metadata objects of type feature attached. Thus, the number of metadata objects
for the sub graph is 31∗10 + 30 = 340. Since the categories parameter is set to “2”, there
are two such sub graphs. Considering the two metadata objects of type device-category
mentioned in the beginning, the total number of metadata objects for the sub graph of a
single smartphone is (2 ∗ 340) + 2 = 682. In this case, the subgraph has the structure of
a full binary tree: each identifier has two children, except those that are the leaves of the
tree.
Note that in addition to the metadata objects, the MAP server is also required to store

the identifiers in an appropriate way.

6.2.2 Testing Environment

All tests were run on a single virtual machine with 2048 MB RAM and 4 vCPUs (Intel(R)
Xeon(R) CPU E5520). The guest system was Debian Wheezy with Sun JRE (1.6.0_26-
b03) and g++ (4.7.1). The MAP servers irond-0.3.4 and omapd-0.7.3 have both been
certified by the TCG. In contrast to irond, omapd is written in C++ using the Qt Frame-
work from Nokia. The MAP client for performance testing, the MAP servers as well as the
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Correlation Engine were executed on the same machine. That is, network communication
between MAP clients and MAP servers was done by using the loopback interface only. In
order to ensure that irond does not run out of memory, the heap size was set to 768 MB.

6.2.3 Results

The results of the performance tests are depicted in Figure 6.10 and 6.11. They include
the wall times measured by the performance testing MAP client for the three test cases
described above.
irond performs well in all of the three test cases. The first publish operations are rather

slow. Standard metadata takes approximately 0.8 seconds, Feature metadata takes almost
1.1 seconds to be published. However, after metadata has been published for the first 25
smartphones, the wall time has lowered significantly and remains rather constant for both
the standard metadata (approx. 0.01s) and Feature metadata (approx. 0.15s to 0.25s). The
performance improvement is mainly caused by optimizations of the Java HotSpot Virtual
Machine2. Wall times for the first two test cases are almost identical. This is reasonable as
the structure of the sub graph that contains the Feature metadata only changes slightly,
and thus the amount of metadata objects that need to be stored is almost the same.
However, the wall times for the third test case differ from the rest. Interestingly, the wall
time for the standard metadata in this case is lower than for the first two test cases,
although the same amount of metadata has been published. As expected, the wall time
for the Feature metadata is higher compared to the rest. This is reasonable as the size of
the sub graph per smartphone is bigger (682 compared to 401 respectively 402 metadata
objects for the first two test cases). At the end of the third test case, starting with
smartphone 245, the wall times tend to increase. This is because irond is going to run out
of heap space. In fact, constantly publishing new metadata to irond without deleting any
of it will ultimately lead to a OutOfMemoryError3 thrown by the Java virtual machine.
However, as long as enough memory is available, irond has a constant wall time for
publishing both standard and Feature metadata for an arbitrary number of smartphones
as defined by the test cases. The subscriptions that are created by the Correlation Engine
have no negative impact on the overall performance.

2http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
3http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/OutOfMemoryError.html
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Figure 6.10: Performance analysis irond.

The MAP server omapd performs inferior compared to irond. It manages to fulfill the
first two test cases in a reasonable amount of time. The first publish operations even
outperform irond. However, the wall time increases steadily the more smartphones are
involved, clearly exceeding those of irond. Starting from smartphone 50, the standard
set of metadata even takes longer to be published compared to the Feature metadata.
The situation is even worse for the third test case. Wall times increased exponentially
and the test case was aborted after metadata was published for smartphone number 23.
At that time, publishing Feature metadata for a single smartphone took more than 100
seconds. It is assumed that the weak performance is caused by a poor handling of multiple
subscriptions. In the third test case, the sub graph for each smartphone is rather complex.
The Correlation Engine issues a single subscription that explicitly targets each of those
sub graphs. Thus, when Feature metadata is published for a single smartphone, only
one subscription actually needs to be evaluated. However, omapd seems to evaluate all
subscriptions that are currently active. That is, it cannot determine in advance that the
published Feature metadata only affects a single sub graph. Considering these results, the
tested version of omapd is not suitable to be used for implementing the CADS approach.
However, this is a problem which is caused by the respective implementation, not by the
IF-MAP protocol itself.
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Figure 6.11: Performance analysis omapd.

To summarize, the performance tests that were conducted with the two currently avail-
able open source MAP servers yielded diverse results. Concerning the amount and struc-
ture of metadata that is published when implementing the CADS approach, irond per-
formed well. Although irond is just a prototype implementation, this proofs that the
IF-MAP protocol can be implemented in an efficient and scalable manner, and is thus
suitable for being used as communication protocol for CADS. On the other hand, the
tests conducted with the omapd MAP server yielded poor results. It was generally able
to process the standard and Feature metadata that is used within the CADS prototype.
However, the wall time for publishing metadata was not acceptable when the sub graph
that contains Feature metadata was more complex. Thus, although any MAP server that
is compliant to the specification can generally process metadata that is used by CADS
correctly, it depends on the concrete implementation whether the performance is sufficient
or not.
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6.3 Traffic Consumption of the Feature Collector for
Android

In the following, an analysis is performed that aims to discover how much traffic is gen-
erated by the Feature Collector for Android that is used in the testing phase.

6.3.1 Definition of Test Case

In order to get accurate results, the Feature Collector on the smartphone was tested in an
isolated testing network. No route to any external service or the Internet was configured.
Only the MAP server irond acting as Feature Provider was configured and running in the
testing network. The smartphone was cold booted. Before the test was started, all apps
that were listed under Settings→Applications manager→Downloaded were stopped via
the “Force Stop” button. After the Feature Collector was started, the smartphone was not
used in any way. Gzip compression for IF-MAP was enabled. Bluetooth was turned off.
36 third-party apps were installed on the smartphone at the time of testing. The interval
between two IF-MAP publish operations was set to 20 s. Both the outgoing (TxOther)
and the incoming (RxOther) traffic for the Wifi interface were measured after a successful
IF-MAP publish operation was performed. More precisely, a successful IF-MAP publish
operation constitutes of a request message sent from the MAP client to the MAP server
that encapsulates the Feature metadata that should be changed and a response message
that is sent from the MAP server to the MAP client that states whether the operation
was successful or not. Measurements were made directly by the Feature Collector and
logged by leveraging the Android logging system (logcat)4.

6.3.2 Testing Environment

The testing was performed with a Samsung Galaxy S3 running Android version 4.1.1. It
was connected to a Lancom L54-g wireless access point. The MAP server irond was run-
ning on a separate machine connected to the same wireless network. The smartphone was
connected to a laptop via Universal Serial Bus (USB). This way, the logged measurements
could easily be obtained by using the Android Debug Bridge (ADB).

4http://developer.android.com/tools/help/logcat.html
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Figure 6.12: Traffic consumption for the Android Feature Collector.
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6.3.3 Results

The results of the test are depicted in Figure 6.12. The traffic was measured for 50 IF-
MAP publish operations that were executed with a time delay of 20 s. The y-axis depicts
the outgoing and the incoming traffic after each publish operation. It is obvious that the
first operation causes the largest increase of the outgoing traffic (approximately 14 KB),
whereas the subsequent publish operations only need less than 2 KB of outgoing traffic.
This is due to the fact that the Feature Collector only transmits Feature metadata for
Features whose values have changed. For the first publish operation, all Features have
updated values. Thus, respective Feature metadata must be created and transmitted to
the Feature Provider for all of them. In subsequent publish operations however, for most
of the Features no metadata has to be transmitted again as their respective values have
not changed. Considering the Features that are supported to be measured by the Feature
Collector for Android (as detailed in Section 5.2.5), most of them are rather static. Only
some of them like those of the Category smartphone.communication.ip are more dynamic
and thus need to be transmitted to the MAP server within each publish operation.

Most of the Feature instances that need to be created refer to the third-party apps that
are installed on the respective smartphone and their permissions. Those do not change
after the first publish operation, hence the outgoing traffic drops. Incoming traffic remains
rather constant at approximately 1 KB per publish operation. This makes sense as the
response to a successful publish request is always the same, no matter how much Feature
metadata has been published.

To summarize, the prototype Feature Collector for Android causes approximately 2.5 KB
of traffic for each IF-MAP publish operation in average (1.6 KB of outgoing and 0.9 KB
of incoming traffic). One exception is the initial publish operation which causes approx-
imately 15 KB of traffic. The actual traffic consumption of the Feature Collector can be
customized by adjusting the time delay between two subsequent publish operations. As-
suming that this interval is set to a value in the range of 30 s to 60 s (which still allows
a reasonable reaction time on identified threats), the traffic consumption is negligible in
environments were the smartphone is connected via Wifi. When the smartphone is con-
nected to the IT infrastructure via a mobile network carrier, it depends on the respective
rate for using mobile data whether the amount of generated traffic is acceptable or not.
Parameters that can be adjusted in order to lower the traffic consumption are
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1. the update interval that determines how often IF-MAP publish requests are sent,

2. the number of Features that are measured and

3. the number of Context-Parameters that are given for each measured Feature.

6.4 Detection of Sensor Sniffing

6.4.1 Overview

In the following, the ability of CADS to detect and to react on an exemplary sensor
sniffing attack is described. The assumption is that a benign app is used within the IT
infrastructure of an enterprise to capture video data by leveraging a smartphone’s built-
in sensors. The captured data is transmitted to a remote location, that is it leaves the
smartphone device. In terms of smartphone security, it is reasonable to address this kind
of threat as smartphones are the only devices that come with numerous built-in sensors.
Once the policy violation is detected, it should be countered immediately. That is, the
outgoing traffic that originates from the smartphone should be blocked.
In order to perform the sensor sniffing, the app IP Webcam5 is used. It is a benign

app that is available via the official Google Play store. It provides basic functionalities
in order to use a smartphone as a web cam. That is, it implements an HTTP server and
allows to stream both audio and video data. The app can be configured to automatically
start itself when the smartphone finished booting. Furthermore, it can be configured to
run in the background, without being visually noticeable by the user.
The app itself cannot be classified as being malicious. If users want to use their smart-

phone as a web cam, they are free to do so. However, within the context of an enterprise
environment, the respective company might consider the streaming of video and audio
data within their infrastructure as a potential threat, and thus as an act that violates
their policy. It is important to note that general anti virus scanning solutions are not
applicable for this use case, as the respective app is not malicious. For the detection, the
process how and why the app was installed on the respective smartphone is irrelevant.
The user might have willingly chosen to install it or might have been fooled to do so by
other means (such as via scanning of faked QR codes [179]).

5https://play.google.com/store/apps/details?id=com.pas.webcam&hl=de
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The CADS prototype implementation can detect and react on the threat imposed by
such an app by collecting and analyzing Features from numerous Feature Collectors. More
precisely, the following aspects are checked.

• It is detected if an app that requests a suspicious set of permissions is present on a
smartphone. Suspicious in this example refers to a combination of permissions that
allows the app to capture video data and to transmit it to a remote location.

• It is detected whether the camera of the smartphone is currently used or not.

• It is detected if the smartphone itself accepts incoming IP connections on any ports.

• The amount of outgoing traffic that originates from the smartphone is monitored. It
is expected that the transmission of captured sensor data will increase the amount
of outgoing traffic to an abnormal level.

If all of the above aspects are fulfilled by a smartphone, it is assumed that a sensor sniffing
attack is going on. As a consequence, an enforcement should be employed that blocks any
incoming or outgoing traffic from the smartphone.

6.4.2 Evaluation Environment

The detection will be performed in a virtualized environment. The basic layout is depicted
in Figure 6.13. It is a simplified version of the reference IT infrastructure defined in
Chapter 2. Virtualization is performed by leveraging VirtualBox using OS X 10.8.2 as
host operating system and Ubuntu 12.04.1 as guest operation system. As a smartphone,
the Samsung Galaxy S3 with Android 4.1.1 is used. It is connected to the virtualized
environment via a Lancom L-54 g wireless access point. The Feature Collector for Android
is installed on the smartphone.
The network topology is composed of two subnets. The first one (External 10.0.0.0/24)

is used by the smartphone in order to establish a connection to the virtualized environ-
ment via the wireless access point. The second one (Internal 192.168.2.0/24) is primarily
used by the CADS software components in order to communicate with each other. The
environment is composed of three virtual machines (VM):

Router VM The VM is responsible for routing between the external and the internal
network. Furthermore, it hosts an iptables packet filter and the ironmonitor Feature
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Figure 6.13: Evaluation environment for detecting sensor sniffing attacks. The red, orange,
yellow and green colored boxes indicate software components that fulfill logi-
cal roles as defined by the CADS architecture. The blue colored boxes indicate
services that have been integrated either by leveraging ironvas, ironmonitor
or the ifmapcli command line tools. Icons taken from Openclipart [27].
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Consumer. By default, the packet filter is configured to allow any traffic between
the two networks. ironmonitor will be used to react on the results of the Correlation
Engine. More precisely, when a policy violation is detected (in this case the sensor
sniffing), ironmonitor will change the configuration of the packet filter in order to
block traffic that originates from or is targeted at the smartphone’s IP address.

Service VM The service VM hosts all of the CADS software components that are used
for the evaluation. This includes the MAP server “irond” which acts as Feature
Provider, the Correlation Engine “irondetect” and three Feature Collectors. One
of them actually integrates into an existing security service: ironvas retrieves the
results of the latest vulnerability scans from OpenVAS and transmits them to the
Feature Provider. The other two are simulated based on the ifmapcli command
line tool. First, ifmapcli is used to simulate a PDP that is part of a Network Access
Control solution which supports the Trusted Network Connect standards, especially
the IF-MAP protocol. That is, for each connected smartphone, it publishes a set of
standard metadata to the MAP server. The second simulated component represents
an intrusion detection system like Snort6. It will be used in the remainder to publish
Features that represent events generated by an IDS to the MAP server. The service
VM is connected to the internal network.

Evil VM The third VM is used in order to represent a malicious component that aims to
retrieve sensor data fro the smartphone. That is, this component will be responsible
for actually receiving the captured sensor data from the smartphone. It is also
connected to the internal network. This topology was chosen in order to allow an
easy exemplary enforcement based on the iptables packet filter.

The exact versions of the CADS software components that were used for evaluation are
listed in Table 6.3.
It should be noted that although a specific network topology was chosen for the evalua-

tion, this does not affect the general applicability of the CADS approach. More precisely,
it is only assumed that there is a separation in two different zones (internal and exter-
nal) for the evaluation. This topology is basically in accordance with the topology of the
reference IT infrastructure that was introduced in Section 2.1, with two minor exceptions:

6http://www.snort.org/
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Table 6.3: CADS software components of the virtualized evaluation environment.
Software Component Version
irond 0.3.4
irondetect 0.0.1
ironvas 0.1.0
ifmapcli 0.0.2
irondmonitor 0.0.1

1. The evaluation environment does only provide two subnets (external and internal).
There is no dedicated subnet for the DMZ. An additional subnet could easily be
added if necessary. However, this would not introduce any benefits concerning the
detection of sensor sniffing attacks.

2. The evaluation environment is limited to smartphones that are connected via WAPs
to the external zone. Access via VPNs is not supported. However, this could be easily
added by installing an appropriate VPN solution.

At a conceptual level, these network topology details do not affect the detection capabil-
ities of the CADS approach. Even if a VPN is used and smartphones connect remotely
to the IT infrastructure, the detection of sensor sniffing attacks would still be possible.
Even more, the enforcement could be done by leveraging the VPN gateway instead of the
iptables packet filter.
The only, general requirement that must be met is that Feature Collectors which are

distributed within the IT infrastructure are able to collect their respective Features and
to transmit them to the Feature Provider.

6.4.3 OpenVAS Vulnerability Scans of Android Smartphones

The vulnerability scanner OpenVAS is expected to contribute Features that help to detect
the sensor sniffing attack. In order to exactly determine which Features are suitable for
detection (and should thus be included in the Correlation Engine’s policy file), a set of vul-
nerability scans have been performed in advance for three different Android smartphones.
For each smartphone, two tests have been performed: one directly after the smartphone
has been booted (and no apps have been started yet) and a second where the respective
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IP webcam app is running. The relevant configuration parameters of OpenVAS are given
in Table 6.4:

• The version of the OpenVAS scan engine that was used (in this case version 4.0.6)

• The version of the Network Vulnerability Tests (NVTs) that were used. NVTs are
modules that perform the actual vulnerability tests. They can be updated inde-
pendently from the OpenVAS scan engine. Updates are obtained via the publicly
available OpenVAS NVT feed 7.

• The scan config that was used. It determines which of the available NVTs are actu-
ally executed during a certain scan. In this case, the pre-configured scan config “full
and fast” was chosen. For the respective version of OpenVAS, this resulted in 28843
NVTs to be executed for each vulnerability scan that is run. None of the NVTs were
specifically targeted to detect vulnerabilities on Android smartphones.

• A target that identifies the smartphone to be scanned. For this purpose, the IP
address of the smartphones and the port range that should be scanned must be
specified. Optionally, credentials can be provided in order to log into the target
and execute NVTs that require host-based access. The protocol that is used to log
into the target machine depends on the concrete NVT implementation. The tested
smartphones did not provide any service for remote login (such as telnet or ssh).
Thus, no login credentials were specified.

The results of the vulnerability scans are depicted in Table 6.5. First of all it is obvious
that the Android version that is used has no effect on the the scan results. This is likely
due to the fact that no host-based NVTs are executed since no login credentials have been
provided during the definition of the scan target.
The second point that is obvious is that there are more vulnerabilities found when

the IP webcam app is running. If the app is not running, only 9 vulnerabilities of the
threat level “log” are found. These are actually no vulnerabilities that impose a threat
at all. They purely serve informational purposes. For example, they state that the target
responded to Internet Control Message Protocol (ICMP) requests and that there were no
open ports found on the target.

7http://www.openvas.org/openvas-nvt-feed.html
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Table 6.4: OpenVAS configuration details.
Configuration Parameter Value
OpenVAS Scanner Version 4.0.6
NVT Feed Version 201211231334
Scan Config Full and fast
Target IP address of smartphone, default port range, no login

credentials were provided

Table 6.5: Vulnerabilities found by OpenVAS on smartphones with stock Android ver-
sions. “App Running” refers to whether the IP webcam app was actually started
and ready to stream data or not.
Model Version App Running Vulnerabilities

High Medium Low Log
Samsung Galaxy S 1 2.3.3 no 0 0 0 9
Samsung Galaxy S 1 2.3.3 yes 0 1 4 14
Samsung Galaxy S 3 4.1.1 no 0 0 0 9
Samsung Galaxy S 3 4.1.1 yes 0 1 4 14

Samsung Galaxy Nexus 4.2.1 no 0 0 0 9
Samsung Galaxy Nexus 4.2.1 yes 0 1 4 14

When the IP webcam app is running, more vulnerabilities are detected. The overall
threat level of the respective smartphone rises from “none” to “medium”. This is mainly
because the app implements a simple web server that accepts connections on port 8080.
This is detected by OpenVAS. Since an open port is detected, further NVTs are executed
that aim to investigate the vulnerabilities imposed by the provided service. The leads to a
number of vulnerabilities with the threat level “low”. The single vulnerability that caused
the threat level to rise to “medium” refers to the fact that the provided service is prone
to denial of service attacks.

For the detection of a sensor sniffing attack as described in this scenario, the main
contribution that is provided by the OpenVAS vulnerability scans is the fact that open
ports on a smartphone are detected. Actual vulnerabilities of services (such as the fact that
the IP webcam app is prone to denial of service attacks) are not considered. The NVT that
is responsible for detecting open ports and provided services is named “Services”. Thus,
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the Feature Collector “ironvas” is configured to publish Feature metadata that represents
vulnerability reports that were created by the “Services” NVT8.

6.4.4 Policy Definition

The definition of a Policy that is able to detect the described sensor sniffing is rather com-
plex. There are many options to actually craft the Rules based on Signatures, Anomalies
and Context definitions. The details of the Policy that was used for this example is de-
picted in Listing 6.1. It is basically an extended version of the Policy described as part of
the domain-specific mapping in Section 4.4. Furthermore, it strictly follows the grammar
that is used by the Correlation Engine in order to verify its syntax.

1 # Context d e f i n i t i o n s
2 context {
3 ctxLastMinutes := SLIDING = " 00 : 15 : 00 " ;
4 ctxWorkingHours := DATETIME > " 06 :00 " and DATETIME < " 20 :00 " ;
5 }
6 # Hint d e f i n i t i o n s
7 hint {
8 hintTraf f i cSmartphone := " smartphone . communication . ip . txother "
9 " de . fhhannover . inform . t r u s t . i r onde t e c tp ro c edu r e s . TrendByValueCW"

10 " 100 " ;
11 h i n tT r a f f i c I d s := " i d s . event . h i g h t r a f f i c "
12 " de . fhhannover . inform . t r u s t . i r onde t e c tp ro c edu r e s . TrendByValueCW"
13 " 100 " ;
14 }
15 # Anomaly d e f i n i t i o n s
16 anomaly {
17 anoHighTraff icSmartphone := hintTraf f i cSmartphone > 0 .5 and h i n tT r a f f i c I d s > 0 . 5 ;
18 }
19 # Signature d e f i n i t i o n s
20 s i gna tu r e {
21 sigCamera := " smartphone . s enso r . camera . i s u s ed " = " true " ctxWorkingHours ;
22 s igSusp ic iousApp := " smartphone . android . app . permis s ion . r eques ted ! 1 " = " android .

permis s ion .RECEIVE_BOOT_COMPLETED"
23 and " smartphone . android . app . permis s ion . r eques ted ! 1 " = " android . permis s ion .CAMERA"
24 and " smartphone . android . app . permis s ion . r eques ted ! 1 " = " android . permis s ion .INTERNET"

ctxWorkingHours ;
25 sigPortOpen := " v u l n e r a b i l i t y . name" = " S e r v i c e s "
26 ctxLastMinutes ;
27 }
28 # Condit ion d e f i n i t i o n s
29 cond i t i on {

8The respective Features were already listed in Table 5.2 in the previous chapter.
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30 conDataLeakDetected := s igSusp ic iousApp and sigCamera and sigPortOpen and
anoHighTraff icSmartphone ;

31 }
32 # Action d e f i n i t i o n s
33 ac t i on {
34 en f o r c ement I s o l a t e :=
35 " c o r r e l a t i o n r e s u l t . enforcement . en forcementact ion " " . / drop−c l i e n t . sh "
36 " c o r r e l a t i o n r e s u l t . enforcement . $1 " "@smartphone . system . ipaddre s s " ;
37 }
38 # Rule d e f i n i t i o n s
39 r u l e {
40 dataLeakage := i f conDataLeakDetected do en f o r c ement I s o l a t e ;
41 }

Listing 6.1: Example Policy for the detection of sensor sniffing attacks.

Contexts

For the evaluation, two Context definitions are used. Both make use of the temporal
Context Parameter Timestamp that renders the moment in time when a Feature has
been measured9. The two Contexts allow to restrict the set of Feature instances that
are considered for the evaluation. In the example, a sliding Context is defined that only
matches Features who have been measured in the past 15 minutes. The second Context
is used to consider only Features who have been measured during working hours. Further
Contexts could have been defined that work on other Context Parameters (like the location
or the presence of other devices). However, this has been omitted in order to keep the
example simple. It is important to note that Contexts are solely used to restrict the set
of Features that are considered during the evaluation of a Policy. However, they do not
change the way the evaluation is performed once the set of relevant Feature instances has
been determined.

Signatures

Signatures are used in order to express the static characteristics of the sensor sniffing
attack. For this example, there are three Signatures used. The first one checks if the
camera of the smartphone is currently in use. The second one searches for apps that have
a suspicious set of requested permissions. Note that the scope parameter has been set to

9In the irondetect version that has been used for evaluation, the Context Parameter is referred to as
DATETIME in the policy language.
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“1” for this Signature10. The third Signature finally checks if there are any open ports
reported by the OpenVAS vulnerability scanner. This Signature makes use of a sliding
Context. That is, only Features that have been measured in the past 15 minutes are
considered. Furthermore, the Signature is reevaluated every 15 minutes, even when there
were no new Features received by the Correlation Engine. This mechanism can be used to
ensure that only Features who have a certain “freshness” are used during the evaluation of
a Policy. To set the interval of a sliding Context to a reasonable value is a domain-specific
decision.

Anomalies

A single Anomaly component is defined in order to analyze the amount of data that is
transmitted by the smartphone. It is composed of two Hints. Each of them references a
single Feature that encapsulates outgoing traffic (TxOther and HighTraffic). The first Hint
is used in order to evaluate Features measured on the smartphone, whereas the second
one works on Features that have been measured by the simulated IDS. Both Hints make
use of the same Procedure called “TrendByValueCW”. As already mentioned in Section
5.2.4, this procedure performs a simple linear regression [172] on the Feature values and
determines the slope of the fitting line. The Procedure always considers the last 10 Feature
instances that have been measured. The calculated slope is compared to the trained value.
If no training was performed, it is compared against the value that is given in the Policy
as the last parameter of the Hint definition. For this example, no training was performed.
Instead, the expected value was set a priori based on the findings discussed in Section 6.1.2.
More precisely, the expected value was set to “100” for both Hints, which corresponds to
100 KB/s of traffic given the Features and the Procedure that are used by the Hints. Any
smartphone that exceeds this rate is considered to behave abnormal in this respect. The
output mapping was configured as follows:

• If the slope exceeds the expected value by more than 50%, return 0,

• if the slope exceeds the expected value by more than 100%, return 1,

• else return -1.
10The implementation of the Policy parser currently requires to define the scope for each Feature that is

used in the Signature as follows: FeatureId!<scope>
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This allows to detect if a smartphone transmits data via its WiFi interface at an alarming
rate. The Hints are combined by a logical “and”. That is, only if both the Features collected
on the smartphone and those that are collected by the IDS indicate the presence of an
abnormal behavior, the respective Anomaly is fulfilled.
Note that each of the Hints might as well consider more than one single type of Features.

For example, in order to also capture data that is transmitted by the smartphone via its
mobile network interface, the Hint could have been defined to also evaluate the Feature
(smartphone.communication.ip.Tx3g). Another option is to define another Hint for the
respective Feature and to integrate it in the definition of the Anomaly. This level of
opportunities to chose from emphasizes that the definition of reasonable Policies is a
complex and challenging task.

Rules and Actions

The previously defined components are combined within a single Rule. If the three Sig-
natures and the Anomaly match, the associated Action is performed. In this case, this
triggers the creation of two Features:

• EnforcementAction: The value is set to the name of a Shell script.

• $1: The value is set to a parameter that is passed to the Shell script. In this case,
this is the IP address of the smartphone the Policy is currently evaluated for11.

These two Features are intended to be processed by the Feature Consumer ironmonitor.
The presented Policy allows to detect sensor sniffing attacks by combining both Signa-

ture and Anomaly detection mechanisms. It is important to note that although a special
app is used within the evaluation to perform the sensor sniffing (IP webcam app), the
Policy and thus the detection capabilities are not specific for this single app. More pre-
cisely, any sensor sniffing attack that shares the same characteristics can be detected as
well.

6.4.5 Interaction of CADS Software Components

The interaction between the CADS software components that take place in order to detect
the sensor sniffing attack is rather complex. In order to understand how the individual
11The fact that the Correlation Engine should look up the smartphones IP address is denoted by the ’@’.
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Figure 6.14: Interaction between software components in the sensor sniffing example. Icons
taken from Openclipart [27].

systems work together, their interaction is detailed in the following. It is assumed that
all components are properly configured. The Feature Provider must be running. The
Correlation Engine and the Feature Consumer have issued their initial subscriptions in
order to retrieve new Feature metadata when it is published to the Feature Provider.
The single steps that are performed and described in the following are depicted in

Figure 6.14.

1. At first, the smartphone establishes a connection to the WAP, and thus to the
virtualized environment.

2. The PDP (simulated by ifmapcli) publishes a set of standard metadata to the Fea-
ture Provider. This especially includes access-request-device and authenti-
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cated-by metadata which links the device identifier of the smartphone to the
device identifier of the PDP.

3. The Correlation Engine gets notified about the new smartphone. It issues a new
subscription with the smartphone’s device identifier as root in order to get notified
when new feature metadata is published for the smartphone.

4. The Feature Collector on the smartphone is started. It periodically publishes Feature
metadata to the Feature Provider. For the evaluation, an update interval of 30
seconds was chosen.

5. The Correlation Engine is notified about the new Feature metadata published by
the smartphone. Thus, it evaluates the Policy. In the example, the first Signature
of the Condition matches as the IP webcam app requests the respective set of
permissions. However, as the camera of the smartphone is currently not used, the
second Signature does not match and evaluates to false. The version of irondetect
that was used in this example stops the evaluation of a Condition that only has
logical “and” conjunctions upon the first Signature or Anomaly that is false. Thus,
the results of the third Signature and the Anomaly are not considered at that
moment.

6. In the next step, the respective IP webcam app is started. However, the video
stream that it provides is not yet accessed by the evil VM. After the respective
Feature metadata has been transmitted to the Correlation Engine, the Signature
which checks if the camera is currently used evaluates to “true”. However, the third
Signature which expresses whether open ports have been found or not does not
match yet. This is because the respective Feature Collector (ironvas) has not yet
published the Feature metadata which renders the results of the last vulnerability
scan performed for the smartphone.

7. In this step, OpenVAS scans the smartphone and ironvas publishes the respective
Feature metadata that render the results of the last vulnerability scan. Within the
evaluation environment, both OpenVAS and ironvas were configured to perform
their tasks (executing vulnerability scans for smartphones respectively transmitting
the results of the last scans to the Feature Provider) at a fixed interval. As the IP
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webcam app is now running, OpenVAS detects the open port and ironvas transmits
this information rendered in appropriate Feature metadata to the Feature Provider.
Thus, the third Signature matches as well. Note that the third Signature uses a
sliding Context. This causes that only Features which have been measured in the
last 15 minutes are considered and that the Signature (and thus the Condition) is
reevaluated every five minutes. Although all Signatures are now fulfilled, the traffic
that is transmitted by the smartphone itself is still considered as being normal. This
is because the web server which is provided by the app is not accessed by the evil
VM yet.

8. In the next step, a web browser from within the evil VM is used to access the video
stream provided by the IP webcam app. This causes a drastically increase of the
outgoing traffic. In the evaluation environment, two Features are used to express
this increase: the first one is actually measured by the Feature Collector on the
smartphone (smartphone.communication.ip.TxOther). The second one is created
on behalf of the simulated IDS. That is, it is not actually measured but scripted
by leveraging the ifmapcli command line tools. It simply publishes the Feature
ids.event.Hightraffic periodically with a value that expresses the amount of data
that has been sent by the smartphone. The main purpose of integrating a simulated
IDS in the evaluation environment is to emphasize the capability of the CADS
approach to detect Anomalies based on Features that are collected by different
Feature Collectors.

The effect that the streaming of video data has in terms of transmitted data is
depicted in Figure 6.15. As already mentioned, the slope has been calculated by
performing a simple linear regression based on the last 10 Features that have been
measured. The results are depicted for the Feature that has been directly measured
on the smartphone (TxOther). Each calculated value is marked with a red cross.
The moments in time when the video steam was accessed are labeled as ’start’,
the moments when access was stopped are labeled as ’stop’. The first access hap-
pened after three minutes. Prior to this moment, the amount of outgoing traffic
is negligible. However, when the video stream is accessed, the amount transmitted
data increases. It exceeds the expected/trained value at t = 338 s. The configured
tolerance is exceeded at t = 405 s. At this moment, the result of the respective
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Hint evaluation is 0. Due to the definition of the Anomaly component in the Policy
which requires a Hint result greater than 0.5, the outgoing traffic is still considered
as being normal.

At t = 472 s, the slope exceeds the threshold the first time. At this moment, the
respective Hint result is 1.0. As only the last 10 Features are considered for calcu-
lating the slope, its value drops and increases accordingly depending on whether the
evil VM stops to access the video stream (at t = 539 s and t = 942 s) or starts to
use it again (t = 640 s).

9. When both of the defined Hints return a result of 1.0, the respective Anomaly
evaluates to “true“. Thus, the Condition of the defined Rule evaluates to “true”
as well. As a consequence, the Correlation Engine itself creates two new Features
and transmits them to the Feature Provider. In this example, the Features render
a command that should be executed in order to react on the identified threat.

10. The Features that were created by the Correlation Engine are received by the Feature
Consumer located in the router VM. It processes them and changes the configuration
of the iptables packet filter in such a way that the evil VM cannot access the video
stream anymore. As the IP address of the smartphone was encapsulated within one
of the Features ($1), it is possible to add a rule to the iptables packet filter that
explicitly blocks the traffic for that particular smartphone. Of course, it should be
ensured that the Feature Collector on the smartphone is still able to transmit its
measured Features to the Feature Provider.

A screenshot of the irondetect graphical user interface that summarizes the single de-
tection steps is depicted in Figure 6.16. It displays the evaluation results for each Rule
(upper left), Condition (lower right), Signature (upper right) and Anomaly (lower left).
The first evaluation was done at 09:35:36. At that time, only one single Signature was ful-
filled (sigSuspiciousApp). After the IP webcam app was started, the Signature sigCamera
was fulfilled as well. However, the Signature that indicates an open port was not fulfilled
at that moment. The reason is that the respective Feature Collector (ironvas) had not yet
published its Feature metadata. That is, there is a time gap between the actual opening of
a port caused by the IP webcam app and its detection by the vulnerability scanner. How-
ever, once the vulnerability scanner has detected the open ports, the respective Features
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Figure 6.15: Traffic anomaly caused by accessing the IP webcam app. Depicted are the
results for performing a simple linear regression on the measured values of
the Feature TxOther.

are published by ironvas. The Features are received by the Correlation Engine, which in
turn evaluates the Policy again (steps labeled as #6,#7,#8). Once all Signatures are
fulfilled, the Anomaly is evaluated as well. In the depicted example, the webcam server
was accessed after the Anomaly was evaluated the second time (labeled as #7). After
three minutes, the amount of transmitted data exceeded the configured threshold. Since
all Signatures and the Anomaly were fulfilled at that time, the Condition evaluates to
“true”, and thus the respective Rule fires.

6.4.6 Results

The previous section described how a sensor sniffing attack can be detected and mitigated
with the CADS approach by analyzing Features that were gathered from multiple Feature
Collectors. A Policy for the Correlation Engine was defined that makes use of Signature
and Anomaly components for detection. The attack was illustrated by leveraging a benign
app from the official Google Play store, thus rendering any approach that solely relies on
detecting malicious apps inappropriate. It is important to note that although the example
was illustrated by using a certain app (IP webcam), the detection would work for any other
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Figure 6.16: Screenshot of irondetect after the detection of a sensor sniffing attack. Check-
marks indicate that the respective component defined by the Policy evaluated
to “true”.
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app or combination of apps as long as the performed attack shares the same characteristics.
That is

• there must be an app that has a set of suspicious permissions,

• the camera must be used to obtain the video data,

• the captured data must be provided by a web server on the smartphone and

• retrieving the data from the smartphone must increase its outgoing traffic.

Of course, apps can be developed that are still able to perform a sensor sniffing attack
and will not be detected by the example Policy. It is a subject of future work to develop
further domain-specific Policies in order to detect more variants of sensor sniffing attacks.

6.5 Using CADS to Mimic Kirin

In order to prove the versatility of the CADS approach, this section demonstrates how it
can be used to provide a similar functionality as an existing, host-based security service
for Android.

6.5.1 Overview

The Kirin security service for Android [129, 14] was already discussed in Section 3.3.3
as part of the analysis of related work in the field of smartphone security. It provides an
extension to the Android platform that checks security properties of apps at installation
time against a blacklist defined in a specific policy. Kirin supports to classify an app as
being malicious or not based on two kinds of static properties: (1) the app’s requested
permissions and (2) the app’s ability to receive Intents with a certain action string. If
one of the rules defined in the policy matches, the user is warned that the app which is
about to be installed is potentially malicious. He can then choose to abort or to continue
the installation. Kirin is a host-based approach, thus requires custom modifications of
the Android platform. The CADS approach is able to provide similar functionality as the
Kirin security service, while providing a number of benefits (like omitting the need for
modifications of the Android platform).
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6.5.2 Translating Kirin Policies to CADS

Enck et al. [129, 14] provide a sample policy that is composed of nine rules. It is depicted
in Listing 6.2. The first eight rules simply express a combination of requested permissions
that are considered as being malicious. For example, rules 4 and 5 aim to detect location
tracker apps that leak the location of the smartphone to a remote party. Rule number 9 is
special as it is not only formulated based on requested permissions. Instead, it combines
a permission label with the fact that an app can receive and process a certain Intent. It
aims to prevent a malicious app from replacing the default voice call dialer app without
the user’s knowledge.

1 (1 ) An app l i c a t i o n must not have the SET_DEBUG_APP permis s ion l a b e l .
2 (2 ) An app l i c a t i o n must not have PHONE_STATE, RECORD_AUDIO, and INTERNET permis s ion

l a b e l s .
3 (3 ) An app l i c a t i o n must not have PROCESS_OUTGOING_CALL, RECORD_AUDIO, and INTERNET

permis s ion l a b e l s .
4 (4 ) An app l i c a t i o n must not have ACCESS_FINE_LOCATION, INTERNET, and

RECEIVE_BOOT_COMPLETE permis s ion l a b e l s .
5 (5 ) An app l i c a t i o n must not have ACCESS_COARSE_LOCATION, INTERNET, and

RECEIVE_BOOT_COMPLETE permis s ion l a b e l s .
6 (6 ) An app l i c a t i o n must not have RECEIVE_SMS and WRITE_SMS permis s ion l a b e l s .
7 (7 ) An app l i c a t i o n must not have SEND_SMS and WRITE_SMS permis s ion l a b e l s .
8 (8 ) An app l i c a t i o n must not have INSTALL_SHORTCUT and UNINSTALL_SHORTCUT permis s ion

l a b e l s .
9 (9 ) An app l i c a t i o n must not have the SET_PREFERRED_APPLICATION permis s ion l a b e l and

r e c e i v e In t en t s f o r the CALL act i on s t r i n g .

Listing 6.2: Example policy for Kirin in KSL syntax [14].

In the following, the example policy for Kirin will be translated to the policy language
used by the CADS approach. Kirin is limited to express malicious patterns based on an
app’s requested permissions and its Intent Filters. Thus, the rules of a Kirin policy can
easily be mapped to Signature definitions within the CADS policy language. The only
requirement that must be met is that appropriate Features have been defined in order to
render requested permissions and action strings of Intent Filters. The Feature which repre-
sents a permission that is requested by an app has already been used in the previous exam-
ple: smartphone.android.app.permission.Requested. The Feature that represents the action
string of an Intent Filter is referred to as smartphone.android.app.intentfilter.action.Action-
String. Given these two Features, the example policy for the Kirin system can be expressed
by a set of Signature definitions in the CADS policy language. They are depicted in List-
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ing 6.3. The resulting policy can be evaluated by the Correlation Engine. The Feature
Collector for Android is responsible for measuring the necessary Features.

1 # s igna tu r e d e f i n i t i o n s
2 # the c a t e g o r i e s smartphone . android . app are omitted f o r r e a d ab i l i t y
3 # the p r e f i x " android . permis s ion " f o r permis s ion l a b e l s i s omitted f o r r e a d ab i l i t y
4 s i gna tu r e {
5 s igKir inRuleOne := " permis s ion . r eques ted ! 1 " = "SET_DEBUG_APP" ;
6 sigKirinRuleTwo := " permis s ion . r eques ted ! 1 " = "PHONE_STATE" and
7 " permis s ion . r eques ted ! 1 " = "RECORD_AUDIO" and
8 " permis s ion . r eques ted ! 1 " = "INTERNET" ;
9 s igKir inRuleThree := " permis s ion . r eques ted ! 1 " = "PROCESS_OUTGOING_CALL" and

10 " permis s ion . r eques ted ! 1 " = "RECORD_AUDIO" and
11 " permis s ion . r eques ted ! 1 " = "INTERNET" ;
12 s igKir inRuleFour := " permis s ion . r eques ted ! 1 " = "ACCESS_FINE_LOCATION" and
13 " permis s ion . r eques ted ! 1 " = "INTERNET" and
14 " permis s ion . r eques ted ! 1 " = "RECEIVE_BOOT_COMPLETE" ;
15 s i gK i r inRu l eF ive := " permis s ion . r eques ted ! 1 " = "ACCESS_COARSE_LOCATION" and
16 " permis s ion . r eques ted ! 1 " = "INTERNET" and
17 " permis s ion . r eques ted ! 1 " = "RECEIVE_BOOT_COMPLETE" ;
18 s i gK i r i nRu l eS ix := " permis s ion . r eques ted ! 1 " = "RECEIVE_SMS" and
19 " permis s ion . r eques ted ! 1 " = "WRITE_SMS" ;
20 s igKir inRuleSeven := " permis s ion . r eques ted ! 1 " = "SEND_SMS" and
21 " permis s ion . r eques ted ! 1 " = "WRITE_SMS" ;
22 s i gKi r inRu leE ight := " permis s ion . r eques ted ! 1 " = "INSTALL_SHORTCUT" and
23 " permis s ion . r eques ted ! 1 " = "UNINSTALL_SHORTCUT" ;
24 s igKi r inRuleNine := " permis s ion . r eques ted ! 1 " = "SET_PREFERRED_APPLICATION" and
25 " i n t e n t f i l t e r . a c t i on . Act ionStr ing ! 1 " = "CALL" ;
26 }

Listing 6.3: Kirin example policy translated to the CADS policy language. Only the use
of Signatures is mandatory for the translation.

6.5.3 Discussion

Kirin classifies apps as being malicious or not solely based on two aspects of an app: its
requested permissions and the action strings that are defined as part of its Intent Filter.
To realize the same classification of apps with the CADS approach is possible. However,
there are differences that need to be considered:

Host- vs. Network-based Approach CADS is a lightweight, network-based approach.
This introduces both a benefit and a drawback. The drawback is that CADS cannot
prevent the installation of potentially malicious apps. It does not hook itself into the
installation process of apps as Kirin does. Instead, an ordinary app is responsible for
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measuring the necessary Features, which in turn can be evaluated by the Correlation
Engine. The benefit is that CADS can be used on smartphones that run standard
Android versions. The only requirement is that the Feature Collector for Android
is installed on the device.

Detection Capabilities The Kirin approach is limited to classify an app as being mali-
cious or benign based on their requested permissions and the action strings defined
in their Intent Filter. That is, Kirin policies define patterns based on permissions
and action strings that are considered to be malicious. As a consequence, Kirin poli-
cies that are translated to the CADS policy language only make use of Signatures
for classifying apps. However, CADS allows the definition of further components,
including Contexts and Anomalies. They can be used to enrich the basic detection
capabilities that are provided by the Kirin service. More precisely, CADS allows (1)
to consider other Features than the two that represent requested permissions and
action strings of Intent Filters, (2) to integrate the Context of a smartphone and (3)
to reason about the behavior of a smartphone by means of defining Anomaly com-
ponents. That these extended capabilities can actually provide a benefit was proven
in the previous Section during the detection of a sensor sniffing attack. Using Kirin,
it would only have been possible to check if an app is going to be installed that has
a set of suspicious permissions. However, to consider the status of the smartphone’s
camera, the presence of vulnerability reports or the amount of outgoing traffic at
the moment when the smartphone is actually used within the infrastructure of a
company would not have been possible.

Reaction Capabilities Kirin informs the user about any app that is considered as being
malicious at install-time. The user can choose to abort or to continue the installation.
This is not possible with the CADS approach. Instead, it allows to define arbitrary
Actions as part of the Correlation Engine’s Policy. In order to provide a similar
functionality as Kirin does, an additional Feature Consumer could be placed on the
smartphone in order to retrieve the results of the Correlation Engine. This Feature
Consumer can in turn show appropriate warning messages to the user, suggesting
that a certain app should be uninstalled because it was classified as malicious.
However, it is important to note that CADS is not limited to this type of reaction.
Instead, it is also possible to employ an enforcement as presented in Section 6.4 in

217



6 Evaluation

order to deny access to certain parts of the network as long as the malicious app(s)
are installed.

To summarize, CADS can be used to provide a similar functionality as the Kirin security
service. However, CADS is not limited to classify apps as being malicious or benign
based on a fixed set of aspects. It also provides means to reason about the behavior of a
smartphone and the Contexts it is currently used in. Furthermore, CADS can be used on
smartphones with standard Android versions and does not require any modifications to
the smartphone platform itself.

6.6 Summary
This chapter described the evaluation of the CADS approach. An analysis of data that
was collected by the FHH device analyzer app over a period of 2.5 months was presented
in Section 6.1. The collected data can help to understand how users actually use their
smartphones. Furthermore, it can generally be used in order to learn the normal behavior
of smartphones. The performance of MAP servers was investigated in Section 6.2. The goal
was to investigate if their performance is sufficient to be used within a CADS prototype
implementation. For irond, this is true. For omapd however, this is not true. The poor
performance of omapd is mainly caused by a rudimentary implementation of handling
multiple subscriptions. As irond performs far better than omapd, this is no drawback of the
IF-MAP protocol itself. The amount of traffic that is generated by the Feature Collector
for Android was analyzed in Section 6.3. The results indicate that after the first IF-MAP
publish operation was performed, the generated traffic remains constant and is negligible.
Section 6.4 provided an example that proofs the capability of the CADS approach to
detect and to react on sensor sniffing attacks. The attack was detected by performing a
Context-related detection of Signatures and Anomalies. As reaction, an enforcement was
employed that stops the attack by denying outgoing traffic for the respective smartphone.
In order to proof the versatility of the CADS approach, Section 6.5 described how it
can be used to mimic the functionality of an existing, host-based security extension for
Android.
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“I never think of the future. It
comes soon enough.”

(Albert Einstein)
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Within this thesis, a novel, network-based approach for smartphone security was pro-
posed calledCADS: Context-related Signature and Anomaly Detection for Smart-
phones. The main results are summarized in Section 7.1. Based on these results, the re-
search questions that were defined as part of the introduction in Section 1.2 are discussed
in Section 7.2. Finally, areas that are subject of future work are mentioned in Section 7.3.

7.1 CADS: A Network-based Approach for Smartphone
Security

While developing CADS, the field of smartphone security was tackled from the perspec-
tive of a company that aims to securely integrate smartphones into their existing IT
infrastructure. Four scenarios were described in Chapter 2 that provide the motivating
background for this thesis:

1. Scenario I: Smartphone Visibility, which is about to determine at the network side
whether a certain request originates from a smartphone or not,
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2. Scenario II: Context-related Service Provisioning, which is about allowing or denying
the use of services depending on a smartphone’s context,

3. Scenario III: Detection of Malicious and Unwanted Apps, which addresses the threat
of third-party apps and

4. Scenario IV: Policy-based Enforcement, which is about to perform policy-based
reactions to mitigate detected threats.

Based on these scenarios, seven requirements were derived that must be fulfilled by an
approach that aims to securely integrate smartphones into existing IT infrastructures:

1. R-01: Detection of unwanted and malicious configurations of smartphones,

2. R-02: Detection of abnormal smartphone behavior,

3. R-03: Consideration of context information for detection,

4. R-04: Policy-based reaction on detection results,

5. R-05: Dynamic analysis at runtime,

6. R-06: Extensibility of processed data and used methods,

7. R-07: Ability to integrate the approach in existing environments.

An analysis of related work was performed in Chapter 3. The analysis revealed that
existing approaches fail to meet all the requirements derived from the scenarios. Especially
since most of the existing approaches focus primarily on the detection of malicious apps
and follow a host-based approach. As host-based approaches tend to require extensive
modifications of the respective smartphone platform, it is hard to integrate them into
existing IT infrastructures, especially when companies follow a strategy like Bring Your
Own Device (BYOD).
The main contribution of this thesis is the development of CADS, a novel, network-

based approach for smartphone security that enablesContext-relatedAnomaly and Signa-
ture Detection for Smartphones. The concept of the approach was detailed in Chapter 4.
It is composed of four parts:
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1. A conceptual model that defines its main building blocks and the relationships
between them.

2. An architecture that defines logical roles that must be fulfilled by components in
order to support the distributed collection and central analysis of data about smart-
phones.

3. A correlation model that defines how the collected data is analyzed.

4. A process model that defines how so-called domain-specific instances can be speci-
fied.

CADS is a novel, network-based approach that allows to reason about the security
status of smartphones by analyzing three aspects: their current configuration in terms
of installed software and available hardware, their behavior and the context they are
currently used in. The necessary data is collected in a distributed manner. CADS is a
lightweight approach, which means that it does not rely on modifications that are made
to a certain smartphone platform.
An implementation of the approach based on the Android platform and the IF-MAP

protocol for network security was presented in Chapter 5. The implementation demon-
strates that IF-MAP, although not specifically targeted at the domain of smartphone
security, can be used as communication protocol for CADS in order to securely integrate
smartphones into existing IT infrastructures. Finally, the CADS approach was evaluated
in Chapter 6. It was shown that CADS can be used to detect sensor sniffing attacks,
even when they are not performed by a malicious app but rather by leveraging a benign
app from an official app store. Furthermore, the flexibility of CADS was demonstrated
by mimicking the functionality of Kirin, a host-based security service for the Android
platform.

7.2 Discussion of Research Questions

Based on the results that were achieved within this thesis, the research questions that
were presented in Section 1.2 are discussed in the following.
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Question 1: What approach is appropriate to enable a secure integration of smart-
phones into existing IT infrastructures? This question was primarily addressed in
Chapter 2. Four scenarios from the perspective of a company that aims to securely inte-
grate smartphones into their own IT infrastructure have been described.

• Scenario I: Smartphone Visibility emphasizes that existing services that are provided
within an IT infrastructure must be able to determine if they are accessed by a
smartphone or not.

• Scenario II: Context-related Service Provisioning extends the first scenario, express-
ing the need for services to reason about the context of a smartphone that tries to
access them.

• Scenario III: Detection of Malicious and Unwanted Apps addresses the fact that
third-party apps which are installed on a smartphone can violate the security policy
of a company. It is important to note that this scenario is not just limited to apps
that are generally considered as being malicious. Instead, even benign apps can
violate the security policy of a company under certain circumstances.

• Scenario IV: Policy-based Enforcement expresses the need for a flexible mechanism
in order to react on detected policy violations that were caused by smartphones.

The scenarios were defined as part of the analysis phase within the ESUKOM research
project. Based on these scenarios, requirements were derived that define the set of func-
tionalities that must be supported by the developed approach, namely:

• To detect unwanted respectively malicious configurations.

• To detect if a smartphone behaves abnormally.

• To consider the context of a smartphone for detection purposes.

• To enable policy-based reactions that are employed based on the detection results.

• To support dynamic analysis at runtime, that is at the time when a smartphone is
actually used within an IT infrastructure that should be protected.

• To ensure extensibility, both in terms of what data is considered for detection tasks
as well as what methods are actually used for analyzing the data.

222



7.2 Discussion of Research Questions

• To support a seamless integration of the approach into existing IT infrastructures.
This requirement explicitly prohibits that the approach relies on modifications which
are made to a specific smartphone platform.

The CADS approach fulfills all of the mentioned requirements at a conceptual level.

Question 2: What data should be collected and how should the collected data
be analyzed in order to determine the security status of smartphones? This ques-
tion is primarily addressed in Chapter 4. Regarding the first part of the question (what
data should be collected), the CADS approach introduces the notion of Features and
Categories, the so-called Core Components. These components are necessary in order to
model relevant data at an abstract level, as a general answer to the question that ex-
plicitly names certain types of data cannot be given. Instead, the answer depends on the
concrete domain, more precisely the company who aims to integrate smartphones into
their IT infrastructure and their security policy. This is taken into account by the CADS
approach by defining a process that allows to derive so-called domain-specific instances.
These instances model the set of relevant data based on the generic Category and Feature
components.
Within the thesis, such an exemplary domain-instance was derived. The set of Cate-

gories and Features represent various issues that are of interest in order to determine the
security status of smartphones. Of special importance are Features that (1) describe prop-
erties of apps that are installed on the respective smartphones (such as their requested
permissions) and (2) Features that express how much outgoing and incoming traffic is
received respectively transmitted by a smartphone.
The second part of the question (how should the collected data be analyzed) is ad-

dressed by the correlation model that was developed as part of the CADS approach. It
allows to combine both Signature detection (in order to find patterns based on Features)
and Anomaly detection techniques (in order to detect abnormal behavior of smartphones
based on Features). Signatures are primarily used to detect malicious or unwanted con-
figurations of smartphones (such as if a suspicious app from an unofficial app store is
currently installed). On the other hand, Anomaly detection allows to monitor the be-
havior of smartphones and to detect deviations that exceed a certain tolerance (such as
when a smartphone starts to transmit large amounts of data to a remote location). In
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general, the CADS approach is not limited to a certain Anomaly detection technique. The
prototype implementation presented in Chapter 5 supports simple statistical methods.
The Features of the exemplary domain-instance and the combination of Signature and

Anomaly detection was used to successfully detect a sensor sniffing attack that was em-
ployed by leveraging a benign app from the official Google Play app store (as detailed in
Chapter 6).

Question 3: How can the context of smartphones be obtained and used in order to
contribute to their secure integration into existing IT infrastructures? Again, this
question is primarily addressed in Chapter 4. As discussed in Section 2.3.2, the notion
of a context is defined as “the situation in which something happens and that helps you
to understand it” [19]. As CADS is in essence based on the distributed collection and
central analysis of Features, it provides means to capture and to express the context of
individual Features, rather than of smartphones as a whole. This is achieved by defining
two dedicated components as part of the conceptual model, referred to as Context Param-
eter and Context. Context Parameters are referenced by Features. A Context Parameter
encapsulates data that describes the physical environment at the moment in time when
the value of its respective Feature was set (such as the current time or the geographical
location of the Feature Collector). On the other hand, a Context Component is a Boolean
expression that is formulated based on Context Parameters. This way, Features can be
effectively selected based on the values of their respective Context Parameters.
This concept is used for two purposes: (1) to check if a smartphone is in a specific

Context or not and (2) to enable a Context-related detection of Signatures and Anomalies.
For the first purpose, it is sufficient to check the Context Parameters of a dedicated
Feature that was collected directly on a smartphone. Within the exemplary domain-
instance presented in this thesis, this Feature was referred to as smartphone.ContextPing.
This functionality can be used in order to realize Context-related provisioning of services
within the IT infrastructure. For the second purpose, the conceptual model of CADS
allows that Signatures and Anomalies reference defined Contexts. This way, the set of
Features that is considered for detecting Signatures and Anomalies can easily be restricted
to those that fulfill the referenced Contexts. For example, this allows to use CADS in order
to detect Signatures and Anomalies only if a smartphone (1) is used on-site at a company
compound and (2) is used during working hours. This functionality is especially important
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when the use of certain apps is considered unwanted only in certain areas of the company’s
IT infrastructure.

7.3 Future Work

The CADS approach that is presented in this thesis allows a secure integration of smart-
phones into existing IT infrastructures. Although it meets all requirements that have
been defined in Section 2.5, there is clearly room for future work. Five subjects that are
especially important are mentioned in the following.

Cross device analysis The correlation model of the CADS approach is currently limited
to work on single smartphone devices. That is, all Signatures and Anomalies are evaluated
on a per smartphone basis, independently from each other. The training of profiles in order
to capture the normal behavior of smartphones is performed device-specific as well. As
a consequence, threats that manifest itself in Signatures and Anomalies across multiple
smartphones cannot be detected. Future work should address this drawback and find ways
to enrich the correlation model of CADS in such a way that it can detect Signatures and
Anomalies which span across multiple smartphones.

Evaluation of more sophisticated anomaly detection techniques Within this thesis,
simple statistical methods have been employed for anomaly detection. They were used to
detect if a smartphone transmits large amounts of data to a remote location. However,
numerous anomaly detection techniques exist that have not been considered (see [96]
for an overview). Thus, another direction of future work is to analyze if other anomaly
detection techniques can be used in order to detect abnormal behavior of smartphones.

Further analysis of domain-specific Features A set of domain-specific Features has
been defined within this thesis. Only a subset of them was actually used during the
evaluation of the CADS approach. That is, most Features that have been considered reflect
properties of installed apps and the traffic consumption of smartphones. Furthermore,
Features that were collected from existing services such as an Intrusion Detection System
(IDS) and a vulnerability scanner were used as well. However, there are lots of Features
whose effectiveness in terms of smartphone security has not been investigated yet. This
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especially includes many low level Features that are collected on smartphones (those
defined as part of the Category smartphone.system) as well as Features that are obtained
by crawling app stores such as Google Play. Future work should address this issue.

Improvement of the CADS policy language The language that is used in order to de-
fine the policy for the Correlation Engine should be improved. As the focus of this thesis
was the development of a network-based approach for smartphone security, and not the
development of a new policy language, its structure and expressiveness is rather elemen-
tary. Furthermore, the process of manually defining example policies for the Correlation
Engine turned out to be complex and error prone. Future work should address this issue,
aiming to develop a language that is more flexible and yet easier to use.

Integration of other smartphone platforms The CADS approach was implemented and
evaluated based on the Google Android smartphone platform. Other popular platforms,
such as Apple iOS, Microsoft Windows Phone and BlackBerry, were not considered in
detail. In order to use the CADS approach with other smartphone platforms, two things
need to be done: First, Features that are specific for the respective smartphone platform
need to be defined at a conceptual level. In this thesis, all Features that are specific
to the Android platform are defined in the Category smartphone.android or one of its
sub-categories. For example, the Feature smartphone.android.app.permission.Requested
is used to express that a certain permission is requested by an app. Windows Phone 8
supports a similar permission concept. However, privileges that are granted to apps are
referred to as capabilities instead of permissions. In order to use CADS with Windows
Phone 8, Features that appropriately express capabilities need to be defined. Second,
an app for the respective smartphone platform needs to be developed. The app must
support the measurement of required Features and the transmission of these Features to
the Feature Provider via an appropriate communication protocol. In this thesis, IF-MAP
was used for this purpose. However, it should be noted that the CADS approach does not
depend on the IF-MAP protocol. Instead, another communication protocol can be used
as well, as long as it meets the requirements that were specified in Section 4.2.2.

Integration with existing host-based approaches Another area of future work is to
analyze how CADS can be integrated with existing, host-based approaches for smart-
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phone security. One example for such an host-based approach is CRePE [38]. Both CADS
and CRePE provide context-related enforcement of policies. CADS on the network-side,
and CRePE on the smartphone device itself. Generally, both approaches can be used
in conjunction. CADS could be used to restrict access to certain services based on the
smartphone’s context. Furthermore, CRePE can be used to enforce context-related poli-
cies, even when the respective smartphone is not connected to the IT infrastructure that
is protected by CADS.

Investigation of legal issues Legal issues have not been addressed in this thesis at all.
Only minor aspects were considered in order to protect the user’s privacy (such as to
anonymize the smartphone’s IMEI before it is transmitted to the Feature Provider). As
CADS relies on the distributed collection of data, future work should investigate what
data is legally allowed to be collected without violating the user’s privacy. This will require
an analysis of existing laws, such as the Federal Data Protection Act [180]. Furthermore,
the recent efforts of the European Commission in terms of data protection should be
considered as well [181].

To summarize, a novel, network-based approach for smartphone security called CADS
was presented in this thesis. The approach enables a Context-related detection of Signa-
tures and Anomalies in order to securely integrate smartphones into existing IT infras-
tructures. In fact, although CADS was designed to specifically address smartphones, it
can generally be used for the secure integration of other devices as well. In contrast to
existing approaches in the field of smartphone security, CADS combines both Signature
and Anomaly detection techniques while considering a smartphone’s Context, has the
ability to integrate existing security services and supports to employ arbitrary reactions
based on detection results.
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A.1 Publications

A number of publications have been published within the context of this thesis. Their
titles are listed in the following. Detailed bibliographical references are given as part of
the bibliography.

• TCADS: Trustworthy, Context-related Anomaly Detection for Smartphones [182]

• On Remote Attestation for Google Chrome OS [183]

• Trusted Service Access with Dynamic Security Infrastructure Configuration [184]

• Trustworthy Anomaly Detection for Smartphones (Poster) [185]

• Automatisches Erkennen mobiler Angriffe auf die IT-Infrastruktur [186]

• Towards Permission-Based Attestation for the Android Platform [187]

• Konsolidierung von Metadaten zur Erhöhung der Unternehmenssicherheit [188]

• Interoperable device identification in Smart-Grid environments [189]

• Towards Trustworthy Networks with Open Source Software [190]

• Interoperable remote attestation for VPN environments [191]

• ESUKOM: Smartphone Security for Enterprise Networks [192]

• Countering Phishing with TPM-bound Credentials [193]

• tNAC - Trusted Network Access Control (Poster) [194]
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• Privacy Enhanced Trusted Network Connect [195]

• Towards Trusted Network Access Control [196]

• Towards real Interoperable, real Trusted Network Access Control: Experiences from
Implementation and Application of Trusted Network Connect [197]
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A.2 History of Android Versions

Table A.1: History of Android versions.
Version Release Date Important Changes
1.0 09-2008 Initial release
1.1 02-2009 Bug fixes

Cupcake
1.5 04-2009 User interface improvements

Donut
1.6 09-2009 Support for 802.1X and Virtual Private Networks (VPNs)

Éclair
2.0 09-2009 Support for multiple account synchronization, Bluetooth 2.1
2.0.1 12-2009 Bug fixes
2.1 01-2010 HTML5, IPv6

Froyo
2.2 05-2010 Android Cloud to Device Messaging (C2DM)
2.2.1 09-2010 Bug fixes
2.2.2 01-2011 Bug fixes
2.2.3 11-2011 Bug fixes

Gingerbread
2.3 12-2010 ext4 filesystem, Google TV, near field communication (NFC)
2.3.1 12-2010 Bug fixes
2.3.2 01-2011 Bug fixes
2.3.3 02-2011 Bug fixes
2.3.4 04-2011 Google Talk voice and video chat
2.3.5 07-2011 Bug fixes
2.3.6 09-2011 Bug fixes
2.3.7 09-2011 Google Wallet

Honeycomb
3.0 02-2011 Optimized for tablets, simplified multitasking
3.1 05-2011 User interface improvements
3.2 07-2011 User interface improvements
3.2.1 09-2011 Bugfixes

Ice Cream Sandwich
4.0 10-2011 Merge of Android 2.x and 3.x, Android Beam, Face Unlock
4.0.1 10-2011 Bug fixes
4.0.2 11-2011 Bug fixes
4.0.3 12-2011 Bug fixes
4.0.4 12-2011 Bug fixes

Jelly Bean
4.1 07-2012 Google Now, Google Chrome as default web browser
4.1.1 07-2012 Bugfixes
4.1.2 10-2012 Bugfixes
4.2 11-2012 SELinux, security scans for third-party apps
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A.3 Complete List of Defined Features and Categories
The following table lists the complete set of Features and Categories that have been defined
within this thesis. Note that only a subset has actually been used for the evaluation of
the presented approach.

Table A.2: Features and Categories that have been defined within the scope of this thesis. Note that not
all of them have been actually used in the evaluation.

Category/Feature Card/Type Description
C: smartphone 1 top level Category for smartphones
F: ContextPing arbitrary dummy Feature to get updated Con-

text Parameters
C: smartphone.system 1 low level Features of a smartphone
F: Imei arbitrary the smartphone’s IMEI
F: Imsi arbitrary the smartphone’s IMSI
F: Model arbitrary the smartphone’s model name as dis-

played to the user
F: FirmwareVersion arbitrary the smartphone’s firmware version
F: Product arbitrary the name of the smartphone product
F: Manufacturer arbitrary the manufacturer of the smartphone
F: BasebandVersion arbitrary version of the smartphone’s radio

code
F: KernelVersion arbitrary the version of the kernel
F: BuildNumber arbitrary the build number of the smartphone
F: Os arbitrary version of the operating system
F: Sdk arbitrary the SDK version of the system
F: IpAddress qualified current IP address
F: MacAddress qualified current MAC address
F: SystemBoot quantitative last time the smartphone completed

to boot
F: SystemShutdown quantitative last time the smartphone was shut

down
F: AdbEnabled qualified indicates if Android Debug Bridge

(ADB) is enabled
F: TetheringEnabled qualified indicates if tethering is currently en-

abled
F: NonMarketInstall qualified indicates if apps can be installed

from unofficial app stores
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Category/Feature Card/Type Description
F: DataRoamingEnabled qualified indicates if data roaming option is

enabled
F: AirplaneMode qualified indicates if airplane mode is enabled
F: SimState qualified the state of the subscriber identity

module (SIM)
F: ServiceState qualified the service state of the smartphone

(e.g. indicates if only emergency calls
are possible)

F: UsbMassStorageEnabled qualified indicates if USB storage is enabled
F: PhoneType arbitrary string that describes the phone type
F: DisplayBrightness quantitative the current brightness of the display
F: DisplayWidth quantitative the width of the display
F: DisplayHeight quantitative the height of the display
F: MediaImageCount quantitative number of images found on the

smartphone
F: MediaVideoCount quantitative number of videos found on the smart-

phone
F: MediaAudioCount quantitative number of audio tracks found on the

smartphone
F: RingMode qualified ringmode setting
F: VibrateSetting qualified indicates if smartphone’s vibrator is

activated
F: Screen arbitrary
F: ProcessCount quantitative number of running processes
C: smartphone.system.memory 1 Features regarding the smartphone’s

memory status
F: MemoryAvailable quantitative available memory in bytes
F: MemoryLow qualified indicates that the smartphone is in

low memory state
F: MemoryThreshold quantitative Indicates which threshold (in bytes)

has to be reached, before the system
is in low memory state and starts
killing processes.

C: smartphone.system.battery 1 Features related to the smartphone’s
battery

F: Power qualified Indicates if the smartphone is cur-
rently connected to a power supply

F: Level quantitative the current power level in percent
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Category/Feature Card/Type Description
F: Voltage quantitative the current voltage
F: Status qualified the status of the battery
C: smartphone.system.storage 1 Features that describe the smart-

phone’s storage capabilities
F: MediaState qualified state of primary external storage me-

dia
F: MediaInternalSize quantitative total size of internal storage in bytes
F: MediaInternalFree quantitative free internal storage in bytes
F: MediaExternalSize quantitative total size of external storage in bytes
F: MediaExternalFree quantitative free external storage in bytes
C: smartphone.system.usb 1 USB related Features
F: State qualified indicates if a USB device is con-

nected
C: smartphone.sensor 1 Features related to the smartphone’s

built-in sensors
C: smartphone.sensor.gps 1 Features related to the GPS sensor
F: IsUsed qualified indicates if the sensor is currently

used
C: smartphone.sensor.camera 1 Features related to the built-in cam-

era sensor
F: NewPicture qualified indicates that a new picture was

taken
F: IsUsed qualified indicates if the camera is currently

used
C: smartphone.sensor.audio 1 Features related to the built-in mi-

crophone
F: IsUsed qualified indicates if the microphone is cur-

rently used
C: smartphone.communication 1 Features related to communication

capabilities of the smartphone
C: smartphone.communication.ip 1 Features related to IP based commu-

nication
F: Rx3g quantitative amount of received bytes via mobile

network interface
F: Tx3g quantitative amount of transmitted bytes via mo-

bile network interface
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Category/Feature Card/Type Description
F: RxOther quantitative amount of received bytes via other

interfaces except the mobile network
interface

F: TxOther quantitative amount of transmitted bytes via
other interfaces except the mobile
network interface

C: smartphone.communication.gsm 1 GSM related Features
F: CellId arbitrary ID of the current GSM cell
F: CellLac arbitrary local area code of the current GSM

cell
C: smartphone.communication.cdma 1 CDMA related Features
F: CellBaseStationId quantitative base station identification number of

current CDMA cell
F: CellNetworkId quantitative network identification number of cur-

rent CDMA cell
F: CellSystemId quantitative system identification number of cur-

rent CDMA cell
F: CellLatitude quantitative GPS latitude value for the current

CDMA cell
F: CellLongitude quantitative GPS longitude value for the current

CDMA cell
C: smartphone.communication.wifi 1 Features related to the smartphone’s

WiFi interface
C: smartphone.communica-
tion.wifi.connection

1 Features related to a specific WiFi
connection that was established

F: Bssid arbitrary the access point’s Basic Service Set
Identification (BSSID)

F: Ssid arbitrary the access point’s Service Set Identi-
fication (SSID)

F: SsidHidden qualified indicates of the SSID is hidden
F: LinkSpeed quantitative speed of connection in Mbps
F: IpAddress quantitative IP address used for the connection
F: MacAddress qualified the access point’s MAC address
F: WifiState qualified state of the WiFi interface
C: smartphone.communication.wifi.scan N Features related to scanned wireless

networks
F: Bssid arbitrary BSSID of scanned access point
F: Ssid arbitrary SSID of scanned access point
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Category/Feature Card/Type Description
F: Frequency quantitative frequency in MHz of the access point
F: Level quantitative signal level in dBm
F: Capabilities arbitrary the access point’s supported security

capabilities
C: smartphone.communication.bluetooth 1 Bluetooth related Features
F: State qualified state of the Bluetooth adapter
F: Scanmode qualified scan mode of the Bluetooth adapter
C: smartphone.communica-
tion.bluetooth.connection

1 Features related to a Bluetooth con-
nection

F: Name arbitrary name of the remote device
F: Address arbitrary address of the remote device
F: ConnectionState qualified state of the connection
F: BondState arbitrary bond state of the Bluetooth adapter

C: smartphone.communication.sms

1 Features related to smartphone’s
Short Message Service (SMS) system

F: LastOutgoingSms qualified last time a SMS was sent
F: LastIncomingSms qualified last time a SMS was received
C: smartphone.android 1 Android specific Features
C: smartphone.android.app N Features related to an installed app
F: Name arbitrary the name of the app
F: PackageName arbitrary the apps package name
F: Installer arbitrary app store used for installing the app
F: VersionName arbitrary name of the app’s version
F: VersionCode quantitative code of the app’s version
F: MinSdk quantitative minimum SDK version required to

run the app
F: Installed quantitative moment in time when the app was

installed
F: LastUpdate quantitative moment in time when the app was

updated
F: IsRunning qualified indicates if the app is currently run-

ning
F: GooglePlayCategory qualified category of the app in the Google

Play app store
F: Rating quantitative rating of the app in the Google Play

app store
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Category/Feature Card/Type Description
F: Downloads quantitative number of downloads of the app in

the Google Play app store
C: smartphone.android.app.permission N Features related to an app’s permis-

sions
F: Required arbitrary a permission that is required in order

to use a component of the app
F: Requested arbitrary a permission that is requested by the

app
F: ProtectionLevel quantitative indicates the protection level of the

required permission
C: ids N top level Category for IDS events
F: EventType arbitrary Type of an event
F: EventName arbitrary Name of an event
F: EventSource arbitrary Source of the event
F: EventThreat quantitative Threat level that is associated with

the event
F: EventConfidence arbitrary Confidence of the IDS that the event

occured
F: EventImpact quantitative Impact of the event
F: HighTraffic quantitative Special event that indicates that

there was a high amount of traffic.
Encapsulates the amount of traffic in
bytes.

C: vulnerability N top level Category for vulnerabilities
F: Name arbitrary The name of the Network Vulnerabil-

ity Test (NVT)1 that was performed
F: Port arbitrary The port at which the vulnerability

was detected
F: CvssBase quantitative The CVSS2 base score that was de-

fined for the vulnerability. Ranges
from 0 to 10.

F: Threat quantitative The threat level of the vulnerability
as determined by OpenVAS

F: CveIdentifier arbitrary The CVE3 number that identifies the
vulnerability

1http://www.openvas.org/openvas-nvt-feed.html
2https://nvd.nist.gov/cvss.cfm
3http://cve.mitre.org/
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Category/Feature Card/Type Description
C: correlationresult 1 top level Category for correlation re-

sults
C: correlationresult.smartphonevisibility N correlation result Features for the

smartphone visibility scenario
F: IsASmartphone qualified indicates if the respective device is a

smartphone or not
C: correlationresult.context N correlation result Features to express

that a smartphone is in a certain
Context

F: IsFulfilled arbitrary represents a Context that is fulfilled
F: IsNotFulfilled arbitrary represents a Context that is not ful-

filled
C: correlationresult.alert N Category that encapsulates correla-

tion result that represent alerts
F: AlertName arbitrary the name of an alert
F: AlertSeverity qualified the severity of the alert
C: correlationresult.enforcement N Category to represent Features that

encapsulate enforcement actions
F: EnforcementAction arbitrary string that identifies the enforcement

action
F: $1 arbitrary technical Feature used in the proto-

type implementation to pass an addi-
tional parameter to the enforcement
action
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A.4 Grammar for the CADS Policy Language

1 (∗∗∗KEYWORDS∗∗∗)
2 CONTEXTKEY = " context "
3 HINTKEY = " hint "
4 ANOMALYKEY = " anomaly "
5 SIGNATUREKEY = " s i gna tu r e "
6 CONDITIONKEY = " cond i t i on "
7 ACTIONKEY = " ac t i on "
8 RULEKEY = " ru l e "
9 IFKEY = " i f "

10 DOKEY = "do "
11 COUNTKEY = " count "
12 GETKEY = " get "
13

14 (∗∗∗OPERATORS∗∗∗)
15 DEFINEOP = " := "
16 BOOLOP = "and " | " or "
17 COMPOP = "<" | ">" | "<=" | ">=" | "=" | " != "
18

19 (∗∗∗CONSTANTS∗∗∗)
20 FCTXPARAMTYPE =
21 "LOCATION" | "DATETIME" | "OTHERDEVICES" | "SLIDING" | "TRUSTLEVEL"
22

23 (∗∗∗DATATYPES∗∗∗)
24 DIGIT = " 0 " | " 1 " | " 2 " | " 3 " | " 4 " | " 5 " | " 6 " | " 7 " | " 8 " | " 9 "
25 NUMVAL = [ "−" ] {DIGIT} | {<DIGIT>} " . " {DIGIT}
26 LETTER =
27 "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | " I " | " J " | "K" | "L" | "M" |
28 "N" | "O" | "P" | "Q" | "R" | "S " | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" |
29 " a " | "b " | " c " | "d " | " e " | " f " | " g " | "h " | " i " | " j " | " k " | " l " | "m" |
30 "n " | " o " | "p " | " q " | " r " | " s " | " t " | "u " | " v " | "w" | " x " | " y " | " z "
31 STRSYMBOL = " / " , " : " , " . " , "_" , " ! " , "−" , "@" , " " , " $ " , " ! " ]
32 STRVAL = ’ " ’ LETTER | STRSYMBOL | DIGIT {LETTER | STRSYMBOL | DIGIT} ’ " ’
33 IDENTIFIER = LETTER | DIGIT {LETTER | DIGIT}
34

35 (∗∗∗LANGUAGE PRODUCTIONS∗∗∗)
36 POLICY = CONTEXTBLOCK HINTBLOCK ANOMALYBLOCK SIGNATUREBLOCK CONDITIONBLOCK

ACTIONBLOCK RULEKEY " { " {IDENTIFIER RULE} " } "
37

38 CONTEXTBLOCK = CONTEXTKEY " { " {CTX} " } "
39 HINTBLOCK = HINTKEY " { " {HINT} " } "
40 ANOMALYBLOCK = ANOMALYKEY " { " {ANOMALY} " } "
41 SIGNATUREBLOCK = SIGNATUREKEY " { " {SIGNATURE} " } "
42 CONDITIONBLOCK = CONDITIONKEY " { " {CONDITION} " } "
43 ACTIONBLOCK = ACTIONKEY " { " {IDENTIFIER " := " ACTION " ; " } " } "
44

45 CONDITION = IDENTIFIER DEFINEOP IDENTIFIER {BOOLOP IDENTIFIER} " ; "
46 ANOMALY = IDENTIFIER DEFINEOP HINTEXP {BOOLOP HINTEXP} {IDENTIFIER} " ; "
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47 HINT = IDENTIFIER DEFINEOP FEATURE {FEATURE } PROCEDURE " ; "
48 SIGNATURE = IDENTIFIER DEFINEOP EXPR {BOOLOP EXPR} IDENTIFIER {IDENTIFIER} " ; "
49 CTX = IDENTIFIER DEFINEOP FCTXPARAMTYPE COMPOP VALUE {BOOLOP FCTXPARAMTYPE

COMPOP VALUE} " ; "
50 HINTEXP = IDENTIFIER COMPOP NUMVAL
51

52 PROCEDURE = STRVAL STRVAL
53 FEATURE = VALUE | COUNTKEY " ( " STRVAL " ) " | GETKEY " ( " STRVAL " ) "
54 RULE = IFKEY IDENTIFIER DOKEY {IDENTIFIER}
55 ACTION = {KEY VALUE}
56 EXPR = FEATURE COMPOP VALUE
57

58 KEY = STRVAL
59 VALUE = STRVAL | NUMVAL

Listing A.1: Grammar that defines the Policy used by irondetect.

240



Bibliography

[1] “PlayStation Network Restoration Begins,” News on Company Website, Sony Com-
puter Entertainment, May 2011. [Retrieved: 05-Mar-2013] http://uk.playstation.
com/psn/news/articles/detail/item369506/PSN-Qriocity-Service-Update/

[2] “Hackers in China Attacked The Times for Last 4 Months,”
News on Company Website, The New York Times, Jan. 2013.
[Retrieved: 05-Mar-2013] http://www.nytimes.com/2013/01/31/technology/
chinese-hackers-infiltrate-new-york-times-computers.html?pagewanted=all

[3] S. Gorman, “Cyber Combat: Act of War,” The Wall Street Jour-
nal, May 2011. [Retrieved: 05-Mar-2013] http://online.wsj.com/article/
SB10001424052702304563104576355623135782718.html

[4] A.-d. Schmidt and S. Albayrak, “Malicious software for smartphones,” Tech.
Rep., 2008. [Retrieved: 05-Mar-2013] https://www.dai-labor.de/fileadmin/files/
publications/smartphone_malware.pdf

[5] R. T. Llamas and W. Stofega, “Worldwide Smartphone 2012–2016 Forecast and
Analysis,” International Data Corporation, Mar. 2012. [Retrieved: 05-Mar-2013]
http://www.idc.com/getdoc.jsp?containerId=233553

[6] “The Mobile Movement - Understanding Smartphone Users,” Google Inc./Ipsos
OTX MediaCT, Apr. 2011. [Retrieved: 05-Mar-2013] http://www.gstatic.com/ads/
research/en/2011_TheMobileMovement.pdf

[7] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid Android:
Versatile Protection For Smartphones,” in Proceedings of the 26th Annual
Computer Security Applications Conference. ACM, 2010, pp. 347–356. [Retrieved:
05-Mar-2013] http://dl.acm.org/citation.cfm?doid=1920261.1920313

241

http://uk.playstation.com/psn/news/articles/detail/item369506/PSN-Qriocity-Service-Update/
http://uk.playstation.com/psn/news/articles/detail/item369506/PSN-Qriocity-Service-Update/
http://www.nytimes.com/2013/01/31/technology/chinese-hackers-infiltrate-new-york-times-computers.html?pagewanted=all
http://www.nytimes.com/2013/01/31/technology/chinese-hackers-infiltrate-new-york-times-computers.html?pagewanted=all
http://online.wsj.com/article/SB10001424052702304563104576355623135782718.html
http://online.wsj.com/article/SB10001424052702304563104576355623135782718.html
https://www.dai-labor.de/fileadmin/files/publications/smartphone_malware.pdf
https://www.dai-labor.de/fileadmin/files/publications/smartphone_malware.pdf
http://www.idc.com/getdoc.jsp?containerId=233553
http://www.gstatic.com/ads/research/en/2011_TheMobileMovement.pdf
http://www.gstatic.com/ads/research/en/2011_TheMobileMovement.pdf
http://dl.acm.org/citation.cfm?doid=1920261.1920313


Bibliography

[8] D. Dagon, T. Martin, and T. Starner, “Mobile Phones as Computing Devices: The
Viruses are Coming!” IEEE Pervasive Computing, vol. 3, no. 4, pp. 11–15, Oct.
2004. [Retrieved: 05-Mar-2013] http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1369156

[9] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy, “Privilege escalation attacks
on android,” Information Security, pp. 346–360, 2011. [Retrieved: 05-Mar-2013]
http://www.springerlink.com/index/D275570090NG72JT.pdf

[10] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones,”
in Proceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS), 2011, pp. 17–33. [Retrieved: 05-Mar-2013] https://www.cs.
indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf

[11] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng, “Stealthy video capturer:
a new video-based spyware in 3G smartphones,” in Proceedings of the second
ACM conference on Wireless network security. ACM, 2009, pp. 69–78. [Retrieved:
05-Mar-2013] http://portal.acm.org/citation.cfm?id=1514274.1514285

[12] D. Bachfeld, “ZeuS-Trojaner befällt Android,” Jul.
2011. [Retrieved: 05-Mar-2013] http://www.heise.de/security/meldung/
ZeuS-Trojaner-befaellt-Android-1278449.html

[13] ——, “Google entfernt über 50 infizierte Apps aus dem Android Market,”
Mar. 2011. [Retrieved: 05-Mar-2013] http://www.heise.de/security/meldung/
Google-entfernt-ueber-50-infizierte-Apps-aus-dem-Android-Market-1200662.html

[14] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application
certification,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 235–245. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1653691

[15] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically Rich
Application-Centric Security in Android,” 2009 Annual Computer Security
Applications Conference, pp. 340–349, Dec. 2009. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380692

242

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1369156
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1369156
http://www.springerlink.com/index/D275570090NG72JT.pdf
https://www.cs.indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf
https://www.cs.indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf
http://portal.acm.org/citation.cfm?id=1514274.1514285
http://www.heise.de/security/meldung/ZeuS-Trojaner-befaellt-Android-1278449.html
http://www.heise.de/security/meldung/ZeuS-Trojaner-befaellt-Android-1278449.html
http://www.heise.de/security/meldung/Google-entfernt-ueber-50-infizierte-Apps-aus-dem-Android-Market-1200662.html
http://www.heise.de/security/meldung/Google-entfernt-ueber-50-infizierte-Apps-aus-dem-Android-Market-1200662.html
http://portal.acm.org/citation.cfm?id=1653691
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380692


Bibliography

[16] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones,” in Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010. [Retrieved: 05-Mar-2013]
http://appanalysis.org/tdroid10.pdf

[17] A. Felt, H. Wang, A. Moshchuk, S. Hanna, E. Chin, K. Greenwood, D. Wagner,
D. Song, M. Finifter, J. Weinberger, and Others, “Permission Re-Delegation:
Attacks and Defenses,” in 20th Usenix Security Symposium, San Fansisco, CA,
2011. [Retrieved: 05-Mar-2013] http://research.microsoft.com/en-us/um/people/
helenw/papers/permissionredelegation.pdf

[18] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““Andromaly”:
a behavioral malware detection framework for android devices,” Journal of
Intelligent Information Systems, Jan. 2011. [Retrieved: 05-Mar-2013] http:
//www.springerlink.com/index/10.1007/s10844-010-0148-x

[19] “Oxford Advanced Learners Dictionary,” 2012. [Retrieved: 05-Mar-2013] http:
//oald8.oxfordlearnersdictionaries.com/dictionary/context

[20] TCG Trusted Network Connect Work Group, “TNC IF-MAP Binding for
SOAP, Version 2.1, Revision 15,” Trusted Computing Group, May 2012.
[Retrieved: 05-Mar-2013] http://www.trustedcomputinggroup.org/resources/tnc_
ifmap_binding_for_soap_specification

[21] ESUKOM Project Consortium, “ESUKOM Project Website.” [Retrieved: 05-Mar-
2013] http://www.esukom.de

[22] “BSI Short Information - IT Baseline Protection: the Basis for IT
Security,” Bundesamt für Sicherheit in der Informationstechnik. [Re-
trieved: 05-Mar-2013] https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/FB/F14itbas_en_pdf.pdf?__blob=publicationFile

[23] “BSI-Standard 100-1: Managementsysteme für Informationssicher-
heit (ISMS),” Bundesamt für Sicherheit in der Infor-
mationstechnik, May 2008, version 1.5. [Retrieved: 05-Mar-

243

http://appanalysis.org/tdroid10.pdf
http://research.microsoft.com/en-us/um/people/helenw/papers/permissionredelegation.pdf
http://research.microsoft.com/en-us/um/people/helenw/papers/permissionredelegation.pdf
http://www.springerlink.com/index/10.1007/s10844-010-0148-x
http://www.springerlink.com/index/10.1007/s10844-010-0148-x
http://oald8.oxfordlearnersdictionaries.com/dictionary/context
http://oald8.oxfordlearnersdictionaries.com/dictionary/context
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.esukom.de
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/FB/F14itbas_en_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/FB/F14itbas_en_pdf.pdf?__blob=publicationFile


Bibliography

2013] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
ITGrundschutzstandards/standard_1001_pdf.pdf?__blob=publicationFile

[24] “BSI-Standard 100-2: IT-Grundschutz-Vorgehensweise,” Bundesamt für Sicherheit
in der Informationstechnik, May 2008, version 2.0. [Retrieved: 05-Mar-
2013] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
ITGrundschutzstandards/standard_1002_pdf.pdf?__blob=publicationFile

[25] “BSI-Standard 100-3: Risikoanalyse auf der Basis von IT-Grundschutz,” Bundesamt
für Sicherheit in der Informationstechnik, May 2008, version 2.5. [Retrieved: 05-Mar-
2013] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
ITGrundschutzstandards/standard_1003_pdf.pdf?__blob=publicationFile

[26] “BSI-Standard 100-4: Notfallmanagement,” Bundesamt für Sicherheit in
der Informationstechnik, Nov. 2008, version 1.0. [Retrieved: 05-Mar-
2013] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
ITGrundschutzstandards/standard_1004_pdf.pdf?__blob=publicationFile

[27] “Openclipart Website.” [Retrieved: 05-Mar-2013] http://openclipart.org/

[28] “Media Access Control (MAC) Bridges and Virtual Bridge Local Area Networks,”
IEEE Computer Society, Aug. 2011, IEEE Std 802.1Q. [Retrieved: 05-Mar-2013]
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

[29] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authentication Dial
In User Service (RADIUS),” RFC 2865 (Draft Standard), Internet Engineering
Task Force, Jun. 2000, updated by RFCs 2868, 3575, 5080. [Retrieved: 05-Mar-2013]
http://www.ietf.org/rfc/rfc2865.txt

[30] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter Base Protocol,” RFC
6733 (Proposed Standard), Internet Engineering Task Force, Oct. 2012. [Retrieved:
05-Mar-2013] http://www.ietf.org/rfc/rfc6733.txt

[31] H. Zimmermann, “Osi reference model–the iso model of architecture for open sys-
tems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp.
425 – 432, apr 1980.

244

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1001_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1001_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1003_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1003_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1004_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1004_pdf.pdf?__blob=publicationFile
http://openclipart.org/
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc6733.txt


Bibliography

[32] “IEEE 802.1X Port-Based Network Access Control,” IEEE Computer Society,
Feb. 2010, IEEE 802.1X-2010. [Retrieved: 05-Mar-2013] http://standards.ieee.org/
findstds/standard/802.1X-2010.html

[33] K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention
Systems (IDPS),” National Institute of Standards and Technology (NIST), Feb.
2007. [Retrieved: 05-Mar-2013] http://csrc.nist.gov/publications/nistpubs/800-94/
SP800-94.pdf

[34] “Network Access Protection,” Microsoft Corporation, 2012, Microsoft Technet.
[Retrieved: 05-Mar-2013] http://technet.microsoft.com/en-us/network/bb545879.
aspx

[35] “Getting Started with Cisco NAC Network Modules in Cisco Access Routers,”
Cisco Systems Inc., Nov. 2012. [Retrieved: 05-Mar-2013] http://www.cisco.com/
en/US/docs/security/nac/appliance/installation_guide/netmodule/nacnmgsg.pdf

[36] TCG Trusted Network Connect Work Group, “TNC Architecture for Inter-
operability, Version 1.5, Revision 3,” Trusted Computing Group, May 2012.
[Retrieved: 05-Mar-2013] https://www.trustedcomputinggroup.org/resources/tnc_
architecture_for_interoperability_specification

[37] R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949 (Informational),
Internet Engineering Task Force, Aug. 2007. [Retrieved: 05-Mar-2013] http:
//www.ietf.org/rfc/rfc4949.txt

[38] M. Conti, V. Nguyen, and B. Crispo, “CRePE: context-related policy
enforcement for android,” in Proceedings of the 13th international conference
on Information security. Springer, 2011, pp. 331–345. [Retrieved: 05-Mar-2013]
http://www.springerlink.com/index/574882RN4T65364M.pdf

[39] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: theory and practice,” ACM Trans. Comput. Syst.,
vol. 10, no. 4, pp. 265–310, Nov. 1992. [Retrieved: 05-Mar-2013] http:
//doi.acm.org/10.1145/138873.138874

245

http://standards.ieee.org/findstds/standard/802.1X-2010.html
http://standards.ieee.org/findstds/standard/802.1X-2010.html
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://technet.microsoft.com/en-us/network/bb545879.aspx
http://technet.microsoft.com/en-us/network/bb545879.aspx
http://www.cisco.com/en/US/docs/security/nac/appliance/installation_guide/netmodule/nacnmgsg.pdf
http://www.cisco.com/en/US/docs/security/nac/appliance/installation_guide/netmodule/nacnmgsg.pdf
https://www.trustedcomputinggroup.org/resources/tnc_architecture_for_interoperability_specification
https://www.trustedcomputinggroup.org/resources/tnc_architecture_for_interoperability_specification
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4949.txt
http://www.springerlink.com/index/574882RN4T65364M.pdf
http://doi.acm.org/10.1145/138873.138874
http://doi.acm.org/10.1145/138873.138874


Bibliography

[40] A. Cummings, T. Lewellen, D. McIntire, M. A. P., and R. Trzeciak,
“Insider Threat Study: Illicit Cyber Activity Involving Fraud in the U.S.
Financial Services Sector,” Carnegie Mellon Software Engineering Institute,
Tech. Rep., Jul. 2012, (CMU/SEI-2012-SR-004). [Retrieved: 05-Mar-2013]
http://www.sei.cmu.edu/reports/12sr004.pdf

[41] M. Becher, “Security of smartphones at the dawn of their ubiquitousness,”
Ph.D. dissertation, Universität Mannheim, 2009. [Retrieved: 05-Mar-2013]
http://ub-madoc.bib.uni-mannheim.de/2998

[42] P. Zheng and L. M. Ni, “Spotlight: The rise of the smart phone,” IEEE Distributed
Systems Online, vol. 7, no. 3, pp. 3–, Mar. 2006. [Retrieved: 05-Mar-2013]
http://dx.doi.org/10.1109/MDSO.2006.22

[43] J. Stempel, “Lawsuit: Amazon Fights Apple Over ’App
Store’ Trademark Claim,” Huffington Post Website, Sep.
2012. [Retrieved: 05-Mar-2013] http://www.huffingtonpost.com/2012/09/26/
lawsuit-amazon-apple-app-store-trademark_n_1917899.html

[44] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann, “Smarttokens: Del-
egable access control with nfc-enabled smartphones,” in International Conference
on Trust & Trustworthy Computing (TRUST). Springer, Jun 2012.

[45] S. Tamrakar, J.-E. Ekberg, and N. Asokan, “Identity verification schemes for public
transport ticketing with NFC phones,” Proceedings of the sixth ACM workshop
on Scalable trusted computing - STC ’11, p. 37, 2011. [Retrieved: 05-Mar-2013]
http://dl.acm.org/citation.cfm?doid=2046582.2046591

[46] International Data Corporation (IDC), “Android marks fourth anniversary since
launch with 75.0% market share in third quarter,” Nov. 2012. [Retrieved:
05-Mar-2013] http://www.idc.com/getdoc.jsp?containerId=prUS23771812

[47] “iPhone 5 First Weekend Sales Top Five Million,” Apple Press Info,
Sep. 2012. [Retrieved: 05-Mar-2013] http://www.apple.com/pr/library/2012/09/
24iPhone-5-First-Weekend-Sales-Top-Five-Million.html

246

http://www.sei.cmu.edu/reports/12sr004.pdf
http://ub-madoc.bib.uni-mannheim.de/2998
http://dx.doi.org/10.1109/MDSO.2006.22
http://www.huffingtonpost.com/2012/09/26/lawsuit-amazon-apple-app-store-trademark_n_1917899.html
http://www.huffingtonpost.com/2012/09/26/lawsuit-amazon-apple-app-store-trademark_n_1917899.html
http://dl.acm.org/citation.cfm?doid=2046582.2046591
http://www.idc.com/getdoc.jsp?containerId=prUS23771812
http://www.apple.com/pr/library/2012/09/24iPhone-5-First-Weekend-Sales-Top-Five-Million.html
http://www.apple.com/pr/library/2012/09/24iPhone-5-First-Weekend-Sales-Top-Five-Million.html


Bibliography

[48] Koekkoek, Hendrik, “Distimo Publication Full Year 2011,” Dec. 2011. [Re-
trieved: 05-Mar-2013] http://www.distimo.com/publications/archive/Distimo%
20Publication%20-%20Full%20Year%202011.pdf

[49] “Apache License, Version 2.0,” The Apache Software Foundation, Jan. 2004.
[Retrieved: 05-Mar-2013] http://www.apache.org/licenses/LICENSE-2.0

[50] F. Scherschel, “Google plans to ease the Android update problem,”
Jun. 2012. [Retrieved: 05-Mar-2013] http://www.h-online.com/open/news/item/
Google-plans-to-ease-the-Android-update-problem-1628721.html

[51] Google Inc., “Google Dashboards,” Nov. 2012. [Retrieved: 05-Mar-2013] http:
//developer.android.com/about/dashboards/index.html

[52] R. Meier, Professional Android 4 Application Development. John Wiley & Sons,
Inc., 2012.

[53] “Google Says 700,000 Applications Available for Android,” Oct.
2012. [Retrieved: 05-Mar-2013] http://www.businessweek.com/news/2012-10-29/
google-says-700-000-applications-available-for-android-devices

[54] Google Inc., “Android API Guides,” Nov. 2012. [Retrieved: 05-Mar-2013]
http://developer.android.com/guide/components/index.html

[55] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android Security,” IEEE
Security & Privacy Magazine, vol. 7, no. 1, pp. 50–57, Jan. 2009. [Retrieved: 05-Mar-
2013] http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4768655

[56] E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application
communication in Android,” in Procs. of the 9th Annual International Conference
on Mobile Systems, Applications, and Services, 2011. [Retrieved: 05-Mar-2013]
http://www.eecs.berkeley.edu/~emc/papers/mobi168-chin.pdf

[57] C. S. Nachenberg, “A Window Into Mobile Device Security,” Symantec, Tech. Rep.,
2011. [Retrieved: 05-Mar-2013] http://www.symantec.com/about/news/release/
article.jsp?prid=20110627_02

247

http://www.distimo.com/publications/archive/Distimo%20Publication%20-%20Full%20Year%202011.pdf
http://www.distimo.com/publications/archive/Distimo%20Publication%20-%20Full%20Year%202011.pdf
http://www.apache.org/licenses/LICENSE-2.0
http://www.h-online.com/open/news/item/Google-plans-to-ease-the-Android-update-problem-1628721.html
http://www.h-online.com/open/news/item/Google-plans-to-ease-the-Android-update-problem-1628721.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-android-devices
http://developer.android.com/guide/components/index.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4768655
http://www.eecs.berkeley.edu/~emc/papers/mobi168-chin.pdf
http://www.symantec.com/about/news/release/article.jsp?prid=20110627_02
http://www.symantec.com/about/news/release/article.jsp?prid=20110627_02


Bibliography

[58] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer,
“Google Android: A Comprehensive Security Assessment,” IEEE Security &
Privacy Magazine, vol. 8, no. 2, pp. 35–44, Mar. 2010. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5396322

[59] Android Open Source Project, “Security Technical Information,” Nov. 2012.
[Retrieved: 05-Mar-2013] http://source.android.com/tech/security/index.html

[60] J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002.

[61] “Specification for the advanced encryption standard (aes),” Federal Information
Processing Standards Publication 197, 2001. [Retrieved: 05-Mar-2013] http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[62] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A. Sadeghi, and B. Shastry, “Practical
and lightweight domain isolation on Android,” in Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices. ACM, 2011,
pp. 51–62. [Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=2046624

[63] Google Inc., “The Android Developers Guide - Manifest.permission,” Nov.
2012. [Retrieved: 05-Mar-2013] http://developer.android.com/reference/android/
Manifest.permission.html

[64] A. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application
permissions,” in 2nd USENIX Conference on Web Application Development, 2011,
p. 75. [Retrieved: 05-Mar-2013] http://www.usenix.org/event/webapps11/tech/
final_files/webapps11_proceedings.pdf#page=83

[65] “<permission>,” Android API Guides, 2012. [Retrieved: 05-Mar-2013] http:
//developer.android.com/guide/topics/manifest/permission-element.html

[66] K. Au, Y. Zhou, Z. Huang, and P. Gill, “Short paper: a look at smartphone
permission models,” in Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, 2011, pp. 63–67. [Retrieved:
05-Mar-2013] http://dl.acm.org/citation.cfm?id=2046626

248

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5396322
http://source.android.com/tech/security/index.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dl.acm.org/citation.cfm?id=2046624
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.usenix.org/event/webapps11/tech/final_files/webapps11_proceedings.pdf#page=83
http://www.usenix.org/event/webapps11/tech/final_files/webapps11_proceedings.pdf#page=83
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://dl.acm.org/citation.cfm?id=2046626


Bibliography

[67] P. C. v. O. Alfred J. Menezes and S. A. Vanstone, Handbook of Applied Cryptography.
CRC Press, 2001.

[68] H. Lockheimer, “Android and Security,” Google Mobile Blog, Feb. 2012. [Retrieved:
05-Mar-2013] http://googlemobile.blogspot.de/2012/02/android-and-security.html

[69] N. J. Percoco and S. Schulte, “Adventures in BouncerLand,” Black Hat USA, 2012.
[Retrieved: 05-Mar-2013] http://media.blackhat.com/bh-us-12/Briefings/Percoco/
BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf

[70] X. Jiang, “An Evaluation of the Application ("App") Verification Service
in Android 4.2,” Personal Website, Dec. 2012. [Retrieved: 05-Mar-2013]
http://www.cs.ncsu.edu/faculty/jiang/appverify/

[71] N. Leavitt, “Malicious code moves to mobile devices,” Computer, vol. 33, no. 12,
pp. 16–19, Dec. 2000. [Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=
619058.621603

[72] S. N. Foley and R. Dumigan, “Are handheld viruses a significant threat?”
Commun. ACM, vol. 44, no. 1, pp. 105–107, Jan. 2001. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/357489.357516

[73] C. Guo, H. Wang, and W. Zhu, “Smart-phone attacks and defenses,” in
ACM Workshop on Hot Topics in Networks, 2004. [Retrieved: 05-Mar-2013]
http://research.microsoft.com/en-us/um/people/helenw/papers/smartphone.pdf

[74] J. Jamaluddin, N. Zotou, and P. Coulton, “Mobile phone vulnerabilities: a
new generation of malware,” in IEEE International Symposium on Consumer
Electronics, 2004. IEEE, 2004, pp. 199–202. [Retrieved: 05-Mar-2013] http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1375935

[75] N. Leavitt, “Mobile phones: The next frontier for hackers?” Computer, vol. 38,
no. 4, pp. 20–23, Apr. 2005. [Retrieved: 05-Mar-2013] http://dx.doi.org/10.1109/
MC.2005.134

[76] M. Hypponen, “State of cell phone malware in 2007,” 2007, talk given at
the 16th Usenix Security Symposium, Boston, MA. [Retrieved: 05-Mar-2013]
http://static.usenix.org/event/sec07/tech/hypponen.pdf

249

http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://dl.acm.org/citation.cfm?id=619058.621603
http://dl.acm.org/citation.cfm?id=619058.621603
http://doi.acm.org/10.1145/357489.357516
http://research.microsoft.com/en-us/um/people/helenw/papers/smartphone.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1375935
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1375935
http://dx.doi.org/10.1109/MC.2005.134
http://dx.doi.org/10.1109/MC.2005.134
http://static.usenix.org/event/sec07/tech/hypponen.pdf


Bibliography

[77] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C. Wolf,
“Mobile Security Catching Up? Revealing the Nuts and Bolts of the Security of
Mobile Devices,” in Proceedings of the 2011 IEEE Symposium on Security and
Privacy, ser. SP ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
96–111. [Retrieved: 05-Mar-2013] http://dx.doi.org/10.1109/SP.2011.29

[78] J. Oberheide and F. Jahanian, “When mobile is harder than fixed (and vice
versa): demystifying security challenges in mobile environments,” in Proceedings
of the Eleventh Workshop on Mobile Computing Systems & Applications. ACM,
2010, pp. 43–48. [Retrieved: 05-Mar-2013] http://portal.acm.org/citation.cfm?id=
1734583.1734595

[79] B. Dixon, Y. Jiang, and A. Jaiantilal, “Location based power analysis to
detect malicious code in smartphones,” in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, 2011, pp. 27–32.
[Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=2046620

[80] S. Egelman, A. P. Felt, and D. Wagner, “Choice Architecture and Smartphone
Privacy : There ’ s A Price for That,” in Workshop on the Economics
of Information Security (WEIS) 2012, 2012. [Retrieved: 05-Mar-2013] http:
//www.guanotronic.com/~serge/papers/weis12.pdf

[81] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in
smartphone security and privacy,” in Proceedings of the Eighth Symposium on
Usable Privacy and Security - SOUPS ’12, no. 1. New York, New York, USA:
ACM Press, 2012. [Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?doid=
2335356.2335358

[82] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “Towards Formal
Analysis of the Permission-Based Security Model for Android,” 2009 Fifth
International Conference on Wireless and Mobile Communications, pp. 87–92,
2009. [Retrieved: 05-Mar-2013] http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5279458

[83] ——, “A Formal Model to Analyze the Permission Authorization and
Enforcement in the Android Framework,” 2010 IEEE Second International

250

http://dx.doi.org/10.1109/SP.2011.29
http://portal.acm.org/citation.cfm?id=1734583.1734595
http://portal.acm.org/citation.cfm?id=1734583.1734595
http://dl.acm.org/citation.cfm?id=2046620
http://www.guanotronic.com/~serge/papers/weis12.pdf
http://www.guanotronic.com/~serge/papers/weis12.pdf
http://dl.acm.org/citation.cfm?doid=2335356.2335358
http://dl.acm.org/citation.cfm?doid=2335356.2335358
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5279458
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5279458


Bibliography

Conference on Social Computing, pp. 944–951, Aug. 2010. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5591409

[84] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A small but non-
negligible flaw in the android permission scheme,” in Policies for Distributed Systems
and Networks (POLICY), 2010 IEEE International Symposium on, july 2010, pp.
107 –110. [Retrieved: 05-Mar-2013] http://dx.doi.org/10.1109/POLICY.2010.11

[85] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and enhancing android’s
permission system,” in ESORICS, ser. Lecture Notes in Computer Science,
S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459. Springer, 2012, pp. 1–18.
[Retrieved: 05-Mar-2013] http://dx.doi.org/10.1007/978-3-642-33167-1_1

[86] N. Hardy, “The Confused Deputy: (or why capabilities might have been invented),”
ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp. 36–38, Oct. 1988.
[Retrieved: 05-Mar-2013] http://portal.acm.org/citation.cfm?doid=54289.871709

[87] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji, “A methodology
for empirical analysis of permission-based security models and its application
to android,” in Proceedings of the 17th ACM conference on Computer and
communications security, no. 1. ACM, 2010, pp. 73–84. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1866307.1866317

[88] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, 1990. [Retrieved: 05-Mar-2013] http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=58325

[89] J. Saltzer and M. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, pp. 1278–1308, 1975. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1451869

[90] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 2011, pp. 627–638. [Retrieved: 05-Mar-2013]
http://dl.acm.org/citation.cfm?id=2046779

251

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5591409
http://dx.doi.org/10.1109/POLICY.2010.11
http://dx.doi.org/10.1007/978-3-642-33167-1_1
http://portal.acm.org/citation.cfm?doid=54289.871709
http://portal.acm.org/citation.cfm?id=1866307.1866317
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=58325
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=58325
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1451869
http://dl.acm.org/citation.cfm?id=2046779


Bibliography

[91] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission creep,” in
Proceedings of the Web 2.0 Security and Privacy 2011 workshop (W2SP 2011),
vol. 2, Oakland, CA, 2011. [Retrieved: 05-Mar-2013] http://www.andrew.cmu.edu/
user/nicolasc/publications/VCC-W2SP11.pdf

[92] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
permissions: user attention, comprehension, and behavior,” in Proceedings of
the Eighth Symposium on Usable Privacy and Security, ser. SOUPS ’12.
New York, NY, USA: ACM, 2012, pp. 3:1–3:14. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/2335356.2335360

[93] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How to ask
for permission,” in Proceedings of the 7th USENIX conference on Hot Topics in
Security, ser. HotSec’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 7–7.
[Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=2372387.2372394

[94] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability leaks
in stock Android smartphones,” in Proceedings of the 19th Network and Distributed
System Security Symposium (NDSS), Feb. 2012. [Retrieved: 05-Mar-2013]
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf

[95] M. Miettinen and P. Halonen, “Host-Based Intrusion Detection for Advanced Mobile
Devices,” in 20th International Conference on Advanced Information Networking
and Applications - Volume 1 (AINA’06). Ieee, 2006, pp. 72–76. [Retrieved: 05-Mar-
2013] http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1620356

[96] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM
Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?doid=1541880.1541882

[97] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in Proceedings
of the 10th ACM conference on Computer and communications security, ser. CCS
’03. New York, NY, USA: ACM, 2003, pp. 251–261. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/948109.948144

[98] Q. Xu, J. Erman, A. Gerber, and Z. Mao, “Identifying diverse usage behaviors
of smartphone apps,” in Proceedings of the 2011 ACM SIGCOMM conference

252

http://www.andrew.cmu.edu/user/nicolasc/publications/VCC-W2SP11.pdf
http://www.andrew.cmu.edu/user/nicolasc/publications/VCC-W2SP11.pdf
http://doi.acm.org/10.1145/2335356.2335360
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1620356
http://portal.acm.org/citation.cfm?doid=1541880.1541882
http://doi.acm.org/10.1145/948109.948144


Bibliography

on Internet measurement conference (IMC’11), 2011. [Retrieved: 05-Mar-2013]
http://dl.acm.org/citation.cfm?id=2068816.2068847

[99] W. Enck, D. Octeau, P. Mcdaniel, S. Chaudhuri, and I. Infrastructure,
“A Study of Android Application Security,” in Proceedings of the 20th
USENIX Security Symposium, San Francisco, 2011. [Retrieved: 05-Mar-2013]
http://www.enck.org/pubs/enck-sec11.pdf

[100] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: detecting privacy leaks
in iOS applications,” in Network and Distributed System Security Symposium
(NDSS), 2011. [Retrieved: 05-Mar-2013] http://www.seclab.tuwien.ac.at/papers/
egele-ndss11.pdf

[101] A. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile
malware in the wild,” in Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM, 2011, pp. 3–14. [Retrieved:
05-Mar-2013] http://dl.acm.org/citation.cfm?id=2046618

[102] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and B. Freisleben,
“Why eve and mallory love android: an analysis of android ssl (in)security,”
in Proceedings of the 2012 ACM conference on Computer and communications
security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 50–61. [Retrieved:
05-Mar-2013] http://doi.acm.org/10.1145/2382196.2382205

[103] B. Sanz, I. Santos, and C. Laorden, “On the Automatic Categorisa-
tion of Android Applications,” in Proceedings of the 9th IEEE Consumer
Communications and Networking Conference (CCNC), 2012. [Retrieved: 05-Mar-
2013] http://paginaspersonales.deusto.es/isantos/publications/2012/Sanz_2012_
CCNC_Android_Apps_Categorisation.pdf

[104] J. Pearl, “Reverend Bayes on inference engines: A distributed hierarchical ap-
proach,” in Proceedings of the American Association of Artificial Intelligence Na-
tional Conference on AI, Pittsburgh, PA, 1982, pp. 133–136.

[105] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106,
Mar. 1986. [Retrieved: 05-Mar-2013] http://dx.doi.org/10.1023/A:1022643204877

253

http://dl.acm.org/citation.cfm?id=2068816.2068847
http://www.enck.org/pubs/enck-sec11.pdf
http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://dl.acm.org/citation.cfm?id=2046618
http://doi.acm.org/10.1145/2382196.2382205
http://paginaspersonales.deusto.es/isantos/publications/2012/Sanz_2012_CCNC_Android_Apps_Categorisation.pdf
http://paginaspersonales.deusto.es/isantos/publications/2012/Sanz_2012_CCNC_Android_Apps_Categorisation.pdf
http://dx.doi.org/10.1023/A:1022643204877


Bibliography

[106] Fix, Evelyn and Hodges, Jr, J. L., “Discriminatory Analysis - Nonparametric Dis-
crimination: Small Sample Performance,” Project 21-49-004, Report Number 11,
Tech. Rep., 1952.

[107] M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support vector ma-
chines,” Intelligent Systems and their Applications, IEEE, vol. 13, no. 4, pp. 18 –28,
jul/aug 1998.

[108] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone
applications in third-party android marketplaces,” in Proceedings of the second
ACM conference on Data and Application Security and Privacy, ser. CODASPY
’12. New York, NY, USA: ACM, 2012, pp. 317–326. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/2133601.2133640

[109] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy,
ser. SP ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 95–109.
[Retrieved: 05-Mar-2013] http://dx.doi.org/10.1109/SP.2012.16

[110] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets,” in Proceedings
of the 19th Network and Distributed System Security Symposium (NDSS), Feb. 2012.
[Retrieved: 05-Mar-2013] http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf

[111] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: scalable
and accurate zero-day android malware detection,” in Proceedings of the 10th
international conference on Mobile systems, applications, and services, ser. MobiSys
’12. New York, NY, USA: ACM, 2012, pp. 281–294. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/2307636.2307663

[112] T. Vidas, D. Votipka, and N. Christin, “All your droid are belong to us: A survey of
current android attacks,” in Proceedings of the 5th USENIX Workshop on Offensive
Technologies (WOOT). USENIX Association, 2011, pp. 10–10. [Retrieved:
05-Mar-2013] http://www.usenix.org/event/woot/tech/final_files/Vidas.pdf

254

http://doi.acm.org/10.1145/2133601.2133640
http://dx.doi.org/10.1109/SP.2012.16
http://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf
http://doi.acm.org/10.1145/2307636.2307663
http://www.usenix.org/event/woot/tech/final_files/Vidas.pdf


Bibliography

[113] TCG Trusted Platform Module Work Group, “TPMMain Part 1 Design Principles,”
Mar 2011, specification Version 1.2 Level 2 Revision 116. [Retrieved: 05-Mar-2013]
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[114] ——, “TPM Main Part 2 TPM Structures,” Mar 2011, specifi-
cation Version 1.2 Level 2 Revision 116. [Retrieved: 05-Mar-2013]
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[115] ——, “TPM Main Part 3 Commands,” Mar 2011, specification Version 1.2 Level
2 Revision 116. [Retrieved: 05-Mar-2013] http://www.trustedcomputinggroup.org/
resources/tpm_main_specification

[116] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe,
S. Albayrak, and C. Yildizli, Smartphone malware evolution revisited: Android
next target? IEEE, Oct. 2009. [Retrieved: 05-Mar-2013] http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5403026

[117] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode, “Rootkits on
smart phones: attacks, implications and opportunities,” in Proceedings of the
Eleventh Workshop on Mobile Computing Systems & Applications, ser. HotMobile
’10. New York, NY, USA: ACM, 2010, pp. 49–54. [Retrieved: 05-Mar-2013]
http://doi.acm.org/10.1145/1734583.1734596

[118] L. Liu, X. Zhang, G. Yan, and S. Chen, “Exploitation and threat analysis of open
mobile devices,” Proceedings of the 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems - ANCS ’09, p. 20, 2009. [Retrieved:
05-Mar-2013] http://portal.acm.org/citation.cfm?doid=1882486.1882493

[119] P. Traynor, M. Lin, M. Ongtang, and V. Rao, “On cellular botnets: Measuring
the impact of malicious devices on a cellular network core,” in Proceedings of the
16th ACM conference on Computer and communications security. ACM, 2009, pp.
223–234. [Retrieved: 05-Mar-2013] http://portal.acm.org/citation.cfm?id=1653662.
1653690

[120] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee, “Evaluating bluetooth
as a medium for botnet command and control,” Detection of Intrusions and

255

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5403026
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5403026
http://doi.acm.org/10.1145/1734583.1734596
http://portal.acm.org/citation.cfm?doid=1882486.1882493
http://portal.acm.org/citation.cfm?id=1653662.1653690
http://portal.acm.org/citation.cfm?id=1653662.1653690


Bibliography

Malware, and Vulnerability Assessment, pp. 61–80, 2010. [Retrieved: 05-Mar-2013]
http://www.springerlink.com/index/k767q0424076444t.pdf

[121] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and M. Winandy,
“Return-oriented programming without returns,” in Proceedings of the 17th ACM
conference on Computer and communications security. ACM, 2010, pp. 559–572.
[Retrieved: 05-Mar-2013] http://portal.acm.org/citation.cfm?id=1866370

[122] A. Egners, U. Meyer, and B. Marschollek, “Messing with android’s permission
model,” in Proceedings of the 2012 IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, ser. TRUSTCOM ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 505–514. [Retrieved:
05-Mar-2013] http://dx.doi.org/10.1109/TrustCom.2012.203

[123] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on webview in the
android system,” in Proceedings of the 27th Annual Computer Security Applications
Conference, ser. ACSAC ’11. New York, NY, USA: ACM, 2011, pp. 343–352.
[Retrieved: 05-Mar-2013] http://doi.acm.org/10.1145/2076732.2076781

[124] C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M. Gissing, A. Marsalek,
J. Leibetseder, and O. Prevenhueber, “Android security permissions – can we trust
them?” in Security and Privacy in Mobile Information and Communication Systems,
ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, R. Prasad, K. Farkas, A. Schmidt, A. Lioy,
G. Russello, and F. Luccio, Eds. Springer Berlin Heidelberg, 2012, vol. 94, pp.
40–51. [Retrieved: 05-Mar-2013] http://dx.doi.org/10.1007/978-3-642-30244-2_4

[125] A. Felt and D. Wagner, “Phishing on Mobile Devices,” in W2SP 2011, 2011.
[Retrieved: 05-Mar-2013] http://www.cs.berkeley.edu/~afelt/felt-mobilephishing.
pdf

[126] D. Muthukumaran, A. Sawani, J. Schiffman, B. Jung, and T. Jaeger, “Measuring
integrity on mobile phone systems,” in Proceedings of the 13th ACM symposium
on Access control models and technologies. ACM, 2008, pp. 155–164. [Retrieved:
05-Mar-2013] http://portal.acm.org/citation.cfm?id=1377836.1377862

256

http://www.springerlink.com/index/k767q0424076444t.pdf
http://portal.acm.org/citation.cfm?id=1866370
http://dx.doi.org/10.1109/TrustCom.2012.203
http://doi.acm.org/10.1145/2076732.2076781
http://dx.doi.org/10.1007/978-3-642-30244-2_4
http://www.cs.berkeley.edu/~afelt/felt-mobilephishing.pdf
http://www.cs.berkeley.edu/~afelt/felt-mobilephishing.pdf
http://portal.acm.org/citation.cfm?id=1377836.1377862


Bibliography

[127] U. Shankar, T. Jaeger, and R. Sailer, “Toward automated information-flow
integrity verification for security-critical applications,” in Proceedings of the 2006
ISOC Networked and Distributed Systems Security Symposium. Citeseer, 2006.
[Retrieved: 05-Mar-2013] http://www.cse.psu.edu/~tjaeger/papers/ndss06.pdf

[128] K. Biba, “Integrity considerations for secure computer systems,” MITRE
CORP BEDFORD MA, Tech. Rep., 1977. [Retrieved: 05-Mar-2013] http:
//www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf

[129] W. Enck, M. Ongtang, and P. McDaniel, “Mitigating Android software
misuse before it happens,” Technical Report NAS-TR-0094-2008, Pennsylvania
State University, Tech. Rep. November, 2008. [Retrieved: 05-Mar-2013] http:
//www.enck.org/pubs/NAS-TR-0094-2008.pdf

[130] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-
wide information flow for malware detection and analysis,” in Proceedings of the
14th ACM conference on Computer and communications security. ACM, 2007, pp.
116–127. [Retrieved: 05-Mar-2013] http://portal.acm.org/citation.cfm?id=1315261

[131] P. Hornyack, S. Han, J. Jung, and S. Schechter, “These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications,”
in Proceedings of the 18th ACM conference on Computer and communications
security. New York, New York, USA: ACM Press, 2011, pp. 639–652. [Retrieved:
05-Mar-2013] http://dl.acm.org/citation.cfm?doid=2046707.2046780

[132] M. Nauman, S. Khan, and X. Zhang, “Apex: extending Android permission
model and enforcement with user-defined runtime constraints,” in Proceedings
of the 5th ACM Symposium on Information, Computer and Communications
Security (ASIACCS). ACM, 2010, pp. 328–332. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1755732

[133] M. Ongtang, K. Butler, and P. McDaniel, “Porscha: policy oriented secure content
handling in Android,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 221–230. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1920295

257

http://www.cse.psu.edu/~tjaeger/papers/ndss06.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a039324.pdf
http://www.enck.org/pubs/NAS-TR-0094-2008.pdf
http://www.enck.org/pubs/NAS-TR-0094-2008.pdf
http://portal.acm.org/citation.cfm?id=1315261
http://dl.acm.org/citation.cfm?doid=2046707.2046780
http://portal.acm.org/citation.cfm?id=1755732
http://portal.acm.org/citation.cfm?id=1920295


Bibliography

[134] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” in
SIAM Journal on Computing, vol. 32, no. 3. Springer, 2001, pp. 213–229. [Retrieved:
05-Mar-2013] http://www.springerlink.com/index/bf5j8nhdp32pxqgy.pdf

[135] M. Dietz, S. Shekhar, Y. Pisetsky, and A. Shu, “Quire: Lightweight Provenance
for Smart Phone Operating Systems,” in 20th USENIX Security Symposium, San
Francisco, 2011. [Retrieved: 05-Mar-2013] http://arxiv.org/abs/1102.2445

[136] L. Xie, X. Zhang, J. Seifert, and S. Zhu, “pBMDS: a behavior-based malware
detection system for cellphone devices,” in Proceedings of the third ACM conference
on Wireless network security. ACM, 2010, pp. 37–48. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1741874

[137] Y. Zhou and X. Zhang, “Taming information-stealing smartphone applications
(on Android),” in Trust and Trustworthy Computing, no. November 2009, 2011.
[Retrieved: 05-Mar-2013] http://www.springerlink.com/index/K1874275275088L2.
pdf

[138] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi, “XManDroid:
A New Android Evolution to Mitigate Privilege Escalation Attacks,” CASED:
Center for Advanced Security Research Darmstadt, Darmstadt, Tech. Rep., 2011.
[Retrieved: 05-Mar-2013] http://www.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_TRUST/PubsPDF/xmandroid.pdf

[139] S. Bugiel, L. Davi, A. Dmitrienko, and T. Fischer, “Towards Taming Privilege-
Escalation Attacks on Android,” in 19th Annual Network & Distributed System
Security Symposium (NDSS), 2012. [Retrieved: 05-Mar-2013] http://www.trust.
informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/
NDSS_2012_Towards_Taming_Privilege-Escalation_Attacks_on_Android.pdf

[140] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: privilege
separation for applications and advertisers in android,” in Proceedings of the
7th ACM Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’12. New York, NY, USA: ACM, 2012, pp. 71–72. [Retrieved:
05-Mar-2013] http://doi.acm.org/10.1145/2414456.2414498

258

http://www.springerlink.com/index/bf5j8nhdp32pxqgy.pdf
http://arxiv.org/abs/1102.2445
http://portal.acm.org/citation.cfm?id=1741874
http://www.springerlink.com/index/K1874275275088L2.pdf
http://www.springerlink.com/index/K1874275275088L2.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/xmandroid.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/xmandroid.pdf
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/NDSS_2012_Towards_Taming_Privilege-Escalation_Attacks_on_Android.pdf
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/NDSS_2012_Towards_Taming_Privilege-Escalation_Attacks_on_Android.pdf
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/NDSS_2012_Towards_Taming_Privilege-Escalation_Attacks_on_Android.pdf
http://doi.acm.org/10.1145/2414456.2414498


Bibliography

[141] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis
of mobile in-app advertisements,” in Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks, vol. 067, no. Section 2, 2012,
pp. 101–112. [Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=2185464

[142] J. Cheng, S. Wong, and H. Yang, “SmartSiren: virus detection and alert for
smartphones,” in Proceedings of the 5th international conference on Mobile systems,
applications and services. ACM, 2007, pp. 258–271. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1247690

[143] H. Kim and J. Smith, “Detecting energy-greedy anomalies and mobile malware
variants,” in Proceeding of the 6th international conference on Mobile systems,
applications, and services. ACM, 2008, pp. 239–252. [Retrieved: 05-Mar-2013]
http://portal.acm.org/citation.cfm?id=1378600.1378627

[144] T. Buennemeyer, T. Nelson, L. Clagett, J. Dunning, R. Marchany, and
J. Tront, “Mobile device profiling and intrusion detection using smart
batteries,” in Hawaii International Conference on System Sciences, Proceedings
of the 41st Annual. IEEE, Jan. 2008, pp. 296–296. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4439001

[145] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian, “Virtualized
in-cloud security services for mobile devices,” in Proceedings of the First Workshop
on Virtualization in Mobile Computing. ACM, 2008, pp. 31–35. [Retrieved:
05-Mar-2013] http://portal.acm.org/citation.cfm?id=1622103.1629656

[146] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software,” in In
Proceedings of the Network and Distributed System Security Symposium (NDSS
2005), 2005. [Retrieved: 05-Mar-2013] http://valgrind.org/docs/newsome2005.pdf

[147] A.-D. Schmidt, F. Peters, F. Lamour, C. Scheel, S. A. Camtepe, and
S. Albayrak, “Monitoring Smartphones for Anomaly Detection,” Mobile Networks
and Applications, vol. 14, no. 1, pp. 92–106, Nov. 2008. [Retrieved: 05-Mar-2013]
http://www.springerlink.com/index/10.1007/s11036-008-0113-x

259

http://dl.acm.org/citation.cfm?id=2185464
http://portal.acm.org/citation.cfm?id=1247690
http://portal.acm.org/citation.cfm?id=1378600.1378627
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4439001
http://portal.acm.org/citation.cfm?id=1622103.1629656
http://valgrind.org/docs/newsome2005.pdf
http://www.springerlink.com/index/10.1007/s11036-008-0113-x


Bibliography

[148] T. Bläsing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Albayrak, “An
Android Application Sandbox system for suspicious software detection,”
in Malicious and Unwanted Software (MALWARE), 2010 5th International
Conference on. IEEE, 2010, pp. 55–62. [Retrieved: 05-Mar-2013] http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665792

[149] I. Burguera and U. Zurutuza, “Crowdroid: behavior-based malware detection
system for Android,” in Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, 2011, pp. 15–25. [Retrieved:
05-Mar-2013] http://dl.acm.org/citation.cfm?id=2046619

[150] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. a.
Yuksel, S. a. Camtepe, and S. Albayrak, “Static Analysis of Executables
for Collaborative Malware Detection on Android,” 2009 IEEE International
Conference on Communications, pp. 1–5, Jun. 2009. [Retrieved: 05-Mar-2013]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5199486

[151] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in Proceedings of the Fifteenth International Conference on
Machine Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 144–151. [Retrieved: 05-Mar-2013] http:
//dl.acm.org/citation.cfm?id=645527.657305

[152] J. Cendrowska, “Prism: An algorithm for inducing modular rules.” International
Journal of Man-Machine Studies, vol. 27, no. 4, pp. 349–370, 1987. [Retrieved:
05-Mar-2013] http://dx.doi.org/10.1016/S0020-7373(87)80003-2

[153] M. Nauman, S. Khan, X. Zhang, and J. Seifert, “Beyond Kernel-Level
Integrity Measurement: Enabling Remote Attestation for the Android Platform,”
Trust and Trustworthy Computing, pp. 1–15, 2010. [Retrieved: 05-Mar-2013]
http://www.springerlink.com/index/7646533475760130.pdf

[154] TCG Trusted Network Connect Work Group, “TNC IF-MAP Metadata for
Network Security, Version 1.1, Revision 8,” Trusted Computing Group, May 2012.
[Retrieved: 05-Mar-2013] http://www.trustedcomputinggroup.org/resources/tnc_
ifmap_metadata_for_network_security

260

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665792
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665792
http://dl.acm.org/citation.cfm?id=2046619
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5199486
http://dl.acm.org/citation.cfm?id=645527.657305
http://dl.acm.org/citation.cfm?id=645527.657305
http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://www.springerlink.com/index/7646533475760130.pdf
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_network_security
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_network_security


Bibliography

[155] ——, “TNC IF-MAP Metadata for ICS Security, Version 1.0, Revision 39,”
Trusted Computing Group, October 2012. [Retrieved: 05-Mar-2013] http://www.
trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_ics_security

[156] E. Rescorla, “HTTP Over TLS,” RFC 2818 (Informational), Internet Engineering
Task Force, May 2000, updated by RFC 5785. [Retrieved: 05-Mar-2013]
http://www.ietf.org/rfc/rfc2818.txt

[157] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force,
Aug. 2008, updated by RFCs 5746, 5878, 6176. [Retrieved: 05-Mar-2013]
http://www.ietf.org/rfc/rfc5246.txt

[158] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart, “HTTP Authentication: Basic and Digest Access Authentication,” RFC
2617 (Draft Standard), Internet Engineering Task Force, Jun. 1999. [Retrieved:
05-Mar-2013] http://www.ietf.org/rfc/rfc2617.txt

[159] M. Boisot and A. Canals, “Data, information and knowledge: have we got it
right?” Journal of Evolutionary Economics, vol. 14, no. 1, pp. 43–67, Jan. 2004.
[Retrieved: 05-Mar-2013] http://dx.doi.org/10.1007/s00191-003-0181-9

[160] “Code Conventions for the Java TM Programming Language,” Oracle Corporation,
Apr 1999. [Retrieved: 05-Mar-2013] http://www.oracle.com/technetwork/java/
javase/documentation/codeconvtoc-136057.html

[161] L. Svobodova, “Client/server model of distributed processing,” in Proceedings on
Kommunikation in Verteilten Systemen I. London, UK, UK: Springer-Verlag,
1985, pp. 485–498. [Retrieved: 05-Mar-2013] http://dl.acm.org/citation.cfm?id=
645663.664729

[162] M. Fontoura, S. Sadanandan, J. Shanmugasundaram, S. Vassilvitski, E. Vee,
S. Venkatesan, and J. Zien, “Efficiently evaluating complex boolean expressions,” in
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 3–14. [Retrieved:
05-Mar-2013] http://doi.acm.org/10.1145/1807167.1807171

261

http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_ics_security
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_metadata_for_ics_security
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2617.txt
http://dx.doi.org/10.1007/s00191-003-0181-9
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://dl.acm.org/citation.cfm?id=645663.664729
http://dl.acm.org/citation.cfm?id=645663.664729
http://doi.acm.org/10.1145/1807167.1807171


Bibliography

[163] TCG Trusted Network Connect Work Group, “TNC IF-MAP Binding for
SOAP, Version 2.0, Revision 47,” Trusted Computing Group, May 2012.
[Retrieved: 05-Mar-2013] http://www.trustedcomputinggroup.org/resources/tnc_
ifmap_binding_for_soap_specification

[164] W3C, “Extensible Markup Language (XML) 1.0 (Fifth Edition),” Feb. 2008.
[Retrieved: 05-Mar-2013] http://www.w3.org/TR/2008/PER-xml-20080205/

[165] ——, “XML Schema Part 0: Primer Second Edition,” Oct. 2004. [Retrieved:
05-Mar-2013] http://www.w3.org/TR/xmlschema-0/

[166] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of Management
Information Version 2 (SMIv2),” RFC 2578 (Standard), Internet Engineering Task
Force, Apr. 1999. [Retrieved: 05-Mar-2013] http://www.ietf.org/rfc/rfc2578.txt

[167] Internet Assigned Numbers Authority (IANA), “PRIVATE ENTERPRISE NUM-
BERS,” Dec. 2012. [Retrieved: 05-Mar-2013] http://www.iana.org/assignments/
enterprise-numbers

[168] Trust@FHH Research Group, “Trust@FHH Website.” [Retrieved: 05-Mar-2013]
http://www.trust.inform.fh-hannover.de

[169] ——, “Trust@FHH GitHub Account.” [Retrieved: 05-Mar-2013] https://github.
com/trustatfhh

[170] TCG, “Trusted Computing Group Offers Security Assurances for Systems and
Networks with Certified Products,” News on Website, Nov. 2012. [Retrieved:
05-Mar-2013] https://www.trustedcomputinggroup.org/media_room/news/269

[171] W3C, “Document Object Model (DOM).” [Retrieved: 05-Mar-2013] http:
//www.w3.org/DOM/

[172] J. F. Kenney and E. S. Keeping, Linear Regression and Correlation. Van Nostrand,
1964, Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ.

[173] T. Ruhe, “Development of an Android Usage Study System,” Master’s Thesis,
Hochschule Hannover, Sep. 2012.

262

http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.w3.org/TR/2008/PER-xml-20080205/
http://www.w3.org/TR/xmlschema-0/
http://www.ietf.org/rfc/rfc2578.txt
http://www.iana.org/assignments/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers
http://www.trust.inform.fh-hannover.de
https://github.com/trustatfhh
https://github.com/trustatfhh
https://www.trustedcomputinggroup.org/media_room/news/269
http://www.w3.org/DOM/
http://www.w3.org/DOM/


Bibliography

[174] Trust@FHH Research Group, “Android Usage Study Project Website.”
[Retrieved: 05-Mar-2013] https://trust.inform.fh-hannover.de/trust_redmine/
projects/android-usage-study-2012

[175] R. Steuerwald, “Integration von OpenVAS in IF-MAP,” Bachelor’s Thesis,
Hochschule Hannover, Jun. 2011.

[176] Trust@FHH Research Group, “How to setup and use ironvas.” [Retrieved: 05-
Mar-2013] https://trust.inform.fh-hannover.de/trust_redmine/projects/iron/wiki/
How_to_setup_and_use_ironvas

[177] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.

[178] S. Viehböck, “Brute forcing Wi-Fi Protected Setup,” Dec. 2012. [Retrieved:
05-Mar-2013] http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf

[179] “That square QR barcode on the poster? Check it’s not a sticker,”
News on Website, The Register, Dec. 2012. [Retrieved: 05-Mar-2013] http:
//www.theregister.co.uk/2012/12/10/qr_code_sticker_scam/

[180] “Federal Data Protection Act (Bundesdatenschutzgesetz - as of 1
September 2009).” [Retrieved: 05-Mar-2013] http://www.bfdi.bund.de/EN/
DataProtectionActs/Artikel/BDSG_idFv01092009.pdf?__blob=publicationFile

[181] “Commission proposes a comprehensive reform of data protection rules to increase
users’ control of their data and to cut costs for businesses,” Jan. 2012. [Retrieved:
05-Mar-2013] http://europa.eu/rapid/press-release_IP-12-46_en.htm?locale=en

[182] I. Bente, G. Dreo, B. Hellmann, J. Vieweg, and J. von Helden, “TCADS: Trustwor-
thy, Context-related Anomaly Detection for Smartphones,” Presented at the 15th In-
ternational Conference on Network-Based Information Systems (NBiS 2012), 2012,
Best Paper Award.

[183] I. Bente, B. Hellmann, T. Rossow, J. Vieweg, and J. von Helden, “On Remote
Attestation for Google Chrome OS,” Presented at the 15th International Conference
on Network-Based Information Systems (NBiS 2012), 2012.

263

https://trust.inform.fh-hannover.de/trust_redmine/projects/android-usage-study-2012
https://trust.inform.fh-hannover.de/trust_redmine/projects/android-usage-study-2012
https://trust.inform.fh-hannover.de/trust_redmine/projects/iron/wiki/How_to_setup_and_use_ironvas
https://trust.inform.fh-hannover.de/trust_redmine/projects/iron/wiki/How_to_setup_and_use_ironvas
http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://www.theregister.co.uk/2012/12/10/qr_code_sticker_scam/
http://www.theregister.co.uk/2012/12/10/qr_code_sticker_scam/
http://www.bfdi.bund.de/EN/DataProtectionActs/Artikel/BDSG_idFv01092009.pdf?__blob=publicationFile
http://www.bfdi.bund.de/EN/DataProtectionActs/Artikel/BDSG_idFv01092009.pdf?__blob=publicationFile
http://europa.eu/rapid/press-release_IP-12-46_en.htm?locale=en


Bibliography

[184] R. Marx, N. Kuntze, C. Rudolph, I. Bente, and J. Vieweg, “Trusted Service Access
with Dynamic Security Infrastructure Configuration,” Presented at the 18th Asia-
Pacific Conference on Communications (APCC 2012), 2012.

[185] I. Bente, G. Dreo, B. Hellmann, J. Vieweg, and J. von Helden, “Trustworthy
Anomaly Detection for Smartphones,” Poster presented at the 13th Workshop on
Mobile Computing Systems and Applications (HotMobile 2012), 2012.

[186] K.-O. Detken, D. Scheuermann, I. Bente, and J. Westerkamp, “Automatisches
Erkennen mobiler Angriffe auf die IT-Infrastruktur,” in D.A.CH Security 2012:
Bestandsaufnahme, Konzepte, Anwendungen und Perspektiven, P. Schartner and
J. Taeger, Eds. syssec Verlag, 2012.

[187] I. Bente, G. Dreo, B. Hellmann, S. Heuser, J. Vieweg, J. Helden, and
J. Westhuis, “Towards Permission-Based Attestation for the Android Platform,”
in Trust and Trustworthy Computing, ser. Lecture Notes in Computer Science,
J. McCune, B. Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres, Eds.
Springer Berlin Heidelberg, 2011, vol. 6740, pp. 108–115. [Retrieved: 05-Mar-2013]
http://dx.doi.org/10.1007/978-3-642-21599-5_8

[188] K.-O. Detken, D. Dunekacke, and I. Bente, “Konsolidierung von Metadaten zur Er-
höhung der Unternehmenssicherheit,” in D.A.CH Security 2011: Bestandsaufnahme,
Konzepte, Anwendungen und Perspektiven, P. Schartner and J. Taeger, Eds. syssec
Verlag, 2011.

[189] N. Kuntze, C. Rudolph, I. Bente, J. Vieweg, and J. von Helden, “Interoperable
device identification in Smart-Grid environments,” in Power and Energy Society
General Meeting, 2011 IEEE, july 2011, pp. 1 –7.

[190] I. Bente, J. Vieweg, and J. Helden, “Towards Trustworthy Networks with Open
Source Software,” in Horizons in Computer Science Research, T. S. Clary, Ed. Nova
Publishers, 2011, vol. 3.

[191] I. Bente, B. Hellmann, J. Vieweg, J. von Helden, and A. Welzel, “Interoperable
remote attestation for VPN environments,” in Proceedings of the Second
international conference on Trusted Systems, ser. INTRUST’10. Berlin,

264

http://dx.doi.org/10.1007/978-3-642-21599-5_8


Bibliography

Heidelberg: Springer-Verlag, 2011, pp. 302–315. [Retrieved: 05-Mar-2013] http:
//dx.doi.org/10.1007/978-3-642-25283-9_20

[192] I. Bente, J. Vieweg, and J. Helden, “ESUKOM: Smartphone Security for Enterprise
Networks,” in ISSE 2011 Securing Electronic Business Processes, N. Pohlmann,
H. Reimer, andW. Schneider, Eds. Vieweg + Teubner Verlag | Springer Fachmedien
Wiesbaden GmbH, 2012.

[193] ——, “Countering Phishing with TPM-bound Credentials,” in ISSE 2010 Securing
Electronic Business Processes, N. Pohlmann, H. Reimer, and W. Schneider,
Eds. Vieweg+Teubner, 2011, pp. 236–246. [Retrieved: 05-Mar-2013] http:
//dx.doi.org/10.1007/978-3-8348-9788-6_23

[194] I. Bente, J. Vieweg, J. von Helden, M. Jungbauer, and N. Pohlmann, “tNAC -
Trusted Network Access Control,” Poster presented at the 19th Usenix Security
Symposium (USENIX ’10), 2010.

[195] I. Bente, J. Vieweg, and J. Helden, “Privacy Enhanced Trusted Network Connect,”
in Trusted Systems, ser. Lecture Notes in Computer Science, L. Chen and M. Yung,
Eds. Springer Berlin Heidelberg, 2010, vol. 6163, pp. 129–145. [Retrieved:
05-Mar-2013] http://dx.doi.org/10.1007/978-3-642-14597-1_8

[196] I. Bente and J. Helden, “Towards Trusted Network Access Control,” in
Future of Trust in Computing, D. Gawrock, H. Reimer, A.-R. Sadeghi, and
C. Vishik, Eds. Vieweg+Teubner, 2009, pp. 157–167. [Retrieved: 05-Mar-2013]
http://dx.doi.org/10.1007/978-3-8348-9324-6_17

[197] J. Helden and I. Bente, “Towards real Interoperable, real Trusted Network Access
Control: Experiences from Implementation and Application of Trusted Network
Connect,” in ISSE 2008 Securing Electronic Business Processes, N. Pohlmann,
H. Reimer, and W. Schneider, Eds. Vieweg+Teubner, 2009, pp. 152–162.
[Retrieved: 05-Mar-2013] http://dx.doi.org/10.1007/978-3-8348-9283-6_16

265

http://dx.doi.org/10.1007/978-3-642-25283-9_20
http://dx.doi.org/10.1007/978-3-642-25283-9_20
http://dx.doi.org/10.1007/978-3-8348-9788-6_23
http://dx.doi.org/10.1007/978-3-8348-9788-6_23
http://dx.doi.org/10.1007/978-3-642-14597-1_8
http://dx.doi.org/10.1007/978-3-8348-9324-6_17
http://dx.doi.org/10.1007/978-3-8348-9283-6_16


266



List of Figures

1.1 Outline of the thesis. Blue boxes represent chapters, yellow boxes repre-
sent sections. Arrows indicate the sequence of chapters, respectively the
sequence of sections within a single chapter. . . . . . . . . . . . . . . . . . 7

2.1 Reference IT Infrastructure. Icons taken from Openclipart [27]. . . . . . . . 11
2.2 Organizational roles, technical terms and their relationships depicted as

Unified Modeling Language (UML) class diagram. . . . . . . . . . . . . . . 19

3.1 Mind map of related work in the field of smartphone security. . . . . . . . 46
3.2 TNC Architecture [36]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Example of an IF-MAP graph. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 CADS Conceptual Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Configuration of a Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Architecture of the CADS approach. . . . . . . . . . . . . . . . . . . . . . 104
4.4 CADS Communication Flow Example. . . . . . . . . . . . . . . . . . . . . 109
4.5 Tree representing Feature instances. Categories are depicted as orange cir-

cles. The text within the circles represents the identifier of the Category.
Features are depicted as blue boxes. The text within the boxes represents
the Feature identifier and the Feature’s value. . . . . . . . . . . . . . . . . 114

4.6 Correlation Engine State Machine (UML state machine diagram). . . . . . 120
4.7 Correlation Engine Training Phase (UML state machine diagram). . . . . . 122
4.8 Correlation Engine Testing Phase Feature Event (UML state machine dia-

gram). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.9 Correlation Engine Testing Phase Trigger Event (UML state machine dia-

gram). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.10 Process Model for deriving domain instances. . . . . . . . . . . . . . . . . . 128

267



List of Figures

4.11 Categories of the exemplary domain instance. . . . . . . . . . . . . . . . . 130
4.12 Reference IT infrastructure extended with CADS roles. Icons taken from

Openclipart [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1 IF-MAP graph with CADS specific metadata and identifiers. Note that
the value of IF-MAP identifiers that represent Categories is set to the fully
qualified category ID. However, only the short form of the Category IDs is
depicted in the sample graph in order to ensure readability. . . . . . . . . . 153

5.2 CADS architecture with IF-MAP roles. . . . . . . . . . . . . . . . . . . . . 156

6.1 Unique Features that have been measured for participating smartphones. . 179
6.2 Feature instances that have been measured for participating smartphones. . 180
6.3 Installed apps and their requested permissions. Note that the exact number

of requested dangerous permissions for the first smartphone is 1792. The
y-axis has been truncated for readability. . . . . . . . . . . . . . . . . . . . 181

6.4 Overview of received and transmitted data. The box plots of devices 4,
7 and 10 have been truncated at 1,000 KB. Their upper whiskers are at
1,250 KB, 2,300 KB and 1,100 KB respectively. . . . . . . . . . . . . . . . 183

6.5 Received traffic via Wifi or other interface except 3g. . . . . . . . . . . . . 185
6.6 Transmitted traffic via Wifi or other interface except 3g. . . . . . . . . . . 185
6.7 Received traffic via 3g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.8 Transmitted traffic via 3g. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.9 Scanned Wireless Access Points (WAPs) per smartphone. . . . . . . . . . . 187
6.10 Performance analysis irond. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.11 Performance analysis omapd. . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.12 Traffic consumption for the Android Feature Collector. . . . . . . . . . . . 195
6.13 Evaluation environment for detecting sensor sniffing attacks. The red, or-

ange, yellow and green colored boxes indicate software components that
fulfill logical roles as defined by the CADS architecture. The blue colored
boxes indicate services that have been integrated either by leveraging iron-
vas, ironmonitor or the ifmapcli command line tools. Icons taken from
Openclipart [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.14 Interaction between software components in the sensor sniffing example.
Icons taken from Openclipart [27]. . . . . . . . . . . . . . . . . . . . . . . . 208

268



List of Figures

6.15 Traffic anomaly caused by accessing the IP webcam app. Depicted are the
results for performing a simple linear regression on the measured values of
the Feature TxOther. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.16 Screenshot of irondetect after the detection of a sensor sniffing attack.
Checkmarks indicate that the respective component defined by the Pol-
icy evaluated to “true”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

269



270



List of Tables

2.1 Requirements that must be fulfilled in order to enable a secure integration
of smartphones into existing IT infrastructures. . . . . . . . . . . . . . . . 27

3.1 Distribution of Android versions. Data obtained within a 14-day period
ending on November 1st, 2012 [51]. . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison of previous work in the field of smartphone security regarding
the requirements defined in Section 2.5. The focus is on related research
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Exemplary Categories and Features. . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Signature expressions and their respective number of matches according to

the Feature instance tree depicted in Figure 4.5. . . . . . . . . . . . . . . . 114

5.1 A list of Features and Categories that are collected by the Feature Collector
for Google Android. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2 A list of Features that are collected by the Feature Collector ironvas. . . . 172
5.3 List of Features of the Category ids (derived from [154]). . . . . . . . . . . 173

6.1 The ten most frequently requested permissions in the dataset. . . . . . . . 182
6.2 Size of the sub graph depending on the parameters of the performance test

program. The size is given in metadata objects that must be stored by the
MAP server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.3 CADS software components of the virtualized evaluation environment. . . . 201
6.4 OpenVAS configuration details. . . . . . . . . . . . . . . . . . . . . . . . . 203
6.5 Vulnerabilities found by OpenVAS on smartphones with stock Android ver-

sions. “App Running” refers to whether the IP webcam app was actually
started and ready to stream data or not. . . . . . . . . . . . . . . . . . . . 203

271



List of Tables

A.1 History of Android versions. . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.2 Features and Categories that have been defined within the scope of this

thesis. Note that not all of them have been actually used in the evaluation. 232

272



List of Listings

4.1 Example Policy to detect one kind of sensory malware (pseudocode). . . . 136

5.1 IF-MAP XML Schema for identity identifier [163]. . . . . . . . . . . . . . 146
5.2 IF-MAP metadata attribute group [163]. . . . . . . . . . . . . . . . . . . . 147
5.3 Target namespace declaration for CADS components. . . . . . . . . . . . . 148
5.4 Mapping of Context Parameters to XML attributes. . . . . . . . . . . . . . 148
5.5 Metadata to represent a Feature. . . . . . . . . . . . . . . . . . . . . . . . 149
5.6 Mapping of Categories to IF-MAP identifiers. . . . . . . . . . . . . . . . . 150
5.7 Metadata to model sub-category relationship. . . . . . . . . . . . . . . . . 151
5.8 Metadata to associate a device identifier with a Category identifier. . . . . 151
5.9 Complex type for extended identifiers in IF-MAP 2.1 [20]. . . . . . . . . . 158
5.10 Extended identifier for Categories. . . . . . . . . . . . . . . . . . . . . . . . 158
5.11 Mapping of Categories to IF-MAP identifiers. . . . . . . . . . . . . . . . . 158
5.12 Subscription that allows irondetect to notice smartphones that join the

network. Namespace declarations and operational attributes are omitted
for readability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.13 Subscription that covers Feature metadata for a single smartphone. Names-
pace declarations and operational attributes are omitted for readability. . . 164

6.1 Example Policy for the detection of sensor sniffing attacks. . . . . . . . . . 204
6.2 Example policy for Kirin in KSL syntax [14]. . . . . . . . . . . . . . . . . . 215
6.3 Kirin example policy translated to the CADS policy language. Only the

use of Signatures is mandatory for the translation. . . . . . . . . . . . . . . 216

A.1 Grammar that defines the Policy used by irondetect. . . . . . . . . . . . . 239

273



274



Glossary

ADB Android Debug Bridge. 194, 232

AES Advanced Encryption Standard. 39

AOSP Android Open Source Project. 33

API application programming interface. 31, 35

ASCII American Standard Code for Information Interchange. 91, 93

ASLR address space layout randomization. 33, 38

BSSID Basic Service Set Identification. 184, 235

BYOD Bring Your Own Device. 3, 27, 220

DAC discretionary access control. 38

DDoS Distributed Denial of Service. 58

DHCP Dynamic Host Configuration Protocol. 12

DMZ Demilitarized Zone. 11, 13, 14, 201

DNS Domain Name System. 13

DoS Denial of Service. 47, 58

GPS Global Positioning System. 16, 31, 93

ICC inter-component communication. 37, 40

275



Glossary

ICMP Internet Control Message Protocol. 202

IDC International Data Corporation. 2, 32

IDS Intrusion Detection System. 13, 64, 155, 157, 172, 173, 225

IMEI International Mobile Station Equipment Identity. 150, 155, 169–171, 174

IPsec Internet Protocol Security. 14

JavaCC Java Compiler Compiler. 166

JDK Java Development Kit. 35

JNI Java Native Interface. 35, 57

MAC Media Access Control. 15

MITM Man-in-the-Middle. 54

MMS Multimedia Messaging Service. 63, 64, 66

MNO mobile network operator. 30

NAC Network Access Control. 14, 18, 172

NFC near field communication. 31, 53, 231

NIST National Institute of Standards and Technology. 13

OSI Open Systems Interconnection. 13, 14

PDK Platform Development Kit. 34

PDP Policy Decision Point. 156, 157, 163, 164, 172, 200

PIN personal identification number. 39, 57

PSN Sony PlayStation Network. 1

RADIUS Remote Authentication Dial In User Service. 13

276



Glossary

RIM Research in Motion. 32

SIIS Systems and Internet Infrastructure Security Laboratory. 60, 62

SIM subscriber identity module. 30, 47, 233

SMI Structure of Management Information. 146, 149

SMS Short Message Service. 30, 37, 41, 47, 53, 55, 58, 62–68, 119, 236

SSID Service Set Identification. 184, 235

TCB Trusted Computing Base. 24

TCG Trusted Computing Group. 13, 14, 70, 103, 146, 147, 161, 190

TCP Transmission Control Protocol. 15

TNC Trusted Network Connect. 13, 14, 103

TPM Trusted Platform Module. 57, 71, 81

UDP User Datagram Protocol. 15

UML Unified Modeling Language. 20, 120, 122, 125, 126

USB Universal Serial Bus. 194

VLAN Virtual Local Area Network. 12, 19

VPN Virtual Private Network. 12, 14, 15, 18, 201, 231

WAP Wireless Access Point. 12, 13, 15, 16, 19, 179, 184, 187, 201, 208

WLAN Wireless Local Area Network. 12, 31

XML Extensible Markup Language. 38, 144

277


	Introduction
	Motivation
	Research Questions
	Outline of the Thesis

	Scenarios and Requirements
	Reference IT Infrastructure
	Network Topology
	Endpoints
	Services

	Scenario Definition
	Scenario I: Smartphone Visibility
	Scenario II: Context-related Service Provisioning
	Scenario III: Detection of Malicious and Unwanted Apps
	Scenario IV: Policy-based Enforcement

	Terminology
	Organizational Roles
	Technical Terms
	The Notion of Administrative Domains

	Trust Model
	Requirements Analysis

	State of the Art and Related Work
	Introduction to Smartphones
	Definition
	Overview of Current Smartphone Platforms

	The Android Platform
	Architecture
	Google Play
	App Fundamentals
	Security Mechanisms
	Summary

	Related Work on Smartphone Security
	Analysis and Survey Articles
	Attacks
	Countermeasures

	The IF-MAP Protocol for Network Security
	TNC Architecture
	Data Model
	Communication Model

	Assessment
	General Findings
	Fulfillment of Requirements

	Summary

	A Network-based Approach for Smartphone Security
	Conceptual Model
	Core Components
	Context-related Components
	Signature Components
	Anomaly Detection Components
	Policy Components

	Architecture
	Logical Roles
	Communication Protocol

	Correlation Model
	Policy Evaluation Overview
	Evaluation of Signatures
	Evaluation of Anomalies
	Training and Testing Phases
	Correlation Engine Workflow

	Domain-specific Mapping
	Process Model to Derive Domain Instances
	An Example for a Domain Instance Derivation

	Assessment
	Fulfillment of Requirements
	Drawbacks

	Summary

	Implementation
	IF-MAP as Communication Protocol
	Fulfillment of Requirements
	Encapsulation of Features within IF-MAP
	Mapping the CADS Architecture to IF-MAP
	Coordination of Multiple MAP Clients
	Further Improvements based on IF-MAP Version 2.1
	Alternative Mapping Approaches

	Software Components
	Background
	MAP Server irond as Feature Provider
	MAP Client Library ifmapj
	Correlation Engine
	Feature Collectors
	Feature Consumer

	Identified Issues and Limitations
	Summary

	Evaluation
	Analysis of Data Collected by the FHH Device Analyzer
	Installed Apps and Requested Permissions
	Traffic Consumption
	Scanned Wireless Access Points

	Performance Analysis of MAP Servers
	Definition of Test Case
	Testing Environment
	Results

	Traffic Consumption of the Feature Collector for Android
	Definition of Test Case
	Testing Environment
	Results

	Detection of Sensor Sniffing
	Overview
	Evaluation Environment
	OpenVAS Vulnerability Scans of Android Smartphones
	Policy Definition
	Interaction of CADS Software Components
	Results

	Using CADS to Mimic Kirin
	Overview
	Translating Kirin Policies to CADS
	Discussion

	Summary

	Conclusion and Future Work
	CADS: A Network-based Approach for Smartphone Security
	Discussion of Research Questions
	Future Work

	Appendix
	Publications
	History of Android Versions
	Complete List of Defined Features and Categories
	Grammar for the CADS Policy Language


