зиты), как модельных соединений. Эксперименты выполнены в диафрагменной ячейке на медном катоде в водно-спиртово-щелочной среде католита при силе тока 1,5 A и температуре 30 °C, анод – Pt-сетка. Электрохимическое восстановление n-HA и o-HA на неактивированном Cu-катоде осуществляется со скоростью W=6,6 и 3,1 мл H_2 /мин и их конверсией α =89,5 и 74,2%, соответственно. Активация катода композитами Π Aни+ Π Cl2 и Π Aни+ Π пAД+ Π Cl2 ускоряет электрогидрирование Π CHA (Π CH2,3 и 7,2 мл Π CH2,4 и 94,0%. Несколько менее активным в этом процессе проявил себя композит Π CH2 (Π CH2,9 мл Π CH2,4 мин), Π CH3 в Электрогидри-

ровании o-HA наиболее активными оказались композиты МФП+ZnCl $_2$ и АМФП+ZnCl $_2$: скорость гидрирования и конверсия o-HA составили 3,9 и 4,0 мл H_2 /мин и 94,0 и 84,5%, соответственно.

Таким образом, введение соли цинка *in situ* процессов синтеза полимеров сопровождается формированием соединений цинка различной природы. В электрохимической системе осуществляется восстановление катионов цинка из этих прекурсоров и образование кристаллических фаз металлического цинка, катализирующего процессы электрогидрирования нитроароматических соединений.

Список литературы

1. Патент на изобретение РК № 33481. Способ получения металлополимерных композитов на основе полимера и соли металла / Иванова Н.М., Соболева Е.А., Висурханова Я.А. Опубл. 01.03.2019. БИ №9.

НОВЫЕ БИОРАЗЛАГАЕМЫЕ СОПОЛИМЕРЫ БЕТУЛИНА С ПРОИЗВОДНЫМИ ОКСИКАРБОНОВЫХ КИСЛОТ

А. Горбунова¹, А.Л. Зиновьев¹, S.A.С. Carabineiro², Е.Н. Колобова¹ Научный руководитель – д.х.н., профессор ИШХБМТ А.Н. Пестряков

¹Национальный исследовательский Томский политехнический университет 634050, Россия, г.Томск, проспект Ленина, 30, aag84@tpu.ru

²LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology Universidade NOVA de Lisboa 2829-516 Caparica, Portugal

Одной из глобальных экологически проблем является полимерный мусор. В силу этого синтез новых биоразлагаемых полимеров на основе возобновляемых источников стал важным направлением исследований современной науки о полимерах.

Бетулин это пентациклический тритерпеновый спирт рода лупана. Основным его источником является внешняя часть коры березы – береста, содержащая 10–35% бетулина, и являющаяся крупнотоннажным отходом деревоперерабатывающей промышленности. При этом, бетулин, являющийся диолом, может вступать в реакции поликонденсации. Наряду с биологически активными свойствами и низкой токсичностью, бетулин в силу своей объемной циклоалифатической структуры может придавать полимерам жесткость и термостабильность. Полимерные материалы на основе бетулина мо-

гут быть использованы для сорбции газа, получения термопластов и реактопластов, а также биосовместимых многофункциональных биоматериалов и носителей для контролируемой доставки лекарств. Несмотря на это, исследований, касающихся использования бетулина в качестве мономера для синтеза полимеров в литературе практически нет, всего около 15 работ. И, в большинстве из них, несмотря на хорошие выходы сополимеров 70-90%, требуется дополнительная стадия получения мономера на основе бетулина или использование дихлоридов дикарбоновых кислот в качестве сомономеров, а оловоорганические соединения и пиридин действуют как катализаторы сополимеризации. Однако эти вещества являются токсичными и соответственно, требуются определенные меры предосторожности при их использовании.

В связи с этим целью настоящего исследования является разработка безопасных методов получения сополимеров на основе бетулина. и бутиллактатом, проводили в расплаве в атмосфере инертного газа при $180\,^{\circ}$ С в течение 3, 15 и 24 часов. В качестве катализатора был использован γ -Al₂O₃, а инициатора — трет-бутилгидропероксид (ТБГП). Молекулярная масса и структура сополимеров были подтверждены методами гель-проникающей хроматографии (ГПХ) и 1 H, 13 C ЯМР. Результаты синтеза сополимеров представлены в таблице 1.

Впервые были успешно получены сополимеры бетулина с производными оксикарбоновых кислот. Было установлено, что с увеличением времени синтеза молекулярная масса и число мономерных звеньев увеличиваются. Максимальная среднечисловая молекулярная масса была получена для сополимера бетулина с бутиллактатом в присутствии инициатора ТБГП через 24 часа синтеза и составила 6800 а.е.м. Без инициатора максимальная молекулярная масса составляет 3300 а.е.м. Молекулярные массы полученных сополимеров, а также их выход (до 90%) сопоставимы с результатами, полученным с использованием оловоорганического катализатора и пиридина [1], что свидетельствует о возможности использования γ -Al₂O₃ в качестве безопасного катализатора сополимеризации бетулина.

Таблица 1. Молекулярная масса сополимеров бетулина в отсутствии и присутствии инициатора

Сомономер	Время, ч	Без инициатора		С инициатором	
		$M_{_{n}}$	$M_{_{ m w}}$	$M_{_{n}}$	$\mathrm{M_{_{w}}}$
Лактид	3	800	900	1000	1300
Лактид	15	1200	2200	1300	2300
Лактид	24	1600	3100	1600	3100
Бутиллактат	3	500	700	1500	1900
Бутиллактат	15	3000	4100	5300	11800
Бутиллактат	24	3300	5100	6800	7200

Список литературы

1. Curia S. et al. Betulin-Based Thermoplastics and Thermosets through Sustainable and Industrially Viable Approaches: New Insights for the Valorization of an Underutilized Resource // ACS Sustainable Chemistry & Engineering, 2019. - Vol. 7. - No. 19. - P. 16371-16381.

ВЛИЯНИЕ МЕХАНИЧЕСКОЙ ОБРАБОТКИ НА БЫЧИЙ СЫВОРОТОЧНЫЙ АЛЬБУМИН

К.В. Доме^{1,2}

Научный руководитель – к.х.н., с.н.с. А.Л. Бычков²

¹Новосибирский государственный университет 630090, Россия, г. Новосибирск, ул. Пирогова, 1

²Институт химии твёрдого тела и механохимии СО РАН 630090, Россия, г. Новосибирск, ул. Кутателадзе, 18, domekarina@ya.ru

Механическая обработка неорганических и органических соединений является одним из перспективных физических методов изменения свойств, при котором не используются реагенты биологической и химической природы, а также практически не образуются продукты побочных реакций. Также механическая обработка показала свою эффективность при обработки растительного сырья: продукты переработки облада-

ли большей удельной площадью поверхности и, как следствие, реакционной способностью [1]. Однако механическая обработка — чрезвычайно энергозатратный процесс, поэтому для определения её эффективности необходимо учитывать количество затрачиваемой энергии.

Целью данной работы является изучение механической деструкции белковых молекул в индивидуальном виде.