
On Implementing a Higher Order
Generalized Finite Element Method

On Implementing a Higher Order
Generalized Finite Element Method

Kai G. Schwebke

UNIVERSITÄT DER BUNDESWEHR MÜNCHEN

FAKULTÄT FÜR BAUINGENIEUR- UND VERMESSUNGSWESEN

Thema der Dissertation:
On Implementing a Higher Order
Generalized Finite Element Method

Verfasser: Kai Gerd Schwebke

Promotionsausschuss:
Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Anton Heinen
1. Berichterstatter: Univ.-Prof. Dr.-Ing. Stefan Holzer
2. Berichterstatter: Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken

Tag der Prüfung: 18. April 2008

Mit der Promotion erlangter akademischer Grad:
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

Wildberg, den 5. Mai 2008

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit
als wissenschaftlicher Mitarbeiter am Fachgebiet für Informa-
tionsverarbeitung im konstruktiven Ingenieurbau der Universität
Stuttgart und am Institut für Mathematik und Bauinformatik
der Universität der Bundeswehr München im Rahmen des
DFG-Forschungsvorhabens ‘Die verallgemeinerte Methode der
finiten Elemente (GFEM) in der Strukturmechanik’.

Mein besonderer Dank gilt Herrn Univ.-Prof. Dr.-Ing. Stefan Holzer
für die Betreuung meiner Arbeit. Die zahlreichen inhaltlichen
Anregungen und Diskussionen, verbunden mit großen Freiheiten
bei der Umsetzung und Offenheit für neue Ideen, machten die
Ausarbeitung in der vorliegenden Form erst möglich.

Herrn Univ.-Prof. Dr.-Ing. habil. Anton Heinen und Herrn Univ.-
Prof. Dr.-Ing. habil. Norbert Gebbeken möchte ich für die
Übernahme des Vorsitzes des Promotionsausschusses bzw. des
Mitberichtes meinen Dank aussprechen.

Den Mitarbeitern und Doktoranden des Fachgebietes für Infor-
mationsverarbeitung im konstruktiven Ingenieurbau an der Uni-
versität Stuttgart und des Institutes für Mathematik und Bauin-
formatik an der Universität der Bundeswehr München danke ich
für die gute und freundliche Zusammenarbeit und Unterstützung
meiner Arbeit.

Darüber hinaus danke ich der deutschen Forschungsgemeinschaft
für die Förderung des durchgeführten Vorhabens.

Abstract

The Generalized Finite Element Method (GFEM) was first intro-
duced in [Mel95]. It combines desirable features of the standard
Finite Element Method and the meshless methods.

The key difference of the GFEM compared to the traditional FEM
is the construction of the ansatz space. Each node of the finite
element mesh carries a number of ansatz functions, expressed
in terms of the global coordinate system. Those ansatz functions
are multiplied by a partition of unity and serve as element ansatz
functions in the patch constituted by the elements incident at the
node.

Using this technique to create the ansatz space allows for arbitrary
ansatz functions. C0-continuity is enforced by construction.

The ansatz is enriched using analytical functions or numerical
approximations derived from side calculations containing a-priori
knowledge of the solution close to singularities. The performance
of GFEM with a higher order of polynomial ansatz functions is
compared to traditional h-, p- and hp-extensions of the FEM.

Most of the efficient solvers, e.g. multi-grid or cg, cannot be applied
to the semi-definite systems resulting from a GFEM discretization.
Several solving strategies are evaluated for higher order GFEM.

The work concludes with a description of the implementation of
the GFEM with a flexible object-oriented framework using C++.

Contents

1 Introduction 1

2 GFEM 7
2.1 Model Problems . 9

2.1.1 Plane Poisson Problem 9
2.1.2 Plane Linear Elastostatic Problem 9

2.2 GFEM discretization 11
2.3 Essential Boundary Conditions 13

2.3.1 Characteristic Function Method 13
2.3.2 Convergence rates for p-extension 16

2.4 Enrichment for Singularities 19
2.4.1 Poisson problem for re-entrant corner

with analytical enrichment 19
2.4.2 Plane Elasticity and enrichment using numer-

ical side calculation 27
2.4.3 Triangle Location 27
2.4.4 Numerical Integration 34

3 Solving the linear Equation System 39
3.1 Perturbed Matrix and Post Iteration 40
3.2 Givens QR Factorization 43

viii CONTENTS

3.2.1 Overview of the Solution Process 43

3.2.2 Givens Rotation 44

3.2.3 Sequential Givens Transformation 45

3.2.4 Banded Matrix 45

3.2.5 Hybrid Parallelization of Givens Rotations . . 47

3.3 Sparse Multifrontal Gaussian Elimination/HSL MA27 52

3.4 Comparison of the Different Methods 52

4 Implementation of the GFEM 55

4.1 Function Classes . 56

4.1.1 Scalar Multivariate Function Interface—
SFunction . 56

4.1.2 Smart Reference to scalar Function Object—
SFunctionRef 57

4.1.3 Vector-valued Function Interface—Function 58

4.1.4 Arithmetic . 59

4.1.5 Function Proxy 59

4.1.6 Polynomials . 61

4.1.7 Univariate Polynomials—Poly 61

4.1.8 Bivariate Polynomials—PolyProduct 62

4.1.9 Set of Legendre Polynomials—Legendre . . . 63

4.1.10Analysing and Debugging 63

4.2 GFEM in two Dimensions 64

4.2.1 Overview . 64

4.2.2 Input and Output 68

5 Summary 83

CONTENTS ix

A UML — Unified Modeling Language 85
A.1 Static Syntax Elements 85

A.1.1 Class Diagrams 86
A.1.2 Association . 88
A.1.3 Aggregation . 89
A.1.4 Composition 90

A.2 Dynamic Syntax Elements 90
A.2.1 Object Diagram 90

B xmlom — XML Object Manager 93
B.0.2 Type Maps . 93
B.0.3 Document Base Types 94

C List of Symbols 97

D Natural Triangle Coordinates 99
D.1 Standard triangular Element 99
D.2 Blending Function Method 101

D.2.1 Blending to a circular shaped Edge 103
D.2.2 Effects of well- or ill-chosen Parametrization . 106

Bibliography 109

Index 117

Chapter 1

Introduction

The Finite Element Method (FEM) is a well-established tool for
numerical simulation in mechanics, engineering and other fields
of science. Reasons contributing to the ongoing success and
further development of this method are its generality and relative
simplicity.

The decomposition of the domain into elements of simple topology
specifically allows the analysis of domains of complex shape which
would be quite infeasible using, for example, finite differences. For
some use-cases, however, compared to the computational time
needed to perform the actual simulation, generating and checking
a mesh is a time consuming and not fully automatic task.

The difficulties in the creation of a FE-mesh arise not from the
fact that some mesh has to be created, but from the following
requirements that such a mesh normally has to meet:

• The mesh should resolve the geometry of the domain.

• Discontinuities, like borders of loads, material interfaces, or
changes of other relevant problem dependent parameters,
should be aligned to an element edge in the mesh.

 Introduction

• The approximating functions have to meet continuity criteria.

• Depending on the method, the mesh should provide ‘well
shaped’ triangles (measured by some criterion, e.g. the ratio
of the largest inscribed circle to the smallest circumcircle).

• The mesh density function (average size of elements at a
given point of the domain) should meet some given prerequi-
sites. Often the mesh should be refined around singularities
(e.g. re-entrant corners). Some methods—like p-FEM for
plate-problems under certain boundary conditions—require
refinements along the edges resolving a boundary layer.

To overcome these issues, meshless methods are subject to re-
search in numerical mathematics and engineering disciplines.
These methods replace the mesh by a set of points associated
with a compact support surrounding the point and so avoid con-
structing a mesh, which is required for conventional FE methods.
Instead of a mesh, a suitable set of uniformly or non-uniformly
distributed points has to be constructed, e.g. with the methods
described in [DGJ02]. Each point has a domain of influence (sup-
port) where ansatz functions can be applied. See [Dua95] and
[BKO+96] to find reviews for meshless methods like Moving Least
Squares, Element-Free Galerkin or Smoothed Particle Hydrodynam-
ics methods.
While removing the need—and thereby removing the difficulties
found in creating a mesh—new issues arise. These new issues
may involve integration over domains of complex shape or imple-
menting essential boundary conditions requiring additional care.
E.g. [KS00] describes an octree-based representation of the dis-
cretization with a triangulation of boundary octants to gain an
integration mesh.
[CQYY01] investigates the problem of numerical integration for
Galerkin mesh-free methods in greater detail. To avoid the com-
plexities arising from Gauss integration in this case, nodal inte-
gration methods employing Voronoi diagrams have been designed



for mesh-free methods. These methods require strain smoothing
procedures or other stabilizing measures to avoid singular spuri-
ous modes. Some meshless methods, like Moving Least Squares,
describe the ansatz in an implicit way. This leads to additional
difficulties in efficiently determining derivatives and integrating
the ansatz ([BRT00]). For a complete description of implementing
a meshfree Partition of Unity Method including efficient solving
and parallelization, see [GS00], [GS02c], [GS02d], [GS02b] and
[GS02a].

An alternative is to combine ideas from meshless and classical
Finite Element Methods into a new method. This method was
first reported as a Special FEM in [BCO94] and then expanded
into the Partition of Unity Method in [BM96] and [BM97]. Later on,
the term GFEM originating from [Mel95] became commonly used.
Polynomial approximations, as used in traditional finite element
methods, require refinement of the mesh around singularities at
corners and edges. This leads to additional difficulties in creat-
ing a suitable mesh and raises the number of elements needed.
The key feature of Generalized Finite Element Methods is the use
of a partition of unity, which is a set of functions whose values
sum to the unity at each point in the domain. The partition of
unity allows integration of a-priori knowledge of the nature of the
searched solution into the discretization. While still requiring a
mesh, anisotropic refinements are no longer needed if suitable en-
richments are added to the ansatz. [DBO00] shows the integration
of the handbook solution of the elasticity equations near a cor-
ner. Another property investigated there is the ability to produce
seamless hp-FEM approximations with nonuniform h and p.

The fundamental difference of GFEM compared to other meshless
methods is the choice of the partition of unity. In the GFEM,
conventional finite element shape functions are used to create a
partition of unity. hp-clouds[CAD95], in contrast, use circles (or
n-dimensional spheres) to create a partition of unity. Using FEM
shape functions as a partition of unity for GFEM leads to great

 Introduction

similarities implementing the method compared to FEM. Compared
also to other mesh-free methods, like Moving Least Squares or
Shepard’s Interpolation, the numerical integration can easily be
implemented over elements of simple shape. [BB07] provides on
introduction to the evolvement of the Generalized Finite Element
Method and its relations to classical FEM as well as meshless
methods.

Another common term for this family of methods is the Extended
Finite Element Method (X-FEM) as used in [BSMM00] with a fo-
cus on modelling discontinuities arising from cracks. The main
benefit here is that crack evolvement does not require re-meshing
of the domain. This is achieved combining asymptotic near tip
field solutions to cover singularities and Haar functions to model
discontinuities not resembled in the mesh. [BMMB05] refines the
method by increasing the domain of enrichment, preconditioning
the stiffness matrices to allow usage of conventional solvers and
optimizing the numerical integration of enrichment functions.

Research in [MB02], [MGB02], [GMB02], [BXP03] and [BPM+03]
covers alternative, implicit surface representations to further ex-
tend X-FEM in the context of crack growth for elastostatic prob-
lems. The resulting method requires no explicit representation
of the crack—the crack and its growth are described entirely in
forms of nodal data. [RGC05b] and [RGC05a] describe applying
X-FEM to dynamic and time-dependant problems. For an overview
of the development of the Extended Finite Element Method, see
[Moe07].

GFEM implementations using higher order ansatz functions of the
p-version of the FEM are described in [SZB04] and [SBCB03]. A
conventional p-version of the FEM is enriched using the GFEM par-
tition of unity with analytical and numerical handbook functions.
[LPRS05] uses the term ’higher-order’ X-FEM when a fixed area of
influence is enriched with a special function during h-extension
leading to successively more enriched nodes.

In contrast to these approaches, this work describes and analyses



the implementation of a pure higher order GFEM applying all
ansatz functions using a partition of unity.

The linear partition of unity used by GFEM provides a framework
for constructing C0 continuous shape functions. [DKQ06] extends
the partition of unity to allow for arbitrary smooth Ck continuous
shape functions.

As shown in [DBO00], GFEM ansatz space contains linear de-
pendencies arising from the fact that both the partition of unity
and the basis of the ansatz functions are polynomial functions.
[TYT06] investigates the problem in greater detail showing that,
in addition, mesh topology and element type (quadrilateral or tri-
angular) as well as element shape have a great impact on the
linear dependencies. At the moment, these linear dependencies
cannot be avoided for the general, higher order case. Therefore,
different solving methods for the semi-definite linear equation sys-
tem are investigated. [DBO00] proposes some solving strategies.
One of them is perturbation and post-iteration of the stiffness
matrix. Performing a p-extension, this method becomes more
and more inefficient for higher order polynomial ansatz spaces.
GFEM preserves, however, the banded structure of the stiffness
matrix as described in [DBO00]. As a result, other alternatives to
solve the linear equation system exploiting these properties will be
compared in this work.

Imposing essential boundary conditions requires the construction
of shape functions that vanish on the boundary of the domain or
enfore Dirichlet boundary conditions through penalties as used in
[ABCM02] in the context of Discontinuous Galerkin Methods.

[BBO02] suggests omitting the constant function from the space of
ansatz functions at a boundary node. In addition, because higher
order polynomial ansatz functions do not fulfil essential bound-
ary conditions, these also cannot be used at the boundary of the
domain, thus making the implementation of a higher order pure
GFEM using this technique impossible. In [BBO02] the Penalty
Method, Nitsche’s Method and the Characteristic Function Method

 Introduction

are discussed in the context of other, non-GFEM shape functions
like Reproducing Kernel Particle or Moving Least Squares. The
Characteristic Function Method also proves to be suitable in im-
posing essential boundary conditions for higher order polynomial
GFEM.

Chapter 2

GFEM

The Generalized Finite Element Method (GFEM) was first intro-
duced in [Mel95]. A similar approach is described in [BSMM00]
under the name Extended Finite Element Method (X-FEM). The
Generalized Finite Element Method (GFEM) shares many proper-
ties with meshless methods. Like the hp-cloud method [CAD95],
approximation functions and enrichment of the approximation
spaces can be done at each nodal point.

Unlike hp-clouds, the partition of unity (PUM) used in the GFEM
is constructed on a regular mesh using linear finite element shape
functions. This avoids the need to integrate over irregularly shaped
subdomains like Ω1 in Figure 2.1 resulting from intersecting ar-
bitrary circular supports. Some meshless methods ignore this
problem and use an integration mesh which is not aligned to sup-
port boundaries. According to [SBC98] this leads to numerical
integration errors that are very difficult to control.

 GFEM

Ω

Ω

Ι

Figure 2.1: Circular support

2.1 Model Problems 

2.1 Model Problems

To investigate the GFEM, the following two plane model problems
are solved.

2.1.1 Plane Poisson Problem

For a plane poisson problem, the displacement field u(x, y) is
searched.

The governing partial differential equation of the domain Ω is:

−

(
∂2u

∂x2 +
∂2u

∂y2

)
= c (2.1)

The boundary Γ of Ω is subject to homogeneous Dirichlet boundary
condition u = 0.

The transformation of Poisson’s equation to the weak form leads
to: ∫

Ω

∂u

∂x
· ∂v

∂x
+

∂u

∂y
· ∂v

∂y
dΩ =

∫
Ω

c v dΩ (2.2)

2.1.2 Plane Linear Elastostatic Problem

For a plane elastostatic problem, the displacement field u is
searched:

u =

[
ux(x, y)

uy(x, y)

]
(2.3)

 GFEM

The governing strain-displacement relations are:

εx(u) =
∂ux

∂x
(2.4)

εy(u) =
∂uy

∂y
(2.5)

γxy(u) =
∂ux

∂y
+

∂uy

∂x
(2.6)

With

D =

 ∂
∂x 0
0 ∂

∂y
∂

∂y
∂
∂x

 (2.7)

the strain-displacement relation can be written as:

ε(u) = Du (2.8)

The stress tensor σ(u) corresponding to ε(u) is denoted by:

σ(u) =

 σx(u)

σy(u)

τxy(u)

 (2.9)

The stress-strain relationships are:

σ(u) = E · ε(u) (2.10)

E is a symmetric positive definite matrix of material constants,
also called material stiffness matrix. For isotropic materials, E is
defined in terms of two material constants: Young’s modulus E

and Poisson’s ratio ν:

E =

 E
1−ν2

Eν
1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 E
2(1+ν)

 (2.11)

2.2 GFEM discretization 

The part ΓD of the boundary Γ of the domain Ω is subject to
homogeneous Dirichlet boundary condition u = 0.
The part ΓN of the boundary is subject to Neumann boundary
condition σ = T .
The transformation to the weak form leads to:∫

Ω

(
(D v)T

E Du
)

dΩ =

∫
ΓN

T vdΓN (2.12)

2.2 GFEM discretization

The domain Ω is subdivided using a regular mesh containing n

nodes and m triangular linear finite elements. Associated to each
node nj is a patch ωj ∈ Ω constituted by all triangular elements
incident to this node. The assemblage of linear shape functions of
all elements of ωj associated to nj compose the Hat function Nj

defined over the supporting patch ωj (see Figure 2.2).

Figure 2.2: Hat functions

The set of functions
{
Nj

}n

j=1 constitute a partition of unity:

n∑
j=1

Nj = 1 for each point p ∈ Ω (2.13)

Using this partition of unity as an ansatz leads to the classical
linear h-version of the Finite Element Method. Locally multiplying

 GFEM

the hat functions around each node with a set of shape functions
(including the constant function c(x) = 1) results in a higher order
ansatz of arbitrary polynomial degree. A-priori knowledge of local
solution characteristics may be easily embedded in the ansatz as
well.

The higher order GFEM shape functions are based on Legendre
polynomials Pi:

P0(x) = 1 (2.14)

P1(x) = x (2.15)

(n + 1) Pn+1(x) = (2n + 1) x Pn(x) − n Pn−1(x), (2.16)

n = 1, 2, 3, . . . , p − 1 (2.17)

L
j
kl(x, y) is a product of two Legendre polynomials centred around

nj = (nj
x, nj

y) and scaled to the characteristic size hj of the patch
ωj:

L
j
kl(x, y) = Pk(

x − n
j
x

hj
) · Pl(

y − n
j
y

hj
) (2.18)

Centering and scaling improves the numerical properties of the
ansatz functions.

The GFEM shape functions result from the multiplication of the
partition of unity with the polynomial enrichment functions:

φ
j
kl = Nj · Lj

kl (2.19)

A function space of degree p is spanned by the set of all shape
functions φkl with k = 0, 1, 2, . . . , p and l = 0, 1, 2, . . . , p.

If needed, the space is enriched by further functions multiplied
with the partition of unity.

The resulting shape functions inherit the approximating properties
of the enrichment functions and the compact support and C0-
continuity of the partition of unity.

2.3 Essential Boundary Conditions 

Each node may carry an ansatz of different polynomial degree.
This leads to an easy implementation of p-adaptive or hp meth-
ods.

Unlike conventional higher order ansatz spaces, the higher order
GFEM ansatz contains linear dependant elements. The resulting
semi-definite equation system cannot be solved by almost any of
the established solvers used for classic FEM methods like multigrid
or CG solvers. Chapter Three will discuss various options for
solving these semi-definite linear equation systems.

2.3 Essential Boundary Conditions

The GFEM shape functions have to fulfil essential (Dirichlet)
boundary conditions or the approximate satisfaction of the bound-
ary condition has to be ensured by other means. [BBO02] suggests
the following methods:

1. The Penalty Method,

2. Nitsche’s Method,

3. The Characteristic Function Method.

In the following, we will discuss the characteristic function method,
which transforms the GFEM shape functions to directly fulfil
essential boundary conditions.

2.3.1 Characteristic Function Method

For a patch ωj around the node nj and adjacent to a Dirichlet
boundary ΓD the ansatz

{
φj

}
is multiplied with a smooth function

 GFEM

Φ so that

Φ > 0 in Ω, (2.20)

Φ = 0 on ΓD (2.21)

and |∇Φ| > 0 on ΓD (2.22)

A natural candidate for a characteristic function is the Hat func-
tion Nj. It is smooth within each element, C0-continous between
elements and piecewise linear.
In the following example, the plane Poisson problem is solved on
a circular domain. Figure 2.3 shows a mesh of four triangles.
The edges on the boundary are mapped to follow the circular
shaped domain boundary ΓD using radial blending function map-
ping ([Gor71], [GH73b], [GH73a]—see Appendix D for a detailed
description of the triangle mapping used).

P2

P1

P3 P4

P5

Ω

Γ

P2

P1

P3 P4

P5

Ω

Γ

Figure 2.3: Linear and blended mesh

To avoid error cancellation due to symmetry effects, the node P3 is
shifted from the centre. Figure 2.5 shows the absolute local error
of the displacement field. On the left, the characteristic function
is unshifted, i.e. not aligned to the mesh. This leads to an error

2.3 Essential Boundary Conditions 

Figure 2.4: Linear and blended hat function

Figure 2.5: Absolute local error with unaligned and aligned char-
acteristic function

 GFEM

which is four orders of magnitude higher than for the aligned case
shown on the right hand side. Here, the Hat function N3 is used
as a characteristic function, which is aligned to the underlying
mesh by construction.

2.3.2 Convergence rates for p-extension

A plane elastostatic example problem is solved using p-GFEM and
conventional p-version FEM. Figure 2.6 shows a mesh of a square
with a circular hole which is fixed on the bottom and subject to
loading on the top.

In the following example, the performance of GFEM for p-extension
is compared to a conventional p-version FEM implementation.
Figure 2.7 shows exponential convergence rates for both GFEM
and traditional FEM.

Figure 2.6: Curved domain example mesh

2.3 Essential Boundary Conditions 

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

E
rr

or
 in

 E
ne

rg
y

N
or

m
 [%

]

Degrees of Freedom

GFEM with curved boundary

standard p
GFEM p

Figure 2.7: Error in energy norm for curved domain example

 GFEM

DOF energy relative error β

12 1.942324 29.6804%
76 2.745970 0.5853% 2.13

192 2.761660 0.0173% 3.80
360 2.762089 0.0018% 3.62
580 2.762130 0.0003% 3.83

Table 2.1: Domain with curved boundary, standard p-version

DOF energy relative error β

6 2.046840 25.8965%
26 2.638836 4.4640% 1.20
62 2.758780 0.1216% 4.15

114 2.761475 0.0240% 2.66
182 2.762040 0.0035% 4.09

Table 2.2: Domain with curved boundary, GFEM p-version

2.4 Enrichment for Singularities 

2.4 Enrichment for Singularities

2.4.1 Poisson problem for re-entrant corner
with analytical enrichment

The solution of the Poisson problem on an L-shaped domain con-
tains a singularity in the re-entrant corner. Such a singularity
cannot be approximated very well using polynomials.
According to [BS92], the displacement u is of the form:

u = a1 rλ cos (λΘ) + a2 rλ sin (λΘ) , λ > 0 (2.23)

Imposing the essential boundary conditions of the re-entrant cor-
ner of an L-shape u = 0 for Θ = π and Θ = −π

2 , this yields to:

a1 rλ cos (λπ) + a2 rλ sin (λπ) = 0 (2.24)

a1 rλ cos
(
−λ

π

2

)
+ a2 rλ sin

(
−λ

π

2

)
= 0 (2.25)

This system of two equations has nontrivial solutions for a1, a2

only if the determinant of the coefficient matrix vanishes:

cos (λπ) · sin
(
−λ

π

2

)
− sin (λπ) · cos

(
−λ

π

2

)
= 0 (2.26)

Using λ > 0 this leads to:

λ = 0,
2
3

,
4
3

, 2, . . . (2.27)

Since only r
2
3 is singular, only λ = 2

3 is used further to derive
a1 =

√
3 and a2 = 1 leading to the singular term:

u =
√

3 r
2
3 cos

(
2
3

Θ

)
+ r

2
3 sin

(
2
3

Θ

)
(2.28)

This function will be used to enrich the ansatz. Figure 2.8 shows
the singular function on the left and the resulting GFEM ansatz af-
ter multiplication with the Hat function N on the right. The Figure

 GFEM

illustrates how the multiplication with N ensures inter-element C0-
continuity and restriction of the function to the compact support
of the associated patch ω.

Figure 2.8: Analytical base function and resulting ansatz

Figure 2.9: h-, hp- and p-version mesh

GFEM convergence rates are compared for the following cases:

1. h-extension using a linear ansatz (constant enrichment) and
a successively refined mesh. In this case GFEM resembles
the ordinary h-version FEM.

2. p-extension using a coarse mesh (see Figure 2.9 on the right)
and a successively increased ansatz.

2.4 Enrichment for Singularities 

Figure 2.10: h-GFEM displacement

Figure 2.11: p-GFEM displacement

 GFEM

Figure 2.12: hp-GFEM displacement

Figure 2.13: p-GFEM displacement with enrichment

2.4 Enrichment for Singularities 

3. hp-extension on a refined mesh using a recursive geometric
progression of sg = 0.15 as advised in [BS92] and a linear
ansatz on the smallest element. The degree of the ansatz
increases by one on every larger element level.

4. p-extension like 2. enriched by the singular ansatz derived
above.

The h-extension performs as expected showing algebraic conver-
gence. Also, the p-extension shows only algebraic convergence
due to the singularity. The hp-extension reaches an exponential
convergence rate by adapting the mesh and the polynomial degree
to the singularity. The p-extension with analytical enrichment
reaches also an exponential convergence rate on the same coarse
mesh used for p-extension.
Figures 2.10 – 2.13 illustrate the displacement of the resulting
solution. These shaded pictures disclose discontinuity artefacts
nicely allowing a visual assessment of the solution quality (as no
smoothing post-processing is applied).

 GFEM

1e-05

0.0001

0.001

0.01

0.1

1

10

10 100 1000 10000

E
rr

or
 in

 E
ne

rg
y

N
or

m
 [%

]

Degrees of Freedom

GFEM on L-shaped Domain

h
p

hp
p enriched

Figure 2.14: Error in energy norm for singular domain example

2.4 Enrichment for Singularities 

Table 2.3: L-shaped domain, h-version

DOF energy relative error β

8 59.495192 11.0667%
21 63.680628 4.8103% 0.86
65 63.909366 4.4684% 0.07

225 65.566258 1.9917% 0.65
833 66.427336 0.7046% 0.79

3201 66.744192 0.2309% 0.83
12545 66.848280 0.0753% 0.82

Table 2.4: L-shaped domain, p-version

DOF energy relative error β

21 63.680628 4.8103%
63 66.128845 1.1507% 1.30

126 66.589322 0.4624% 1.32
210 66.719740 0.2675% 1.07
315 66.804980 0.1401% 1.60
441 66.835929 0.0938% 1.19
588 66.854478 0.0661% 1.22
756 66.865210 0.0500% 1.11
945 66.872080 0.0397% 1.03

 GFEM

Table 2.5: L-shaped domain, hp-version

DOF energy relative error β

64 66.584786 0.4692%
134 66.831690 0.1001% 2.09
239 66.886361 0.0184% 2.93
386 66.896148 0.0038% 3.31
582 66.897953 0.0011% 3.06
834 66.898392 0.0004% 2.62

Table 2.6: L-shaped domain, enriched p-version

DOF energy relative error β

22 65.602828 1.9370%
64 66.720910 0.2657% 1.86

127 66.878978 0.0294% 3.21
211 66.897338 0.0020% 5.30
316 66.898308 0.0005% 3.22
442 66.898586 0.0001% 4.30
589 66.898646 0.0000% 4.17

2.4 Enrichment for Singularities 

2.4.2 Plane Elasticity and enrichment using nu-
merical side calculation

For many problems, analytical solutions for singular points are not
available. In the following example, a numerical side calculation
provides an approximate solution. A plane elastiticity problem on
the discretized domain in Figure 2.15 is solved. All corners of the
rectangular holes lead to singularities of the exact solution.

Two side calculations using hp-GFEM under different loading con-
ditions (see Figure 2.16) provide a numerical approximation close
to the singular points. The two different loading conditions resem-
ble the two modes known from plane fracture mechanics.

The resulting displacement fields of the side calculation are
mapped and used as ansatz functions. Figure 2.17 illustrates
the mapping for one singular point. The mapping is performed
for all points reusing the characteristics of the singular solution
determined once.

Figures 2.18 and 2.19 show the σv stress component of the solu-
tion. The results show a slightly better convergence using numeri-
cal enrichment. Unlike the analytical enrichment for the poisson
problem, there is no improvement from algebraic to exponential
convergence. In addition, the choice of numerical integration influ-
ences the accuracy and stability of the results using a numerical
side calculation heavily. This leads to an additional performance
penalty which overcompensates the small improvement in conver-
gence rate.

2.4.3 Triangle Location

Evaluating a numerical side calculation requires locating the tri-
angle of the side calculation domain containing a given point
mapped from the main domain. Randomly distributed point sets
require elaborate algorithms, like space partitioning trees or di-
rected search strategies. Here, the point set resulting from a

 GFEM

Figure 2.15: GFEM discretization mesh

2.4 Enrichment for Singularities 

Figure 2.16: GFEM side calculations

Figure 2.17: GFEM discretization mesh and one of the side calcu-
lation meshes

 GFEM

Figure 2.18: p-GFEM result: σv

2.4 Enrichment for Singularities 

Figure 2.19: p-GFEM with num. side calc. result: σv

 GFEM

 1

 10

 100

 100 1000 10000

E
rr

or
 in

 E
ne

rg
y

N
or

m
 [%

]

Degrees of Freedom

GFEM for Plain Elasticity problem using numerical enrichment

p-GFEM
num. enrich. p-GFEM

Figure 2.20: Error in energy norm for plane elasticity and numeri-
cal enrichment

2.4 Enrichment for Singularities 

Table 2.7: Plane elasticity, p-version

DOF energy relative error β

220 1.156310 43.50%
660 1.340900 24.45% 0.52

1320 1.384890 17.01% 0.52
2200 1.406210 11.83% 0.71
3300 1.414500 9.042% 0.66
4620 1.419410 6.880% 0.81
6160 1.422150 5.303% 0.91
7920 1.423930 3.954% 1.17

Table 2.8: Plane elastitcity, p-version with numerical side calcula-
tion

DOF energy relative error β

260 1.256270 34.51%
700 1.377350 18.50% 0.63

1360 1.407360 11.48% 0.72
2240 1.415640 8.589% 0.58
3340 1.419860 6.646% 0.64
4660 1.422480 5.080% 0.81
6200 1.424090 3.810% 1.01
7960 1.425180 2.621% 1.50

 GFEM

numerical integration scheme has the property that two succes-
sive points are located typically at a close distance and, therefore,
with a high probability, contained by the same triangle or a small
set of triangles.
This property is exploited using a LRU (least recently used) list.
All triangles of a side calculation are referred using a linked list.
To locate a triangle containing a point, the list is searched from
the beginning until the containing triangle is found. If the triangle
containing the point is not referred from the first element of the
list, it is relocated to the beginning, so the least recently used
triangles become the first elements of the list.
To measure the performance of this location algorithm, the average
hit rate is calculated:

rh =
npoint locations

ntriangles searched
(2.29)

This simple strategy performs surprisingly well, leading to hit rates
which are typically much greater than 50%.

2.4.4 Numerical Integration

All implemented integration schemes are based on the Gaussian
Quadrature rule, which approximates the integral by a weighted
sum at n evaluation points such that a polynomial of degree
p = 2n − 1 is integrated exactly.

Tensor Product Gauss Quadrature

Approximating the area integrals of triangular elements using a
Gaussian Quadrature on natural triangle coordinates (see Ap-
pendix D) leads to tensor product Gauss Quadrature. This inte-
gration scheme is well suited for polynomial ansatz functions on
triangular elements.

2.4 Enrichment for Singularities 

Arbitrary shaped elements are implemented using the blending
function method (see Appendix D.2). If blending is applied to an
element, the Gauss Quadrature no longer integrates exactly. In
this case, the number of evaluation points has to be increased
until the numerical integration leads to a sufficiently exact approx-
imation. As the blending is smooth, the Gaussian Quadrature
converges well.

h-adaptive Integration Scheme

Integrating non-smooth ansatz functions, e.g. analytical or numer-
ical enrichments, the Gaussian Quadrature becomes ineffective as
these functions cannot be approximated very well using smooth
polynomials.

Figure 2.21: p-GFEM discretization using h-adaptive integration

As a general purpose integration method, an h-adaptive integra-
tion rule is implemented. Using a specified number of evaluation

 GFEM

Figure 2.22: p-GFEM discretization with analytical enrichment
using h-adaptive integration

points and a specified approximation accuracy, at least two nu-
merical integrations are performed: one at an elemental level and
one at a refined level, subdividing the element into four smaller
sub elements. Using Richardson extrapolation, the exact result
and the integration error is estimated. If the specified approxima-
tion accuracy is not reached, the specified approximation accuracy
is distributed across the sub elements and the integration proce-
dure is applied recursively until the accuracy target or a maximal
number of refinements is reached.

Figure 2.21 shows the adaptive integration scheme applied to a
polynomial ansatz. As the polynomials are integrated exactly using
Gaussian quadrature, no adaptive refinement is performed. In
Figure 2.22, the ansatz is enriched using an analytical singular
function. The Gaussian quadrature performs poorly for non-
smooth integrands, so an adaptive refinement towards the singular
point of the analytical ansatz function is performed. Figure 2.23

2.4 Enrichment for Singularities 

Figure 2.23: p-GFEM discretization with numerical enrichment
using h-adaptive integration

shows adaptive integration for an ansatz function resulting from a
numerical side calculation. This side calculation is non-smooth
between elements of the side calculation mesh, so the adaptive
refinement resembles the side calculation mesh inter-element
boundaries. As the integration elements are not aligned with the
elements of the side calculation, hard to control integration errors
may nevertheless occur (see [DB99]).

hp-refined Integration Scheme

To integrate analytical ansatz functions more efficiently, a third
integration scheme is implemented. Resembling the hp-extension
of the FEM, a refinement combined with a reduction of polynomial
degree is performed in a non-adaptive way towards the singular
point of the analytical ansatz. This leads to good approximations
comparable to h-adaptive integration, but is more efficient as less

 GFEM

evaluation points are needed in the many small elements close to
the singular point of the ansatz function.

Chapter 3

Solving the linear
Equation System

The solution of the linear equation systems arising from problems
discretized using the General Finite Element Method poses a
serious problem. Especially for a higher polynomial degree ansatz,
the increasing number of resulting linear dependencies prohibits
the usage of efficient methods, like multi-grid, Krylov subspace
methods and other iterative solving algorithms.

Some alternatives for solving the linear system are pointed out in
the following sections. Another approach would be to avoid the lin-
ear dependencies by construction, using a modified discretization
like a mixed cell complex.

 Solving the linear Equation System

3.1 Perturbed Matrix and Post Itera-
tion

This method is proposed in [DBO00] to solve a linear equation
system where K is a semidefinite matrix:

K u = r (3.1)

The equation system is scaled with a transformation matrix T :

K̂ = T KT (3.2)

û = T−1 u (3.3)

r̂ = T r (3.4)

with

Ti,j =
δij√
Ki,j

(3.5)

where δij is denoting Kronecker’s delta-function, leading to

K̂ û = r̂ (3.6)

For the transformed matrix K̂ holds K̂i,i = 1. The scaled matrix is
perturbed:

K̂ε = K̂ + ε I with ε > 0 (3.7)

where I denotes the identity matrix. K̂ε is a positive definite matrix
which leads to a linear equations system solveable with every
standard method:

K̂ε û0 = r̂ (3.8)

û0 is not a solution for the unperturbed equation system 3.6. The
remaining defect is determined to:

d0 = r̂ − K̂ û0 (3.9)

3.1 Perturbed Matrix and Post Iteration 

The solution of the unperturbed system could be gained from the
calculated one, if one could calculate the necessary correction e0:

û = û0 + e0 (3.10)

This correction is directly associated to the defect d0:

e0 = û − û0 (3.11)

K̂ e0 = K̂ û − K̂ û0 (3.12)

= r̂ − K̂ û0 (3.13)

= d0 (3.14)

With K̂ε d0 ≈ K̂ d0 an approximation e ′
0 for the correction e0 can

be computed solving again the linear system (3.8) with a different
right-hand-side:

e ′
0 from K̂ε e0 ≈ d0 (3.15)

If the solution to (3.8) was calculated using a factorization of K̂ε,
the approximate correction e ′

0 can be determined easily performing
a second back substitution. Now, a new approximate correction
to the previous approximate correction can be calculated, leading
to the following iteration:

di = di−1 − K̂ e ′
i−1 (3.16)

e ′
i from K̂ε ei ≈ di (3.17)

ûi = ûi−1 + e ′
i−1 (3.18)

The iteration is performed until the corrections become sufficiently
small: ∣∣∣∣∣e ′

i K̂ e ′
i

ûi K̂ ûi

∣∣∣∣∣ < εth (3.19)

The solution of the original system 3.1 is then given by

u = T û (3.20)

 Solving the linear Equation System

ansatz
degree p DOF iterations solution defect d2

iteration t./
solving t.

0 42 1 5.1 · 10−28 0%
1 136 1 7.0 · 10−27 0%
2 298 1 1.7 · 10−26 0%
3 542 1 2.5 · 10−25 8%
4 882 983 7.0 · 10−17 99%
5 1332 379 4.2 · 10−16 96%
6 1906 567 7.5 · 10−17 96%
7 2618 590 1.5 · 10−16 95%
8 3482 457 1.3 · 10−16 93%
9 4512 632 1.3 · 10−16 94%
10 5722 1078 2.3 · 10−16 96%

Table 3.1: Example for perturbed matrix + post iteration solution
method

Table 3.1 shows a numerical example of this solving strategy.
The solved linear system arises from a plane elasticity problem
on a L-shaped domain, using a hp-refined discretization. The
polynomial degree p is equal to the number of mesh refinements
around the re-entrant corner.

Factorization is performed using a Cholesky decomposition. The
decomposition, as well as the matrix-vector-products, are per-
formed applying banded storage (see 3.2.4).

The addition ε to the scaled main diagonal entries equals to 10−10.
Iteration is continued until the correction (3.19) drops below εth =

10−12. For small polynomial degrees (p < 4), the computational
costs of post iteration steps required are negligible. This resembles
the results found in [DBO00].

For higher polynomial degrees, however, the number of post it-
eration steps necessary increases dramatically. The time spent
during iteration is over ten times larger than the time required for

3.2 Givens QR Factorization 

factorization. However, the defect d2 = (r − K u)2 of the solution
finally found is acceptably small.

3.2 Givens QR Factorization

A decomposition of a matrix K into an orthogonal matrix Q (QT =

Q−1) and an upper triangular matrix R, such that K = Q R is
called a QR factorization.
This factorization has many applications in numerics, e.g. eigen-
value problems, linear equation systems, and least squares prob-
lems. The QR factorization of a quadratic matrix exists indepen-
dently of the matrix rank, so it can be used to solve a rank deficient
equation system.
To perform a QR factorization, several algorithms can be used,
e.g. Householder or Givens transformation ([GL89]). All of these
methods have the computational complexity of O(n) = n3 typical
for non-iterative linear solvers. Compared to the Gaussian elimi-
nation, however, a QR factorization using Givens transformation
is ∼ 10 times more expensive ([Sch97]). A parallel implementation
is therefore highly desirable. While being slightly more efficient,
Householder reflections are not so well suited for parallelization,
because they affect more matrix elements in each step. Givens
rotations allow for a finer granularity, and are therefore often used
for dense and sparse parallel QR factorization implementations
([SK78], [CR86], [CD94], [TDZ96]).

3.2.1 Overview of the Solution Process

To solve the linear equation system

K u = r (3.21)

the matrix Q is left-factorized from both sides leading to

R u = r̃ (3.22)

 Solving the linear Equation System

with r̃ = QT r and R = QT K using QT = Q−1. Only R and r̃ are
necessary in determining u using back-substitution, so K and r

can be overwritten during the transformation process (in-place
algorithm). Q is not needed for this application in an explicit
form.

3.2.2 Givens Rotation

A Givens rotation is the elementary step of the transformation. Two
rows (i, j) of the matrix K are multiplied in step t with an orthogonal
two-dimensional rotation matrix Ut, such that in column k the
element Kj,k becomes zero.
In step t, the rotation matrix Ut

Ut =

(
c −s

s c

)
(3.23)

is determined from the matrix entries

c =
Ki,k√

K2
i,k + K2

j,k

, s =
Kj,k√

K2
i,k + K2

j,k

(3.24)

So one of Givens rotation reads as:(
Ki,1...n ri

Kj,1...n rj

)
t+1

= Us ·
(

Ki,1...n ri

Kj,1...n rj

)
t

(3.25)

Given that

Ki,l = Kj,l = 0 for l = 1 . . . k − 1 (3.26)

after the transformation holds

Ki,l = Kj,l = Kj,k = 0 (3.27)

introducing one additional zero.

3.2 Givens QR Factorization 

3.2.3 Sequential Givens Transformation

The order in which the single rotations are performed cannot
be chosen freely. (3.26) has to be satisfied to avoid introducing
non-zero elements left of row k.

Figure 3.1: Possible sequence of Givens rotations

Figure 3.1 shows a possible sequence of rotations leading to com-
plete factorization of a dense matrix. In each step, the row con-
taining the element Kj,k to become zero can be combined with any
row above this element up to the main diagonal.

3.2.4 Banded Matrix

The matrices arising from a GFEM problem are not fully populated.
Like FEM matrices, the non-zero elements are typically close to
the main diagonal, if a suitable numbering of unknowns is chosen.
Such a numbering is usually gained by performing a bandwidth
optimization using the graph of the discretization mesh or the
matrix connectivity graph—here a reverse Cuthill-McKee ([CM69],
[Sch84]) reordering is applied. Figure 3.3 shows on the left the

 Solving the linear Equation System

profile of the optimized matrix resulting from the discretization in
Figure 3.2.

Figure 3.2: Example domain (p=8, plane Poisson problem)

Memory space and computation time can be saved exploiting this
banded structure. Instead of storing the entire matrix, only a
vector of sub-rows is stored. Every sub-rows extends from the first
to the last non-zero element, omitting all out-of-band zeros.
The Givens transformation can easily take advantage of this band
structure by omitting unnecessary rotations of zero elements.
Some out-of-band zeros are populated after the transformation,
however. Figure 3.3 shows on the right hand side the increase of
bandwidth in the transformed matrix R (the newly created zeros
below the main diagonal still consume storage).
If an element Ki, j below the main diagonal (i > j) is in the band,
all sub-rows k = j . . . i − 1 above this element up to the main
diagonal have to be expanded, if necessary (i.e. if they are shorter),
to the length of sub-row i. This allows the combination of any
two sub-rows needed to perform the Givens rotations that are
necessary.

3.2 Givens QR Factorization 

Figure 3.3: Global matrix before and after Givens transformation
(1800 DOF)

3.2.5 Hybrid Parallelization of Givens Rota-
tions

Each Givens rotation affects only two rows. This allows for a
parallel implementation of the algorithm. Instead of performing
one rotation after another in the current column, as illustrated
in Figure 3.1, the sub-rows containing non-zero elements are
divided into a certain number of subsets. On each subset, Givens
rotations can be applied in parallel, until every subset has only one
non-zero element in the current column left. Then, the left subset
rows are combined with the row holding the main diagonal.

This parallelization idea can be realized using the distributed
memory paradigm. Every node holds a subset of the matrix. The
bulk of necessary Givens rotations can be performed locally. Only
during the last combination step does the remaining sub-row have
to be exchanged.

If the nodes themselves support parallelization using the shared
memory paradigm (i.e. multithreading) or vectorization, the Givens
rotations can be parallelized further locally. The machine may

 Solving the linear Equation System

provide an efficient (vectorized) implementation for the matrix-
matrix product U ·K or independent rotations can be performed
locally in parallel.

Distributed Memory Parallelization using MPI

If an algorithm can be parallelized in a way that avoids frequent
exchange and large amounts of interchanged data (weakly coupled
problem), it can be effectively parallelized using message passing.
The main advantage of the message passing paradigm is the avail-
ability of suitable hardware—efficient implementation is possible
on distributed and shared memory machines as well. Thread-
based multiprocessing in contrast can only be implemented effi-
ciently on shared memory hardware.

MPI (Message Passing Interface) is a widely available programming
interface for implementing parallel algorithms using message pass-
ing. It provides a set of standardized library subroutines for C and
Fortran and some implementation dependent tools to administrate
the parallelized programs.

During a parallel computation, a certain number of concurrent
processes, identified by a unique ID, are running. These processes
can only interact by interchanging messages. Using MPI, one often
writes one program, which is started multiple times to create the
required number of processes.

MPI is used to implement the top-level parallelization of the Givens
transformation. A master-slave concept is used: one master
process holding the matrix to be factorized and responsible for
coordinating the distributed calculation interacts with a number
of slaves performing the actual computational work.

Parallel Givens Transformation Algorithm using MPI The fol-
lowing steps describe the parallel Givens transformation using np

MPI processes.

3.2 Givens QR Factorization 

1. The master (process 0) assigns every sub-row of the matrix
to a slave (process 1 . . . np − 1) in a striped pattern:

sub-row 1 2 3 4 5 6 7 . . .
process 1 2 3 . . . (np − 1) 1 2 . . .

2. The sub-rows are distributed to the respective slaves.

3. Master and slaves exchange their roles (master, participating
slave holding the main diagonal element, ordinary participat-
ing slave, uninvolved slave) for the current column.

4. Participating slaves eliminate all but one non-zero of the
current column in the assigned rows.

5. The participating slaves perform a tree-reduce operation, as
described in [Pac97], with the remaining rows:

An ID is assigned to every participating slave. The slave
process holding the main diagonal element gets the ID 0.
Further participating slaves are numbered ascending.

Depending on the count of participating processes, a number
of stages are performed in descending order.

During stage s, a process performs a master rotation with
process ID + 2s (i.e. sends away its last non-zeroed sub-row
and receives an updated one) if its ID < 2s and the slave
process is existent.

A process performs a slave rotation (i.e. receives a non-zeroed
sub-row, performs a Givens rotation using the received row
so that its own last non-zeroed row becomes zero and sends
the updated sub-row back) with process ID − 2s if 2s 6 ID <

2s+1.

Figure 3.4 shows an example of the tree-reduce operation for
seven processes (0 . . . 6) using 3 stages (3 . . . 0).

After the tree reduce operations, all remaining sub-rows
below the main diagonal carry a zero in the current column.

 Solving the linear Equation System

40

0

0

0

2

2

6 1

1

1

5

3

slave rotation
master rotation

stage 2

stage 1

stage 0

Figure 3.4: Tree reduce operation example

6. Continue with step three for the next column or next step if
no columns are left.

7. Master process collects matrix rows from slaves.

Speedup of parallel Givens Factorization Figure 3.5 shows the
speedup S(n, np) of the MPI parallel Givens factorization for a p-
refined calculation sequence of a plane elasticity problem on a
quadrilateral domain discretized with 10 ·10 ·2 triangular elements.
The number of unknowns stating the problem size n range from
n = 1404 for p = 3 to n = 10746 for p = 9. Performance mea-
surements were performed from one (np = 1) up to ten processors
(np = 10). ts(n) denotes the factorization time on a uniprocessor,
t(n, np) on a multiprocessor machine.

S(n, np) =
ts(n)

t(n, np)
(3.28)

The speedup of the parallel factorization depends mainly on the
bandwidth of the matrix. The bandwidth depends mostly on the

3.2 Givens QR Factorization 

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

limit

p = 9

p = 8

p = 7

p = 6

p = 5

p = 4

p = 3

Speedup of MPI Parallel Givens Factorization

Figure 3.5: Speedup of MPI parallel Givens factorization

 Solving the linear Equation System

used ansatz degree. For a higher order ansatz, the algorithm scales
pretty well, following very closely the theoretical upper speedup
limit up to a number of six processors, while for a lower order
ansatz multiple processors have hardly any effect on computation
time.

3.3 Sparse Multifrontal Gaussian Elimina-
tion/HSL MA27

Some commercially available direct solvers for indefinite linear
systems can also be used to solve the equation systems arising
from a GFEM discretization. One of the solvers also proposed in
[DBO00] is the HSL MA27 available from [hsl]. This method is
further described in [DR83]. An overview on the topic of sparse
direct solvers can be found in the review article [Liu92].

3.4 Comparison of the Different Meth-
ods

All of the methods examined share (theoretically) a computational
complexity of O(n) = n3. This holds even for banded storage
if the increased number of degrees of freedom n arises from a
p-refinement as the bandwidth is increased in this case.

Figure 3.6 shows a side-by-side comparison of the timed needed
to solve an indefinite system using the three different methods
discussed. A plane elasticity problem with a point singularity
arising from a re-entrant corner was discretized using a hp-graded
mesh. The polynomial degree p indicated in the diagram refers to
the unrefined elements. Subsequent refinement levels use a lower
ansatz degree down to p = 0—thus p is also the number of mesh
refinements towards the singularity.

3.4 Comparison of the Different Methods 

0.1

1

10

100

1000

10000

100 1000 10000

T
im

e
[s

]

Number of Unknowns

Comparison of Solving Methods

HSL MA27

Pertubed Matrix + Post Iteration

Givens Rotations

p = 12
p = 11

p = 10

p = 9

p = 8
p = 7

p = 6

p = 5p = 4

Figure 3.6: Performance comparison of different solving Methods

 Solving the linear Equation System

For a small and medium polynomial degree, HSL MA27 performs
much better than Givens rotations. For large polynomial degrees
however, Givens rotations catch up. If the scalability on a parallel
computer is taken into account, this breakeven will be reached
even earlier.
The first method, involving post iteration on the solution of a modi-
fied linear system, performs poorly already on medium polynomial
degree discretizations.
Table 3.2 gives a numerical estimate derived from the observed
runtimes in two successive steps for the polynomial complexity
O(n) = np. While the post iteration scheme behaves rather irregu-
larly, a clear conclusion can be drawn for the other two methods.
Givens Rotations behave as expected, showing a complexity be-
low three for the used hp-refinement—one would expect a value
around three for a pure p-refinement. HSL MA27 exhibits a much
higher estimated complexity which ranges close to four. This is
evidence of increasing difficulty dealing with linear dependencies.

DOF
Perturbed Matrix/
Post Iteration HSL MA27 Givens Rotations

t [s] pest t [s] pest t [s] pest

882 32 0 2
1332 26 -0.4 1 4.3 6 2.4
1906 75 2.9 4 5.0 15 2.5
2618 139 1.9 13 4.1 32 2.4
3482 183 1.0 37 3.6 66 2.5
4512 397 3.0 100 3.9 124 2.5
5722 998 3.9 248 3.8 219 2.4
7126 1514 1.9 591 4.0 371 2.4
8738 2846 3.1 1258 3.7 605 2.4

Table 3.2: Performance comparison and polynomial complexity
estimation

Chapter 4

Implementation of the
GFEM

The programming language chosen to implement GFEM is C++
[Str00]. While providing many object oriented features, this com-
piled language provides a good compromise between abstraction
and performance. As a hybrid language, the programmer can
bias his design in a wide range between these two contradicting
concepts.

The programmatic design is primarily headed towards being as
general as possible and easily extensible. Performance was only a
secondary issue, but care has been taken not to trade more than
necessary for design reasons. The impact of some of the decisions
is profiled and discussed in this chapter.

For an alternative implementation of GFEM realized in FOR-
TRAN95 see [SCB02]. The implementation described there uses
lower order polynomial approximations and allows for meshes
which share no common boundary with the domain focussing on
geometries containing large numbers of voids or cracks.

 Implementation of the GFEM

4.1 Function Classes

The key advantage of GFEM is the ability to include almost ar-
bitrary ansatz functions into the approximation. To provide the
possibility of inserting and examining analytical and numerical de-
rived special functions, the program is based on an object-oriented
notion of functions, an idea also proposed in [SBC98].

4.1.1 Scalar Multivariate Function Interface—
SFunction

As a strongly typed language, C++ requires the usage of common
base types if different classes of objects should be used in a
uniform manner1. Also not differentiated by the syntax of the C++
language2 we can distinguish two different concepts for such a
base type:

• Specification of an interface.

• Implementation of common functionality.

An interface only states the protocol, i.e. the names of the mes-
sages and their arguments an object shall provide. The implemen-
tation of this protocol is completely left up to the implementing
objects. The interface itself does not provide any functionality. We
implement interfaces in C++ via classes containing solely pure
virtual methods.

One of the basic building blocks of our object-oriented function
concept is a scalar function with a variable number of real argu-
ments (C++’s double base type). Figure 4.1 shows the interface

1For example, Smalltalk [GR83] as an untyped language, does not impose this
requirement. Missing methods will only be detected at run-time in this case,
however. It is very controversial if this additional compile-time check is worth the
additional amount of coding effort.

2Java [Gos95] provides the special notion of an interface keyword.

4.1 Function Classes 

<<interface>>
SFunction

+operator()(in std::vector<double>): double const
+d(in int): SFunctionRef const
+getDimension(): int const

Figure 4.1: SFunction interface

that such an object shall implement. The function call operator
((. . .)) is used to evaluate the function at the given n-dimensional
point. The dimensionality can be queried using the getDimension
method. d(n) is used to query the function f(x) for its partial
derivative ∂f

∂xn
with respect to the nth component of the argument

vector x. In case of an incorrect dimensioned argument or a par-
tial derivative of a wrong dimension, the behaviour of the object
is unspecified. An empty reference is returned if the requested
derivative is not available.

4.1.2 Smart Reference to scalar Function Object—

SFunctionRef

C++ provides no means of automatic memory management. In
some cases, the manual management of object lifetimes is an
easy task, but for function objects, something more elaborate is
required. As we will see later, functions can be combined in arith-
metic expressions leading to new functions and are excessively
passed around between objects. Often, a function object has more
than one owner referring to it.

We use the technique of reference counting as implemented in
[Jos99] CountedPtr class. CountedPtr resembles an ordinary
C++ pointer, but keeps track of the number of CounterPtr in-
stances referring to a certain object. The object is deleted when
it’s no longer referred from any CountedPtr instance.

SFunctionRef (Figure 4.2) implements a smart reference (in the

 Implementation of the GFEM

sense of reference counting and the ability of assignment) to a
SFunction object.

SFunctionRef
+isValid(): bool const

 SFunction
<<interface>>
SFunction

CountedPtr<SFunction> 1..* 1

Figure 4.2: SFunctionRef smart reference

It achieves this by using an instance of CountedPtr<SFunction>
delegating all methods of the SFunction interface to the referred
object. Using the isValid method, one can check if the reference
is empty or if it points to a valid object.

In the program, all instances of SFunction are managed by
SFunctionRef smart references. SFunctionRef is therefore the
result and the argument type used in all methods dealing with
SFunctions.

4.1.3 Vector-valued Function Interface—Function

In general, vector-valued functions are implemented as an object
behaving like an array of SFunctions. Function (Figure 4.3) pro-

<<interface>>
Function

+operator[](in int): SFunctionRef&
+getDimension(): int const

FunctionImplFunction
<<interface>>

SFunction
SFunctionRef f

dimension

Figure 4.3: Function interface and FunctionImpl implementa-
tion

vides an array access operator ([. . .]) returning the corresponding
scalar as a SFunction. Again, dimensionality can be queried
using the getDimension method.

4.1 Function Classes 

A straight-forward implementation of this interface is provided
with FunctionImpl. This class holds an array of SFunctionRefs.
Proper resource management for parameter passing, copy and
assignment operations is provided by the smart references.

4.1.4 Arithmetic

To perform arithmetic operations with functions, objects repre-
senting the sum (g + h) or product (g · h) of two functions are
required (Figure 4.4). The respective operators (*, +) are over-

SFunctionProdSFunction

SFunctionSumSFunction

<<interface>>
SFunction

SFunctionRef g,h
2

<<interface>>
SFunction

SFunctionRef g,h
2

Figure 4.4: Objects representing products and sums of functions

loaded to create new instances of these classes and returning
them as SFunctionRef.
If the associated functions are able to deliver derivatives, the
arithmetic expression provides derivatives, too. For example, an
instance of SFunctionProd creates a new expression representing
the derivative according to the product rule ((g · h) ′ = g ′ · h + g · h ′)
on demand.
As illustrated in Figure 4.5, the objects represent the evaluation
tree of the arithmetic expression. To aid debugging of the resulting
expressions, a textual representation of this tree can be printed
on the console (see 4.1.10).

4.1.5 Function Proxy

Up until now, we have only discussed how to manage and asso-
ciate existing objects implementing the SFunction interface. An

 Implementation of the GFEM

:SFunctionSumSFunctionRef

g

SFunctionRef

SFunctionRef SFunctionRef

a+(b*c)

c:SFunction
<<interface>>

b:SFunction
<<interface>>

a:SFunction
<<interface>> :SFunctionProd

g h

g h

Figure 4.5: Objects are representing an evaluation tree

obvious way to create such an object is deriving from SFunction
and providing the required methods.

This approach turned out to be very inconvenient, however. Con-
sider, for example, an object representing a mapping between two
coordinate systems. The components of forward and backward
mapping should be available in the form of SFunction objects.
When deriving the coordinate system from SFunction, this object
represents only one function component, so some helper classes
are required. These helpers could query the mapping object for the
respective value and return it via the SFunction interface.

The natural way of implementing a function is to provide a method
calculating the desired value. The SFunctionProxy templates
store a pointer to our object and a pointer to the methods imple-
menting the function.

To enable such a proxy object to deliver derivatives, the proxy
object contains an array of SFunctionRefs. The methods imple-
menting derivatives are also wrapped in SFunctionProxy objects
and are assigned.

Depending on the dimensionality of the wrapped methods, differ-
ent versions of the FunctionProxy are required. Figure 4.6 shows
a proxy for two-dimensional functions.

4.1 Function Classes 

SFunction2Proxy
#f: double (T::*) (double, double) const
#ownerOfT: bool
+setD(in int,in SFunctionRef)

T:typename

pointer to a const method of class T
returning a double and accepting
two double arguments

SFunction

 T c
1

<<interface>>
SFunction

SFunctionRef df
2

Figure 4.6: SFunction2Proxy for two-dimension methods

The flag ownerOfT indicates whether the proxy shall destroy the
object it is pointing to at the end of its own life.

4.1.6 Polynomials

4.1.7 Univariate Polynomials—Poly

Univariate polynomials are represented in the class Poly (Fig-
ure 4.7) using an array of doubles to store the coefficients ci.

Poly
#c: std::vector<double>
+getDegree(): int const
+setDegree(in int)
+operator[](in int): double&

SFunction

Figure 4.7: Univariate polynomial

p(x) =

n∑
i=0

ci · xi

This coefficient representation can be efficiently evaluated using a

 Implementation of the GFEM

nested multiplication scheme:

pn = cn

pi = ci + x · pi+1, i = n − 1, n − 2, . . . , 2, 1, 0

with

p(x) = p0

Poly directly implements the SFunction interface.
Since the arithmetic operations (+, −, ∗) and the derivation (dp

dx)
can be performed explicitly, the corresponding operators are ap-
propriately overloaded returning a new Poly3.

4.1.8 Bivariate Polynomials—PolyProduct

PolyProduct implements a bivariate polynomial using two uni-
variate polynomials for the respective directions (Figure 4.8). To

PolyProduct
#x0: double
#y0: double
#h: double

SFunction

Poly

 1

 px,py
 2

Figure 4.8: Bivariate polynomial

ease the usage of PolyProduct as an ansatz function, a basic co-
ordinate system transformation (originating at (x0, y0) and scaled
with factor h) is embedded:

u(x, y) = px((x − x0)h) · py((y − y0)h)

PolyProduct directly implements the SFunction interface,
too.

3These operators perform directly on Poly, not on smart references
(SFunctionRef).

4.1 Function Classes 

Partial derivatives of a PolyProduct (∂p
∂x , ∂p

∂y) are again
PolyProducts and dynamically created on demand using
the appropriate operations of Poly.

4.1.9 Set of Legendre Polynomials—Legendre

The Legendre class creates the set of Legendre polynomials up to
a given degree p. When creating an instance of Legendre, Bonnet ’s

Legendre
+p: int
+Legendre(in p:int)
+operator[](in int): Poly&

Poly

 1

 P
 p

Figure 4.9: Set of Legendre polynomials

recursion formula is used to fill the array of polynomials:

P0(x) = 1

P1(x) = x

(n + 1) Pn+1(x) = (2n + 1) x Pn(x) −

n Pn−1(x), n = 1, 2, 3, . . . , p − 1

4.1.10 Analysing and Debugging

To assist inspecting and debugging the internal structures hid-
den behind SFunctionRef or FunctionImpl, the following rou-
tines,

• SFunctionRef analyse(SFunctionRef f) and

• FunctionImpl analyse(FunctionImpl f),

 Implementation of the GFEM

are provided. A tree representation (see Figure 4.5) of the ref-
erenced object is printed on the console. The original reference
is passed through to enable the usage of the debugging routine
inside expressions.
This example output shows a two-dimensional vector-valued func-
tion. The first component consists of a product of two polynomials
multiplied with an (unknown) object member function wrapped in
a proxy. The second component is an empty reference.

FunctionImpl(dimension=2)
SFunctionProd

PolyProduct
Poly x: 1
Poly y: -0.5 + 0x + 1.5xˆ2

SFunctionProxy
invalid/empty function

4.2 GFEM in two Dimensions

4.2.1 Overview

After providing an overview of the general structure, this section
will explain the implementation of the GFEM code in detail.
Figure 4.10 shows the main objects used to perform a GFEM
calculation. Domain serves as a container class representing a
discretized two-dimensional domain governed by the differential
equation described in DiffEq. Material holds default properties
for the material.
Domain aggregates sets of Vertex and Triangle objects. Every
Triangle references its three corner vertices. Besides these three
associations, no further relations are necessary to perform a GFEM
calculation. This contrasts to conventional p-FEM, where the
additional entity edge and more topological relations are required

4.2 GFEM in two Dimensions 

Domain
+numDOF: int
+getEnergy(): double
+getDisplacement(in component:int): SFunctionRef

DiffEq
+type: std::string
+getDimension(): int

Material
+E: double
+nu: double

Vertex
+x,y: double
+h: double
+degree: int

Triangle
+r1,r2,r3: double
+K: LMatrix
+r: LVector
+u: LVector
+dof: std::vector<int>

 1

 1

 1

 1 1

*

 1

*
 3 *

FunctionImpl

 1

 ansatz
 numDOF

<<interface>>
Trimap

+map(in NPoint): RPoint
+map(in RPoint): NPoint
+dMapping(NPoint): Matrix

 1 1

 1

 1

IntTriangle
+x1,y1: double
+x2,y2: double
+x3,y3: double
+r1,r2,r3: double

 1

1..*

FunctionImpl

 1

 ansatz
 numDOF

Figure 4.10: Overview of the GFEM implementation in two dimen-
sions

 Implementation of the GFEM

to build a suitable discretization complicating the data structure
significantly.
Figure 4.11 gives an overview of the calculation of one domain.
A reader with conventional FEM experience will notice strong
analogies to the steps normally performed in such codes.

Vertex initialization

Vertex contains an array of n-dimensional ansatz functions. In
the first loop, every Vertex of the domain is initialized. The array
is filled with an n-dimensional tensor product ansatz space build
from multiplied Legendre polynomials up to the given degree p of
the respective Vertex. Additional special functions—e.g. analyti-
cal partial solutions and numerical side calculations—are added
as well. A unique (which respect to the domain) global identifier
(global DOF id) is associated which each ansatz function.

Triangle initialization

The second loop initializes the Triangles. Each Triangle queries
its three corner vertices for the set of ansatz functions associated
with this Vertex. After multiplying these functions with the re-
spective hat function, they are added to the array containing the
ansatz functions of the Triangle. The assigned global DOF ids a
stored as well.
After this step, the Triangles contain all information necessary
to perform integration of the weak form. While performing this
integration, the results are locally stored.

Assembling and Solving

The last loop assembles the local stiffness matrices into the global
linear equation system. After solving the global system, the re-
sulting displacement components are redistributed to the corre-

4.2 GFEM in two Dimensions 

:D
om

ai
n

t:T
ria

ng
le

v:
V

er
te

x
t.v

3:
V

er
te

x
t.v

2:
V

er
te

x

in
it(

)

t.v
1:

V
er

te
x

se
tD

om
ai

n(
th

is
)

se
tD

om
ai

n(
th

is
)

ap
pe

nd
A

ns
at

z(
...

)

ap
pe

nd
A

ns
at

z(
...

)

ap
pe

nd
A

ns
at

z(
...

)

g
e

n
K

r.
..

()

ge
tK

()

dr
op

K
()

so
lv

e
()

pu
tU

()

fo
r

ev
er

y
V

er
te

x
v

fo
r

ev
er

y
T

ria
ng

le
 t

fo
r

ev
er

y
T

ria
ng

le
 t

in
iti

a
liz

e
 a

n
sa

tz

a
p

p
e

n
d

 a
n

sa
tz

 f
ro

m
 v

e
rt

ic
e

s
m

u
lti

p
lie

d
 w

ith
 h

e
a

d
 f

u
n

ct
io

n
to

 t
ri
a

n
g

le
 a

n
sa

tz

in
te

g
ra

te
 lo

ca
l

st
iff

n
e

ss
 m

a
tr

ix
a

n
d

 r
h

s
ve

ct
o

r

a
ss

e
m

b
le

 g
lo

b
a

l s
tif

fn
e

ss
 m

a
tr

ix
a

n
d

 r
h

s
ve

ct
o

r

so
lv

e
 li

n
e

a
r

e
q

u
a

tio
n

 s
ys

te
m

d
is

tr
ib

u
te

 d
is

p
la

ce
m

e
n

ts
 b

a
ck

 t
o

 t
ri
a

n
g

le
s

Figure 4.11: Outline of the calculation for a domain

 Implementation of the GFEM

sponding Triangles. Now Domain (and Triangles) are ready to
be queried about properties of the solution, like displacement field,
global energy and stresses.

4.2.2 Input and Output

XML Parser Concepts

Interfacing the program to other tools and to provide persistence
involves loading and storing data from and to permanent storage
as needed. XML is chosen because it is a well-standardized format
supported by many ready-to-use tools and libraries.
Another advantage of XML (eXtensible Markup Language) is the
easy realization of optional fields in the data file. Also, later
extensions of the format are forward and backward compatible, if
done with some care.
XML parsers are available in two main flavours:

1. Event-driven parsers

2. Object oriented parsers

Object-oriented parsers—e.g. DOM—read the entire document
building a tree of objects. These objects can be traversed, queried
and modified.
Event-driven parsers generate events (e.g. opening tag, closing tag
and content) out of the read stream contents. The main advantage
of the event-driven approach is the ability to directly create and
modify custom data structures. With DOM on the other hand, one
would have to work with two groups of objects—DOM and custom
objects.

Parser Generator

To ease the task of interfacing an object-oriented custom data
structure to an event driven XML parser, a code generator was

4.2 GFEM in two Dimensions 

developed. A tree-like structure of objects with their respective
properties is described using an XML file. A set of interfaces
mainly consisting of set... and get... methods, which have to
be implemented by the custom objects, is generated.

The generated parser code creates new instances of custom objects
and sets the values of properties while reading the file. To enable
the parser to create custom objects, an instance of an object
factory [GHJV94] must be provided. Construction of each object
is finished with a call to its init function.

The user is required to divert from the conventional constructor
style, which creates complete objects in a single step. Here, first
a default object is created; then none, some or all properties are
modified as needed; finally, the creation process is completed with
a call to the init function.

Serialization of the data is possible if the object state is fully
defined by the properties known to the parser generator.

For more information on generated classes and their relations see
Appendix B: ’xmlom — XML Object Manager.’

Document Data Structure

Besides properties holding primitive types (e.g. double, string,
bool), an object can aggregate complex types (other objects). The
parser generator supports the following aggregating data struc-
tures:

• multiple child-objects identified by a numeric ID (int), stored
in a map

• multiple ordered anonymous child-objects, stored in a list

• one embedded child-object, which may be missing

The C++ parser generator implements the associations to aggre-
gated child-objects via pointers.

 Implementation of the GFEM

Further associations between custom objects should be imple-
mented using a property holding the ID of the referred object
stored in a map. This ensures the ability to load and store the
association. To improve performance, the pointer returned from
the map-lookup may be cached during the init-process.
While the main structure of custom data objects using generated
aggregating associations is tree-like4 in order to ensure easy seri-
alization5, the user may arbitrarily add further ID-based associa-
tions allowing general object structures (e.g. cyclic references).
The generated aggregations determine the lifetime of the document
objects. On destruction of the document, all contained objects are
deleted.

GFEM Document Specification

After pointing out the general concept of serialization, the specific
GFEM file format is explained.

Example Figure 4.12 shows a discretization of a quadrilateral
domain using two triangles. The border of the domain is subject
to homogeneous Dirichlet boundary conditions. Furthermore, the
domain is subject to a constant area loading with p = −1.
The XML document representing the discretization is given
here:

<?xml version="1.0"
encoding="iso-8859-1"?>

<gfem>
<domain id="1">

<diffeq>
<type>planepoisson</type>

</diffeq>

<vertex id="1">
<x>0</x> <y>0</y> <h>10</h>
<degree>9</degree>
<mulfunc>

<element>1</element>
<x1>10</x1><y1>10</y1>
<x2>0</x2><y2>10</y2>
<x3>0</x3><y3>0</y3>

4tree: connected acyclic graph
5to serialize an object: convert its state to a byte stream so that the byte stream

can be reverted back into a copy of the object[Lee02]

4.2 GFEM in two Dimensions 

1

1 (0/0)

2

2 (10/0)

3 (10/10)4 (0/10)

Figure 4.12: Simple GFEM discretisation example

</mulfunc>
<mulfunc>

<element>2</element>
<x1>10</x1><y1>10</y1>
<x2>0</x2><y2>0</y2>
<x3>10</x3><y3>0</y3>

</mulfunc>
</vertex>

<vertex id="2">
<x>10</x> <y>0</y> <h>10</h>
<degree>9</degree>
<mulfunc>

<x1>10</x1><y1>10</y1>
<x2>0</x2><y2>0</y2>
<x3>10</x3><y3>0</y3>

</mulfunc>
<mulfunc>

<x1>0</x1><y1>0</y1>
<x2>10</x2><y2>0</y2>
<x3>10</x3><y3>10</y3>

</mulfunc>
</vertex>

<vertex id="3">
<x>10</x>
<y>10</y>
<h>10</h>
<degree>9</degree>
<mulfunc>

<element>1</element>
<x1>0</x1><y1>0</y1>
<x2>10</x2><y2>10</y2>
<x3>0</x3><y3>10</y3>

</mulfunc>
<mulfunc>

<element>2</element>
<x1>0</x1><y1>0</y1>
<x2>10</x2><y2>0</y2>
<x3>10</x3><y3>10</y3>

</mulfunc>
</vertex>

<vertex id="4">
<x>0</x> <y>10</y> <h>10</h>
<degree>9</degree>
<mulfunc>

<x1>10</x1><y1>10</y1>
<x2>0</x2><y2>10</y2>
<x3>0</x3><y3>0</y3>

</mulfunc>
<mulfunc>

<x1>0</x1><y1>0</y1>
<x2>10</x2><y2>10</y2>
<x3>0</x3><y3>10</y3>

</mulfunc>
</vertex>

<triangle id="1">
<n1>1</n1>
<n2>3</n2>
<n3>4</n3>
<areaload>

<p>-1</p>
</areaload>

</triangle>

<triangle id="2">
<n1>1</n1>
<n2>2</n2>
<n3>3</n3>

 Implementation of the GFEM

<areaload>
<p>-1</p>

</areaload>
</triangle>

</domain>
</gfem>

Minimal Document A minimal document has to contain a
header specifying the type (e.g. version) and one pair of matching
gfem tags surrounding the contents (which are intentionally not
present in this example).

<?xml version="1.0" encoding="iso-8859-1"?>
<gfem>
</gfem>

GFEM Document Structure A document is built from an arbi-
trary number of discretized domains.

Every aspect of the discretization—like mesh structure, degree
and properties of the ansatz function, numerical integration pro-
cedures and boundary conditions—is specified in the input file.
Figure 4.13 shows a structural overview of the domain description.

Domain

MaterialDiffEq

Vertex

MulFunc

SideCalcAnsatz

AnalyticalAnsatz

Triangle

IntTriangle

AreaLoad

EdgeLoad

Figure 4.13: GFEM document overview

4.2 GFEM in two Dimensions 

Domain

Subtypes
Tag Description Storage optional
material material properties single ◦6

diffeq governing differential equation single
vertex vertex map
triangle triangular element map

Table 4.1: Domain Tag

Domains The individual domains are identified with a numeric
ID given in the opening tag. This ID is used to refer to a domain
in case its solution is used as a side calculation for another do-
main. Every domain is governed by a specified partial differential
equation and is subject to the stated load case7.

Vertices The vertices are holding—beside their geometric
location—all information concerning the ansatz. The base of
the ansatz is a set of Legendre polynomials up to the degree p

originating from (Vx, Vy) and scaled to the characteristic size h to
improve numerical characteristics.

It is possible to enrich the ansatz with special functions. These
functions may be determined analytically or numerically.

Essential boundary conditions are imposed using the character-
istic function method[BBO02]. This characteristic function is
described by a set of functions multiplied onto (almost8) every

6required for plane elasticity
7Multiple load cases for one domain are not supported—multiple domains have

to be used instead.
8numerical or analytical special functions should fulfil essential boundary

conditions by construction and are therefore not subject to characteristic function
multiplication

 Implementation of the GFEM

Vertex

Properties
Tag Description Type optional
x Vx coordinate double
y Vy coordinate double
h characteristic size h double
degree polynomial ansatz or-

der p

int

Subtypes
Tag Description Storage optional
mulfunc characteristic function

components
list •

sidecalcansatz numerical side calcula-
tion ansatz

list •

analyticalansatz analytical ansatz list •

Table 4.2: Vertex Tag

4.2 GFEM in two Dimensions 

function of the ansatz.

Triangles A triangle refers to its three nodes by ID. This is all of
the topological information needed to construct a two-dimensional
GFEM discretization.

The edges of the triangular element may be circular arcs. For
ri > 0, the edge bends outwards, for ri < 0, the edge bends
inwards towards the triangle. The resulting functions cannot
be integrated exactly with the used Gauss’ian tensor product
quadrature scheme. In this case one has to specify the additional
number of integration points to be used.

The standard Gauss’ian integration scheme performs badly for
singular special functions. In this case, one should use the hp-
refined recursive integration algorithm. This method is enabled
by inserting <inttype>hp</inttype>. The integration triangle
is recursively refined towards node 2 using the number of levels
specified with the hpintdepth tag. On the coarsest level, the same
number of integration points as in the case of standard Gauss’ian
integration is used. On each subsequent level the number of
integration points decreases by one. If necessary, this number is
increased on the coarsest level not to become zero or less at the
finest one.

Optionally, a uniform h-refinement may be applied using the
uintdepth tag. In this case hp-refinement is applied after the
specified depth of uniform refinement. Setting hpintdepth or
uintdepth to zero, a pure h- or pure hp-refined integration is
performed.

Using the <inttype>adaptive</inttype> keyword, an adaptive
h-refined integration scheme is enabled. In this case, the inte-
gration triangle is recursively refined until the error estimated
using the results of two subsequent levels drops below the value

9required for hp-integration
10required for h-adaptive-integration

 Implementation of the GFEM

Triangle

Properties
Tag Description Type optional
n1 node 1 int
n2 node 2 int
n3 node 3 int
r1, r2, r3 edge radii double •
overint additional number of

integration points
int •

inttype integration type string •
hpintdepth depth of recursive hp-

integration
int ◦9

uintdepth depth of recursive h-
integration

int •

accuracy accuracy of adaptive h-
integration

int ◦10

Subtypes
Tag Description Storage optional
inttriangle integration triangula-

tion
list •

areaload area loading (plane
poisson)

list •

edgeload edge traction loads
(plane elasticity)

list •

Table 4.3: Triangle Tag

4.2 GFEM in two Dimensions 

specified using accuracy or the maximal level of refinements is
reached.

Normally, the whole area covered by the triangular element is
integrated. To integrate over only a part of this area (e.g. to dis-
cretize a hole in the domain without representation in the element
triangulation), one can specify that an integration triangulation is
to be used instead.

DiffEq

Properties
Tag Description Type optional
type Name of partial differential equation string

Table 4.4: PDE Tag

Governing Partial Differential Equation Two types of govern-
ing partial differential equations are supported:

1. plane isotropic Poisson problem: <type>planepoisson</type>

2. plane isotropic elasticity problem: <type>planestress</type>

Material

Properties
Tag Description Type optional
e Young’s modulus E double
nu Poisson ratio ν double

Table 4.5: Material Tag

 Implementation of the GFEM

Material For an isotropic elastic problem, Young’s modulus and
the Poisson ratio of the used material must be specified.

MulFunc

Properties
Tag Description Type optional
x1, x2, x3, y1, y2, y3 plane defining coordi-

nates
double

r1, r2, r3 edge radii double •
type type of plane string •
element affected element11 int •

Table 4.6: Characteristic Function Component

Characteristic Functions The characteristic function used to
enforce essential boundary conditions is built from parts of the
hat functions used by the chosen partition of unity.
In the simplest case, a linear function is used. xi and yi co-
ordinates of three points have to be specified. The function is
determined to fulfil f(x2, y2) = f(x3, y3) = 0, f(x1, y1) = 1.
To describe a piecewise linear function, all pieces are listed. Effects
of every function part are limited to the triangular element stated
in the element tag. Care should be taken that the described
function is C0 continuous.
To enforce essential boundary conditions on curved edges, a
blended hat function part can be used by specifying the respective
radii ri. Contrary to a linear function, the blended hat function
part cannot be evaluated in the entire R2, only inside the blended
triangle described by the points V1...3.

11if missing all elements adjacent to respective node are affected

4.2 GFEM in two Dimensions 

SideCalcAnsatz

Properties
Tag Description Type optional
domain ID of side calculation

domain
int

x1, x2, x3,
y1, y2, y3 points in side calcula-

tion domain
double

x1s, x2s, x3s,
y1s, y2s, y3s points in ansatz (cur-

rent) domain
double

Table 4.7: Side Calculation Ansatz

Side Calculations The displacement field of another domain’s
solution can be used as an ansatz function. The mapping used
to place the side calculation is defined by three point-pairs. The
points (x1, y1), (x2, y2), (x3, y3) located in the side calculation are
mapped to the points (x ′

1, y ′
1), (x ′

2, y ′
2), (x ′

3, y ′
3) in the using domain,

respectively.

Analytical Enrichment An analytical solution is mapped into
the domain the same way as a numerical side calculation.

The following analytical functions can be selected with the respec-
tive identifier:

• EdgeSingularity: f(r, θ) =
√

3 rλ cos(λ θ) + rλ sin(λ θ) with
λ = 2

3 . Singularity of Poisson’s problem at two edges subject
to Dirichlet boundary conditions with included angle ϕ = 90◦.

12required for hp-integration
13required for h-adaptive-integration

 Implementation of the GFEM

AnalyticalAnsatz

Properties
Tag Description Type optional
type Identifier of analytical

ansatz function
string

x1, y1,
x2, y2,
x3, y3 points in analytical

function coordinate
system

double

x1s, y1s,
x2s, y2s,
x3s, y3s points in ansatz (cur-

rent) domain
double

Table 4.8: Analytical Ansatz

Integration Sub-Triangles If the integration should not be per-
formed over the whole triangular element area (default), a list of
sub-triangles covering the area to be integrated is specified. Type
and accuracy of the integration scheme have to be specified for
every integration triangle in the same way as for a normal, fully in-
tegrated triangle. The integration type arguments of the triangular
element are ignored in this case.

Loading For plane elasticity, constant traction loads at bound-
aries can be applied by stating the load components σx and σy at
the affected triangular element edges.
Plane Poisson problems can be loaded by a constant p on an
element level basis.

4.2 GFEM in two Dimensions 

IntTriangle

Properties
Tag Description Type optional
x1, x2, x3,
y1, y2, y3 integration triangle

points
double

r1, r2, r3 edge radii double •
inttype identifier of analytical

ansatz function
string

inttype integration type string •
hpintdepth depth of recursive hp-

integration
int ◦12

uintdepth depth of recursive h-
integration

int •

accuracy accuracy of adaptive h-
integration

int ◦13

Table 4.9: Integration Triangulation

AreaLoad

Properties
Tag Description Type optional
p scalar area loading component p double

Table 4.10: Area Loading

 Implementation of the GFEM

EdgeLoad

Properties
Tag Description Type optional
x, y edge traction load components σx, σy double

Table 4.11: Edge Loading

Chapter 5

Summary

A complete framework for two dimensional h-, p- and hp-extended
GFEM was developed. Both analytical functions and numerical
side calculations can be used to enrich the ansatz. Using different
numerical integration methods, smooth polynomial ansatz func-
tions as well as non-smooth numerical side calculations can be
integrated in an appropriate and error-controlled fashion. The
resulting semi-definite linear equation system requires special
solving methods. Some methods proposed for h-extended GFEM
turned out to be infeasible for higher order ansatz functions. To
exploit high performance hardware, the code was parallelized for
shared and distributed memory architectures.
Analytical enrichment leads to exponential convergence rates on
unrefined meshes. Numerical enrichment improves convergence
rates, but the gain turned out to be too small to be used for this
reason alone.
Extending the partition of unity further to a mixed cell com-
plex cover may lead to equation systems which are definite and
thus solvable by a broader range of better performing algorithms.
As many of the performance increasing algorithms, like Gauss-
Lobatto-Quadrature or sum factorization, are not implemented,

 Summary

the method cannot compete with classical FEM for the problems
investigated. For special applications—like crack propagation—
the method could be a promising option. Another approach could
be incorporating the GFEM only for enrichment of an otherwise
classic FEM ansatz.

Appendix A

UML — Unified
Modeling Language

For diagrammatic representation of object oriented software de-
signs, UML (Unified Modeling Language) has become a de facto
standard [Obj01]. Instead of inventing yet another notion, this
work will take advantage of UML.

Because a complete UML reference would be beyond the scope
of this document, this appendix will explain only the subset of
syntax elements actually used. A more in-depth introduction to
history and concepts of UML can be found in one of the many
textbooks available (e.g. [HK03]).

A.1 Static Syntax Elements

The UML elements used in this document can be divided into two
groups: static and dynamic elements.

Static elements describe structures and dependencies of the de-
sign already visible at compile-time. Dynamic elements describe

 UML — Unified Modeling Language

behaviour, interaction and collaboration during run-time.
Other groups of elements, e.g. concerning the packaging and
deployment of the system, are supported in UML, but will not be
described here.

A.1.1 Class Diagrams

A class diagram describes classes with member variables and
methods as well as the class hierarchy.

Class Hierarchy

Figure A.1 shows a simple class hierarchy: Triangle is derived
from Element. Element is a virtual class indicated by displaying
the class’ name italic. Details like member variables or methods

Element

Triangle

Figure A.1: Class hierarchy

may be partially or completely omitted. However, this does not
imply their non-existence.

Interfaces

An interface is like a special kind of abstract base class which
owns only virtual1 functions. It describes a functionality with a

1Don’t confuse virtual with C++’s notation of virtual: in this context virtual
means that no implementation is provided. In C++ this is called a pure virtual
function.
C++’s keyword virtual however just turns on polymorphic behavior (which should
be the default at least from an object oriented point of view).

A.1 Static Syntax Elements 

set of functions. A class can implement an arbitrary number of

PolynomialFunction

<<interface>>
Function

+operator()(double): double

Figure A.2: Interface

interfaces. To document the interface itself, one uses the same
notation as for ordinary classes, but the name is supplemented
with the keyword �interface�. To indicate that a class implements
a specific interface, we use the so-called Lollipop-notation such
as in Figure A.2 where Polynomial implements the Function
interface.

Member Variables and Methods

Figure A.3 is a class diagram with member variables and methods.
Class Point contains two public members of type double which
default to 0.0. The visibility of class elements is indicated with the

Point
+x: double = 0.0
+y: double = 0.0
+distance(in p:Point): double

sqrt((x-p.x)²+(y-p.y)²)

Figure A.3: Members and methods

following symbols:
• + public
• # protected
• − private

Point provides a method distance which accepts an argument
of type Point named p and returns the distance between itself
and the supplied Point. The argument’s direction of data-flow

 UML — Unified Modeling Language

may be indicated as in or out. Again, details may be omitted if
appropriate.

To indicate that a method is virtual an italic font is used for the
name. Note that methods of interfaces (see A.1.1) are not displayed
in italics despite their virtual character.

Diagram parts can be annotated using notes connected with a
dashed line. In this example, a note is used to describe the formula
chosen to calculate the returned distance.

A.1.2 Association

An association describes a relationship between objects. A binary
association relating two objects is expressed by a line connecting
one object to the other.

The association can be named as in Figure A.4. The direction the
name is to be read is expressed with a small filled arrow.

Vendor Customerbuys from

Figure A.4: Association

An arrow at the end of an association indicates a direction. In Fig-
ure A.5 an Appointment is related to a Document which may pro-
vide additional information. A Document can be found (if present)
for a given Appointment, but not the other way around.

Appointment Document* 0..1

Figure A.5: Directed association

If an association is not qualified with any arrow the direction is
left unspecified. It is convenient however to agree that in this case

A.1 Static Syntax Elements 

the association shall be bi-directional. We will use this convention
throughout this document.

At both ends of an association the multiplicity can be stated. In
Figure A.5, an Appointment can point to zero or one Documents;
a Document may be referenced from an arbitrary number of
Appointments.

Company Person *
Customer

*

Figure A.6: Role

Like multiplicity, a role can be stated at both ends of an associ-
ation. Figure A.6 shows the association between a Company and
a Person. To indicate the Person’s role as a customer in the
modeled association, this syntactic facility is used.

A.1.3 Aggregation

Aggregation is a special kind of association. It expresses a part-of
relation between two unequal partners: a master side—denoted
with a rhombus—and a slave side.

Triangle Vertex3*

Figure A.7: Aggregation

Note that aggregation does not by itself imply semantics on lifetime
or existence of objects. Such restrictions can be expressed by
explicitly stating the multiplicity of the relationship. The example
in Figure A.7 shows a Triangle composed of three Vertex objects.
On the side of the Vertex a multiplicity of 3 indicates that a
Triangle is composed out of exactly three Vertices. On the other
hand, on the Triangle’s side, a wildcard states that a Vertex

 UML — Unified Modeling Language

may be associated to zero, one or more triangles. This implies that
a Vertex can exist without Triangles, but a triangle needs
exactly three Vertices.

A.1.4 Composition

Composition is a stronger form of aggregation. While multiple
aggregating associations to a child object are allowed, only one
composite association to a child can exist. The composite asso-
ciation can coexist with all non-composite associations, however.
The master side of the composite association is denoted by a filled
rhombus.

Vertex MulFunc *1

Figure A.8: Composition

Like in the case of aggregation, the composition implies nothing
concerning the lifetime of the participating objects.
Figure A.8 shows MulFunc objects which are part of a Vertex.
Here, a multiplicity of one at the Vertex side states that a MulFunc
is always a composite part of a Vertex. This case represents
the intuitive meaning of composition—the child object’s lifetime
depends on its master.

A.2 Dynamic Syntax Elements

A.2.1 Object Diagram

An object diagram shows a graph of instances at a specific point
in time. There is no separate kind of diagram exclusively for
objects. Instead, the class diagram allows the representation of
objects, too. Classes and objects may be present in the same

A.2 Dynamic Syntax Elements 

diagram. Sometimes the terms class diagram and object diagram
are used interchangeably. We will use the term class diagram only
if no object instances are present and the term object diagram
otherwise. This type of diagram is especially useful in documenting

Node 1

0..2

child

root:Node

:Node :Node

:Node:Node :Node

Figure A.9: Class and object diagram

data structures. Figure A.9 shows the class diagram for a binary
tree’s Node class and an object diagram for an example tree. To
distinguish objects from classes, their name and type (class name)
are underlined. The name is separated with a colon from the type.
As always, the name or type can be omitted if appropriate.

Appendix B

xmlom — XML Object
Manager

This chapter will explain the parser generator used to load and
store the GFEM discretization document (see ’Parser Generator’,
4.2.2) in greater detail. It is not supposed to be read independently,
but will continue where 4.2.2 left off. The actual GFEM document
is used as an example. However, the parser generator could be
used for many other kinds of documents as well.

B.0.2 Type Maps

Whenever a document object embeds child objects, the user of the
document as well as the parser itself requires means to access
these objects. The functionality needed to accomplish this is stated
in a number of ...Map classes. Figure B.1 shows the hierarchy of
the generated type maps.

The composite associations used to embed child objects are imple-
mented using bare pointers, maps of pointers or lists of pointers.

 xmlom — XML Object Manager

<<interface>>
TypeMap

<<interface>>
RootMap

<<interface>>
DomainMap

<<interface>>
VertexMap

<<interface>>
TriangleMap

Figure B.1: Type Maps

As seen in this example the ...Map classes basically declare an
interface for accessing functions to these associations:

class DomainMap
:public TypeMap

{
public:

virtual MaterialBase*& getMaterial() = 0;
virtual DiffEqBase*& getDiffEq() = 0;
virtual std::map<int, VertexBase*>&

getVertexMap() = 0;
virtual std::map<int, TriangleBase*>&

getTriangleMap() = 0;
};

All type map classes are derived from the base class TypeMap. This
empty class is used internally as a data type for storing different
type maps.

B.0.3 Document Base Types

Figure B.2 shows the generated document object structure.



The root of this structure is the class XMLObjectManager. This
class represents the document. It contains the associations to the
top-level child objects. The generated code to load and store the
document resides here.

XMLObjectManagerRootMap
<<interface>>

ObjectFactoryBase

DiffEqBase MaterialBase

MulFuncBase

AnalyticalAnsatzBase

SideCalcAnsatzBase

IntTriangleBase

EdgeLoadBase

AreaLoadBase

DomainBaseDomainMap

VertexBaseVertexMap TriangleBaseTriangleMap

1

1

*

1 1 1 1

0..1 0..1* *

1 1 1 1 1 1

*

*

*

*

*

*

Figure B.2: Generated Document Structure

XMLObjectManager contains an association to an object instance
implementing the ObjectFactory interface. This association is
set during construction of XMLObjectManager.

The user supplied ObjectFactory is responsible for creating the
custom subclasses of document base type objects.

The generated document base types below XMLObjectManager
are abstract, even though they implement the respective ...Map
interfaces. Besides custom functionality, the ability to load and
store properties is declared virtually, but not implemented. By
implementing the ...Map interfaces, these base objects already
own the associations required to form the tree-like document
structure. The user provides subclasses to these base objects

 xmlom — XML Object Manager

implementing properties (pairs of ...Set and ...Get functions)
and the desired custom functionality.

Appendix C

List of Symbols

Symbol Name

a, b, c, . . . Scalars
A, B, C, . . . Points
a, b, c, . . . Vectors
A, B, C, . . . Matrices
R Field of real numbers

Appendix D

Natural Triangle
Coordinates

D.1 Standard triangular Element

The standard (or reference) element used is (P1, P2, P3) with

P1 =

(
x1 = 0
y1 = 0

)
(D.1)

P2 =

(
x2 = 1
y2 = 0

)
(D.2)

P3 =

(
x3 = 0
y3 = 1

)
(D.3)

in Cartesian coordinates.

For arbitrarily shaped triangles, we introduce the notion of natural
(or area) coordinates denoted as triplets of the form S(s1, s2, s3).
These coordinates are 1 at a certain node and decay linearly to 0

 Natural Triangle Coordinates

(1/0/0)S1

(0/1/0)S2

(0/0/1)S3

A3
A1

A2

s2

s1

s3

(1/0/0)S1

(0/1/0)S2

(0/0/1)S3

P

pS1

pS3

pS2

(1/0/0)S1

(0/1/0)S2

(0/0/1)S3

Figure D.1: Standard triangular element in natural coordinates

D.2 Blending Function Method 

at the opposite edge. As a special case for our standard element
holds:

s1 = x (D.4)

s2 = y (D.5)

s3 = 1 − x − y (D.6)

In the general case, the following relations apply:

si =
Ai

A
(D.7)

A =

3∑
i=1

Ai (D.8)

3∑
i=1

si = 1 (D.9)

P =

3∑
i=1

Pi · si (D.10)

where A is the area of the entire triangle and A1...A3 are the areas
of the sub-triangles resulting from connecting a point to the three
vertices of the triangle. The cartesian coordinates of a point given
in natural coordinates can be determined from the sum of the
cartesian coordinates of the triangle vertices weighted with the
natural coordinates of the point as denoted in D.10.

D.2 Blending Function Method

Using D.10, the standard element can already be mapped to an
arbitrarily triangle with straight edges. To map to an arbitrary
triangle with curved edges, the blending function method is used.
The curved edge is represented as a vector function vi(ti), ti ∈

 Natural Triangle Coordinates

[−1, 1] with vi(0) = vi(1) = 0 describing the difference between
the straight line connecting the incident vertices and the edge
(Figure D.2). Therefore, vi = 0 in the case of a straight edge.

e2

e1

e3

t = 01

t = 11

t = -11

v1(t)1

(1/0/0)S1

(0/1/0)S2

(0/0/1)S3

x

y

0

Figure D.2: Blended triangle

The parameters ti can be determined from a point given in natural
coordinates using the following relations:

t1 = 2 · s2

s1 + s2
− 1 (D.11)

t2 = 2 · s3

s2 + s3
− 1 (D.12)

t3 = 2 · s1

s3 + s1
− 1 (D.13)

The linear mapping D.10 is complemented with a linear blending

D.2 Blending Function Method 

term

b(s1, s2, s3) = v1(t1) · (1 − s3) + (D.14)

v2(t2) · (1 − s1) + (D.15)

v3(t3) · (1 − s2) (D.16)

which fades the influence of the curved edge from 1 to 0 at the
opposite vertex. The complete mapping is given by

P =

3∑
i=1

Pi · si + b (D.17)

While the linear mapping D.10 could be inverted analytically, this
is no longer possible for the blended mapping. The inverse function
has to be determined numerically, e.g. with some Newton-Raphson
steps.

D.2.1 Blending to a circular shaped Edge

The blending vector function v can be constructed in many ways.
However, some care has to be taken to choose a function with
advantageous properties.

In the following two ways of constructing a blending function for a
circular edge will be discussed.

Normal Blending

One idea of blending to a circular edge is to add the additional
normal height between the straight edge and the circular arc to a
point on the edge as illustrated in Figure D.3.

With

(h + |v|)2 +

(
1
2
· a · t

)2

= r2

 Natural Triangle Coordinates

t = 0

t = 1

t = -1

a

r

h

M

x

y

0

v(t)

en

ep

Figure D.3: Normal blending to a circular edge

D.2 Blending Function Method 

we get

v(t) = en ·

(√
r2 −

a2t2

4
−

√
r2 −

a2

4

)
· sgn(r) (D.18)

Radial Blending

Another possibility is to radially map a point on the edge to the
arc as illustrated in Figure D.4. The associated blending function
can be determined to:

v(t) =

(
M +

(
sin(α + ϕ)

cos(α + ϕ)

)
· r
)

−
(
C + ep · t ·

a

2

)
(D.19)

a

r

α β

ϕ(t)

t = 0

t = 1

t = -1

x

y

0

v(t)
en

ep

M

C

Figure D.4: Radial blending to a circular edge

 Natural Triangle Coordinates

D.2.2 Effects of well- or ill-chosen Parametrization

Figure D.5 shows an example of both normal (left column) and
radial (right column) blending. In the first row, an equidistant grid
is mapped, the second row shows the size and direction of ∂P

∂s1
and

∂P
∂s2

. The heavy distortion and large derivatives of normal blending
can be seen clearly.
Diagram D.6 shows as a numerical experiment, the error in ap-
proximating the area

∫
1 dΩ of the mapped triangle using a Gauss-

Legendre tensor product integration scheme. As one would ex-
pect, radial mapping performs much better using this integration
scheme because the square root terms of normal mapping cannot
be approximated well using this quadrature algorithm.

D.2 Blending Function Method 

Figure D.5: Mapped triangle

 Natural Triangle Coordinates

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40 45 50

E
rr

or

Integration Points

Relative Integration Error

Mapping A
Mapping B

Figure D.6: Integration error

Bibliography

[ABCM02] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini.
Unified analysis of discontinuous galerkin methods for
elliptic problems. SIAM Journal on Numerical Analysis,
39:1749–1779, 2002.

[BB07] I. Babuska and U. Banerjee. The finite element method
for elliptic pdes and its generalizations. iacm expres-
sions, 21:14–17, 2007.

[BBO02] I. Babuška, U. Banerjee, and J. E. Osborn. Meshless
and generalized finit element methods: A survey of
some major results. Technical Report 02-03, Texas
Institute of computational and applied mathematics,
University of Texas at Austin, 2002.

[BCO94] I. Babuska, G. Caloz, and J. E. Osborn. Special finite
element methods for a class of second order elliptic
problems with rough coefficients. SIAM Journal on
Numerical Analysis, 31:945–981, 1994.

[BKO+96] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and
P. Krysl. Meshless methods: An overview and recent
developments. Computer Methods in Applied Mechanics
and Engineering, 139:3–47, 1996.

 BIBLIOGRAPHY

[BM96] I. Babuška and J. M. Melenk. The partition of unity
finite element method: Basic theory and applications.
Computer Methods in Applied Mechanics and Engineer-
ing, 139:289–314, 1996.

[BM97] I. Babuška and J. M. Melenk. The partition of unity
method. International Journal for Numerical Methods
in Engineering, 40:727–758, 1997.

[BMMB05] E. Béchet, H. Minnebo, N. Moes, and B. Burgardt.
Improved implementation and robustness study of the
x-fem for stress analysis around cracks. International
Journal for Numerical Methods in Engineering, 64:1033–
1056, 2005.

[BPM+03] T. Belytschko, C. Parimi, N. Moes, N. Sukumar, and
S. Usui. Structure extended finite element methods
for solids defined by implicit surfaces. International
Journal for Numerical Methods in Engineering, 56:609–
635, 2003.

[BRT00] P. Breitkopf, A. Rassineux, and G. Touzout. Explicit
form and efficient computation of mls shape functions
and their derivatives. International Journal for Numeri-
cal Methods in Engineering, 48:451–466, 2000.

[BS92] I. Babuska B. Szabo. Finite Element Analysis. John
Wiley & Sons, New York, 1st edition, 1992.

[BSMM00] T. Belytschko, N. Sukumar, N. Moes, and B. Moran.
Extended finite element method for three-dimensional
crack modelling. International Journal for Numerical
Methods in Engineering, 48:1549–1570, 2000.

[BXP03] T. Belytschko, S. P. Xiao, and C. Parimi. Topology
optimization with implicit functions and regulariza-
tion. International Journal for Numerical Methods in
Engineering, 57:1177–1196, 2003.

BIBLIOGRAPHY 

[CAD95] J. T. Oden C. Armando Duarte. Hp clouds–a meshless
method to solve boundary-value problems. Technical
report, TICAM, University of Texas at Austin, 1995.
TICAM Report 95-05.

[CD94] M. Cosnard and E. M. Daoudi. Optimal algorithms for
parallel givens factorization on a coarse-grained pram.
Journal of the Association for Computing Machinery,
41(2):399–421, 1994.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In ACM National Confer-
ence, pages 157–172, 1969.

[CQYY01] J.-S. Chen, C.-T. Qu, S. Yoon, and Y. You. A stabilized
conforming nodal integration for galerkin mesh-free
methods. International Journal for Numerical Methods
in Engineering, 50:435–466, 2001.

[CR86] M. Cosnard and Y. Robert. Complexity of parallel qr
factorization. Journal of the Association for Computing
Machinery, 33(4):712–723, 1986.

[DB99] J. Dolbow and T. Belytschko. Numerical integration of
the galerkin weak form in meshfree methods. Compu-
tational Mechanics, 23:219–230, 1999.

[DBO00] C. A. Duarte, I. Babuška, and J. T. Oden. Generalized
finite element methods for three-dimensional struc-
tural mechanics problems. Computers and Structures,
77:215–232, 2000.

[DGJ02] Q. Du, M. Gunzburger, and L. Ju. Meshfree, proba-
bilistic determination of point sets and support regions
for meshless computing. Computer Methods in Applied
Mechanics and Engineering, 191:1349–1366, 2002.

 BIBLIOGRAPHY

[DKQ06] C. A. Duarte, D.-J. Kim, and D. M. Quaresma. Arbitrar-
ily smooth generalized finite element approximation.
Computer Methods in Applied Mechanics and Engineer-
ing, 196:33–56, 2006.

[DR83] I. S. Duff and J. K. Reid. The multifrontal solution
of indefinite sparse symmetric linear equations. ACM
Transactions on Mathematical Software, pages 302–
325, 1983.

[Dua95] C. A. Duarte. A review of some meshless methods to
solve partial differential equations. Technical Report
Technical Report 95-06, Texas Institute of Computa-
tional and Applied Mathematics, University of Texas
at Austin, 1995.

[GH73a] W. J. Gordon and C. A. Hall. Construction of curvi-
linear co-ordinate systems and applications to mesh
generation. International Journal for Numerical Meth-
ods in Engineering, 7:461–477, 1973.

[GH73b] W. J. Gordon and C. A. Hall. Transfinite element meth-
ods: Blending-function interpolation over arbitraty
curved element domains. Numerische Mathematik,
21:109–129, 1973.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, New York, 1994.

[GL89] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. Johns Hopkins University Press, Baltimore, 2nd
edition, 1989.

[GMB02] A. Gravouil, N. Moes, and T. Belytschko. Non-planar
3d crack growth by the extended finite element and
level sets—part ii: Level set update. International Jour-
nal for Numerical Methods in Engineering, 53:2569–
2586, 2002.

BIBLIOGRAPHY 

[Gor71] W. J. Gordon. Blending-function methods of bivari-
ate and multivariate interpolation and approxima-
tion. SIAM Journal on Numerical Analysis, 21:109–129,
1971.

[Gos95] J. Gosling. Java: an overview. Tech-
nical report, Sun Microsystems, 1995.
http://java.sun.com/people/jag/.

[GR83] A. Goldberg and D. Robson. Smalltalk-80, The Lan-
guage and its Implementation. Addison-Wesley, New
York, 1983.

[GS00] M. Griebel and M. A. Schweitzer. A particle-partition of
unity method for the solution of elliptic, parabolic and
hypercolic pdes. SIAM Journal on Scientific Computing,
22:853–890, 2000.

[GS02a] M. Griebel and M. A. Schweitzer. Geometric Analysis
and Nonlinear Partial Differential Equations, chapter A
particle-partition of unity method — Part V: Boundary
Conditions. 2002.

[GS02b] M. Griebel and M. A. Schweitzer. Lecture Notes in Com-
putational Science and Engineering, chapter A particle-
partition of unity method — Part IV: Parallelization,
pages 161–192. 2002.

[GS02c] M. Griebel and M. A. Schweitzer. A particle-partition
of unity method — part ii: Efficient cover construction
and reliable integration. SIAM Journal on Scientific
Computing, 23:1655–1682, 2002.

[GS02d] M. Griebel and M. A. Schweitzer. A particle-partition
of unity method — part iii: A multilevel solver. SIAM
Journal on Scientific Computing, 24(2):377–409, 2002.

[HK03] M. Hitz and G. Kappel. UML@Work: von der Analyse
zur Realisierung. dpunkt, Heidelberg, 2003.

 BIBLIOGRAPHY

[hsl] The HSL archive.
http://hsl.rl.ac.uk/archive/hslarchive.html.

[Jos99] N. Josuttis. The C++ Standard Library. A Tutorial and
Reference. Addison-Wesley, New York, 1999.

[KS00] O. Klaas and M. S. Shepard. Automatic generation
of octree-based three-dimensional discretizations of
partition of unity methods. Computational Mechanics,
25:296–304, 2000.

[Lee02] R. Lee. The JNDI tutorial. Techni-
cal report, Sun Microsystems, 2002.
http://java.sun.com/products/jndi/tutorial/.

[Liu92] J. W. H. Liu. The multifrontal method for sparse matrix
solution: Theory and practice. SIAM Review, 34(1):82–
109, mar 1992.

[LPRS05] P. Laborde, J. Pommier, Y. Renard, and M. Salaün.
High-order extended finite element method for cracked
domains. International Journal for Numerical Methods
in Engineering, 64:354–381, 2005.

[MB02] N. Moes and T. Belytschko. Extended finite element
method for cohesive crack growth. Engineering Frac-
ture Mechanics, 69:813–833, 2002.

[Mel95] J. M. Melenk. On generalized finite element methods.
PhD thesis, University of Maryland, College Park, MD,
1995.

[MGB02] N. Moes, A. Gravouil, and T. Belytschko. Non-planar
3d crack growth by the extended finite element and
level sets—part i: Mechanical model. International
Journal for Numerical Methods in Engineering, 53:2549–
2568, 2002.

BIBLIOGRAPHY 

[Moe07] N. Moes. A look back at the extended finite element
method and a peek ahead... iacm expressions, 21:10–
13, 2007.

[Obj01] Object Management Group, Needham, MA, USA. OMG
Unified Modeling Language Specification, 1.4th edition,
September 2001.

[Pac97] P. Pacheco. Parallel Programming with MPI. Mor-
gan Kaufmann Publishers, San Francisco, California,
1997.

[RGC05a] J. Réthoré, A. Gravouil, and A. Combescure. A com-
bined space-time extended finite element method. In-
ternational Journal for Numerical Methods in Engineer-
ing, 64:260–284, 2005.

[RGC05b] J. Réthoré, A. Gravouil, and A. Combescure. An energy-
conserving scheme for dynamic crack growth using
the extended finite element method. International Jour-
nal for Numerical Methods in Engineering, 63:631–659,
2005.

[SBC98] T. Strouboulis, I. Babuška, and K. Copps. The design
and analysis of the generalized finite element method.
Computer Methods in Applied Mechanics and Engineer-
ing, 1998.

[SBCB03] F. L. Stazi, E. Budyn, J. Chessa, and T. Belytschko.
An extended finite element method with higher-order
elements for curved cracks. Computational Mechanics,
31:38–48, 2003.

[SCB02] T. Strouboulis, K. Copps, and I. Babuška. The gen-
eralized finite element method. Computer Methods in
Applied Mechanics and Engineering, 190:4081–4193,
2002.

 BIBLIOGRAPHY

[Sch84] H. R. Schwarz. Methode der finiten Elemente. B.G.
Teubner, Stuttgart, 1984.

[Sch97] H. R. Schwarz. Numerische Mathematik. B.G. Teubner,
Stuttgart, 4th edition, 1997.

[SK78] A. H. Sameh and D. J. Kuck. On stable parallel linear
system solvers. Journal of the Association for Comput-
ing Machinery, 25(1):81–91, 1978.

[Str00] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, New York, special edition, 2000.

[SZB04] T. Strouboulis, L. Zhang, and I. Babuska. p-version
of the generalized fem using mesh-based handbooks
with applications to multiscale problems. International
Journal for Numerical Methods in Engineering, 60:1639–
1672, 2004.

[TDZ96] J. Tourino, R. Doallo, and E. L. Zapata. Sparse givens
QR factorization on a multiprocessor, May 1996.

[TYT06] R. Tian, G. Yagawa, and H. Terasaka. Linear depen-
dence problems of partition of unity-based generalized
fems. Computer Methods in Applied Mechanics and
Engineering, 195:4768–4782, 2006.

Index

adaptive integration, 35
aggregation

UML, 89
analyse, 63
analysing of a function, 63
area coordinates, see natural coordi-

nates
arithmetic operations with functions,

59
association

UML, 88

banded matrix, 45
blending function method, 101

normal blending, 103
radial blending, 105

boundary conditions, 13
characteristic function method,

13
XML representation, 78

C++, 55
characteristic function

XML representation, 78
characteristic function method, 13
Cholesky decomposition, 42
circular support, 7
class diagrams, 86
composition

UML, 90

debugging of a function, 63
design

implementation, 55
differential equation

XML representation, 77
distributed memory parallelization,

48
DOM, 68
domain

XML representation, 73

elastostatic problem, 9
event-driven parsers, 68
extensible markup language, 68

Function, 58
function

analysing, 63
debugging, 63

function arithmetic, 59
function proxy, 59
function, implementation, see imple-

mentation, functions

Gauss quadrature, 34
GFEM, 7
GFEM document structure, 72
Givens factorization, 43

hp-clouds, 7
HSL MA27 solver, 52

implementation
design, 55
functions, 56–64

 INDEX

language, 55
integration

hp-refined, 37
adaptive, 35
Gauss quadrature, 34
XML representation, 79

interfaces
UML, 86

isotropic material, 10

language, implementation, 55
Legendre, 63
Legendre polynomials, 12
Legendre polynomials, 63
loading

XML representation, 80

material
XML representation, 77

material constants, 10
matrix

banded storage, 45
meshless methods, 7
MPI, 48
multifrontal Gaussian elimination,

52

natural coordinates, 99
notes

UML, 88
numerical enrichment

XML representation, 78
numerical side calculation

XML representation, 78

object diagram
UML, 90

object oriented parsers, 68

parallelization, 46
parser concepts, 68
parser generator, 68
parsers

event-driven, 68

object oriented, 68
partial differential equation

XML representation, 77
partial integration

XML representation, 79
partition of unity, 11
PDE

XML representation, 77
Poisson problem, 9
Poly, 61
polynomials, 61
PolyProduct, 62
proxy function, 59

QR factorization, 43

reference counting, 57
reference element, see standard

element
role

UML, 89

serialization, 70
SFunction, 56
SFunctionProd, 59
SFunctionProxy, 59
SFunctionRef, 57
SFunctionSum, 59
shape functions, 11
side calculation

XML representation, 78
smart reference, 57
solving, 39

Cholesky decomposition, 42
Givens QR factorization, 43
post iteration, 39

standard element
triangle, 99

strain-displacement relations, 9
stress tensor, 10
stress-strain relation, 10
support

circular, 7

INDEX 

triangles
XML representation, 75

UML, 85
aggregation, 89
association, 88
class diagrams, 86
composition, 90
interfaces, 86
notes, 88
object diagram, 90
role, 89
textbooks, 85

Unified Modeling Language, 85

vertex
XML representation, 73

X-FEM, 7
XML, 68

parser concepts, 68
parser generator, 68

XML object manager, 93
xmlom, 93

	Introduction
	GFEM
	Model Problems
	Plane Poisson Problem
	Plane Linear Elastostatic Problem

	GFEM discretization
	Essential Boundary Conditions
	Characteristic Function Method
	Convergence rates for p-extension

	Enrichment for Singularities
	Poisson problem for re-entrant corner with analytical enrichment
	Plane Elasticity and enrichment using numerical side calculation
	Triangle Location
	Numerical Integration

	Solving the linear Equation System
	Perturbed Matrix and Post Iteration
	Givens QR Factorization
	Overview of the Solution Process
	Givens Rotation
	Sequential Givens Transformation
	Banded Matrix
	Hybrid Parallelization of Givens Rotations

	Sparse Multifrontal Gaussian Elimination/HSL MA27
	Comparison of the Different Methods

	Implementation of the GFEM
	Function Classes
	Scalar Multivariate Function Interface--- SFunction
	Smart Reference to scalar Function Object--- SFunctionRef
	Vector-valued Function Interface---Function
	Arithmetic
	Function Proxy
	Polynomials
	Univariate Polynomials---Poly
	Bivariate Polynomials---PolyProduct
	Set of Legendre Polynomials---Legendre
	Analysing and Debugging

	GFEM in two Dimensions
	Overview
	Input and Output

	Summary
	UML --- Unified Modeling Language
	Static Syntax Elements
	Class Diagrams
	Association
	Aggregation
	Composition

	Dynamic Syntax Elements
	Object Diagram

	xmlom --- XML Object Manager
	Type Maps
	Document Base Types

	List of Symbols
	Natural Triangle Coordinates
	Standard triangular Element
	Blending Function Method
	Blending to a circular shaped Edge
	Effects of well- or ill-chosen Parametrization

	Bibliography
	Index

