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Abstract 

The bilaterian body plan consists of three body axes: the anteroposterior (AP; head-

trunk/tail), the dorsoventral (DV; back-belly) and the left-right (LR; placement of inner organs) 

axis. Axis formation occurs during early embryogenesis and is critical for further development 

and viability of the embryo. In this comprehensive study three highly conserved determinants 

were functionally analyzed in the context of axis development. 

The first chapter of this work covers the autoregulatory, homeodomain containing, repressor 

gene goosecoid (gsc), whose most prominent expression marks the Spemann-(Mangold) 

organizer (SO). The SO is the primary dorsal signaling center and is instructive for tissue 

patterning along the DV and AP axes. Transplanting the SO or misexpressing gsc on the 

opposite ventral side of an embryo is sufficient to establish a new/secondary AP axis. 

However, its function during normal development in the SO remained enigmatic as the gsc 

loss of function (LOF) lead to no severe early developmental defects. To elucidate the 

function of gsc, timed gain of function (GOF) experiments were performed. Gsc efficiently 

repressed the planar cell polarity (PCP)/Wnt signaling pathway leading to severe gastrulation 

and neurulation defects. This novel Gsc function was correlated with two vertebrate specific 

domains, suggesting an evolutionary new function of Gsc with the emergence of jaws/neural 

crests in vertebrates. 

The second chapter of this study addresses the functions of Myosin1d (Myo1d) and Bicaudal 

c1 (Bicc1) during the LR axis determination in vertebrates. In this group LR symmetry 

breakage takes place at a ciliated epithelium called LR organizer (LRO). The initial cue for 

the asymmetric LR axis development is a cilia-driven leftward fluid flow. These cilia have to 

be correctly polarized through PCP/Wnt signaling. Interestingly, the invertebrate Drosophila 

melanogaster also displays a distinct LR axis but uses a cilia independent, yet not fully 

understood, mechanism. It depends on a myo1d homologous gene, myo31DF, and PCP. To 

unravel a potential common evolutionary origin of the bilaterian LR axis myo1d was analyzed 

during Xenopus laevis lateralization. Myo1d LOF experiments disturbed LR axis formation by 

compromising PCP dependent outgrowth and polarization of LRO cilia. These experiments 

link the PCP/Myosin based mechanism of flies to the newly evolved cilia/flow dependent 

mode of vertebrate LR axis determination suggesting actomyosin as common ancestral LR 

determinant. 

Contrary to Myo1d, Bicc1 was already described for its function during polarization of flow 

producing LRO cilia. However bicc1`s expression is most prominent in the sensory LRO cells 

(sLRO). These cells detect the fluid flow and translate it into left-sided signaling of the 

morphogen Nodal1 and consequently asymmetric LR axis formation. These cells 
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downregulate the expression of the secreted Nodal1 antagonist DAN domain family member 

5 (dand5) in response to flow. 

Bicc1`s function was re-evaluated with respect to its function in sLRO cells. Ex vivo and in 

vivo experiments involving GOF as well as LOF experiments showed that Bicc1 regulates 

both dand5 and nodal1 via a direct and indirect post-transcriptional mechanism, respectively. 

In the process of dand5 regulation several other LR determinants and regulatory events were 

linked with the Bicc1 dependent mechanism: Dicer1 dependent microRNA repression of 

dand5 and a proposed cation channel Polycystin 2 mediated Bicc1 modification. These 

results highlight the importance of a tightly controlled Dand5 protein level as decisive for the 

overall outcome of the LR symmetry breakage in vertebrates.    
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Zusammenfassung 

Der Körperbauplan von Bilateria setzt sich aus drei Körperachsen zusammen: Der 

anteroposterioren (AP; Längsachse), der dorsoventralen (DV; Rücken-Bauch) und der links-

rechts (LR, Anordnung der inneren Organe) Achse. Die Körperachsenbildung findet während 

der frühen Embryonalentwicklung statt und ist entscheidend für die weitere Entwicklung und 

die Lebensfähigkeit des Embryos. In dieser umfassenden Arbeit wurden drei hoch 

konservierte Determinanten auf ihre Funktion während der Achsenentwicklung analysiert. 

Das erste Kapitel dieser Arbeit beschreibt die Funktion des autoregulatorischen Repressors 

und Homeoboxgens goosecoid (gsc), dessen bekannteste Expression den Spemann-

(Mangold) Organisator (SO) markiert. Der SO ist das primäre dorsale Signalzentrum und 

bekannt für seine instruktive gewebespezifizierende Funktion entlang der AP- und der DV-

Achse. Transplantation des SO oder Missexpression von gsc auf der gegenüberliegenden, 

ventralen, Seite des Embryos, ist ausreichend, um eine neue/zweite AP Körperachse zu 

erzeugen. Trotzdem blieb seine Funktion im SO während der normalen Entwicklung 

rätselhaft, da ein Funktionsverlust zu keinen massiven frühen Entwicklungsproblemen führte. 

Um die Funktion von gsc herauszufinden wurden zeitlich und räumlich terminierte 

Überexpressionen durchgeführt. Gsc reprimierte effizient den Planaren Zellpolaritäts 

(PCP)/Wnt Signalweg was zu ernsthaften Gastrulations- und Neurulationsdefekten führte. 

Die neu beschriebene Funktion von Gsc konnte mit zwei Wirbeltier-spezifischen Domänen 

korreliert werden. Dies suggerierte eine evolutionär neue Funktion von Gsc mit der 

Entstehung von Kiefern und Neuralleistenzellen in Wirbeltieren. 

Das zweite Kapitel dieser Arbeit behandelt die Funktion von Myosin1d (Myo1d) und Bicaudal 

c1 (Bicc1) während der LR Achsenentwicklung in Wirbeltieren. In dieser Tiergruppe wird die 

LR Symmetrie durch ein ciliertes Epithel, den sogenannten LR Organisator (LRO), 

gebrochen. Das erste Signal für die asymmetrische LR Entwicklung ist ein durch Cilien 

erzeugter linksgerichteter Flüssigkeitsstrom. Dafür müssen diese Cilien durch den PCP 

Signalweg korrekt polarisiert sein. Interessanterweise zeigt das wirbellose Tier Drosophila 

melanogaster auch eine eindeutige LR-Achse, für die sie allerdings einen Zilien-

unabhängigen Mechanismus verwenden. Dieser ist bis heute noch nicht eindeutig geklärt, 

beruht aber auf dem myo1d orthologen Gen myo31DF und dem PCP Signalweg. Um einen 

potentiellen evolutionären Ursprung der LR Achsenentwicklung in Bilateria zu entschlüsseln, 

wurde myo1d während der Lateralisierung in Xenopus laevis analysiert. Funktionsverlust 

Experimente von Myo1d resultierten dabei in einer gestörten LR Achsenentwicklung, 

basierend auf einer Störung des PCP abhängigen Auswachsens und der Polarisierung der 

LRO-Cilien. Diese Experimente verbinden den PCP/Myosin abhängigen Mechanismus von 

Fliegen mit dem neu evolvierten Cilien/Flüssigkeitsstrom abhängigen Mechanismus der LR 
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Achsenentwicklung in Wirbeltieren. Somit wird ein Actomyosin abhängiger Mechanismus als 

gemeinsamer ursprünglicher LR Achsendeterminant für Bilateria impliziert.  

Im Gegensatz zu Myo1d wurde für Bicc1 schon eine Funktion während der Polarisierung der 

LRO Cilien beschrieben. Dennoch ist die markanteste Expression von bicc1 in den 

sensorischen LRO Zellen (sLRO), welche den Flüssigkeitsstrom detektieren und in ein 

linksseitiges Signal des Morphogens Nodal1 umwandeln. Dieses Signal resultiert dann in der 

Entstehung der asymmetrischen LR Achse. Als Antwort auf den Flüssigkeitsstrom wird die 

Expression von dem sekretierten Nodal1-Antagonisten DAN domain family member 5 

(dand5) in den sLRO Zellen runter reguliert. Die Funktion von Bicc1 sollte im Bezug auf die 

Funktion in den sLRO Zellen reevaluiert werden. Ex vivo und in vivo Funktionsverlust und 

Funktionsgewinn Experimente zeigten, dass Bicc1 sowohl dand5 direkt als auch nodal1 

indirekt post-transkriptional reguliert. Desweiteren wurden auch andere LR Determinanten 

mit dem Mechanismus der Bicc1 abhängigen dand5 Regulation vernetzt: Die Dicer1 

abhängige microRNA vermittelte Repression von dand5 und die mögliche Modifikation von 

Bicc1 in Abhängigkeit vom Kationen-Kanal Polycystin 2 (Pkd2). Diese Ergebnisse 

verdeutlichen maßgeblich die Bedeutung eines engmaschig kontrollierten Dand5 

Proteinlevels für das Ergebnis des LR Symmetriebruchs in Wirbeltieren. 
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1. Introduction 

1.1 Axes development in vertebrates 

The generation of the three primary body axes is one of the first and most important steps 

during early development of all vertebrates. These axes, termed as anteroposterior (AP; 

head-trunk/tail), the dorsoventral (DV; back-belly) and the left-right (LR; arrangement of 

many inner organs) axis, share similar overlapping mechanisms and genes to establish the 

proper body plan (Bénazéraf and Pourquié, 2013; Blum et al., 2014a; Durston, 2015; 

Meinhardt, 2006). Therefore it can be assumed if you cover a mechanism in several model 

organisms among e.g. anamniotic and amniotic vertebrates it is likely a conserved feature of 

these phyla. As the main part of this thesis focuses on axis determination in the model 

organism Xenopus laevis (Daudin, 1802), the introduction is mainly restricted to the 

development of X. laevis and only briefly covers other organisms. 

1.1.1 Fertilization, cortical rotation and cleavage stages: establishment of the first 

body axis, the DV axis. 

The oocyte of X. laevis already has an intrinsic axis, the animal-vegetal axis. This axis is 

defined by pigmented granules at the animal pole and an asymmetric distribution of yolk, 

mRNAs and proteins, favoring the vegetal pole. The sperm entry takes place at the animal 

hemisphere through asymmetrically localized glycoproteins (Kubo et al., 2010; Nagai et al., 

2009; Sindelka et al., 2018). As consequence of the sperm entry (later ventral side), the 

nucleus and the centriole are intaken in the oocyte, which initiates the cortical rotation. This 

rearrangement of the cytoskeleton, emanating from the centriole, leads to a microtubule 

based rotation of the outer/cortical cytoplasm and associated proteins/mRNAs 

(approximately 30 °; (Elinson and Rowning, 1988; Houliston and Elinson, 1991; Vincent and 

Gerhart, 1987). The shift of maternal determinants like the mRNAs vegt and vg1 as well as 

proteins like Dishevelled (Dsh/Dvl) and the GSK3-binding protein (GBP) determines the later 

dorsal side of the embryo (He et al., 1995; Weaver and Kimelman, 2004; Yost et al., 1998). 

These components belong to two main signaling pathways, namely the transforming-growth 

factor-β (TGF-β) signaling pathway (more information on TGF-β in 1.3) and the canonical 

Wnt pathway (more information on Wnt signaling in 1.4.1). Both are required to induce the 

Nieuwkoop centre, which is a dorsal signaling centre (Larabell et al., 1997; Manes and 

Elinson, 1980; Schneider et al., 1996; Vincent, Oster and Gerhart, 1986). After the first 

cleavage, the embryo undergoes fast unequal radial holoblastic cleavages with a low level of 

gene transcription until the midblastula transition (MBT) at the 12th cell cycle. The MBT is 

accompanied by not only a name shift from morula to a blastula embryo, but also by a cell 

cycle shift and an activation of the zygotic genome (Newport and Kirschner, 1982; Valles et 

al., 2002; Yang et al., 2002). 
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1.1.2 Spemann organizer and pre-specification of the three germ layers 

During blastula stages the embryo pre-patterns the three germ layers: The ectoderm, which 

will give rise to the nervous system and the skin; the mesoderm, which will give rise to e.g. 

heart muscles and the notochord (a flexible, mostly transient, embryonic rod); and the 

endoderm, which will form most of the gastrointestinal tract except e.g. the pharynx (Urry et 

al., 2019). The Nieuwkoop center, part of the dorsal endoderm, induces the so called 

Spemann-(Mangold) organizer (SO). This endo-/mesoderm induction is accomplished by the 

previously mentioned Wnt- and TGF-β signals, which induce the transcription of specific 

homeobox genes like nieuwkoid, lhx1 (previously lim1) and the autoregulatory homeobox 

gene goosecoid (gsc) (Bae, Reid and Kessler, 2011; Fan and Sokol, 1997; Koos and Ho, 

1998; Spemann and Mangold, 1924; Taira et al., 1992). Other genes like the ventral 

mesodermal repressor Tcf3 switch to an activator function when combined with active Wnt 

signals in the dorsal mesoderm. Conversely, family members of microRNA-15 (miR-; more 

information on miRs in 1.5), which control the TGF-β signal in the ventral mesoderm, are 

inhibited by the Wnt signals and therefore an additional TGF-β gradient (ventral to dorsal 

mesoderm) is established. The ectoderm is secured against these endo-/mesoderm signals 

by the blastocoel a fluid filled cavity which ensures distance between endoderm (vegetal 

pole) and ectoderm (animal pole; (Gerhart, 1999; Martello et al., 2007; Smithers and Jones, 

2002; Vonica and Gumbiner, 2007; Zhang et al., 1998). The function of the SO is to control 

the Wnt- and the Bone morphogenetic protein (BMP)-signaling pathways to induce dorsal 

structures along the AP-axis. This is ensured by expressing BMP antagonists like chordin, 

noggin, follistatin and Wnt antagonists like cerberus (also a BMP and TGF-β antagonist) and 

dickkopf. Secretion of these components leads to repression of both pathways (BMP and 

Wnt) which leads to a differentiation of anterior head structures. Inhibition of the BMP-

pathway alone in a more posterior region leads to trunk structures. Meanwhile, the activation 

of both pathways in the most posterior region specifies posterior dorsal structures and 

epidermis (Gawantka et al., 1995; Kiecker and Niehrs, 2001; Petersen and Reddien, 2009; 

Piccolo et al., 1996; Piccolo et al., 1997; Piccolo et al., 1999; Silva et al., 2003).  

1.1.3 Gastrulation: determination of the second body axis, the DV axis, and germ layer 

positioning 

The embryonic induction emanating from the SO goes hand in hand with the induction of the 

process of gastrulation and the correct positioning of all three germ layers in the body cavity. 

Four distinct mechanisms are indispensable for this process.  

1. Epiboly: The animal pole cells (ectoderm) have to spread over the vegetal hemisphere. 

This is accomplished by thinning through radial intercalation (RI): cells elongate and migrate 

from the inner into the outer cell layer, thereby transforming the three to two cell layers. Part 
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of this spreading also involves proliferation (Keller and Miksis, 1980; Keller and Schoenwolf, 

1977; Saka and Smith, 2001).  

2. The vegetal rotation: Shortly before gastrulation starts, vegetal cells press asymmetrically 

against the dorsal side of the blastocoel and replace it to form the archenteron (gastrocoel or 

primitive gut; (Gilbert and Barresi, 2020; Nieuwkoop and Faber, 1994).  

3. Bottle cell formation, migration and involution:  localized apical constriction (AC) of cells at 

the dorsal marginal zone leads to formation of the blastopore lip at the SO. The cells that 

invaginate first represent the leading edge. They crawl/migrate into the archenteron through 

lamellipodia. This generates a traction force for the intercalation of the mediolateral cells 

(Hardin and Keller, 1988; Keller et al., 2000; Lee and Harland, 2007; Wallingford, Fraser and 

Harland, 2002). Even though the endoderm and the mesoderm are connected they are 

always separated by a tight extracellular space (Brachet's cleft; (Gorny and Steinbeisser, 

2012). This separation and the timing of involution (endoderm followed by mesoderm) leads 

to the correct establishment of the AP axis. When the first endodermal cells come to rest 

under the prospective head ectoderm they are potent enough to stimulate the head and heart 

gene expression.  

Mesodermal cells which migrate right after the leading edge will later give rise to the 

prechordal plate (precursor of the head mesoderm). These cells express gsc to induce head 

expression. This is accomplished by repressing head repressor genes and is therefore a 

double repressor function, which is a common feature in early development (like the 

inhibition of miR-15 in the dorsal mesoderm above). Finally, the future notochordal and 

somitic cells, which are important to pattern the nervous system, involute while the ventral lip 

appears and more meso-/endodermal precursor cells involute (Gilbert and Barresi, 2020; 

Rankin et al., 2011; Winklbauer and Schürfeld, 1999).  

4. Convergence and extension: The intercalation of lateral cells in the midline through RI 

(convergence) narrows the embryo in respect to the LR axis. This drives the AP axis 

elongation and thereby elongates the notochord of the embryo (extension).  

Important signaling processes which are involved in this include, but are not limited to, the 

Wnt planar cell polarity pathway (Wnt/PCP signaling; more information on PCP in 1.4.2), 

Ca2+ waves and cadherin mediated adhesion (Keller et al., 2008; Shindo et al., 2019; Shindo 

and Wallingford, 2014).   
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1.2 Neurulation and determination of the last body axis, the LR axis 

1.2.1 Neurulation 

Following the process of gastrulation is the neurulation. Included in the process of 

neurulation is the closure of the neural tube laying the foundation for the central nervous 

system. The floorplate of the neural plate, which was specified during gastrulation, gets 

further specified by the underlying notochord. The flat neural plate then forms lateral neural 

folds through AC (Gilbert and Barresi, 2020; Sokol, 2016). After the neural plate folding, the 

basal cells elongate basolaterally and thereby promote fold elevation and convergence at the 

midline. This, together with RI to flatten the neural plate and the fusion of the neural fold tips 

at the dorsal midline, gives rise to the single-layered neural tube covered by epithelial cells 

(Davidson and Keller, 1999; Edlund, Davidson and Keller, 2013; Schroeder, 1970; 

Schroeder, 1973; Shih and Keller, 1992; Sokol, 2016). In the anterior region that forms the 

fore- and hindbrain, neural tube closure occurs without mediolateral convergent extension 

(CE) and is driven by RI through AC (Prager et al., 2017; Shih and Keller, 1992; Wallingford 

and Harland, 2002). After the formation of the neural tube, cells of its floor plate give rise to 

the neural crest (sometimes called the fourth germ layer). These cells delaminate and 

migrate into the body to give rise to various cell types e.g. craniofacial cartilage/bone, smooth 

muscle and glia cells (Gilbert and Barresi, 2020; Shyamala et al., 2015). 

1.2.2 Breaking the LR symmetry: The left-right organizer 

In contrast to the other two body axes the left right axis is only visible in the asymmetric 

arrangement of inner organs e.g. the heart and the liver (Blum et al., 2014a). The LR 

symmetry is broken by the left-right organizer (LRO; in Xenopus the gastrocoel roof plate, 

GRP). The notochordal/somitic cells which are part of the LRO come to lie at the posterior 

archenteron roof and are derivations from the superficial (dorsal) mesoderm (SM) during late 

blastula/early gastrula stages. It is a transient structure, which detaches later on, composed 

of hypochordal and notochordal cells (central; cLRO), which are bilaterally flanked by somitic 

more lateral sensing cells (sLRO; (Antic et al., 2010; Schweickert et al., 2007; Shook, Majer 

and Keller, 2004). The LRO cells are ciliated due to the prepatterning of the SM at the onset 

of gastrulation, which occurs through the master control gene of motile cilia, forkhead box j1 

(foxj1). While the cLRO cells harbor posterior polarized motile cilia, the sLRO cells have 

shorter, unpolarized, immotile, supposably sensory cilia (Blum et al., 2014a; Boskovski et al., 

2013; Shook, Majer and Keller, 2004; Stubbs et al., 2008). Recent findings implicated not 

only the Wnt/PCP signaling pathway, through proteins like the RNA binding protein Bicaudal 

c1 (Bicc1), but also strain through gastrulation as an important factor for ciliogenesis and 

polarization of these cells (Chien et al., 2018; Maisonneuve et al., 2009). Through beating in 

a counterclockwise manner the cLRO cilia produce an extracellular leftward fluid flow which 

is then sensed by the left sLRO. How sensing occurs at the sLRO is not fully understood yet, 
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but it supposably is through the sLRO cilia. Currently two models try to approach this by 

implicating mechanosensitive cilia and/or by sensing morphogens which are distributed from 

the cLRO to the sLRO by flow (McGrath et al., 2003; Nonaka et al., 1998; Okada and 

Hirokawa, 1999; Tabin and Vogan, 2003). In the process of sensing, the importance of Ca2+ 

is heavily implied through cilia cation channels like Polycystin 2 (Pkd2; (Takao et al., 2013; 

Yoshiba et al., 2012; Yuan et al., 2015). Breaking the bilateral symmetry of the LR axis 

through a cilia based LRO also seems to be the ancestral mechanism in chordates, maybe 

even in deuterostomes, and therefore can be found in ancestral clades like sturgeons (Blum 

and Ott, 2018c; Bolker, 1993). 

1.2.3 Breaking the LR symmetry: The Nodal signaling cascade 

On a molecular level, there are several bilaterally symmetrically expressed genes in the 

sLRO cells like growth differentiation factor 3 (gdf3 previously derrière), the TGF-β 

morphogen nodal1 and the BMP/TGF/Wnt antagonist DAN domain family member 5 (dand5 

previously coco). Dand5 represses Nodal1 in pre-flow stages (Bell et al., 2003; Schweickert 

et al., 2007; Vonica and Brivanlou, 2007). After the flow sensing event, dand5 mRNA is 

downregulated on the left sLRO while nodal1, which is normally repressed by Dand5, is still 

symmetrically expressed. Nodal1 is then released from the sLRO to the left lateral plate 

mesoderm (LPM), where it induces the Nodal signaling cascade resulting in expressing 

nodal1, lefty2 (the extracellular antagonist of Nodal1) and the paired like homeodomain 2 

(pitx2). pitx2 continues expression long after the Nodal signaling pathway in the organ anlage 

and is crucial for the asymmetric organogenesis. For the transport of Nodal1 into the LPM, 

Nodal1 has to dimerize with the symmetrically expressed Gdf3 (equivalent to gdf1 in mouse), 

enabling long range signaling to transfer Nodal1 via sulfated proteoglycans in the 

extracellular matrix (Eimon and Harland, 2002; Lohr, Danos and Yost, 1997; Marjoram and 

Wright, 2011; Oki et al., 2007; Sampath et al., 1997; Schweickert et al., 2010; Vonica and 

Brivanlou, 2007). 

1.3 The TGF-β superfamily 

The first TGF-β family member was first described 1983. Since then, the superfamily 

members were separated in three distinct branches: the TGF-ß subfamily, the BMP and 

growth differentiation factor subfamily and the activin and inhibin subfamily (Assoian et al., 

1983; Burt, 1992; Burt and Law, 1994). All family members have in common that they are 

cytokines important for proliferation and differentiation and bind to a type II TGF-β receptor. 

This leads to the binding and activation of a type I TGF-β receptor which then activates 

through phosphorylation various Smad proteins, which act as signal transducers and 

transcription factors for target genes (Faure et al., 2000; Gilbert and Barresi, 2020; 

Reissmann et al., 2001; Yan et al., 2002; Yeo and Whitman, 2001). 
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1.3.1 TGF-β subfamily: Nodal signaling pathway 

The first nodal ligand of the TGF-β subfamily was found 1993 in mouse (Zhou et al., 1993). 

While higher vertebrates (human, mouse and chicken) only have a single Nodal ligand, lower 

vertebrates like fishes and frogs have multiple ligands (6 in X. laevis) which can act in a 

tissue and context dependent manner (Schier, 2003). The secreting Nodal ligand can emit 

long-range signals acting in a dose-dependent manner. Binding of the Nodal ligand to the 

complex of the serine-threonine kinase receptors ActRIIA/B (Activin A/B receptor type II) and 

the ActRIB/ALK4/7 receptor promotes binding of the co-receptor Cripto or Cryptic. This leads 

to the canonical Smad-cascade, resulting in a heterodimeric complex of receptor regulated 

Smad2 and Smad3 with the common Smad 4. This complex, together with co-transcription 

factors like Foxh1 and Mix-like endodermal regulator (Mixer), activates the Nodal signaling 

cascade (Dickmeis et al., 2001; Germain et al., 2000; Papanayotou et al., 2014; Reissmann 

et al., 2001; Schier, 2003; Yan et al., 2002; Yeo and Whitman, 2001).   

1.4 Wnt signaling pathway 

wnt, a composite of wg (wingless; Drosophila melanogaster, Meigen, 1830) and int-1 

(integrated-1; mouse), was found and described in non-vertebrates and vertebrates alike 

which reflects its conserved evolutionary nature. Wnt pathways are important for embryonic 

development from cell fate specification to cell migration and proliferation and have a well-

characterized role in carcinogenesis. Wnt proteins are secreted glycosylated and 

palmitoylated signaling molecules of approximately 20 family members in vertebrates (19 in 

human, 20 in X. laevis) and approximately 15 different receptors and co-receptors (Hikasa 

and Sokol, 2013; MacDonald, Tamai and He, 2009; Nusse and Varmus, 2012; Willert and 

Nusse, 2012; http://wnt.stanford.edu) Generally, they are distinguished into three branches: 

the canonical Wnt/β-catenin pathway, the non-canonical Wnt/Frizzled (Fz) PCP pathway and 

the non-canonical Wnt/Ca2+ pathway (MacDonald, Tamai and He, 2009; Seifert and Mlodzik, 

2007). They all underlie the same general mechanism for pathway induction: The secreted 

Wnt molecule binds a Fz-receptor and a pathway dependent co-receptor to transduce the 

signal to the cytoplasmic phosphoprotein Dvl. Dvl is dynamically controlled by 

phosphorylation, ubiquitination and degradation, which is the basis of the branches of the 

Wnt pathway that even antagonize each other (Axelrod et al., 1998; Bryja et al., 2009; Gao 

and Chen, 2010; Komiya and Habas, 2008; Torres et al., 1996). 

1.4.1 Canonical Wnt pathway 

The canonical Wnt pathway is important for a large variety of cellular processes from 

proliferation and specification to cell survival (MacDonald, Tamai and He, 2009). In the 

absence of canonical Wnt ligands (e.g. Wnt3), Catenin beta 1 (Ctnnb1; previously β-catenin) 

is constantly ubiquitinated and therefore proteasomally degraded by the destruction/Axin 
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complex. This complex is composed of e.g. the scaffolding protein Axin, the tumor 

suppressor adenomatous polyposis coli (APC) gene product, casein kinase 1 (CK1), 

glycogen synthase kinase 3 (GSK3) (He et al., 2004; MacDonald, Tamai and He, 2009; 

Niehrs, 2012). When the Wnt ligand binds the Fz receptor and the co-receptor low-density 

lipoprotein receptor related protein (LRP) 6 or LRP5, the scaffold protein Dvl is recruited and 

LRP is phosphorylated. The Axin complex is then recruited to the Fz/LRP complex and 

inhibited, resulting in a stabilization and accumulation of Ctnnb1 in the cytoplasm. In the 

nucleus it forms complexes with TCE/lymphoid enhancer binding factor (LEF) and activates 

the expression of genes like nodal3, bmp4 and siamois (Bilic et al., 2007; Brannon et al., 

1997; Kimelman and Xu, 2006; MacDonald, Tamai and He, 2009; McKendry et al., 1997; 

Metcalfe and Bienz, 2011; Zheng et al., 2008). These complexes can be composed of 

different factors which include among others Fox transcription factors and Smad proteins. In 

absence of Ctnnb1 TCF/LEF inherit no transcriptional activity and exhibit a repressor function 

through binding the co-repressor Groucho (Eastman and Grosschedl, 1999; Funa et al., 

2015; Gan et al., 2008; van den Bosch et al., 2015). 

1.4.2 Planar cell polarity pathway 

In contrast to the canonical Wnt pathway, the PCP pathway mostly results in a direct 

response of the cytoskeleton, rather than a transcriptional response. It is important e.g. for 

gastrulation, ciliation, mitotic spindle orientation and polarity of a cell in general (Bellaïche et 

al., 2001; Park et al., 2006; Seifert and Mlodzik, 2007; Wallingford, Fraser and Harland, 

2002). To accomplish this, PCP components are polarized/activated in different subregions 

of the cell, building a gradient of clues upon signaling. The core PCP proteins involved in this 

are Fz and Dvl but also Flamingo (Fmi, also known as Stan), Strabismus (Stbm, also known 

as Vang), Diego (Dgo), and Prickle (Pk; (Feiguin et al., 2001; Gubb et al., 1999; Taylor et al., 

1998; Theisen et al., 1994; Usui et al., 1999; Vladar, Antic and Axelrod, 2009). Downstream 

of these core components the cytoskeleton is often regulated through modulation of small 

GTPases, specifically Ras homolog family member A (Rhoa), Rac family small GTPase 1 

(Rac1) and Cell division control protein 42 homolog (Cdc42) eventually mediated through 

Disheveled-associated activator of morphogenesis 1 (Daam1; (Gao and Chen, 2010; Habas, 

Kato and He, 2001; Jaffe and Hall, 2005; Schlessinger, Hall and Tolwinski, 2009). In order to 

fully exhibit the PCP signal, the cell has to interpret not only long-range ligand driven PCP 

signaling through Vang and Fz but also short-range signaling without Wnt ligands through 

direct cell-cell transmembrane interactions (Strutt, 2003; Yang and Mlodzik, 2015). In some 

cases, the PCP pathway acts additionally through transcriptional responses through Rac1 

and JNK (c-Jun N-terminal kinases; (Kirsch et al., 2020; Zeke et al., 2016). 
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1.5 MicroRNA pathway 

Originally derived from small interfering RNA (siRNA), miRs are non-coding RNAs which 

degrade complementary RNA to protect against RNA viruses (Malone and Hannon, 2009; 

Shabalina and Koonin, 2008). In contrast to siRNA, miRs do not have to bind completely 

which gives them a huge subset of sequences to bind and repress. This is reflected by their 

importance during embryogenetic processes from the activation of the zygotic genome, germ 

layer differentiation, ciliogenesis to the interplay with important signaling pathways like the 

Nodal signaling pathway and the canonical Wnt pathway (Giraldez et al., 2006; Ma et al., 

2016; Martello et al., 2007; Song et al., 2014; Wang et al., 2014). The primary miR (pri-miR), 

like other mRNAs, is transcribed and has a CAP and a poly-A tail. Then it is cleaved by a 

processor complex involving Drosha and double strand RNA-binding protein DiGeorge 

syndrome critical region gene 8 (Dgcr8 or pasha) resulting in a 70-80 nucleotide (nt) 

precursor miR (pre-miR) with a hairpin structure. Upon release into the cytoplasm the pre-

miR gets matured to a 19-25 nt single-stranded miR by the RNase III family member Dicer. 

After that the mature miR is loaded onto the RNA binding protein Argonaute (Ago) 1, a core 

protein from the RNP which is part of the RNA-induced silencing complex (RISC) to repress 

the complementary mRNA (Bartel, 2018; Cai, Hagedorn and Cullen, 2004; Lee et al., 2002; 

Nguyen et al., 2015). While this is the canonical synthesis of miRs, it is only a percentage of 

all active miRs. miRs derived from introns or other small non-coding RNAs bypass the 

processing steps of Drosha/Dgcr8 or Dicer and feed into the active miR pool (Babiarz et al., 

2008; Okamura et al., 2007; Ruby, Jan and Bartel, 2007; Xie and Steitz, 2014). The active 

cellular complement in which miRs are active is known as processing bodies (p-bodies or 

pi/gw-bodies). Upon binding of the RISC to an mRNA with the seed sequence 

(complementary sequence important to find the target mRNA) there are two possible modes 

of repression: 1. Degradation through endonucleolytic cleavage with a sufficient binding via 

the seed sequence, which is not as common in higher vertebrates as deadenylation as it is 

an ancestral mechanism in e.g. cnidaria or plants. 2. Silencing through imperfect binding of 

the seed sequence and sometimes reengagement into translation again (Brengues, Teixeira 

and Parker, 2005; Hubstenberger et al., 2017; Jones-Rhoades, Bartel and Bartel, 2006; 

Kulkarni, Ozgur and Stoecklin, 2010; Moran et al., 2014).  
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1.6 Aim of this work 

The establishment of the three body axes is an important step during the development of 

bilateria. While there are similarities among phyla, overall ancestral conserved mechanisms 

are sometimes hard to determine among derived mechanisms. Even though many processes 

and genes which are involved in the establishment of the three body axes are known, the 

precise function and mechanism of many of them have yet to be discovered. Based on this 

the aim of this work was to define the function of gsc in AP and DV axes development as well 

as the function of myosin 1d (myo1d) and bicc1 during the establishment of the LR axis.  

The DV and AP axes development is linked to the formation of the SO. An important 

regulator in the SO is the homeodomain box gene gsc, which is able to induce a secondary 

axis upon misexpression/gain of function (GOF) in the ventral side of an embryo, showed no 

early developmental defects upon loss of function (LOF) in mice and X. laevis. This was 

despite its expression in the SO. Surprisingly the GOF of gsc in the dorsal tissues leads to 

gastrulation and neurulation defects, based on migratory defects (Cho et al., 1991; Rivera-

Pérez et al., 1995; Ulmer, 2008; Ulmer, 2012; Yamada et al., 1995). Earlier publications also 

stated a role of gsc in various migratory cells such as explanted head mesenchymal cells 

and metastatic tumor cells (Hartwell et al., 2006; Luu et al., 2008; Niehrs et al., 1993). This 

lead to the assumption that gsc may play an important role in the establishment of the AP 

and DV axis, through most likely PCP mediated CE, which should be further investigated in 

this work. 

LR asymmetries are known for protostomes and deuterostomes alike but while 

deuterostomes seem to use a nodal/cilia/flow based ancestral mechanism, protostomes 

seem to have different modes to break the LR symmetry, awaiting a clarification on an 

ancestral mode. While it is an exception that some derived vertebrates break LR symmetry 

without cilia, the fruit fly D. melanogaster breaks the bilateral LR symmetry with a non-cilia 

based mechanism and without Nodal signaling. It is known that D. melanogaster`s hindgut 

and genitalia rotate asymmetrically in respect to the LR axis, which depends on a PCP-

based mechanism (Blum et al., 2014a; Boorman and Shimeld, 2002; Grande and Patel, 

2009; Hozumi et al., 2006; Spéder, Adám and Noselli, 2006). An important protein for this 

mechanism is the unconventional Myo31DF (ortholog in X. laevis Myo1d) which interferes 

with adherens junctions and PCP pathway components (Fernandez-Gonzalez et al., 2009; 

Hozumi et al., 2006). In this work it should be analyzed if myo1d also interferes with the LR 

symmetry breakage in vertebrates, which rely on a cilia/Nodal based mechanism. 

Concerning LR axis determination another factor which has an important role in PCP 

dependent LRO formation should be re-evaluated in terms of a new role. Remarkably Bicc1, 

an important factor for cilia polarization of the cLRO cells, shows the strongest expression 
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not in the cLRO but rather in the sLRO cells. This observation was not addressed during the 

initial publication and should be further addressed in this work for several reasons 

(Maisonneuve et al., 2009): The expression pattern of bicc1 overlaps in the sLRO cells with 

dand5. Additionally, dand5 mRNA degradation only occurs in up to 75 % of specimens, while 

over 95 % show a normal LR axis. Together, these two occurrences fit a general theme 

where post-transcriptional regulation leads to a discrepancy between number of transcripts 

and protein level (Becker et al., 2018; Keene, 2007). Being an RNA binding protein, Bicc1 

was shown to bind the 3’ untranslated region (3’UTR) of dand5 and post-transcriptionally 

downregulate dand5 translation, which could also be true in the context of the sLRO (Zhang 

et al., 2013). This lead to the postulation that dand5 may be post-transcriptionally regulated 

through Bicc1 in the sLRO cells (Schweickert et al., 2010). In this work, this question and the 

involvement of miRs in the process will be followed up on. 
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2. Original research chapter 

2.1 Anteroposterior and dorsoventral axis development 

 

A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated 

convergent extension in Xenopus and mouse 

 

 

https://doi.org/10.1038/srep43010  

Reproduced with permission from Springer Nature 
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2.2 Left-right axis development  

 

A Conserved Role of the Unconventional Myosin1d in Laterality Determination 

 

https://doi.org/10.1016/j.cub.2018.01.075 

Reproduced with permission from CellPress 
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Original Movie legends from Current Biology  

 
Movie S1. Leftward Flow in WT and myo1d Morphant Embryos, Related to Figure 3  

Dorsal explant was prepared at stage 16/17, fluorescent microbeads were added and cilia-

driven bead transport was recorded at a frame rate of 2 frames per second. Left: wildtype 

embryo; right: morphant specimen. Movie plays at 5 x real time. Note that in the morphant, 

individual beads were also transported from left to right  

 

Movie S2. Delay of Neural Tube Closure in myo1d Morphants, Related to Figure 4  

Embryos were unilaterally injected with AUG-MO at the 4-cell stage. Time lapse movie was 

recorded from stage 14 to stage 19 at 2 frames per minute. Injected side is marked by an 

asterisk. Jerks in the middle of the sequence were caused by manual re-positioning of the 

specimens. Movie plays at 900 x real time. Note that neural tube closure in the morphant 

specimen proceeds at reduced velocity on the injected sides.  

 

Movie S3. Bead Transport along the Larval Skin of a WT Specimen at Stage 24, 

Related to Figure 4  

Bead transport along the anterior-posterior axis of a wildtype embryo, incubated in culture 

medium containing fluorescent microbeads, was recorded at 10 frames per second. Movie 

plays at real time.  

 

Movie S4. Compromised Bead Transport along the Larval Skin of a myo1d Morphant 

Specimen at Stage 24, Related to Figure 4  

AUG-MO was injected into the ventral right blastomere at the 4-cell stage and embryos were 

cultured until stage 24. Bead transport along the anterior-posterior axis, incubated in culture 

medium containing fluorescent microbeads, was recorded at 10 frames per second. Note 

that bead transport on the injected side (∗) was slowed down. Movie plays at real time. 
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Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of 

the Nodal-inhibitor Dand5 

 

https://doi.org/10.1038/s41467-021-25464-z 

Reproduced with permission from Springer Nature 
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3. Discussion 

3.1 The novel function of gsc during the evolution of vertebrates 

While gsc has been investigated for about three decades now, its early function as SO gene 

was enigmatic as no developmental defects occur after LOF (Rivera-Pérez et al., 1995; 

Yamada et al., 1995). Surprisingly its impact and importance can be seen upon GOF at the 

ventral side of the vertebrate embryo, which results in a secondary axis formation. This is 

also true for non-vertebrate gsc constructs. In contrast to that, overexpression of gsc in the 

dorsal side leads to severe gastrulation and neurulation defects, which was only true for 

vertebrate (mouse, Xenopus; (Ulmer, 2008; Ulmer, 2012) gsc. This effect could be explained 

with Gsc as a negative regulator of the Wnt/PCP pathway. This was proven in various 

contexts like in a Dsh2 membrane recruitment assay and rescue experiments via GOF of 

PCP components. More specifically, Gsc inhibits CE resulting in gastrulation and neurulation 

defects. A gsc gene comparison showed a high conservation concerning the homeodomain 

(HD) and the GEH/ En homology region 1 (eh-1), but no other specific conservation among 

gsc genes in the animal kingdom (Jiménez, Verrijzer and Ish-Horowicz, 1999). Interestingly 

among invertebrates and vertebrates distinct conserved regions were determined. Of special 

interest were two conserved regions in vertebrate gsc genes, named as X (67-81 amino 

acids [AA] long) and Y domain (36-38 AA long), directly up- and downstream enclosing the 

HD. Of special interest was that the chephalochordate amphioxus and the jawless ancestral 

lamprey fish do not have these conserved regions, directly linking these conserved regions to 

the evolutionary origin of cranial head development of chordates (Shimeld and Donoghue, 

2012; Yu, 2010). Blitz and colleagues could also show in Xenopus tropicalis (Gray, 1864) 

that head structures were severely reduced upon loss of gsc (Blitz, Fish and Cho, 2016). 

This could be explained by the function of Gsc, which represses tbxt in the early SO. This in 

fact restricts the expression of tbxt to the notochord and thereby separates the axial 

mesoderm into head and trunk. In the notochord tbxt regulates wnt11/PCP dependent CE to 

lengthen the embryo, in comparison to the migratory properties of the gsc positive prechordal 

plate which later forms on cranial structures (Artinger et al., 1997; Latinkić and Smith, 1999; 

Tada and Smith, 2000). It remains to be seen if this effect is cell autonomous or non-cell 

autonomous: The inner ear cortical hair cells (stereocilia) in gsc knockout (KO) mice were 

disturbed in a cell non-autonomous way, while in the animal cap assays the Dsh localization 

was disturbed in an autonomous way. It further remains an open question whether these two 

identified domains/regions (X and Y) or only one of them are important for the new function 

of Gsc. It is possible that they interact with or without other factors to repress PCP signaling 

or that one of them is more of general structural importance to enable this new evolutionary 

module for Gsc to form the AP and DV axis.  
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3.2 Myo1d: An ancestral effector of the cytoskeleton based mechanism for the LR axis 

determination  

Myo1d is an unconventional ATP dependent actin filament binding Myosin. This motor 

protein, which is usually important to transport cargo like vesicles along the actin 

cytoskeleton, was found to have PCP defects but no LR axis defects in rats. This was due to 

mispolarization of the PCP core component Van Gough like 2 (Vangl2; (Foth, Goedecke and 

Soldati, 2006; Hegan et al., 2015; Morgan, Heintzelman and Mooseker, 1995; Sokac and 

Bement, 2000). In this study we showed that myo1d LOF leads to LR axis failure in a PCP 

dependent manner in X. laevis. Upon myo1d LOF ciliation of the cLRO cells was disturbed 

(shortened, unpolarized) resulting in an aberrant flow and consequently a bilateral activation 

of the Nodal signaling cascade. This was also true in fish, speaking for a conserved role of 

Myo1D as regulator for PCP signaling and overall LR axis determination in vertebrates (Juan 

et al., 2018). While for vertebrates it has been established that the LR axis is ancestrally 

broken by a cilia dependent flow mechanism with a downstream nodal signaling cascade, 

this is not as clear for invertebrates.  

Snails and nematodes break the bilateral symmetry very early, during the first and third 

cleavage respectively. This mechanism is actin/spindle based and results in an asymmetric 

cell arrangement. In snails this results in the handedness of the shell and the inner organs by 

nodal activation without a ciliary leftward flow (Abe and Kuroda, 2019; Grande and Patel, 

2009; Meshcheryakov and Beloussov, 1975; Okumura et al., 2008; Wood, 1991). In snails it 

involves the actin modulator Diaphanous related formin 1 (dia1), and in nematodes the 

formin homologue CYK-1 and actomyosin flows (Abe and Kuroda, 2019; Naganathan et al., 

2014; Pimpale et al., 2020).  In comparison to that, the derived embryogenesis of flies 

includes a syncytium (one cell and up to 12 nuclei), and therefore lost the early mechanism 

of LR determination.  Interestingly in D. melanogaster, like in vertebrates, a myo1d 

orthologous gene myo31DF and a delayed LR axis mechanism was adapted. The genital 

plate and the hindgut rotate in a dextral/clockwise manner, which is important for fertility and 

a right inner organ arrangement (Meshcheryakov and Beloussov, 1975; Okumura et al., 

2008; Spéder, Adám and Noselli, 2006). Taken together protostomes show an actomyosin 

based LR axis determination mechanism. A Nodal signaling based mechanism in contrast 

was shown only for lophotrochozoa (snails) but not for ecdysozoa (nematodes and flies).  

Interestingly, a concept in biology called “deep homology”, seems to fit the LR axis 

determination in bilateria well. It describes the reusage of processes, mechanisms and 

structures in the development of animals, suggesting an actin based mechanism as ancestral 

mode for LR axis determination in bilateria (Shubin, Tabin and Carroll, 2009). Vertebrates 

adapted a cilia/flow/sensor module to the pre-existing actomyosin module for their 
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development. Remarkably derived vertebrates like the chick do not have a cilia/flow based 

mechanism. Rather the LRO cells rotate leftward resulting in an asymmetric nodal signaling 

cascade. This is a cytoskeleton based mechanism, and therefore may be a more ancestral 

mode of breaking the LR axis symmetry (Davison et al., 2016; Gros et al., 2009; Naganathan 

et al., 2014; Shibazaki, Shimizu and Kuroda, 2004).  

Taken together this work links the actin based LR breakage of protostomes with the adapted 

cilia/flow/sensor module of deuterostomes. It identifies Myo1d as key component of an 

actin/cytoskeleton based ancestral LR axis breaking mechanism of bilateria.  

3.3 Bicc1 as key regulator of LR axis determinants 

The critical step during the determination of the LR axis in vertebrates is the flow dependent 

downregulation of the Nodal antagonist dand5. This includes flow-sensing by the cation 

channel Pkd2 and Ca2+ spikes. But more downstream effectors which lead to the degradation 

of dand5 mRNA are unknown (Schweickert et al., 2017; Takao et al., 2013; Yoshiba et al., 

2012; Yuan et al., 2015). In this study we showed that dand5 is post-transcriptionally 

regulated through Bicc1. This was shown in ex vivo animal cap assays through protein 

activity as well as in vivo on the level of dand5 and pitx2 mRNA. Notably, this regulation 

occurs in a small proximal region of the dand5 3’UTR which can be divided into two 

subregions. These regions were analysed ex vivo and in vivo with target protector 

morpholino oligomeres (tpMO): small antisense RNA oligomers which bind to a specific 

mRNA region and thereby prevent the interaction with e.g. RNA binding proteins (Moulton, 

2017). The more proximal subregion could be identified as generally important for Bicc1 

dependent dand5 stabilization, while the more distal region seems to be important for Bicc1 

dependent downregulation of dand5 translation. The importance of the proximal 3’UTR of 

dand5 as Bicc1 target during LR axis determination was also verified in mouse (Minegishi et 

al., 2020). It is known that Bicc1 as RNA binding protein regulates mRNA positively as well 

as negatively in a context dependent manner. Like for dand5 the exact mechanism of this is 

poorly understood (Leal-Esteban et al., 2018; Park et al., 2016; Rothé et al., 2020; Tran et 

al., 2010; Zhang et al., 2013). While there were explanatory approaches through recruiting of 

e.g. CCR4-NOT (de- acetylation) or homodimerization vs heterodimerization of Bicc1 

proteins, there is a strong connection with miRs which was researched in our paper 

(Chicoine et al., 2007; Minegishi et al., 2020; Piazzon et al., 2012; Rothé et al., 2020). Bicc1 

can associate with p-bodies and is involved in the transfer of mature miRs from Dicer to Ago 

(Lasko, 2012; Maisonneuve et al., 2009; Piazzon et al., 2012). In line with that, LOF of dicer 

led to absence of pitx2 due to absence of flow induced dand5 repression/decay and 

interacted with the LOF of bicc1. As prerequisite of a miR induced repression, UTRs of 

mRNAs are normally searched for evolutionary conserved seed sequences, which are 



3. Discussion 

104 

 

essential for miR binding (Bartel, 2018). But conserved seed sequences are rare among the 

3’UTRs of vertebrate dand5, which may be attributed to the fact that Dand5 proteins and 

orthologs are very different - not only on the level of base pairs of both the UTRs and the 

coding sequence, but also on the AA level (Human to mouse 62% AA identity; human to X. 

laevis just 34%). We also showed that dand5 mRNA degradation in vivo as well as Bicc1 

dependent translational repression ex vivo is Pkd2, supposable Ca2+, dependent. 

Interestingly Bicc1 and Pkd2 act together in the kidney too, an interaction also involving miRs 

(Piazzon et al., 2012; Tran et al., 2010). Bicc1 can be functionally changed through 

phosphorylation in other contexts which could also be the case in LR axis determination. 

Remarkably Bicc1 is also phosphorylated through Ca2+/calmodulin-dependent protein 

kinase II (CaMK II), which is also a downstream target of Pkd2 in the LPM (Bernet, 2015; 

Hara et al., 2018). Such a functional change of Bicc1 can be the switch from stabilization to 

the translational repression of dand5 triggered by the flow induced Ca2+ signal. Therefore this 

could happen through the two subregions of the proximal dand5 3’UTR. This is also in line 

with the described dand5 mRNA translocalization in the left sLRO cells in post-flow stages, 

as RNA translocalization often means a change of translational manner and/or protein 

destination (Hesketh, 1996; Keene, 2007; Nakamura et al., 2012; Simmonds et al., 2001; 

Wilhelm and Vale, 1993). Additionally to the Bicc1 dependent regulation of dand5, nodal1 is 

stabilized by Bicc1 too. Interestingly, in contrast to the direct regulation of dand5, this is an 

indirect regulation through gdf3. Like dand5, gdf3 is regulated through its 3’UTR, which is 

necessary for the nodal1 expression in the sLRO cells and the transfer and activation of the 

Nodal signaling cascade in the left LPM (Pelliccia, Jindal and Burdine, 2017; Rankin et al., 

2000; Vonica et al., 2011; Vonica and Brivanlou, 2007). Notably, miRs are also important to 

control various steps of Nodal signaling, which could be important for this function of Bicc1 

too (Martello et al., 2007; Syeda, Kirchhof and Fabritz, 2017). Our data leads to a model 

where Bicc1 secures an inhibition of the Nodal signaling cascade prior to flow through 

securing dand5 expression and regulating nodal1 through gdf3. Then the leftward fluid flow 

triggers a Pkd2 dependent Ca2+ signal and CaMK II phosphorylates Bicc1. This leads to a 

functional change of Bicc1 resulting in translocation, translational repression and degradation 

of dand5. The de-repressed Nodal1 is then transmitted to the left LPM and starts the Nodal 

signaling cascade. Whether this involves miRs or Dicer interacts in a non-canonical 

mechanism can only be answered with further studies (Pong and Gullerova, 2018). 

While protostomes seem to lack dand5, deuterostomes have recruited dand5 to their Nodal 

module. Additionally, the mechanism of an asymmetric regulation of an antagonist of the 

Nodal signaling cascade to break LR symmetry is incorporated into the development of 

deuterostomes (Kenny et al., 2014; Namigai, Kenny and Shimeld, 2014; Tisler et al., 2016). 

For this mechanism, a repressor of the antagonist Dand5 was obligatory: Bicc1. This study 



3. Discussion 

105 

 

and the Hamada lab could show that Bicc1`s function is evolutionary conserved at least in 

tetrapoda, but most likely beyond together with the need of a tightly controlled Dand5 

(Minegishi et al., 2020).  

3.4 Conclusion 

The purpose of these comprehensive studies was to functionally characterize the genes 

myo1d and bicc1 for their role in the LR body axis and gsc for its role in the AP and DV body 

axes development in vertebrates. These functions were also set in an evolutionary context of 

newly adapted mechanisms. 

The transcriptional repressor Gsc, which is expressed in the primary embryonic organizer, 

was mainly known for its ability to induce a secondary axis across the animal kingdom. In this 

study, a novel function of Gsc (regulating Wnt/PCP signaling) was discovered in vertebrates. 

It was also successfully mapped to two newly discovered Gsc sequences/domains, which 

are conserved in vertebrates. 

In case of Myosin1d it was shown that novel functions to determine LR axis development 

often rely on modifications of pre-existing mechanisms. Therefore the actin based motor 

protein and an actomyosin mechanism for LR axis determination was adapted to the newly 

evolved cilia/flow based mechanism breaking LR symmetry. 

The RNA binding protein Bicc1 was initially described as an important factor for PCP/Wnt 

dependent polarization of cLRO cilia in regards to the LR axis determination. In this study 

Bicc1 was re-evaluated describing a novel function regulating LRO determinants in sLRO 

cells, connecting Bicc1 to several important key factors during LR axis determination. This 

highlights the importance of a tightly controlled Dand5 level during LR breakage.  
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