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ABSTRACT 

Strongman is a strength-based sport where athletes compete to set personal bests and 

determine the strongest competitor. Unlike powerlifting and weightlifting, strongman 

requires athletes to lift, carry and pull heavy (and often large) objects, testing the athlete 

under a wide variety of loading conditions. 

The aim of the PhD thesis was to develop, validate and use ecologically valid motion 

capture methods to describe the biomechanics of experienced male and female strongman 

athletes undertaking previously under-assessed strongman exercises, to better inform the 

practices of strongman coaches and athletes and strength and conditioning coaches.  

From two systematic reviews (Chapter 2, Chapter 3), the yoke walk and atlas stone lift 

were identified as the most under-researched exercises commonly trained by strongman 

athletes. Limitations associated with traditional motion capture methods were suggested 

to partially explain the lack of biomechanical analyses performed on these exercises. 

Inertial motion capture (IMC) was presented as a solution to overcome many of the 

limitations of traditional motion capture methods. A technical summary (Chapter 5) of 

IMC data processing methods was used to develop an IMC approach suitable for the 

biomechanical analysis of strongman exercises. 

The validity of the devised IMC approach was assessed against an optical motion capture 

(OMC) system while participants performed the squat, box squat, sandbag pickup, shuffle 

walk and bear craw (Chapter 6). Good to unacceptable agreement with the OMC system 

was recorded for lower limb kinematic measures across all exercises, while good to 

excellent agreement was reported for spatiotemporal measures during the shuffle walk 

and bear crawl. 

The biomechanics of the yoke walk were characterised by: flexion of the hip and slight 

to neutral flexion of the knee at heel strike; slight to neutral extension of the hip and 

flexion of the knee at toe-off; and moderate hip and knee ROM (Chapter 7). During the 

acceleration phase, athletes used an abbreviated gait pattern to increase their stride rate. 

No main effect between-sex biomechanical differences were observed and few two-way 

interactions between sex and interval were observed. 



iii 
 

The biomechanics of the atlas stone lift were characterised by a recovery, initial grip, first 

pull, lap and second pull phase (Chapter 8). The initial repetitions in a series of four stones 

of increasing mass, were abbreviated versions of the later repetitions, which corresponded 

to a reduction in phase and total repetition duration. Between-sex biomechanical 

differences were primarily observed at the hip and were attributed to anthropometric 

differences in male and female athletes.  

As a result of this thesis, strongman coaches and strength and conditioning coaches will 

be better equipped with an understanding of the yoke walk and atlas stone lift required 

to: provide strongman athletes with recommendation on how to perform these exercises 

based on the technique used by experienced strongman athletes; conceptualise technique 

improvements for performance enhancement and injury minimisation; and prescribe the 

use of these exercises as a training tool for both strongman and non-strongman athletes. 

Researchers will be able to better direct future research into the biomechanics of 

strongman exercises and the development of IMC. 

KEY WORDS 

Biomechanics, motion capture, inertial measurement, IMU, wearables, strength-sports, 

weightlifting, powerlifting, strongman.  
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1. INTRODUCTION 

Strongman is a strength-based sport, similar to weightlifting and powerlifting, in which 

competitors strive to set personal bests and gain places in competitions by lifting the 

heaviest load. It is suggested that the roots of strongman date back to the times of the 

ancient Greek and Egyptian wrestlers, where men would train by lifting heavy stones to 

gain the strength and endurance required to defeat their opponent [1]. Historians believe 

a similar form of competitive testing of strength was practiced in Scotland during the 

twelfth century where clansmen would undertake running, jumping, lifting and wrestling 

tasks, with the winner being awarded post runner or bodyguard to the king [2]. Today, 

the traditional strength tasks performed by the Scottish have developed into the Highland 

Games and now include heavy lifting and throwing events [3]. The modern-day sport of 

strongman is a combination of: the strength training methods used by ancient Greeks and 

Egyptians; the Scottish Highland Games; and the modern-day sports of weightlifting and 

powerlifting. 

Strongman exercises include derivatives of the clean and press, deadlift and squat, and 

often require athletes to lift or carry heavy and awkward objects as quickly as possible 

over a set distance [4]. Unlike the modern sports of weightlifting and powerlifting, which 

primarily consist of vertical and bilateral loading, many strongman exercises require 

horizontal load displacement and include phases of unilateral loading [5, 6]. The most 

common strongman exercises are described below, with a visual representation of each 

exercise provided in Figure 1.1. 

Atlas stone lift: Athletes are required to lift a large stone (either spherical or "naturally" 

shaped), over a bar, on to a platform or to the shoulder. 

Axle clean and press: Athletes perform a clean and press using a barbell-like implement, 

usually of greater thickness than a regular Olympic barbell. 

Axle deadlift: Athletes perform a deadlift with a barbell-like implement, usually of greater 

thickness than a regular Olympic barbell, starting from a bar-to-ground clearance of 

approximately 0.46 m (18"). 

Farmers walk: Athletes carry an independent, loaded frame in each hand for a specified 

or maximum distance, similar to how one would carry a suitcase. 
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Log lift: Athletes clean and press a large, log-shaped implement over their head. 

Tyre flip: Athletes flip a tyre end-over-end for a number of repetitions or over a specified 

or maximum distance. 

Vehicle/sled pull: Athletes pull a vehicle, either by means of chest harness and moving 

forward, or in a static position pulling the vehicle by means of a rope in an arm-over-arm 

motion toward them. 

Yoke walk: Athletes carry a large, loaded frame, positioned across the rear of their 

shoulders a specified or maximum distance. 

 

Figure 1.1 a) atlas stone lift; b) axle clean and press; c) axle deadlift; d) farmers walk; e) 

log lift; f) vehicle pull; g) vehicle pull (arm over arm); h) tyre flip; i) yoke walk. Images 

reproduced with permission from respective copyright owners. 
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Since its inception in 1977 with "The World's Strongest Man" competition, the sport of 

strongman has continued to grow in popularity, with the recent inclusion of competition 

categories for athletes of varying age, body mass, sex and competition experience. Many 

strength and conditioning coaches are prescribing strongman exercises to non-strongman 

athletes [7]. The rapid increase in popularity of the sport of strongman, has created a need 

for a greater evidence base on how to execute strongman exercises with a biomechanical 

technique that promotes the greatest performance outcome while reducing some of the 

risk of injury. 
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1.1 THE STUDY OF BIOMECHANICS 

Sports biomechanics uses the fundamental concepts of physics, primarily in the form of 

Newtons Laws of Motion, and applies them to the human body to assess the forces acting 

on and within the body, and the resultant motion [8]. The two primary goals of such 

analysis are to understand injury pertaining to a particular movement pattern, and to 

improve performance of a movement [8]. 

Biomechanical analysis undertaken for the purpose of performance improvement and/or 

injury prevention aims to ensure a mechanically efficient technique is executed by the 

athlete whilst minimising loading on internal structures [8]. In strongman exercises, a 

mechanically efficient technique allows an athlete to lift heavier loads for an equivalent 

muscle force. Manipulation of limb and load positioning, joint range of motion and the 

manner in which the joints and muscles are coordinated all contribute to the efficiency of 

the movement [9]. 

The most basic biomechanical analyses are kinematic and spatiotemporal 

characterisation, which describe the linear or angular motion of a body in time [10]. 

Kinematic and spatiotemporal measures are used to describe ‘what’ is happening to the 

body throughout a movement, whereas kinetics describes ‘why’ the body is moving in a 

particular way [10]. An accurate and comprehensive kinetic analysis involves the 

measurement of force and anthropometric parameters, and a set of modelling assumptions 

[11]. While kinetics is an important and valid area of research, describing the general 

movement pattern through spatiotemporal and kinematic characteristics is typically the 

first step which must be taken when conducting biomechanics research of an under-

researched human movement [11].  
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1.2 ATHLETIC PERFORMANCE AND INJURY RISK 

Athletic performance in strongman may be measured in a variety of ways depending on 

the exercise being undertaken and the schedule of the competition or training session [12]. 

The most common measures of performance are: 

1) an athlete’s ability to perform as many repetitions as possible (AMRAP) of a 

specified load in a set period of time; 

2) an athlete’s ability to lift a maximum load for a single repetition (1RM); 

3) an athlete’s ability to carry or pull a given load a specified distance in the shortest 

time; and 

4) an athlete’s ability to carry or pull a given load a maximum distance in a set time. 

When compared to other strength-based sports such as bodybuilding, powerlifting and 

weightlifting; Highland Games and strongman have been suggested to have the highest 

rates of injury [13]. Strongman exercises such as the atlas stone lift and yoke walk have 

been reported to cause the greatest prevalence of injury in strongman athletes, with the 

lower back, shoulder, knee and the bicep being the most common sites of injury [14]. 

When compared with factors such as overtraining/overuse, insufficient warm up, the 

presence of pre-existing injuries, fatigue and overloading; the greatest contributor to 

injury during strongman training or competition, as reported by strongman athletes, is 

poor technique execution [14].  
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1.3 BIOMECHANICAL MEASUREMENT METHODOLOGIES 

The biomechanics of a movement may be established using a variety of motion capture 

methods. Traditionally, three-dimensional (3D) optical, two-dimensional (2D) video and 

electromagnetic motion capture have been used for the measurement of spatiotemporal 

and kinematic parameters [15]. For many sporting applications, these methods have 

limitations [15]. 

Three-dimensional optical motion capture (OMC) systems consist of a network of 

infrared (IR) emitting cameras (typically 4 – 30 cameras depending on the size of the 

capture volume), a series of IR reflective markers attached to specific locations on the 

body (as many as 50 markers) and a computer to control the network of cameras and 

record captured data [16, 17]. Optical motion capture has been used widely across sports 

including baseball [18], golf [19], tennis [20], badminton [21], powerlifting [22] and 

running [23]. Although 3D OMC is often considered the gold standard of motion capture 

methods, 3D OMC systems are typically expensive, confined to a small capture volume 

within a laboratory environment and requires a line of sight to each marker be maintained 

by at least two cameras within the network to ensure accurate reconstruction of the 

movement [16, 24]. The occlusion and dislodgement of markers during sporting 

movements, particularly where large implements are lifted along the surface of the body 

(as is common in strongman exercises), present a major limitation to this method of 

measuring spatiotemporal and kinematic parameters. 

The method of 2D video motion capture (VMC) requires a single video camera of 

sufficient capture rate (for the given movement velocity and duration) and freely available 

computer software to digitise spatiotemporal and kinematic parameters, making it a 

significantly cheaper alternative to 3D OMC [25, 26]. Two-dimensional VMC is often 

considered a more practical approach for "in field" biomechanical data collection than 3D 

OMC and has been used for the analysis of such sports and movements as bicycle 

motocross (BMX) [26], body-weight squats [27], running [28], strongman [5, 29-32] and 

gymnastics [33]. Parallax error, when the participant performs a movement at a non-

perpendicular angle to the camera, and perspective error, when the participant performs 

a movement at a distance closer to or further away from the camera than the calibrated 

capture plane, can cause significant error in spatiotemporal and kinematic measures [34]. 

Whether a traditional marker-based or marker-less 2D VMC approach is adopted, a line 
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of sight with key anatomical landmarks or limbs must be maintained throughout the 

entirety of the movement. Similar to 3D OMC, the requirement to have a line of sight to 

each marker makes 2D VMC impractical when large implements are being lifted or 

moved along the surface of the body throughout a given movement [16].  

Electromagnetic motion capture systems consist of a specially designed suit of 

electromagnetic receiver sensors which are used to measure 3D position and orientation 

of the segment to which they are attached with respect to a base station electromagnetic 

transmitter [35]. Although not as common as 3D OMC and 2D VMC, electromagnetic 

motion capture has been used in sports including strongman [36], rowing [37], softball 

[38] and running [39]. Unlike 3D OMC and 2D VMC, electromagnetic motion capture 

does not rely on line of sight and therefore does not encounter many of the major 

limitations of optical-based methods when using large implements in a motion analysis 

[15]. Electromagnetic motion capture is, however, susceptible to errors caused by 

electromagnetic interference within the environment [15, 17, 40], with laboratory 

equipment, building structural components and any metallic implements used within the 

motion analysis being potential sources of electromagnetic interference. Additionally, 

sampling rates for electromagnetic motion capture are generally low (10 – 1000 Hz) when 

compared to methods such as 3D OMC (50 – 2000 Hz), limiting the relative accuracy of 

the analysis of human movement [15]. 

Recently, inertial measurement unit (IMU) and magnetic, angular rate and gravity 

(MARG) sensor technologies have been suggested as a practical alternative to overcome 

many of the limitations of traditional motion capture methods [41]. Inertial motion 

capture (IMC) relies on a series of IMU/MARG sensors attached to the limbs of a 

participant to estimate segment location in space. Inertial measurement units consist of 

an accelerometer and gyroscope to measure linear acceleration and angular rate, 

respectively, while MARG devices also include a magnetometer to measure magnetic 

field strength [41, 42]. Measures of linear acceleration, angular rate and magnetic field 

strength are fused together to estimate the position and orientation of the device (and 

segment to which the device is attached). One of the major advantages to IMC over 

traditional methodologies is the ability to estimate spatiotemporal and kinematic 

parameters whilst "in the field" and not rely on a line of sight to each sensor. As a result 

of this versatility, IMC has been used in a variety of sports including football kicking 

[43], snow ski racing [44], cricket [45], swimming [46] and field events such as discus 
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[47]. Inertial motion capture does come with its own challenges. Complex data processing 

techniques and algorithms must be used to overcome errors caused by integration of raw 

sensor measures and magnetic disturbances within the environment. The data processing 

methodologies may be developed and implemented by the user or purchased at relatively 

high cost in the form of an "out of the box" commercial IMC system. 

Strongman exercises such as the farmers walk and yoke walk are typically performed 

over a distance of 20 m. Laboratory constraints (e.g., room dimensions) and limited 

equipment (e.g., number of OMC cameras) may restrict analyses to a portion of typical 

training or competition distance. The selection of appropriate measurement methods and 

ecologically valid experimental conditions representing common training or competition 

environments, loads and event durations are required if data is reflective of normal 

movement.  
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1.4 PRACTICAL APPLICATIONS 

Coaches gain knowledge in their chosen sport through a variety of mediums including 

university degrees, sport specific training courses, personal experience, conversing with 

other coaches and scientific literature [48]. Traditionally, the primary role of a strength-

based sport coach (including strongman coach) is to identify potential issues with an 

athlete's technique and prescribe appropriate strength and/or technical interventions to 

enhance performance and minimise risk of injury [49].  

In the current research project, the researcher worked with professional strongman and 

international/national level coach Jean-Stephen Coraboeuf and international/national 

level strongman coaches Colin Webb and Greg Nuckols to devise research protocols for 

each strongman experimental study. The collaboration with high calibre strongman 

coaches and athletes assisted in ensuring maximal practical applicability of the research 

findings to strongman coaches and athletes. 

A description of the biomechanics of under-researched strongman exercises using set, 

repetition and loading schemes that would be typically performed by athletes in training, 

provides strongman coaches, athletes and strength and conditioning coaches with the 

information required to:  

• provide male and female strongman athletes with recommendation on how to 

perform the selected strongman exercises based on the common techniques of 

experienced strongman athletes; 

• conceptualise technique improvements for performance enhancement; 

• identify possible injury risks associated with performing the selected strongman 

exercises; and 

• prescribe the use of the selected strongman exercises as a training tool for both 

strongman and non-strongman athletes.  

By establishing a practical means of collecting ecologically valid biomechanical data in 

an "in field" setting using functional fitness exercises and strongman exercises, 

researchers will be presented with the opportunity to analyse and gain a greater 

understanding of previously under-researched movements. 
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Throughout this thesis the term 'functional fitness exercises' will be used to describe 

variations of strongman exercises which may be performed by persons at lighter loads or 

with similar implements (although not strictly replicable) to those used in strongman 

training or competition. Many strongman exercises, including the farmers walk, atlas 

stone lift and sandbag loading, resemble common activities of daily living, albeit 

performed at a much greater load. Performing such exercises at lighter load, using similar 

implements, may be expected to see benefit in improving one's ability to perform 

everyday activities such as picking up and moving heavy/awkward objects, thus, 

improving one's functional fitness [50].  
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1.5 THESIS OVERVIEW 

1.5.1 THESIS AIM 

The aim of the PhD thesis was to develop, validate and use ecologically valid motion 

capture methods to describe the biomechanics of experienced male and female strongman 

athletes undertaking previously under-assessed strongman exercises, to better inform the 

practices of strongman coaches and athletes and strength and conditioning coaches. 

1.5.2 GUIDING RESEARCH QUESTIONS 

The over-arching aim of this project will be achieved by answering a series of six guiding 

research questions which were developed throughout the project. An overview of the 

workflow and guiding research questions developed at each stage of the thesis is 

presented in Figure 1.2.  

The thesis consists of nine chapters in total. Chapter 2 and Chapter 3 provide a systematic 

review of strongman specific biomechanics research and answer Question 1 and Question 

2. Chapter 4 summarises and rationalises the research methodologies used in the 

experimental studies and provides guidance for Chapter 5. Chapter 5 presents a 

methodological technical summary literature review and in part answers Question 3. 

Chapter 6 is a methodological validation study answering the remainder of Question 3. 

Chapter 7 and Chapter 8 are cross sectional observational experimental studies, answering 

Question 4, Question 5 and Question 6. Chapter 9 summarises the findings of the project. 
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Figure 1.2 Workflow of the thesis. 

  

Chapter 2
Systematic Review 1

Question 1
What is already known about the biomechanics of athletes performing 

strongman exercises and where are the current gaps in the fi eld of knowledge?

Question 2
What data collection methods have been used in previous strongman 

biomechanics research?

Chapter 3
Systematic Review 2

Chapter 4
Research Methodology Overview

Question 3
How may current inertial motion capture methods be used and further developed 

to characterise the biomechanics of athletes performing strongman exercises?

Chapter 5
Technical Summary Literature Review - Inertial motion capture

Chapter 6
Methodological Validation Study - The MARG method

Chapter 7
Experimental Study 1 (yoke walk)

Chapter 8
Experimental Study 2 (atlas stone lift)

Question 4
What are the general biomechanical characteristics of the: 

a) yoke walk; and b) atlas stone lift?

Question 5
What are the biomechanical differences between: a) different intervals of the 
yoke walk; and b) each repetition of a set of atlas stones of incremental mass?

Question 6
Are there any biomechanical differences between male and female strongman 

athletes performing the: a) yoke walk; and b) atlas stone lift?
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1.5.3 THESIS STRUCTURE 

A single systematic review of the limited biomechanics research was initially conducted 

to gain insight into where further research was necessary. A second systematic review, 

building on the initial systematic review was undertaken based on feedback from 

reviewers during the confirmation of candidature process. One systematic review was 

conducted to assess the biomechanical research methods used within the existing 

strongman biomechanics research (Chapter 2), while the second was conducted to assess 

the results and applications of the current strongman biomechanics research (Chapter 3).  

Based on the findings of Chapter 2 and Chapter 3, in combination with discussions held 

with professional strongman and coach Jean-Stephen Coraboeuf, the yoke walk and atlas 

stone lift were selected to be the focal strongman exercises of this thesis. With no previous 

kinematic description of the yolk walk and atlas stone event, it was important to start the 

biomechanical analysis here, with spatiotemporal and kinematic analysis. Kinetic 

analyses were beyond the scope of this PhD project. 

The challenges associated with the use of traditional methods of collecting spatiotemporal 

and kinematic measures of athletes performing strongman exercises were highlighted in 

the systematic review in Chapter 2 and assisted in informing the methods used to collect 

biomechanical measures in this PhD project. Inertial motion capture was the most 

appropriate method of data collection to ensure the ecological validity of results.  

A set of research methodologies for each of the experimental chapters was devised, 

detailed in Chapter 4, based on the literature reviews conducted in Chapter 2 and Chapter 

3 and discussions held with a panel of strongman coaches. The methodology overview 

presented in Chapter 4, provided direction for the IMC approach used for the collection 

of biomechanical data within the PhD project.  

A technical summary literature review was conducted to investigate the data processing 

methods required to develop an IMC methodology suitable for highly dynamic functional 

fitness exercises, similar to strongman exercises (Chapter 5). The validity of the proposed 

IMC methodology was measured against the previously validated OMC method for lower 

limb kinematic and spatiotemporal measures (Chapter 6). 

Two cross-sectional observational studies were conducted to describe the biomechanical 

characteristics of the yoke walk and atlas stone lift (Chapter 7 and Chapter 8, 
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respectively). Emphasis was placed on maintaining a high level of ecological validity in 

each study design by ensuring data collection under regular training/competition 

preparation conditions, taking into consideration common loading, set, repetition and rest 

period practices of strongman athletes. The focus on maintaining ecological validity 

ensured the generalisability of these results and the relevance of the research to a real-

world setting.  

Finally, a summary of the findings from the PhD project were presented in Chapter 9. In 

line with the overall aim of the PhD, the practical applications of the findings are 

summarised to extend the knowledge and practices of strongman athletes, coaches and 

strength and conditioning coaches.  

It is acknowledged that there is some repetition of figures, explanations and abbreviations 

throughout the thesis. Whilst every effort has been made to minimise unnecessary 

repetition, some chapters have been published or submitted for publication and are 

therefore presented in publication format. With the exception of Chapter 1, each chapter 

has been written to stand alone, thus minimal reference to preceding or proceeding 

chapters are made. 

1.5.4 SIGNIFICANCE OF THE THESIS 

The research presents the first empirical spatiotemporal and kinematic characteristics of 

the yoke walk and atlas stone lift, and the first scientific research to include female 

strongman athletes, significantly contributing to the growing body of knowledge on the 

sport of strongman. The research provides an initial description of the strongman 

movements, allowing future research into the biomechanical determinants of performance 

and potential injury risks associated with the exercises. Greater understanding of the 

biomechanics and physiology of the sport should lead to greater feats of strength, 

potentially attracting more media attention, and further growing the sport. 

As the program of research is the first in the space of strongman biomechanics to include 

both male and female athletes, attention was given to assessing if any between-sex 

biomechanical differences exist. While this between-sex assessment adds to the body of 

research assessing between-sex biomechanical in strength sports, it may also be used by 

researchers to direct future sex-specific strongman research. 



16 
 

The current program of research further develops and implements modern motion capture 

methods for the analysis of movements not suitable to traditional motion capture 

techniques. It is hoped that the current research will encourage further development of 

IMC for strongman and functional fitness exercises.  
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SYSTEMATIC REVIEW 1 
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2. A SYSTEMATIC REVIEW OF THE BIOMECHANICAL RESEARCH METHODS 

USED IN STRONGMAN STUDIES 

2.1 PREFACE 

The systematic literature review component of this thesis was originally a single 

systematic review. Feedback from the confirmation of candidature process suggested 

undertaking two separate systematic reviews, to further expand on the similarity between 

strongman exercises, traditional weight training exercises and common everyday 

activities. Systematic Review 1 (Chapter 2) contains one less paper than Systematic 

Review 2 (Chapter 3) due to the different search periods used for each review. The 

absence of this paper in Systematic Review 1 does not change the conclusions of the 

review.  

The purpose of this chapter was to establish a broad understanding of the previous 

research on the biomechanics of strongman exercises. The exercises, study populations, 

testing protocols (sets, repetitions, loads, rest periods), data collection methods and 

biomechanical measures reported in previous strongman biomechanics research was 

summarised. This chapter, in conjunction with Chapter 3 assisted in progressing previous 

research methods to ensure the greatest impact and practical applicability of the 

strongman biomechanics experimental studies presented in Chapter 7 and Chapter 8. 

Question 1 "What is already known about the biomechanics of athletes performing 

strongman exercises and where are the current gaps in the field of knowledge?" and 

Question 2 "What data collection methods have been used in previous strongman 

biomechanics research?" were addressed in this chapter. 

Chapter 2 is an Accepted Manuscript version of the below cited article, published by 

Taylor & Francis Group in Sports Biomechanics on 27 May 2019. This chapter has 

been reproduced with permission of the publisher, Taylor & Francis, and is available 

online at: https://doi.org/10.1080/14763141.2019.1598480.  

Hindle, B. R.; Lorimer, A.; Winwood, P.; Keogh, J. W. L. A systematic review of the 

biomechanical research methods used in strongman studies. Sports Biomechanics 2019, 

1-30, doi:10.1080/14763141.2019.1598480.  
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2.2 ABSTRACT 

As the sport of strongman is becoming increasingly popular, and such exercises are being 

commonly used by strength and conditioning coaches for a wide range of athletic groups, 

a greater understanding of the biomechanics of strongman exercises is warranted. To 

improve the quality of research, this systematic review summarised the research 

methodology used in biomechanical studies of strongman exercises and identified 

potential improvements to current approaches. A search of five databases found ten 

articles adherent to the predefined inclusion criteria. The studies assessed eight strongman 

exercises and included male participants of relatively similar body mass but varying 

training backgrounds. Due to the complexity of strongman exercises and the challenges 

in collecting advanced biomechanical data in the field, most studies used simplified 

measurement/analysis methods (e.g., 2D motion capture). Future strongman 

biomechanical studies should: assess under/un-researched strongman exercises; include 

a greater number of experienced and female strongman athletes; and utilise more 

advanced (e.g., 3D motion capture and/or inertial sensor) technology so to provide a 

broader range and greater quality of data. Such approaches will provide strength and 

conditioning coaches, strongman coaches and athletes with a greater understanding of 

strongman exercises, thereby further improving exercise prescription, athlete 

performance and minimising risk of injury. 

Key words: Kinematics, kinetics, motion analysis, weightlifting. 
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2.3 INTRODUCTION 

Strongman is a competitive strength-based sport consisting of exercises which are 

typically heavier versions of common activities of daily living, traditional tests of strength 

or more awkward/challenging variations of traditional weight training exercises such as 

the squat, deadlift and clean and press [51]. Common strongman exercises utilise 

equipment such as: stones and loaded frames for lifting and carrying; logs and oversized 

dumbbells for overhead pressing; tyres for flipping; and vehicles and loaded sleds for 

pulling [13]. 

With the increasing popularity of strongman as both a competitive sport and as a source 

of alternative strength and conditioning training exercises for athletes of wide sporting 

backgrounds, the quantity and quality of research on the sport of strongman is continuing 

to increase. This research has examined the training and tapering practices of strongman 

athletes [3, 52-56], how strength and conditioning coaches utilise strongman implements 

in their athletes' programmes [7], the physiological responses to strongman training [4, 

50, 51, 57-59], and the injury epidemiology of strongman athletes [14]. It should be 

acknowledged that some of this literature includes narrative reviews and/or opinion 

pieces on how strongman exercises could be best integrated into strength and conditioning 

programmes for non-strongman athletes. 

Due to the emergent nature of the sport, wide range of exercises that may be performed 

in competition or training, and the apparent complexity of strongman exercises, it is 

expected that some level of between study variation may be encountered when attempting 

to biomechanically analyse strongman exercises. Therefore, the primary objective of 

undertaking this systematic review was to collect and assess information on the research 

methods used in existing studies where researchers primarily focus on the biomechanical 

analysis of a strongman exercise. By addressing this primary objective, the current 

systematic review will result in a summary of the: exercises, study designs, study 

populations, and biomechanical analysis methods and measurements utilised in the 

existing literature. The secondary objective of undertaking this systematic review is to 

identify the gaps in the research methodology used in strongman biomechanical studies. 

By identifying these major gaps, suggested improvements may be made to the current 

research methodology, better equipping future researchers with the knowledge required 

to conduct more comprehensive studies of greater quality on this sport. Such an approach 
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will produce research which provides greater insight into how strongman exercises may 

be used in wider strength and conditioning or injury rehabilitation practice, as well as 

identify key biomechanical performance determinants of these exercises for strongman 

athletes and coaches. 
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2.4 METHODS 

2.4.1 REVIEW PROTOCOL 

A review protocol for this paper was developed using the ‘Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses’ (PRISMA) guidelines on reporting items for a 

systematic review and the associated PRISMA checklist [60]. This was used in the 

planning and development of the systematic review to assure the quality of the review 

process. 

2.4.2 SEARCH STRATEGY AND INCLUSION CRITERIA 

An initial search was conducted using AusportMed, CINAHL, Embase, Medline (Ovid) 

and SPORTDiscus up to and including 2 July 2018. Due to the lapse in time between the 

initial search and submission for publication, a second search was conducted up to and 

including 25 October 2018. As the primary objective of undertaking this systematic 

review was to identify all strongman articles in which biomechanical analyses were 

performed, a two-level keyword search using Boolean operators was conducted. The first 

level of the search used terms associated with strongman exercises, lifts and training 

methods, while the second level of the search used terms associated with general 

biomechanical parameters. The full search strategy used for Medline (Ovid) was: 

(strongman OR strong man.tw OR strong-man.tw OR junkyard OR junk-yard OR junk 

yard OR log-lift* OR log lift* OR log press* OR log-press* OR yoke-walk OR yoke walk 

OR yoke-carry OR yoke carry OR super yoke OR super-yoke OR frame lift* OR frame-

lift* OR frame carry OR frame-carry OR farmers walk OR farmers carry OR farmer's 

walk OR farmer's carry OR suitcase carry OR duck walk OR frame carry OR hercules 

hold OR husafell stone OR tyre flip* OR tyre-flip* OR tyre lift* OR tyre-lift* OR tire-

flip* OR tire flip* OR tire lift* OR tire-lift* OR car flip* OR car-flip* OR atlas ston* OR 

stone lift* OR conans wheel OR conan's wheel OR fingal's fingers OR fingals fingers OR 

vehicle pull* OR vehicle-pull* OR sled pull* OR sled-pull* OR sled tow* OR sled-tow* 

OR truck pull* OR truck-pull* OR car pull* OR car-pull* OR chain drag* OR chain-

drag* OR rope drag* OR rope-drag* OR sand bag* OR sand-bag* OR sandbag* OR car 

lift* OR car-lift* OR vehicle lift* OR vehicle-lift* OR truck lift* OR truck-lift* OR arm 

over arm pull OR arm-over-arm OR keg toss OR keg-toss OR axle press* OR axle-press* 

OR dumbbell press* OR dumbbell-press*) AND (biomechanic* OR bio-mechanic* OR 

kinetic* OR kinematic* OR anthropomet* OR emg OR electromyograph* OR imu OR 

inertial measurement unit OR exp gait/ OR mechanic* OR force OR velocit* OR force-
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velocity OR time OR exp motion/ OR exp torque/ OR power OR body mass OR angular 

OR linear OR moment OR moment-angle OR moment angle OR moment-arm OR 

moment arm OR momentum OR displac* OR equilibrium OR acceler* OR reac* OR 

joint OR pressure OR inertia* OR work OR energy OR potential OR injur* OR impuls* 

OR 3D OR motion capture). 

In accordance with the intended exhaustive nature of the search strategy, no limitations 

were initially placed on language, year of publication, or literature source. To provide a 

systematic review that captures the methodology used when assessing complex 

strongman type exercises whilst being of value to the widest possible research community 

(and still adhering the topic of strongman and biomechanics), no restrictions were placed 

on the age, gender and lifting/athletic training experience of participants within a study. 

A set of guidelines outlining the inclusion and exclusion criteria was established by the 

author (Table 2.1). 

All articles returned from the five searched databases were imported into online 

systematic review software Covidence (Veritas Health Innovation, Melbourne, Australia) 

and distributed to two independent reviewers. The software automatically removed 

duplicate articles before each reviewer began the title and abstract screening process. 

Reviewers voted either 'yes', 'no' or 'maybe' to categorise each article's compliance with 

the pre-defined inclusion criteria. Articles with vote combinations of 'yes'/'yes', 

'yes/maybe' or 'maybe'/'maybe' were put aside for full text screening while articles with 

vote combinations of 'no'/'no' were discarded from further review. Articles not in the 

native language of the reviewers (English) were returned by the respective database with 

sufficient translation for screening. Remaining articles after title and abstract screening 

were then full text screened by reviewers with each reviewer providing a reason for 

exclusion based on a hierarchical list of reasons. Where reviewers cast conflicting votes 

(such as 'yes'/'no' or 'maybe'/'no') during title and abstract screening or full text screening, 

or gave conflicting reasons for exclusion during full text screening, a consensus meeting 

was held to reach an agreement between both parties. A final scan of the reference list of 

all included articles was conducted to identify any relevant articles that were not initially 

found in the database searches. Forward citation tracking using Google Scholar was then 

employed to find any other articles that may have also been eligible to be included in the 

review.  
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Table 2.1 Inclusion and exclusion criteria. 

 Inclusion Exclusion 

General   

Article type Full peer reviewed journal article 
Grey literature 

Recommendation articles 
Review articles (non-original work) 

Editorials 
Magazine articles 

Date No restrictions  

Language No restrictions  

Participants 

Age No restrictions  

Gender No restrictions  

Lifting/athletic 
training experience 

No restrictions  

Health All participants must be free from injury at time of testing Studies of post injury biomechanics/rehabilitation studies 

Study protocol 

Exercises Articles including strongman exercises commonly seen in strongman 
competition will be considered for the systematic review. 

Unless being used as a comparative measure to any of the exercises listed in 
the inclusion column, papers with a primary focus on the following exercises 
will not be considered: squat, deadlift, bench press. 
Articles including the following equipment used in substitution for traditional 
strongman equipment will not be included: studies investigating the use of the 
sled pull as a training technique for sprint performance; chains for 
pulling/dragging; sandbags for overhead pressing. 

Articles including the following equipment used in substitution for 
traditional strongman equipment will also be considered.  
Sled pull - heavy (> body mass of participant). 

Data measurements Biomechanical parameters to be considered for the inclusion in this 
systematic review include: anthropometric measures; joint/segment 
angular kinematics; kinetic measures; linear kinematics; muscular 
activity; temporal measures. 

Articles with primary focus on equipment mechanics related measurement 
parameters will not be considered for inclusion in the systematic review. These 
parameters may include: dynamic and static friction between participant or 
equipment and a surface (i.e., a friction between ground and sled used in a 
heavy sled pull; or rolling resistance of a vehicle). 
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2.4.3 QUALITY ASSESSMENT 

A risk of bias and quality assessment was undertaken by two independent reviewers. As 

no standard checklist appeared entirely suitable for the eligible cross-sectional 

biomechanical studies identified in this review, a checklist was developed by the authors 

based on systematic reviews including literature of similar study designs [61-68]. Where 

disagreements in the scoring was apparent between reviewers a consensus meeting was 

held to establish agreement. An item was scored as one where the article provided 

sufficient evidence in support of the criteria, and zero where the criteria was not met. A 

total risk of bias score was calculated for each article and categorised using the methods 

of Davids, et al. [62], with articles scoring ≥ 67% considered as having a low risk of bias, 

articles scoring in the range of 34–66% considered as having a satisfactory risk of bias, 

and articles scoring ≤ 33% considered as having a high risk of bias. Only articles scoring 

a low or satisfactory risk of bias were included in the review. 

2.4.4 DATA ANALYSIS 

To address the primary objectives of this systematic review, the data from the included 

articles were categorised into four main sections: exercises/objectives, study population, 

study design, and biomechanical analysis. 
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2.5 RESULTS 

2.5.1 LITERATURE SEARCH 

The five databases originally searched on 2 July 2018, yielded 786 titles of which nine 

were found to be adherent to the inclusion criteria. After identifying another eligible study 

[69] via a Google Scholar search, a second search of the five databases was performed so 

to include Renals, et al. [69] (in press) in the review. The updated search on 25 October 

2018, resulted in the addition of one article to the systematic review after the original 

search conducted on 2 July 2018. A flowchart of the screening process undertaken on 25 

October 2018 is presented in Figure 2.1. 

 

Figure 2.1 Flowchart of screening process undertaken on 25 October 2018. 
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2.5.2 QUALITY ASSESSMENT 

Results from the risk of bias assessment are provided in Table 2.2. Generally, the articles 

reviewed provided a testable hypothesis, used well validated data collection methods, 

utilised appropriate statistical analysis methods, and presented results which were 

representative of the tests performed. After conducting the risk of bias assessment on the 

ten eligible articles, eight were assessed as having a low risk of bias (≥ 67%), while two 

articles were assessed as having a satisfactory risk of bias (34–66%). 

Table 2.2 Quality and risk of bias assessment. 

Article 1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 
Score 

(%) 

Keogh, et al. [29] 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 81 (L) 

Keogh, et al. [70] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 69 (L) 

Keogh, et al. [30] 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 81 (L) 

McGill, et al. [36] 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 44 (S) 

Stastny, et al. [71] 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 50 (S) 

Renals, et al. [69] 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 75 (L) 

Winwood, et al. [6] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 69 (L) 

Winwood, et al. [5] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 81 (L) 

Winwood, et al. [32] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 81 (L) 

Winwood, et al. [31] 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 75 (L) 

Method for assessing risk of bias: (1.1) study design is clearly stated; (1.2) the objectives/purpose of the 

study is clearly defined; (1.3) the design of the study adequately tests the hypothesis; (2.1) the criteria 

for the inclusion of subjects is clearly described; (2.2) the characteristics of the population is clearly 

described; (2.3) the study sample is representative of the population intended to the study; (2.4) a 

description of how the study size was arrived at is provided; (3.1) the testing methods are clearly 

described; (3.2) the measurement tools used are valid and reliable; (3.3) the statistical methods used well 
described; (3.4) the statistical tests used to analyse the data are appropriate; (4.1) the results are well 

described; (4.2) the information provided in the paper is sufficient to allow a reader to make an unbiased 

assessment of the findings of the study; (4.3) confounding factors are identified; (4.4) 

sponsorships/conflicts of interest are acknowledged; (4.5) any limitations to the study are identified. 

Note: the risk of bias score for an article (given as a percentage) is calculated through the addition of the 

score from each criteria being met divided by the maximum possible score across all criteria (16), 

multiplied by 100. L low risk of bias (67–100%), S satisfactory risk of bias (34–66%), H high risk of 

bias (0–33%). 

 

2.5.3 EXERCISES/OBJECTIVES 

The ten eligible articles included in this systematic review have investigated eight 

different strongman exercises. Although some of the strongman exercises were assessed 

in multiple articles and multiple strongman exercises were assessed in some articles, the 

objectives, analysis methods and comparative measures used in many of the articles 

varied to some degree.   
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2.5.3.1 EXERCISES 

The eight strongman exercises biomechanically analysed in the articles reviewed were 

the atlas stone lift, farmers walk, heavy sled pull, keg walk, log lift, suitcase carry, tyre 

flip and yoke walk (Figure 2.2).  

Atlas stone lift: The atlas stone exercise requires the athlete to lift a large, spherical shaped 

stone off the ground and on to a chest height or higher ledge. In competition the exercise 

is usually performed as a series of stones of incremental mass which are lifted onto a 

series of different height ledges, with some competitions also involving the maximum 

number of repetitions within a minute performed with a stone of constant mass over a bar 

of constant height [3]. 

Farmers walk: The farmers walk strongman exercise requires the athlete to pick up and 

move heavy objects carried in each hand. In competition the exercise is most commonly 

performed over a set distance of between 20 and 50 m, with the athlete striving to 

complete the distance in the shortest possible time [59]. 

Heavy sled/vehicle pull: The heavy sled/vehicle pull strongman exercise sees the athlete 

attached to a vehicle (or weight loaded sled) via a chest harness. The heavy sled pull 

variation is not often seen in competition, rather more commonly used as a training tool 

to simulate the competition vehicle pull. In both the heavy sled and vehicle pull, the 

athlete is most commonly required to pull the load a defined distance (often 20–25 m) in 

the shortest possible time [3, 59]. 

Keg walk: The keg walk requires the athlete to carry a loaded keg on one of their shoulders. 

In this event, athletes are typically required to either transport a maximum number of kegs 

from one location to another in a defined period of time, or transport a defined number of 

kegs in the shortest possible time [72].  

Log lift: The log lift strongman exercise requires the athlete to lift a metal or wooden log 

from the ground and then push/press the implement above their head. In competition the 

exercise is either performed as a maximal load for a single repetition, or a submaximal 

load for a maximum number of repetitions in a defined period of time (often 60 seconds) 

[3, 72]. 
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Suitcase carry: The suitcase carry requires the athlete to carry a loaded weight in one 

hand. In competition the exercise is typically performed for a defined distance in the 

shortest possible time [72]. 

Tyre flip: The tyre flip strongman exercise requires the athlete to repeatedly flip a tractor 

tyre end over end. In competition this is typically performed over a defined distance, or 

for a defined number of repetitions in the shortest possible time [3, 70]. 

Yoke walk: The yoke walk requires the athlete to carry a loaded frame balanced across 

their shoulders. In competition the exercise is either performed as a maximum distance in 

a defined period of time, or a defined distance in the shortest possible time [72]. 

 

Figure 2.2 Illustration of strongman exercises: a) atlas stone lift (Jean-stephen 

Coraboeuf); b) farmers walk (Jean-stephen Coraboeuf); c) heavy sled/truck pull (Jean-

stephen Coraboeuf); d) keg walk (Jean-stephen Coraboeuf); e) log lift (Dione Masters); 

f) suitcase carry (Jean-stephen Coraboeuf); g) tyre flip (Dione Masters); h) yoke walk 

(Dione Masters). Images reproduced with permission from respective copyright owners 

(acknowledged in brackets). 
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2.5.3.2 OBJECTIVES 

The earliest article on the biomechanics of strongman exercises was published by McGill, 

et al. [36] and aimed to use biomechanical parameters to estimate back load, low-back 

stiffness and hip abduction torque when performing the atlas stone lift, farmers walk, keg 

walk, log lift, suitcase carry, tyre flip and yoke walk exercises. Keogh, et al. [70] used 

temporal measurements to determine possible factors which may affect athletic 

performance of the tyre flip exercise, while similar studies by Keogh and colleagues [29, 

30] used both temporal and kinematic measures to determine performance characteristics 

of the farmers walk and heavy sled pull exercises, respectively. Winwood, et al. [6] sought 

to quantify the potential relationship between strength performance in weight training 

exercises and athlete anthropometrics, and strongman competition performance of 

various strongman exercises including the farmers walk, log lift, tyre flip and truck pull. 

A series of comparative studies published by Winwood and colleagues compared 

biomechanical measures of a variety of strongman exercises with those of technically 

similar traditional resistance training exercises [5, 31, 32]. Most recently, Stastny, et al. 

[71] conducted a study to determine if muscle strength ratios could be used to predict 

muscle activation patterns during the farmers walk exercise, and Renals, et al. [69] 

compared the effect of log diameter on force-time characteristics of the push press phase 

of the log lift. 

2.5.4 STUDY POPULATION 

The articles reviewed clearly detailed the number, age and body mass of participants 

included in the study (Table 2.3). Although these variables exhibited some degree of 

variance between studies, all studies consisted of male participants, with no studies 

including female participants. Participants included in the articles reviewed typically had 

at least moderate levels of general resistance training, one repetition maximum (1RM) 

testing or strongman type functional training experience with many also having a 

combination of powerlifting and/or strongman competition experience. 
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Table 2.3 Population of participants. 

Study Strongman exercise 
Number and 

age of 
participants 

Height (cm) Body mass 
(kg) 

Training experience 
(yrs) 

Details of participant training experience 
Strongman General 

resist. 

Keogh, et al. [29] Heavy sled pull 
Six males 

27.0 ± 4.0 yrs 184.0 ± 6.0 101.0 ± 12.0 NP NP 
All participants were experienced in squats, 
deadlifts and power cleans with some background 
in resisted sprint-style sled pulls. 

Keogh, et al. [70] Tyre flip 
Five males 

25.0 ± 7.0 yrs 
180.0 ± 6.0 90.0 ± 6.0 NP NP 

All participants had extensive resistance training 
experience with four having competed in at least 
one strongman competition including the tyre 
flip. 

Keogh, et al. [30] Farmers walk 
Five males 

27.0 ± 4.0 yrs 
176.0 ± 

10.0 93.0 ± 7.0 NP NP 

All participants had extensive resistance training 
experience and were familiar with the squat, 
deadlift, power clean, push press and bench press. 
Four of the five subjects had competed in at least 
one strongman competition including the farmers 
walk. 

McGill, et al. [36] 

Atlas stone; 
Farmers 
walk; 
Keg walk;  
Log lift; 

Suitcase 
carry; 
Tyre flip;  
Yoke 
walk 

Three males 
25.0 ± 7.0 yrs 

176.0 ± 
10.0 117.3 ± 27.5 NP NP 

All participants were active competitors in 
strongman competitions with:  
one competing at international standard; 
one competing at state standard; 
one competing at local standard. 

Stastny, et al. [71] Farmers walk 
Sixteen males 
32.5 ± 4.2 yrs 

184.0 ± 6.1 89.0 ± 9.2 NP NP 
All participants had powerlifting competition 
experience (squat 1RM performance 170.0 ± 35.0 
kg). 

Renals, et al. [69] Log lift 
Ten males 

29.8 ± 3.7 yrs 183.5 ± 6.3 116.0 ± 16.9 4.45 ± 2.6 NP 

Five participants were of an amateur competitive 
strongman level. 
Five participants were of a semi-professional 
competitive strongman level. 
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Table 2.3 continued. 

Study Strongman exercise 
Number and 

age of 
participants 

Height (cm) Body mass 
(kg) 

Training experience 
(yrs) 

Details of participant training experience 
Strongman General 

resist. 

Winwood, et al. [6] 

Farmers walk; 
Log lift; 
Tyre flip; 
Truck pull 

Twenty-three 
males 

22.0 ± 2.4 yrs 
184.6 ± 6.5 102.6 ± 10.8 NP NP 

All participants were semi-professional rugby 
players with extensive strength training 
experience including 1RM testing and strongman 
training exercises. 

Winwood, et al. [5] Farmers walk 
Six males 

24.0 ± 3.9 yrs 
181.6 ± 9.4 112.9 ± 28.9 2.7 ± 1.6 6.5 ± 

2.7 

All participants were well-trained strongman 
athletes with extensive experience performing 
both the traditional and strongman lifts. Four 
athletes had national strongman competition 
experience while two had regional strongman 
competition experience. 
Pre-requisite of two years of strongman training 
experience, having competed in at least one 
strongman competition and be injury free. 

Winwood, et al. [32] Heavy sled pull 
Six males 

24.0 ± 3.9 yrs 181.6 ± 9.4 112.9 ± 28.9 2.7 ± 1.6 6.5 ± 
2.7 As per Winwood, et al. [5] 

Winwood, et al. [31] Log lift 
Six males 

24.0 ± 3.9 yrs 
181.6 ± 9.4 112.9 ± 28.9 2.7 ± 1.6 6.5 ± 

2.7 As per Winwood, et al. [5] 

Values presented as (mean ± SD) where possible, 1RM one repetition maximum, NP not provided, SD standard deviation, yrs years. 
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2.5.5 STUDY DESIGN 

All articles reviewed were of a cross-sectional observational study design. The general 

structure of each study design consisted of a warm-up protocol and a test protocol. The 

warm-up protocol outlined in each study was of a general nature and inferred basic 

structural consistency for all participants. The test protocol of most studies detailed the 

number of sets and repetitions of a given exercise, the allocated rest period between 

sets/bouts of exercise and the prescribed implement load (Table 2.4).  

The number of repetitions, sets and the way in which a set was defined varied between 

many of the articles reviewed. The variation in the definition of a set was generally seen 

in the studies whereby walking type strongman exercises were assessed. As strongman 

walking exercises such as the farmers walk, keg walk, heavy sled/vehicle pull, suitcase 

carry and yoke walk are typically performed once over a specific distance, the distance in 

which participants were required to perform these exercises during a trial varied between 

studies. Less variation was however seen in the definition of a set in the studies in which 

participants were required to perform repetitions of a static lift such as the log lift, stone 

lift and tyre flip.  

Methods used to determine the loading of implements included the use of a constant 

absolute implement load for all participants [6, 29, 30, 36, 70], a set percentage of a 

participant's 1RM [5, 31, 32, 69], or an incremental load based on the participant's six 

repetition maximum (6RM) [71]. These loads were generally established in a 

familiarisation session held in the week/s prior to the testing session. 
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Table 2.4 Protocol design. 

Study Strongman exercise Warm-up protocol Sets performed Repetitions performed Rest 
period 

Implement load 

Keogh, et al. [29] Heavy sled pull 

Gym based warm-up consisting of: 
5 min of cycling; 
Several submax sets of front squats, 
back squats or power cleans (~10 min); 
2 submax sets of sled pull with loads 
between 80–120 kg. 

3 sets 1 × 25 m (fastest time) 3 min 171.2 kg (AP) 

Keogh, et al. [70] Tyre flip 

Submax sets of deadlifts & power 
cleans (~ 10 min); 
2–4 reps of the tyre flip performed in 
sets of 1–2 reps with a moderate rest 
period between each rep or set 

2 sets 6 flips (fastest time) 3 min 232.0 kg (AP) 

Keogh, et al. [30] Farmers walk 
~ 15–20 min of submax deadlifts and 
farmers walks 

3 sets 1 × 25 m (fastest time) 3 min 90.5 kg / hand (AP) 

McGill, et al. [36] 

Atlas 
stone 
Farmers 
walk; 
Keg 
walk; 
Log lift; 

Suitcase 
carry; 
Tyre 
flip; 
Yoke 
walk 
 

NP 

AS: 1 set; 
FW: 2 sets; 
KW: 2 sets; 
LL: 1 set; 
SC: 2 sets; 
TF: 1 set; 
YW: 2 sets 

AS: 1 rep to height of 1.1 m; 
FW: ~ 10 strides; 
KW: ~ 10 strides; 
LL: 1 rep; 
SC: ~ 10 strides; 
TF: 1 rep; 
YW: ~ 8 m 

NP 

AS: 110.0 kg (AP); 
FW: 75.0 kg / hand (AP); 
KW: 40.9 kg (AP); 
LL: 75.6 ± 14.5 kg; 
SC: 36.9 ± 8 kg; 
TF: 309.1 kg (AP); 
YW: 177.3 ± 24.3 kg 

Stastny, et al. [71] Farmers walk 
5 min of cycling; 
Sets of 25 squats in five different foot 
positions. 

5 sets at 
varying loads 8 m 30–60 s 

Incremental load up to 
6RM farmers walk 

Renals, et al. [69] Log lift Self-selected dynamic warm-up. 

Barbell: 3 sets 
250mm ø log: 
3 sets 
316mm ø log: 
3 sets 

1 rep per set 1–5 min 
65% barbell push press 
1RM 
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Table 2.4 continued. 

Study Strongman exercise Warm-up protocol Sets performed Repetitions performed Rest 
period 

Implement load 

Winwood, et al. [6] 

Farmers walk; 
Log lift; 
Tyre flip; 
Truck pull 

Standardised low-intensity warm-up 
consisting of: 
Dynamic stretching; 
Light jogging (aerobic training zone ~ 
60% HR max); 
Body weight exercises. 

FW: 1 set 
LL: 1 set 
TF: 1 set 
TP: 1 set 

FW: Greatest distance in 40 
s c̄ 25 m laps, 180° turn at the 
end of each lap; 
LL: AMRAP in 60 s; 
TF: AMRAP in 40 s; 
TP: Furthest distance in 40 s 

~ 10 
min 

FW: 58.0 kg / hand (AP); 
LL: 75.0 kg (AP); 
TF: 280.0 kg (AP); 
TP: 2.5 t (AP) 

Winwood, et al. [5] Farmers walk 

Participant defined warm-up; 
Two light sets of each lift (< 40% 
1RM) for 6–10 reps; 
Testing at various loads of required 
exercise. 

Two sets 
starting on the 
force plate; 
Two sets 
starting 3 m 
behind the 
force plate 

~ 6 m plus length of force 
plate. 

Up to 5 
min 70% of deadlift 1RM 

Winwood, et al. [32] Heavy sled pull 

Participant defined warm-up; 
Two light sets of each lift (< 40% 
1RM) for 6–10 reps; 
Testing at various loads of required 
exercise. 

Two sets 
starting on the 
force plate; 
Two sets 
starting 2 m 
behind the 
force plate 

3 squat reps (prior to sled 
tow testing). 
~ 6 m plus length of force 
plate. 

Up to 5 
min 

70% of back squat 
1RM 

Winwood, et al. [31] Log lift 

Participant defined warm-up; 
Two light sets of each lift (< 40% 
1RM) for 6–10 reps; 
Testing at various loads of exercise. 

1 set 1 rep Up to 5 
min 

70% of clean and jerk 
1RM 

AMRAP as many repetitions as possible, AP all participants, AS atlas stone, FW farmers walk, HR max maximum heart rate, KW keg walk, LL log lift, rep(s) repetition(s), 
NP not provided, RM repetition maximum, SC suitcase carry, submax submaximal, TF tyre flip, TP truck pull, YW yoke walk, c̄ with, ø diameter. 
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2.5.6 BIOMECHANICAL ANALYSIS 

Within the reviewed articles, biomechanical parameters (Table 2.5) were analysed using 

a number of different measurement techniques and equipment. The biomechanical 

parameters seen in the articles reviewed have been categorised and presented for 

discussion using a deterministic model approach. The deterministic model is based on 

how the different categories of biomechanical measures may affect the ultimate 

performance outcome of the exercise (Figure 2.3). 

 

Figure 2.3 Deterministic model of biomechanical parameters. 

2.5.6.1 TEMPORAL MEASURES 

Temporal data of the tyre flip [70], farmers walk [5, 30] and heavy sled pull [29, 32] were 

collected using a series of cameras to capture two-dimensional (2D) data in the sagittal 

plane. Computer software was used to post process the video data and record the time 

taken for the athlete to complete each defined phase of the lift or section/phase of the 

walk/pull. Temporal data for the fastest and slowest farmers walk, heavy sled pull and 

tyre flip trials were compared within and between participants in the studies by Keogh 

and colleagues [29, 30, 70], while Winwood, et al. [5] made group-average temporal data 
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comparisons of the farmers walk to that of an unloaded walk, and Winwood, et al. [32] 

compared measures between phases of the heavy sled pull. Propulsion phase duration and 

total lift duration were measured for the log lift push press in Renals, et al. [69], with such 

measures calculated from force plate data and compared between a barbell and various 

diameter logs. 

2.5.6.2 ATHLETE/IMPLEMENT LINEAR KINEMATICS 

Athlete linear kinematics were collected for the farmers walk [5, 30] and heavy sled pull 

[29, 32] by method of marker based tracking using 2D sagittal plane video camera data 

and post processing computer software. This equipment and methodology was also 

commonly used to collect joint/segment angular kinematic data as described subsequently. 

The analysis performed on the athlete/implement kinematic measures for the farmers 

walk and heavy sled pull were as per the temporal measures presented previously for each 

respective study [5, 29, 30, 32].  

Renals, et al. [69] measured athlete linear kinematics during the log lift push press in the 

form of vertical velocity and displacement of the athlete’s centre of mass. These 

measurements were calculated by subtracting the body mass of the athlete and the load 

lifted from the vertical force data leaving the measurement of acceleration, which were 

then integrated to give vertical velocity and integrated once again to give displacement. 

These measurements were presented as mean values during the braking and propulsive 

phases of the lift. Bar/log path trajectory and velocity data in Winwood, et al. [31] were 

collected by sagittal and frontal plane video recording and processed using computer 

software. Implement trajectory was plotted as vertical and horizontal displacement as 

both a function of time and relative to the initial starting point, while velocity data were 

presented as peak and mean vertical velocity values throughout each phase of the lift. 

2.5.6.3 JOINT/SEGMENT ANGULAR KINEMATICS 

Joint/segment angular kinematic data in the studies by Keogh and colleagues [29, 30], 

and Winwood and colleagues [5, 31, 32] were collected using 2D video camera data 

techniques described in the athlete/implement linear kinematics section. The number of 

markers used to locate and track anatomical locations of the athlete's body ranged from 

six to 12 with anatomical positioning of these markers varying depending on the exercise 

being analysed and the biomechanical parameter being assessed. These measures were 
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presented as a range of motion throughout an exercise or an angle at defined instances 

throughout an exercise.  

Lumbar spine angular data were collected in McGill, et al. [36] using a 3Space IsoTRAK 

electromagnetic tracking system (Polhemus, Inc., Colchester, Vt, USA). The system 

consisted of a transmitter secured to the pelvis over the sacrum of the participant, and a 

receiver secured over the T12 spinous process of the participant, allowing for relative 

position of the lumbar spine to be approximated. In addition, a two video camera system 

that enabled vision of the frontal and sagittal plane was used to record and synchronise 

electromyography (EMG) data and spinal posture data obtained from the electromagnetic 

tracking system. These measures were presented as peak flexion-extension, medial/lateral 

bend, and twist of the lumbar spine. 

2.5.6.4 ATHLETE KINETICS 

Kinetic measurements within the body of the athlete (in the form of muscle and joint 

loads) and forces acting externally on the body (in the form of ground reaction forces) 

were reported in five studies [5, 31, 32, 36, 69]. Muscle and joint force, and torso stiffness 

estimations in McGill, et al. [36] were derived by first inputting the collected EMG data 

and spine angular kinematic data into a distribution moment (DM) model [73]. Resultant 

muscle force and stiffness approximations from the DM model along with spine angular 

kinematic data were then input into a lumbar spine model based on anatomical 

approximations to optimise individual muscle force and stiffness. The 18 degree of 

freedom model utilised an EMG based function to balance the external moment equation 

of a rigid link model (described subsequently) with the moments produced by the initial 

muscle and joint force estimations. This method ensured preservation of muscle 

recruitment patterns seen in the EMG data by adjusting individual muscle force and 

stiffness coefficients.  

Estimations of joint reaction moments about the lumbar spine (L4/L5) were derived in 

McGill, et al. [36] through the input of digitised spine postural data and anthropometric 

approximations into a rigid link body model using similar techniques to McGill and 

Norman [74]. These moments were estimated for flexion/extension, medial/lateral bend 

and twist. Joint reaction moments of the hip were estimated by first recording a maximum 

voluntary isometric hip abduction effort for each participant. Kinematic joint angle data 

in the frontal plane from each of the walking exercises were digitised and input into the 
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rigid link body model to estimate the hip abduction moment experienced throughout each 

exercise. These results were then normalised to the maximum isometric voluntary hip 

abduction produced by each participant and expressed as a percentage of the participant's 

maximum isometric voluntary hip abduction. 

Three studies used a Bertec force plate (Model AM6501, Bertec Corp., Columbus, OH, 

USA) to collect ground reaction force data in the vertical, medial/lateral and 

anterior/posterior directions [5, 31, 32], while one study used a Kistler force plate (Model 

9851B, Kistler Instruments Ltd., Hook, United Kingdom) to collect vertical ground 

reaction force data [69]. The data were post-processed using computer software and 

normalised for time, with forces presented in their respective axial directions depending 

on the exercise and study. Additionally, the log lift studies of Renals, et al. [69] and 

Winwood, et al. [31] used the ground reaction force data and implement velocity data to 

estimate power and impulse throughout various phases of the lift. 

2.5.6.5 MUSCULAR ACTIVITY 

Electromyography measurements were collected in McGill, et al. [36] using sixteen 

electrode pairs placed bilaterally on various abdominal, back and gluteal muscles. 

Standard EMG practices were generally reported throughout the preparation, collection 

and processing of the EMG data, with EMG signals full wave rectified and low-pass 

filtered using a second-order Butterworth filter. These EMG signals were then normalised 

for each participant to a maximal voluntary contraction (MVC) of each muscle, providing 

insight into key muscular contributors during various strongman exercises. As detailed 

previously, these measurements were also used to calculate internal force and stiffness 

experienced by individual muscle fascicles of the lumbar spine during each exercise.  

Stastny, et al. [71] collected EMG data during the farmers walk exercise. A Noraxon 

Myosystem 1400A (Noraxon, Scottsdale, AZ, USA) EMG system was used to collect 

raw EMG data from four electrode pairs placed bilaterally on selected hamstring, 

quadricep and gluteal muscles. Standard EMG practices were generally reported 

throughout the preparation, collection and processing of the EMG data with data band-

pass filtered and smoothed using a root mean square approach. Participants were required 

to perform MVC at 75° knee flexion/extension and 15° hip abduction on an IsoMed 2000 

Dynamometer (D & R Ferstl GmbH, Hemau, Germany) prior to farmers walk testing to 

establish muscular strength ratios of the hamstring/quadricep, hip abductor/quadricep, 
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and hip abductor/hamstring. Participant EMG data taken during the farmers walk trials 

were then normalised to MVC testing data and used to determine if a relationship could 

be established between lower limb muscle strength ratios and muscle activation patterns 

during the farmers walk.  

2.5.6.6 ATHLETE ANTHROPOMETRIC MEASURES 

Athlete anthropometric measures of stature (height), body composition and body segment 

girths were taken in one of the articles reviewed [6]. Stature measurements were taken 

using a portable stadiometer (Seca 214, Hangzhou, China), body segment girths were 

taken using a Lufkin tape measure (Cleveland, OH, USA) and body composition 

measurements were taken using a bioelectrical impedance machine (InBody230, 

Biospace, Seoul, Korea). All anthropometric data were collected by a qualified 

International Society for the Advancement of Kinanthropometry anthropometrist, with 

the measurements used to determine if a relationship existed between athlete 

anthropometry and that of maximal strength in traditional weight training exercises, and 

strongman exercise performance. 
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Table 2.5 Biomechanical analysis. 

 
Keogh, et al. 

[29] 
Keogh, et 
al. [70] 

Keogh, et al. 
[30] 

McGill, et al. 
[36] 

Stastny, 
et al. [71] 

Renals, et 
al. [69] 

Winwood, et 
al. [6] 

Winwood, et 
al. [5] 

Winwood, et 
al. [32] 

Winwood, et 
al. [31] 

Exercise 

Atlas stone - - - P - - - - - - 

Farmers walk - - P P P - P P - - 

Heavy 
sled/vehicle pull 

P - - - - - P - P - 

Keg walk - - - P - - - - - - 

Log lift - - - P - P P - - P 

Suitcase carry - - - P - - - - - - 

Tyre flip - P - P - - P - - - 

Yoke walk - - - P - - - - - - 

Temporal measures 

Ground contact 
time 

P - P - - - - P P - 

Phase time  P - - - 
Propulsive 
phase, 
total lift 

- - - - 

Stride rate P - P - - - - P P - 

Swing time P - P - - - - P P - 

Linear kinematics 

Velocity Athlete mean - 
Athlete 
mean - - 

Propulsive, 
braking - Athlete mean Athlete mean Bar vertical 

Displacement Stride length - Stride length - - 
Dip depth, 
propulsive 

- Stride length Stride length 
Dip depth, 
implement 
path 
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Table 2.5 continued. 

 
Keogh, et al. 

[29] 
Keogh, et 
al. [70] 

Keogh, et al. 
[30] 

McGill, et al. 
[36] 

Stastny, 
et al. [71] 

Renals, et 
al. [69] 

Winwood, et 
al. [6] 

Winwood, et 
al. [5] 

Winwood, et 
al. [32] 

Winwood, et 
al. [31] 

Angular kinematics 

Ankle angle - - 
ICG-LM-
FM - - - - 

LFC-LM-
BTM 

LFC-LM-
BTM 

LFC-LM-
BTM 

Knee angle GT-MTJ-LM - GT-ICG-LM - - - - GT-LFC-LM GT-LFC-LM GT-LFC-LM 

Hip angle  - - - - - - - - AP-GT-LFC AP-GT-LFC 

Spinal motion - - - P - - - - - - 

Thigh angle GT-MTJ (VA) - GT-ICG (VA) - - - - GT-LFC (VA) - - 

Trunk angle AP-GT (HA) - - - - - - AP-ASIS (HA) AP-ASIS (HA) 
AP-ASIS 
(HA) 

Kinetics 

Ground reaction 
forces - - - - - 

Vertical:  
propulsive, 
braking 

- Tri-axial Tri-axial Tri-axial 

Impulse - - - - - 
Vertical:  
propulsive, 
braking 

- - - - 

Power - - - - - 
Vertical: 
propulsive, 
braking 

- - - - 

Muscle activation - - - 

BF, EO, 
GMA, GME, 
IO, LD, LES, 
RA, RF, UES 

BF, 
GME, 
VL, VM 

- - - - - 

Muscle/joint 
kinetics 

- - - P - - - - - - 
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Table 2.5 continued. 

 
Keogh, et al. 

[29] 
Keogh, et 
al. [70] 

Keogh, et al. 
[30] 

McGill, et al. 
[36] 

Stastny, 
et al. [71] 

Renals, et 
al. [69] 

Winwood, et 
al. [6] 

Winwood, et 
al. [5] 

Winwood, et 
al. [32] 

Winwood, et 
al. [31] 

Anthropometrics 

Body 
composition - - - - - - P - - - 

Segment girth - - - - - - 

Calf, chest, 
gluteal, 
thigh, upper 
arm 

- - - 

Stature - - - - - - P - - - 

AP acromion process, ASIC anterior superior iliac crest, ASIS anterior superior iliac spine, BF biceps femoris, BTM base of third metatarsal, EO external oblique, FM fifth 
metatarsal, GT greater trochanter, GMA gluteus maximus, GME gluteus medius, HA angle taken in reference to horizontal axis, HE heel, HSM head of second metatarsal, 
ICG inter condylar groove, IO internal oblique, LD latissimus dorsi, LES lumbar erector spinae, LFC lateral femoral condyle, LFE lateral femoral epicondyle, LM lateral 
malleolus of the ankle, LT lateral thigh, MTJ mid-point of the lateral joint line of the tibiofemoral joint, PSIC posterior superior iliac crest, RA rectus abdominis, RF rectus 
femoris, TIB tibialis, UES upper erector spinae, VA angle taken in reference to vertical axis, VL vastus lateralis, VM vastus medialis. 
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2.6 DISCUSSION AND IMPLICATIONS 

The methodology used to collect data for the biomechanical analysis of a movement may 

have significant implications on the quality of the data and its applications to improving 

athletic performance and/or reducing injury risk. The methodology selected by 

researchers may be influenced by the exercise being analysed, the study objectives, study 

population, study design and biomechanical measures desired, with each area discussed 

in order in the following section. By exploring the methodologies used in biomechanical 

studies of traditional weight training exercises, future biomechanical studies may produce 

a higher quality of data, which should result in a more comprehensive understanding of 

this sport and therefore improve strongman performance and wider strength and 

conditioning practice. 

2.6.1 EXERCISES/OBJECTIVES 

A large portion of the articles reviewed conducted biomechanical analysis on the farmers 

walk and heavy sled pull exercises [5, 6, 29, 30, 32, 36, 71]. This is possibly due to the 

common occurrence of these exercises in the strength and conditioning programmes of 

non-strongman athletes [5]. Although biomechanically assessed in two of the ten articles 

reviewed, the heavy sled pull exercise is not typically seen in strongman competition, 

rather it is more commonly used as a training exercise for the vehicle/truck pull seen in 

competition [59]. The heavy sled pull and the vehicle/truck pull may differ in terms of 

their performance determinants to some extent due to differences in the frictional 

behaviour of the two loads. To put a heavy sled in motion, static and dynamic sliding 

friction must be overcome, with typical coefficients of friction between a heavy sled and 

an athletic track found to range from 0.3 (static) to 0.47 (dynamic) [75]. When compared 

to the coefficient of rolling resistance of a vehicle tyre (~0.004) [76], it may be 

appreciated that in order to overcome the initial inertia of an object of equal mass, a force 

75 times greater must be applied to a sled (to overcome static sliding friction) than to a 

wheel (to overcome the friction apparent as rolling resistance). However, the mass and 

coefficient of friction are not the only variables that must be considered when assessing 

the replicability of a heavy sled pull to that of a vehicle pull. A phenomenon known as 

stick-slip must also be considered. This phenomenon occurs as a result of an object in 

sliding contact generally having the inability to momentarily continue to move once a 

propulsive force is no longer applied to the object as would typically be seen with a wheel 

[75]. As a result of these behavioural differences, the contribution of the current heavy 
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sled pull studies toward improving researcher's understanding of the key biomechanical 

determinants of the strongman competition vehicle pull is still somewhat unclear. 

Although the results from McGill, et al. [36] made reference to some of the biomechanical 

differences seen between athletes of varying competition standard, the results were not 

statistically compared. The resultant back load, low-back stiffness and hip abduction 

torque measurements reported by McGill, et al. [36] were compared between exercises. 

In a similar fashion, the biomechanical measurements taken in Renals, et al. [69], and 

Winwood and colleagues [5, 31, 32] were compared between strongman and traditional 

exercises, with no comparative analysis being undertaken between athletes of varying 

performance levels. Stastny, et al. [71] also did not measure or compare overall athlete 

performance, but rather compared muscular activation patterns between athletes of 

varying muscular strength ratios. The recommendations seen throughout these studies 

appear to be more directed at strength and conditioning coaches for targeted performance 

improvements in non-strongman athlete training programmes or for injury 

rehabilitation/prevention for both strongman and non-strongman athletes. 

Contrary to McGill, et al. [36], Renals, et al. [69], Stastny, et al. [71], and Winwood and 

colleagues [5, 31, 32]; Keogh and colleagues [29, 30, 70] compared biomechanical 

measures between athletes of varying performance standards. Across these three studies 

it was found that a number of biomechanical differences exist between athletes of varying 

performance levels which likely contribute to the overall performance of the athlete. The 

results from Keogh and colleagues [29, 30, 70] may be of particular value to strongman 

coaches and athletes wanting to improve competition performance. 

Researchers conducting future strongman studies should look to focus on popular 

strongman exercises with little to no previous research conducted in the field. Such 

exercises may include the atlas stone lift, single arm dumbbell press, yoke walk and 

variations of the vehicle pull which are more representative of that seen in strongman 

competition. Additionally, future studies may consider comparing biomechanical 

measures between higher and lower performing athletes as has been performed in few 

studies [29, 30, 70]. Identifying key biomechanical performance determinants of 

strongman exercises would be expected to improve coaching and the overall performance 

of strongman athletes at all levels of competition. Information on how to better perform 

strongman exercises may also be used by special forces, police departments and 
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emergency services personnel who are faced with a life and death situation whereby they 

are required to move heavy, awkwardly shaped objects and/or carry or drag civilians to 

safety. Such tasks may be seen to closely replicate some of the exercises undertaken by 

strongman athletes [30].  

2.6.2 STUDY POPULATION 

The articles reviewed generally consisted of a small sample size (six or fewer participants). 

Two of the articles reviewed included a larger number of non-strongman athletes (n = 16; 

n = 23) [6, 71] with backgrounds in other forms of resistance training. Although results 

from these non-strongman populations may be of relevance to strength and conditioning 

coaches who are contemplating including strongman exercises into an athlete's training 

programme, the results from these studies may not be representative of, or generalisable 

to the competitive strongman athlete population. In addition, the inclusion of non-

strongman athletes in some of the studies reviewed likely had a small carry-over effect 

on subsequent methodology used in the study, such as the warm-up methods and the loads 

used when performing a given exercise. These considerations will be discussed further in 

subsequent sections. The small number of competitive strongman athletes included in the 

articles reviewed may be due to the sport of strongman still being young and the limited 

number of athletes competing in the sport of strongman in any given geographical 

location. With the increasing popularity of the sport of strongman it may be expected that 

future studies will include a greater sample size of national and international level 

competitive strongman athletes, including female and lighter male participants than have 

been included in previous studies. Studies of typical strongman athletes would provide 

results which are of greater relevance to strongman coaches and athletes. 

2.6.3 STUDY DESIGN 

All articles included in the review were of cross-sectional design. This type of study 

design is commonly utilised in biomechanical research and provides a snapshot of athlete 

performance and biomechanical parameters at a single point in time. These performance 

outcomes may be affected by how an athlete is feeling on a particular day and may be 

influenced by factors such as sleep, stress, nutrition, training load, injury or illness.  

No articles published to date have assessed and/or compared biomechanical parameters 

of an athlete performing a strongman exercise over an extended period of time. While 

technique in advanced lifters is suggested to remain relatively constant after the initial 
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years of training, metrics of rate of force development and muscular cross-sectional area 

have been observed to change throughout a single block periodized training cycle in 

collegiate weightlifters [77]. Researchers undertaking future strongman studies may 

consider assessing similar biomechanical and anthropometric characteristics and their 

association with performance at regular intervals throughout the training and competition 

season of an athlete. The results from such studies may be of particular interest to 

strongman coaches when programming training blocks for athletes, determining 

associations between strongman technique, skill acquisition and performance, and also in 

assessing signs of adaptation, over-training, fatigue and injury. Strength and conditioning 

coaches may be interested in such longitudinal studies as they would provide greater 

insight into the benefits and potential injury risks of such exercise programmes. 

The way in which implement loading was determined in the articles reviewed exhibited 

some degree of between study variation. The majority of loads used were somewhat 

reflective of the experience and/or competitive standard of the athletes tested, with studies 

that included a greater number of non-strongman athletes typically seeing lighter loading. 

Many of the articles reviewed lacked detail on the methods used to establish implement 

load. These details, along with justifications for the use of the method should be reported 

to provide the reader with a greater context to the study.  

Prescribing implement loading based on pre-test 1RM tests could be a useful approach in 

some studies, as it would provide a way to normalise the data collected based on the 

participants’ muscular strength. This approach has been used in various strength sport 

biomechanics research such powerlifting [78, 79] and weightlifting [9, 80]. The 1RM 

based loading approach has been used in four studies where comparisons have been made 

between strongman and traditional lifts, with the results assisting in improving the 

understanding of how strongman exercises may be best, if at all, included in the strength 

and conditioning programmes of non-strongman athletes [5, 31, 32, 69]. However, unlike 

powerlifting and weightlifting, basing loads on an athlete’s 1RM does not mimic actual 

strongman competition, whereby athletes of a given gender and body mass category 

compete with the same absolute loads for each exercise (e.g. the same atlas stones, loaded 

yoke or truck). Utilising such competition loading approach in strongman performance 

research may be of major interest to strongman coaches and athletes as it provides insight 

into the most important factors influencing strongman competition performance.  
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It is also apparent that no strongman biomechanical study to date has assessed an exercise 

over a range of loads as may be experienced during training and as is standard practice 

for examining force-velocity-power relationships in traditional resistance training 

exercises [81-83]. Both strongman coaches and athletes, and strength and conditioning 

coaches of non-strongman athletes would benefit from such analyses as it may assist in 

the prescription of loading during a training session or phases of a periodisation training 

programme where specific performance outcomes are desired. 

Limited detail on the warm-up protocol undertaken by participants was provided in 

articles reviewed. Few articles explicitly stated whether an athlete self-directed or a 

warm-up routine developed by the researcher was used, making it difficult for the reader 

to determine the suitability of the methods selected. It could be expected that altering the 

usual warm-up protocol of an experienced athlete by enforcing a researcher designed 

warm-up routine may affect the athlete's performance during testing, although evidence 

supporting or discrediting the use of an athlete self-guided warm up to promote 

performance across strength sports is lacking. If an intended outcome of a study is to 

observe the biomechanics of an athlete performing a given exercise in a way that is most 

representative of how the athlete performs the exercise in training or competition, it would 

be sensible to replicate regular training practices as much as possible within the testing 

session, including the athletes’ routine warm up protocol.  

Researchers undertaking future studies should provide greater detail on the warm-up 

protocol used, and where experienced strongman athletes are included should use an 

athlete self-directed warm-up routine, with all warm-up elements documented by the 

supervising researchers. Researchers interested in strongman performance may consider 

comparing the effects of different warm-up approaches (including the potential use of 

post-activation potentiation) on performance in simulated strongman competitions to 

determine what may constitute optimal warm-up strategies for the sport. 

2.6.4 BIOMECHANICAL ANALYSIS 

The majority of the articles reviewed used 2D kinematic analysis to estimate sagittal plane 

temporal measures, athlete linear kinematics and joint/segment angles. The reliance on 

2D kinematic analysis of these strongman exercises is a potential major limitation of this 

research, whereby three-dimensional (3D) motion capture is considered the gold standard 

of describing athlete and object kinematics. Escamilla, et al. [34] compared 2D versus 3D 
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kinematic analysis for athletes performing the conventional and sumo deadlift. Greater 

differences between joint/segment angles obtained using 2D versus 3D kinematic 

analyses were seen for the sumo deadlift than the conventional deadlift. The study 

suggested that these differences could be attributed to the multi-planar movement of the 

lower body in the sumo deadlift, which requires a wider stance and greater angle at which 

the feet are turned out compared to the conventional deadlift. Such results indicated that 

2D kinematic analysis shows strong correlation with 3D kinematic analysis for knee, 

thigh and hip angular motion which is primarily performed in the sagittal plane only (such 

as the conventional deadlift). However, measurement errors are to be expected when 

performing 2D kinematic analysis on multi-planar movements in which some of the 

movement occurs at an angle that is not perpendicular to the field of view of the camera, 

as is often seen in many strongman exercises such as truck pull, tyre flip and weighted 

carries such as the farmers and yoke walk. Schurr, et al. [84] has also shown that 2D 

kinematic analysis is comparable to 3D motion capture when evaluating ankle, hip, knee 

and trunk angles in the sagittal plane during a single leg squat. There was however, no 

significant correlation between the two methods at any of the joints in the frontal plane 

except for a poor correlation at the knee. The discrepancies in the frontal plane were 

suggested to be attributed to the possible rotation of the ankle, hip and knee joints 

throughout the movement, as well as the high relative error of these joint motions that 

reflects the limited range of motion of these joints in the frontal compared to the sagittal 

plane. 

Although McGill, et al. [36] successfully collected 3D motion data of athletes performing 

a number of strongman exercises, the focus was on the lower back and required data 

collection equipment to be attached to the posterior of the body only. While the use of a 

similar gold standard approach such as 3D optical motion capture may provide a greater 

quality of biomechanical measurements, especially for multi-planar movements that are 

not perpendicular to the camera’s field of view as occurs relatively often in a number of 

strongman exercises, several difficulties in the use of this method may be experienced 

when applied to strongman exercises. Three-dimensional optical motion capture typically 

requires the placement of around 50 markers on various anatomical locations and planes 

of body segments to capture accurate translational and rotational motion [16]. Strongman 

exercises often require large, heavy, and awkward to position/lift implements (such as 

logs and stones) to be lifted over large portions of the body’s anterior surface, thus it 
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would appear difficult to successfully secure reflective markers to the required anatomical 

locations of an athlete's body whilst ensuring the markers would not be obscured or 

displaced when performing these exercises.  

Recent developments in inertial measurement unit (IMU) based motion capture systems 

may provide a more feasible means of collecting 3D data than traditional 3D optical 

motion capture techniques [43]. Inertial measurement unit motion capture systems utilise 

a network of sensors located at various locations on the body, with the sensors secured 

either on the skin surface or on top of or beneath clothing. The development of such 

systems has seen various methods used for calibration, thus the versatility of locating the 

sensors on the body provides the potential to overcome issues seen when using traditional 

3D motion capture systems [85]. Future studies may consider the use of IMU systems to 

improve the quality and breadth of motion data collected, with such an approach likely to 

be able to be utilised in both competition and training settings.  

Force-velocity-power profiles of the barbell or the combined body-barbell system are 

becoming more commonly used to prescribe training load, and assess and/or predict the 

performance of an athlete [78, 86-89]. Two of the articles included in the current review 

obtained measurements of mean implement velocities, and mean force and power 

production during the strongman log lift [31, 69]. Presenting these measurements as a 

function of time or load may be of particular interest to strongman coaches and athletes, 

and strength and conditioning coaches where force-velocity-power training principles are 

considered. Future research may investigate the use of force-velocity-power profiling as 

a tool for prescribing training strategies and predicting the success of a strongman lift. 

Standard EMG protocol procedures were generally followed in the two strongman studies 

that assessed muscle activity, however the inherent challenges associated with using 

EMG data to represent muscle activity must be acknowledged. These issues have 

generally been attributed to the noise generated at the skin-electrode interface due to the 

relative movement between the electrode, skin and muscle, the noise generated by 

electromagnetic radiation from nearby electrical appliances, and internal cross talk 

detected from surrounding muscles [90, 91]. Quantifying relative muscle activation also 

has a number of challenges, with normalisation to the EMG signal produced during MVC 

readings still most commonly utilised. There are however issues with normalising to 

MVC, especially when it is observed that one of the articles reviewed had muscle activity 
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readings for several muscles greater than 100% of the athlete's pre-test MVC [36]. Ball 

and Scurr [92] compared repeated (across multiple days and weeks) EMG activity 

measurements of the triceps surae muscles whilst performing a variety of exercises 

including the squat jump, 20 m sprint, isometric heel raise and isokinetic plantar flexion. 

It was theorised that these exercises may provide a means of EMG normalisation 

reference values for the triceps surae muscles. While EMG activity measurements of all 

triceps surae muscles were reliable when performing the squat jump over multiple days 

and weeks, measurements taken when performing the 20 m sprint, isometric heel raise 

and isokinetic plantar flexion displayed less reliability, with reliability dependant on the 

duration between retests and the muscle being measured. Although the challenges 

associated with EMG readings are often acknowledged by researchers and a number of 

techniques have been developed to reduce the likelihood of misinterpretation of data [90], 

there are currently few practical alternative methods of acquiring and normalising muscle 

activity data. 

For a body to displace a load, a muscular torque exceeding the load torque must be 

produced. The muscular torque can be defined as the product of force produced by the 

muscles spanning the joint and their respective muscular moment arm lengths, and the 

load torque can be defined as the product of the load force and the load moment arm 

length. Thus, the limb length and girth of the segment contribute substantially to the 

resistance moment arm length, muscular force produced and performance outcome of the 

exercise. Of the articles reviewed, only one study measured participant body composition 

and anthropometry, with the measurements obtained at one point of time from non-

strongman (rugby) athletes who performed a range of strongman exercises [6]. Although 

the study found large to very large correlations between overall strongman competition 

performance and many anthropometric measures, measurements of limb lengths were not 

included in the analysis, thus presenting a potential gap in the research methodology. 

A number of anthropometric measures have been shown to be related to the technique 

utilised [93] and performance outcomes [94, 95] of various strength based exercises 

including the bench press, clean and jerk, snatch and squat. Although Winwood, et al. [6] 

investigated the correlations between a number of simple anthropometric measures to the 

performance of athletes undertaking strongman exercises in a simulated competition, no 

study to date has assessed how anthropometric measures influence the kinematics, 

kinetics or muscle activity patterns of any strongman exercise. Such studies have however 
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been conducted for the snatch weightlifting event, whereby a number of anthropometric 

measures were found to correlate to bar trajectory in elite female weightlifters [93]. Lower 

limb length showed strong correlation to horizontal bar displacement during the first pull 

phase of the snatch (r = -0.93) in female 75 kg body mass class athletes, while thigh and 

lower limb length showed strong correlation to horizontal bar displacement during the 

second pull phase (thigh: r = -0.99; lower limb: r = -0.94) in female 53 kg body mass class 

athletes [93]. Various body segment ratios also showed strong correlation to horizontal 

bar displacement across the body mass classes [93]. The exploration of the effect of 

anthropometrics (including limb lengths) on strongman biomechanics and the resultant 

performance measure of an athlete may be particularly interesting in strongman exercises 

due to the apparent variation in techniques used by strongman athletes of varying 

anthropometric characteristics. These data may be used by strongman coaches when 

teaching and improving the technique of an athlete so to enhance performance and prevent 

injury, while also being of interest to strength and conditioning coaches who may wish to 

prescribe such exercises to their non-strongman athletes. 
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2.7 CONCLUSION 

The articles reviewed included the biomechanical analysis of eight different strongman 

exercises, with the farmers walk being the most commonly studied exercise as it appeared 

in five of the ten studies. The majority of the articles reviewed were more applicable to 

strength and conditioning coaches looking to implement strongman exercises into the 

training programmes of non-strongman athletes than to strongman athletes and coaches 

looking to improve strongman competition performance. Although the population size 

and training experience of participants varied between the studies reviewed, all studies 

consisted of male participants of a largely similar lower-level competitive standard, age 

and body mass. All studies reviewed were of a cross sectional observational study design 

and consisted of a warm-up and testing component. The biomechanical measurements 

collected throughout the testing components could be categorised into six primary areas, 

however due to the general awkward nature of strongman exercises the methods used to 

collect biomechanical measurements were often constrained to 2D motion capture and/or 

force plate analysis. 

It is recommended future research in the field of strongman biomechanics should: assess 

under/un-researched strongman exercises; include a greater number of experienced 

strongman athletes (including female and lighter weight males); compare biomechanical 

measures between strongman athletes of different performance standards; consider the 

collection of biomechanical data over a range of loading conditions (e.g. competition 

loads); utilise advanced measurement technologies (e.g. 3D and/or IMU motion capture) 

for the collection of data; and consider how anthropometric measures (such as limb 

length) affect the biomechanics and performance of an athlete. With improvements in the 

research methodology of future strongman biomechanics studies, strength and 

conditioning coaches, and strongman athletes and coaches will be able to better 

understand: how strongman exercises may be used in wider strength and conditioning or 

injury rehabilitation practice; and the technique required to perform these exercises in a 

way that ensures the greatest performance outcome while minimising the risk of injury. 
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3. THE BIOMECHANICS AND APPLICATIONS OF STRONGMAN EXERCISES: 

A SYSTEMATIC REVIEW 

3.1 PREFACE 

The purpose of this chapter was to further expand upon the results of Systematic Review 

1 to gain a greater understanding of what is already known about the biomechanics of 

athletes performing strongman exercises. The general movement patterns, similarity to 

traditional weight training exercises and common everyday activities and biomechanical 

determinants of performance were discussed. This chapter, in conjunction with Chapter 

2, assisted in shaping the strongman biomechanics experimental studies presented in 

Chapter 7 and Chapter 8. Question 1 "What is already known about the biomechanics of 

athletes performing strongman exercises and where are the current gaps in the field of 

knowledge?" was addressed in this chapter 

This chapter has been published in Sports Medicine - Open on 9 December 2019, 

available at: https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-

019-0222-z. 

Hindle, B. R.; Lorimer, A.; Winwood, P.; Keogh, J. W. The biomechanics and 

applications of strongman exercises: A systematic review. Sports Medicine - Open 2019, 

5, 49, doi:10.1186/s40798-020-0239-3. 

This is an Open Access article reproduced under the permission of the Creative Commons 

Attribution 4.0 International License CC BY 4.0.   
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3.2 ABSTRACT 

Background: The sport of strongman is becoming increasingly popular, catering for 

females, lightweight and Masters competitors, with strongman exercises also being used 

by strength and conditioning coaches for a range of athletic groups. This, the second-part 

of a two-part systematic review, was conducted to examine our current understanding of 

the biomechanics of strongman exercises, with a view to: improve strongman athlete 

performance; provide biomechanical evidence supporting the transferability of strongman 

exercises to the strength and conditioning/rehabilitation programs of athletes, tactical 

personnel and other manual labour occupations; and identify gaps in the current 

knowledge of the biomechanics of strongman exercises. Methods: A two-level search 

term strategy was constructed and used to search five databases for studies relevant to 

strongman exercises and biomechanics. Results: Eleven articles adherent to the inclusion 

criteria were returned from the search. The studies provided preliminary biomechanical 

analysis of various strongman exercises including the key biomechanical performance 

determinants of the farmers walk, heavy sled pull and tyre flip. When compared with 

lower performing (LP) athletes, higher performing (HP) athletes undertaking the farmers 

walk and heavy sled pull were characterised by a greater stride length (HP: 1.83 ± 0.04 

m; LP: 1.40 ± 0.17 m) and stride rate (HP: 2.01 ± 0.13 Hz; LP: 1.83 ± 0.04 Hz), and 

reduced ground contact time (HP: 0.29 ± 0.02 s; LP: 0.34 ± 0.03 s), while HP athletes 

performing the tyre flip were characterised by a reduced second pull phase time when 

compared with LP athletes (HP: 0.38 ± 0.17 s; LP: 1.49 ± 0.92 s). Qualitative comparison 

of carrying/walking, pulling and static lifting strongman, traditional weight training 

exercises (TWTE) and common everyday activities (CEA) like loaded carriage and 

resisted sprinting were discussed to further our understanding of the determinants of 

various strongman exercises and their applications to strength and conditioning practice. 

A lack of basic quantitative biomechanical data of the yoke walk, unilateral load carriage, 

vehicle pull, atlas stone lift and tyre flip, and biomechanical performance determinants of 

the log lift were identified. Conclusions: Future research in the identified areas of 

strongman biomechanics is expected to provide strongman coaches with valuable insight 

into the biomechanical determinants of performance in a wider range of strongman 

exercises. Furthermore, a greater understanding of the potential training adaptations and 

risks expected when performing and/or incorporating strongman exercises into strength 

and conditioning or injury rehabilitation programs will be gained through further research. 
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3.3 BACKGROUND 

Humankind’s obsession with strength dates back to antiquity, where wrestling matches 

were used to prove strength by the Greeks and Egyptians. To gain the strength, endurance 

and power that were required to defeat their opponent, men would train by lifting stones 

of varying size, mass and shape [1]. Around the twelfth century in Scotland, the Highland 

Games became popular for determining the strongest competitor, with competitors 

required to perform running, jumping, lifting and wrestling tasks to prove their strength. 

Contemporary Highland Games have evolved to include heavy throwing and lifting 

events. Increasing popularity and international awareness of the Highland Games 

throughout the twentieth century led to 'The World's Strongest Man', first held in 1977 [2, 

3]. In recent years the sport of strongman has seen rapid growth with competitions at local, 

regional, national and international levels, and a range of divisions created to cater for 

age, body mass, sex and experience [14]. 

Modern strongman competitions require an athlete to carry, pull or lift heavy and 

awkward objects [4]. The exercises developed for strongman competitions are generally 

heavier versions of common everyday activities (CEA) or more awkward/challenging 

variations of traditional weight training exercises (TWTE) such as the squat, deadlift and 

clean and press [51]. In contrast to TWTE, which typically require the weight to be lifted 

vertically and use bilateral load distribution, strongman exercises often require the athlete 

to move loads horizontally, test the athlete in multiple planes and incorporate phases of 

unilateral and bilateral loading [5, 6]. Strongman exercises typically involve equipment 

such as: loaded frames, kegs and bags for carrying; loaded sleds and vehicles for pulling; 

and stones, logs, tyres and oversized dumbbells for lifting (Figure 3.1) [13]. 

As the sport of strongman continues to increase in popularity and the use of such exercises 

in strength and conditioning programs becomes more common for non-strongman 

athletes, research in this area continues to grow. In field of current strongman research, 

researchers have investigated the use of strongman implements by strength and 

conditioning coaches of non-strongman athletes [7], the acute and chronic physiological 

adaptations to strongman type training [4, 50, 51, 57-59], the training and tapering 

practices of strongman athletes [3, 52-56], and the injury epidemiology of strongman 

athletes [14]. The literature now also includes narrative reviews and opinion pieces 
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suggesting how strongman exercises may be best used in the strength and conditioning 

programs of non-strongman athletes [3, 52, 56, 59].  

As the authors explored the current field of strongman biomechanics research, it became 

apparent that in order to thoroughly report and discuss all data on the given topic, a two-

part systematic review was required. The first part of the systematic review was 

conducted to assess the research methods used in existing strongman biomechanics 

research, whereby a summary of the exercises, study designs, study populations and 

biomechanical methods/measurements used were reported [12].  

The primary objective of conducting this, the second part to the original systematic review, 

was to determine our current understanding of the biomechanics of strongman exercises 

specifically, with a view to: 1) improve athlete performance by providing athletes and 

coaches with a greater understanding of the key biomechanical determinants of 

performance of these exercises; 2) provide biomechanical evidence supporting the 

transferability of strongman exercises to the strength and conditioning/rehabilitation 

programs of athletes, tactical operators (e.g. military, army) and other manual labour 

occupations; and 3) identify the gaps in the current knowledge of the biomechanics of 

strongman exercises. Such information would be valuable to the strongman coach and 

athlete, the strength and conditioning coach who may use these exercises with their non-

strongman athletes as well as the researcher who may design future studies to address 

some of the key limitations of the literature. 
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Figure 3.1 Examples of strongman exercises: a) atlas stone lift; b) farmers walk; c) 

heavy sled pull; d) keg walk; e) log lift; f) suitcase carry; g) tyre flip; h) yoke walk. 

Images reprinted with permission from owner Hiroya Togawa. 
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3.4 METHODS 

3.4.1 EXPERIMENTAL APPROACH TO THE PROBLEM 

The review process followed the ‘Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses’ (PRISMA) guidelines on reporting items for a systematic review and the 

associated PRISMA checklist [60]. Due to the nature of the systematic review 

Institutional Review Board approval to conduct this investigation and registration with 

the International Prospective Register of Systematic Reviews (PROSPERO) was not 

deemed to be relevant. A set of inclusion/exclusion criteria were developed prior to 

undertaking the search process. The criteria specified only peer reviewed journal articles 

assessing anthropometric, kinematic, kinetic, muscular activity or spatiotemporal 

measures of athletes performing common strongman exercises would be included in the 

review. Articles including injured athletes, sled loads less than the body mass of the 

athlete, and studies where researchers focused on the use of the sled pull for the purpose 

of sprint performance would be excluded from the primary literature reviewed. No 

limitations were placed on language or year of publication. The data from the included 

articles were then extracted, analysed and discussed based on the strongman exercise type. 

3.4.2 LITERATURE SEARCH AND SCREENING 

To identify all articles in which biomechanical analysis of a strongman exercise had been 

undertaken, a two-level keyword search consisting of terms associated with strongman 

exercises, lifts and training methods (level one), and terms associated with general 

biomechanical parameters (level two) was constructed using Boolean operators. An initial 

search up to and including 25 October 2018 was conducted using AusportMed, CINAHL, 

Embase, Medline (Ovid) and SPORTDiscus for part one of the systematic review [12]. 

The search was repeated for this systematic review (part two) on 25 March 2019 so to 

identify any articles published since the initial search. The full search strategy used for 

each database can be seen in the Appendix 3.  

The results from the five databases were imported into an online systematic review 

management software Rayyan (Doha, Qatar) before being distributed to two independent 

reviewers [96]. The two reviewers cast either "include", "exclude" or "maybe" votes for 

each article throughout the title/abstract screening process and "include" or "exclude" 

votes during the full text screening process in accordance with the predefined 

inclusion/exclusion criteria. During the full text screening process, reviewers were 
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required to provide reason based on a list of hierarchical criteria as to why they were 

excluding a study from further review. Where disagreement in voting or reasoning for 

exclusion occurred, a consensus meeting was held to form agreement between parties. 

After identifying all eligible articles, the reference list of each article was examined, and 

Google Scholar was used to perform a forward citation search to identify any potentially 

eligible articles not returned during the database search.  

3.4.3 RISK OF BIAS AND QUALITY ASSESSMENT 

No single risk of bias/quality assessment tool appeared entirely suitable to perform a 

meaningful assessment of the identified literature, which were all of a cross-sectional 

observational study design. An appropriate checklist was developed by the authors using 

tools established by other systematic reviews containing studies of a similar design [61-

68], with this adapted checklist used by Hindle, et al. [12] in a systematic review of the 

biomechanical research methods used to evaluate strongman exercises. Reviewers 

awarded a star (¬) in support of the criteria or no star where the criteria was not met, with 

any disagreement in voting between reviewers settled by a consensus meeting. The risk 

of bias score was calculated for each article based on a total maximum achievable score 

of 16 stars, and categorised in accordance with Davids, et al. [62] where articles scoring 

≥ 11 stars were categorised as having a low risk of bias, articles scoring 6 – 10 stars 

categorised as having a satisfactory risk of bias, and articles scoring ≤ 5 stars categorised 

as having a high risk of bias. 

3.4.4 LIMITATIONS 

The systematic review was conducted in two parts so to ensure its exhaustive nature and 

capture as much information on the biomechanical analysis of strongman exercises. One 

limitation of this method is the lapse in time between the publication of the initial 

systematic review [12] and this, the second part of the review. This limitation resulted in 

the search of databases being conducted a second time and thus enabled the potential for 

additional studies being included in the second part of the review. The second limitation 

of this systematic review is in the tool used for the risk of bias/quality assessment, 

whereby it may be seen that using a risk of bias/quality assessment tool developed by the 

author team may add an additional level of bias to the systematic review itself. The use 

of Google Scholar for forward citation tracking may be considered a minor limitation to 

the systematic review due to the unreliability sometimes associated with the platform. 
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3.5 RESULTS 

3.5.1 LITERATURE SEARCH AND SCREENING 

The search of the five databases on 25 March 2019 returned 877 results, of which eleven 

articles were identified as being adherent to the inclusion criteria (Figure 3.2). The 

outcome of the screening process and resultant PRISMA flowchart differed slightly to 

Hindle, et al. [12] as the independent reviewers agreed upon excluding a greater number 

of articles at the title/abstract level due to familiarisation with these articles during 

previous full text screening. 

 

Figure 3.2 Flowchart of screening process. 
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3.5.2 RISK OF BIAS AND QUALITY ASSESSMENT 

Within each study, the objectives/purpose of undertaking the study and the characteristics 

of the study population were clearly detailed. Statistical methods used within each study 

were appropriate. Testable hypotheses were proposed within the majority of studies and 

well validated equipment were mostly used to collect measures. All articles were 

classified as having a satisfactory or low risk of bias (Table 3.1).  

Table 3.1 Risk of bias and quality assessment. 

Article 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Score 
(/16) 

Holmstrup, et al. [97] - ¬ ¬ ¬ ¬ - - ¬ - ¬ ¬ ¬ ¬ ¬ ¬ ¬ 12 (L) 
Keogh, et al. [29] ¬ ¬ ¬ - ¬ - ¬ ¬ ¬ ¬ ¬ ¬ ¬ - ¬ ¬ 13 (L) 
Keogh, et al. [70] ¬ ¬ ¬ - ¬ - - ¬ ¬ ¬ ¬ ¬ ¬ - ¬ ¬ 11 (L) 
Keogh, et al. [30] ¬ ¬ ¬ - ¬ - - ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ 13 (L) 
McGill, et al. [36] - ¬ ¬ - ¬ ¬ - - - - ¬ ¬ ¬ - - - 7 (S) 
Stastny, et al. [71] ¬ ¬ - - ¬ - - ¬ - ¬ ¬ - - - ¬ ¬ 8 (S) 
Renals, et al. [69] ¬ ¬ ¬ - ¬ ¬ - ¬ ¬ ¬ ¬ ¬ ¬ - - ¬ 12 (L) 
Winwood, et al. [6] ¬ ¬ ¬ - ¬ - - ¬ ¬ ¬ ¬ ¬ ¬ - - ¬ 11 (L) 
Winwood, et al. [5] ¬ ¬ ¬ ¬ ¬ ¬ - ¬ ¬ ¬ ¬ ¬ ¬ ¬ - - 13 (L) 
Winwood, et al. [32] ¬ ¬ ¬ ¬ ¬ ¬ - ¬ ¬ ¬ ¬ ¬ ¬ ¬ - - 13 (L) 
Winwood, et al. [31] ¬ ¬ ¬ ¬ ¬ ¬ - ¬ ¬ ¬ ¬ ¬ ¬ - - - 12 (L) 
Method for assessing risk of bias: (1) study design was stated clearly; (2) the study objective/purpose is 
clearly stated; (3) the study has a clearly testable hypothesis; (4) the study clearly states the inclusion 
criteria for participants; (5) the characteristics of the population are well detailed; (6) the study population 
is representative of the intended population for which the research is aimed; (7) a justification for the 
selection of the sample/study population size was provided; (8) the methods used throughout testing are 
well detailed; (9) the measurement tools used throughout the study are reliable and have been validated; 
(10) detail on the statistical methods used was provided; (11) the statistical methods used to analyse the 
data were appropriate; (12) the results of the study are well detailed; (13) the information provided in 
the paper is sufficient information was provided so to allow the reader to make an unbiased assessment 
of the study findings; (14) confounding factors within the study are identified; (15) study 
funding/conflicts of interest were acknowledged; (16) limitations to the study were identified. L low risk 
of bias (11–16 ¬), S satisfactory risk of bias (6–10 ¬), H high risk of bias (0–5 ¬). 

 

3.5.3 STUDY RESULTS AND DATA SYNTHESIS 

Strongman exercises which have had a biomechanical assessment in at least one of the 

eleven studies were the atlas stone lift, farmers walk, heavy sled/vehicle pull, log lift, keg 

walk, suitcase carry, tyre flip and yoke walk (Figure 3.1). For a description of these 

exercises the reader is directed to Hindle, et al. [12]. The eight strongman exercises can 

be categorised into three exercise types: carrying/walking, pulling, and static lifting 

(Figure 3.3). The comparative analysis within each of the studies could be categorised 

into three main areas: comparisons based on the performance outcome of the exercise [6, 
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29, 30, 70, 97]; within exercise comparisons (between phase) [5, 29, 30, 32, 71]; and 

between exercise comparisons [5, 31, 32, 36, 69]. The results from the eleven studies will 

be presented in the format outlined in Figure 3.3.
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Figure 3.3 Study results structure.
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3.5.4 CARRYING/WALKING EXERCISES 

The carrying/walking strongman exercises biomechanically analysed were the farmers 

walk, keg walk, suitcase carry and yoke walk. The farmers walk was the most studied 

enabling within and between study comparison. (Table 3.2). 

3.5.4.1 BIOMECHANICAL DETERMINANTS OF PERFORMANCE 

Comparing spatiotemporal measures of higher performing (HP) and lower performing 

(LP) athletes, greater performance in the farmers walk was associated with a reduced 

ground contact time, increased stride length and increased stride rate during the maximum 

velocity phase of the walk [30]. Maximum velocity was reached at different stages of the 

farmers walk depending on the athlete’s performance level, with HP athletes reaching a 

maximum velocity in the final 17 – 20 m section of the walk, while LP athletes reached 

a maximum velocity in the middle 8.5 – 11.5 m section of the walk [30].  

Higher performing athletes had significantly greater dorsiflexion of the ankle at foot strike 

and toe off, a more horizontally aligned thigh at foot strike, and greater ankle and thigh 

range of motion (ROM) [30]. Measures of flexed arm girth, muscle mass and total system 

force (calculated as the sum of the athlete’s body mass and one repetition maximum (1RM) 

squat) were reported to be the greatest anthropometric determinants of performance in the 

farmers walk exercise (flexed arm girth: r = 0.46; muscle mass: r = 0.49; total system 

force: r = 0.64) [6]. Participants with a greater percentage of fat free mass were also found 

to be able to carry greater loads during the suitcase carry before their technique and 

posture were compromised [97]. 

3.5.4.2 WITHIN EXERCISE BIOMECHANICAL DIFFERENCES 

Reduced ground contact time and increased stride length was observed in the maximum 

velocity phase of the farmers walk when compared to the acceleration and sub-maximal 

velocity phase [5, 30]. Comparing acceleration, sub-maximal and maximal velocity 

phases; greater ankle dorsiflexion and knee flexion at foot strike, greater knee flexion and 

a more horizontally oriented thigh at toe off, increased ankle ROM, and reduced thigh 

and knee ROM was observed during the acceleration phase [30]. Stastny, et al. [71] 

compared muscle activation patterns between athletes of varying muscle activation 

strength ratios, finding athletes with a hip abductor (HAB) to hamstring maximum 

voluntary contraction (MVC) ratio < 1 and/or a HAB to quad MVC ratio < 0.5, tended to 

have greater activation of the gluteus medius muscle during the farmers walk. 
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3.5.4.3 BETWEEN EXERCISE BIOMECHANICAL DIFFERENCES 

Significantly greater stride rate, and reduced stride length and ground contact time have 

been reported in the farmers walk when compared to unloaded walking [5]. The farmers 

walk was also observed to result in greater anterior tilt of the trunk, dorsiflexion of the 

ankle and extension of the knee at foot strike, and increased mean and peak anterior, 

posterior, vertical and medial ground reaction forces [5]. 

Comparison of joint/segment angular kinematics of the initial lift of the farmers walk 

(farmers lift) to the deadlift indicated the farmers lift to be primarily characterised by a 

more vertical trunk position throughout the majority of the lift except for at lift completion, 

leading to an overall reduced trunk ROM [5]. Greater mean vertical, anterior, and 

resultant anterior/posterior forces were also reported in the farmers lift [5]. The only 

reported significant differences in lumbar joint angular kinematics during the 

carrying/walking exercises was a greater peak twist angle during the right hand suitcase 

carry (~11°) than the farmers walk (~8°) and yoke walk (~7°), which were all significantly 

greater than the left hand suitcase carry (~6°) [36].  

The farmers walk and yoke walk bilateral load carriage exercises were reported to result 

in significantly greater muscular compression, anterior/posterior spine muscular loading, 

muscular axial twist stiffness and flexion/extension stiffness than the right/left hand 

suitcase carry unilateral load carriage exercise [36]. McGill, et al. [36] reported greater 

activation of a number of key spinal musculature when performing the yolk and farmers 

walk than when performing the left/right hand suitcase carry. Further significant 

differences in muscle activation patterns are presented in Table 3.3.  
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Table 3.2 Walking/carrying results comparisons - farmers walk. 

 Winwood, et al. [5] Keogh, et al. [30] 
 Farmers walk Unloaded walk ES Higher performer Lower performer ES Group ave. 
Spatiotemporal 
Ground contact time (s) 0.46 ± 0.06* (MVP) 0.67 ± 0.06 (MVP) -3.50 0.29 ± 0.02† (MVP)˟ 0.34 ± 0.03 (SVP)˟ -1.96 0.30 ± 0.03☼ (MVP) 

0.53 ± 0.09* (AP) 0.77 ± 0.07 (AP) -3.00 0.39 ± 0.04† (AP) 0.32 ± 0.03 (AP) 1.98 0.36 ± 0.04 (AP) 
Stride rate (Hz) 1.42 ± 0.17* (MVP) 0.88 ± 0.06 (MVP) 4.20 2.01 ± 0.13† (MVP)˟ 1.83 ± 0.04 (SVP)˟ 1.88 1.97 ± 0.13☼ (MVP) 

1.21 ± 0.12* (AP) 0.82 ± 0.04 (AP) 4.40 1.88 ± 0.10† (AP) 1.64 ± 0.12 (AP) 2.17 1.79 ± 0.14 (AP) 
Stride length (m) 1.04 ± 0.12* (MVP) 1.43 ± 0.11 (MVP) -3.40 1.83 ± 0.04† (MVP)˟ 1.40 ± 0.17 (SVP)˟ 3.48 1.67 ± 0.10☼ (MVP) 

0.85 ± 0.19* (AP) 1.33 ± 0.11 (AP) -3.10 1.38 ± 0.16 (AP) 1.33 ± 0.09 (AP) 0.39 1.32 ± 0.12 (AP) 
Average velocity (m/s) 1.48 ± 0.19 (MVP) 1.26 ± 0.15 (MVP) 1.28 3.66 ± 0.17† (MVP) 2.83 ± 0.36 (MVP) 2.95 3.29 ± 0.38☼ (MVP) 

1.05 ± 0.21 (AP) 1.11 ± 0.09 (AP) -0.37 2.61 ± 0.38 (AP) 2.19 ± 0.27 (AP) 1.27 2.41 ± 0.32 (AP) 
Kinematic 
Ankle angle at FS (°) 95.0 ± 3.00* (MVP) 105 ± 2.00 (MVP) -3.80 101 ± 6.00† (SVP)˟ 113 ± 5.00 (MVP)˟ -2.17 110 ± 9.00 (MVP) 

96.00 ± 6.00* (AP) 105 ± 2.00 (AP) -2.30 99.0 ± 8.00 (AP) 106 ± 6.00 (AP) -0.99 100 ± 8.00 (AP) 
Ankle angle at TO (°) 100 ± 5.00* (MVP) 115 ± 9.00 (MVP) -2.10 118 ± 5.00 (MVP)˟ 117 ± 7.00 (SVP)˟ 0.16 114 ± 6.00 (MVP) 

105 ± 6.00 (AP) 118 ± 5.00 (AP) -2.30 108 ± 4.00† (AP) 114 ± 3.00 (AP) -1.70 111 ± 5.00 (AP) 
Ankle ROM (°) 4.00 ± 4.00 (MVP) 10.0 ± 10.0 (MVP) -0.70 -10.0 ± 4.00† (SVP) 1.00 ± 5.00 (MVP)˟ -2.43 -4.00 ± 7.00☼ (MVP) 
Knee angle at FS (°) 154 ± 7.00* (MVP) 178 ± 6.00 (MVP) -3.70 156 ± 6.00 (MVP)˟ 166 ± 16.0 (SVP)˟ -0.83 155 ± 6.00☼ (MVP) 

150 ± 9.00* (AP) 174 ± 10.0 (AP) -2.50 147 ± 7.00 (AP) 151 ± 5.00 (AP) -0.66 150 ± 6.00 (AP) 
Thigh angle at FS (°) 34.0 ± 6.00* (MVP) 23.0 ± 7.00 (MVP) 1.80 38.0 ± 3.00† (MVP)˟ 31.0 ± 4.00 (SVP)˟ 1.98 34.0 ± 3.00 (MVP) 
Thigh ROM (°) -19.0 ± 5.00 (MVP) -22.0 ± 10.0 (MVP) 0.40 -44.0 ± 4.00† (MVP)˟ -35.0 ± 6.00 (SVP)˟ -1.77 -38.0 ± 4.00☼ (MVP) 
Trunk angle at FS (°) 78.0 ± 3.00* (MVP) 90.0 ± 2.00 (MVP) -4.10 – – – 

69.0 ± 5.00* (AP) 85.0 ± 2.00 (AP) -4.30 – – – 
Trunk angle at TO (°) 76.0 ± 4.00* (MVP) 87.0 ± 2.00 (MVP) -3.20 – – – 

70.0 ± 5.00* (AP) 84.0 ± 4.00 (AP) -3.40 – – – 
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Table 3.2 continued. 

 Winwood, et al. [5] Keogh, et al. [30] 
 Farmers walk Unloaded walk ES Higher performer Lower performer ES Group ave. 
Kinetic 
Mean anterior GRF (N) 127 ± 31.0* (MVP) 83.0 ± 25.0 (MVP) 1.60 – – – 
Peak anterior GRF (N) 447 ± 98.0* (MVP) 259 ± 53.0 (MVP) 2.40 – – – 
Mean medial GRF (N) 120 ± 41.0* (MVP) 70.0 ± 36.0 (MVP) 1.30 – – – 
Peak medial GRF (N) 241 ± 73.0* (MVP) 120 ± 62.0 (MVP) 1.80 – – – 
Mean posterior GRF (N) 159 ± 45.0* (MVP) 94.0 ± 34.0 (MVP) 1.60 – – – 
Peak posterior GRF (N) 389 ± 143* (MVP) 211 ± 77.0 (MVP) 1.50 – – – 
Mean vertical GRF (N) 2540 ± 376* (MVP) 1030 ± 247 (MVP) 4.70 – – – 
Peak vertical GRF (N) 3630 ± 608* (MVP) 1510 ± 387 (MVP) 4.10 – – – 
Peak lateral GRF (N) 210 ± 73.0* (MVP) 119 ± 45.0 (MVP) 1.50 – – – 
All data is reported as means ± standard deviation, unless specified otherwise. Effect sizes reported for between exercise [5] and between performance standard [30], A 
positive effect size indicates the left-hand column (farmers walk or higher performer) had a greater value than the respective right-hand column (unloaded walk or lower 
performer).* significant difference to unloaded walking, † significant difference to low performing athletes, ☼ significant difference to acceleration phase, ˟ comparison 
between phase based on distance, AP acceleration phase, ave average, ES effect size, GRF ground reaction force, MVP maximum velocity phase, SVP submaximal velocity 
phase. 
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Table 3.3 Significant differences in muscle activation and kinetic outcomes between the walking/carrying exercises. 

 Farmers walk [36] LH suitcase carry [36] RH suitcase carry [36] Yoke walk [36] 
Muscle activity (%MVC)     
Left upper erector spinae 77.6 ± 29.3 ‡ 47.1 ± 6.20 32.4 ± 4.60 *☼ 69.3 ± 17.5 ‡ 
Right upper erector spinae 91.4 ± 54.7 † 24.9 ± 17.6 *‡☼ 52.1 ± 17.3 † 65.6 ± 14.4† 
Left lower erector spinae 106 ± 51.1 † 31.6 ± 10.1 *‡☼ 77.4 ± 21.3 † 79.2 ± 10.2 † 
Right lower erector spinae 144 ± 36.7 ‡ 96.9 ± 20.4 ‡ 44.1 ± 9.10 *†☼ 107 ± 31.5 ‡ 
Left latissimus dorsi 169 ± 55.4 *‡ 97.4 ± 55.7 68.9 ± 23.2 ☼ 51.9 ± 26.4 ☼ 
Right latissimus dorsi 152 ± 26.7 *† 65.3 ± 6.20 ☼ 91.4 ± 39.1 45.5 ± 31.7 ☼ 
Left external oblique 39.3 ± 30.6 † 12.6 ± 5.30 *‡☼ 61.5 ± 21.9 † 47.5 ± 31.7 † 
Right external oblique 50.4 ± 17.4 ‡ 65.1 ± 24.4 ‡ 29.0 ± 17.8 *†☼ 58.8 ± 17.4 ‡ 
Right rectus abdominis 13.3 ± 3.80 14.6 ± 4.50 5.60 ± 1.80 * 22.3 ± 18.1 ‡ 
Right gluteus maximus 114 ± 70.3 ‡ 78.2 ± 39.5 50.5 ± 31.2 *☼ 113 ± 52.1 ‡ 
Right gluteus medius 108 ± 66.9 ‡ 64.1 ± 38.7 57.3 ± 23.6 *☼ 108 ± 69.7 ‡ 
Right bicep femoris 54.0 ± 13.7 † 31.2 ± 7.50 *‡ ☼ 48.3 ± 8.6 † 61.7 ± 6.30 † 
Right rectus femoris 77.4 ± 35.6 41.1 ± 9.20 * 56.5 ± 11.5 * 107 ± 23.5 †‡ 
Kinetic     
Muscular anterior/posterior shear (N) 2800 † 1680 ☼ 1160 1890 
Muscular compressive load (N) 7900 † 5800 *☼ 6700 7800 † 
Muscular axial twist stiffness (Nm/rad) 27,200 †‡ 19,100 ☼ 24,600 ☼ 25,900 
Muscular flexion/extension stiffness (Nm/rad) 35,600 24,000 * 27,500 38,600 † 
All data is reported as means ± standard deviation, unless specified otherwise. * significant difference to yoke walk, † significant difference to left hand suitcase carry, ‡ 
significant difference to right hand suitcase carry, ☼ significant difference to farmers walk, LH left hand, MVC maximum voluntary contraction RH right hand. 
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3.5.5 PULLING EXERCISES 

The only pulling strongman exercise biomechanically analysed was the heavy sled pull, 

while anthropometric measures were assessed and correlated to performance in the 

truck/vehicle pull. Basic within and between study comparison of the heavy sled pull 

could be conducted using the available data (Table 3.4). 

3.5.5.1 BIOMECHANICAL DETERMINANTS OF PERFORMANCE 

Greater performance during the heavy sled pull was characterised by an increased stride 

length, stride rate and reduced ground contact time [29]. Higher performing athletes also 

generally exhibited a more vertical trunk position and greater knee extension at foot strike 

[29]. Measures of flexed arm girth, mid-thigh girth, and total system force (calculated as 

the sum of the athlete’s body mass and 1RM squat) were reported to be the strongest 

anthropometric determinants of performance in the vehicle pull (flexed arm girth: r = 0.74; 

mid-thigh girth: r = 0.70; total system force: r = 0.68) [6]. 

3.5.5.2 WITHIN EXERCISE BIOMECHANICAL DIFFERENCES 

The maximum velocity phase of the heavy sled pull was associated with greater stride 

length, knee extension at foot strike [29, 32], swing time, and a more horizontal trunk and 

vertical thigh position at foot strike and toe off [29] than the submaximal velocity and 

acceleration phase. Conversely, the initial stride saw greater mean resultant 

anterior/posterior and mean resultant medial/lateral ground reaction forces than strides at 

2 – 3 m [32]. 

3.5.5.3 BETWEEN EXERCISE BIOMECHANICAL DIFFERENCES 

The back squat involved significantly greater hip and knee ROM than the heavy sled pull 

[32]. Greater knee flexion and a more vertical trunk position at the start of the concentric 

phase, and greater extension of the hip and knee at the point of maximum knee extension 

were also recorded during the squat [32]. The distinct differences in body positioning for 

back squat vs. sled pull were supported by greater peak and mean vertical force during 

the back squat, and significantly greater peak and mean anterior force during the heavy 

sled pull [32].  
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Table 3.4 Pulling significant results comparisons - heavy sled pull. 

 Winwood, et al. [32] Keogh, et al. [29] 

 Heavy sled pull ES Back squat Higher performer Lower performer ES Group ave. 

Spatiotemporal 

Ground contact time (s) 0.35 ± 0.04 (MVP) 
-0.85 

– 0.33 ± 0.04† (MVP) 0.76 ± 0.37 (MVP) -1.63 0.48 ± 0.23 (MVP) 

0.38 ± 0.03 (AP) – 0.42 ± 0.19 (AP) 0.57 ± 0.23 (AP) -0.71 0.53 ± 0.32 (AP) 

Stride rate (s) 1.42 ± 0.14 (MVP) 
0.07 

– 1.63 ± 0.12† (MVP) 1.10 ± 0.42 (MVP) 1.72 1.37 ± 0.39 (MVP) 

1.41 ± 0.14 (AP) – 1.50 ± 0.55 (AP) 1.29 ± 0.37 (AP) 0.45 1.45 ± 0.50 (AP) 

Swing time (s) 0.33 ± 0.04 (MVP) 
0.39 

– 0.29 ± 0.03 (MVP) 0.27 ± 0.05 (MVP) 0.49 0.28 ± 0.04☼ (MVP) 

0.31 ± 0.06 (AP) – 0.28 ± 0.07† (AP) 0.23 ± 0.05 (AP) 0.82 0.25 ± 0.06 (AP) 

Stride length (m) 1.29 ± 0.17☼ (MVP) 
1.81 

– 1.29 ± 0.26† (MVP) 0.80 ± 0.16 (MVP) 2.27 1.03 ± 0.26☼ (MVP) 

1.00 ± 0.15 (AP) – 0.85 ± 0.25† (AP) 0.65 ± 0.04 (AP) 1.12 0.74 ± 0.28 (AP) 

Kinematic 

Average velocity (m/s) 1.83 ± 0.22☼ (MVP) 
2.44 

– 2.08 ± 0.08† (MVP) 0.99 ± 0.50 (MVP) 3.04 1.61 ± 0.55☼ (MVP) 

1.39 ± 0.13 (AP) – 1.22 ± 0.20† (AP) 0.79 ± 0.32 (AP) 1.61 1.04 ± 0.30 (AP) 

Knee angle at FS (°) 114 ± 6.00☼ (MVP) 
1.38 

– 132 ± 9.00† (MVP) 112 ± 22.0 (MVP) 1.19 124 ± 18.0☼ (MVP) 

103 ± 9.00 (AP) – 125 ± 12.0† (AP) 110 ± 10.0 (AP) 1.36 116 ± 13.0 (AP) 

Knee angle at TO (°) 138 ± 14.0 (MVP) 
0.35 

– 153 ± 7.00 (MVP) 148 ±10.0 (MVP) 0.59 149 ± 9.00☼ (MVP) 

133 ± 14.0 (AP) – 148 ± 14.0† (AP) 138 ± 17.0 (AP) 0.65 141 ± 15.0 (AP) 

Thigh angle at FS (°) – 
– 

– 23.0 ± 5.00† (MVP) 19.0 ± 5.0 (MVP) 0.80 21.0 ± 5.00☼ (MVP) 

– – 14.0 ± 10.0 (AP) 16.0 ± 8.00 (AP) -0.22 15.0 ± 10.0 (AP) 

Trunk angle at FS (°) 61.0 ± 13.0 (MVP) 
-0.67 

– 41.0 ± 7.00† (MVP) 8.00 ± 29.0 (MVP) 1.56 26.0 ± 24.0☼ (MVP) 

77.0 ± 30.0 (AP) – 29.0 ± 17.0† (AP) 2.00 ± 16.0 (AP) 1.64 14.0 ± 21.0 (AP) 

Trunk angle at TO (°) 61.0 ± 11.0 (MVP) 
-0.49 

– 41.0 ± 9.00† (MVP) 14.0 ± 25.0 (MVP) 1.59 28.0 ± 21.0☼ (MVP) 

69.0 ± 20.0 (AP) – 31.0 ± 15.0† (AP) 10.0 ± 14.0 (AP) 1.45 19.0 ± 19.0 (AP) 
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Table 3.4 continued. 

 Winwood, et al. [32] Keogh, et al. [29] 

 Heavy sled pull ES Back squat Higher performer Lower performer ES Group ave. 

Kinetic        

Mean anterior GRF (N) 555 ± 107* (SC to MKE) 6.63 43.0 ± 22.0 (SC to MKE) – – – – 

Peak anterior GRF (N) 810 ± 174* (SC to MKE) 5.13 126 ± 73.0 (SC to MKE) – – – – 

Mean vertical GRF (N) 1330 ± 364* (SC to MKE) -2.38 2580 ± 648 (SC to MKE) – – – – 

Peak vertical GRF (N) 1740 ± 463* (SC to MKE) -1.85 3500 ± 1270 (SC to MKE) – – – – 

Mean resultant ant/post 
force (N) 

271 ± 89.0☼ (MVP) 
-1.95 

– – – – – 

526 ± 162 (AP) – – – – – 

Mean resultant med/lat 
force (N) 

-5.00 ± 22.0☼ (MVP) 
-1.75 

– – – – – 

24.0 ± 8.00 (AP) – – – – – 

All data is reported as means ± standard deviation, unless specified otherwise. Spatiotemporal and kinematic effect sizes reported for between phase [32] and between 
performance standard [29], Kinetic effect sizes reported for between exercise (heavy sled pull vs back squat). A positive effect size indicates the left-hand column (higher 
performer or heavy sled pull) or top row (maximum velocity phase) had a greater value than the respective right-hand column (lower performer or back squat) or bottom row 
(acceleration phase).* significant difference to back squat, † significant difference to low performing athletes, ☼ significant difference to acceleration phase, ant/post 
anterior/posterior, AP acceleration phase, ave average, FS foot strike, GRF ground reaction force, med/lat medial/lateral, MVP maximum velocity phase, SC to MKE start of 
concentric phase to maximum knee extension, TO toe off. 
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3.5.6 STATIC LIFTING EXERCISES 

The static lifting strongman exercises biomechanically analysed were the atlas stone lift, 

log lift and tyre flip. The log lift was the most studied static lifting exercise enabling 

within and between study comparison (Table 3.5). 

3.5.6.1 BIOMECHANICAL DETERMINANTS OF PERFORMANCE 

The greatest biomechanical determinant of performance in the tyre flip was observed as 

the second pull phase time (defined as the time between the tyre passing the knee to the 

hands first leaving the tyre), accounting for ~67% of the between group (HP vs. LP) 

difference in total tyre flip time [70]. Measures of calf girth, flexed arm girth and total 

system force (calculated as the sum of the athlete’s body mass and 1RM squat) were 

reported to be the strongest anthropometric determinants of performance in the tyre flip 

(calf girth: r = 0.67; flexed arm girth: r = 0.66; total system force: r = 0.81) and log lift 

(calf girth: r = 0.75; flexed arm girth: r = 0.68; total system force: r = 0.71) [6]. 

3.5.6.2 WITHIN EXERCISE BIOMECHANICAL DIFFERENCES 

No statistical analysis was performed comparing within exercise (between phase) 

biomechanical differences in any of the static type strongman lifts. 

3.5.6.3 BETWEEN EXERCISE BIOMECHANICAL DIFFERENCES 

Winwood, et al. [31] compared the biomechanics seen during the clean and jerk (press) 

movement when using a barbell and a log at a load of 70% of the athlete’s barbell clean 

and press 1RM. Renals, et al. [69] compared the biomechanics seen during the push press 

when using a barbell and logs of 250 mm and 316 mm diameter at a load of 65% of the 

athletes’ push press 1RM. Greater knee flexion was observed during the start of the 

second pull phase (deep squat position with log resting on the thighs) of the log clean and 

press than the equivalent phase of the barbell clean and press, and greater knee and hip 

extension, and a more vertical trunk position occurred during the top retrieve phase (full 

standing position with log resting on top of chest) of the log clean and press than the 

equivalent phase of the barbell clean and press [31]. The increased flexion and extension 

lead to a greater trunk and hip ROM throughout the entire log clean and press movement 

than the barbell clean and press movement [31].  

Significantly greater mean vertical velocities were reported during the first and second 

pull phases of the barbell clean and press when compared to the log clean and press, with 

no significant differences in velocity or dip depth reported during the push press phase 
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using either the barbell or log [31]. Renals, et al. [69] did however report significantly 

greater vertical propulsive velocity and dip depth when using the barbell than the two 

different diameter logs during the push press. Braking and propulsive impulse, mean force 

and mean power were all reported to be significantly greater during the push press when 

using the barbell than the two logs [69]. Mean posterior force was observed to be 

significantly greater throughout the entire clean and press movement when using the 

barbell as opposed to the log [31]. 

The only reported differences in lumbar joint kinematics during static lifting exercises 

was greater lateral bend and twist during the tyre flip (lateral bend: ~7°; twist: ~8°) than 

the log lift (lateral bend: ~3°; twist: ~6°) [36]. When spine angle was normalised to 

maximum spinal angle, only peak twist (tyre flip: ~109%; log lift: ~68%) was reported to 

be significantly different [36]. Although no significant differences in muscular and joint 

loading were reported between the static lifting exercises, anterior core muscle activation 

(right rectus abdominis, right external oblique) were reportedly greater in the tyre flip 

than the log lift [36]. 



77 
 

Table 3.5 Static lift significant result comparisons. 

 Winwood, et al. [31] Renals, et al. [69] McGill, et al. [36] Keogh, et al. [70], 
McGill, et al. [36] 

 165 mm ø log Barbell clean 
and press 

250 mm ø log 316 mm ø log Barbell push 
press 

Log lift Atlas stone Tyre flip 

Temporal 
Duration (s) 7.96 ± 3.77 (TD) 6.20 ± 1.96 (TD) 0.22 ± 0.02 (PD) 0.22 ± 0.02 (PD) 0.22 ± 0.03 (PD) – – 0.38 ± 0.17 (SP, HP) ☼ 

0.67 ± 0.06 (TD) 0.64 ± 0.07 (TD) 0.54 ± 0.47 (TD) 1.49 ± 0.92 (SP, LP) 
Kinematic 
Dip depth (cm) 17.4 ± 4.40 (PP) 18.0 ± 6.60 (PP) 14.0 ± 3.00* (PP) 13.0 ± 2.00* (PP) 17.0 ± 4.00 (PP) – – – 
Vertical lift  
velocity (m/s) 

0.60 ± 0.10* (FP) 0.75 ± 0.15 (FP) – – – – – – 
1.06 ± 0.41* (SP) 1.69 ± 0.15 (SP) – – – – – – 
0.88 ± 0.07 (PP) 0.97 ± 0.08 (PP) 0.64 ± 0.07* (PP) 0.62 ± 0.06* (PP) 0.74 ± 0.07 (PP) – – – 

Hip angle (°) 52.0 ± 6.00* (LO) 60.0 ± 6.00 (LO) – – – – – – 
182 ± 5.00* (TR) 158 ± 15.0 (TR) – – – – – – 

HIP ROM (°) 126 ± 9.00* (EL) 116 ± 10.0 (EL) – – – – – – 
Knee angle (°) 99.0 ± 25.0* (SSP) 140 ± 11.0 (SSP) – – – – – – 

139 ± 11.0* (TR) 125 ± 13.0 (TR) – – – – – – 
Trunk angle (°) 
 

106 ± 2.00* (TR) 91.0 ± 6.00 (TR) – – – – – – 
93.0 ± 5.00* (BD) 87.0 ± 2.00 (BD) – – – – – – 

Trunk ROM (°) 83.0 ± 8.00* (EL) 67.0 ± 12.0 (EL) – – – – – – 
Kinetic 
Bra mean force (N) – – 680 ± 262 (PP) 625 ± 252* (PP) 775 ± 317 (PP) – – – 
Bra impulse (N.s) – – 116 ± 28.7* (PP) 106 ± 27.8* (PP) 131 ± 27.3 (PP) – – – 
Bra mean power (W) – – -943 ± 281* (PP) -854 ± 276* (PP) -1090 ± 283 (PP) – – – 
Mean post force (N) -67.0 ± 14.0* (EL) -91.0 ± 27.0 (EL) – – – – – – 
Prop mean force (N) – – 3230 ± 357* (PP) 3130 ± 363* (PP) 3400 ± 492 (PP) – – – 
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Table 3.5 continued. 

 Winwood, et al. [31] Renals, et al. [69] McGill, et al. [36] Keogh, et al. [70], 
McGill, et al. [36] 

 165 mm ø log Barbell clean 
and press 

250 mm ø log 316 mm ø log Barbell push 
press 

Log lift Atlas stone Tyre flip 

Kinetic         
Prop impulse (N.s) 307 ± 56.8 (PP) 346 ± 66.8 (PP) 255 ± 38.8* (PP) 241 ± 28.7* (PP) 293 ± 40.0 (PP) – – – 
Prop mean power (W) 1920 ± 591* (PP) 2960 ± 802 (PP) 2040 ± 377* (PP) 1900 ± 295* (PP) 2470 ± 482 (PP) – – – 
Musc ant/post shear (N) – – – – – 2800§ – 2600§ 
Musc comp load (N) – – – – – 7500§ – 8800§ 
Musc ax twist stiff 
(Nm/rad) – – – – – 25,300§ – 31,400§ 

Musc flex/ext stiff 
(Nm/rad) – – – – – 32,400§ – 38,600§ 

Muscle activation (%MVC) 
Right rectus abdominis – – – – – 27.3 ± 27.8‡ 77.6 ± 41.6 87.8 ± 63.9† 
Right external oblique – – – – – 61.5 ± 49.1‡ 97.6 ± 67.7 107 ± 45.4† 

* significant difference to barbell, † significant difference to log lift, ‡ significant difference to tyre flip, ☼ significant difference to lower performing athletes, § value only 
provided in graph form and as such are approximate values, ant anterior, ax axial, BD bottom of dip, bra, braking, comp compressive, EL entire lift, flex/ext flexion/extension, 
FP first pull, HP higher performing athlete, LO lift off, LP lower performing athlete, musc muscle, MVC maximum voluntary contraction, post posterior, prop propulsive, 
PD propulsive duration, PP push press phase, SP second pull, SSP start of second pull, stiff stiffness, TD total lift duration, TR top retrieve phase. 
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3.6 DISCUSSION 

It can be seen that the field of strongman biomechanics research is relatively small, yet 

the spread of exercises, biomechanical measures and comparative analysis methods used 

across current literature is large [12]. As such, it is difficult to establish a comprehensive 

understanding of the large number of strongman exercises included in the existing 

literature. Qualitative analysis of these strongman exercises, along with quantitative 

results from studies of similar TWTE and CEA, may provide a greater understanding of 

strongman exercise performance determinants, injury risk and wider applications to other 

populations, while assisting future quantitative analysis of strongman exercises.  

3.6.1 CARRYING/WALKING EXERCISES 

3.6.1.1 BILATERAL LOAD CARRIAGE 

The farmers walk and yoke walk are the most common bilateral carrying strongman 

exercises used in strongman training [55]. While both these exercises may involve 

exceedingly large loads in training and competition, the yoke walk typically involves a 

greater total load as the limiting factor for farmers walk performance may be the grip 

strength of the athlete, as in most competitions the only artificial aid athletes can use to 

assist their grip is lifting chalk. The yoke walk however, has seen little biomechanical 

analysis, with spinal motion, muscle activation and loading being measured. Although 

differing in the absolute load and positioning of the load being carried, quantitative 

analysis of the farmers walk and other forms of load carriage may provide a greater 

understanding of the biomechanics of the yoke walk strongman exercise. A number of 

studies have compared various forms of general load carriage to unloaded walking with 

such studies described in the systematic review [98]. If biomechanical differences 

between these various forms of load carriage and unloaded walking are consistent across 

studies (regardless of the form of load being carried), it could be expected that similar 

biomechanical characteristics are observed in the yoke walk.  

A systematic review comparing the biomechanics of backpack load carriage and unloaded 

walking found backpack load carriage to be associated with an increase in stride rate (ES 

= 0.37) and a decrease in stride length (ES = –0.32) when compared to unloaded walking 

[98]. The effect of backpack load carriage on spatiotemporal measures across the studies 

was small, however effect sizes progressively increased as load increased [98]. Such 

findings are consistent with the farmers walk strongman exercises where substantially 
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greater loads were used and greater differences when compared to unloaded walking were 

observed (stride rate: ES = 4.20; stride length: ES = –3.40) [5]. Although a physical limit 

will be approached whereby the athlete is no longer able to increase their stride rate with 

a decrease in stride length, it may be expected that the greater loads that can be used in 

the yoke walk when compared to the farmers walk would result in further increases in 

stride rate and decreases in stride length. The athlete’s ability to maintain/minimise the 

reduction in their stride length whilst maintaining or increasing their stride rate during the 

yoke walk will result in a higher velocity and thus a greater performance outcome by the 

athlete [30]. 

The greater anterior tilt of the trunk, extension of the knee and dorsiflexion of the ankle 

observed during the farmers walk when compared to the unloaded walk potentially 

positions the athlete better to propel themselves in an anterior direction [5]. To achieve 

an increased stride rate and thus greater velocity (assuming stride length increases or 

remains constant), ground contact time is typically minimised by greater knee extension 

throughout the swing phase of a gait cycle.  

Significantly greater anterior/posterior, medial/lateral and vertical ground reaction forces 

were reported during the farmers walk when compared to unloaded walking [5]. Similar 

results have been reported when comparing backpack load carriage to unloaded walking, 

where greater propulsive and braking (anterior/posterior), and vertical ground reaction 

forces were reported during backpack load carriage [98]. The difference in 

anterior/posterior ground reaction forces seen between unloaded walking and backpack 

load carriage may partially be the result of the centre of mass of the carrier being pulled 

backward when the load is positioned posterior to the centreline of the body. Contrary to 

the farmers walk and unloaded walk comparison, no consistent difference in 

medial/lateral ground reaction forces have been reported when comparing backpack load 

carriage to unloaded walking. It may be suggested that the greater medial/lateral ground 

reaction forces during the farmers walk is the result of both; the load being more laterally 

positioned relative to the midline of the body in the farmers walk when compared to a 

backpack, and the substantially greater load being carried in the farmers walk. As such, 

anterior/posterior and medial/lateral ground reaction forces encountered during the yoke 

walk may be expected to be even larger than those in the farmers walk due to the greater 

posterior and lateral positioning of the load relative to the centreline of the body and even 

greater load being carried. 
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3.6.1.2 UNILATERAL LOAD CARRIAGE  

The keg walk and suitcase carry unilateral load carriage strongman exercises are not 

common strongman competition events and perhaps as a result have had little 

biomechanical analysis [36, 55, 97].  

The keg walk technique adopted in McGill, et al. [36] whereby the keg is carried on a 

single shoulder is just one technique which may be used by an athlete in a keg walk 

competition event or as a strength training exercise for non-strongman athletes. Other 

techniques to perform the keg walk may include: wrapping one’s arms around the keg in 

a hugged position on the anterior surface of their abdomen; lifting and carrying the keg 

using the handles positioned around the rim of the keg; or a combination of the 

aforementioned techniques. Individualised biomechanical analysis of each technique 

would therefore be required and as such is beyond the scope of this review. It may 

however be expected that these techniques see some biomechanical similarity to anterior 

load carriage [99], manual handling of beer kegs [100], and to some degree the carrying 

of a kettlebell in a bottom up position where the humerus is externally rotated and 

horizontally abducted [101].  

Performance in the suitcase carry has been characterised by an athlete’s ability to maintain 

a vertical spinal posture (with respect to the frontal and sagittal anatomical plane) and a 

constant step cadence [97]. This may be deduced by the tendency for an increase in lateral 

bend and inability to maintain a set cadence as load is progressively increased [97]. 

Similar studies of unilateral load carriage of a 20% body mass dumbbell has shown 

increased trunk bend, hip adduction and ground reaction force asymmetry, and decreased 

stride width when compared to a 10% body mass dumbbell and unloaded walking 

conditions [102]. As the load used in previous suitcase (McGill, et al.: ~ 31% bodyweight; 

Holmstrup, et al.: ~ 63% bodyweight) and unilateral dumbbell carriage studies may be 

less than what is expected to be used in strongman training; trunk bend, lumbar spinal 

loading, ground reaction force asymmetry, and changes in gait characteristics may be 

further magnified in a true strongman setting where greater loads are carried.  

The results of future research on the biomechanics of strongman carrying/walking type 

exercises may assist in determining the biomechanical demands of military physical 

fitness assessment exercises such as the jerry can carry which is used to assess dynamic 

and grip strength, whereby military personnel carry jerry cans (usually of mass > 20 kg) 
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a short distance (~ 20 m) in the fastest possible time [103]. As the practical guidelines on 

how to best condition soldiers for load carriage is limited, findings from strongman 

research may play a pivotal role in this formation [104]. Similarly, research into the 

biomechanical demands of other bilateral strongman load carriage exercises such as the 

yoke walk may provide a foundation for further research into the demands placed on 

firefighters carrying breathing apparatus and firefighting equipment, and trail porters who 

have been known to carry loads of one-and-a-half times their body mass over vast 

distances [105]. 

3.6.2 PULLING EXERCISES 

Previous strongman biomechanical studies have only analysed the biomechanics of 

athletes performing the heavy sled pull (>100% body mass), which is typically used as a 

training tool to simulate the vehicle pull for strongman athletes, or as a strength and 

conditioning tool for other athletic groups [29, 32]. In addition to the heavy sled/vehicle 

pull, strength and conditioning coaches often use a variety of similar resistive sprint 

training tools for the development of greater horizontal force production and sprinting 

ability in athletes [106, 107]. Such tools may include weighted vests, tyres and parachutes. 

A study comparing the biomechanics of athletes performing the sub-body mass sled pull, 

parachute pull and weighted vest run to unloaded sprinting has shown the sub-body mass 

sled pull (performed with a metal tubular sled on a synthetic running track loaded to ~16% 

body mass) to result in the greatest decreases in velocity, stride length and stride 

frequency, and increase in trunk lean angle when compared to unloaded sprinting [107]. 

The more horizontal trunk position attained by the athlete when performing the sub-body 

mass sled pull may indicate that the sub-body mass sled pull has greater biomechanical 

similarity to the heavy sled pull and thus the strongman vehicle pull than the parachute 

pull and weighted vest run. 

Although few studies have assessed the biomechanics of athletes performing pulling 

movements representative of a vehicle pull at loads greater than 100% body mass, a 

number of studies have compared biomechanical measurements between athletes 

performing a sub-body mass sled pull at varying loads [108-111]. Extrapolating the 

results of studies comparing the biomechanics of athletes performing sub-body mass sled 

pulls at different loading conditions may assist researchers, strongman athletes and 

coaches, and strength and conditioning coaches better understand the biomechanics that 
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may be expected in the strongman vehicle pull where resistive loads much greater than 

body mass are seen.  

Greater decreases in velocity, stride length and second-stride swing time, and greater 

increases in ground contact time have been found to occur when performing a sub-body 

mass sled pull at a sled load of 32.2% body mass compared to 12.6% body mass [108]. 

While no significant difference in stride rate was reported between the two sub-body mass 

loading conditions, stride rate was significantly lower under both loading conditions than 

the unloaded condition [108]. Although no comparisons between loading conditions were 

made in the heavy sled pull study of Keogh, et al. [29], similar changes in spatiotemporal 

parameters may be deduced from the lower velocity trials, whereby a reduced stride 

length and swing time, and increased ground contact time were reported [29].  

When comparing joint kinematics between unloaded sprinting, sled pulls at 15%, 20%, 

30% and 40% body mass, significant increases in knee and hip flexion at foot-strike and 

toe-off have been reported with an increase in sled load [109]. The greater knee and hip 

flexion at foot strike and toe off would likely result in the athlete attaining a more 

horizontal trunk position throughout the pull. Where the increases in sled mass in the 

study by Monte, et al. [109] were associated with a decreased pull velocity, lower velocity 

during the heavy sled pull in Keogh, et al. [29] and Winwood, et al. [32] was similarly 

characterised by a more horizontal trunk position and greater knee flexion at foot strike. 

Qualitatively, it may appear that the more horizontal trunk orientation is a mechanism 

employed by the athlete to position the body so to optimise horizontal propulsive force 

production, however more quantitative research is required to confirm this hypothesis. 

The direction of the resultant ground reaction force of the athlete when performing the 

sled pull and strongman vehicle pull may however also be dependent on the location at 

which the load is applied on the athlete’s body. Utilising a waist attachment site instead 

of a shoulder height attachment site on the athlete has been observed to result in the athlete 

attaining a more horizontal body position [112]. This is achieved through a greater trunk 

ROM and greater peak knee flexion during the stance phase of the sled pull [112]. The 

use of such an attachment site may increase the athlete’s ability to impart a horizontally 

directed propulsive impulse on the sled [112]. Although the vehicle pull strongman event 

is typically performed using a chest harness which sees an attachment site somewhere 

between the shoulder and the waist, a qualitative analysis of the strongman vehicle pull 
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shows a similar minimal tow rope angle relative to horizontal due to the high attachment 

point of the rope on the vehicle. Thus, the vehicle pull may see a similar direction of force 

application to a loaded sled pull performed with a waist level attachment site. 

From existing literature comparing the biomechanics of athletes performing sub-body 

mass sled pulls at varying loads, and the limited literature available on the heavy sled pull 

strongman exercise, it may be deduced that decreases in stride length and stride rate and 

increased trunk lean may be further magnified in the strongman vehicle pull where an 

increased resistive load is expected. Furthermore, based on this knowledge and the 

relationship between increased sled load and decreased pulling velocity, it may be 

hypothesised that greater performance in the strongman vehicle pull competition event 

could be characterised by the athlete’s ability to maintain a greater cadence and stride 

length, whilst attaining a trunk position that enables greatest horizontal force production 

throughout the pull.  

The current heavy sled pull research may be used as a basis for further research into the 

biomechanical demands of performing other variations of the heavy sled pull such as the 

backward drag, and the vehicle pull. The backward drag technique is used in firefighting 

and military physical fitness assessments and service, where service people may be 

required to drag victims out of danger [113, 114]. Further investigation into the 

biomechanical demands of a vehicle pull may be of benefit to military operations, as 

soldiers may be faced with instances where they are required to pull/push heavy 

equipment over short distances [114].  

3.6.3 STATIC LIFTING EXERCISES 

A significant lack of quantitative biomechanical analysis exists on the atlas stone lift, log 

lift and tyre flip. To qualitatively analyse these three exercises, they may be broken down 

into phases and biomechanically analysed alongside a variety of different TWTE and 

CEA. 

3.6.3.1 ATLAS STONE LIFT 

Of the three static strongman lifts analysed in the current literature, the atlas stone may 

be seen as one of the most mechanically demanding and potentially injurious strongman 

exercises [14]. Quantitatively, the atlas stone lift has seen limited biomechanical analysis, 

with just joint/muscle loading and muscle activation being measured [36]. To provide 

greater insight into the biomechanics of the atlas stone lift, the lift may be qualitatively 
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divided into three distinct phases, with each phase showing biomechanical similarity to 

individual TWTE and CEA.  

Phase one of the atlas stone lift generally sees the athlete hug the stone prior to attempting 

to lift it off the ground using a technique similar to a Romanian deadlift, before assuming 

a paused position with the stone resting in the lap similar to the end of the first phase of 

the log lift. Limited research exists for similar TWTE or CEA. The most similar and 

comprehensive field of research related to the biomechanics of this movement is in the 

area of injury risk assessment/prevention for the manual handling stoop lifting technique, 

which is characterised by a bent back and straight knee posture until lift completion (fully 

erect standing position) [115]. Net moments and compressive forces acting on the spine 

have been reported to be similar between the stoop lifting technique and the often 

preferred squat lifting technique (characterised by a straight back and bent knee posture 

until lift completion) [115]. The insignificant differences in joint loading between these 

lifting techniques is supported by the findings of McGill, et al. [36] where vertebral joint 

moments, muscular/joint compression and shear forces during the atlas stone lift were 

reported to be of a similar or lower magnitude to other strongman exercises analysed 

including the farmers walk, yoke walk, keg walk and log lift. The limited research on a 

similar movement to phase one of the atlas stone lift justifies further research to progress 

the performance of athletes undertaking this exercise, whist also being of benefit to the 

understanding of manual handling tasks. 

Phase two of the atlas stone lift sees the athlete paused with the stone resting in the lap in 

a deep squat position. The athlete may rest in this position for a short period of time to 

reposition their hands before beginning the third phase. A qualitative analysis of the atlas 

stone lift shows that the second phase of the lift may see biomechanical similarity with 

the beginning of the concentric phase of a box squat whereby in each exercise there is a 

period of ‘rest’ where the lower limb muscles are expected to see a significant reduction 

in activation. A significantly smaller trunk angle relative to the normal vertical axis has 

been reported at this point during the box squat (26.9°) than the same stage during the 

traditional (33.5°) or powerlifting (33.1°) style squat [79]. The more vertical trunk 

position in the box squat also corresponded to a reduced L5/S1 joint moment [79]. 

Although not calculated at precisely the same vertebral joint, the L4/L5 joint moments 

measured during the atlas stone lift (183 ± 177 N.m) [36] appeared to be similar or slightly 
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less than the L5/S1 joint moments in the box squat (233 ± 21.0 N.m) [79]. Under similar 

loading conditions (box squat: ~110 kg; atlas stone lift: 110 kg) this difference may 

indicate that during the second phase of the atlas stone lift a similar or even smaller trunk 

angle relative to the vertical axis may be seen, thus perhaps exposing the athlete to a lower 

risk of lower back injury. 

The explosive movement initiated from the end of phase two to the early stages of phase 

three of the atlas stone lift may be most similar to that of the beginning of the concentric 

phase of the box squat [79]. The box squat has been reported to result in significantly 

lower peak force production than the powerlifting or traditional style squat (box squat: 

2528 ± 302; powerlifting: 2685 ± 301; traditional squat: 2680 ± 309 N) [79]. This was 

suggested to be due to the pause and transfer of load from the system to the box at the 

bottom of the squat, meaning the box squat may lose some of the benefits of the stretch-

shorten cycle in terms of force production and loads lifted. There was however a 

significantly greater rate of force development in the box squat compared to the traditional 

and powerlifting style squats [79]. It may be expected that increasing a strongman 

athlete’s ability to utilise the stretch shorten cycle at the bottom of the atlas stone lift, 

whilst also promoting a high rate of force development, may be key in achieving greater 

performance in the atlas stone lift. This may be achieved by including exercises such as 

barbell back squats, front squats and Zercher squats for the training of greater stretch-

shorten cycle utilisation, while barbell box squats and Zercher squats from a low rack 

may be included for the training of greater concentric rate of force development. 

Phase three of the atlas stone lift sees the athlete move with the stone from the bottom of 

the squat position to a full extension standing position, with the stone being transferred 

to a chest height ledge or over a bar. This final stage of the atlas stone lift may show 

biomechanical similarity to the concentric phase of the front squat whereby the load is 

lifted in a squat like position on the anterior surface of the body to a full extension 

standing position. Comparative analysis of trunk angle kinematics of the front squat and 

back squat have reported the positioning of the load on the anterior surface of the body to 

result in a more vertical trunk position at the beginning of the concentric phase of the 

squat (front squat: 27°; back squat 43°) [116]. Whilst still being in a flexed torso position 

throughout the entirety of the front squat, the atlas stone lift often sees the athlete move 

into a position of torso extension during the final stage of the lift where the stone is passed 
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onto the ledge/over the bar. The degree of movement of the torso into an extended state 

may be expected to differ between athletes of varying anthropometrics and performance 

standard, and may see unique muscular and joint loading. Further quantitative analysis of 

the atlas stone lift is required to confirm this hypothesis. 

The inclusion of the atlas stone lift into a strength and conditioning program may be of 

interest to military personnel or civilians required to perform physical lifting fitness 

assessments. Such an example of this form of test is the box lift and place assessment 

conducted in the Australian Army, whereby a box (up to 40 kg) must be lifted from the 

ground and placed on a ledge of height 1.5 m [117]. It has been suggested that this and 

similar repetition based box lift and place tasks may be a more appropriate means of 

assessing an individual’s ability to perform military specific tasks than a generic push-up 

or sit-up test [118]. 

3.6.3.2 LOG LIFT 

The log lift is commonly used by strength and conditioning coaches as an alternative to 

other overhead lift variations and has seen substantial biomechanical analysis [7, 31, 36, 

69]. There however remains a gap in the current strongman literature identifying the 

biomechanical determinants of greater performance in the log lift exercise. Furthermore, 

literature on the biomechanical determinants of performance in all forms of strength based 

overhead pressing exercises is lacking. As such, the advancement of researchers’ 

understandings of the biomechanical determinants of performance in the log lift is limited 

to phase one and two of the movement which is representative of the power clean [31]. 

One repetition maximum in the power clean has been reported to show strong correlation 

to the combination of decreased hip ROM during the first pull phase of the lift and a rapid 

extension of the hip during the second pull phase (r = 0.87) [80]. Qualitatively, this may 

be representative of what is commonly seen in the log lift, whereby athletes lifting close 

to their 1RM will typically sink down into a deep squat position during phase one of the 

lift with large hip and knee flexion, concluding the phase in a paused position with the 

log resting in their lap. The athlete will then move into phase two of the lift where an 

attempt is made to perform a rapid hip extension so to move the log at a high velocity 

before catching and racking the log on their chest. An athlete’s ability to execute the clean 

with minimal hip flexion during phase one and perform a powerful hip extension during 

phase two of the log lift is particularly evident in log lift competition events that require 
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athletes to perform as many repetitions as possible in an allocated time at sub-maximal 

loads. Greater performance (achievement of a successful lift at a greater barbell load) in 

the power clean has also been characterised by an athlete’s ability to keep the barbell 

close to their body throughout the second pull phase of the lift (likely through a greater 

net force application toward the body) [119]. This is likely to have great applicability to 

the log lift as the increased diameter of the log is expected to make achieving greater net 

force application toward the body more difficult due to the centre of mass of the log being 

positioned further in front of the centre of mass of the athlete. 

3.6.3.3 TYRE FLIP 

Although the tyre flip is commonly used as a strength and conditioning training tool at a 

recreational and elite sporting level [7], biomechanical analysis of the exercise has only 

considered temporal determinants of greater performance [70]. Biomechanical analysis 

of the tyre flip exercise may be particularly difficult as the lift is one of the few strongman 

lifts where the implement remains in contact with the ground throughout the entirety of 

the lift, thus quantifying the load lifted by the athlete may be difficult. Additionally, the 

dimensions as well as the mass of the tyre is likely to have an impact on the 

technique/biomechanics of the athlete performing the lift. The following qualitative 

analysis of the tyre flip is of a general case which may be most commonly observed. 

Qualitatively, aspects of the tyre flip exercise may share some biomechanical similarity 

to phases of the deadlift and power clean/clean and jerk, thus some degree of 

transferability of the biomechanical performance determinants, expected training 

adaptations, and injury risks and prevention mechanisms may exist between these 

exercises. 

Phase one of the tyre flip sees the athlete begin the movement by lifting one side of the 

tyre off the ground to a knee height position. This would appear to be biomechanically 

similar to the aspects of the initial lifting phase of the conventional and sumo deadlift, 

whereby a combination of distinct characteristics from each deadlift technique is likely 

to be adopted in the execution of the tyre flip, depending on the athlete, tyre and surface 

characteristics. Escamilla, et al. [34] compared joint/segment angular kinematic measures 

between the sumo and conventional deadlift, reporting athletes implementing the sumo 

style technique had a more vertical trunk orientation (33.0 ± 11.0°) than those 

implementing the conventional style technique (24.0 ± 10.0°). From a qualitative analysis 

of trunk angle kinematics during the initial lift phase of the tyre flip it may appear that 
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the tyre flip exhibits greater biomechanical similarity to the conventional deadlift during 

this phase due to the more horizontal trunk position. Conversely, the significantly greater 

stance width displayed by athletes implementing the sumo technique (sumo: 70.0 ± 11.0 

cm; conventional: 32.0 ± 8.00 cm) may be more representative of the tyre flip stance at 

lift off. Phase one of the tyre flip appears to share some characteristics of both the sumo 

and conventional deadlift, however further quantitative analysis is required to confirm 

these observations. 

The second pull phase of the tyre flip sees the athlete continue the lift of the tyre from the 

knee height position to first hand release where the tyre may be close to a 75° angle from 

horizontal. This phase of the tyre flip shows biomechanical similarity to the power clean 

whereby powerful triple extension of the ankle, knee and hip are required to move the bar 

from mid-thigh (hang) to the catch position (top of the chest). The second pull phase has 

been identified as a key biomechanical determinant of performance in the tyre flip, with 

the greatest differences between the fastest and slowest athletes/repetitions observed 

during this phase [70]. 

The second pull phase of the power clean has also been reported to contain key 

biomechanical determinants of performance [119]. Comparing successful versus 

unsuccessful attempts of the power clean revealed that greater performance may be 

characterised by an athlete’s ability to minimise forward barbell displacement during the 

second pull phase of the lift [119]. It is expected that the reduced forward barbell 

displacement relative to the centreline of the body minimises the resistive joint torques 

experienced by the athlete and thus ensures maximal vertical force production. The 

second pull phase of the tyre flip sees the athlete move their body toward the tyre and 

maintain or further advance their body position relative to the tyre. Similar to the second 

pull phase of the power clean the athlete’s ability to reposition their body segments in 

relation to the load during the second pull phase of the tyre flip for optimal force 

production will likely have a large effect on the overall performance outcome of the flip. 

The third phase of the tyre flip sees the athlete catch the tyre on the chest by attaining a 

position of full extension of the wrist and hand, pronation of the forearm, flexion of the 

elbow and extension of the shoulder, before powerfully pushing the tyre past its tipping 

point. Qualitatively, this motion generally occurs at around chest to shoulder height 

depending on the dimension of the tyre and the anthropometrics and technique of the 
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athlete. The motion involved with phase three of the tyre flip may be biomechanically 

similar to pushing a loaded cart. 

Al-Eisawi, et al. [120] investigated the forces required to initiate movement of a loaded 

cart (up to 181 kg) equipped with 152 mm diameter wheels on a level, carpeted surface, 

from different vertical positions (knuckle, elbow, shoulder height). It was reported that as 

the height at which the cart was pushed increased, the applied horizontal (anterior) force 

decreased and the vertical force component transitioned from a negatively (downward) 

applied force to a positively (upward) applied force [120]. As the tyre flip is performed 

as a tipping motion as opposed to a rolling/translational motion, the combination of 

horizontal and vertical force components applied to the tyre would see significant 

importance in the assessment of the performance outcome of the flip. While the first two 

phases of the flip are expected to require a significant vertical force component, it is 

expected that as the flip progresses to the third phase, the requirement of a greater 

horizontal force component becomes apparent. Thus, although the results of Al-Eisawi, 

et al. [120] saw a decrease in horizontal force application at greater heights, this may not 

be directly representative of what is seen in the tyre flip. 

Future researchers may attempt to quantify this qualitative assessment, along with the 

biomechanical differences which occur as a result of performing the tyre flip with 

different dimension tyres, and the likely training benefits, performance determinants and 

injury risks associated with each tyre dimension.  
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3.7 CONCLUSION 

The collation, assessment and interpretation of the results from the eleven identified 

strongman biomechanics studies has outlined the current understanding of the 

biomechanical determinants and applications of strongman exercises. Qualitative 

assessment of the eight strongman exercises, and comparison to quantitative 

biomechanical data of TWTE and CEA were used to develop further potential insights 

into the determinants of strongman exercise performance and applications of strongman 

exercises outside of the sport of strongman. A lack of quantitative biomechanical data 

was identified in the areas of: a basic biomechanical analysis of the yoke walk, unilateral 

load carriage exercises, vehicle pull, atlas stone lift and tyre flip; and more specific 

biomechanical performance determinants of the log lift exercise. Future research in the 

identified areas of strongman biomechanics is expected to provide a greater 

understanding of the biomechanical determinants of performance in a wider range of 

strongman exercises, and the potential training adaptations and risks expected when 

performing and/or incorporating strongman exercises into strength and conditioning or 

injury rehabilitation programs. This review has demonstrated the likely applicability and 

benefit of current and future strongman exercise biomechanics research to: strongman 

athletes and coaches; strength and conditioning coaches considering using strongman 

exercises in a training program; and tactical operators (e.g. military, army) and other 

manual labour occupations. 
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4. RESEARCH METHODOLOGY OVERVIEW 

This chapter provides an overview of the research methodologies used throughout the 

thesis and rationale for the decisions made in the design of the experimental study 

protocols and measurement device selection.  

4.1 STRONGMAN BIOMECHANICS EXPERIMENTAL PROTOCOLS 

The experimental protocols of previous strongman biomechanics research were 

summarised in Systematic Review 1. The relevance of the carry distances, loads and 

repetition ranges used in previous research to actual strongman training practices was still, 

however, unclear. With the exception of a study by Winwood, et al. [55], which provided 

a general overview of the strength and conditioning practices of strongman athletes, a 

lack of literature exists on the specific training practices of strongman athletes for each 

strongman exercise. The lack of information on distances, loads and repetition ranges 

used by strongman athletes for specific exercises resulted in the researcher further 

consulting with three individuals from outside the supervision team to determine some of 

the exact methods for the experimental studies described in Chapter 7 and Chapter 8. This 

group of individuals, who will be referred to as "the strongman coaching panel" from here 

forth were: 

• Jean-Stephen Coraboeuf, professional strongman, international/national level 

strongman coach and 2019 Australia's Strongest Man; 

• Colin Webb, international/national level strongman coach; and 

• Greg Nuckols, international/national level strongman coach. 

The results of Systematic Review 1 and Systematic Review 2, combined with results of 

Winwood, et al. [55], which identified the most commonly trained strongman exercises, 

was used to establish a list of the four most commonly trained strongman exercises 

lacking basic quantitative biomechanical analysis. These exercises were the yoke walk, 

vehicle pull, atlas stone lift and tyre flip. From discussions held with Jean-Stephen 

Coraboeuf, the yoke walk and atlas stone lift were selected for the biomechanical analysis 

component of the PhD project. The yoke walk and atlas stone lift were selected to ensure 

the greatest impact and practical applicability of the PhD research output to strongman 

athletes, coaches and strength and conditioning coaches. 
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Athlete performance in a strongman competition event can be determined in a variety of 

ways in both the yoke walk and atlas stone lift, as such, challenges in establishing an 

ecologically valid testing protocol arose. In the case of the yoke walk, the load and 

distance/duration stipulated to be carried by athletes will vary from competition to 

competition, with this variation typically reflective of the sex and body mass of the athlete. 

For example, athletes might be required to carry a heavier load (light-weight females: 150 

kg; heavy-weight males: 300+ kg) a distance of 20 m or less in one competition, while in 

another competition athletes might be required to carry a relatively lighter load (light-

weight females: 120 kg; heavy-weight males: 280 kg) a longer distance of 40 m.  

Even greater variance in competition loading may be seen for the atlas stone lift where 

loading can vary depending on the height to which the stone is to be lifted (e.g., 1 to > 

1.3 m, with lower heights typically used for female classes), the number of lifts to be 

performed (e.g., one repetition maximum (1RM), set number of stones, or as many 

repetitions as possible (AMRAP)), the sex of the athlete and the body mass classes offered 

within the federation or competition. The mass of the stone may also vary within the set 

where multiple repetitions are performed (e.g., light-weight female stone series: 50, 60, 

70, 80, 90 kg; heavy-weight male stone series: 120, 140, 160, 180, 200 kg). Further 

variance in an atlas stone competition event can be seen as a result of the stone surface 

finish and diameter, with the majority of stones having somewhat unique characteristics. 

Loading schemes based on previous strongman competition rules for each sex and body 

mass class were considered as a possible way of establishing testing protocols for both 

the yoke walk and atlas stone lift. Competition-based loading schemes would provide a 

direct representation of the biomechanics of athletes which may be expected under 

competition conditions.  

Specifying data collection protocols based on actual competition load and repetition 

schemes was, however, considered to put athletes participating in the study at unnecessary 

risk of injury, as athletes typically do not maintain competition performance levels for all 

strongman exercises all year round [54]. Asking athletes to undertake a training block of 

8 – 12 weeks in preparation for two single testing sessions was expected to result in a 

significant decrease in the number of participants recruited for each study. From 

discussions with the strongman coaching panel, data collection protocols were established 

for each of the yoke walk and atlas stone lift to ensure: 
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1) the risk of injury to athletes was minimised; 

2) a high level of ecological validity of the results to training performance was 

maintained; and 

3) the greatest number of experienced male and female strongman athletes were 

recruited.  

A two-part testing protocol was established for both the yoke walk and atlas stone lift.  

4.1.1 YOKE WALK PROTOCOL 

Part one of the yoke walk protocol (see Chapter 7 for additional details on both part one 

and part two) consisted of a pre-test 1RM whereby athletes were required to carry a 

maximal load a distance of 20 m in under 20 seconds without dropping the yoke. A 

distance of 20 m was selected, as it was considered to be a medium distance where athletes 

would carry a moderate to heavy load and the most common format of the yoke walk 

encountered in competition. The requirement to complete the set within 20 s and with no 

drops was established as a cut-off for failure, whereby athletes dropping the yoke or 

completing the set outside of 20 s would be unlikely to position highly in a competition 

of distance-for-shortest-time format. 

Part two of the yoke walk protocol was completed one week later and required athletes 

to complete three sets of a 20 m yoke walk at 85% of their previously defined 1RM 20 m 

yoke walk load. A loading of 85% 1RM was used to allow athletes to perform three 

maximal effort sets with high velocity and no drops, replicating how athletes may practice 

the yoke walk in a training session in preparation for a competition. Recovery periods 

between each set for both part one and part two of the yoke walk protocol were established 

based on previous literature on the strength and conditioning practices of strongman 

athletes [55]. 

4.1.2 ATLAS STONE PROTOCOL 

Part one of the atlas stone protocol (see Chapter 8 for additional details on both part one 

and part two) consisted of a pre-test 1RM whereby athletes were required to lift a maximal 

load stone over a set height bar commonly used in competitions (male: 1.3 m; female: 1.2 

m). The set height bar is a common competition format. 
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The format of the atlas stone protocol presented a particular challenge, in that, 

submaximal atlas stone competition events are often either performed as an AMRAP set 

of a constant mass stone, or as a set of a specific number of stones of incremental mass 

(for the fastest time). Using an AMRAP format would result in variability due to declining 

performance with fatigue, increased chance of failure and a varying number of repetitions 

performed by athletes. An incremental mass format would result in variability due to 

declining performance with fatigue and the varying mass and dimension of the stone. The 

challenges associated with standardising both failure and an uneven number of repetitions 

between participants in an AMRAP format, led to the decision to use an incremental mass 

format for part two of the atlas stone protocol.  

Defining loads for the set of stones of incremental mass also presented as a challenge. 

Guidance from the strongman coaching panel was relied upon heavily in defining 

incremental loading to ensure athletes would be somewhat challenged by the first stone 

mass in the set, but still be able to complete the final stone in the set. The availability of 

stone masses at the testing sites that would be suitable for potential participants also had 

to be considered when selecting loading conditions. 

Part two of the atlas stone protocol required athletes to complete three sets of four stones 

of incremental mass (stone one ≈ 60% 1RM, stone two ≈ 70% 1RM, stone three ≈ 80% 

1RM, stone four ≈ 85% 1RM) over a fixed height bar (as per the height in part one). These 

percentages of 1RM were thought to be reflective of the training practices of the 

strongman coaching panels' athletes when performing incremental mass stone lifting. As 

per the yoke walk protocols, part two was completed a week after part one and recovery 

periods between each set were established based on previous literature on the strength 

and conditioning practices of strongman athletes [55]. 

4.1.3 ADDITIONAL PROTOCOL CONSIDERATIONS 

The use of lifting aids (including lifting belts and knee/elbow sleeves) by athletes 

undertaking testing protocols was identified as a potential cofounding factor in the results. 

It was suggested that providing athletes with the option to use lifting aids when 

undertaking the testing protocol may introduce greater variance in the results, as some 

athletes may choose to use lifting aids while others may not. Intentionally reducing this 

variance in the results by prohibiting the use of all lifting aids, may however, compromise 

the ecological validity of the results as well as place athletes at greater risk of injury by 
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asking them to perform exercises in a way in which they would not regularly be performed. 

The majority of competitions allow lifting belts, knee/elbow/forearm sleeves and tacky 

to be used for the atlas stone lift, while lifting belts, knee/elbow sleeves and chalk may 

be used for the yoke walk. These lifting aids are generally also used by athletes during 

training [72] and as such, were permitted for use during testing protocols in accordance 

with the respective competition rules for each exercise.  
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4.2 INERTIAL MOTION CAPTURE DEVICE SELECTION 

In conducting Systematic Review 1, the limitations associated with the use of traditional 

motion capture methods to analyse the biomechanics of athletes performing strongman 

exercises were identified. Inertial motion capture (IMC) was selected as the most suitable 

motion capture method to overcome many of the limitations associated with the use of 

traditional motion capture methods to analyse the selected strongman exercises in the 

PhD project, whilst fitting within PhD budget constraints.  

Generally, IMC can be implemented using "out of the box" commercial systems whereby 

researchers can purchase the IMC system, place the sensors on the body of a participant 

and obtain relatively immediate biomechanical measures. Commercial "out of the box" 

IMC systems can, however, be expensive [121], and still require validation against a gold 

standard method, as the intended purpose of many commercial IMC systems is for gaming 

and animation [122]. Where the validity of results obtained using a commercial IMC 

system are insufficient, the researcher is limited in their ability to tune or improve the 

agreement between systems due to the proprietary software often used in commercial 

IMC systems. Additionally, commercially available IMC systems designed for clinical 

applications may only measure a subset of the biomechanical parameters desired by the 

researcher. 

Building an IMC system from individual components, which may include multiple 

inertial measurement unit (IMU)/magnetic angular rate and gravity (MARG) sensors, a 

BlueTooth module, an Arduino microcontroller and a battery pack, provides an 

inexpensive means of collecting the raw data which can be used to estimate the same 

biomechanical measures as a commercial IMC system [123]. Specialised data processing 

methods are then implemented by the researcher to obtain the desired biomechanical 

measures, allowing for the accuracy of the system to be tuned by the researcher.  

Purchasing relatively inexpensive commercially available IMU/MARG devices which 

already include the mentioned componentry is a middle ground between a commercially 

available "out of the box" IMC systems and a component-built system. Raw data from 

commercially available IMU/MARG devices can be processed by the researcher (as per 

the component-built system) to estimate biomechanical measures. 
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For the purpose of the PhD project and to allow potential re-use of the devices for various 

applications in future research within the university, it was decided that the commercially 

available IMeasureU Blue Trident (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) 

MARG device would be used to collect the raw data for further processing and 

biomechanical analysis by the researcher. The IMeasureU Blue Trident was selected as it 

includes a high-rate accelerometer, gyroscope and magnetometer within a waterproof 

housing, with between-device synchronisation and onboard or to-device data collection 

capabilities. Further details on the rationale behind the selection of data processing 

methodologies used to estimate the desired biomechanical measures from the raw data 

obtained from the IMeasureU Blue Trident MARG will be provided in subsequent 

chapters. 
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5. INERTIAL-BASED HUMAN MOTION CAPTURE: A TECHNICAL SUMMARY 

OF CURRENT PROCESSING METHODOLOGIES FOR SPATIOTEMPORAL 

AND KINEMATIC MEASURES 

5.1 PREFACE 

A common theme identified in Chapter 2 was the use of 2D video motion capture (VMC) 

for the measurement of spatiotemporal and joint kinematic parameters of athletes 

performing strongman exercises. The use of 2D VMC and other forms of traditional 

motion capture was suggested to limit the ability of previous researchers to analyse the 

biomechanics of athletes performing some strongman exercises. It was concluded that 

inertial motion capture (IMC) may be used to overcome some of these limitations. Prior 

to addressing the strongman-specific component of Question 3 "How may current inertial 

motion capture methods be used and further developed to characterise the biomechanics 

of athletes performing strongman exercises?", this chapter details the current IMC data 

processing methodologies used to estimate spatiotemporal and kinematic parameters in 

the wider areas of sporting and clinical applications. The understanding gained by 

critically reading the IMC literature and synthesising it within this chapter was used to 

inform the methodologies selected for use within the validation and two experimental 

chapters that follow within this thesis. 

This chapter has been published in Applied Bionics and Biomechanics on 26 March 2021, 

available at: https://www.hindawi.com/journals/abb/2021/6628320/. 

Hindle, B. R.; Keogh, J. W. L.; Lorimer, A. V. Inertial-based human motion capture: A 

technical summary of current processing methodologies for spatiotemporal and kinematic 

measures. Applied Bionics and Biomechanics 2021, 2021, 6628320, 

doi:10.1155/2021/6628320. 

This is an Open Access article reproduced under the permission of the Creative Commons 

Attribution 4.0 International License CC BY 4.0.  
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5.2 ABSTRACT 

Inertial motion capture (IMC) has been suggested to overcome many of the limitations of 

traditional motion capture systems. The validity of IMC is, however, suggested to be 

dependent on the methodologies used to process the raw data collected by the inertial 

device. The aim of this technical summary is to provide researchers and developers with 

a starting point from which to further develop the current IMC data processing 

methodologies used to estimate human spatiotemporal and kinematic measures. The main 

workflow pertaining to the estimation of spatiotemporal and kinematic measures was 

presented and a general overview of previous methodologies used for each stage of data 

processing was provided. For the estimation of spatiotemporal measures, which includes 

stride length, stride rate and stance/swing duration, measurement thresholding and zero-

velocity update approaches were discussed as the most common methodologies used to 

estimate such measures. The methodologies used for the estimation of joint kinematics 

were found to be broad, with the combination of Kalman filtering or complementary 

filtering and various sensor to segment alignment techniques including anatomical 

alignment, static calibration and functional calibration methods identified as being most 

common. The effect of soft tissue artefacts, device placement, biomechanical modelling 

methods and ferromagnetic interference within the environment, on the accuracy and 

validity of IMC was also discussed. Where a range of methods have previously been used 

to estimate human spatiotemporal and kinematic measures, further development is 

required to reduce estimation errors, improve the validity of spatiotemporal and kinematic 

estimations and standardise data processing practices. It is anticipated that this technical 

summary will reduce the time researchers and developers require to establish the 

fundamental methodological components of IMC prior to commencing further 

development of IMC methodologies, thus increasing the rate of development and 

utilisation of IMC. 
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5.3 INTRODUCTION 

Motion capture systems have been used extensively in biomechanics research to capture 

spatiotemporal measures of stride length, stride rate, contact time and swing time and 

angular kinematic measures of joint angles. Such measures are commonly used in 

disease/condition diagnosis, injury prevention and sport performance analysis [43, 44, 47, 

124-127]. The most common technologies used to collect human spatiotemporal and 

kinematic measures are three-dimensional (3D) optical, two-dimensional (2D) video, and 

electromagnetic based systems [15]. When motion capture data is collected in conjunction 

with data from force platforms, angular kinetics may also be modelled. 

Three-dimensional optical motion capture (OMC) systems are often considered to be the 

gold standard method of motion capture, however these systems are expensive and 

typically confined to a small capture volume within a laboratory environment [16, 24]. 

For a full body motion analysis, researchers are required to place up to 50 markers at 

anatomically specific locations, and a line of sight to each marker must be maintained by 

at least two cameras for each data frame throughout the movement [16]. Maintaining a 

line of sight to each marker throughout the movement is a major challenge when using 

3D OMC as markers often become displaced and/or occluded when implements (such as 

boxes for manual handling assessments, and bats, balls or barbells for sporting 

assessments) are included in the movement analysis [16]. The displacement and/or 

occlusion of markers result in loss of data, increased measurement error, increased 

tracking time and sometimes the inability to analyse a captured movement. 

Two-dimensional video motion capture is a more affordable alternative to 3D OMC, 

requiring one or more video cameras with sufficient frame rate, and video processing 

software such as the freely available software Kinovea (Kinovea.org, France) or Tracker 

(Open Source Physics). A number of drawbacks exist for 2D video motion capture. 

Multiple video cameras may be required for a full motional analysis. For example, for a 

running gait motion analysis, cameras may be required with views of the frontal and 

sagittal plane to capture joint varus/vulgus rotation, and joint flexion/extension, stride 

length, stance duration and swing duration, respectively. The high frame rate required to 

ensure accuracy when capturing fast movements (particularly sporting movements) result 

in large file sizes and extensive processing time. Both marker-based and marker-less 2D 

video motion capture rely on a line of sight of the participant throughout the movement 
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and as such see similar occlusion limitations to 3D OMC [16]. Parallax error caused by 

the participant performing the movement at a non-perpendicular angle (out of plane) to 

the camera, and perspective error caused by the participant moving toward or away from 

the camera are additional sources of error when using 2D video motion capture [26, 34]. 

Electromagnetic motion capture requires the participant to wear a specially designed suit 

of electromagnetic receiver sensors which receive electromagnetic waves from a base 

station transmitter located within the vicinity of where the movement is to be performed 

[15]. The receiver/transmitter network allows the position and orientation of the body to 

which the receiver sensors are attached to be determined within space [15]. 

Electromagnetic motion capture systems do not rely on line of sight measurements and 

thus do not encounter the problems of marker displacement and/or occlusion when 

implements are included in the motion analysis [15]. Low sampling rates currently make 

electromagnetic motion capture systems unsuitable for fast movements [15]. Motion 

capture often takes place at laboratory, clinical or sporting facilities where equipment in 

the environment emit electromagnetic disturbance. Electromagnetic motion capture 

systems are susceptible to electromagnetic interference from the surrounding 

environment, causing potentially large errors in orientation estimations [15].  

While each of these traditional motion capture methodologies have their own advantages 

and disadvantages, no single method is appropriate for all applications. Recent 

developments in inertial measurement unit (IMU) and magnetic, angular rate and gravity 

(MARG) sensor technologies have resulted in researchers proposing the use of such 

devices to overcome many of the limitations of traditional motion capture systems, 

particularly when data needs to be collected outside of a laboratory. 

Inertial devices have been used for human motion capture in the areas of athlete external 

load monitoring [128-130], activity classification [131-135], and spatiotemporal and 

kinematic analysis [43, 47, 127, 136]. The methodology of external load monitoring using 

inertial devices uses the raw output data of the IMU/MARG device (often accelerations) 

and thresholding techniques to determine the amount of exposure an athlete may have to 

various magnitudes of acceleration (external load) over the course of a training session, 

game/competition or other relevant period of time such as a week, month or year [130]. 

Such data is typically used to provide some insight into athlete performance, training 

adaptation, fatigue and risk of injury [130]. Activity classification is used to identify 
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movement patterns such as walking, running, stair ascent/descent and lying in various 

positions over an extended period of time (hours or days). Machine learning techniques 

such as K-nearest neighbour, decision trees, support vector machine, logistic regression 

and discriminant analysis are often used to classify these common activities of everyday 

living [132, 137]. Activity classification can provide clinicians with valuable information 

about the decline in health or independence of elderly living at home, the activity levels 

of persons living with conditions or diseases, or the detection of falls or accidents [135].  

Inertial-based human spatiotemporal and kinematic analysis requires complex sensor 

fusion and pose estimation methodologies to process raw MARG data. Numerous studies 

have demonstrated good agreement when comparing spatiotemporal and kinematic 

measures derived from IMU and MARG based motion capture systems with gold 

standard 3D OMC systems in clinical, ergonomic and sporting applications [43, 138-142]. 

Similar to traditional motion capture methods, researchers have suggested the accuracy 

of IMU and MARG based motion capture to be dependent on the algorithms and 

methodologies used to process the raw data captured by the device [143, 144]. 

Researchers conducting previous experimental studies and reviews have primarily 

focussed on either the overall validity of inertial motion capture (IMC) (excluding 

methodology considerations) [15, 43, 145, 146], sensor fusion methodologies [147, 148] 

or position and orientation estimation (pose) methodologies [149-153], making it difficult 

and time consuming for other researchers and developers to piece together all essential 

methodological components. Two reviews have attempted to summarise the 

methodological components of IMC, however these reviews have limited detail around 

critical considerations such as: sensor fusion, pose estimation and soft tissue artifacts 

(STA), sensor placement, biomechanical modelling and magnetic calibration, which 

should be made when developing an IMC solution [41, 42]. The following technical 

summary is presented with the aim to provide background and reference on all 

methodological components which must be considered when implementing an IMC 

solution for a given application (Figure 5.1). Presenting such a summary will reduce the 

time spent by researchers and developers establishing the fundamental methodological 

components of IMC prior to further developing current techniques and enhancing the rate 

of development and utilisation of IMC.
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Figure 5.1 Workflow of IMC and where sections of this technical summary lay within the general methodological structure.
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5.4 SENSOR FUSION 

The process of sensor fusion reduces the error inherent in the orientation estimation 

obtained from raw MARG data. The output of the sensor fusion step is used in subsequent 

steps of data processing toward the estimation of kinematic and spatiotemporal measures 

using IMC. 

Inertial measurement units consist of an accelerometer and gyroscope to measure linear 

acceleration and angular rate, respectively. In addition to accelerometers and gyroscopes, 

MARG sensors include a magnetometer to measure magnetic field strength [154].  

Integration of the angular velocity measured by the gyroscope provides an orientation 

estimation of the sensor at each time point relative to its initial orientation in the local 

frame. Integration of the gyroscope bias, which is inherent in the sensor at manufacture, 

leads to a slowly drifting (low frequency) cumulative error in the orientation estimation 

[148]. As the orientation is estimated in the local sensor frame, additional processing is 

required to establish a global reference frame, where a relationship between the 

orientation of each device in the network can be established [148]. This simplistic 

approach of integrating angular rate measures for device and body orientation is 

insufficient for reliable human motion capture. 

Accelerometers measure acceleration caused by gravity as well as acceleration caused by 

the motion of a body to which the sensor is attached. The measurement of acceleration 

due to gravity enables an estimation of the ‘up’ direction (pitch and roll) of the sensor in 

the global reference frame [148]. The pitch and roll orientation estimation of the 

accelerometer may therefore be used to correct the pitch and roll component of the drift 

caused by the integration of the angular rate signal. Acceleration measurements are 

however corrupted by high frequency noise caused by movement of the sensor, leading 

to error in the pitch and roll orientation estimation when the sensor is in a non-quasi-static 

state [148].  

Magnetometers measure the magnetic field strength of the Earth, enabling the definition 

of the Earth’s horizontal North/East plane (heading or yaw) [148]. Similar to both the 

gyroscope and accelerometer, the magnetometer has its own inherent error in the 

orientation estimation. Ferromagnetic disturbances in the surrounding environment, 
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causing the signal to be corrupt by high frequency noise, result in error in the orientation 

estimation by the magnetometer [154, 155]. 

Sensor fusion algorithms can be used to take advantage of the orientation estimation 

obtained by the gyroscope, and the global references obtained by the accelerometer (pitch 

and roll) and magnetometer (yaw), whilst reducing the errors caused by the high and low 

frequency noise associated with each of the measures. The two most common methods 

of sensor fusion are the complementary filter [154, 156, 157] and the Kalman filter [158-

160]. 

5.4.1 COMPLEMENTARY FILTER 

A complementary filter is used to combine two measurements of a given signal, one 

consisting of a high frequency disturbance noise, and the other consisting of a low 

frequency disturbance noise, producing a single signal output measurement [148]. Using 

filter coefficients/gains, the reliance on each input and response time for drift error 

correction can be manipulated, with shorter response times coming at the expense of 

greater output noise [148].  

When applied to MARG data for orientation estimation, one such approach is to use a 

two-stage complementary filter to obtain a combined orientation estimation with a 

smaller error component than what could be obtained by using just a single sensor signal 

[161]. The application of a two-stage complementary filter can be briefly described as 

follows (see also Figure 5.2), with detailed derivation of complementary filter equations 

presented in Valenti, et al. [161]. 

• Orientation is estimated using accelerometer data. 

• Accelerometer orientation estimation is corrected based on a defined threshold 

adhering to the deviation from a known quantity (e.g., gravity). Correction is 

achieved using a gain to characterise the cut-off frequency of an applied filter.  

• The corrected accelerometer-based orientation estimation is fused with the low-

frequency corrupt gyroscope-based orientation estimation, producing a 

complementary estimation of the device pitch and roll. 
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• Magnetometer measures are examined for environmental ferromagnetic 

disturbances and orientation estimation from the magnetometer data is corrected 

using a similar approach to the accelerometer-based orientation correction. 

• The pitch and roll (gravitational) orientation estimation is fused with the 

magnetometer yaw orientation estimation to provide a full attitude and heading 

orientation estimation. 

Although the accuracy of the orientation estimation and computational expense of the 

process can differ slightly between various complementary filter methodologies [154, 

157], the complementary filter is generally computationally less expensive than other 

sensor fusion approaches [159, 162]. The low computational cost of the complementary 

filter enables the use of low power, wearable MARG devices, where data processing can 

be undertaken onboard the MARG device and streamed live for visualisation on external 

devices [154]. The smaller size of such wearable MARG devices may be particularly 

important for human motion capture where minimal disturbance to a person’s natural 

movement is desired, enhancing the ecological validity of the analysis. The computational 

efficiency of the complementary filter however generally comes at the cost of the ability 

to tune the filter for a given application or environment, often resulting in an overall 

greater error in orientation estimation with reference to ground truth, when compared to 

sensor fusion approaches such as the Kalman filter [147, 159]. 
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Figure 5.2 Complementary filter approach example (based on Wu, et al. [163] and 

Valenti, et al. [161]). © [2015] IEEE. 
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• The a priori error covariance matrix is established in an attempt to compensate 

for sensor bias and Gaussian measurement noise.  

• As the measurement model of the accelerometer and magnetometer is inherently 

non-linear, a first order Taylor Maclaurin expansion of the current state estimate 

is performed by computing the Jacobian matrix.  

• Using the a priori state estimate, the a priori error covariance matrix and a set of 

measurement validation tests, an expression for the Kalman gain is established. 

The Kalman gain is used to give relative weight to either the current state estimate 

or the measurement.  

• An updated estimate (a posteriori) of the state estimate and error covariance 

matrix can then be computed. 

While these steps are generalisable to most Kalman filters, Figure 5.3 depicts, specifically, 

a block diagram of an indirect Kalman filter applied to MARG data [167, 168]. For 

brevity, state models and Kalman equations have been excluded from this paper, as such, 

the reader is directed to MEMS Industry Group [167] and The MathWorks Inc. [168] for 

further derivation of the particular case presented.  

Although the Kalman filter is recognised for its greater tunability for a given application 

or environment, and thus reduced error in orientation estimation when compared to the 

complementary filter approach [147], the Kalman filter process is complex and requires 

high grade IMU and/or MARG sensors. The combination of high sampling rates (up to 

30 kHz) required for the linear regression iterations, large state vectors and additional 

linearisation through an extended Kalman filter make the Kalman filter based solution 

computationally expensive [154]. Where onboard processing is required for live 

visualisation of human motion, the physical size of the equipment required to satisfy these 

high computational demands may currently inhibit natural movement of the person 

wearing the device [154]. 
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Figure 5.3 Kalman filter approach example (adapted from MEMS Industry Group [167] 

and The MathWorks Inc. [168]). 
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5.5 POSE ESTIMATION  

Orientation estimations of each IMU/MARG device obtained by means of sensor fusion, 

must be further processed to obtain spatiotemporal and angular kinematic estimations of 

the human body. To estimate spatiotemporal and angular kinematic measures of the body, 

the position and orientation (pose) of the body/body segment must be established. Where 

both raw MARG data and sensor orientation estimation data (obtained as a result of sensor 

fusion) are typically used in this process, some of the processing methodologies used for 

angular kinematic estimations may also be required when establishing spatiotemporal 

estimations (namely sensor to segment alignment). 

5.5.1 ANGULAR KINEMATICS 

The placement of an IMU or MARG device on the segment immediately proximal and 

distal to a joint and taking the relative orientation of the two segments, has been 

commonly proposed as a possible method of estimating joint angular kinematics [169]. 

The challenges associated with the estimation of joint angular kinematics using this 

method arise from the complexity of accurately estimating the device orientation using 

sensor fusion methods (as described previously), and the alignment of the sensor 

coordinate system to the corresponding segment coordinate system [85]. This process is 

commonly referred to as sensor to segment alignment. The three primary methods of 

sensor to segment alignment used in previous literature are the: anatomical alignment; 

functional calibration; and static calibration methods. Most recently, deep learning 

techniques have also been used for sensor to segment alignment. 

5.5.1.1 ANATOMICAL ALIGNMENT 

The anatomical alignment method sees the alignment of the local rotational axes within 

the IMU/MARG device, with the anatomical axis of the body segment to which the device 

is attached [138, 139, 170, 171]. The relative rotation as estimated by the proximal and 

distal sensor for the aligned axes can then be assumed as the joint angle estimation 

throughout a movement. The advantage of the anatomical alignment method is seen in 

the use of the local (device) coordinate system for orientation estimation, thus not 

requiring any form of mathematical transformation from a local to a global coordinate 

system. The associated error and resultant overall accuracy of the joint angle estimation 

when using this method is highly dependent on the proper alignment of each device axes 
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with the axes of the segment of interest [151, 171], and therefore may require the 

assistance of an experienced anthropometrist or specialised alignment equipment [45].  

5.5.1.2 FUNCTIONAL CALIBRATION 

Alignment of the local (device) coordinate frame with the segment coordinate frame has 

been achieved through functional calibration (FUNC) methods [172-174]. Functional 

calibration methods typically use predefined calibration movements and a set of 

assumptions (limiting the degree of freedom of a joint) to establish the average axis of 

rotation of a joint. Using the FUNC method, a MARG device may be arbitrarily placed 

on the limbs proximal and distal to a joint, and the orientation of each device in the global 

reference frame may be determined by an appropriate sensor fusion algorithm. With the 

two devices secured to the segments of a participant, the participant is asked to perform 

an isolated rotation about two single joint axes. For example, the first rotation may be 

about the longitudinal axis (i.e. internal/external rotation at the hip), while the second 

rotation may be about the medial/lateral axis (i.e. flexion/extension at the hip) [173]. 

Using numerical methods, the common axis of rotation can be determined, with the 

remaining axis of rotation assumed to be perpendicular to the two axes established from 

the movements [173].  

The primary advantage of the FUNC method is in the ability to arbitrarily place sensors 

on each segment, thus eliminating the requirement of assistance of an experienced 

anthropometrist for sensor placement or additional alignment devices. Although the 

FUNC method has been further developed to be implemented with arbitrary movements 

[169], some clients may be unable to perform the required functional calibration 

movements [175]. Additionally, the numerical and optimisation methods used to establish 

a common axis of rotation between segments are typically computationally expensive, 

resulting in the requirement of devices with greater processing capacity or off-board 

processing [169, 176, 177].  

5.5.1.3 STATIC CALIBRATION 

The static calibration (STAT) method is a somewhat hybrid approach of the anatomical 

alignment and FUNC methods. The STAT method requires a single axis of a "base" 

MARG device (typically located on the pelvis) to be aligned with a single axis (typically 

medial/lateral) of the segment [149, 178]. The advantage of this method is once one axis 
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of a single sensor has been aligned with a segment axis, all MARG devices attached to 

other segments can be arbitrarily oriented.  

A short, static, neutral calibration pose (five seconds) is captured to orient each sensor in 

the global frame using an appropriate sensor fusion algorithm. The vertical axis of the 

base MARG device is then corrected (rotated) to align with the gravity vector, leaving 

the remaining unknown (anterior/posterior) axis to be defined as being perpendicular to 

the medial/lateral and vertical axes [178]. This establishes an initial segment coordinate 

system in the global frame which may be used for all other segments, assuming all other 

segments were aligned during the calibration pose.  

The arbitrarily aligned axes of the MARG devices attached to all other segments are then 

transformed to the initial segment coordinate system established from the base MARG 

using a mathematical transformation. Once the initial orientation of each segment in the 

global frame is known, and thus can be tracked throughout a movement, a joint angle is 

calculated as the difference in orientation of two segments in the global frame.  

As a somewhat hybrid approach, the STAT method provides the advantage of arbitrary 

device placement (except for the base unit), and relatively short computational times, 

when compared to FUNC methods. Similar to the anatomical alignment method, the 

STAT method assumes the accurate alignment of the single axis of the MARG device 

with a chosen axis of the base segment. As this is only a requirement for a single 

sensor/segment pair, the time taken by an experienced anthropometrist or trained person 

in assisting with the placement of sensors may be reduced. Where misalignment of the 

base sensor and/or misalignment of the participant body segments with a standard 

anatomical pose during static calibration is encountered, error in the sensor to segment 

alignment will occur. 

5.5.1.4 STATE-OF-THE-ART DEEP LEARNING 

To the author's knowledge, only one study has used state-of-the-art deep learning 

approaches for sensor to segment alignment in human motion capture [150]. The 

methodology used a set of both real and simulation data to train a model to identify the 

orientation of a MARG device attached to a body segment and to align the axes of the 

device with the anatomical axes of the corresponding segment. Sensor to segment 

alignment were performed for the pelvis and bilateral thigh, shank and foot. Three 
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datasets were used to train and test the model, with a final optimal model established 

using a combination of these datasets.  

Dataset one consisted of real inertial data collected from 28 participants walking for six 

minutes in a figure eight pattern with a single inertial device orientation. Dataset two 

consisted of a sample of four participants walking back-and-forth in a 5 m line for one 

minute with nine different inertial device orientations. Dataset three consisted of 

simulation data established from a publicly available OMC dataset of 42 participants 

performing different walking styles. Inertial devices were mapped to the underlying 

model of dataset three using 64 alignment variations [150]. The final optimal model used 

datasets one, two and three to train the model and a single participant from dataset two 

and a single participant from dataset three (not included in the training dataset) for testing. 

A mean alignment error of 15.21º was reported using the final optimal model, with a mean 

computational time for the training of such model of 48 hours [150]. 

Based on the results of Zimmermann, et al. [150], deep learning methods appear to require 

a large set of training data and a large number of alignment variations to ensure reduced 

error and optimal sensor to segment alignment [150]. Although the development of the 

method of sensor to segment alignment using deep learning techniques is in its relative 

infancy, further development of the method may result in sensor to segment alignment 

using deep learning becoming common practice for IMC. 

In addition to joint kinematic measures, researchers are often also interested in recording 

spatiotemporal measures for full gait analysis. Many of the data processing methods to 

achieve spatiotemporal measures using IMC build on and rely upon the assumption of 

sensor to segment alignment. 

5.5.2 SPATIOTEMPORAL 

While gait event detection such as heel strike and toe-off, and subsequent spatiotemporal 

parameters such as swing and stance duration, and cadence may be identified through 

various relatively simple threshold approaches using measures of angular rate and linear 

acceleration [179], estimation of stride length is typically more complex [180, 181]. Two 

approaches for stride length estimation have primarily been used in previous literature; 

the biomechanical modelling [182-184] and strap-down integration approach [185].  
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In the biomechanical modelling approach, the lower limbs are typically modelled by 

means of a double pendulum [182-184]. Such modelling approach is however, restricted 

to the analysis of movement in the sagittal plane, limiting the accuracy of the method for 

stride length estimation of persons with irregular gait patterns [185, 186]. Although not 

free from its own challenges, the strap-down integration approach enables multi-planar 

analysis, and as such, will be the focal method for spatiotemporal estimation in this 

technical summary [185].  

Assuming sensor to segment alignment has been implemented on a foot/shoe mounted 

MARG sensor, double integration of the raw acceleration measures, after the subtraction 

of acceleration due to gravity, theoretically provides an estimation of the distance 

travelled throughout a given movement duration. Integration of the high frequency noise 

within the acceleration measure results in a cubically growing positional error [185]. The 

strap-down integration approach, by means of zero-velocity update (ZUPT), has been 

generally accepted as the most robust approach to overcome the propagation of error 

caused by integration of acceleration data for position estimation [180]. The ZUPT 

algorithm has seen multiple variations [180, 181, 185, 187, 188] and typically relies on 

the accurate identification of the stance phase of the gait cycle (where the foot 

momentarily experiences zero velocity relative to the ground), to "reset" the cubically 

growing error caused by the double integration of noisy raw linear acceleration data [180, 

185, 189, 190].  

Thresholding techniques have been used to identify phases of a gait cycle, whereby the 

resultant angular velocity of the foot is monitored for zero angular rotation about any axis 

throughout the stance phase [191]. Although the exact value of zero angular rate may not 

be reliably captured in real life, setting a threshold of, for example, 1 rad/s has been 

suggested to reliably capture the stance phase during walking [191]. For running or other 

higher velocity movements where the duration of the stance phase is shorter than walking, 

the threshold value will likely require adjustment, or the addition of other measurements 

to the logic statement may be required [181, 192]. The use of both foot angular velocity 

and orientation data has been demonstrated as a possible method of identifying instances 

of heel strike and toe off during a gait cycle [179]. Using this method, toe-off may be 

identified by searching for the first maximum in angular velocity within a specified search 

window spanning peak ankle plantar flexion. Similarly, heel strike may be identified by 

searching for the zero angular velocity crossing point within a search window spanning 
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peak ankle dorsiflexion [179]. Search window sizes should be set specific to a given 

movement (e.g., walking, running, pathological gait pattern), with the most appropriate 

window sizes typically achieved through an iterative process. 

As the sensor orientation is transformed from the sensor frame to the navigation or global 

frame, the acceleration due to gravity can be removed, leaving just the acceleration due 

to the motion of the sensor. The remaining motional acceleration can then be integrated 

to give the estimated velocity of the sensor. Where the stance phase (zero velocity) has 

previously been identified through the identification of heel strike and toe-off events, the 

integrated velocity and thus measurement error is "reset" to zero [191]. By resetting the 

velocity to zero during each stance phase, the drift error is limited to the relatively short 

duration of a stride. The corrected velocity may then be once again integrated to give 

position, where stride length is the difference in position between two consecutive stance 

phases.  

The use of Kalman filtering techniques can improve the accuracy of the described naïve 

ZUPT approach [181]. Instead of resetting the velocity to zero where a stance phase is 

identified, the Kalman filter uses an error state vector consisting of biases for acceleration, 

angular rate, attitude, velocity and position to reset velocity and position to an estimated 

near-zero value [181, 188].  

Although the gait event detection and ZUPT methods described in this summary are a 

general overview of methods used in previous literature, an example of how a selection 

of these methods may fit together to estimate gait spatiotemporal parameters is provided 

in Figure 5.4. The reader is directed to Jasiewicz, et al. [179] and Fischer, et al. [181] for 

further implementation details.
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Figure 5.4 Zero-velocity update approach example (based on Jasiewicz, et al. [179] and Fischer, et al. [181]). © [2013] IEEE.
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5.6 ADDITIONAL CONSIDERATIONS 

Aside from selecting the most appropriate sensor fusion and pose estimation processing 

methodologies for a given application, other components of the methodological design 

such as device placement, biomechanical modelling methods and magnetometer 

calibration also warrant consideration to minimise the propagation of errors and optimise 

the accuracy of an implemented IMC methodology. 

5.6.1 DEVICE PLACEMENT 

Soft tissue artefacts (STA) are suggested to be a significant source of error when 

measuring human kinematics using OMC methods [193]. Soft tissue artefacts occur when 

the skin (and underlying adipose tissue and muscle) to which the markers/sensors are 

attached, move relative to the bone for which the orientation and kinematics of the body 

is being estimated [193]. Inertial motion capture is also not exempt from the error caused 

by STA. Where OMC methodologies often use rigid clusters of markers [194] and/or 

anatomical modelling assumptions [195] to reduce the effects of STA, research into the 

reduction of STA effects on IMC is limited [196, 197]. Frick et al. presented a two-part 

study using numerical methods to reduce the effect of STA on inertial-based joint centre 

estimations. The method used a single frame optimisation (SFO) algorithm to determine 

the location and orientation of the joint centre relative to the sensor at each time frame. 

Although the method showed good agreeance with state-of-the-art OMC joint centre 

estimations on a mechanical rig, the SFO cost function assumes the joint centre to be 

undergoing negligible acceleration, which may be violated for many applications. The 

method proposed by Frick, et al. [196] demonstrates the potential in the reduction of STA 

when using IMC methods, however, further development is required before the SFO 

method is considered a practical solution for more complex applications [196, 197]. 

Spatiotemporal parameters such as stride length, stride time and contact time have 

regularly been obtained from a single IMU/MARG device worn on the pelvis, ankle or 

foot [124, 125, 198, 199]. The validity of these IMU/MARG derived spatiotemporal 

measures has been suggested to be affected by the location of the device [200]. When 

compared to ankle and pelvis worn IMU/MARG devices, foot mounted IMU/MARG 

devices have been found to result in greater validity of spatiotemporal estimations [198, 

199]. Positioning the device closer to the source of impact (ground) may result in less 

signal attenuation from STA and naturally occurring shock absorption by proximal 
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segments and thus greater accuracy in gait cycle event detection (such as heel strike, mid-

stance and toe off) [125, 201]. 

5.6.2 BIOMECHANICAL MODELLING 

Often considered a gold standard, OMC typically combine anatomical assumptions and 

anatomical marker locations to estimate joint angle kinematic measures using modelling 

techniques (modelled measures) such as the Plug-in Gait model (Oxford Metrics, Oxford, 

UK). Inertial motion capture typically rely on the un-modelled relative orientations of a 

proximal and distal sensor to a joint for joint angle estimation [127]. Due to these 

differences in modelling assumptions, the modelled measures obtained from OMC are 

expected to differ somewhat from the naïve relative joint angles commonly obtained 

using IMC [127, 202]. 

Brice, et al. [127] compared IMC relative joint angles with OMC relative angles (un-

modelled with reflective markers attached to the inertial device), and IMC relative joint 

angles with OMC modelled measures for the pelvis and torso in the sagittal, frontal and 

transverse plane. Participants performed three sets of a self-selected slow and two sets of 

self-selected fast rotation of the torso relative to the pelvis in each anatomical reference 

plane. Good agreement was reported between the IMC relative joint angles and the OMC 

relative angles (RMSE%: 1 – 7%). Less agreement was reported between the IMC relative 

joint angles and OMC modelled measures (RMSE%: 4 – 57%). Similar results to Brice, 

et al. [127] have been found by Cottam, et al. [202] for pelvis, thorax and shoulder joint 

angles during cricket bowling. No significant differences were reported between IMC and 

OMC relative angles, however significant differences in shoulder rotation, thorax lateral 

flexion and thorax to pelvis flexion-extension and lateral flexion were reported between 

IMC relative joint angles and OMC modelled joint angles at various stages of the cricket 

bowling delivery stride [202]. 

The results of Brice, et al. [127] and Cottam, et al. [202] suggest that IMC is capable of 

accurately measuring pelvis and torso relative angles during slow and fast multi-planar 

movements, however, these relative angles may not be representative of, or directly 

comparable to those of an OMC system where anatomical modelling is used to estimate 

joint angles. It has recently been suggested that the joint kinematics measured using both 

OMC and IMC methods may not represent the true kinematics of the joint due to the 

underlying assumptions made when using each method [140, 142, 145]. Further 
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development of OMC and IMC modelling techniques may be required to enable valid 

comparison between OMC and IMC joint angle estimations, with development of each 

method being further extended to achieve a greater representation of the true kinematics 

of the joint. 

5.6.3 MAGNETOMETER CALIBRATION 

Although the inclusion of a magnetometer in an IMC system allows the definition of the 

orientation of the MARG device in a global North, East Down (NED) reference frame, 

such global orientation estimation may be corrupted by ferromagnetic disturbances within 

the environment. Often, the validation of IMC systems occurs within a laboratory 

environment where gold standard systems (such as OMC systems) are situated and used 

for comparison. Measurement equipment within a laboratory, as well as structural iron in 

the flooring, walls and ceiling of the building have proven to be a considerable source of 

ferromagnetic interference [203]. When using MARG devices for motion capture within 

such environments, a magnetic calibration of each MARG device is recommended [203].  

Magnetic calibration procedures reduce the effect of hard iron effects (fixed bias with 

respect to the local reference frame of the sensor) and soft iron effects (variable distortion 

dependant on the orientation of the sensor) [155]. In an undisturbed environment, the 

magnetic field strength data of a magnetometer rotated through a full range of 3D rotation 

should form a perfect sphere centred around some origin. Ferromagnetic disturbances 

distort this ideal spherical formation of data to the extent of an ellipsoid shape (due to soft 

iron effects) and shift the centre of the ellipsoid away from the origin (due to hard iron 

effects). To correct for hard and soft iron effects, a best fit ellipsoid is established using 

parameter solving algorithms in an attempt to form a spherical representation of the raw 

data (Figure 5.5) [155]. 
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Figure 5.5 Magnetic calibration approach example (based on Ozyagcilar [155]). 

Performing movements > 40 cm above ground level, starting data capture in an area of 

low ferromagnetic disturbance and ensuring sufficient capture time before commencing 

the movement to allow the sensor fusion Kalman filter to compensate for ferromagnetic 

disturbances have also been shown to reduce error in orientation estimation caused by 

ferromagnetic disturbances [203]. At minimum, researchers and developers should 

attempt to correct for yaw estimation error caused by hard iron effects, and where 

appropriate implement the aforementioned additional strategies based on the environment 

in which the IMC system will be used. 

5.6.4 ERROR PROPAGATION 

The error associated with each stage of data processing propagates toward a total IMC 

system error. For example, the combined error in a single body segment orientation 

estimation is the sum of the sensor fusion error, the sensor to segment alignment error 

and any additional error caused by STA or biomechanical modelling assumptions. Where 

the goal may be to estimate the relative orientation between two segments (joint angle), 

the error in each body segment orientation estimation is once again combined. Careful 

implementation, and further development of the data processing and error minimisation 

strategies presented throughout this technical summary will contribute to the reduction in 

total system error and resultant overall accuracy of IMC systems.  
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5.7 CONCLUSIONS AND RECOMMENDATIONS 

Inertial motion capture address many of the limitations associated with traditional motion 

capture systems including marker occlusion and dropout, expensive equipment costs and 

the ecological validity of performing movements in a confined laboratory environment. 

The accuracy of IMC systems are suggested to be primarily dependent on the data fusion 

algorithms and pose estimation methodologies used to interpret human motion from raw 

MARG data. Additionally, the effect of STA, device placement, biomechanical modelling 

methods and ferromagnetic interference within the environment should be carefully 

considered to enhance the accuracy and validity of MARG derived spatiotemporal and 

kinematic estimations. 
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6. VALIDATION OF SPATIOTEMPORAL AND KINEMATIC MEASURES IN 

FUNCTIONAL EXERCISES USING A MINIMAL MODELING INERTIAL 

SENSOR METHODOLOGY 

6.1 PREFACE 

Chapter 6 assesses the validity of a proposed inertial motion capture (IMC) methodology 

developed using the most appropriate IMC data processing methodologies outlined in 

Chapter 5. The IMC methodology was found to be suitable for the biomechanical analysis 

of functional fitness exercises (whilst being transferrable to strongman exercises), and 

practically reproducible by researchers with an intermediate Matlab skillset. Question 3 

"How may current inertial motion capture methods be used and further developed to 

characterise the biomechanics of athletes performing strongman exercises?" was 

addressed in this chapter. 

Supplementary tables referenced throughout this chapter can be found in Appendix 4. 

This chapter has been published in Sensors on 15 August 2020, available at: 

https://www.mdpi.com/1424-8220/20/16/4586. 

Hindle, B. R.; Keogh, J. W.; Lorimer, A. V. Validation of spatiotemporal and kinematic 

measures in functional exercises using a minimal modeling inertial sensor methodology. 

Sensors 2020, 20, 4586, doi:10.3390/s20164586. 

This is an Open Access article reproduced under the permission of the Creative Commons 

Attribution 4.0 International License CC BY 4.0.  
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6.2 ABSTRACT 

In this study, a minimal modelling magnetic, angular rate and gravity (MARG) 

methodology is proposed for the assessment of spatiotemporal and kinematic measures 

during functional fitness exercises. Thirteen healthy persons performed repetitions of the 

squat, box squat, sandbag pickup, shuffle-walk, and bear crawl. Sagittal plane hip, knee, 

and ankle range of motion (ROM) and stride length, stride time, and stance time measures 

were compared for the MARG method and an optical motion capture (OMC) system. The 

root mean square error (RMSE), mean absolute percentage error (MAPE), and Bland–

Altman plots and limits of agreement were used to assess agreement between methods. 

Hip and knee ROM showed good to excellent agreement with the OMC system during 

the squat, box squat, and sandbag pickup (RMSE: 4.4 – 9.8°), while ankle ROM 

agreement ranged from good to unacceptable (RMSE: 2.7 – 7.2°). Unacceptable hip and 

knee ROM agreement was observed for the shuffle-walk and bear crawl (RMSE: 3.3 – 

8.6°). The stride length, stride time, and stance time showed good to excellent agreement 

between methods (MAPE: 3.2 ± 2.8 – 8.2 ± 7.9%). Although the proposed MARG-based 

method is a valid means of assessing spatiotemporal and kinematic measures during 

various exercises, further development is required to assess the joint kinematics of small 

ROM, high velocity movements.  
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6.3 INTRODUCTION 

Motion capture is a fundamental component of many modern biomechanical analyses. 

Common technologies used for human motion capture include optical, image/video 

processing and electromagnetic-based systems [15]. Although considered the gold 

standard of motion capture, optical motion capture (OMC) systems are expensive, 

typically limited to a laboratory environment, and suffer from marker occlusion, often 

resulting in loss of data [204]. Image/video processing systems suffer from similar marker 

occlusion problems, as well as parallax and perspective error [26]. Electromagnetic 

systems are limited to slow movements due to a low sampling frequency and are 

susceptible to large errors where ferromagnetic disturbances are present in the 

environment [15]. The limitations of current motion capture technology, particularly for 

field-based research, have prompted researchers to explore alternate technology for 

human motion capture. 

Advancements in inertial measurement unit (IMU) and magnetic, angular rate and gravity 

(MARG) technologies has seen the development of affordable, compact, and powerful 

devices [158]. Inertial measurement units measure the tri-axial angular rate and linear 

acceleration, while MARG devices also measure the tri-axial magnetic field strength. By 

attaching IMU/MARG devices to individual body segments and performing specialised 

processing of the output data, the position and orientation of each segment and the 

resultant kinematics of the body can be estimated [205]. High sampling rates, an 

affordable equipment cost, and the ability to stream data live or collect data directly on 

the device for future download make IMU/MARG technology an attractive alternative to 

traditional motion capture systems. Researchers have used both proprietary and 

researcher-developed IMU/MARG systems to measure human movement for a range of 

applications, including sporting [43-45, 47, 206, 207], clinical [149, 208-210], and 

ergonomic [100, 211-213] applications. Literature investigating the validity of 

IMU/MARG motion capture for the assessment of human kinematics suggests that the 

accuracy of IMU/MARG motion capture is dependent on the task complexity, movement 

speed, sensor placement, specific kinematic parameter being analysed, and processing 

methodology used [145, 153]. Processing methods described in previous validation 

studies of researcher-developed systems, particularly in the areas of sensor fusion and 

sensor to segment alignment, provide valuable information for the development of 

IMU/MARG motion capture technology. 
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In its most simplistic form, integration of the angular rate data of an IMU/MARG device 

provides an orientation estimation of the device with respect to its original orientation in 

a local coordinate frame [147]. Integration of the inherent bias within the angular rate 

data results in cumulative drift error over time [148]. The acceleration due to gravity 

measured by the accelerometer may be used to assist in correcting the attitude 

(inclination) component of this drift; however, the signal becomes corrupt when the 

device is in a non-quasi-static state [147]. Similarly, the magnetometer data provides a 

heading (horizontal direction) orientation and can be used to assist in correcting the 

heading component of the drift. However, this heading estimation is often corrupted by 

magnetic disturbances within the environment [148]. 

Sensor fusion leverages the most reliable components of accelerometer, gyroscope, and 

magnetometer orientation observations at each time point to provide an orientation 

estimation of the device in a local or global reference frame [41]. While proprietary 

systems use their own sensor fusion algorithms, the most common methods of sensor 

fusion incorporate versions of the complementary filter [154, 157, 208] and Kalman filter 

[160]. Previous literature suggests minimal differences in the orientation estimation 

accuracy between such sensor fusion methods [147, 214, 215]. The ability to further tune 

the Kalman filter using various noise and disturbance parameters is suggested to give 

Kalman filter-based approaches a slight accuracy advantage over complementary filter 

approaches, albeit at the expense of the computational load [147]. 

Once the orientation of the IMU/MARG device has been established, the coordinate 

system of the device must be aligned with the coordinate system of the segment to which 

it is attached. This process is known as sensor to segment alignment. Sensor to segment 

alignment methods described in previous validation studies of researcher-developed 

systems can be categorised as manual alignment with or without the use of specialised 

alignment devices [45, 138]; static pose estimation [149, 178]; functional calibration 

[152, 172, 175, 216]; and most recently, deep learning [150]. Although the former three 

alignment methods have been shown to have a minimal effect on the overall agreement 

between OMC and IMU/MARG measures [151], the practicality of such sensor to 

segment alignment methods should be considered. 

The manual alignment method (also commonly referred to as the technical anatomical 

alignment method) requires the precise alignment of the local coordinate system of the 
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IMU/MARG device with the anatomical coordinate system of each segment. The manual 

alignment method is the least computationally expensive method [151]; however, it 

comes at the cost of requiring additional specialised calibration equipment or highly 

skilled persons to identify anatomical landmarks and place sensors according to these 

landmarks [45, 138]. 

Static pose calibration methods remove some of the reliance on the precise alignment of 

each IMU/MARG device coordinate system with the respective segment coordinate 

system by allowing the arbitrary placement of all but one device [149, 178]. Mathematical 

transformations are used to transform a known local sensor coordinate system into a 

known segment coordinate system via a global coordinate system. This method appears 

to be a common compromise between computationally simplistic manual alignment and 

more computationally expensive approaches. 

Functional calibration techniques require the client to perform specific movements with 

the IMU/MARG devices arbitrarily positioned on each segment [152, 172, 175, 216]. 

Numerical methods are then used to determine the segment or joint coordinate systems 

from the data collected during the calibration movements. While the functional 

calibration method allows the arbitrary positioning of all IMU/MARG devices, the 

computational cost in establishing segment/joint coordinate systems is generally greater 

than the manual alignment and static pose method [151]. Additionally, certain conditions 

may prevent some clients from performing the calibration movements [175]. 

Most recently, deep learning has been used to achieve sensor to segment alignment [150]. 

This state-of-the-art approach relies on a quantity of previously collected real or 

simulation motion data to train a model to identify the orientation of an arbitrarily 

positioned sensor and automatically align it with the segment coordinate system. 

Although this method is relatively new and has seen limited development, initial research 

suggests that the method may be computationally expensive and that it requires large sets 

of existing data for accurate model training [150]. 

As there is currently no standardised methodology for IMU/MARG motion capture for 

all applications, it is necessary to learn from the previous literature and validate any novel 

or application-specific IMU/MARG motion capture methodology. To the best of the 

authors’ knowledge, no previous literature has validated the use of MARG-based motion 
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capture during functional fitness exercises [142, 145], where highly dynamic movements 

result in large ranges of motion across multiple joints [217]. 

The aim of conducting this study was to assess the validity of a minimal modelling 

MARG motion capture methodology (from here on referred to as the MARG method) for 

the estimation of spatiotemporal (stride length, stride time, and stance time) and kinematic 

(sagittal plane hip, knee, and ankle joint range of motion (ROM)) parameters when 

compared to those obtained using an OMC system during various functional fitness 

exercises. The MARG method uses a minimal modelling approach, which includes the 

alignment of the sensor to the segment, processing, and anatomical modelling 

assumptions. 
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6.4 MATERIALS AND METHODS 

6.4.1 PARTICIPANTS 

Thirteen participants, including 10 males (27.6 ± 10.8 y, 82.6 ± 13.5 kg, 181.4 ± 6.2 cm) 

and three females (31.1 ± 9.6 y, 61.2 ± 5.0 kg, 162.4 ± 5.1 cm), with a broad range of 

anthropometric characteristics, were recruited for this study to account for body type 

differences within the fitness population. All participants were required to have 

undertaken some form of resistance or cardiovascular training of a minimum of twice per 

week for at least six months prior to testing and be free from any injury at the time of 

testing. Participants meeting the defined criteria provided written informed consent prior 

to commencing testing. The study was conducted in accordance with the Declaration of 

Helsinki and ethical approval was granted for all procedures used throughout the study 

by the Bond University Human Research Ethics Committee (BH00070). 

6.4.2 EXPERIMENTAL PROTOCOL 

Analysed movements were selected based on their transferability to a range of exercise-

related movement patterns [79, 217] and their ability to be performed in a laboratory 

environment (Figure 6.1). The following subsections provide a description of these five 

movements. 

6.4.2.1 SQUAT 

Each participant performed three sets of five squat repetitions. Participants were 

instructed to cross their arms over their chest and perform the squats to a maximum 

comfortable depth at a self-selected cadence. 

6.4.2.2 BOX SQUAT 

Each participant performed three sets of five box squat repetitions. Participants were 

instructed to cross their arms over their chest and perform the squats to the depth of a 

wooden box with the following dimensions: height: 500 × depth: 300 × width: 400 mm. 

6.4.2.3 SANDBAG PICKUP 

Each participant performed three sets of three sandbag pickup repetitions (sandbag mass: 

10 kg; diameter: ~400 mm; length: ~400 mm). Participants were instructed to adopt a 

hybrid stoop and squat lifting technique whereby the participant would initialise the lift 

with relatively straight legs and a curved upper spine, before positioning the sandbag in 
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their lap and standing using a technique similar to the stone lift from the sport of 

strongman. 

6.4.2.4 SHUFFLE WALK 

Each participant performed three sets of four to six strides of a modified gait pattern 

across the test volume, simulating the technique they may use if they were carrying a 

heavy object. Participants were instructed to vary their stride rate, stride length, and stride 

width throughout and between sets. 

6.4.2.5 BEAR CRAWL 

Each participant performed three sets of bear crawls across the test volume. Participants 

were instructed to assume a four-point stance position before performing two to three 

strides across the test volume. 

 

Figure 6.1 Functional fitness exercises: a) squat; b) box squat; c) bear crawl; d) shuffle 

walk; and e) sandbag pickup. Images reproduced with permission from respective 

copyright owner and person performing movement. 

6.4.3 OMC MARKER PLACEMENT AND PROCESSING 

A six-camera Bonita Vicon 3D OMC system (Vicon Motion Systems Ltd., Oxford, UK), 

sampling at 100 Hz, was used as the reference for joint ROM and spatiotemporal 
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estimations [121]. The capture volume was approximately 3 m × 2 m × 2 m. Fifteen 14 

mm reflective markers were attached to the landmarks reported in Figure 6.2. Clusters of 

four reflective markers were attached to the lateral shank and thigh of the participant. 

Joint angles were estimated via inverse kinematics using Visual3D software (Visual3D, 

C-motion, Inc.; Rockville, MD, USA) [218]. 

 

Figure 6.2 Optical motion capture (OMC) and magnetic, angular rate and gravity 

(MARG) sensor placement: CAL) calcaneus; FT1) foot tracking marker one; GT) 

greater trochanter; KNL) knee lateral; KNM) knee medial; LASIS) left anterior superior 

iliac spine; LPSIS) left posterior superior iliac spine; LPT1) left pelvis tracking marker 

one; MAF) foot MARG sensor; MAP) pelvis MARG sensor; MASH) shank MARG 

sensor; MATH) thigh MARG sensor; MH1) first metatarsal head; MH5) fifth metatarsal 

head; ML) lateral malleolus; MM) medial malleolus; RASIS) right anterior superior 

iliac spine; RPSIS) right posterior superior iliac spine; RPT1) right pelvis tracking 

marker one; SHCL) shank cluster; THCL) thigh cluster. Image reproduced with 

permission from respective copyright owner and person pictured.  
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6.4.4 MARG PLACEMENT AND PROCESSING 

Four MARG sensors (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) were fixed 

on a single side of the participant’s body (Figure 6.2 and Table 6.1). The location of each 

MARG sensor was selected for repetitive identification by untrained persons in the field 

and to minimise the effect of soft tissue artefacts [193]. Each sensor consisted of a triaxial 

accelerometer (±16 g), triaxial gyroscope (±2000 °/s), and triaxial magnetometer (±4900 

µT) with an on-board sampling rate of 1125 Hz (accelerometer and gyroscope) and 112.5 

Hz (magnetometer). The Capture.U app (software version 1.1.843, Vicon Motion 

Systems Ltd., Oxford, UK), installed on an iPad Air 2 (iOS 13.3.1, Apple Inc., CA, USA), 

was used to initialise and synchronise MARG device data recording. Raw MARG data 

were processed using distinct methods for kinematic and spatiotemporal measures. 

Table 6.1 MARG device positioning. 

Segment MARG Position 

Pelvis Midway between the right and left posterior superior iliac spine. 

Thigh Approximately 150 mm proximal to the lateral epicondyle of the femur. 

Shank Approximately 100 mm distal to the lateral tibial condyle. 

Foot Halfway between the lateral malleoli and the base of the foot. 

 

6.4.5 KINEMATIC MEASURES 

A modified method for determining joint angle kinematics based on Beravs, et al. [178] 

was developed using a custom Matlab script (The Mathworks Inc., Natick, MA, USA) 

(Figure 6.3). The following pre-processing and sensor to segment alignment methods 

were used. 

MARG data pre-processing. Two different methods for preparing the raw MARG data 

were used in order to determine the most appropriate method for the selected movement 

patterns. These will be referred to as the default (DEF) method and the tuned and filtered 

(TAF) method (Figure 6.4). 
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Figure 6.3 Joint angle estimation methodology overview. 

For both the DEF and TAF method, the effects of soft and hard iron magnetic disturbances 

on the raw magnetic field data were reduced by performing a calibration procedure [155]. 

For the TAF method, gyroscope data were passed through a sixth-order low-pass 

Butterworth filter with a cut-off frequency of 60 Hz. Filter parameters were established 

from a frequency analysis of data collected in pilot testing. Acceleration data remained 

unfiltered in both DEF and TAF methods, based on pilot testing results. 

Acceleration, angular rate data (raw for DEF, filtered for TAF), and magnetic field data 

(calibrated for hard and soft iron effects) were passed into an attitude heading reference 

system (AHRS) fusion filter to estimate the orientation of each MARG device in the 

global reference frame (Sensor Fusion and Tracking Toolbox Release 2019a, The 

Mathworks Inc., Natick, MA, USA). The AHRS filter used a 9-axis indirect Kalman filter 
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to model the error process of the system. The filter allowed initial device and tuning 

properties to be set for a given movement and environment.  

In the TAF method, device tuning properties and biases were established using a 

combination of a static dataset collected over a four-hour period, information from the 

device datasheet, and pilot testing data of each exercise. These properties included the 

following: variance of accelerometer ((m/s2)2) and gyroscope ((rad/s)2) noise; variance of 

magnetometer disturbance noise (µT2); gyroscope offset drift ((rad/s)2); a compensation 

factor for linear acceleration drift [0,1]; and the expected magnetic field strength due to 

the geographic location (Table 6.2). In the DEF method, all filter properties remained as 

the default properties set by Matlab and the Kalman filter were left to correct for these 

errors (see MEMS Industry Group [167] for further details).  

From the AHRS filter, a quaternion representation of each device in the global frame was 

established. Quaternion and direction cosine matrix (DCM) representations were used 

throughout processing to avoid singularities (gimbal lock) inherent when using a common 

Euler representation [154]. 

 

Figure 6.4 Data pre-processing default (DEF) and tuned and filtered (TAF) methods. 
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Table 6.2 MARG tuning properties. 

Tuning Property DEF Method TAF Method 

Variance of accelerometer noise (m/s2) 2 1.92 × 10−3 3.45 × 10−4 

Variance of gyroscope noise (rad/s) 2 9.14 × 10−4 1.40 × 10−6 

Gyroscope offset drift (rad/s) 2 3.05 × 10−13 1.77 × 10−8 

Magnetometer disturbance noise (µT2) 5.00 × 10−1 1.00 × 10−1 

Linear acceleration compensation factor 5.00 × 10−1 9.00 × 10−1 

Expected magnetic field strength (µT) 50.0 (unique to each magnetic calibration) 

 

The orientation of the MARG sensor positioned on the foot was such that the x-axis of 

the MARG sensor pointed in the anterior/posterior direction of the segment qMARG!" 

GF . The 

cross product of the known foot segment anterior/posterior facing x-axis component of 

the DCM, and the vertical z-axis component of the DCM [0,0,1], allowed the y-axis 

component perpendicular to the two known axes to be found. From the orientation of the 

foot segment in the global frame, the orientation of all segments in the global frame could 

be assumed to be aligned as qseg.o 
GF  and defined as per Figure 6.5. 

 

Figure 6.5 MARG sensor orientation transformations. 
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Using the Hamilton product of the known initial orientations as described using 

quaternions, the transformation qseg.t  of each MARG sensor’s initial orientation in the 

global frame to the initial segment orientation in the global frame could be determined 

using Equation (6.1), where * denotes the quaternion conjugate. 

!!"#.% = !!"#.&∗	)* ⊗ !+,-)!"#.%	)*  (6.1) 

Segment orientation at each time instance qseg.k 
GF  could then be determined by taking the 

Hamilton product of the quaternion representation of the transformation of each MARG 

sensor to segment orientation and the orientation of the MARG sensor in the global frame 

at time instant k using Equation (6.2). 

!!"#..	)* = !+,-)!"#.&	)* ⊗!!"#.%∗  (6.2) 

Joint angles were calculated as the difference in orientation between a proximal !,-.#/	12  and 

distal segment !,-.$/	12  at each time instant, as described using quaternions (Equation (6.3)). 

A visual representation of the joint angle (difference in the quaternion orientation) could 

then be obtained using an Euler angle representation. 

!/ = !!"#'.∗
	)* ⊗ !!"#(.	)*  (6.3) 

6.4.6 SPATIOTEMPORAL MEASURES 

The stride and stance time were estimated using a custom Matlab script, from initial 

contact (IC) and final contact (FC) points identified from acceleration data using the 

methods of Jasiewicz, et al. [179]. Stride length estimation was achieved using a zero-

velocity update (ZUPT) methodology [181]. The initial orientation estimation of the 

pelvis sensor was used to determine the foot segment coordinate system and direction of 

travel using the sensor to segment alignment methodology described above. The 

acceleration at the heel (minus acceleration due to gravity) was integrated using a 

trapezoidal approximation to give the velocity of the foot. The drift resulting from the 

integration of the motional acceleration was corrected by means of a ZUPT. Where a 

stance phase (and thus known instance of zero velocity) was detected, a Kalman filter 

was used to reduce the drift caused when integrating by approximating the error in the 

system. After the ZUPT correction, the stride length could be estimated as the distance 

travelled between consecutive stance phases.  
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6.4.7 DATA ANALYSIS AND STATISTICAL METHODS 

Data were first assessed for normality by visual inspection and a Shapiro Wilks test. The 

mean absolute percentage error (MAPE) and root mean squared error (RMSE) were 

calculated for each spatiotemporal and kinematic measure. A classification system was 

used to assess MAPE values [219], where MAPE ≤ 5% = excellent agreement, 5% < 

MAPE ≤ 10% = good agreement, 10% < MAPE ≤ 15% = acceptable agreement, and 

MAPE > 15% = unacceptable agreement. To provide greater insight into the agreement 

of joint angle estimations throughout the ROM of each repetition, a measure of the 

percentage of time the MARG method error was within ±10% of the ROM of the OMC 

system was calculated (E10%). An acceptable error threshold of ±10% for the E10% 

calculation was selected to show a clinical difference in means [220]. For time-series 

comparative measures, MARG joint angle approximations were resampled to 100 Hz and 

synchronised manually based on the point of maximum flexion throughout a repetition. 

Bland–Altman upper and lower 95% limits of agreement (LoA) were used to assess 

agreement between methods [221, 222]. The LoA were set to 1.96 times the upper and 

lower standard deviation of the difference between the OMC and MARG method. Where 

normality was not met, a log transformation was performed prior to undertaking the 

Bland–Altman analysis. Paired t-tests were conducted between TAF and DEF methods. 

A Wilcoxon signed-rank test was performed where data were not normally distributed. 

All statistical analyses were performed in R version 3.6.1 (R Development Core Team, 

Vienna, Austria), with statistical significance accepted at p < 0.05. 
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6.5 RESULTS 

6.5.1 KINEMATIC MEASURES 

Hip, knee, and ankle joint ROM were compared for IMU and OMC during 195 squat, 

195 box squat, and 117 sandbag pickup repetitions, while 193 hip and 195 knee, and 115 

hip and 113 knee ROMs were compared for the modified gait and bear crawl, respectively. 

Marker dropout in the OMC prevented a comparison of hip and knee joints during three 

crawl strides and two modified gait strides.  

Hip and knee joint angle estimation using both the DEF and TAF method showed good 

to excellent agreement with the OMC system when performing repetitions of the squat, 

box squat, and sandbag pickup (Table 6.3). The RMSE and MAPE of hip and knee ROM 

were less for the box squat than the squat when using the TAF MARG method. Bland–

Altman plots indicate an underestimation in knee ROM for the squat and sandbag pickup 

when using the DEF method (Figure 6.6). The underestimation of knee ROM by the 

MARG method during the squat and sandbag pickup may reflect the large ROM (squat: 

121.2 ± 9.5°; sandbag: 126.8 ± 7.2°) compared to the other three exercises. Although 

there were only three female participants out of the total sample of 13, when comparing 

data obtained from male and female participants (Figure 6.6), the underestimation in knee 

ROM during the squat, box squat, and sandbag pickup appeared to be larger in the female 

group than the combined or male group (DEF method), with such results also being 

apparent for the TAF method. Where no consistent bias was observed for the combined 

or male group, a slight overestimation in hip ROM by the MARG method in female 

participants (both DEF and TAF) may be observed during the squat, box squat, and 

sandbag pickup. Inconsistencies in the agreement between methods (combined group) 

were observed for both DEF and TAF methods through the relatively wide Bland–Altman 

LoA (Figure 6.6). 

Ankle joint angle estimations generally showed good agreement with the OMC system 

when using the DEF method for the squat, box squat, and sandbag pickup (Table 6.3). 

When using the TAF method, acceptable (sandbag pickup) to unacceptable (squat and 

box squat) errors were observed. Bland–Altman plots indicate a slight (DEF) to moderate 

(TAF) overestimation bias in the MARG method for ankle joint ROM during the squat, 

box squat, and sandbag pickup exercises for the combined group (Figure 6.6). This 

overestimation (both DEF and TAF) appeared to be slightly smaller in female participants 
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when compared to their male counterparts. Ankle ROM Bland–Altman LoA for the 

combined group were smallest for the box squat when compared to the squat and sandbag 

pickup. 

In contrast to the squat, box squat, and sandbag pickup, unacceptable agreement at both 

the hip and knee joint was observed for the shuffle-walk and bear crawl, with the TAF 

method achieving slightly greater agreeance during the shuffle walk than the DEF method. 

Preliminary results indicated that a meaningful E10% analysis of the hip and knee during 

the shuffle-walk and bear crawl could not be performed, with values ranging from 60.1 ± 

23.9 to 78.4 ± 21.2%. This was in part due to the high noise to ROM ratio and slight phase 

duration discrepancy between the OMC and MARG method, as can be seen in the 

exemplar data provided in Figure 6.7. No consistent bias was observed for hip and knee 

ROM in the shuffle-walk and bear crawl (Figure 6.8), with wide LoA in both TAF and 

DEF methods further demonstrating the inconsistencies in measurements between the 

OMC and MARG method for hip and knee ROM (Table 6.4). 

To an even greater extent than at the hip and knee, preliminary analysis of ankle joint 

ROM during the shuffle-walk and bear crawl resulted in a high noise to ROM ratio and 

unacceptably large MAPE. As such, it was determined that a meaningful comparison 

could not be performed and was omitted (Figure 6.7e,f). 
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Table 6.3 Kinematic measures and error metrics. 

 
OMC TAF MARG DEF MARG 

ROM (°) ROM (°) RMSE (°) MAPE (%) E10% (%) ROM (°) RMSE (°) MAPE (%) E10% (%) 

Hip          

Squat 96.8 ± 11.8 100.2 ± 14.9* 9.8 8.2 ± 6.5 95.6 ± 8.5 95.3 ± 14.3 8.8 7.6 ± 4.6 96.0 ± 7.7 

Box squat 85.5 ± 12.6 84.6 ± 14.8* 7.7 6.8 ± 6.1* 94.4 ± 9.9* 81.5 ± 13.7 8.1 8.0 ± 5.1 92.2 ± 13.2 

Sandbag pickup 97.1 ± 11.4 97.7 ± 14.9* 9.1 7.0 ± 5.5 87.4 ± 12.4 93.0 ± 13.0 9.3 7.0 ± 5.7 88.1 ± 13.1 

Shuffle walk 12.1 ± 3.3 14.1 ± 3.7* 3.3 25.1 ± 21.0* - 14.4 ± 3.7 3.8 28.6 ± 24.7 - 

Bear crawl 33.3 ± 13.5 32.9 ± 12.4* 7.1 16.5 ± 21.5 - 30.7 ± 12.2 7.7 16.7 ± 13.4 - 

Knee          

Squat 121.2 ± 9.5 123.8 ± 11.5* 7.7 5.1 ± 3.7* 100.0 ± 0.4 113.0 ± 9.8 9.4 6.7 ± 3.8 100.0 ± 0.5 

Box squat 91.6 ± 9.1 91.9 ± 10.8* 4.4 4.0 ± 2.7* 100.0 ± 0.0 84.9 ± 9.6 7.2 7.4 ± 3.0 100.0 ± 0.0 

Sandbag pickup 126.8 ± 7.2 126.3 ± 8.5* 5.9 3.7 ± 2.8* 99.2 ± 3.3 118.8 ± 8.8 9.2 6.4 ± 3.6 98.9 ± 3.2 

Shuffle walk 29.1 ± 8.9 22.9 ± 8.0* 6.8 22.5 ± 16.5* - 21.1 ± 7.4 7.9 26.0 ± 13.9 - 

Bear crawl 40.0 ± 20.4 44.0 ± 20.6* 8.6 28.4 ± 40.6 - 36.7 ± 19.0 8.4 27.3 ± 30.8 - 

Ankle          

Squat 31.2 ± 5.2 37.7 ± 5.7* 7.2 21.9 ± 11.2* 79.6 ± 15.3 * 32.3 ± 4.5 2.8 7.9 ± 6.1 93.9 ± 8.3 

Box squat 21.1 ± 4.9 26.8 ± 5.4* 6.6 28.6 ± 15.3* 73.2 ± 15.0 * 23.0 ± 4.4 2.7 11.7 ± 7.5 89.5 ± 10.3 

Sandbag pickup 38.9 ± 7.4 42.9 ± 6.1* 6.2 13.9 ± 11.9* 84.1 ± 13.4 * 39.0 ± 5.5 3.7 8.2 ± 5.7 93.8 ± 8.2 

Values presented as the mean ± standard deviation where relevant. * Significant difference between the TAF and DEF method (p > 0.05). 
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Figure 6.6 Bland–Altman plots for hip, knee, and ankle range of motion (ROM) using 

each MARG method (DEF/TAF) during the squat (row one/two), box squat (row 

three/four), and sandbag pickup (row five/six). Red data points represent male 

participant data, and green data points represent female participant data. 

●●
●●

●● ●● ● ●
●● ●●●

● ●●

●
●●
●
●

●●

●

●

●

●●

●

●

●

●
●

●

● ●

● ● ●●
●

●

●

●
●●●

●
●● ●
●●

●●●●●
●

●●
●

●
●

●
●
●

●●●
●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●● ●

●
●
●●

●

●

●

● ●
●●

●●
●●

●

●
●●

●

●
●

●●
●

● ●

●

●

●

●

●
● ●

●

●
●
●

● ●
●

●

●
●

●

●
●

●

●
●

●●

● ●

●

●●
●

●

●

●
●

● ●
●

●● ● ● ●

●
●

●

●
●

●●
●

●

●
● ●

●
● ●

●
●●

●

●

●●
●●

●● ●● ● ●
●● ●●●

● ●●

●
●●
●
●

●●

●

●

●

●●

●

●

●

●
●

●

● ●

● ● ●●
●

●

●

●
●●●

●
●● ●
●●

●●●●●
●

●●
●

●
●

●
●
●

●●●
●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●● ●

●
●
●●

●

●

●

● ●
●●

●●
●●

●

●
●●

●

●
●

●●
●

● ●

●

●

●

●

●
● ●

●

●
●
●

● ●
●

●

●
●

●

●
●

●

●
●

●●

● ●

●

●●
●

●

●

●
●

● ●
●

●● ● ● ●

●
●

●

●
●

●●
●

●

●
● ●

●
● ●

●
●●

●

●

−20

0

20

70 80 90 100 110 120
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM squat DEF

●●
●

●
●● ● ●

●
●

●

●●●●

● ●
● ●

●
●●

● ●●

●
● ●

●

●

●●

●●● ●

●

●
●● ●

●
●
●

●

●
●● ●

●

●
● ●

●●

●
●

●
●●

●●
●

●
●

●
●

●
●

●

●
●●●

●

●●
●
●

●
● ●

●

●
●

●

●
●

● ●

●●
●

●

●

●
●●● ●

●
● ●

●
●

●
● ●●
●● ●● ●●

●

●

●
●●

●
●● ●

●

●

● ● ● ●
● ● ●

●

●

●
● ●●

●● ●
● ● ●●

● ●● ●
●●

●
●●

●●
●

●●

●
●

●●
●

●
●

● ●
●

●●
● ●

●●●
●

●
●

●● ●
●

●

●
●●●

●

●

●
●

●

●

●●
●

●
●● ● ●

●
●

●

●●●●

● ●
● ●

●
●●

● ●●

●
● ●

●

●

●●

●●● ●

●

●
●● ●

●
●
●

●

●
●● ●

●

●
● ●

●●

●
●

●
●●

●●
●

●
●

●
●

●
●

●

●
●●●

●

●●
●
●

●
● ●

●

●
●

●

●
●

● ●

●●
●

●

●

●
●●● ●

●
● ●

●
●

●
● ●●
●● ●● ●●

●

●

●
●●

●
●● ●

●

●

● ● ● ●
● ● ●

●

●

●
● ●●

●● ●
● ● ●●

● ●● ●
●●

●
●●

●●
●

●●

●
●

●●
●

●
●

● ●
●

●●
● ●

●●●
●

●
●

●● ●
●

●

●
●●●

●

●

●
●

●

●

−20

0

20

90 100 110 120 130 140
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Knee ROM squat DEF

●● ●
●

●● ●
●

●
●● ●● ●

●●
●

●

●

●
●

●
●● ●

●
●

●
●●

●
● ●

●
●

●● ●●●● ●
●●

●

●

●●
●

●
● ●●

●
●●

●
●

●
●

●
●

● ●

●

●
●

●
●●●
●

●●
●●

●

●
●

●

●

● ●

●
●

● ●

●

●

●

●
●

●
● ●

●

● ●● ●

● ●

●
● ●

●
●

●●

●

● ●●●
●

● ●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●
●● ●

●

● ●●●● ●●
●● ●
●
● ● ●

●

●●

●
●

●

●
●
●

●
●

●

●

● ●
●

●

●
● ● ●

● ● ●●

●

● ●●●
●

●● ●
●

●● ●
●

●
●● ●● ●

●●
●

●

●

●
●

●
●● ●

●
●

●
●●

●
● ●

●
●

●● ●●●● ●
●●

●

●

●●
●

●
● ●●

●
●●

●
●

●
●

●
●

● ●

●

●
●

●
●●●
●

●●
●●

●

●
●

●

●

● ●

●
●

● ●

●

●

●

●
●

●
● ●

●

● ●● ●

● ●

●
● ●

●
●

●●

●

● ●●●
●

● ●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●
●● ●

●

● ●●●● ●●
●● ●
●
● ● ●

●

●●

●
●

●

●
●
●

●
●

●

●

● ●
●

●

●
● ● ●

● ● ●●

●

● ●●●
●

−10

0

10

20 25 30 35 40 45
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Ankle ROM squat DEF

●
●

●
●●

●
●● ●

●
●

● ●●
●

● ●●

●

●

●● ●

●

● ●
●

●

●

●

●

●
●

●
●

●

● ●

●

● ●●

●
●

●

●●●●
●

●● ●

●

●

●

●●●●

●●●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●
●

●

●

● ●

●

●

● ●
●

●

●

●●
●

●●
●●

●
●●
●

●

●

●
●

●●
●

●
●

●●

●
●

●
●

●
●

●
●●

●

●

●

●
●

● ●
●

●

●
● ●

●
●

●●
●

●
● ●

● ●

●
●

●

●●

●

●
●

●●

● ●
●

●

● ●●

●

●
●

●
●

●●●
●

●
●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●●

●
●

●
●

●
●

●
●●

●
●● ●

●
●

● ●●
●

● ●●

●

●

●● ●

●

● ●
●

●

●

●

●

●
●

●
●

●

● ●

●

● ●●

●
●

●

●●●●
●

●● ●

●

●

●

●●●●

●●●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●
●

●

●

● ●

●

●

● ●
●

●

●

●●
●

●●
●●

●
●●
●

●

●

●
●

●●
●

●
●

●●

●
●

●
●

●
●

●
●●

●

●

●

●
●

● ●
●

●

●
● ●

●
●

●●
●

●
● ●

● ●

●
●

●

●●

●

●
●

●●

● ●
●

●

● ●●

●

●
●

●
●

●●●
●

●
●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●●

●
●

●
●

−20

0

20

70 80 90 100 110 120 130
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM squat TAF

●

●
●

● ●

● ●

●● ●

●

●●●
●

●

● ●
●

●

●● ●
●

●

●

●
● ●

●

●
● ●

●
●

●

●
●●●

●

●

●

●
●

●

●● ●

●

●
●

●
●

●

●
●

●

●

●

●

●● ●

●

● ●●
●

●

●
●

●

● ●

●
●

●
●

●●

●
●●

●

● ● ●

●

●

●
●

●

●

●

●
●●●

●

●

● ●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●● ●
●

● ●

● ●

●
●

●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●
● ● ●●

●

●
●

●

●

● ●

●

●

●
●●●

●

●

●●
●

●
●

●
●

● ●

● ●

●● ●

●

●●●
●

●

● ●
●

●

●● ●
●

●

●

●
● ●

●

●
● ●

●
●

●

●
●●●

●

●

●

●
●

●

●● ●

●

●
●

●
●

●

●
●

●

●

●

●

●● ●

●

● ●●
●

●

●
●

●

● ●

●
●

●
●

●●

●
●●

●

● ● ●

●

●

●
●

●

●

●

●
●●●

●

●

● ●●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●● ●
●

● ●

● ●

●
●

●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●
● ● ●●

●

●
●

●

●

● ●

●

●

●
●●●

●

●

●●
●

●

−20

0

20

100 110 120 130 140 150
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Knee ROM squat TAF

●

●

●
●

●

●

●

●
●●

●
●● ●●

●

●

● ●

●

● ●●
● ●

● ●●

●

● ●

● ●
●●

●
●

●●●

●

●
●●

●

●
●

● ●
●

●

●●

●

●
●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●● ●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

● ●●
●

● ●
●

● ●

●
●

●

●●

●

●
●

●
●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●●

●

●●

●
●
●

●
●

●

●

●

●

●
●

●
●

●
● ● ●

●
●

●●● ●●

●

●● ●

●

●

●
●

●

●

●

●
●●

●
●● ●●

●

●

● ●

●

● ●●
● ●

● ●●

●

● ●

● ●
●●

●
●

●●●

●

●
●●

●

●
●

● ●
●

●

●●

●

●
●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●● ●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

● ●●
●

● ●
●

● ●

●
●

●

●●

●

●
●

●
●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●●

●

●●

●
●
●

●
●

●

●

●

●

●
●

●
●

●
● ● ●

●
●

●●● ●●

●

●● ●

−10

0

10

20 30 40
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Ankle ROM squat TAF

●
● ●● ●

●●
●

●
●

●

●

●
●

●

● ●
●

●
●

● ●●
●

● ●
●●●●

●

●

●
● ●
●
●

●●

●

●

●
●●

●

●
●●

●●

● ●●●
●

●
●●
●

●

●
●● ●

●

●
●

●

●
●●

●●
●●

●

●● ●

●

● ●

●
●

●

●●

●
●

●

●●●●
●●

●● ●●
●● ●●●

●
● ●●

●●
●●●

●●
●●

● ●

●
● ●
●● ●

●

●
● ●●

● ●
●●

● ●

●●

●●● ●● ●

●
●
●

●

●

● ●●
● ●

●●
●

●●

● ● ●
● ●

●
●
●●

●

●

●
● ●

●

●
●●

●

●

●

●● ● ●

●

●

●●

●

●

● ●

● ●●
● ●● ●

●●
●

●
●

●

●

●
●

●

● ●
●

●
●

● ●●
●

● ●
●●●●

●

●

●
● ●
●
●

●●

●

●

●
●●

●

●
●●

●●

● ●●●
●

●
●●
●

●

●
●● ●

●

●
●

●

●
●●

●●
●●

●

●● ●

●

● ●

●
●

●

●●

●
●

●

●●●●
●●

●● ●●
●● ●●●

●
● ●●

●●
●●●

●●
●●

● ●

●
● ●
●● ●

●

●
● ●●

● ●
●●

● ●

●●

●●● ●● ●

●
●
●

●

●

● ●●
● ●

●●
●

●●

● ● ●
● ●

●
●
●●

●

●

●
● ●

●

●
●●

●

●

●

●● ● ●

●

●

●●

●

●

● ●

● ●

−20

0

20

60 70 80 90 100 110
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM box squat DEF

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●●

●

●●
●

●

●
●

●●

●

● ●
●

●

●

●
●

●
●

●

●

●●●
●

●
●

●
●

●

●
●

●

●●

●

●
●

●●

●

●
●

● ●

●●●● ●

●

●
●

● ●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●●

●
●●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●
●

●● ●●

●
●

●
●

●
●
●● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●●

●

●●
●

●

●
●

●●

●

● ●
●

●

●

●
●

●
●

●

●

●●●
●

●
●

●
●

●

●
●

●

●●

●

●
●

●●

●

●
●

● ●

●●●● ●

●

●
●

● ●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●●

●
●●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●
●

●● ●●

●
●

●
●

●
●
●● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●

−0.06

−0.03

0.00

0.03

0.06

1.85 1.90 1.95 2.00
Mean of logs

Di
ffe

re
nc

e 
be

tw
ee

n 
lo

gs

Knee ROM box squat DEF − log10

●
● ●

●

●
● ●●● ●●

●

●

●
●

●

●●
●

●

●●

●● ●

●

●

●
● ●

●

●

● ●
●

●

●

●
●●

●●
●●

●

●
●●●

●

●
●●

●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●

●

●●●
●

●

●
●●● ●

●

● ●

●
●

●

●

●

●

●●●● ●
●● ●● ● ●●

●
●

●

●
● ●

●● ●● ●
●

●
●

●
●

●

●

●
●

●

●

●

● ●
● ●

●

● ●

●
●

●

●
●●●● ●●●
● ●

●

●
●●●

● ●
● ●●●

● ● ●● ●
●● ●

●

● ●
● ●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

●
●

●●
●

●

●

●
● ●

●

●
● ●●● ●●

●

●

●
●

●

●●
●

●

●●

●● ●

●

●

●
● ●

●

●

● ●
●

●

●

●
●●

●●
●●

●

●
●●●

●

●
●●

●●

●

●

●●

●

● ●●
●

●

●

●
●

●

●

●

●●●
●

●

●
●●● ●

●

● ●

●
●

●

●

●

●

●●●● ●
●● ●● ● ●●

●
●

●

●
● ●

●● ●● ●
●

●
●

●
●

●

●

●
●

●

●

●

● ●
● ●

●

● ●

●
●

●

●
●●●● ●●●
● ●

●

●
●●●

● ●
● ●●●

● ● ●● ●
●● ●

●

● ●
● ●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

●
●

●●
●

●

●

−10

0

10

10 20 30
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Ankle ROM box squat DEF

●
● ●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●
●

●

● ●●●

●
●

●

●●

●●
● ●
●

●

●

●

●
●

●

●●
●

●●
● ●●●

●

● ●●
●

●

●

●●

●●

●
●

●
●

●
● ●●●

●

●

●● ●
●

●

●

●
●

●

●●

●●

●

●●
●

● ●
●●● ●●
●

●
●

●
●

●

● ●●

●

●
●●●

●
●

●
●

●
●

●

●

●
●
●

●● ●●

●●
●

●
●

●

● ●
●

●

●

●

●

●

● ●

●
●
●●

●

●
●●
● ●

●● ● ●

●

●
● ●●

●

●
●
●

●

●

●
●

●
●

●●
●●

●

●

●

●●
●

●●
●

●●
●

●

●
●

●

●
●

● ●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●
●

●

● ●●●

●
●

●

●●

●●
● ●
●

●

●

●

●
●

●

●●
●

●●
● ●●●

●

● ●●
●

●

●

●●

●●

●
●

●
●

●
● ●●●

●

●

●● ●
●

●

●

●
●

●

●●

●●

●

●●
●

● ●
●●● ●●
●

●
●

●
●

●

● ●●

●

●
●●●

●
●

●
●

●
●

●

●

●
●
●

●● ●●

●●
●

●
●

●

● ●
●

●

●

●

●

●

● ●

●
●
●●

●

●
●●
● ●

●● ● ●

●

●
● ●●

●

●
●
●

●

●

●
●

●
●

●●
●●

●

●

●

●●
●

●●
●

●●
●

●

●
●

●

●

−20

0

20

60 80 100 120
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM box squat TAF

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●●

●

●
●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●●

●

●
●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

−0.06

−0.03

0.00

0.03

0.06

1.85 1.90 1.95 2.00
Mean of logs

Di
ffe

re
nc

e 
be

tw
ee

n 
lo

gs

Knee ROM box squat TAF − log10

●
● ●

●

●

●

●●

● ●

● ●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
● ●

●
●● ●

●

●

●

●●● ●
●● ●

●

●

●
●

●●●

●

●

● ●●

●

●
●

●

●
●●

●●

●

●

● ●●

●

● ●

● ●
●

●

●

●

●

●

●
●

●●
● ●

● ●

● ●
●

●
● ●

●

●
●

●
●●

●

●
● ●

●

●

● ●
●

●

● ● ●

●

●

●

●
●

●

●

●

●

● ● ●

●●
●●

●

●
●●

● ●

●

● ●●
●

● ●

●

●

●

●

●

●

●●

●

●● ●

●

●

●● ●

●

● ●

●
● ●

●
●

●

●

●

● ●
●

●

●

●

●●
●●

●
●

●

●
●

●
● ●

●

●

●

●●

● ●

● ●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
● ●

●
●● ●

●

●

●

●●● ●
●● ●

●

●

●
●

●●●

●

●

● ●●

●

●
●

●

●
●●

●●

●

●

● ●●

●

● ●

● ●
●

●

●

●

●

●

●
●

●●
● ●

● ●

● ●
●

●
● ●

●

●
●

●
●●

●

●
● ●

●

●

● ●
●

●

● ● ●

●

●

●

●
●

●

●

●

●

● ● ●

●●
●●

●

●
●●

● ●

●

● ●●
●

● ●

●

●

●

●

●

●

●●

●

●● ●

●

●

●● ●

●

● ●

●
● ●

●
●

●

●

●

● ●
●

●

●

●

●●
●●

●
●

●

●
●

−10

0

10

10 20 30
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)
Ankle ROM box squat TAF

●● ●● ●
●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●●
●

●

●
●
●●

●●

●
● ●

●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●

● ●
●

●
●

●

● ●
●

●

●

● ● ●

●
●

●●
● ●● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●● ●● ●
●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●●
●

●

●
●
●●

●●

●
● ●

●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●

● ●
●

●
●

●

● ●
●

●

●

● ● ●

●
●

●●
● ●● ●

●

●

●

●

●
●

●
●

●
●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

−20

0

20

80 100 120
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM sandbag DEF

●●●
● ●●

●
●

●

●

●
●

● ● ●●● ●

●
●●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●●
●●

●●
●

● ●

●
●

●

●
●

●
●
●●

●

●

●

● ●
●
●●●

●
● ●● ● ●●

●
●

●
●● ● ●

●

●
●

●

●
●●

●
●

●
●

●●

● ● ●

●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●
●

●●●
● ●●

●
●

●

●

●
●

● ● ●●● ●

●
●●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●●
●●

●●
●

● ●

●
●

●

●
●

●
●
●●

●

●

●

● ●
●
●●●

●
● ●● ● ●●

●
●

●
●● ● ●

●

●
●

●

●
●●

●
●

●
●

●●

● ● ●

●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●
●

−20

0

20

100 110 120 130
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Knee ROM sandbag DEF

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●

● ●
●

●

●

●
●

●
●

●
●

●

●
●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●

● ●
●

●

●

●
●

●
●

●
●

●

●
●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

−10

0

10

30 40 50 60
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Ankle ROM sandbag DEF

●
●

●

● ●
●

●

●

●

●

●
●

●
●●● ● ●

●
●

●

●

●

●●
●

●

●

●

●
●●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●●● ● ●

●
●

●

●

●

●●
●

●

●

●

●
●●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

−20

0

20

80 100 120
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Hip ROM sandbag TAF

●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●
●

●

●

●

●●
●●●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●● ●

●●●

●

●

●

●●
●

●

● ●
●

●

● ●
●●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●●

● ●

●
●

● ●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●
●

●

●

●

●●
●●●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●● ●

●●●

●

●

●

●●
●

●

● ●
●

●

● ●
●●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●●

●

−20

0

20

100 110 120 130 140
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Knee ROM sandbag TAF

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

−10

0

10

30 40 50 60
Mean ROM (°)

Di
ffe

re
nc

e 
(°

)

Ankle ROM sandbag TAF



145 
 

 

Figure 6.7 Example of preliminary time-series data and E10% measurement of hip (row 

one), knee (row two) and ankle (row three) flexion/extension during a single stride of 

the shuffle-walk (column one) and bear crawl (column two). 
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Figure 6.8 Bland–Altman plots for hip and knee ROM using each MARG method 

(DEF/TAF) during the shuffle-walk (row one/two) and bear crawl (row three/four). Red 

data points represent male participant data, and green data points represent female 

participant data. 
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Table 6.4 Bland–Altman limits of agreement. 

 
MARG TAF MARG DEF 

L−LoA Bias U−LoA L−LoA Bias U−LoA 

Hip ROM       

Squat (°) −21.5 −3.4 14.8 −15.42 1.6 18.6 

Box squat (°) −14.1 1.0 16.0 −9.8 4.1 17.9 

Sandbag pickup (°) −18.5 −0.7 17.2 −12.5 4.0 20.6 

Shuffle−walk (°) −7.3 −1.6 4.0 −8.2 −2.0 4.2 

Bear crawl −0.1857* 0.0123* 0.2100* −0.1182* 0.0572* 0.2325* 

Knee ROM       

Squat (°) −16.9 −2.6 11.7 −1.1 8.2 17.4 

Box squat −0.0409* −0.0001* 0.0407* 0.0065* 0.0337* 0.0608* 

Sandbag pickup (°) −11.0 0.6 12.1 −1.1 8.0 17.1 

Shuffle−walk −0.1463* 0.0746* 0.2954* −0.1239* 0.1079* 0.3398* 

Bear crawl  −0.3165* −0.0692* 0.1781* −0.2633* 0.0129* 0.2891* 

Ankle ROM       

Squat (°) −12.5 −6.5 −0.6 −6.1 −1.2 3.8 

Box squat (°) −12.0 −5.7 0.6 −5.8 −1.9 2.0 

Sandbag pickup (°) −13.4 −4.1 5.2 −7.5 −0.1 7.2 

Spatiotemporal       

Stride length (m) −0.050 0.013 0.077 −0.090 0.004 0.099 

Stride time (s) −0.061 −0.015 0.030 −0.100 −0.037 0.0256 

Stance time (s) −0.077 −0.008 0.060 −0.115 −0.033 0.049 

Positive bias represents underestimation by the MARG method and negative bias represents 
overestimation by the MARG method; * log transformed data (unitless); L-LoA, lower limits of 
agreement; U-LoA, upper limits of agreement. 

 

6.5.2 SPATIOTEMPORAL MEASURES 

The stride length, stride time, and stance times were compared for 192, 178, and 178 

instances of the shuffle-walk, respectively, and 116, 83, and 83 instances of the bear crawl, 

respectively (Table 6.5). The stride length, stride time, and stance time MAPE showed 

good to excellent agreement with the OMC system (Table 6.6). Bland–Altman plots 

indicated a slight overestimation of the stride and stance time by the MARG method 

during both the shuffle-walk and bear crawl, and an underestimation of the stride length 

by the MARG method during the shuffle-walk (Figure 6.9 and Table 6.6). 
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Table 6.5 Spatiotemporal measures of the shuffle-walk and bear crawl. 

 
OMC MARG 

Stride Length (m) Stride Time (s) Stance Time (s) Stride Length (m) Stride Time (s) Stance Time (s) 

Shuffle-walk 0.339 ± 0.086 0.846 ± 0.219 0.568 ± 0.179 0.326 ± 0.096 0.861 ± 0.224 0.577 ± 0.177 

Bear crawl 0.515 ± 0.157 1.912 ± 0.479 1.502 ± 0.497 0.511 ± 0.175 1.949 ± 0.489 1.535 ± 0.500 

Values presented as the mean ± standard deviation. 
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Figure 6.9 Bland–Altman plots for the stride length, stride time, and stance time during 

the shuffle-walk (row one) and bear crawl (row two). Red data points represent male 

participant data, and green data points represent female participant data. 

Table 6.6 Error metrics of spatiotemporal measures. 

 
Stride Length Stride Time Stance Time 

RMSE (m) MAPE (%) RMSE (s) MAPE (%) RMSE (s) MAPE (%) 

Shuffle-walk 0.035 8.2 ± 7.9 0.028 2.6 ± 2.1 0.036 5.2 ± 5.9 

Bear crawl 0.048 7.8 ± 5.7 0.049 2.4 ± 2.5 0.053 3.2 ± 2.8 

Values presented as the mean ± standard deviation where relevant. 
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6.6 DISCUSSION 

The aim of conducting this study was to assess the validity of a minimal modelling 

MARG motion capture method for spatiotemporal and kinematic measures during 

repetitions of various functional fitness exercises. The MARG method included minimal 

modelling assumptions, in that simple, sensor to segment alignment, data processing 

(through the DEF method), and anatomical modelling assumptions were used. To the best 

of the authors’ knowledge, the exercises selected in the current study covered a wider 

range of sagittal plane ROM than previous literature [142, 145, 205, 223].  

The RMSE in hip, knee, and ankle ROM during the squat, box squat, and sandbag pickup 

were similar to those of previous research during squat, single leg squat, and counter 

movement jump exercises (hip: 4.9 – 8.3°; knee: 2.4 – 3.1°; ankle: 2.5 – 5.3°) [142]. 

While the knee ROM RMSE may be slightly greater in the current study than those of 

Teufl, et al. [142], a MAPE of less than 10% was still considered to be a good level of 

agreement. Slightly greater agreeance was seen in joint ROM using the TAF method than 

the DEF method for the hip and knee; however, both methods were acceptable. The DEF 

method showed greater agreeance in all analysed exercises for ankle ROM and is 

suggested in preference to the TAF method for ankle joint measures.  

The shuffle-walk and bear crawl demonstrated small hip and knee joint ROM (12.1 ± 

3.3°–40.0 ± 20.4°) and agreement between the OMC system and both TAF and DEF 

MARG methods varied. Similar hip and knee RMSE during over-ground walking (hip: 

6.1°; knee: 6.8°) have been found in previous studies [224]. The relatively large (>10%) 

MAPE found during the shuffle-walk and bear crawl movements in the current study 

suggest neither MARG method (DEF or TAF) may be acceptable for measuring the 

relatively moderate hip or knee ROM during the shuffle-walk or bear crawl. The high 

noise to ROM measurements observed in hip and knee ROM during the modified gait 

patterns (example seen in Figure 6.7d) made the manual alignment of OMC and MARG 

time-series plots based on peak values ambiguous. Furthermore, phase discrepancies were 

observed in these data (Figure 6.7a,b), which may be the result of the resampling of 

MARG joint angle estimations to 100 Hz for comparison with OMC. 

In exercises such as the shuffle walk where the stride duration is small (0.846 ± 0.219 s) 

relative to the sample rate of the OMC system (100 Hz), the modelling of few data points 

may result in the loss of fidelity in the joint angle approximation. As the MARG method 
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is initially sampled and modelled at 1125 Hz, and then resampled to 100 Hz for 

comparison with the OMC, the loss of fidelity in the joint angle approximation may be 

less than the OMC approximation. The large differences observed in the timeseries curve 

analysis (in particular Figure 6.7e) may be a combined result of the inherent noise in the 

MARG method joint angle approximation and the loss of fidelity in the OMC joint angle 

approximation for short-duration activities, such as a stride in the shuffle walk and bear 

crawl. The noise in the MARG joint angle approximation may be somewhat reduced by 

refining the parameters selected for the TAF method, while the loss of fidelity in the OMC 

approximation may be reduced by using an OMC system with greater sampling rate. The 

ambiguity caused by both noise and phase duration discrepancy led to the inability to 

confidently report E10% values for the hip and knee and as such, such data were omitted. 

It was concluded that the recommendation based on other error metric calculations, that 

neither MARG method (DEF or TAF) may be acceptable for measuring hip/knee ROM 

during the shuffle-walk or bear crawl, would not change upon the calculation of E10% for 

all participants.  

Preliminary ankle ROM data of the shuffle-walk and bear crawl demonstrated an even 

greater noise to ROM ratio (Figure 6.7e,f) than at the hip and knee. Ambiguity caused by 

this large noise to ROM ratio lead to the inability to confidently report error metrics. 

Wells, et al. [45] observed greater differences in OMC- and MARG-based joint angle 

estimations during higher velocity upper-limb sporting movements when compared to 

lower velocity movements. As the MARG devices used to measure ankle ROM are 

positioned closer to the extremity of the lower limb than those used to estimate hip and 

knee ROM, higher velocities and larger disagreement between the OMC and MARG joint 

angle estimation than at the hip and knee may be expected. Based on the preliminary data, 

error metrics of the hip and knee, and predicted greater error metrics at the ankle, it was 

concluded that neither MARG method may be suitable for ankle ROM assessment during 

the shuffle-walk and bear crawl where a small ROM and greater movement velocity are 

expected. The use of different tuning properties, dependent on the sensor location and 

joint being observed, may assist in reducing the overall error of the system. 

Whilst previous researchers have focused on comparing OMC relative angles using 

markers placed on or around MARG sensors to relative angles estimated from MARG, in 

the current study, biomechanically-modelled joint estimations derived from an OMC 

system were compared to relative angles estimated from MARG measures. The relative 
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angles measured using the MARG method assume that the anterior/posterior axis of the 

foot sensor and the anterior/posterior axes of all limbs are aligned during the calibration 

pose. Any error in the initial alignment will be apparent in the mathematical 

transformation of each individual segment sensor coordinate system to the respective 

segment coordinate system, with the error compounding where adjoining segments are 

misaligned. Brice, et al. [127] demonstrated less agreement between OMC 

biomechanically-modelled joint angles and un-modelled MARG relative angles than 

OMC un-modelled relative angles and MARG measured relative angles. This leads to the 

suggestion that some of the differences in joint angle ROM estimations found in the 

current study may be due to the differences in modelling assumptions used in each of the 

OMC and MARG methods and the compounding error occurring throughout the 

alignment and mathematical transformation process.  

With the exception of the stride length, the errors in spatiotemporal measures during the 

shuffle-walk and bear crawl in the current study were greater than those observed using 

a similar methodology during over-ground walking [141]. The stride length, stride time, 

and stance time RMSE observed by Teufl, et al. [141] during over-ground walking were 

0.04 m, 0.01 s, and 0.02 s, respectively, with similar RMSE having been observed in 

treadmill running [225]. The larger disagreement in temporal parameters between the 

OMC and MARG method in the current study may partially be due to the difficulty in 

identifying the instance of IC and FC during the modified gait patterns, which resulted in 

reduced IC and reduced changes in heel acceleration during the initial swing than would 

be seen in a normal gait with longer strides [185]. In the modified gait patterns, identifying 

FC from a MARG sensor mounted on the lateral side of the heel, where the toe is the last 

true contact point with the ground, may lead to inaccuracies in identifying the FC instance.  

While a number of gaps within the literature were addressed in this study, the limitations 

of the current study should be noted. Data were only collected from a single side of the 

body, in a limited laboratory space and assessed only for sagittal plane flexion/extension 

ROM. Although a magnetic calibration was conducted for each testing session, it is 

expected that due to ferromagnetic disturbances present in the laboratory environment, 

the accuracy of the MARG method may have still been compromised. The reference 

OMC and MARG method use different physical measurements to derive joint angle 

estimations, with each method having associated noise. Measurement noise combined 

with different modelling assumptions would result in distinctly different noise properties 
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and therefore signal patterns. The ability to compare estimations of small ROM between 

systems where the noise to signal ratio is high may be a major limitation when validating 

MARG against OMC methods [142, 145]. 

6.7 FUTURE WORK 

To further develop the proposed MARG method into an accurate means of measuring 

human kinematics during high velocity, small ROM movements, such as the shuffle walk 

and bear crawl, a number of areas of potential development are suggested. Further 

refinement of the Kalman filter tuning parameters, specialised for a given exercise 

(variance of accelerometer/gyroscope noise, and linear acceleration compensation factor) 

and the environment (magnetometer disturbance noise) may be needed to improve joint 

ROM estimations where high signal to noise ratios are observed [147]. These parameters 

may be established through further data collection and testing. Where previous literature 

has achieved segment coordinate system to sensor alignment using specialised equipment 

[45] or complicated movement-based algorithms [150, 152, 172, 175], a possible middle-

ground between the complexities of previous literature and the minimal methods used in 

the current study may be achieved. Although not a direct development of the MARG 

method, collecting data at a sampling rate common to both MARG and OMC equipment 

will likely result in greater agreeance between methods and provide a closer measure to 

the true validity of the MARG method. Future work should also look at assessing the 

validity of the MARG method for bilateral, multi-planar motion and assess its inter-day 

and assessor reliability. 
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6.8 CONCLUSIONS 

The proposed minimal modelling MARG-based method is a valid means of assessing 

spatiotemporal and kinematic measures of persons performing various functional fitness 

exercises. It is suggested that care should be taken when selecting tuning and filtering 

parameters when using the MARG method for specific exercises. Although a high noise 

to joint ROM measurement ratio may be an inherent issue when assessing the validity of 

human motion analysis methods during some exercises, further development of the 

MARG method may result in a valid means of measuring small joint ROM during fast 

movements. 
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7. THE BIOMECHANICAL CHARACTERISTICS OF THE STRONGMAN YOKE 

WALK 

7.1 PREFACE 

The systematic reviews presented in Chapter 2 and Chapter 3 identified the lack of 

spatiotemporal and kinematic analyses of athletes performing the yoke walk as a major 

gap in the current field of strongman biomechanics research. Further, all previous 

strongman biomechanics studies had only included male athletes with a variety of training 

backgrounds, some with little to no strongman training or competition experience. The 

study presented in this chapter describes the general movement pattern of experienced 

male and female strongman athletes performing the yoke walk using ecologically valid 

loads and carry distances. Part a) of Question 4, Question 5 and Question 6 were 

addressed in this chapter. 

Supplementary tables (e.g., Table S1) referenced throughout this chapter can be found in 

Appendix 5. 

This chapter has been published in Frontier in Sports and Active Living on 26 April 

2021, available at: https://www.frontiersin.org/articles/10.3389/fspor.2021.670297/full. 

Hindle, B. R.; Lorimer, A.; Winwood, P.; Brimm, D.; Keogh, J. W. L. The biomechanical 

characteristics of the strongman yoke walk. Frontiers in Sports Active Living 2021, 3, 

670297, doi: 10.3389/fspor.2021.670297. 

This is an Open Access article reproduced under the permission of the Creative 

Commons Attribution 4.0 International License CC BY 4.0. 
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7.2 ABSTRACT 

The yoke walk is a popular strongman exercise where athletes carry a heavily loaded 

frame balanced across the back of their shoulders over a set distance as quickly as 

possible. The aim of conducting this study was to use ecologically realistic training loads 

and carry distances to: 1) establish the preliminary biomechanical characteristics of the 

yoke walk; 2) identify any biomechanical differences between male and female athletes 

performing the yoke walk; and 3) determine spatiotemporal and kinematic differences 

between stages (intervals) of the yoke walk. Kinematic and spatiotemporal measures of 

hip and knee joint angle, and mean velocity, stride length, stride rate and stance duration 

of each 5 m interval were taken whilst 19 strongman athletes performed three sets of a 20 

m yoke walk at 85% of their pre-determined 20 m yoke walk one repetition maximum. 

The yoke walk was characterised by flexion of the hip and slight to neutral flexion of the 

knee at heel strike, slight to neutral extension of the hip and flexion of the knee at toe-off 

and moderate hip and knee range of motion (ROM), with high stride rate and stance 

duration, and short stride length. Between-interval comparisons revealed increased 

normalised stride length (high velocity: 1.300 ± 0.198; low velocity: 1.140 ± 0.160; -0.97 

≤ d ≤ -0.80; p < 0.001), stride rate (high velocity: 0.498 ± 0.053; low velocity: 0.476 ± 

0.052; -0.47 ≤ d ≤ 0.43; p < 0.001) and lower limb ROM, and decreased stance duration 

(high velocity: 0.411 ± 0.056; low velocity: 0.441 ± 0.057; 0.60 ≤ d ≤ 0.69; p < 0.001) at 

greater velocity. Although no main between-sex differences were observed, two-way 

interactions revealed female athletes exhibited greater knee extension at toe-off (hp2 = 

0.048, p = 0.022) and reduced hip ROM (hp2 = 0.048, p = 0.020) during the initial (0 – 5 

m) when compared with the final three intervals (5 – 20 m), and covered a greater distance 

before reaching maximal normalised stride length than males. The findings resulting from 

conducting this study may better inform strongman coaches, athletes and strength and 

conditioning coaches with the biomechanical knowledge to: provide athletes with 

recommendation on how to perform the yoke walk based on the technique used by 

experienced strongman athletes; better prescribe exercises to target training adaptations 

required for improved yoke walk performance; and better coach the yoke walk as a 

training tool for non-strongman athletes. 
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7.3 INTRODUCTION 

Strongman is a competitive strength-based sport which now caters to both male and 

female athletes of varying age, body mass and physical ability. Strongman exercises are 

often derived from traditional tests of strength and involve more awkward variations of 

weightlifting/powerlifting exercises. Such exercises include variations of the squat, 

deadlift and clean and jerk and heavier versions of common everyday activities such as 

loaded carries [51]. While strongman exercises vary across competitions, the most 

common exercises often require athletes to: lift stones, axles, kegs, sandbags or oversized 

dumbbells for maximal load or as a set of incremental loads in the shortest time; pull 

heavy vehicles or flip large vehicle tyres over a distance in the shortest time; or carry 

loaded frames, kegs or sandbags from one location to another in the shortest time [13]. 

The strongman yoke walk requires an athlete to carry a heavily loaded frame balanced 

across the back of the shoulders a set distance, often 20 m (Figure 7.1). In strongman 

training and competition, the yoke walk is typically the heaviest load carriage exercise 

performed by athletes. The winner of events like the yoke walk, in a competition setting, 

is the athlete who requires the shortest time to complete the set distance. For those athletes 

unable to complete the set distance, the distance the yoke was moved from the original 

starting position is the performance measure [226]. 

Research on the biomechanics of the yoke walk is limited. McGill, et al. [36] measured 

trunk muscle activation patterns and lumbar spine motion, load and stiffness of three 

experienced male strongman athletes (body mass: 117.3 ± 27.5 kg) performing a single 8 

m yoke walk loaded at 177.3 ± 24.3 kg. The large spinal compression observed in athletes 

performing the yoke walk was suggested to be the result of the greater absolute load of 

the yoke (when compared with all other implements used in the study including the 

farmers walk, log lift, tyre flip and atlas stone lift) and the large torso muscular co-

contraction required to produce spinal stability throughout the walk [36]. Beyond the 

limitation of only including three participants in their study, the loads and carry distance 

used in the study by McGill, et al. [36] would be considered quite easy by today’s 

standards, whereby athletes of this body mass may be expected to carry loads in excess 

of 300 kg for at least twice the distance (e.g. 15 – 20 m) in competition. 
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Figure 7.1 A strongman athlete performing the yoke walk. Image reproduced with 

permission from respective copyright owner and person pictured. 

A retrospective injury study conducted by Winwood, et al. [14] revealed 8% of injuries 

in strongman athletes were caused by the yoke walk, with the most common site of injury 

during the yoke walk being the lower back. Such findings identified the yoke walk as the 

second most dangerous strongman exercise with respect to injury causation out of the 

most popular strongman exercises, with the most dangerous being the atlas stone lift [14]. 

The greater loads routinely carried by athletes in yoke walk training and competition than 

in the previous yoke walk study by McGill, et al. [36], coupled with the retrospective data 

by Winwood, et al. [14], suggest that athletes are likely exposed to even greater spinal 

muscular compression and thus greater injury risk than first anticipated by McGill, et al. 

[36].  

Due to the lack of quantitative data on the yoke walk, the biomechanics of loaded 

backpack carriage and the strongman farmers walk exercise, where competitors are 

required to carry a heavy object (similar to a suitcase) in each hand, may provide some 
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insight into the likely biomechanics of the yoke walk [217]. Differences in lower limb 

joint kinematics at heel strike and toe off and joint range of motion (ROM) measures have 

been observed between the farmers walk and unloaded walk [5]. As the farmers walk was 

characterised by greater flexion of each lower limb joint at heel strike, when compared 

with unloaded walking, it was concluded that the adopted strategy may reduce braking 

forces and put the muscle in a better position for force development [5]. Both the farmers 

walk and backpack load carriage have been associated with an increase in stride rate and 

a decrease in stride length when compared with unloaded walking, with larger effect sizes 

reported at greater loads [5, 98].  

No data exists comparing the biomechanics of male and females performing the yoke 

walk or in carrying loads similar to those commonly carried in the yoke walk. 

Biomechanical differences between male and females carrying sub-body mass loads have 

been reported. When walking at the same velocity (~1.78 m/s) and carrying the same 

absolute load (≤ ~36 kg distributed as various sites on the body including a rucksack), 

females exhibited greater forward inclination of the trunk and employed greater stride 

rate to compensate for their shorter stride length than males [227]. Martin, et al. [227] 

concluded that females were more sensitive to load than males, with biomechanical 

differences suggested to be due to the differences in anthropometrics between sexes. 

Bode, et al. [228] also reported between-sex differences where male soldiers were found 

to exhibit greater knee ROM than female soldiers when carrying the equivalent absolute 

vest-borne load (≤ 55 kg) at a set velocity (1.34 m/s). Conversely, Silder, et al. [229] and 

Krupenevich, et al. [230] found no biomechanical differences between male and females 

undertaking sub-body mass load carriage, with Krupenevich, et al. [230] concluding that 

insufficient loading (22 kg) may have accounted for the lack of significant between-sex 

biomechanical differences.  

The between-sex studies of Martin, et al. [227], Bode, et al. [228] and Krupenevich, et al. 

[230] used identical absolute loads for male and female participants, whereas Silder, et 

al. [229] used loads based on a percentage of the carrier's body mass. The loading 

conditions used by Silder, et al. [229] may be more representative of the differences in 

loads used by male and female athletes performing the yoke walk. Conducting between-

sex comparative analyses where males and females are matched for strength (which may 

also be achieved through appropriate loading) is particularly important when determining 
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the true effect of sex on the movement pattern of an athlete, as strength and skill level are 

possible confounding factors in this observation [231]. 

The initial acceleration phase (0 – 3 m) of the farmers walk has been associated with 

reduced stride lengths, stride rates and increased stance duration and smaller thigh and 

knee ROM, when compared with the later stages of the walk (8.5 – 20 m) [30]. Due to 

the lack of between-sex biomechanical analyses performed for heavy load carriage 

exercises such as the farmers walk or yoke walk, and the inconclusive biomechanical 

differences between male and female athletes carrying sub-body mass loads [227-230], it 

is unknown if any two-way interactions exist between sex and interval during heavy load 

carriage.  

As this study is the first of its kind to present spatiotemporal and kinematic measures of 

male and female athletes performing the yoke walk, an emphasis is placed on the 

importance of undertaking a descriptive-type study of the movement pattern associated 

with the yoke walk. The aim of conducting this study is to use ecologically realistic 

training loads and carry distances to: 1) establish the preliminary biomechanical 

characteristics of the yoke walk; 2) identify any biomechanical differences between male 

and female athletes performing the yoke walk; and 3) determine spatiotemporal and 

kinematic differences between stages (intervals) of the yoke walk. In alignment with the 

aim of conducting this study, it was hypothesised that: 1) athletes performing the yoke 

walk would exhibit reduced lower limb ROM, stride length and stance duration and 

increased stride rate when compared with data of the previously studied farmers walk; 2) 

no between-sex differences would be observed; and 3) athletes would exhibit smaller joint 

ROM, smaller stride length, reduced stride rate and greater stance duration during the 

initial 5 m than the later intervals.  

Addressing the aim of this study will enable researchers, strongman coaches and strength 

and conditioning coaches to: provide male and female strongman athletes with a more 

informed recommendation on how to perform the yoke walk based on the technique used 

by experienced strongman athletes; conceptualise technique improvements for 

performance enhancement; better identify possible injury risks associated with 

performing the yoke walk; prescribe the use of the yoke walk as a training tool for both 

strongman and non-strongman athletes with greater directed intent; and construct future 

research into the strongman yoke walk.  
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7.4 MATERIALS AND METHODS 

7.4.1 EXPERIMENTAL APPROACH 

A cross-sectional observational experimental design was used to establish spatiotemporal 

and kinematic biomechanical characteristics throughout a 20 m yoke walk. Male and 

female strongman athletes (Table 7.1) undertook two testing sessions. Session one 

consisted of a determination of the athlete's 20 m yoke walk one repetition maximum 

(1RM) to establish loading conditions for session two. Session two consisted of the 

collection of spatiotemporal and kinematic measures during three sets of 20m yoke walks 

with 85% 1RM load. Anthropometric measures of stature, body mass, trochanterion-

tibiale laterale height and tibiale laterale height of each athlete were taken by a trained 

person using ISAK methodologies [232]. 

7.4.2 PARTICIPANTS 

Nineteen experienced strongman competitors (12 male and 7 female) were recruited for 

this study (Table 7.1). All participants were required to have a minimum of 18 months’ 

strongman training experience, have competed in at least one strongman competition and 

be free from moderate or major injury for a minimum of one week before testing. For the 

purposes of the study a moderate injury was defined as an injury that had stopped the 

athlete from performing a strongman exercise during a strongman session, whereas a 

major injury was defined as an injury which had stopped the athlete continuing all 

exercises/the session completely [13]. Participants who met the above criteria were 

informed of the purpose of the study and asked to sign an informed consent form. Ethical 

approval was granted for all procedures used throughout this study by Bond University’s 

Human Research Ethics Committee (BH00045). 
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Table 7.1 Participant characteristics. 

Descriptor Female Male 

Age (y) 33.1 ± 6.7 30.3 ± 6.8 

Body mass (kg) 81.1 ± 14.5 111.5 ± 26.8 

Stature (m) 1.65 ± 0.04 1.82 ± 0.09 

Femur length (m) 0.394 ± 0.032 0.420 ± 0.040 

Tibia length (m) 0.475 ± 0.022 0.519 ± 0.030 

Max 20 m yoke (kg) 170.0 ± 44.0 270.0 ± 41.6 

85% 1RM yoke (kg) 144.5 ± 37.4 229.5 ± 35.3 

Strongman training experience (years) 2.5 ± 1.0 2.9 ± 1.7 

Strongman competition experience  
(number of competitions in past 2 years) 4.0 ± 3.0 3.4 ± 2.2 

 

7.4.3 TRIAL CONDITIONS 

Athletes were instructed to prepare for each session in the same way in which they would 

prepare for a training session to achieve optimal performance in the testing sessions. As 

athletes were well trained in strongman, self-directed warm-up routines were performed 

by each participant [5, 31, 32, 69, 233]. Warm-up routines typically lasted for 15 - 30 min 

and included dynamic stretching and short distance (< 10 m) yoke walks at loads 

approaching those expected to be used by the individual throughout the session. Athletes 

were permitted to use knee and elbow sleeves, lifting belts, wrist wraps and lifting chalk 

during sessions, as these lifting aids are commonly used in training and competition. 

7.4.4 SESSION PROTOCOLS 

Session one 1RM testing required athletes to carry a maximal load yoke a distance of 20 

m in under 20 s without dropping (returning the yoke to the ground) during the walk. 

Athletes worked up to a maximum yoke load in increments selected by the athlete. When 

an athlete was unable to complete the distance in under 20 s, or dropped the yoke before 

finishing the 20 m, the athlete was permitted one additional attempt at the failed load. 

Where the athlete failed the second attempt, the previous successfully completed load was 

prescribed as their 1RM. Athletes were assigned a rest period of six to eight min between 

each attempted load [55]. 

Session two was performed a minimum of seven days after session one and required 

athletes to perform three sets of a 20 m yoke walk as quickly as possible at a load of 85% 

of their 1RM from session one. This load was selected to reflect a typical training session 

routinely performed by the strongman athletes, whereby they typically select heavy, 
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submaximal loads with the intention of performing multiple sets with high velocity and 

no drops. To begin the trial the athlete was positioned standing beneath the cross member 

of the yoke with the yoke still in contact with the ground, as would be the typical starting 

position in a strongman competition. On the signal "athlete ready, three, two, one, lift" 

the athlete lifted the yoke from the ground and commenced the 20 m walk. The trial was 

concluded as soon as the final timing gate was broken at the 20 m line. Where an athlete 

dropped the yoke during a set, data were only included from the previously completed 5 

m intervals within that set. Athletes were assigned a rest period of six to eight min 

between each set [55].  

7.4.5 DATA ACQUISITION AND ANALYSIS 

Yoke walks were performed indoors on a 20 m rubberised/synthetic floored runway. 

Dimensions of the yoke were 1.58 m (length), 1.38 m (width), 2.08 m (height), with an 

adjustable crossmember to suit the stature of each athlete. Kinematic and spatiotemporal 

measures of athletes performing the yoke walk were estimated using the inertial motion 

capture methodologies of Hindle, et al. [140] (Table 7.2). Four magnetic, angular rate and 

gravity (MARG) devices (ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) were 

positioned on the athlete as detailed in Table 7.3, capturing tri-axial acceleration, angular 

velocity and magnetic field strength data at 1125 Hz (accelerometer and gyroscope) and 

112 Hz (magnetometer) [140]. The MARG data collected for each segment were input 

into a Matlab script (The Mathworks Inc., Natick, MA, USA) developed by the authors 

to estimate hip and knee joint kinematics in the sagittal plane, and stride length, stride 

rate and stance duration [140]. 

Timing gates (Smartspeed, Fusion Sport, Queensland, Australia) were positioned at the 0 

m (start), 5 m, 10 m, 15 m and 20 m (finish) mark of the runway (Figure 7.2) to measure 

split times for each 5 m interval. All velocity measures reported throughout were based 

on timing gate calculations. At the beginning of each trial the yoke was positioned behind 

the 0 m mark so that the first timing gate would be broken within the first stride made by 

the athlete. An iPad Air 2 (iPad Air 2, iOS 13.3.1, Apple Inc., CA, USA) recording at 120 

Hz was used to capture and count complete strides within each 5 m interval. The video 

data were used to identify strides from each interval in the time-series MARG-based 

spatiotemporal and kinematic estimations (Table 7.2). Spatiotemporal measures of mean 

velocity, stride length, stride rate and stance duration were normalised using a Froude 

number approach to account for between-athlete (especially, between-sex) differences in 
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lower limb length and inertial properties [234, 235]. Only normalised spatiotemporal 

measures were included in the statistical analysis. Non-normalised values are provided in 

the supplementary tables. 

Table 7.2 Temporal and kinematic measurement definitions. 

Parameter Definition 

Spatiotemporal 

Mean velocity (m/s) Distance of the walk interval (5 m) divided by the time taken to complete 
the given interval. 

Stride rate (Hz) Inverse of the time for each stride. 

Stride length (m) Horizontal distance covered from heel strike to the next heel strike of the 
same foot. 

Stance duration (s) Duration of time from heel strike to toe-off of the same foot. 

Kinematic 

Joint angle (º) Hip and knee angle at heel strike and toe-off. Joint angle definitions 
provided in Figure 7.3. Positive angles denote flexion, negative angles 
denote extension. 

Hip ROM (º) Maximum angle between the pelvis and thigh minus minimum angle 
between the pelvis and thigh throughout a stride. 

Knee ROM (º) Maximum angle between the thigh and shank minus minimum angle 
between the thigh and shank throughout a stride. 

ROM range of motion. 
 

Table 7.3 MARG device locations. 

Segment Position 

Pelvis Halfway between the left and right posterior superior iliac spine. 

Right thigh 150 mm proximal to the lateral epicondyle of the femur. 

Right shank 100 mm distal to the lateral tibial condyle. 

Right foot Midway between the base of the foot and the lateral malleoli. 
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Figure 7.2 Runway and equipment schematic. 

 

 

Figure 7.3 Joint angle definitions. 
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7.4.6 STATISTICAL METHODS 

Descriptive statistics (mean ± standard deviation) of all variables were calculated for each 

5 m interval of the 20 m walk. A linear mixed effects model with post-hoc analyses was 

used to establish two-way interactions between sex and interval for each biomechanical 

measure and main effects of sex, interval and set. Each individual athlete was classified 

as a random effect. The modelled data was assessed for main effects of set prior to 

combining measured parameters for all sets. Partial eta-squared effect sizes (hp2) were 

calculated for two-way interactions with classifications of negligible (hp2 ≤ 0.01), small 

(0.01 > hp2 ≥ 0.06), moderate (0.06 > hp2 ≥ 0.14) and large (hp2 > 0.14) [236]. Bonferroni 

post-hoc pairwise t-tests were conducted on parameters where significant differences 

were detected. Cohen's d (d) effect sizes were calculated for pairwise comparisons with 

classification of negligible (d < 0.2), small (0.2 ≤ d < 0.5), moderate (0.5 ≤ d < 0.8) and 

large (d ≥ 0.8) [236]. Data were checked for normality and homoscedasticity using visual 

inspection. Power analyses were conducted based on the limited farmers walk data 

available [30]. Expected between-interval differences indicated a total population of 17 

athletes would be required to attain a study of 80% power with a Type I error of < 5%. 

Based on previous between-sex data of load carriage [228, 229], significant, albeit small 

and in some cases no between-sex differences were reported. Using the data of Bode, et 

al. [228], in which significant between-sex differences in knee joint ROM were observed 

during load carriage (≤ 55 kg), a sample size of approximately 16 male and 16 female 

strongman athletes would be required to attain a study of 80% power with a Type I error 

of < 5%. All statistical analyses were performed in R version 3.6.1 (R Development Core 

Team, Vienna, Austria), with statistical significance accepted at p = 0.05. 
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7.5 RESULTS 

A total of 854 strides were collected across all participants and trials, providing data of 

854 and 839 strides for the hip and knee, respectively. The failure to analyse knee joint 

kinematics for all strides was attributed to sensor malfunction (n = 15). Spatiotemporal 

measures were collected for all 854 complete strides. Data were omitted from interval 

two (n = 1), interval three (n = 1) and interval four (n = 2), where participants (n = 2) 

dropped the yoke during a set. Anthropometric measures of stature (d = 2.59, p < 0.001), 

body mass (d = 1.41, p = 0.005) and lower limb length (d = 1.35, p = 0.009) statistically 

differed between male and female athletes, therefore all relevant variables were 

normalised to remove lower limb anthropometric effects. 

7.5.1 GENERAL BIOMECHANICAL CHARACTERISATION  

Mean and standard deviation of the kinematic and spatiotemporal measures for the entire 

yoke walk are presented in Table 7.4. Notable kinematic characteristics of the yoke walk 

included: flexion of the hip and slight to neutral flexion of the knee at heel strike; and 

slight to neutral extension of the hip and flexion of the knee at toe-off (Figure 7.4, Table 

S1). Statistically significant differences in hip and knee joint angles between heel strike 

and toe off events were supported by large effect sizes (hip: d = 3.53, p < 0.001; knee: d 

= 5.08, p < 0.001) (Table S2). No statistically significant main effect between-sex 

differences were observed for both kinematic and spatiotemporal measures (0.004 ≤ hp2 

≤ 0.118, p ≥ 0.15) (Table 7.4, Table S4). 
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Figure 7.4 a) hip joint angle; and b) knee joint angle exemplar data for a single gait 

cycle of the yoke walk. Flexion denoted by a positive angle and extension denoted by a 

negative angle. 

Table 7.4 Spatiotemporal and kinematic interval independent mean ± SD measures of 

the yoke walk. 

 Male Female Group 

Spatiotemporal    

Mean velocity (m/s) 1.649 ± 0.367 1.770 ± 0.326 1.694 ± 0.356 

Normalised mean velocity 0.546 ± 0.121 0.604 ± 0.111 0.567 ± 0.121 

Stride length (m) 1.127 ± 0.174 1.155 ± 0.164 1.138 ± 0.171 

Normalised stride length 1.211 ± 0.187 1.320 ± 0.188 1.252 ± 0.194 

Stance duration (s) 0.435 ± 0.061 0.389 ± 0.040 0.417 ± 0.058 

Normalised stance duration 1.410 ± 0.198 1.303 ± 0.135 1.370 ± 0.184 

Stride rate (Hz) 1.586 ± 0.201 1.670 ± 0.123 1.617 ± 0.180 

Normalised stride rate 0.489 ± 0.062 0.499 ± 0.037 0.492 ± 0.054 

Hip    

Initial contact (º) 23.4 ± 6.8 24.3 ± 7.5 23.8 ± 7.1 

Toe-off (º) -2.9 ± 7.5 -3.8 ± 9.2 -3.2 ± 8.2 

Range of motion (º) 36.5 ± 7.7 40.4 ± 7.3 37.9 ± 7.8 

Knee    

Initial contact (º) 6.7 ± 4.8 4.0 ± 4.0 5.7 ± 4.7 

Toe-off (º) 46.2 ± 8.6 45.4 ± 12.3 45.9 ± 10.2 

Range of motion (º) 54.6 ± 10.0 52.7 ± 11.7 53.9 ± 10.7 
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7.5.2 BETWEEN-INTERVAL BIOMECHANICAL DIFFERENCES – SEX INDEPENDENT (MAIN 

EFFECT) 

A number of statistical between-interval joint kinematic and spatiotemporal differences 

were observed (Figure 7.5 and Table S1). Small to large effect sizes were presented for 

knee joint angle at heel strike (0.69 ≤ d ≤ 0.96, p < 0.001), hip joint angle at toe-off (0.69 

≤ d ≤ 0.93, p ≤ 0.001) and knee ROM (-0.64 ≤ d ≤ -0.36, p < 0.001) between combinations 

of the first interval and later three intervals (Table S3). For normalised spatiotemporal 

parameters, athletes exhibited statistically smaller stride length (-0.97 ≤ d ≤ -0.80, p < 

0.001), stride rate (-0.47 ≤ d ≤ -0.43, p < 0.001) and mean velocity (-1.53 ≤ d ≤ -1.42, p 

< 0.001), and increased stance duration (0.60 ≤ d ≤ 0.69, p < 0.001) in the initial interval 

when compared with the final three intervals (Figure 7.6), with effect sizes generally 

ranging from small to large (Table S1 and Table S3). 

7.5.3 BETWEEN-INTERVAL BIOMECHANICAL DIFFERENCES – SEX DEPENDENT (TWO-

WAY INTERACTION) 

Small effect sizes were observed for two-way interactions between sex and interval for 

measures of knee angle at toe-off (hp2 = 0.048, p = 0.022), hip ROM (hp2 = 0.048, p = 

0.020) and normalised stride length (hp2 = 0.040, p = 0.045) (Table S4). Female athletes 

exhibited significantly greater knee extension at toe off during the initial interval when 

compared with the final two intervals (0.66 ≤ d ≤ 0.79, 0.001 ≤ p ≤ 0.008) and reduced 

hip ROM during the initial interval when compared with the final three intervals (-0.97 ≤ 

d ≤ -0.62, 0.001 < p ≤ 0.006), whereas male athletes did not display these between-interval 

differences (Table S1, Table S3 and Figure 7.5). In addition to the statistically smaller 

normalised stride length observed during the initial interval when compared with the final 

three intervals observed for male and female athletes, female athletes also displayed 

smaller normalised stride length during interval two when compared with interval four (d 

= -0.373, p = 0.033) (Figure 7.6).  

7.5.4 BETWEEN-SET BIOMECHANICAL DIFFERENCES 

Between-set analysis was performed for the purpose of identifying any potential effects 

of set number (possibly indicative of fatigue) on athlete biomechanics. A number of 

statistical between-set biomechanical differences were observed for the combined group 

(Table S6). Pairwise comparisons revealed between-set differences to be primarily 

between sets one and three, with all differences being of a negligible to small effect size 

(-0.47 ≤ d ≤ 0.16, 0.001 ≤ p ≤ 0.04) (Table S7 and Table S8). Due to the negligible to 
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small effect sizes observed for between-set differences, data from each set were combined 

for all analyses. 

 

Figure 7.5 Joint ROM kinematic measures for each 5 m interval of the 20 m yoke walk, 

a) hip joint kinematics; b) knee joint kinematics. 
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Figure 7.6 Spatiotemporal measures for each 5 m interval of the 20 m yoke walk. 
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7.6 DISCUSSION 

The aim of conducting this study was to use ecologically realistic training loads and carry 

distances to: 1) establish the preliminary biomechanical characteristics of the yoke walk; 

2) identify any biomechanical differences between male and female athletes performing 

the yoke walk; and 3) determine spatiotemporal and kinematic differences between stages 

(intervals) of the yoke walk. The research provides an initial description of the observed 

spatiotemporal and kinematic characteristics of experienced strongman athletes carrying 

loads similar to those seen in competition. 

7.6.1 GENERAL BIOMECHANICAL CHARACTERISATION – SEX INDEPENDENT  

Throughout the gait cycle of the yolk walk, athletes presented flexion of the hip and slight 

to neutral flexion of the knee at heel strike, slight to neutral extension of the hip and 

flexion of the knee at toe-off and moderate hip and knee ROM. When compared with the 

previously studied farmers walk, athletes exhibited reduced flexion of the knee at heel 

strike (farmers walk: 25.0 ± 7.3°; yoke walk: 5.7 ± 4.7°) and toe-off (farmers walk: 54.4 

± 8.7°; yoke walk: 45.9 ± 10.2°), and greater knee ROM (farmers walk: 29.0 ± 11.6°; 

yoke walk 53.9 ± 10.7°) during the yoke walk [30]. Shorter stride length (farmers walk: 

1.54 ± 0.13 m; yoke walk: 1.14 ± 0.17 m), lower stride rate (farmers walk: 1.89 ± 0.13 

Hz; yoke walk: 1.62 ± 0.18 Hz) and increased stance duration (farmers walk: 0.32 ± 0.04 

s; yoke walk: 0.42 ± 0.06 s) were also reported for the yoke walk when compared with 

the farmers walk [30], with such differences likely due to the higher loads used in the 

yoke walk (yoke walk: 198.2 ± 54.8 kg; farmers walk: 181 ± 0.0 kg). 

As described by Hindle, et al. [217], a physical limit exists where the load carried 

becomes so great that the athlete is not able to continue to increase or maintain their stride 

rate to compensate for the decrease in stride length, and thus a decrease in velocity occurs. 

The lower stride rate and stride length reported for the yoke walk when compared with 

the farmers walk [30] further highlights the inability of the athlete to continue to increase 

their stride rate to compensate for the loss of stride length under heavier loading. 

Identifying the threshold load or %1RM where stride rate begins to decrease may be of 

interest to strongman coaches and strength and conditioning coaches using loaded walks 

to target foot speed, core stability and total body strength adaptations [7].  

Data from the current study indicates that from heel strike until the end of the double 

support phase, the knee is in a mostly extended state. The combination of an extended 
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knee throughout the stance phase and a short stride length reduces the vertical 

displacement of the athlete's centre of mass (COM) [237], reducing the chance of 

"catching" the yoke on the ground. Where a reduced stride length requires an increase in 

stride rate to achieve an equivalent velocity, an increase in metabolic demand is expected 

[238, 239]. The increase in metabolic demand may however, be overcome by the reduced 

energy expenditure caused by; the reduced moments around the knee (as a result of 

reduced knee flexion during stance) [240], and the reduced requirement to lift the total 

system load against gravity (as a result of the reduced vertical COM displacement). When 

compared with the farmers walk, athletes performing the yoke walk exhibited both greater 

extension of the knee at heel strike and shorter stride lengths [30]. A reduced vertical 

COM displacement may be particularly important when performing the yoke walk due to 

the naturally smaller ground-to-implement clearance and greater total system load being 

carried when compared with the farmers walk. It is suggested that strongman athletes be 

careful in selecting an appropriate height of the yoke which simultaneously minimises the 

initial lift-off height and ensures the yoke does not catch during the walk. While the 

reduction in stride length supports hypothesis one, the increase in lower limb (knee) ROM 

and stance duration, and reduction in stride rate, as a result of the load threshold appearing 

to be crossed, is contrary to what was initially hypothesised. 

7.6.2 GENERAL BIOMECHANICAL CHARACTERISATION – SEX DEPENDENT  

No differences were observed for the general biomechanical characteristics of the yoke 

walk between male and female athletes. Although conclusions of previous between-sex 

load carriage biomechanical studies are varied, the findings of the current study are in 

line with the lack of between-sex sagittal plane kinematic and spatiotemporal differences 

observed in previous literature using body-mass relative loading (≤ 30% body mass) [229] 

and relatively light absolute loads (i.e. 22 kg) [230]. The vastly different absolute loads 

and study populations in Silder, et al. [229] and Krupenevich, et al. [230] compared to 

the current study, should however, be acknowledged.  

Several frontal and transverse plane between-sex kinematic differences have been 

observed in various athletic tasks such as walking, running and side-stepping [241-245]. 

It has been suggested that the greater number of between-sex differences observed in the 

frontal and transverse plane than the sagittal plane may be due to differences in muscle 

activation patterns [246, 247] and anthropometry [241] between sexes. The greater hip 

width to femur length ratio and quadriceps angle (Q-angle) typically observed in females, 
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has been associated with greater knee valgus and external rotation of the knee during 

dynamic movements [248, 249]. Females have often typically been suggested to exhibit 

greater quadricep and reduced hamstring activity when compared to males [242, 250, 

251], resulting in decreased resistance to anterior tibial shear stresses [252].  

Note should be given to the absence of between-sex differences when men and women 

are matched for strength [231]. This absence leads to the suggestion that many of the 

observed between-sex differences in biomechanical research may be attributed to strength 

or skill instead of the actual sex of the athlete if relative strength is not considered [253]. 

Whilst keeping this in mind, further investigation into transverse and frontal plane 

kinematics and muscle activation patterns of male and female strongman athletes 

performing the yoke walk may assist in identifying any sex-specific injury risks 

associated with the yoke walk exercise. 

The lack of spatiotemporal and sagittal plane kinematic between-sex differences observed 

in the current study supports hypothesis two. 

7.6.3 BETWEEN-INTERVAL BIOMECHANICAL DIFFERENCES – SEX INDEPENDENT (MAIN 

EFFECT) 

Athletes exhibited shorter stride length, increased stance duration, reduced stride rate and 

mean velocity, greater knee flexion at heel strike and hip flexion at toe off and reduced 

knee ROM during the initial interval (0 – 5 m) of the yoke walk when compared with the 

final three intervals (5 – 20 m). Such observations were consistent with differences 

between the initial and later intervals of a 20 m farmers walk [30]. The greater knee 

flexion at heel strike and hip flexion at toe off observed in the initial interval of the yoke 

walk likely contribute to the smaller knee ROM and stride length observed in the initial 

interval when compared with the later intervals. The abbreviated knee ROM may be a 

mechanism employed by athletes to rapidly increase stride rate during acceleration, 

before achieving maximal velocity through the optimisation of stride length (as a result 

of increased lower limb ROM) in the later intervals [254]. 

Although kinetic outcomes were not directly measured in the current study, the 

statistically greater change in velocity between interval one and interval two of the yoke 

walk when compared with all other immediately successive intervals, suggest a greater 

horizontal impulse applied by the athlete during the first interval (acceleration phase). 

This can be deduced in accordance with the impulse-momentum relationship and is 
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supported by previous research on impulse differences between acceleration and maximal 

velocity phase sprinting [255].  

Ballistic training may be of benefit to athletes when preparing for a yoke walk 

competition event in order to develop the neuromuscular capacities required to generate 

maximal force and thus greater propulsive impulse during relatively short periods of 

ground contact [256, 257]. Exercises such as the concentric-only half-squat (COHS) 

performed at 90% 1RM COHS with maximum ballistic intent is suggested to promote 

greater peak force production and relative impulse (intervals < 250ms) than lower loading 

(< 90%) performed with either maximum ballistic intent or sub-maximum ballistic intent 

[258]. Such training techniques may be used by strongman athletes and coaches to 

achieve greater performance in the yoke walk or other load carriage strongman events. 

The observed differences in spatiotemporal and kinematic parameters between the initial 

acceleration (0 – 5 m) and later maximal velocity (5 -20 m) intervals are in support of 

hypothesis three of the study. 

7.6.4 BETWEEN-INTERVAL BIOMECHANICAL DIFFERENCES – SEX DEPENDENT (TWO-

WAY INTERACTION) 

Both male and female athletes exhibited shorter normalised stride length during the initial 

interval when compared with the final three intervals. Female athletes, however, also 

exhibited statistically shorter normalised stride length during the second interval than the 

final interval, indicating female athletes cover a greater distance before reaching maximal 

stride length than male athletes. Although female athletes in the current study had 

statistically shorter lower limb lengths than males, stride length was normalised to lower 

limb length, eliminating the effect of lower limb anthropometry on stride length. The 

observed difference, may however, be the result of males having a greater prevalence of 

type II fibres than females [259]. The greater prevalence of type II muscle fibres gives 

male athletes an advantage over female athletes during the acceleration phase where rapid 

force production is key to achieving maximal stride rate and stride length as quickly as 

possible.  

Female athletes during the initial interval displayed greater extension of the knee at toe-

off when compared with the final two intervals, and smaller hip ROM when compared 

with the final three intervals, whereas male athletes did not exhibit these characteristics. 

Similar to the suggested mechanism of reducing knee ROM to increase stride rate, as was 
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observed for the group dataset, the greater extension of the knee at toe off and reduced 

hip ROM during the first interval when compared with the final intervals may have been 

a further mechanism employed by female athletes to increase stride rate and overcome 

the inertia of the load during the initial 5 m of the walk. 

Where the main effects of sex on the biomechanics of athletes performing the yoke walk 

supported hypothesis two, in that, no between-sex differences were observed, the 

identified two-way interactions between sex and interval provide means to reject this 

hypothesis. 

7.6.5 ADDITIONAL CONSIDERATIONS 

The current study has a number of limitations which should be addressed. The MARG-

based methodology used in the study has been reported to produce joint kinematic 

estimations which are highly representative of those estimated using an optical motion 

capture system for such functional fitness exercises as the squat (hip MAPE: 8.2 ± 6.5%; 

knee MAPE: 5.1 ± 3.7%), box squat (hip MAPE: 6.8 ± 6.1%; knee MAPE: 4.0 ± 2.7%) 

and sandbag pickup (hip MAPE: 7.0 ± 5.5%; knee MAPE: 3.7 ± 2.8%) [140]. This 

methodology, however, showed less agreement for knee (MAPE: 22.5 ± 16.5 %) and hip 

(MAPE: 25.1 ± 21.0 %) joint kinematics during a small ROM (hip: 14.3 ± 3.7º; knee: 

22.9 ± 8.0º) shuffle gait pattern [140]. Although care should be taken when interpreting 

joint kinematic results in this study, greater validity may be expected for hip and knee 

joint kinematics of athletes performing the yoke walk than a shuffle walk gait pattern due 

to a reduced number of dynamic degrees of freedom caused by the increase in the 

complexity of the task (loading) [145, 260, 261] and the greater ROM observed during 

the yoke walk (hip: 37.9 ± 7.8º; knee: 53.9 ± 10.7º). Where ankle joint ROM in previous 

load carriage exercises have been reported to be small (Winwood, et al. [5]: 9.6 ± 9.8º; 

Keogh, et al. [30]: -3.0 ± 4.0º), the MARG-based methodology used was declared to be 

inappropriate for this application due to the expected small ROM of the ankle during the 

yoke walk, thus ankle joint measures were not included in this study. 

The number of male (n = 12) and female (n = 7) athletes included in the current study are 

individually larger than the majority of previous strongman biomechanics studies [5, 29-

32, 36, 70]. Nevertheless, the power analysis performed and relatively large between-sex 

effect sizes, large confidence intervals and corresponding statistical insignificance (p > 

0.05) observed in some measurement parameters, indicates an under-powered sample size 
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for between-sex comparisons [262]. Where possible, future studies should look to include 

a greater number of male and female athletes of similar competitive standard for between-

sex analyses. 

Another limitation of the current study may be the reliability of the 1RM pre-test protocol. 

Due to the wide range of ways in the yoke walk may be performed whereby competition 

organisers typically set various distance, loading and set formats (maximal distance in 

given time, specified distance in shortest time), the way in which researchers test an 

athlete's 1RM may introduce additional variability. Establishing a standardised testing 

protocol that ensures reliability in measuring an athlete's 1RM in the yoke walk across 

various competition formats may therefore be beneficial to future researchers. 

As this is the first study in which kinematic and spatiotemporal parameters of the yoke 

walk have been measured, there is significant scope for future research, including: 

transverse and frontal plane kinematic analyses; establishing relationships between 

anthropometrics and biomechanical characteristics of athletes; the effect of yoke load on 

the biomechanics of an athlete; and the biomechanical determinants of greater 

performance in the yoke walk. Such research is expected to equip strongman athletes and 

coaches, and strength and conditioning coaches with the knowledge required to elicit 

greater performance when undertaking the yoke walk or similar heavy load carriage 

exercises whilst minimising the risk of injury to the athlete.  
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7.7 CONCLUSION 

In conducting this study, the first descriptive data of the spatiotemporal and joint 

kinematic characteristics of male and female strongman athletes performing the yoke 

walk was established. A number of differences in spatiotemporal and kinematic measures 

were identified in the yoke walk when compared with previous load carriage research of 

the farmers walk and backpack load. Between-interval spatiotemporal and joint kinematic 

differences were observed between the initial (lower velocity/acceleration) and later 

(maximal velocity) intervals. No main between-sex differences and a limited number of 

two-way interactions between sex and interval were observed. It is suggested that an 

abbreviated lower limb ROM during the initial intervals will assist in rapidly increasing 

stride rate and therefore velocity. Further, the combination of a short stride length and 

high stride rate is suggested to minimise vertical yoke displacement and metabolic 

demand placed on the athlete while performing the yoke walk. The results of this 

biomechanical analysis of the yoke walk provides a preliminary description of the 

movement that will: assist strongman training and competition performance; improve 

strength and conditioning coaching practice for coaches interested in prescribing this 

exercise to non-strongman athletes; and establish significant scope for future research.  
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8. THE BIOMECHANICAL CHARACTERISTICS OF THE STRONGMAN ATLAS 

STONE LIFT 

8.1 PREFACE 

The systematic reviews presented in Chapter 2 and Chapter 3 identified the lack of 

temporal and kinematic analyses of athletes performing the atlas stone lift as a major gap 

in the current field of strongman biomechanics research. Further, the only previous 

biomechanical analysis of the atlas stone lift, included three male strongman athletes 

performing a single repetition under lighter loading conditions than may be expected by 

strongman athletes of a similar body mass during training or competition. The study 

presented in this chapter describes the general movement pattern of experienced male and 

female strongman athletes performing the atlas stone lift using ecologically valid training 

loads and set formats. Part b) of Question 4, Question 5 and Question 6 were addressed 

in this chapter. 

Supplementary tables (e.g., Table S1) referenced throughout this chapter can be found in 

Appendix 6. 

This manuscript has been accepted for publication in PeerJ on 5 August 2021. 
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8.2 ABSTRACT 

Background. The atlas stone lift is a popular strongman exercise where athletes are 

required to pick up a large, spherical, concrete stone and pass it over a bar or place it on 

to a ledge. The aim of conducting this study was to use ecologically realistic training 

loads and set formats to: 1) establish the preliminary biomechanical characteristics of 

athletes performing the atlas stone lift; 2) identify any biomechanical differences between 

male and female athletes performing the atlas stone lift; and 3) determine temporal and 

kinematic differences between repetitions of a set of atlas stones of incremental mass. 

Methods. Kinematic measures of hip, knee and ankle joint angle, and temporal measures 

of phase and repetition duration were collected whilst 20 experienced strongman athletes 

(female: n = 8; male: n = 12) performed three sets of four stone lifts of incremental mass 

(up to 85% one repetition maximum) over a fixed-height bar.  

Results. The atlas stone lift was categorised in to five phases: the recovery, initial grip, 

first pull, lap and second pull phase. The atlas stone lift could be biomechanically 

characterised by: maximal hip and moderate knee flexion and ankle dorsiflexion at the 

beginning of the first pull; moderate hip and knee flexion and moderate ankle 

plantarflexion at the beginning of the lap phase; moderate hip and maximal knee flexion 

and ankle dorsiflexion at the beginning of the second pull phase; and maximal hip, knee 

extension and ankle plantarflexion at lift completion. When compared with male athletes, 

female athletes most notably exhibited: greater hip flexion at the beginning of the first 

pull (male: 63.7 ± 15.8º; female: 84.7 ± 18.7º; d = -1.21; p < 0.001), lap (male: 18.3 ± 

16.0º; female: 31.5 ± 18.1º; d = -0.77; p < 0.001) and second pull (male: 37.4 ± 21.7º; 

female: 44.0 ± 23.2º; d = -0.29, p = 0.034) phase and at lift completion (male: 1.2 ± 10.3º; 

female: 12.5 ± 15.6º; d = -0.85, p < 0.001); and a shorter second pull phase duration (male: 

1.653 ± 0.561 s; female: 1.428 ± 0.506 s; d = 0.42; p = 0.012). Independent of sex, first 

pull and lap phase hip and ankle range of motion (ROM) were generally smaller in 

repetition one than the final three repetitions (-0.717 ≤ d ≤ -0.496, p ≤ 0.002), while phase 

and total repetition duration increased throughout the set (0.64 ≤ d ≤ 1.73, p ≤ 0.003). 

Two-way interactions between sex and repetition were identified. Male athletes displayed 

smaller hip ROM during the second pull phase of the first three repetitions when 

compared with the final repetition and smaller hip extension at lift completion during the 
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first two repetitions when compared with the final two repetitions. Female athletes did 

not display these between-repetition differences. 

Conclusions. Some of the between-sex biomechanical differences observed were 

suggested to be the result of between-sex anthropometric differences. Between-repetition 

biomechanical differences observed may be attributed to the increase in stone mass and 

acute fatigue. The biomechanical characteristics of the atlas stone lift shared similarities 

with the previously researched Romanian deadlift and front squat. Strongman athletes, 

coaches and strength and conditioning coaches are recommended to take advantage of 

these similarities to achieve greater training adaptations and thus performance in the atlas 

stone lift and its similar movements. 
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8.3 INTRODUCTION 

Strongman is a competitive strength-based sport where athletes perform heavy, awkward 

and more physically demanding variations of common activities of daily living or 

traditional tests of strength. Strongman exercises are often derived from traditional weight 

training exercises such as the clean and press, deadlift and squat [51]. In a typical 

strongman competition event, an athlete may be required to lift large stones to various 

height ledges, carry weight-loaded frames, press large logs or dumbbells over-head or 

pull multi-ton vehicles such as trucks, buses or planes [13]. 

The atlas stone lift is a common strongman competition event which requires the athlete 

to pick up and place a large, spherical, concrete stone onto a ledge or over a bar (Figure 

8.1). The diameter of the stone, mass of the stone and height of the ledge/bar can vary 

between competitions and between competition classes, which are typically based on sex 

and bodyweight. Common measures of performance in a competition atlas stone event is 

a maximum number of repetitions of a single mass stone over a bar in a timed period 

(usually 60 seconds), or the fastest time to place a series of stones (usually three to six 

stones) of incremental mass onto a ledge or over a bar.  

Qualitatively, the atlas stone lift has been suggested to share biomechanical similarity to 

various traditional weight training exercises [217]. The initial lift of the stone off the 

ground may be similar to lifting a sandbag or medicine ball off the ground using a 

Romanian deadlift technique; lifting the stone from the lapped position may be similar to 

the initiation of the concentric phase of a box squat from the seated position; and the final 

drive from a quarter-squat position to passing the stone over a bar/onto a ledge may be 

similar to the concentric phase of a barbell front squat where the load is positioned on the 

anterior surface of the body [217]. 

Quantitative research into the biomechanics of athletes performing the atlas stone lift is 

limited, with the only study on this lift conducted to date analysing trunk muscle 

activation patterns and lumbar spine motion, load and stiffness [36]. Three experienced 

male strongman athletes (body mass: 117.3 ± 27.5 kg) performed a single lift of a 110 kg 

stone to a height of 1.07 m. When compared with other strongman lifts examined in the 

study, including the farmers walk, log lift, tire flip and yoke walk, the atlas stone lift was 

reported to result in the lowest lumbar spinal compression, which was suggested to be 

due to the athlete’s ability to curve their spine around the stone and keep the centre of 
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mass of the stone close to their lower back [36]. The findings of McGill and colleagues 

were not, however, consistent with the retrospective injury study by Winwood, et al. [14]. 

In a survey of 213 male strongman athletes, the atlas stone lift was reported to account 

for the greatest percentage of injuries caused by common strongman exercises (including 

the yoke walk, farmers walk, log lift and tire flip) with the bicep and lower back being 

the most common sites of atlas stone lift injuries [14]. The potential discrepancy in the 

findings of McGill, et al. [36] and Winwood, et al. [14] may be due to the relatively light 

loads and low height to which the stone was lifted by athletes in the study by McGill, et 

al. [36], when compared with what would be lifted by athletes of similar body mass in 

training and competition today (load: >180 kg; height: 1m to > 1.3 m). 

 

Figure 8.1 An athlete performing the atlas stone lift. Image reproduced with permission 

from respective copyright owner and person pictured. 

Between-repetition comparisons of heavy, awkward lifting exercises performed in 

immediate succession (no rest period between repetitions), such as a series of atlas stone 

lifts are limited. Changes in biomechanics between repetitions have been observed due to 

an increase in load when performing the barbell back squat, whereby as load approaches 

an athlete's one repetition maximum (1RM), greater trunk inclination and hip range of 
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motion (ROM) has been observed [263]. The rest allocated between incremental load 

repetitions (loads of 80%, 90%, 100% 1RM; 5 min rest between each load) in Yavuz, et 

al. [263], should be noted as a distinct difference to a set of atlas stone lifts of incremental 

mass where minimal between-repetition rest periods typically occur during training and 

competition. Due to the differences in rest period and thus greater accumulation of acute 

fatigue in a series of atlas stone lifts when compared with squats performed in Yavuz, et 

al. [263], the transferability of the observations in Yavuz, et al. [263] to the atlas stone 

lift are still somewhat uncertain. Trafimow, et al. [264] demonstrated the effect of fatigue 

on the biomechanics of healthy male participants lifting loaded boxes (0 – 30 kg) from 

the floor to knuckle height. After performing an isometric half-squat hold (held until 

failure), participants employed more of a stoop lifting technique (straight leg) than a squat 

lifting technique (flexed knee), where the squat technique was preferentially used pre-

fatigue. While qualitatively stoop and squat lifting techniques appear similar to 

components of the atlas stone lift, both the load (0 – 30 kg) and study population (healthy, 

recreationally active males) recruited in Trafimow, et al. [264] make it unclear whether 

such observations are transferable to the atlas stone lift performed by strongman athletes.  

No studies have compared the biomechanics of male and female athletes performing the 

atlas stone or similar, heavy, awkward lifting exercises. A study by Lindbeck and 

Kjellberg [265] observed between-sex differences in lower limb and trunk kinematics of 

office workers performing a stoop and squat lifting technique. Men exhibited greater 

trunk ROM for both lifting techniques, while female athletes exhibited greater knee ROM 

in the squat lifting technique [265]. Similar to the box lifting study of Trafimow, et al. 

[264], the transferability of these observations to the atlas stone lift are uncertain due to 

the substantial difference in loading (male: 12.8 kg; female: 8.7 kg) and study populations 

(healthy office employees) compared to male and female strongman athletes performing 

the atlas stone lift. Of greater relevance to the atlas stone lift may be the studies of 

McKean and Burkett [266] and Lisman, et al. [267], where between-sex kinematic 

differences were observed in trained persons performing the back squat (50% body mass) 

and over-head squat (un-loaded), respectively. In these studies, female athletes displayed 

a more upright trunk position during the overhead squat [267] and back squat [266] than 

male athletes. Male athletes displayed greater peak hip flexion in the overhead squat than 

female athletes [267], while females displayed greater peak hip flexion in the back squat 

than male athletes [266].  
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As this study is the first of its kind, whereby spatiotemporal and kinematic estimates of 

male and female athletes performing the atlas stone lift are established, an emphasis is 

placed on the importance of undertaking a descriptive-type study of the movement pattern 

associated with the atlas stone lift. The aim of conducting this study was to use 

ecologically realistic training loads and set formats to: 1) establish the preliminary 

biomechanical characteristics of athletes performing the atlas stone lift; 2) identify any 

biomechanical differences between male and female athletes performing the atlas stone 

lift; and 3) determine temporal and kinematic differences between repetitions of a set of 

atlas stones of incremental mass. In alignment with the aim of the study it was 

hypothesised that: 1) various phases of the atlas stone lift will share biomechanical 

similarity with previously studied traditional weight training exercises; 2) differences in 

lower limb kinematics will be observed between male and female athletes, particularly at 

the hip joint; and 3) athlete biomechanics will change throughout the set, with greatest 

differences observed between the first and last repetition of the set. 

By addressing this aim, researchers, strongman coaches and strength and conditioning 

coaches will be better equipped with the knowledge of the atlas stone lift biomechanics 

required to: provide strongman athletes with recommendation on how to perform the atlas 

stone lift based on the techniques of experienced strongman athletes; better prescribe 

strongman athletes with biomechanically similar exercises to the atlas stone lift for 

targeted training of specific phases of the lift; better prescribe the use of the atlas stone as 

a training tool for non-strongman athletes; and better structure future research into the 

strongman atlas stone lift. 
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8.4 MATERIALS & METHODS 

8.4.1 EXPERIMENTAL APPROACH 

A cross-sectional observational experimental design was used to describe the 

biomechanical characteristics of athletes performing the atlas stone lift and assess 

temporal and kinematic measures of an incremental mass, four atlas stone series. Well 

trained strongman athletes with strongman competition experience (Table 8.1) undertook 

two testing sessions. Session one consisted of a 1RM atlas stone lift to establish loading 

conditions for session two. Session two consisted of the collection of temporal and 

kinematic measures during three sets of four lifts of atlas stones of incremental mass (up 

to ~85% 1RM) over a fixed-height bar. Body mass, trochanterion-tibiale laterale height 

and tibiale laterale height anthropometric measures were taken by a trained person using 

ISAK methodologies [232] to assist in describing the study population. 

8.4.2 PARTICIPANTS 

Twenty experienced strongman competitors (12 male and 8 female) were recruited from 

two local strongman gyms (Table 8.1). All participants were required to have a minimum 

of 18 months' strongman training experience, have competed in a minimum of one 

strongman competition and be free from moderate or major injury for at least one week 

prior to testing. A moderate injury was defined as an injury that had stopped the athlete 

from performing a particular strongman exercise during a strongman session, while a 

major injury was defined as an injury which prevented the athlete from continuing with 

all exercises and/or the session completely [13, 14]. Participants meeting the above 

criteria were informed of the purpose of the study and asked to sign an informed consent 

form. Ethical approval was granted for all procedures used throughout this study by Bond 

University’s Human Research Ethics Committee (BH00045). 
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Table 8.1 Participant characteristics. 

Descriptor Female Male 

Age (years) 31.8 ± 6.5 31.8 ± 7.8 

Body mass (kg) 76.2 ± 15.4 115.6 ± 26.3 

Stature (m) 1.653 ± 0.43 1.811 ± 0.086 

Femur length (m) 0.399 ± 0.027 0.412 ± 0.045 

Tibia length (m) 0.470 ± 0.022 0.519 ± 0.031 

1RM atlas stone lift (kg) 80.3 ± 12.0 141.3 ± 24.9 

Strongman training experience (years) 2.1 ± 0.7 3.0 ± 1.7 

Strongman competition experience  
(number of competitions in past 2 years) 4.1 ± 2.8 3.5 ± 2.2 

 

8.4.3 TRIAL CONDITIONS 

To achieve optimal performance during the session, athletes were asked to prepare for 

each session in the same way in which they would prepare for a regular training session. 

Due to the range of individual loading parameters and experience level of all athletes 

recruited in the study, self-directed warm up routines were performed by each athlete [5, 

31, 32, 69, 233]. Warm up routines lasted ~15 – 30 minutes and included repetitions of 

the atlas stone lift at loads approaching those expected to be used by the individual 

throughout the session. Generally, athletes would begin their warm up with dynamic 

stretching, including resistance band exercises, followed by barbell-only (no additional 

load) squats or deadlifts. Athletes would move on to stone pickups (either performing a 

Romanian deadlift-like pickup of the stone from the ground, or lifting the stone in a full 

range of motion to bar height without passing the stone over the bar) at low loading (~ 

<60% 1RM). As athletes approached stone masses expected to be used in the session, the 

athlete would begin to complete full stone lift repetitions where the stone was passed over 

the bar. Athletes were permitted to use knee and elbow sleeves, lifting belts, arm/wrist 

wraps and tacky during sessions, as this is standard equipment used in competition and 

training. 

8.4.4 SESSION PROTOCOLS 

Session one 1RM testing required athletes to lift a stone of greatest mass over a bar of 

fixed height (female: 1.2 m; male: 1.3 m). Athletes worked up to their heaviest stone in 

mass increments selected by the athlete. Mass increments were dependent on the mass of 

the stones available, the perceived effort of the previous lift and current training loads 

used by each participant. When an athlete failed to lift the stone over the prescribed height 
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bar, the athlete was given one additional attempt to successfully complete the lift. Athletes 

were assigned rest periods of six to eight minutes between each stone attempt [55]. The 

mass of the heaviest stone the athlete was able to successfully pass over the bar was 

determined to be their 1RM. 

Session two was performed a minimum of seven days after session one and required 

athletes to perform three sets of a four stone series over a bar (female: 1.2 m; male: 1.3 

m) as quickly as possible. Each stone within the series were of incremental mass, where 

stone one (repetition one) ≈ 60% 1RM, stone two (repetition two) ≈ 70% 1RM, stone 

three (repetition three) ≈ 80% 1RM and stone four (repetition four) ≈ 85% 1RM (Table 

8.2). As is the nature of the atlas stone, stones were of a fixed mass (mass could not be 

added or removed from the stone), therefore stones within each series were selected based 

on the closest stone mass available to fit the required percentage of 1RM for each 

participant. The diameter and surface finish of stone varied with the mass of the stone 

(Table 8.2). 

To begin each set, the athletes were positioned in the typical atlas stone competition 

starting position with the stone on the ground between their legs and their hands resting 

on the bar for which the stone was to be passed over. On the signal "athlete ready, three, 

two, one, lift" the participant commenced lifting stone one over the bar. After the 

completion of each repetition, the next stone in the series was positioned in front of the 

participant by a trained loading assistant. When an athlete was unable to pass a stone over 

the bar or the final stone in the series was successfully passed over the bar the trial was 

concluded, with each series typically completed in 60 seconds. 
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Table 8.2 Stone series characteristics. 

Descriptor Female Male 

Stone one (repetition one)   

Mass (kg) 50.1 ± 7.3 90.7 ± 18.8 

% 1RM 62.6 ± 1.6 63.8 ± 4.3 

Diameter (m) 0.354 ± 0.015 0.428 ± 0.027 

Stone two (repetition two)   

Mass (kg) 55.8 ± 7.6 100.6 ± 20.0 

% 1RM 69.7 ± 2.0 70.9 ± 3.9 

Diameter (m) 0.369 ± 0.012 0.441 ± 0.034 

Stone three (repetition three)   

Mass (kg) 61.9 ± 8.5 110.7 ± 19.3 

% 1RM 77.3 ± 2.0 78.3 ± 4.3 

Diameter (m) 0.377 ± 0.020 0.455 ± 0.029 

Stone four (repetition four)   

Mass (kg) 69.0 ± 11.6 120.5 ± 21.9 

% 1RM 85.9 ± 3.0 85.2 ± 2.5 

Diameter (m) 0.394 ± 0.029 0.471 ± 0.036 

 

8.4.5 DATA ACQUISITION AND ANALYSIS 

Methodologies of Hindle, et al. [140] were used to estimate joint kinematics of athletes 

performing the atlas stone lift. Four magnetic, angular rate and gravity (MARG) devices 

(ImeasureU, Vicon Motion Systems Ltd., Oxford, UK) were used to capture acceleration, 

angular velocity (1125 Hz) and magnetic field strength data (112 Hz). MARG devices 

were positioned on the pelvis (halfway between the left and right posterior superior iliac 

spine), right thigh (approximately 150 mm proximal to the lateral epicondyle of the 

femur), right shank (approximately 100 mm distal to the lateral tibial condyle) and right 

foot (midway between the base of the foot and the lateral malleoli) [140]. The MARG 

data collected for each segment were input into a custom Matlab script (The Mathworks 

Inc., Natick, MA, USA) to measure hip, knee and ankle joint angles in the sagittal plane 

[140]. The methodology has shown acceptable to excellent agreement with optical motion 

capture methodologies in similar movements such as the squat, box squat and sandbag 

pickup [140]. 

Two video cameras (iPad Air 2, iOS 13.3.1, Apple Inc., CA, USA) were used to capture 

video data at 30 Hz (Figure 8.2). Video data were synchronised with MARG data using 

the ground impact of a submaximal jump performed immediately prior to the 

commencement of each set. The video data allowed for the calculation of the temporal 
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parameters (phase duration, repetition duration), while joint kinematics at various 

instances throughout a repetition were obtained from the time-synched MARG data. 

Temporal and kinematic measurements assessed during each repetition of the atlas stone 

lift are defined in Table 8.3, with a pictorial representation of each phase of the lift 

presented in Figure 8.3. 

 

Figure 8.2 Schematic of equipment setup. 

 

Figure 8.3 Atlas stone lift phase definition representation. 
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Table 8.3 Temporal and kinematic measurement definitions. 

Parameter Definition 

Recovery phase Beginning: Stone set in front of the athlete (on 'lift' call for first repetition in set or 
once stone is placed in front of the athlete and the loader is clear in subsequent 
repetitions). 
End: Instance/final instance* of the athlete first touching the southern hemisphere 
of the stone. 

Initial grip phase Beginning: Instance/final instance* of the athlete first touching the southern 
hemisphere of the stone. 
End: Instance/final instance* of the stone leaving the ground. 

First pull phase Beginning: Instance/final instance* of the stone leaving the ground. 
End: Stone reaching peak positive trajectory prior to a negative trajectory toward 
the lap of the athlete. 

Lap phase Beginning: Stone reaching peak positive trajectory prior to a negative trajectory 
toward the lap of the athlete. 
End: Instance/final instance* of initial vertical movement of the stone from the lap 
position. 

Second pull phase Beginning: Instance/final instance* of initial vertical movement of the stone from 
the lap position.  
End: > 50% of the stone passed over the bar. 

Joint angle Hip, knee and ankle angle at the beginning and end of each phase. Joint angle 
definitions provided in Figure 8.4. Positive angles denote flexion, negative angles 
denote extension. 

Hip ROM Maximum angle between the pelvis and thigh minus minimum angle between the 
pelvis and thigh throughout a given phase. 

Knee ROM Maximum angle between the thigh and shank minus minimum angle between the 
thigh and shank throughout a given phase. 

Ankle ROM Maximum angle between the foot and shank minus minimum angle between the 
foot and shank throughout a given phase. 

* (final instance where multiple attempts were made to lift the stone off the ground). 
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Figure 8.4 Joint angle definitions. 

8.4.6 STATISTICAL METHODS 

Data were checked for normality using visual inspection and a Shapiro Wilks test. 

Homogeneity of variances were checked using Levene's test, homogeneity of covariances 

were checked using Box's M-test (p < 0.001) and sphericity was checked throughout the 

computation of ANOVA tests. Mean and standard deviations of all variables were 

calculated for all phases throughout the stone lift. The joint kinematic results for the 

recovery and initial grip phases were not presented due to the high variability in the 

participants’ movements observed in these non-lifting, preparation phases, thus statistical 

analyses of these phases were not performed. A one-way repeated measures ANOVA test 

was used to establish the biomechanical characteristics of the lift by comparing: 1) 

between phase characteristics; 2) between repetition characteristics; and 3) between set 

characteristics. Between set statistical analysis was performed prior to further analyses to 
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assess if data from each of the three sets could be combined. A two-way mixed model 

ANOVA test was used to identify interactions of sex and repetitions for each 

biomechanical characteristic. Partial eta-squared effect sizes (ηp2) were calculated for 

two-way interactions with classifications of negligible (ηp2 ≤ 0.01), small (0.01 > ηp2 ≥ 

0.06), medium (0.06 > ηp2 ≥ 0.14) and large (ηp2 > 0.14) [236]. Bonferroni post-hoc 

pairwise t-tests were conducted on parameters where significant differences were 

detected. Cohen's d (d) effect sizes were calculated for t-tests with classification of 

negligible (d < 0.2), small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8) and large (d ≥ 0.8) 

[236]. Post-hoc intra-class correlation coefficient (ICC) and standard error of 

measurement (SEM) metrics were calculated to assess relative and absolute reliability of 

each biomechanical measure, respectively. Reliability was classified as poor (ICC < 0.5), 

moderate (0.5 ≤ ICC < 0.75), good (0.75 ≤ ICC < 0.9) and excellent (ICC ≥ 0.9) [268]. 

Statistical analyses were performed in R version 3.6.1 (R Development Core Team, 

Vienna, Austria), with statistical significance accepted at p < 0.05 unless otherwise stated. 
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8.5 RESULTS 

A total of 216, 236 and 232 repetitions were analysed for the hip, knee and ankle, 

respectively. The failure to analyse all joints throughout some repetitions was attributed 

to sensor malfunction (hip = 16; ankle = 4), sensor detachment (hip = 4) and two 

participants failing to complete all four stone repetitions within the set (stone/repetition 

four failed attempts: n = 4). Sensor malfunction came in the form of sensors failing to 

commence data logging. Only full repetitions from successful lift off to lift completion 

were analysed. 

8.5.1 GENERAL BIOMECHANICAL CHARACTERISATION – SEX INDEPENDENT 

The atlas stone lift could be characterised by: maximal hip and moderate knee flexion and 

ankle dorsiflexion at the beginning of the first pull and maximal hip ROM throughout the 

first pull; moderate hip and knee flexion and moderate ankle plantarflexion at the 

beginning of the lap phase and minimal hip, knee and ankle ROM throughout the lap 

phase; moderate hip and maximal knee flexion and ankle dorsiflexion at the beginning of 

the second pull phase and maximal knee and ankle ROM throughout the second pull phase; 

and maximal hip and knee extension and ankle plantarflexion at lift completion (Figure 

8.5, Table S1, Table S2, Table S3). 

Excluding the recovery and initial grip phases, the second pull phase was statistically 

longer in duration than all other lifting phases (0.27 ≤ d ≤ 1.12, p < 0.001), followed by 

the lap phase which was statistically longer in duration than the first pull phase (d = 0.34, 

p < 0.001) (Figure 8.5, Table S3). 

8.5.2 GENERAL BIOMECHANICAL CHARACTERISATION – SEX DEPENDENT  

When compared with male athletes, female athletes exhibited: greater hip flexion (d = 

1.21, p < 0.001) and ankle plantarflexion (d = 0.78, p < 0.001) at the beginning of the first 

pull and greater overall hip ROM throughout the first pull (d = 0.56, p < 0.001); greater 

hip flexion (d = 0.77, p < 0.001) and knee extension (d = 0.58, p < 0.001) at the beginning 

of the lap phase, and smaller hip (d = -0.46, p = 0.001) and ankle ROM (d = -0.27, p = 

0.049) throughout the lap phase; greater hip flexion (d = 0.29, p = 0.034), knee extension 

(d = 0.39, p = 0.004) and ankle plantarflexion (d = 0.48, p < 0.001) at the beginning of 

the second pull phase, and smaller knee ROM (d = -0.53, p < 0.001) and greater ankle 

ROM (d = 0.32, p = 0.021) throughout the second pull phase; and greater hip flexion (d 
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= 0.85, p < 0.001) and ankle plantarflexion (d = 0.41, p = 0.003) at lift completion (Figure 

8.5, Table S1, Table S4). 

Few statistical between-sex temporal differences were observed (Table S5). Male athletes 

displayed a statistically longer second pull phase duration than female athletes (d = 0.42, 

p = 0.012) (Figure 8.5, Table S1, Table S4). 

 

Figure 8.5 Repetition independent joint kinematic and temporal measures. a) hip joint 

kinematics; b) knee joint kinematics; c) ankle joint kinematics; d) temporal measures of 

each phase. 

8.5.3 BETWEEN REPETITION BIOMECHANICAL DIFFERENCES – SEX INDEPENDENT 

(MAIN EFFECT) 

Statistically significant between-repetition differences were most commonly observed for 

joint kinematics between combinations of the first two repetitions and the last two 

repetitions of the set (e.g., between repetition one-two and three-four) (Figure 8.6, Figure 

8.7, Figure 8.8, Figure 8.9, Table S5). First pull phase hip and ankle ROM was smaller in 

repetition one than the final three repetitions (-0.72 ≤ d ≤ -0.50, p ≤ 0.002) (excluding 

repetition two ankle ROM). Lap phase hip and ankle ROM was smaller in repetition one 

than the final three repetitions (-1.15 ≤ d ≤ -0.46, p < 0.001), and smaller in repetitions 
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two and three (hip only) than repetition four (-0.65 ≤ d ≤ -0.37, p ≤ 0.003). No statistical 

between-repetition differences were observed at any joint for the position in which 

athletes began the second pull phase (Table S5).  

For each repetition, individual phase durations and total repetition duration increased as 

the set progressed (Figure 8.10, Table S6), with medium to large effect sizes recorded 

between repetition one and repetitions three and four (0.64 ≤ d ≤ 1.73, p ≤ 0.003). Where 

statistical differences were reported for phase duration between sequential stones (e.g., 

repetition one vs repetition two, repetition three vs repetition four), smaller effect sizes 

were typically observed (0.31 ≤ d ≤ 1.03, p ≤ 0.005) (Table S6). 

8.5.4 BETWEEN REPETITION BIOMECHANICAL DIFFERENCES – SEX DEPENDENT (TWO-

WAY INTERACTION) 

While not evident in female athletes, male athletes generally displayed: smaller hip ROM 

during the second pull phase of the first three repetitions when compared with the final 

repetition (-0.87 ≤ d ≤ -0.59, p ≤ 0.011); smaller hip extension at lift completion during 

the first two repetitions of the set when compared with the final two repetitions (-1.24 ≤ 

d ≤ -0.55, p < 0.038); and greater plantarflexion of the ankle at lift completion in the first 

repetition when compared with the final repetition (d = 0.75, p = 0.014) (Table S5, Table 

S6, Table S1). No temporal two-way interactions between sex and repetition were 

observed (Table S5). 

8.5.5 BETWEEN SET BIOMECHANICAL DIFFERENCES 

Between-set analysis was performed to identifying any potential effects of set number on 

the biomechanics of the athlete. Hip flexion was greater at the beginning of the first pull, 

lap phase and second pull in set one than set two and three (0.04 ≤ d ≤ 0.26, p ≤ 0.013) 

(Table S7, Table S8, Table S9). Second pull duration was significantly greater during set 

one than set three (d = 0.19, p = 0.012) (Table S8, Table S9). No statistical between-set 

difference in total repetition duration was observed for any repetition. 
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Figure 8.6 Sex and repetition dependent joint ROM kinematic measures for each phase, 

a-c) hip joint kinematics; d-f) knee joint kinematics; g-i) ankle joint kinematics. 
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Figure 8.7 Sex and repetition dependent hip joint kinematic measures for beginning/end 

of each phase. 
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Figure 8.8 Sex and repetition dependent knee joint kinematic measures for 

beginning/end of each phase. 
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Figure 8.9 Sex and repetition dependent ankle joint kinematic measures for 

beginning/end of each phase. 
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Figure 8.10 Sex and repetition dependent temporal measures, a) recovery phase; b) 

initial grip phase; c) first pull phase; d) lap phase; e) second pull phase; f) entire 

repetition. 
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8.6 DISCUSSION 

In alignment with the descriptive nature of the research, the aim of conducting this study 

was to use ecologically realistic training loads and set formats to: 1) establish the 

preliminary biomechanical characteristics of athletes performing the atlas stone lift; 2) 

identify any biomechanical differences between male and female athletes performing the 

atlas stone lift; and 3) determine temporal and kinematic differences between repetitions 

of a set of atlas stones of incremental mass. 

8.6.1 GENERAL BIOMECHANICAL CHARACTERISATION – SEX INDEPENDENT 

To describe the general movement pattern of the atlas stone lift, testing hypothesis one 

sought to determine if the various phases of the atlas stone lift were biomechanically 

similar to selected traditional weight training exercises.  

8.6.1.1 RECOVERY AND INITIAL GRIP PHASE 

Only temporal parameters were measured for the recovery and initial grip phase due to 

the high variability in joint kinematics observed during data collection and upon review 

of video data. This variability included athletes repositioning the stone by foot, and 

various individual set-up routines. The recovery and initial grip phases may be viewed as 

'preparation' phases where the stone is yet to be physically lifted from the ground. These 

phases may be analogous to the athlete approaching the bar and first touching the bar in 

a 1RM deadlift, or the phase which may be defined between when an athlete returns the 

bar to the ground before lifting it back up in an as many repetitions as possible (AMRAP) 

deadlift event. 

8.6.1.2 FIRST PULL PHASE 

The beginning of the first pull phase of the atlas stone lift was characterised by maximal 

hip flexion and moderate knee flexion and ankle dorsiflexion. The maximal hip flexion 

(72.7 ± 20.0º) at the beginning of the first pull phase was similar to that of the maximal 

hip flexion occurring during the Romanian deadlift (79.97 ± 15.85º) [269]. Knee flexion 

at the beginning of the first pull in the atlas stone lift (45.6 ± 12.7º) was however, slightly 

larger than the knee flexion reported for the Romanian deadlift (33.86 ± 12.59º) [269]. 

The relative similarity in the starting position of the atlas stone lift to the Romanian 

deadlift in conjunction with previous research on the trunk muscle activation patterns of 

athletes performing the atlas stone lift [36] and the Romanian deadlift [270], suggest that 

performing the first pull phase of the atlas stone lift may result in similar training 
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adaptations to the Romanian deadlift. Schellenberg, et al. [271] reported similar maximal 

hip flexion (75.3 ± 9.2º) when athletes performed goodmornings with an external barbell 

load of 25% body mass. Where an athlete is required to focus on strengthening the 

hamstrings or is unable to perform either the atlas stone lift or Romanian deadlift due to 

specific injuries which prevent grasping a stone or barbell, goodmornings may be a 

suitable accessory exercise. 

The first pull phase of the atlas stone lift was statistically shorter in duration than all other 

lifting phases (1.043 ± 0.360 s) and involved the largest ROM of the hip and second 

largest knee ROM of all phases. This indicates that a rapid extension of the hip and knee 

is key in initiating movement of the stone from the ground to a position close to the 

athlete's chest and centre of mass (COM) at the beginning of the lap phase. Training for 

power and rate of force development during rapid extension of the hip and knee and to a 

lesser extent the ankle may promote the physiological adaptations required for greater 

performance throughout the first pull phase of the atlas stone lift [55, 272]. 

Performing pulling derivatives of the snatch and clean and jerk, using strategic loading 

schemes is expected to assist in developing such power and rate of force development 

characteristics. Performed with moderate load, the power clean/snatch from the floor and 

clean/snatch pull from the floor is suggested to promote a component of the lift 

characterised by higher-velocity (when viewed on a force-velocity continuum), over a 

wide ROM [273]. While the mid-thigh pull, performed with moderate loading may assist 

in developing greater rate of force development, with the smaller ROM replicating the 

later portion of the first pull phase of the atlas stone lift [274].  

8.6.1.3 LAP PHASE 

At the beginning of the lap phase, the athlete is generally in a position of moderate hip 

(24.0 ± 18.1º) and knee flexion (45.1 ± 17.6º), and moderate ankle plantarflexion (-3.7 ± 

8.5º), supporting the lower portion of the stone with the hands and arms. For the majority 

of the athletes, gripping the stone with the hands on the lower portion of the stone 

throughout the entirety of the lift provided insufficient clearance to pass the stone over 

the bar upon standing with full extension of the hips and knees and an anatomical ankle 

position. To overcome this, athletes typically attempted to pull the stone as high as 

possible toward the chest at the end of the first pull/start of the lap phase, before retrieving 

and resting the stone in the lap. Whilst in the lap, the athlete re-gripped the stone with the 
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arms and hands hugging the upper portion of the stone. The relatively large variance in 

the duration of the lap phase (1.325 ± 1.112 s) was representative of the time some athletes 

invest in ensuring a secure grip of the stone, whereby failing to grip the stone may result 

in dropping the stone during the second pull phase, costing the athlete time and energy in 

re-attempting the lift.  

Two athletes used a "zero-lap" phase technique (commonly referred to as a "one-motion" 

technique within the strongman community) for the first two repetitions of each set, 

whereby the stone was lifted in a single motion with no transition of grip, no negative 

trajectory of the stone and thus, no lap phase. Employing the zero-lap technique likely 

reduces the total duration of the repetition. The two athletes that used this technique were 

the tallest athletes, indicating a possible advantage for taller athletes when lifting stones 

of lower mass (relative to 1RM) to/over an object of the same absolute height. It would 

appear to be less critical for taller athletes to attain a high stone position at the top of the 

chest (as demonstrated by the zero-lap phase technique) at the beginning of the lap phase, 

allowing for a fast transition through the phases of the lift until completion. The suspected 

advantage of taller athletes may, however, be lost or amplified depending on the 

competition rules (which determines the height of the bar/platform). The effect of athlete 

stature on their competition performance outcome may be a particular area of interest for 

future research. 

A short ROM, double knee bend technique was used sporadically by some athletes to 

initiate a stretch shortening cycle just prior to the beginning of the second pull phase. 

While the stretch-shortening cycle is commonly used in weightlifting events to ensure 

maximal force and power can be rapidly applied to the barbell [31, 275, 276], evidence 

supporting its effectiveness for heavy/strength-based lifts performed over an extended 

duration, such as the atlas stone lift, is conflicting [79, 277]. 

8.6.1.4 SECOND PULL PHASE 

Moderate hip (40.2 ± 22.5º) and maximal knee (70.0 ± 20.7º) flexion and ankle 

dorsiflexion (10.3 ± 10.3º) at the beginning of the second pull phase, and maximal knee 

(65.2 ± 20.1º) and ankle (35.0 ± 12.7º) ROM throughout the second pull phase were 

observed for the atlas stone lift. 
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The concentric movement of the stone throughout the second pull phase, with the load 

positioned in front, has been qualitatively suggested to share kinematic characteristics 

with the front squat [217]. The front squat has, however, been characterised by greater 

hip (94.2 ± 22.4º) and knee (125.1 ± 12.6º) flexion at the beginning of the concentric 

phase than the atlas stone lift [278]. Where greater strength adaptations may be achieved 

by performing an exercise with increased ROM [279], strongman coaches may consider 

using the front squat in the training programs of strongman athletes to target the general 

knee and hip extension requirements of the atlas stone lift through a greater ROM, thus 

encouraging greater strength adaptations. 

The final instance of the second pull phase (lift completion) demonstrates the triple 

extension of the hip and knee and plantarflexion of the ankle to a position where the 

athlete is in an almost-neutral standing position (hip: 6.1 ± 14.0º; knee: 8.4 ± 10.0º; ankle: 

-10.7 ± 18.1º). Although only quantifiable in the current study by the variance in 

kinematic measures, this rapid triple extension appeared to visually vary within and 

between athletes. For example, some athletes were able to perform the triple extension 

with enough power and timing to project or 'pop' the stone off their chest and onto/over 

the bar. In the pop technique, the athlete qualitatively appeared to lift the stone at a normal 

rate from the beginning of the second pull phase, before quickly extending the hip and 

spine toward the end of the second pull phase. As a result of the rapid movement of the 

stone towards the end of the second pull phase, the stone appears to 'pop' off the athlete’s 

chest and pass over the bar without the athlete remaining in contact with the stone. On 

the other hand, athletes who had to ‘grind’ the stone over the bar, displayed a substantial 

decrease in vertical stone velocity as the centre of mass of the stone approached the height 

of the bar. These athletes sometimes exhibited both hip extension and ankle plantarflexion 

as the stone passed over the bar. Athletes using the grind technique appeared to have to 

apply a force to the stone up until the precise moment at which the stone passed over the 

bar.  

In alignment with hypothesis one, some biomechanical similarity was present between 

phases of the atlas stone lift and traditional weight training exercises including the 

Romanian deadlift and front squat. 

8.6.2 GENERAL BIOMECHANICAL CHARACTERISATION – SEX DEPENDENT 
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A number of between-sex differences in joint kinematics were observed. Most notably, 

female athletes exhibited greater hip flexion (female: 84.7 ± 18.7º; male: 63.7 ± 15.8º) 

and ankle plantarflexion (female: 0.3 ± 8.4º; male: 6.0 ± 6.0º) at the beginning of the first 

pull, lap and second pull phase than male athletes. 

The between-sex difference in hip flexion at the beginning of the first pull may be the 

result of the differences in anthropometric ratios of the female and male population. At 

the beginning of the first pull, a greater arm to lower limb length ratio would enable an 

athlete to grip the bottom of the stone with less flexion of the hip (assuming constant knee 

flexion angle). Keogh, et al. [280] reported statistically greater arm to leg length ratios in 

male powerlifters (67.8 ± 2.9%, n = 54) when compared with female powerlifters (64.5 ± 

2.5%, n = 14), supporting the deduction that the between-sex differences observed in hip 

flexion at lift off for the atlas stone lift may be partially due to the anthropometric 

differences between male and female strength athletes.  

The smaller hip flexion displayed by male athletes at the beginning of the lap and second 

pull phase may be a mechanism used by male athletes to accommodate the larger diameter 

stone (typically lifted by male athletes when compared with female athletes) so to ensure 

the COM of the stone remains as close as possible to their COM and within their base of 

support. The compensative mechanism of greater hip extension may result in a similar 

stone to body COM distance and thus resistive moment arm length about the lumbar spine 

in male and female athletes. Although not measurable in the current study, such a result 

has been reported in a study in which males had significantly greater absolute but not 

relative L5/S1 joint moments than females when lifting boxes between 15 – 24 kg from 

a pallet at a self-selected pace [281]. The between-sex differences in hip, knee and ankle 

joint kinematics and phase duration measures observed while athletes performed the atlas 

stone lift are in support of hypothesis two. 

8.6.3 BETWEEN REPETITION BIOMECHANICAL DIFFERENCES – SEX INDEPENDENT 

(MAIN EFFECT) 

Hip and ankle joint ROM during the initial pull and lap phase of the lift were generally 

smaller for athletes during repetition one when compared with the final three repetitions. 

Greater flexion of the knee and hip at the beginning of the first pull were generally 

observed in the first two repetitions when compared with the final two repetitions.  
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The smaller hip and ankle ROM in the initial repetitions than the later repetitions indicate 

athletes performed abbreviated versions of the lift to begin the set. The strategy of athletes 

performing an abbreviated version of the lift is likely executed with the intention of self-

preservation of energy [282] and conservation of overall repetition and set time. This is 

supported by the statistically shorter phase durations and total repetition duration 

observed during the first two repetitions when compared with the final two repetitions of 

the set. The increased hip ROM when lifting the greater mass stones is also in line with 

previous research on load-dependant biomechanical differences observed during the back 

squat [263]. 

Although fatigue was not directly measured in this research, the short recovery duration 

between each repetition may contribute to some level of athlete fatigue. Recovery phase 

duration was found to increase as athletes progressed through the set of four atlas stone 

lift repetitions. Where the onset of fatigue is observed, research has demonstrated 

significant changes in joint kinematics of male participants performing a box lifting task 

[264]. Such previous research may suggest that some of the between repetition differences 

observed in the current study be due to the acute effect of fatigue that progressively 

increased within the set of incremental mass stone lifts. In support of hypothesis three, a 

number of between-repetition differences were observed in athletes performing the atlas 

stone lift. Further, a large portion of between-repetition differences observed were 

between repetition one and four. 

8.6.4 BETWEEN REPETITION BIOMECHANICAL DIFFERENCES – SEX DEPENDENT (TWO-

WAY INTERACTION) 

Male athletes exhibited smaller hip ROM during the second pull phase of the first three 

repetitions when compared with the final repetition and smaller hip extension at lift 

completion during the first two repetitions of the set when compared with the final two 

repetitions. Female athletes appeared to use a more consistent technique throughout the 

four repetitions, whereby they did not exhibit these significant between repetition 

differences. 

To ensure the bottom of the stone cleared the height of the bar in the final two repetitions, 

male athletes appeared to use greater extension (often hyperextension) of the hip. The 

greater extension of the hip at lift completion, likely contributed to the greater hip ROM 
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displayed by male athletes in the final repetition when compared to the first three 

repetitions. 

While the two-way interactions between sex and repetition further support hypothesis 

three, the exact reasoning behind the different mechanisms used throughout the set by 

male and females is somewhat unclear. Future researchers may look to investigate how 

between-sex differences in anthropometry, motor control and muscle recruitment 

strategies contribute to the kinematic between-sex differences observed during the atlas 

stone lift series. 

8.6.5 ADDITIONAL CONSIDERATIONS 

The current study is not exempt from limitations. As with any research, care should be 

taken when interpreting comparative results between groups, ensuring the magnitude of 

the error of the measurement system is recognised. In the case of the temporal parameters, 

the measurement accuracy was limited by the frame rate of the video camera, while 

kinematic parameters were limited by the accuracy of the MARG-based motion capture 

methodology [140]. Good (ICC ≥ 0.75) to excellent (ICC ≥ 0.9) relative reliability was 

however, generally found for all biomechanical parameters measured within the study 

using the MARG and video camera methods (Table S10). When comparing results 

between studies, the technology used to capture data should be considered. This is 

particularly important when using relatively new technology or methods, such as MARG-

based motion capture, as was used for this research.  

Twenty experienced strongman athletes (12 male, 8 female) were recruited for the study. 

While the combined number of male and female strongman athletes recruited in the 

current study is much larger than the number of strongman athletes recruited in any 

previous strongman exercise biomechanics study, the individual number of male (n = 12) 

and female (n = 8) participants is similar or only slightly larger than previous research [5, 

29-32, 36, 69, 70]. A greater number of both male and female athletes would strengthen 

the conclusions drawn from the observed between-sex biomechanical differences. 

The absence of pre-test 1RM reliability metrics may be identified as a limitation of the 

current study. The way in which the atlas stone lift is performed varies at the discretion 

of competition organisers. Competition organisers may set various lift heights, loading 

schemes and set formats, whereby the set may be performed as a maximal single mass 
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stone, maximal number of repetitions of a single stone in a timed period, or fastest time 

to complete a series of stones (as per the current study). Future researchers may look to 

establish standardised protocols to test an athletes 1RM across the various formats of the 

atlas stone lift. 

Variation in the increments of the mass of the stones, dimensions of stones and surface 

finish of stones may also be viewed as a limitation to this study. Variable increments, 

dimensions and surfaces of stones, is however a reality of the sport of strongman and 

provides greater insight into the realities of strongman biomechanics. 

As this is the first biomechanics study to describe kinematic and temporal parameters of 

athletes performing the atlas stone lift there is much scope for future research, including: 

transverse and frontal plane joint kinematic analyses; establishing relationships between 

anthropometrics of strongman athletes and their biomechanical characteristics; the effect 

of stone dimension, mass and surface finish on the biomechanics of an athlete; the injury 

risks associated with the atlas stone lift; and the biomechanical determinants of greater 

performance in the atlas stone competition event. 
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8.7 CONCLUSIONS 

Conducting this study has resulted in the first kinematic and temporal description of male 

and female athletes performing the atlas stone lift using set and repetition schemes that 

are commonly used in strongman training. The atlas stone lift could be biomechanically 

characterised by a recovery, initial grip, first pull, lap and second pull phase. Between-

sex biomechanical differences were suggested to be, in-part, due to anthropometric 

differences between sexes, while between-repetition differences may be attributed to 

increases in stone mass as well as some acute fatigue that increased throughout the set. 

Strongman athletes, coaches and strength and conditioning coaches are recommended to 

take advantage of the similarity shared between the atlas stone lift and traditional weight 

training exercises of the Romanian deadlift and front squat, and pulling derivatives of the 

snatch and clean and jerk to achieve greater performance in the atlas stone lift and its 

similar traditional weight training movements.  
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9. DISCUSSION 

The aim of the PhD thesis was to develop, validate and use ecologically valid motion 

capture methods to describe the biomechanics of experienced male and female strongman 

athletes undertaking previously under-assessed strongman exercises, to better inform the 

practices of strongman coaches and athletes and strength and conditioning coaches. 

The overarching aim of this thesis was achieved by answering six guiding research 

questions. 

1) What is already known about the biomechanics of athletes performing strongman 

exercises and where are the current gaps in the field of knowledge?  

2) What data collection methods have been used in previous strongman 

biomechanics research?  

3) How may current inertial motion capture methods be used and further developed 

to characterise the biomechanics of athletes performing strongman exercises?  

4) What are the general biomechanical characteristics of the: a) yoke walk; and b) 

atlas stone lift?  

5) What are the biomechanical differences between: a) different intervals of the yoke 

walk; and b) each repetition of a set of atlas stones of incremental mass?  

6) Are there any biomechanical differences between male and female strongman 

athletes performing the: a) yoke walk; and b) atlas stone lift? 

These six research questions were answered via two systematic reviews (Chapter 2 and 

Chapter 3), one technical summary review (Chapter 5), one methodological validation 

study (Chapter 6) and two cross-sectional analyses (Chapter 7 and Chapter 8). This 

chapter summarises the findings of these studies and explicitly outlines how each research 

question was answered. 

Whilst this chapter attempts to avoid repetition of research questions and the outcomes 

achieved by answering the research questions, some repetition exists to provide a link 

between the results of each chapter, the research question(s) and the aim of the PhD thesis.  



215 
 

9.1 ALIGNMENT WITH CURRENT RESEARCH 

The two systematic reviews and one technical summary provided scope for the research 

project and assisted in directing the design of the methodological validation study and 

two strongman biomechanics experimental studies to build on the current field of inertial 

motion capture (IMC) and strongman biomechanics research. 

9.1.1 SYSTEMATIC REVIEW 1 AND SYSTEMATIC REVIEW 2 

Systematic Review 1 answered Question 1 "What is already known about the 

biomechanics of athletes performing strongman exercises and where are the current gaps 

in the field of knowledge?", and Question 2 "What data collection methods have been 

used in previous strongman biomechanics research?".  

From Systematic Review 1, it was established that the biomechanics of eight strongman 

exercises had been analysed in previous literature. These exercises were the: atlas stone 

lift [36], farmers walk [5, 6, 30, 36, 71], heavy sled pull [29, 32], keg carry [36], log lift 

[6, 31, 36, 69], suitcase carry [36], tyre flip [6, 36, 70] and yoke walk [36]. Biomechanical 

characteristics of the these strongman exercises were established across ten studies with 

muscle activity [36, 71], spatiotemporal [5, 29, 30, 32, 69, 70], kinematic [5, 29-32, 69], 

kinetic [5, 31, 32, 36, 69] and anthropometric [6] analyses performed.  

Previous research into the biomechanics of strongman exercises has been limited to males 

with similar body composition but highly varied training backgrounds, ranging from 

rugby and strength-trained athletes to strongman athletes. Loads lifted by athletes were 

either a constant absolute load for all athletes or based on a percentage the individual 

athlete's one or six repetition maximum of a particular exercise. 

Two-dimensional (2D) video motion capture (VMC) was the most common method for 

the measurement of spatiotemporal and joint kinematic parameters [5, 29-32, 70]. The 

inherent limitations of 2D VMC for strongman biomechanics research prompted the need 

to establish an alternative method. 

Systematic Review 2 further expands on Question 1 "What is already known about the 

biomechanics of athletes performing strongman exercises and where are the current gaps 

in the field of knowledge?" by delving deeper into the biomechanics of strongman 

exercises and the practical applications of strongman biomechanics research.  
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Between-interval analyses were performed for the farmers walk [5, 30] and heavy sled 

pull [29, 32]. Between-exercise analyses were performed for the: log lift vs barbell clean 

and jerk [31]; log lift vs log lift of differing log diameter [69]; farmers walk vs unloaded 

walk [5]; farmers lift vs conventional deadlift [5]; and heavy sled pull vs back squat [32]. 

Joint/muscle kinetic analyses were performed between the atlas stone lift, log lift, tyre 

flip, farmer's walk, keg walk, suitcase carry and yoke walk [36]. Biomechanical 

performance determinants were only identified for the farmers walk [5, 30] and heavy 

sled pull [32] as well as the under-researched tyre flip [70].  

The comprehensively researched strongman exercises and literature on traditional weight 

training exercises and common everyday activities were used to describe the expected 

biomechanical characteristics of under-researched strongman exercises. The yoke walk 

and atlas stone lift were identified as two of the most under-researched strongman 

exercises that strongman athletes typically perform in training and in competition [55]. 

Where the farmers walk could be characterised by smaller stride length and greater stride 

rate when compared to backpack load carriage and unloaded walking, it was suggested 

that further reductions in stride length and increases in stride rate would be observed 

during the yoke walk due to the greater loads typically carried by athletes performing the 

yoke walk. The atlas stone lift was suggested to share some biomechanical similarity with 

the traditional weight training exercises of the: Romanian deadlift (initial lift of stone 

from ground); box squat (initial explosive concentric movement from the bottom of the 

lap position); and front squat (concentric movement from a quarter squat position to lift 

completion where the stone is lifted on the anterior surface of the body). 

The limited previous biomechanical data on the yoke walk and atlas stone lift may be 

somewhat reflective of the limited motion capture methods available to researchers at the 

time the studies were conducted (as identified in Systematic Review 1). For example, the 

collection of biomechanical data for exercises such as the yoke walk and atlas stone lift 

may not have been feasible using three-dimensional (3D) optical motion capture (OMC) 

or 2D VMC methods as a result of the distances covered (yoke walk typically being 

performed over 20 m) and/or implement-body-marker interference (both yoke walk and 

atlas stone lift). 

The gaps in the current literature identified from Systematic Review 1 and Systematic 

Review 2 were: limited biomechanical data existing on athletes performing the atlas stone 
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lift, yoke walk, tyre flip and vehicle pull; the lack of data of females performing 

strongman exercises; and the limited number of experienced strongman athletes included 

in previous strongman biomechanics research. Inertial motion capture was identified as a 

viable method to overcome the limitations of traditional motion capture methods such as 

2D VMC when used for the biomechanical analysis of strongman exercises such as the 

yoke walk and atlas stone lift.  

9.1.2 TECHNICAL SUMMARY LITERATURE REVIEW 

A technical summary assessing the current processing methodologies used for IMC 

(Chapter 5) was conducted to in-part answer Question 3 "How may current inertial 

motion capture methods be used and further developed to characterise the biomechanics 

of athletes performing strongman exercises?". The Technical Summary Literature 

Review provides researchers with the background information required to implement an 

IMC approach, while providing a starting point for further development of IMC methods. 

Five key components of IMC which must be considered when designing a methodology 

for a given application were highlighted: sensor fusion; position and orientation 

estimation; device placement; biomechanical modelling; and magnetometer calibration. 

Based on the discussion around the current implementation of each of these data 

processing components, an IMC methodology, suitable for the estimation of 

spatiotemporal and sagittal plane kinematic measures during functional fitness (more 

specifically strongman) exercises was devised. The methodology was devised to ensure 

practical implementation and further development by researchers with an intermediate 

Matlab skillset.  

The advantages and disadvantages of the two main sensor fusion algorithms used in 

previous literature for inertial measurement unit (IMU)/magnetic angular rate and gravity 

(MARG) device orientation estimation, the Kalman filter and the complementary filter, 

were discussed. The Kalman filter was selected as the most appropriate means of sensor 

fusion for the applications of the PhD project due to its tunability for a given environment 

and movement speed, and its overall accuracy in orientation estimation [147]. The most 

significant drawback of the Kalman filter was identified as the greater computational load, 

and thus greater processing power required for onboard processing when compared to the 

complementary filter [154]. As onboard processing and live visualisation of data was not 

necessary for the application of the PhD project, this expense was redundant. 
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Various position and orientation sensor to segment alignment procedures were presented, 

specifically: anatomical alignment [138, 139], functional calibration [172, 174], static 

calibration [149, 178] and deep learning [150]. Of the presented procedures, the static 

calibration sensor to segment alignment procedure was adopted for the PhD project 

methodology due to its relative ease in implementation and accuracy in segment 

orientation estimation when compared to other, more complex procedures. Other sensor 

to segment alignment procedures required specialised alignment equipment or the device 

to be fitted by an experienced user (anatomical alignment), large sets of previous data 

(deep learning), or the performance of specialised movement patterns and 

computationally expensive numerical methods (functional alignment).  

Spatiotemporal estimation was found to be achieved most commonly using either a 

biomechanical modelling [183] or strap-down integration approach [185]. As the strap-

down integration approach takes into consideration multi-planar motion, strap-down 

integration using a zero-velocity update (ZUPT) and search-window thresholding 

approach was selected as the most appropriate data processing methodology for this PhD 

project. The ZUPT using a Kalman filter provided greater accuracy in drift correction and 

thus position estimation than the naïve ZUPT approach [181], while the search-window 

thresholding approach provided greater accuracy in gait event detection than a naïve 

thresholding approach [179]. 

In considering MARG device placement, soft tissue artefacts (STA) were identified as a 

source of error in traditional 3D OMC and IMC approaches. Where techniques have been 

developed for 3D OMC to reduce the effects of STA (algorithms, marker cluster sets) 

[194, 195], limited solutions have been proposed for IMC [196, 197]. For the applications 

of this PhD thesis, anatomical locations exposed to minimal STA were identified through 

iterative processes during pilot testing.  

Potential differences in kinematic estimations between OMC and IMC caused by 

differences in biomechanical modelling assumptions between the methods were 

discussed. Optical motion capture typically relies on complex biomechanical models to 

estimate joint angular kinematics, whereas IMC methods use relative angle measures 

between the proximal and distal sensor to estimate joint kinematics [127]. As the 

developed IMC methodology used in this PhD project was intended to be implementable 
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by a wide range of researchers, a minimal modelling approach, where relative device 

orientation was considered to be the estimation of the given joint orientation, was used.  

Various magnetic disturbances were expected to be present within the gym data collection 

environment [203]. The reduction of noise and error caused by magnetic disturbance from 

the surrounding environment was acknowledged as an important component of the 

developed IMC methodology for the PhD project. A magnetic calibration procedure was 

implemented taking into consideration hard and soft iron effects and trial initialisation 

location and duration in order to minimise the noise and error. 

Systematic Review 1, Systematic Review 2 and the Technical Summary Literature 

Review answered Question 1, Question 2 and in-part Question 3. Answering these 

questions assisted in establishing a basis for the methodological validation study and two 

strongman biomechanics experimental studies.  



220 
 

9.2 EXPERIMENTAL RESULTS AND PRACTICAL APPLICATIONS 

One methodological validation study and two experimental studies were designed to 

answer Question 3, Question 4, Question 5 and Question 6. The results of these studies 

provided practical applications for strongman athletes, coaches and strength and 

conditioning coaches, and researchers and developers of IMC methodologies. 

9.2.1 METHODOLOGICAL VALIDATION STUDY 

The Methodological Validation Study (Chapter 6) set out to validate the IMC 

methodology recommended within the Technical Summary Literature Review (Chapter 

5) and further answer Question 3 "How may current inertial motion capture methods be 

used and further developed to characterise the biomechanics of athletes performing 

strongman exercises?". 

Estimates of sagittal plane hip, knee and ankle joint angles and spatiotemporal parameters 

of stride length, stride duration and stance duration using the devised IMC method were 

assessed against a six-camera OMC system. Participants (n = 13) performed a variety of 

functional fitness exercises (squat, box squat, sandbag pickup, shuffle walk, bear crawl) 

chosen for their similarity to strongman exercises and ability to be performed within the 

limits of the laboratory environment, on a raised wooden floor.  

Hip and knee range of motion (ROM) showed good to excellent agreement with the OMC 

system for the squat, box squat, and sandbag pickup, while ankle ROM agreement ranged 

from good to unacceptable. A tuned and filtered (TAF) method, where Kalman filter 

parameters were set by the researcher, was compared with a default (DEF) method, where 

default Kalman filter parameters were used. The TAF method generally outperformed the 

DEF method for estimation of hip and knee joint kinematics during the squat, box squat 

and sandbag pickup, while the DEF method outperformed the TAF method for estimation 

of ankle kinematics during these exercises. Although both DEF and TAF were accepted 

as valid methods, the better performance reported for the TAF method for hip and knee 

joint angular kinematics may reflect the suitability of the selected TAF tuning parameters 

for limbs experiencing greater angular velocity and ROM. 

Hip and knee ROM MAPE for the shuffle-walk and bear crawl were reported to be 

unacceptable. Where small ROM (hip: 12.1 ± 3.3º; knee: 29.1 ± 8.9 º) was observed 

during the shuffle walk, it is suggested that the high noise to signal ratio in both OMC 
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and the MARG method may be a primary factor contributing to the high MAPE. The 

inherent noise and measurement errors associated with each method are primarily derived 

from the differences in physical measures and biomechanical modelling assumptions used 

by each system to estimate joint kinematics.  

Stride length, stride rate, and stance duration showed good to excellent agreement 

between OMC and IMC methods during both the shuffle walk and bear crawl. Difficulty 

in identifying the instance of initial contact and toe off during both the shuffle walk and 

bear crawl were suggested to be primary contributors to the spatiotemporal estimation 

error.  

The minimal modelling MARG method presented in Chapter 6 is a useful method to 

measure the biomechanics of athletes performing strongman exercises. Current IMC 

methods may be further developed through the: standardisation of data processing 

methodologies and refinement of sensor fusion filtering parameters; development of 

biomechanical modelling methods; development of techniques for noise reduction and 

error caused by STA; and development of gait event detection thresholding techniques. 

9.2.2 EXPERIMENTAL STUDY 1 

Chapter 7 answers, part a) of the final three research questions. In answering Question 4, 

part a) "What are the general biomechanical characteristics of the yoke walk?".  

The biomechanical characteristics of athletes performing the yoke walk involved flexion 

of the hip and slight to neutral flexion of the knee at heel strike, slight to neutral extension 

of the hip and flexion of the knee at toe-off and moderate hip and knee ROM. The gait 

pattern of athletes performing the yoke walk was characterised by a shorter stride length 

and reduced stride rate and greater knee ROM and stance duration when compared to the 

previously researched strongman exercise, the farmers walk [30]. Such differences were 

suggested to be a result of the greater load carried in the yoke walk when compared to 

previous load carriage research.  

The combination of an extended knee throughout the stance phase and a short stride 

length reduces the vertical displacement of the athlete's centre of mass (COM) [237], 

reducing the chance of "catching" the yoke on the ground, resulting in dropping the yoke. 

The metabolic efficiency gained through the reduced requirement to lift the total system 

load against gravity (as a result of the reduced vertical COM displacement), was 
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suggested to be counterbalanced by the additional energy expenditure caused by an 

increase in stride rate to maintain velocity with a decreased stride length [238, 239]. A 

reduced vertical COM displacement may be particularly important when performing the 

yoke walk due to the naturally smaller ground-to-implement clearance and greater total 

system load being carried when compared with other strongman load carriage exercises 

such as the farmers walk.  

In answering Question 5, part a) "What are the biomechanical differences between 

different intervals of the yoke walk?". 

Shorter stride length, stride rate, increased stance duration and lower average velocity 

was observed during the initial (0 – 5 m) interval when compared to the final three (5 – 

20 m) intervals. The abbreviated lower limb motion, through greater flexion of the hip at 

toe off, greater flexion of the knee at heel strike and reduced knee ROM, is suggested to 

be a mechanism employed by athletes to attempt to rapidly increase stride rate during the 

acceleration phase. By rapidly increasing stride rate, the athlete is then able to increase 

their velocity through the optimisation of stride length (as a result of increased lower limb 

ROM) in the later (maximal velocity) intervals [254]. Based on the impulse momentum 

relationship, strongman athletes may benefit from performing ballistic training to develop 

the neuromuscular response required to generate maximal force during short periods of 

ground contact in the acceleration phase, to rapidly increase stride rate.  

In answering Question 6, part a) "Are there any biomechanical differences between male 

and female strongman athletes performing the yoke walk?". 

No main between-sex differences were observed, while few two-way interactions 

between sex and interval were observed for the yoke walk. The lack of main between-sex 

spatiotemporal and sagittal plane joint kinematic differences observed during the yoke 

walk is in line with previous research using body-mass relative loading (≤ 30% body mass) 

[229] and relatively light absolute loads (i.e. 22 kg) [230] in load carriage tasks. Previous 

literature has, however, found a greater number of between-sex differences in frontal and 

transverse plane kinematics, which have been hypothesised as possible reason for the 

greater occurrence of anterior cruciate ligament and patellofemoral injuries reported in 

females [241, 242, 249]. Future research may be directed toward transverse and frontal 

plane kinematics analyses of male and female strongman athletes performing the yoke 
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walk to assist in identifying any sex-specific injury risks associated with the yoke walk 

exercise. 

9.2.2.1 PRACTICAL APPLICATIONS 

From the results of Experimental Study 1 it is suggest that strongman athletes and coaches 

and strength and conditioning coaches should look to focus on rapidly increasing stride 

rate during the initial intervals through an abbreviated lower limb ROM to assist in 

increasing velocity. Strongman athletes are recommended to perform exercises such as 

the concentric-only half-squat performed with maximal ballistic intent to develop the 

neuromuscular response required to generate maximal force during short periods of 

ground contact, resulting in the achievement of greater maximal velocity.  

9.2.3 EXPERIMENTAL STUDY 2 

Experimental Study 2 (Chapter 8) answers part b) of Question 4, Question 5 and Question 

6. In answering Question 4, part b) "What are the general biomechanical characteristics 

of the atlas stone lift?". 

The atlas stone lift could be typically segmented into five phases: the recovery, initial 

grip, first pull, lap and second pull phase. The characteristics of athletes performing the 

atlas stone lift involved: maximal hip and moderate knee flexion and ankle dorsiflexion 

at the beginning of the first pull; moderate hip and knee flexion and moderate ankle 

plantarflexion at the beginning of the lap phase; moderate hip and maximal knee flexion 

and ankle dorsiflexion at the beginning of the second pull phase; and maximal hip, knee 

extension and ankle plantarflexion at lift completion.  

Various phases of the atlas stone lift were identified as sharing similar kinematics with 

phases of the traditional weight training exercises of the Romanian deadlift and front 

squat [5, 269, 278]. The relatively short phase duration and large ROM observed for the 

initial pull phase of the atlas stone lift led to the suggestion that training for power and 

rate of force development during rapid extension of the hip and knee and to a lesser extent 

the ankle may promote physical adaptations required for greater performance of the first 

pull phase of the lift. Such similar training adaptations may be achieved by performing 

pulling derivatives of the clean and jerk or snatch, including the clean/power clean/snatch 

pull from the floor/knee or the mid-thigh pull [273, 283].  
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Greater strength adaptations may be achieved using a larger ROM [279]. The 

biomechanical similarity between the second pull phase of the atlas stone lift and the 

concentric phase of the front squat, yet greater ROM in the front squat, may suggest the 

front squat should be incorporated into the training programs of strongman athletes for 

greater strength adaptations while performing a similar movement to the second pull 

phase of the atlas stone lift. 

Notable variation in the biomechanics of athletes performing the atlas stone lift deserve 

special mention and further investigation in future research. The zero-lap phase (one 

motion) technique appeared to be used by some athletes to save time in completing a 

repetition. Anecdotally, it appeared to be less critical for taller athletes to attain a high 

stone position on the chest (demonstrated by the zero-lap phase technique), as 

theoretically they are able to pass the stone over the bar at a lower height (as a percentage 

of their stature) than shorter athletes. Exploring the possible advantage taller athletes have 

in the atlas stone lift may be a particular area of interest for future research. The 'pop' and 

'grind' techniques were used by some athletes at lift completion whereby the stone was 

either projected off the chest and over the bar (the pop) or moved with a small, positive 

vertical velocity upon approaching the height of the bar (the grind), respectively. This 

grind technique therefore appears to share some similarities to the concept of a sticking 

point/sticking region that has been examined previously in traditional resistance training 

exercises [284]. Future research could compare athletes who use these different stone 

lifting techniques to more clearly identify the biomechanical differences in their 

technique as well as the physical characteristics e.g., anthropometry, strength and power 

that may underpin these biomechanical differences. 

In answering Question 5, part b) "What are the biomechanical differences between each 

repetition of a set of atlas stones of incremental mass?".  

The initial repetitions of the stone series were observed to be somewhat abbreviated 

versions of the later repetitions, whereby first pull phase hip and ankle ROM was 

generally smaller in repetition one than the final three repetitions. Lap phase hip and ankle 

ROM was also smaller in repetition one than the final three repetitions, and smaller in 

repetitions two and three (hip only) than repetition four. The abbreviated joint ROM 

during the initial repetitions in the series coincided with a reduction in the durations of 

most phases and total repetition time between the first two and final two repetitions of the 
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set. The between-repetition biomechanical differences observed throughout the set were 

attributed to: the increase in mass of the stone; a likely self-preservation strategy used by 

the athlete to save energy and time; and a certain level of acute fatigue experienced by 

the athlete.  

In answering Question 6, part b) "Are there any biomechanical differences between male 

and female strongman athletes performing the atlas stone lift?".  

When compared with male athletes, female athletes exhibited: greater hip flexion and 

ankle plantarflexion at the beginning of the first pull and greater overall hip ROM 

throughout the first pull; greater hip flexion and knee extension at the beginning of the 

lap phase, and smaller hip and ankle ROM throughout the lap phase; greater hip flexion, 

knee extension and ankle plantarflexion at the beginning of the second pull phase, and 

smaller knee ROM and greater ankle ROM throughout the second pull phase; and greater 

hip flexion and ankle plantarflexion at lift completion. With respect to the greater hip 

flexion at the beginning of the first pull phase, a contributing factor to this difference was 

suggested to be the differences in anthropometric ratios of the female and male population, 

where Keogh, et al. [280] reported statistically greater arm to leg length ratios in male 

powerlifters (67.8 ± 2.9%, n = 54) than female powerlifters (64.5 ± 2.5%, n = 14). 

The greater hip extension displayed by male athletes at the beginning of the lap and 

second pull phase may be a mechanism used by male athletes to accommodate the larger 

diameter stones typically lifted by male athletes when compared to female athletes to 

ensure the COM of the stone remains as close as possible to their COM and within their 

base of support. This compensative mechanism employed by male athletes is likely to 

result in achieving a similar resistive moment arm about the lumbar spine when compared 

with female athletes. Male athletes, however, may experience a greater net joint moment 

about the lumbar spine due to the greater load typically lifted whilst maintaining a similar 

resistive moment arm length [34, 36].  

9.2.3.1 PRACTICAL APPLICATIONS 

The results of Experimental Study 2 suggest that strongman athletes and coaches and 

strength and conditioning coaches should take advantage of the similarities identified 

between phases of the atlas stone lift and the traditional weight training exercises of the 

Romanian deadlift and front squat, and power adaptations achieved through pulling 
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derivatives of the snatch and clean and jerk. By taking advantage of the similarity shared 

between the atlas stone lift and the identified traditional weight training exercises, greater 

training adaptations and thus performance in the atlas stone lift and its counterpart similar 

movements may be achieved.  
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9.3 LIMITATIONS 

A number of limitations in the work contained within this PhD thesis should be 

acknowledged. Some potential limitations were identified in relation to the athlete 

population recruited, the strongman testing protocols and the data collection methodology 

used. 

The athlete population recruited for Experimental Study 1 and Experimental Study 2 

generally consisted of a greater number of experienced strongman athletes (combined sex 

and individual male and female athletes) than previous strongman biomechanics research. 

Although resulting in greater ecological validity of the results obtained, the requirement 

of participants to have a minimum of one strongman competition experience limited the 

number of athletes eligible to take part in the research. Where relatively high variance 

was observed in some of the biomechanical parameters for both the yoke walk and atlas 

stone lift, a greater number of participants in these strongman experimental studies would 

produce greater confidence (generalisability) in the results of the research. 

Test protocols were established with the intention of using ecologically realistic training 

loads and carry distances. However, the way in which the yoke walk and atlas stone lift 

is performed in training can vary greatly depending on the relative standard of the athlete 

and the format of the competition for which the athlete is currently training. Greater 

ecological validity could be achieved by designing experimental protocols specific to a 

particular competition format. As the PhD project is the first research to describe 

spatiotemporal and kinematic characteristics of male and female strongman athletes 

performing the yoke walk and atlas stone lift, it was concluded that designing 

experimental protocols reflective of the common training forms of these exercises was 

most appropriate. 

A limitation in the ecological validity of the devised IMC methodology arose due to the 

difficulty in selecting biomechanically similar exercises to the yoke walk and atlas stone 

lift in the Methodological Validation Study (Chapter 6). Loads used in the laboratory had 

to be minimised due to the laboratory having a raised wooden floor to accommodate an 

inset force plate. Qualitative analysis of the yoke walk suggested that due to the overall 

greater load being carried, athletes performing the yoke walk may exhibit shorter stride 

length, reduced stride rate and reduced lower limb ROM when compared to the farmers 

walk and unloaded walking [30, 98]. To achieve similar stride length, stride rate and lower 
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limb ROM as the farmers walk, purely induced by loading, it was estimated that loads 

exceeding the load limit of the laboratory floor would be required. The research team 

concluded that instructing participants to walk with a modified "shuffle" gait pattern 

involving a relatively straight lower limb, small lower limb ROM and short stride length 

throughout the walk may result in a movement pattern biomechanically similar to the 

yoke walk.  

In conducting yoke walk testing with ecologically valid loading, it became apparent that 

significantly larger lower limb ROM (yoke walk hip ROM: 37.9 ± 7.8º; shuffle walk hip 

ROM: 14.1 ± 3.7 º; yoke walk knee ROM: 53.9 ± 10.7 º; shuffle walk knee ROM: 22.9 ± 

8.0 º) and stride length (yoke walk: 1.138 ± 0.171 m; shuffle walk: 0.326 ± 0.096 m) were 

exhibited by athletes performing the yoke walk than participants performing the shuffle 

walk in Chapter 6. As previous literature has suggested the validity of inertial motion 

capture methodologies to be dependent on the task complexity and ROM being measured 

[145, 260, 261], the validity of the IMC method used for the yoke walk may be greater 

than that observed for the shuffle walk in Chapter 6, laying somewhere between the squat, 

box squat and sandbag pickup (hip MAPE: 6.8 ± 6.1% – 8.2 ± 6.5%; knee MAPE: 3.7 ± 

2.8% – 5.1 ± 3.7%) and the shuffle walk (hip MAPE: 25.1 ± 21.0; knee MAPE: 22.5 ± 

16.5%). Without further validation using a movement which shares greater biomechanical 

similarity to the yoke walk, some care should be taken when interpreting joint angle 

kinematics of persons performing the yoke walk. 

Spatiotemporal and kinematic estimates were measured for just a single side of the body 

during both the methodological validation and two experimental studies. Although only 

a minor limitation of the current PhD research, identification of biomechanical 

asymmetry may be key in identifying the presence of acute fatigue and/or reducing the 

risk of injury of athletes performing the atlas stone and yoke walk strongman exercises 

[285].  
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9.4 FUTURE RESEARCH 

As a result of undertaking the program of work within this PhD thesis, a number of areas 

of future work have been identified in the disciplines of IMC research and strongman 

biomechanics research.  

Future work pertaining to the areas of IMC research may include: 

• standardisation of data processing methodologies used for IMC to increase the 

rate of development of IMC; 

• biomechanical modelling for joint kinematic analyses to produce kinematic 

estimations that better align with those obtained using OMC; and 

• further development and implementation of methods toward the reduction of error 

caused by high noise to signal ratios and STA. 

Future work pertaining to strongman biomechanics research may include:  

• analyses comparing spatiotemporal and kinematic characteristics of higher and 

lower performing athletes performing the yoke walk and atlas stone lift, to 

directly identify biomechanical performance determinants of these exercises; 

• kinetic analyses of the yoke walk and atlas stone lift when performed using 

ecologically valid loading, set and repetition schemes, to provide further insight 

into potential injury prevention and performance adaptation practices of 

strongman athletes, coaches and strength and conditioning coaches; 

• multi-planar and bilateral biomechanical analyses of athletes performing the yoke 

walk and atlas stone lift; 

• assessing the effects of yoke load and stone characteristics (including load, 

dimension, surface finish) on the biomechanics of strongman athletes; 

• assessing the effect of anthropometrics on the biomechanics of athletes 

performing strongman exercises both dependent and independent of sex; and 

• assessing the biomechanics leading to yoke drops and failed atlas stone lifts.  
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9.5 CONCLUSION 

The aim of the PhD thesis was to develop, validate and use ecologically valid motion 

capture methods to describe the biomechanics of experienced male and female strongman 

athletes performing previously under-assessed strongman exercises, to better inform the 

practices of strongman coaches and athletes and strength and conditioning coaches. 

In summary of the findings and in alignment with the aim of this PhD thesis, the following 

was demonstrated. 

• Existing research into the relatively under-researched strongman exercises of the 

atlas stone lift and yoke walk may have been limited by traditional motion capture 

methods and as such, modern inertial motion capture methods may be used to 

expand the current biomechanical knowledge of strongman exercises. 

• The biomechanics of athletes performing the yoke walk could be characterised 

by: 1) flexion of the hip and slight to neutral flexion of the knee at heel strike; 2) 

slight to neutral extension of the hip and flexion of the knee at toe-off; and 3) 

moderate hip and knee ROM. Athletes exhibited an abbreviated gait pattern with 

smaller joint ROM, shorter stride length, reduced stride rate, increased stance 

duration and lower average velocity during the initial acceleration phase when 

compared with the final three intervals. 

• The atlas stone lift could typically be characterised by a recovery, initial grip, first 

pull, lap and second pull phase. Biomechanical similarity was shared with 

traditional weight training exercises of the Romanian deadlift (first pull) and front 

squat (second pull). Between-repetition biomechanical differences observed 

throughout the four-stone series were suggested to be in-part attributed to the 

increase in stone mass as well as acute fatigue. 

• While few between-sex biomechanical differences were observed for the yoke 

walk, the between-sex biomechanical differences observed for the atlas stone lift 

were suggested to be, in-part, due anthropometric differences between sexes. 

The results of this PhD thesis significantly contribute to the fields of inertial motion 

capture and strongman biomechanics research by: 1) demonstrating the feasibility of 

using inertial motion capture for the analysis of strongman exercises; and 2) providing 
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the first spatiotemporal and kinematic description of both male and female strongman 

athletes performing the yoke walk and atlas stone lift exercises. It is anticipated that by 

using the information provided within this thesis, strongman coaches and athletes and 

strength and conditioning coaches will be better informed regarding how to prescribe 

training for, and coach their athletes performing the yoke walk and atlas stone lift. 

Researchers in the fields of strength-based sports biomechanics research and inertial 

motion capture research may also use the information provided within this thesis to 

structure future research in this area.   
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