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This monograph highlights new approaches to the development of high-

performance supercomputer technologies for modeling and identification based on 

parallel computations of complex cyberphysical systems (neuro- and nanoporous 

systems) in the presence of a large amount of feedback and interactions controlled by 

a significant number of distributed and network computing elements. The design of 

the considered cyberphysical systems is based on new science-intensive technologies 

of object description, new computing solutions taking into account the architecture of 

computer systems and software (parallel algorithms of multiparameter 

identification). The monograph is intended for researchers, specialists in applied 

mathematics, mathematical modeling, high-performance parallel computing and 

software engineering, university professors, graduate students, engineers and 

students. 
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PREFACE  

This monograph highlights new approaches to the development of high-

performance supercomputer technologies for modeling and identification based on 

parallel computations of complex cyberphysical systems (neuro-bio- and nanoporous 

systems) in the presence of a large amount of feedback and interactions that are 

controlled by the network of computing elements. Despite the different nature of the 

studied cyberphysical systems, their behaviors and the state are determined by many 

distributed feedback influences such as cognitive ones (influence of certain  neural 

nodes of the cerebral cortex (CC) on the behavior of the behavior of a particular 

organ or part of the human body, such as the limbs of the right hand, eyelids, 

eyeballs etc.) and those of physical nature (concentration effects of adsorbed 

components of contaminants and nanosources in the conditions of dynamic 

equilibrium in a certain layer of the nanoporous system) and other interactions. The 

proposed methodology corresponds to a number of priority research areas of 

European programs (Horizon Europe), related to the modern computer technologies 

for cyberphysical systems (Computing technologies and engineering methods for 

cyberphysical systems of systems (CPSoS)). The design of the considered CPSoS is 

based on new science-intensive technologies of object description, new computing 

solutions taking into account the architecture of computer systems and software 

(parallel algorithms of multiparameter identification).  

The key problem of the monograph is the developpment of the high-

performance supercomputer technologies multiparameter identification of complex 

cyberphysical systems (neuro-bio-nanomedical and nanoporous physical systems) 

with feedback-connections and interactions on the basis of parallel computations. 

Such CPSoS may include also cognitive feedback (for neuro-biosystems) to 

determinate the parameters of the behavior and the state of individual executive 

elements of the systems and the optimal parameters of these influences to obtain the 

predicted systems behavior. In medical applications according to the specified 

European programs special attention is paid to new digital systems of diagnostics and 

treatment. In this context, the proposed methods of designing nanomedical neuro-

bio-CPSoS are focused on determining the parameters of abnormal movements of 
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patients with tremor (T-objects) caused by the negative effects of a number of neural 

nodes of CC. The second type of considered feedback-systems (nanoporous CPSoS) 

are related to solving the problem of global warming and the implementation of safe 

energy strategies through the introduction of smart nanosystems to adsorption 

harmful emissions of carbon oxides and other greenhouse gases.  

In  Chapter 1, based on the results of cooperation with the French laboratories 

of the University of Pierre and Marie Curie Sorbonne Paris 6, the Institute of Brain 

and Spinal Cord, the Higher School of Industrial Physics and Chemistry of Paris, the 

authors proposed new hybrid models of wave signal propagation, describing the state 

and behavior - abnormal neurological movements (ANM) of certain parts of the body 

of a T-object due to the cognitive influence of a certain group of neural nodes (neuro-

objects). This  models are based on approaches to integrated transforms and spectral 

analysis for heterogeneous media. New science-intensive models of nanoporous 

CPSoS are also proposed, which take into account a set of limiting physical factors 

and mechanisms of feedback influences and nano-sources in the competent 

nanosorption processes occurring in such systems. Direct and inverse identification 

problems of multicomponent transfer systems in heterogeneous nanoporous media 

are implemented (by Petryk M. And Khimich A.).  This methodology is based on 

parallelization and component-by-component evaluation of interactions when 

explicit expressions of gradients of incoherent functionals for implementation of 

gradient methods for identification of internal parameters and external feedback are 

obtained. The proposed hybrid model of the neuro-biosystems describes the state and 

behavior of T-objects on the basis of wave signal propagation, namely segmental 

description of 3D-elements of trajectories of abnormal neurological movements of 

the studied part (limb) of the T-object body of neuro objects. The high-speed 

analytical solution of the model describing 3D- trajectories on each ANM segment in 

the vector form is obtained using hybrid integral Fourier transforms. A new method 

for calculating the hybrid spectral function of ANM, the system of orthogonal basic 

functions and spectral values, which form the basis of the proposed hybrid 

transformation, provide an integrated vector solution to the model.  

The authors solved new nonclassical problems of multiparameter 

identification of feedback-systems (neuro-bio- and nanoporous CPSoS) by 
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developing high-performance gradient algorithms based on the theory of optimal 

control of complex multicomponent systems to minimize the target residual 

functionalities. On the basis of hybrid integral transformations, new high-speed 

analytical solutions of models (direct and inverse problems) describing 3D elements 

of ANP trajectories and concentration distributions of absorbed components 

depending on feedback at macro and micro levels are implemented. High-

performance regularization algorithms for identifying system parameters and inverse 

interactions at the macro and micro levels are built.  Thes aigprithmes are based on 

the expressions of gradients of residual functionals and allow parallelization of 

calculations taking into account the supercomputer architecture of computer systems. 

The construction of high-velocity analytical solutions of both types of feedback 

models is based on the development of computational parallelization approaches 

using efficient decomposition and linearization schemes and methods of hybrid 

Fourier integral transforms and the Heaviside operating method.  

Chapters 2 and 3 implement a similar approach to the use of new science-

intensive models of nanopores CPSoS considering a set of physical factors and 

feedback in nanopores network of nanosources. The choice of the model is based on 

a number of important feedback effects in micro and macro levels, intrakinetic 

effects and physical postulates (dispersion and electrostatic forces (John-Leonard, 

Van der Waal), molecules adsorption interactions on the surface phases (Gibbs and 

Langmuir postulates) etc., determining a high degree of description of the adsorption 

kinetics in nanopores media. The mass transfer processes in such systems include 

two components: transport in interparticle space and transpost in intraparticle space. 

In our proposed model, the balance equations in interparticle space are supplemented 

by the influence of nanogradients of concentrations occurring along the radius of 

nanoporous particles and on their surfaces, which are determined by the equation of 

balance inside the particle. Feedback-models based on the development of 

computational parallelization approaches using efficient decomposition schemes, 

hybrid integral Fourier transforms, the Heaviside’s operationel method and Laplace 

integral transformation. 

Some studies in Sections 1 and 3 and their descriptions are performed with 

the participation of graduate students of the Department of Software Engineering, 
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Ivan Puluj Ternopil National Technical University (Mudryk I.Ya. - Subsections 1.2, 

1.3 and Petryk M.M. - Subsections 3.2, 3.3).  

For the purpose of effective algorithmic-software implementation matrix 

procedures of parallelization of calculations and their performance on supercomputer 

platforms and clusters are offered. The advantage of the proposed vector approach to 

constructing solutions of models of the studied classes of CPSoS over the traditional 

one is the possibility to run in parallel any number of identification processes of 

different parameters, reducing by several orders of magnitude the identification 

procedures focused on supercomputer architecture. A comprehensive study of 

feedback systems (neuro-bio- and nanoporous CPSoS) is based on the creation of 

science-intensive hybrid models describing the states and behavior of the bio- and 

physical processes, taking into account the matrices of cognitive and physical 

feedback influences and development of high-performance supercomputer 

technologies to identify their parameters.  

 Chapter 4 highlights development of methods and algorithms for studying 

mathematical models with approximate data of sparse structure on the latest high-

performance computers with parallel organization of calculations of different 

architecture. A new methodology for studying mathematical models with 

approximate data of sparse structure on the latest high-performance parallel and 

distributed computer systems using multilevel parallelism is developed. An approach 

is proposed to solving nonlinear problems on supercomputers, which arise in the 

mathematical modeling of the strength and stability of structures, in particular in the 

modeling of the life cycle of responsible welded structures of energy objects. Block 

and block-cyclic algorithms for parallel computations for solving linear algebra 

problems with sparse matrices on the basis of structural regularization and 

decomposition of sparse structure data is developed and investigated. Problems of 

linear algebra (systems of linear equations and matrix problems on eigenvalues) are a 

significant part of mathematical modeling. Improving the quality of mathematical 

modeling is directly related to increasing the productivity and efficiency of modern 

parallel computing systems. The key point in solving these problems is the choice, 

development and application of methods for automating the design of parallel 

programs for mathematical modeling, as well as software tools for configuring the 
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developed programs on various high-performance computing platforms, which 

include multi-core and cluster architectures - graphics processors, "cloud platforms", 

etc.  

Chapter 5 outlines the basics of the theory of methods for hybrid integral 

transformations of multicomponent domains and algorithmic schemes of their 

applications in modeling and analysis of ANM-motions. 





INTRODUCTION 

This monograph highlights new approaches to the development of highly 

productive supercomputer modeling and identification technologies based on parallel 

computations of complex cyber-physical systems (neuro-, bio- and nanoporous systems) 

in the presence of a large amount of feedback and interactions, controlled by a large 

number of distributed and networked computing elements. Despite the different nature 

of the studied cyberphysical systems, their behaviors and the state of individual elements 

are determined by a multitude of distributed feedback influences of a cognitive nature 

(the influence of certain areas of neural nodes of the cerebral cortex  on the behavior  of 

a particular organ  of the human body) and physical nature (concentration effects of 

adsorbed components of contaminants and nano-sources, conditions of dynamic 

equilibrium in a certain layer of nanoporous systems) and other interactions. The 

proposed methodology corresponds to a number of priority scientific areas of European 

programs ("Horizon 2020", PHC "DNIPRO") related to the latest computing 

technologies and engineering methods for cyber-physical systems of systems 

("Computing technologies and engineering methods for cyber-physical systems ( PS) 

The design of the PS under consideration is based on new science-intensive 

technologies for describing objects, new computing solutions taking into account the 

architecture of computer systems and software (parallel algorithms for multidimensional 

identification).  

The main problem to be solved in the monograph is the creation, based on 

parallel computing of high-performance supercomputer technologies, of 

multidimensional identification of complex CPSoS (neuro-bio-nanomedical and 

nanoporous physical systems) with feedback-connections and interactions, including 

cognitive ones, for neuro-biosystems determination of behavior and state parameters 

of individual executive elements of systems and the optimal parameters of these 

influences and internal characteristics of the system to obtain the predictable 

behavior of its executive elements. In medical applications, according to these 

European programs, special attention is paid to new digital diagnostic and treatment 

systems and nanomedicine. In this context, the proposed design techniques for 

nanomedical neuro-bio-CPSoS are focused on determining the parameters of 
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abnormal movements of patients with tremor signs (T-objects) caused by the 

negative effects of a certain set of CC neural nodes. The identification of the 

parameters of these influences determines the ways of solving the problem. The 

second type of information systems being developed - nanoporous CPSoS - are 

related to solving another world problem - global warming and the implementation 

of a safe energy strategy by introducing reasonable systems for absorbing harmful 

emissions of carbon oxides and other greenhouse gases from energy and industrial 

facilities, etc. 

In the first Section, based on the results of cooperation with the French laboratories 

of the University of Pierre and Marie Curie, Sorbonne Paris 6, the Institute of the Brain 

and Spinal Cord, the Higher School of Industrial Physics and Chemistry of Paris ESPCI 

Paris, the authors proposed a new an approach to the construction of hybrid models of 

wave signal propagation, described the state and behavior of abnormal neurological 

movements (ANM) of certain parts of the body of a T-object due to the cognitive impact 

of a certain group of neural nodes (hereinafter neuro-objects) of the CC. The authors also 

proposed a technique for constructing an adaptive matrix (recall), which determines the 

parameters of states from the action of certain neuro-objects of the CC. Also, new high-

tech models of nanoporous CPSoS have been proposed, taking into account a complex of 

limiting physical factors and mechanisms of feedback influences and nano-rings in 

competent nanosorption processes occurring in such systems. Petryk M.R., Khimich A.N. 

formulated direct and inverse problems of identification of multicomponent transport 

systems in heterogeneous nanosources based on parallelization and component-wise 

estimation of mutual influence and obtained explicit expressions for the gradients of 

residual functionals for the implementation of gradient methods for identifying internal 

parameters of the system, external feedback interactions and nanosources. 

The proposed hybrid model of a neuro-biosystems describes the state and 

behavior of T-objects based on the propagation of a wave signal, namely, the 

segment-by-segment description of 3D elements of the trajectories of abnormal 

neurological movements of the investigated part (limb of the hand) of the body of the 

T-object, taking into account the matrix of cognitive influences of groups of neuro-

objects of the CC. On the basis of hybrid integral transform (Fourier, Bessel,

Hilbert), a high-speed analytical solution to the model is obtained in the form of a
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vector function that describes 3D elements of trajectories on each ANM segment. A 

new method is proposed for calculating the hybrid spectral function of ANM, a 

system of orthogonal basic functions and spectral values that form the basis of the 

proposed hybrid transformation and provide an integral vector decoupling of the 

model.  

 The authors have solved new nonclassical problems of multiparameter 

identification of feedback systems (neuro-bio- and nanoporous CPSoS) by 

developing high-performance gradient algorithms based on the theory of optimal 

control of complex component systems for minimizing target residual functionals. 

On the basis of hybrid integral transformations, new high-speed analytical solutions 

to models (direct and inverse problems) in vector form are constructed, which 

describe 3D elements of AMN trajectories and concentration distributions of 

absorbed components depending on feedback effects at the macro and micro levels. 

On the basis of these approaches, direct and inverse problems of multi-parameter 

identification of the studied feedback systems are formulated by parallelizing and 

component-wise estimation of mutual influence with obtaining explicit expressions 

for the gradients of residual functionals for the implementation of gradient methods 

for identifying system parameters and inverse interactions at the macro- and 

microlevels. The constructed high-performance regularization algorithms for 

identifying the parameters of systems and inverse interactions at the macro- and 

microlevels, based on the expressions for the gradients of the residual functionals, 

and allow parallelization of computations taking into account the supercomputer 

architecture of computing systems. The construction of high-speed analytical 

solutions to both types of feedback-models is based on the development of 

approaches to parallelizing computations using efficient decomposition and 

linearization schemes and methods of hybrid integral Fourier transforms and the 

Heaviside operational method. 

In the second and third Sections, a similar approach is implemented to using 

nanoporous CPSoS for the construction of new high-tech models, taking into account 

a set of limiting physical factors and mechanisms of feedback effects and nano-rings 

in an extensive network of nanopores. The model is chosen taking into account the 

amount of important feedback influences at the micro- and macrolevels, intra-kinetic 
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effects and physical postulates (dispersion and electrostatic forces (John Lenard, Van 

der Waals), adsorption interaction between adsorptive molecules and active 

adsorption centres on the interface phases (the postulates of Gibbs, Langmuir), etc., 

determine a high degree of description of the kinetics of adsorption and desorption 

into nanopores of catalytic media. Transport processes in such systems include two 

components: transfer of interparticle space into macropores and microtransfer of 

spherical particles into nanopores (interparticle space) - intraparticle space. In the 

developed model, the balance equations in the interparticle space are supplemented 

by the influence of gradients of concentrations arising along the radii of nanoporous 

particles and on their surfaces, are determined by the balance equation inside the 

particle of both types of feedback models, based on the development of approaches 

to parallelizing computations using efficient decomposition and linearization 

schemes, methods of hybrid integral Fourier transforms and the operational 

Heaviside method and Laplace transform.  

Part of the research in Sections 1 and 3, as well as its description, was carried 

out with the participation of graduate students of the Department of Software 

Engineering of the Ternopil Ivan Puluj National Technical University - 

Mudryk I. Ya. (Subsections 1.2, 1.3) and Petryk M.M. (Subsections 3.2, 3.3). 

With the aim of efficient algorithmic-software implementation, matrix 

procedures for parallelizing computations and their execution on supercomputer 

platforms and clusters are proposed. The advantage of the proposed vector approach 

to constructing solutions to models of the studied classes of CPSoS over the 

traditional one is the ability to run in parallel an arbitrary number of identification 

processes with a different amount of parameters, reducing by several orders of 

magnitude the duration of identification procedures focused on supercomputer 

architecture. The developed software for high-performance supercomputer 

identification technologies and modeling tools is based on parallel computations of 

complex feedback systems (neuro-bio- and nanoporous systems), which is a 

significant step in the development and implementation of digital neurodiagnostics in 

Ukraine and the effective implementation of a safe energy strategy based on modern 

cyber-physical systems, high technologies and artificial intelligence. A 

comprehensive study of feedback systems (neuro-bio- and nanoporous CPSoS) was 
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carried out on the basis of science-intensive hybrid models describing the states and 

behavior of the bio- and physical processes, taking into account the matrices of 

cognitive and physical feedback influences and the development of high-

performance supercomputer technologies on this basis for identifying their 

parameters.  

In the fourth Section, methods and algorithms for studying mathematical 

models with approximate data of a sparse structure on the latest high-performance 

computers by organizing calculations of various architectures are developed. A new 

methodology for studying mathematical models with approximate data of a sparse 

structure on the latest high-performance parallel and distributed computer systems 

using multilevel parallelism is created.  

An approach is developed to solve nonlinear problems on supercomputers 

that arise in mathematical modeling of the strength and stability of structures, in 

particular, when modeling the life cycle of critical welded structures of power 

engineering facilities. Block and block-cyclic algorithms for parallel computations 

when solving linear algebra problems with sparse matrices on the basis of structural 

regularization and decomposition of sparse structure data are developed and 

investigated. Linear algebra problems (systems of linear equations and matrix 

eigenvalue problems) make up a significant part of mathematical modeling. 

Improving the quality of mathematical modeling is directly related to an 

increase in the productivity and efficiency of using modern parallel computing 

systems. The key point in solving these problems is the issue of the choice, 

development and application of design automation methods for parallel programs of 

mathematical modeling, as well as software tools for customizing the developed 

programs for various high-performance computing platforms, which include 

multicore and cluster architectures, Grid, video graphics processors, "Cloud 

platforms", etc. 

In the fifth Section, the foundations of the theory of methods for hybrid 

integral transformations of multicomponent domains and algorithmic schemes for 

their applications in modeling and analysis of ANM are presented.  





Chapter1. High-performance methods of diagnostics and 

identification of abnormal neurological state parameters caused by 

cognitive feedback influences of the cerebral cortex 

1.1 Problems of human neurological conditions 

Tremor is a series of unwanted, small fluctuating movements affecting an 

organ or part of the body (fingers, eyelids, eyeballs, speech organs, etc.), resulting 

from involuntary contraction of skeletal muscles responsible for the movement of 

these organs [1]. An increase in the amplitude and a change in the frequency and 

shape of oscillations relative to the norm (frequency and amplitude of physiological 

tremor) are signs of a violation of the central and peripheral neuronal mechanisms for 

regulating movements. The analysis of these parameters is important both for 

understanding the role of dysfunction of individual zones in neural nodes of the 

cerebral cortex (CC) in the processes of motion control, and for clinical studies of 

early detection, refined diagnosis of motor disorders, selection and correction of 

optimal methods of effective drug therapy. 

The problem of the complexity of identification and assessment of limb 

tremor exists due to imperfection of methods of neurological diagnosis, in particular 

from [2]: 

- low accuracy in assessing the degree of tremor;

- lack of unambiguity in the assessment results (subjective assessment);

- the impossibility of analyzing the information received in the context of many

characteristics, a "narrow" view of the information received;

-  lack of methods that take into account feedback-connections and the

influence of CC neural nodes on the dynamics of tremor;

- the complexity and high cost of implementing the latest high-tech diagnostic

methods in specialized clinics.
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All this determines the need to improve the methods and approaches to the 

diagnosis of tremor in real conditions. 

The most modern diagnostic technologies include 3D-motion test [1], or 

recording of human movements in space using high-sensitivity high-speed cameras. Its 

essence lies in the complete reading of the movements of most elements and parts of the 

human body using infrared tags and 3d cameras. In modern conditions, for the 

registration of tremors, systems and methods are widely used to determine the high-

amplitude tremor characteristic of Parkinson's disease and essential tremor [2]. Thus, 

there is a known method for identifying a tremor on a plane by recognizing an 

Archimedes spiral pattern, which can be performed on a pen graphic tablet [3]. Separate 

studies related to the analysis of tremor and partially cognitive feedback-effects of CC 

neuronodules on the state of T-objects were carried out by a number of researchers, such 

as A. Legrand. M. Vedaet, Aparttiz E., Wang J., Louis E. et al. [2-5].  

The main attention in them is focused on the study of parameters with respect to 

normal states and behavior (normal wave movements of certain parts of the body), for 

the analysis of which classical methods of digital processing based on the integral 

Fourier transform were used. In [1-3], cognitive feedback-connections were 

approximately estimated using the methods and software technologies of neural 

networks. 

This approach does not make it possible to analyze abnormal neurological 

movements and to quantify the states and behavior inherent in patients whose 

individual body parts have pronounced signs with a high degree of tremor (T-objects). 

Another problem is that one-dimensional models and devices are mainly used for 

analysis, which record motion indicators only along one coordinate [4, 5]. Due to this, 

there is a loss of information from 40% to 80% that de facto determines the low level 

of indicators of such an analysis. On the other hand, due to the use of classical digital 

processing models, in turn, the quality of these studies for T-objects with abnormal 

states decreases by another 60 - 80%, since these methods reject, again, from 60% to 

80% of important data into noise, which can answer the question about the real 

cognitive mechanisms of influence on individual segments of the ANM-curves [1-3]. 

In [5], a comparative analysis of information loss in the diagnosis of tremor using the 
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Archimedes spiral test for patients with varying degrees of tremor is presented. 

Table.1.1.): 

Table.1.1 

 of the 

test 

Duration  

of the 

execution,  

Pen Accelerometer 

Readout, % 

Degree of 

tremor 

Scale score due to  

Fahn-Tolossa-Marin 

1 37 5 low 1.8

2 44 9 low 2.5

3 65 24 essential 6.8

4 57 37 essential 6.9

5 47 49 middle 4.5

The identification of the parameters that determine the above feedback-

connections and influence on the nature of the ANM and the development of models 

and tools that increase the accuracy of the analysis of the neurological state of the T-

objects is the subject of this section. 

1.2 Comprehensive methodology and analysis tools for the diagnosis of 

neurological conditions of T-objects based on the hybrid ANM model. Problems 

of human neurological conditions 

Analysis technique for diagnosing neurological states of T-objects proposed 

by us is focused primarily on determining the parameters of abnormal movements in 

patients with tremor signs caused by the negative effects of a certain set of CC neural 

nodes.  

The technique is based on a hybrid model of the neuro-system (CC nodes and 

tremor-object) developed using the theory of wave signal propagation, which 

describes the states and behavior of T-objects. The model determines the segment-

by-segment description of 3D elements of the ANM trajectories of the studied T-

object (limbs of the hand), taking into account the matrix of cognitive influences of 

CC neuro-node groups on motion segments, the elements of which will include the 
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components of the hybrid spectral function of the system for all ANM segments [11, 

12]. In order to decompose complex ANM movements into simpler elements, the 

number of partitions can be chosen arbitrarily depending on the complexity of the 

ANM image. The mathematical model assumes obtaining quantitative characteristics 

of tremor. In this method of analyzing the data of ANM motions of a T-object, an 

extremely important result is the ability to obtain a frequency response using a hybrid 

integral Fourier transform and digital signal processing methods on hybrid spectral 

functions and spectral values [12, 13]. 

1.2.1. ANM analysis hardware 

The implementation of the hardware solution is based on the method of 

constant continuous determination of the electronic pen position in relation to any 

control coordinate [13]. To carry out empirical studies, a touch-sensitive Pen tablet 

(digitizer Wacom Cintiq 12WX) with a sampling rate of 133 Hz and an accuracy of ± 

0.25 mm was used. The template has the form of the Archimedean spiral with several 

turns clockwise or counterclockwise, with an inter-loop of 9 mm. This template is 

located on the screen of an interactive tablet that allows a patient to draw with an 

electronic pen (Fig. 1.1.). 

Figure 1.1. Example of using software to reproduce the Archimedean spiral pattern 

on a Wacom Cintiq pen tablet 
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An electronic pen is used to identify handwritten information (numbers, text 

information, template drawings) or when recording and digitizing arbitrary 

movements of the limb of the hand. We have proposed a graphic digital pen device 

with a built-in 3D microaccelerometer for carrying out a diagnostic test. The 

microcontroller reads and processes information from a three-axis acceleration 

sensor (microaccelerometer). According to the proposed formulas, the readings of 

the instantaneous coordinates of the position of the accelerometer in space are 

determined [11, 12]. In a parallel stream, information is received about the 

movement of the electronic pen on the plane of the graphics tablet.  

When a zero value of the pen pressure is detected on the sensitive surface of the 

tablet (which indicates the separation of the pen from the surface), the necessary 

information about the movement of the pen is obtained from the displays of the 

microaccelerometer - the instantaneous coordinates of the position of the MEMS [13] 

accelerometer in space are determined, ensures the completeness of data collection about 

the trajectory of the ANM for T - object and their reliability.  

The digitized value of the pen position is transmitted via WIFI transmitter to 

the PC. Thus, the complex increases the reliability of the system for identifying the 

ANM movements of the T-object (by interacting the sensitive element of the tablet 

with an electronic pen and the built-in MEMS accelerometer). 

The data on the movement of the pen in the form of a 3D model of the ANM 

of the T-object is formed in the graphics window (Fig.1.2) with the possibility of 

providing the decomposition of complex 3D movements into 3 posible projections 

and the subsequent analysis of each of them and the choice of the most defining 

parameters of the ANM for identification and comprehensive assessment [12]. 
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Figure 1.2. 3D-model of ANM of T-object based on data read from 

microaccelerometer 

1.3 Hybrid mathematical model for the analysis of the ANM of the T-

object based on feedback-connections and the effects of the neural nodes of the 

CC

1.3.1 Formulation and method of direct heterogeneous boundary value 

problem solving for ANM analysis based on cognitive feedback influences 

Basic physical assumptions. According to the program of experimental studies 

of the ANM of T-objects, to obtain a qualitative statement of the problem and to 

construct a mathematical model of the ANM, the data of one of the defining projections 

of motion in the form of a spiral (according to the data in Fig. 1.2.) is used, which is 

easily transformed into a Cartesian graph (relative to the coordinate axis z, Fig. 1.3). This 

trajectory of movement is connected by cognitive feedback-connections with a certain 

set of neural nodes of the CC, which send signals to control these oscillatory 

neurological movements and determine, in general, the dynamics of the ANM of the 

studied T-object (Fig. 1.3). To measure signals during the entire duration of movement, a 

system of sensors in the form of a special helmet is used, in contact with the 

corresponding neural nodes of the patient's CC, during the entire duration of the 

movement of the electronic pen, recording the behavior of the T-object (limb of the 

hand) (Fig. 1.3). 
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Figure 1.3. The system of interaction "neuro-nodes CC T-object". Component 

decomposition of a complex ANM track into an arbitrary finite number (n1) of simple 

motion elements 

Electroencephalogram (EEG) trends of signals recorded by the helmet's sensors 

are stored in the corresponding database [12]. In order to decompose a complex ANM-

trace for the further formulation of the mathematical model, a scheme of its 

multicomponent decomposition of segments of the motion trajectory is used (Fig. 

1.3). Due to this fact, the distributions of trends in the EEG signals of the neural 

nodes that control the oscillatory neurological movement are correlated and, in 

general, determine the dynamics of the ANM for each j-th segment of the track, 

where n1 is the number of splitting points of the ANM track (Fig. 1.4). The splitting 

can be set automatically in an arbitrary way, with any finite number of segments, the 

lengths of which can also be different depending on the level of detail of the traffic 

areas and the choice of acceptable basis functions and building on their basis 

acceptable dependences of their approximation [11, 12]. One of the criteria for 

determining the lengths of the partitioning elements can be the amplitude 

characteristics of individual trends in the trace of oscillating ANM motions, etc. [12].  
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Figure 1.4. Schematization of the connections of cognitive feedback-effects of EEG-

signals of a separately defined neurologic node on separate elements of the ANM-trace 

of the T-object 

1.3.2. Mathematical statement of the problem.  

Based on the stated physical assumptions of this subject area of neurological 

analysis, the direct heterogeneous initial-boundary value problem of determining the 

parameters for the ANM of a T-object can be described in the form of the system of 

equations [11, 12] 
2 2

2 *
1 12 2

,
, , , , 1, 1j j

j j j j

u t z u
b S t z z l l j n

t z
  (1.1) 

with homogeneous initial conditions: 

10
0

, 0, 0 , 1, 1j
j t

t

u
u t z j n

t
,  (1.2) 

as well as homogeneous boundary conditions and a system of interface conditions: 

1 0, 0, , 0,nz z lu t z u t z
z z

(1.3) 
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, , 0,
j

j j z l
u t z u t z

j j+1

2 2
  1 1, , 0, 1,

j

k j
z l

b u t z b u t z j n
z z

(1.4) 

in the multicomponent region: 

1

1 1 1

1

1 0 1
1

, : (0;T), , ; 0,
n

n n j j n
j

D t z t z I l l l l l . 

Here (1.1) is a system of wave equations describing the ANM trajectories of 

tremor on each j-th segment of the trajectory 11, 1j n  depending on the resulting 

action of the set of signals * , ,jS t z  received from EEG-sensors for a certain set of CC 

neural nodes that control the behavior of the studied T-object, j 1, 1, 1b j n  - 

components of the phase velocity of propagation of the ANM waves, which are the 

amplitude characteristics of the wave tremor 

motion;
2

*

1

, , ,
n

j ji i
i

S S 1 2, 1, , 1,ji j n i n  - an adaptive matrix that

determines the connections and feedback-effects of specific CC neuronodules on 

individual small segments of the ANM-track. The matrix element ji  is a weighting 

coefficient (from 0 to 1), which determines the integral influence of the i-th neuronode 

iS  on the j-th segment of motion (determined by machine learning methods based on 

data mining [13]. The interface conditions (1.3), (1.4) ensure the continuity and integrity 

of the solution of the problem for the entire multicomponent domain of its definition. 

1.3.3. Construction of an analytical solution to the ANM boundary value 

problem 

To construct an analytical solution to the direct heterogeneous problem (1.1) - 

(1.4), we apply the hybrid integral Fourier transform (HIFT), which we defined in 

[11]. The transformation is based on hybrid integral operators written in matrix form: 

- of direct action:

11 2 1 1

1 1 1 1 1

0 1 11 1

1 1 2 2 1 1... ... , ... , ... ... , ... ,
n n

n n

l ll l

n m m n m n n m n
l l l l

F V z dz V z dz V z dz V z dz ,  (1.5) 

- of inverse action:
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Here 
1,k 1, 1

,k m n
zV - is the vector of the hybrid spectral function defined as

follows: 
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1

1
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2 11 1 21
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1 1 1 1
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1
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( ) ( )
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1 1 1

1 1

11 1 21
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1 1

) ( )m m
m n n m n

n n

z z
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.  (1.7) 

0m m
 - the set of spectral values of the GIPF, which are the roots of the

transcendental equation: 

1 1 1 1 1

1 1

2 11 1 21
1 1 1 1

1 1

0n n n n n n
n n

l l
b b

. (1.8) 

In the paper [11] it was established that the set of spectral values is a 

monotonically increasing sequence and coincides with the point + . 

On the basis of this, a recurrent technique for calculating the components of 

the hybrid spectral function of the ANM based on the choice of a system of 

orthogonal basic functions is proposed; it forms the basis of the proposed hybrid 

transformation and provides an integral vector solution of the model: 

2 1
1 11 2

1 1

( ) ( ) , ( ) ,k kj
k k k k k k kj j

k k k k

l l l l
b b b b
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2

1
j

jb
, 11,j n . 

Next, we write the system of equations (1.1) and conditions (1.2) of the 

boundary value problem (1.1) - (1.4) in the matrix form: 

1

1 1

2 2
2

1 12 2

1
2 2

2
22 22 2

12 2
2

1 12 2

,
,

,,
............

..................................................
,

,
n

n n

b u t z
t z

S t z

S t zb u t z
t z

S t z
b u t z

t z

1 1

1 1

2 2

1 10 0

, ,

, ,
, 0, 0

............ ............
, ,n nt t

u t z u t z

u t z u t z
t

u t z u t z

       (1.9) 

Applying to problem (1.9) the direct-action HIFT integral operator 
1nF  (1.5), 

where mmnn uzLF 2)(
11

 
1

1

1 2
2

1 2
1

...
n

n j j j
j

dL b z l l z
dz  

- hybrid 

Fourier differential operator, - is the Heaviside step unit function, we obtain the 

Cauchy problem: 
2

2
2 0 0

; 0, 0m m m m mt t

d du t S t u t u t
dtdt

, 

whose solution is the function [11, 12] 

0

sint
m

m m
m

t
u t S d                             (1.10) 

Applying to (1.10) the inverse integral HIFT operator 
1

1
nF  (1.6), after 

transformations, we obtain a unique solution to the homogeneous boundary value 

problem of ANM (1.1) - (1.4) 
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1

1

1
*

1
1 0

, , , , , 1, 1
k

k

ltn

j jk k k
k l

u t z t z S d d j nHh .             (1.11) 

Here, the impact matrix is the response of the ANM system to the influence 

of the k-th segment of the resulting action of signals, *
kS - a certain set of CC neural 

nodes on the j-segment of the ANM track: 

2
1

, ,sin
, , ; , 1, 1

,
j m k mm

jk
m m m

V z Vt
t z j k n

V z
H             (1.12) 

1.4 Identification of ANM amplitude components. Inverse heterogeneous 

boundary value problem taking into account the cognitive feedback influences 

of the neuro-nodes of the CC

1.4.1. Choice of residual functional 

It is assumed that the amplitude components of the phase velocity of 

propagation of the ANM wave k 1, 1, 1b k n  boundary value problem (1.1) - (1.4) 

are unknown functions of time. However, on the surfaces of the 

regions 1, 1, 1k k k n  of anheterogeneous media, traces of solutions 

(trajectories of the ANM) are as follows: 

, ,
kk k

k lu t z U t z (1.13) 

Thus, we have obtained problem (1.1) - (1.4), (1.13), which consists in 

finding the functions k 1, 1, 1b k n D,  

where 1, : , 0, 1, 1
TkT

kD t z C k n . 

The residual functional, which determines the deviation of the desired 

decoupling from the traces of the decoupling, obtained empirically on surfaces k , 

can be written as follows: 

2

1 2

k ( )
10

1 , ,
2 k k

T n

k s k kL
k

J b u z b U d   , (1.14) 

where 
2

2 2
( )k

k

kL d   squared norm. In this case
2 ( ) ,

k kL z
t z . 
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1.4.2. The problem of the ANM amplitude parameters functional 

identification 

Problem (1.1) - (1.4) due to the need to present it for its solution in the form 

of the implementation of the procedure for functional identification of the amplitude 

components of the phase velocity of propagation of the ANM 2
1, 1, 1kb k n  as a 

function of time and conditions, known decoupling traces for each sufficiently thin k-

th segment, 11, 1k n , is transformed into a direct boundary value problem (1.15) - 

(1.17) as a system of homogeneous initial boundary value problems for successive 

thin segments of the ANM: 
2 2

2 *
2 2, ,k k k ku t z b u S t z

t z (1.15) 

with initial conditions: 

10
0

, 0, 0, 1, 1k
k t

t

uu t z k n
t

(1.16) 

Boundary conditions on each of the thin segments of the ANM on Z coordinate: 

11
1 1, , , , 1, 1

l lk kk k
k L kz l z l

u t z U u t z U k n (1.17) 

Choice of residual functional. It is assumed that the components of the 

phase velocity of propagation of the ANM wave 1, 1, 1b k n  of the boundary 

value problem (1.15) - (1.17) are unknown functions of time. With known values of 

the pen position ),( ztuk  at observation points on segments of the ANM 

1, 1, 1k k k n   

, ,
kk k

k lu t z U t z (1.18) 

the initial-boundary value problem (1.15) - (1.17) can be considered for each point z 

for each thin k1-th segment of the ANM trace and will consist in finding the 

functions kb D , where 1
1

1, : , 0, 1, 1
Tk T

kD t z C k n . 

The residual functional of the deviation of the solution from its traces 

on
1 1k k , due to [13, 20] can be obtained as follows:  
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2

k
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1 , ,
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T

k k k k kJ b u t z b U dt                            (1.19) 

 

 1.4.3. Method for solving direct boundary of identification value problem 

The construction and mathematical substantiation of the solution to the 

problem is carried out by using the finite integral Fourier transform [11, 12]. 

Applying the integral operators [12] to problem (1.15) - (1.17):  

1
, , , ( )kl

k k m m kmk
F u t z u t z V z dz U t , 

                        1
km 2
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,
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,                 (1.20) 
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lV V z dz , 

the Cauchy problem is obtained: 

              
1

1

2
2 2 2 *
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                                  10
0

, 0, 0, 1, 1km
km t

t

uu t z k n
t

.                        (1.22) 

The unique solution to the Cauchy problem (1.21), (1.22) has the form:  

              
1

* 2

0

sin
1

l lk k

t
mk m

km km k m l l
k m

b t
U t S b U U d

b
        (1.23) 

Passing to the originals in (1.23), we obtain a unique solution to the original 

boundary value problem (1.15) - (1.17) in the classical form [12]. 

1

1

1 * 21 22
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0 0

, , , , , , , ,
k

l lk k

k

lt t

k k k k k l k k l
l

u t z t z S d d t z l U t z l U dHh Hh Hh .      (1.24) 

Here, the components of the influence vectors have the form: 

1
1 1
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21
1 1

0

2, , sin sink
k k k m m k

m

bt z l b t z l
h

H (1.25) 

22
1

0

2, , sin 1 sinmk
k k k m m k

m

bt z l b t z l
h

H . 

Solution (1.24) to the problem (1.15) - (1.17) after a series of transformations 

is converted into a form convenient and efficient for numerical iterative calculations 

and for use in the procedures for identifying parameters. After integrating and 

substituting specific expressions for the influence functions and a number of 

transformations, formulas (1.25) are reduced to ordinary algebraic expressions 

convenient for the identification procedure, the need to use iterations at this stage of 

the regularization of identification process is eliminated, significantly intensifying it 

as a whole. So, after integration we obtain: 
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* 1 *
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After substituting expressions (1.26) into (1.24), we finally obtain: 

1

1

*
1 2

0

1 cos2 1, sin 1 1 1 1 lk

lk
lk

lm mk m
k m k k l

m m lk m

Ub t
u t z z l S U

h Ub
   (1.27) 

1.5 Initial-boundary value problems accompanying algorithms for 

identifying parameters in the ANM

1.5.1. Initial-boundary value problems for increments 

Taking into account the increments in the identification parameters of the 

ANM 2n n
k kb b  based on problem (1.1) - (1.4), we obtain the corresponding 

increments 
ksv  for motion components on path segments k ku v . Neglecting the

terms of the second order of smallness, for the increments we obtain the following 

initial-boundary value problem [12]:  
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t z z z          (1.28) 

with initial conditions: 

               10 0
, 0, , 0, , 1, 1,k k kt t
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               (1.29) 

boundary and interface conditions between the ANM segments by z coordinate: 
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1.6 Statement and methodology for the conjugate boundary value 

problem solving

1.6.1. Problem statement in general 

Taking into account the above considerations, in accordance with the original 

direct initial-boundary value problem (1.1) - (1.4), according to [12, 21] for each 

approximation 2n n
k kb b  of the solution 2

k kb b  the conjugate time-boundary value 

problem is considered: 

           
2 2

2
12 2, , , 1, 1

k
k

n
k k k k k kz

t z b t z u U z k n
t z

.      (1.31)  

Initial conditions at t T  

                                                     , 0
k t T

t z ;                                                (1.32) 

boundary and interface conditions between thin ANM segments along the 

coordinate z: 
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11 10
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t z t z t T
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                                               1, , 0
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t z t z ,                                 (1.33) 
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2 2
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k k
z l

b t z b t z k n
z z

. 

Construction of an analytical solution to the conjugate time-boundary 

value problem. To construct analytical solutions to the conjugate heterogeneous 

time-boundary value problem of parametric identification (1.31) - (1.33), we used the 

approach described above to the direct problem using the introduced integral 

transform [12]. As a result, we obtain  
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1 1 1
11 11
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k k k k zkt l
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where 12
1

1

, ,sh, , ; , 1, 1
,

j m k mm
jk

m m m

V z Vtt z j k n
V z

H  – ANM conjugate 

influence matrix. 

 

1.7 Statement and methodology for solving conjugate initial-boundary 

value problems of functional identification of the ANM

Taking into account the above considerations, in accordance with the original 

boundary value problem of functional identification (1.15)   - (1.17), based on [12, 

21] and provided that the traces of the decoupling are known for each sufficiently 

thin k-th segment of the trajectory, !1, 1k n , can be transformed into the adjoint 

boundary value problem (1.31) - (1.33) into a system of conjugate homogeneous 

time-boundary value problems of functional identification for successive thin 

segments of the ANM: 

           
2 2

12 2, , , 1, 1
k

k

n
k k k k k kz

t z b t z u U z k n
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      (1.35) 

with initial conditions at t T : 

                                               , 0
k t T

t z                                            (1.36) 
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and boundary conditions of the first kind for each approximation n
kb , in the solution: 

1
, 0; , 0

k k
k kz l z l

t z t z .     (1.37) 

Analytical solution to the conjugate time-boundary value problem of 

functional identification.  

Applying the finite integral Fourier transform defined by integral operators 

(1.38) [12] to problem (1.35) - (1.37), we obtain the Cauchy problem: 
2

2 2
2 , ( ) s

km k m km km
d t z b t t
dt

Fk
(1.38) 

with initial conditions:  
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. (1.39) 

We obtain a unique solution to the Cauchy problem (1.38), (1.39): 

sh
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T
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where 
k

k

n
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t u U z� , which results in 
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b
. 

Passing to the originals in (1.40), we obtain a unique solution to the conjugate 

boundary value problem (1.35) - (1.37) in the classical form [12]: 

     
1

1, , , , 1, 1
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k
k
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lT
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k k k k kz
t l

t z t z u U d d k nHh .     (1.41) 

Here the components of the influence matrix 1, , , 1, 1k t z k nH  are as 

follows: 

         1 1
0

sh2, , sin sink m
k m k m k

m k m

b t
t z l z l

h b
H .      (1.42) 

Solution (1.41) to problem (1.35) - (1.37) after a series of transformations is 

converted in a form convenient and efficient for numerical iterative calculations for use 

in the procedures for identifying parameters. Substituting (1.42) 
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after integration we finally obtain:  
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1.8 Expressions for gradient components and regularization expressions

Expressions for gradient components. According to [12, 21], we obtain 

analytical expressions for the components of the gradients of the residual functional:  
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For the functional identification problem, according to [11, 21], we obtain the 

following formulas for the components of the gradients of the residual functional:  
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Regularization expressions for the n+1 th step of defining the identifying 

functional dependency. According to [20, 21], using the method of minimum errors 

to determine the dependence of the identification of the amplitude components of the 

phase velocity of propagation of the ANM wave 1~ n
kb  on time for each k-th element 

of the ANM 11, 1k n , we obtain:  
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Spatial visualization of the results of digital analysis of the ANM trajectory 

of the T-object. In Fig 1.5 the results of a digital analysis of abnormal neurological 

violent movements performed by the tip of an electronic pen on an electronic tablet 

along the circumference of the testing template (Archimedean spiral) by the hand of a 

patient with severe signs of tremor (T-object) are shown.  

Figure 1.5. Results of digital analysis of highly fluctuating ANM movements 

performed by the tip of an electronic pen on an electronic tablet along the 

circumference of the Archimedean spiral by the hand of a patient with strong signs of 

tremor 

As can be seen in Fig. 1.6., such movements are highly heterogeneous; 

moreover, they contain many areas with abnormal movements with high amplitude and 

frequency characteristics. For better visualization of the graph describing the trajectory 

of the ANM of the T-object, a temporal-spatial format is shown in Fig. 1.5, where 
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sections of the trajectories of abnormal oscillating movements are clearly visible, 

depending on time, and highly variable in small intervals of time (Fig. 1.6). 

Such sections of ANM movements can be studied in more detail by dividing 

them into separate segments according to the studied time interval, by establishing 

the dependence of their real amplitude and frequency characteristics on the integral 

time distributions of cognitive signals of the CC nodes. 

l
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1

in
brsqt

2
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2

out
brsqt

1

out
brsqt

Figure 1.6. Temporal-spatial visualization of the ANM of the T-object, with the 

inclusion of segments of highly vibrational abnormal movements dependent on time 

in small time intervals 

A useful and effective way to analyze the obtained results is the ability to 

perform cyclic calculations based on a proportional reduction in the analyzed data 

sets. In other words, the estimates are obtained and compared for each iteration of the 

analyzed data constraint. The results, presented in the form of frequency and 

amplitude characteristics of the curve, form the basis for assessing the patient's 

condition by the method of computerized diagnostics. Important elements of 

development are algorithms for obtaining the values of the parameters of the 

simulated system, the ability to visually represent the results obtained, the need for 

dynamic setting of the system parameters. All this makes it possible to present the 
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results with greater visibility and contributes to the targeted use of technology. An 

effective solution and a positive element of this development is its implementation as 

a separate module, a library with the ability to constantly update methods and 

maintain the relevance of research. The implementation of software in this way 

contributes to an increase in adaptability, ease of use in various systems during 

research. Mathematical methods, namely their calculation algorithms, are 

implemented as a set of classes with methods that simulate behavior. Software 

modules, classes, and their interaction are implemented as a single library module, 

which will allow flexible use of the input data analysis method in various applied 

tasks and programs. 

By using the built-in 3D microaccelerometer module in the digital pen of a 

graphics tablet, the condition for maintaining the existing satisfactory measurement 

accuracy with the additional ability to control the separation of the pen from the 

surface (Z axis) is provided.  

1.9 Modeling and identification of parameters of complex 

multicomponent non-bio-feedback systems on multicore computers

Within the framework of the set task of identifying cognitive feedback EEG 

on the ANM-trajectory was developed using the developed hybrid ANM model 

taking into account the feedback effects of EEG signals. To set up the identification 

model, a fragment of the ANM trace of the investigated T-object was used according 

to Fig.1.7. 
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Figure 1.7. ANM-trace of the spiral type, made by the patient on the tablet 

The corrected fragment of this spiral example in the number of discretized 

4000 points-trace positions is shown in Fig.1.8. Here the abscissa is the position 

numbers of the deflection of the feather from equilibrium during the passage of the 

spiral pattern. 

Figure 1.8. Expanded spiral type ANM track 

To test the model and adjust the model trace, a test sample of EEG (signals of a 

hypothetical neuro node of CC (cerebral cortex)) was used according to Fig.1.9. 
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Figure 1.9. Test distribution of EEG signals that cognitively affect the movement of 

the pen during the entire time of movement of the pen when drawing a fragment of 

the ANM.  

Here the times are proportionally compared and given in accordance with the 

length of the ANM fragment of the T-object. Setting up the ANM model track and its 

step-by-step and segment-by-segment identification (amplitude and frequency 

parameters for each segment, taking into account the integrity of the system) to a 

specific sample of the path performed by the patient (observation curve or 

experimental curve) was carried out according to the feedback scheme and analytical 

solutions to the hybrid model of the ANM-trace (Fig. 1.7, Fig. 1.10). 
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Figure 1.10. ANM trace model with feedback 

The results of testing the model are presented in the graphs, which are given 

below. At first, we took a relatively small number of points in an attempt to recreate 

the profile of the observation curve (profile of the ANM trace made by the patient 

taking into account the picture of the feedback-effects curve of the test EEG 

(Fig.1.9). 
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Figure 1.11. Comparative analysis of the model ANM trace (blue solid line)  and the 

real patient trace (red squares) for the first 20 points of the trace. 

As can be seen in Fig. 1.11, the accuracy of the coincidence of the model path 

and the real path of the patient is very high (up to 1.5-2%) for 20 observation points. 

Amplitude and frequency characteristics due to the hybrid spectral function built by 

us, systemically for all division segments (taking into account their connectivity, and 

not each separately), made it possible to obtain almost complete coincidence of the 

model track with the real track of the patient. Then we gradually increased the 

number of track points. For the number of points 50, the results turned out to be 

practically the same (Fig. 1.11). 

Figure 1.12. Analysis of the model track ANM (blue solid line) and the real patient 

path (red squares) for the first 50 points of the path 
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Then the number of points gradually increased to 50, 100, 500, 1000, 2000 and 

4000 and the behavior of the model curve was studied, evaluating its possible 

deviations from the experimental ANM of the patient's trace (Fig. 1.11-1.17). 

Figure 1.13. Analysis of the model ANM trace (blue solid line) - and the real patient 

trace (red squares) for the first 100 points of the trace 

In Fig. 1.13, for a segment of 100 points, we observe a slight deviation in the 

saddle zone in circle 60 of that point of the track at 5-7%. However, this problem can 

be solved technically by making the route segmentation in this zone smaller. By the 

way, the model itself allows for arbitrary partitioning with arbitrary sizes of each 

segment and making them as small as necessary. Here, all the graphs on the abscissa 

axes for the sake of compactness show the relative values of the number of track 

points (for example, Number 1 corresponds to the 100th track point, 5 to the 500th, 

0.2 to the twentieth position, etc.). 

A positive point is that for all other graphs with an increasing number of points 

up to 500, 1000, 2000 and 4000 (Fig. 1.14 -1.17), we also have a high degree of 

accuracy of coincidence of the model and experimental curves, which provides a 

high-level reproduction of the amplitude-frequency characteristics of the AMR trace 

(the frequency of the model curves almost completely corresponds to the frequency 

of the curves made by the patient). With an increase in the number of points under 

study in individual saddle or ridge points, the deviations of the amplitude 

characteristics slightly increase. But, as noted, these deflections can always be 

reduced by choosing a finer partition in these zones. 
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Figure 1.14. Analysis of the simulated ANM trace (blue solid line) and the real 

patient trace (red lines / squares) for the first 500 trace points 

Figure 1.15. Analysis of the simulated ANM trace (blue solid line) and the real 

patient trace (red lines / squares) for the first 1000 trace points 

Figure 1.16. Analysis of the simulated ANM trace (blue solid line) and the real 

patient trace (red lines / squares) for the first 2000 trace points 
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) 

b) 

Figure 1.17. Analysis of the model ANM trace (blue solid line)  and the real patient 

trace (red lines / squares) for the first 4000 points of the trace (5690 points were 

actually taken). 

Here (Fig. 1.17) the same curves (a, b) are presented for different numbers of 

iterative cycles of parameter identification and different graphic images in order to 

identify more acceptable options. A positive point is that on all the graphs we see a 

complete reproduction of the frequency characteristics of the trace (the frequency of 

the model curves almost completely corresponds to the frequency of the curves made 

by the patient). With an increase in the number of points studied in individual saddle 

or ridge points, it decreases. But this can always be washed by choosing a finer 

partition in these zones. 

As can be seen in the presented graphs, the developed model reproduces the 

patient's behavior at a high level, reflecting the ANM trace, which practically 

coincides with the one plotted on the tablet. The most important thing is that the 

model includes the possibility of displaying the mechanisms of its feedback effects 

by the BCC-neural nodes in the form of a matrix of EEG signals that determine the 
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behavior of these movements. Further research may include a change in this 

behavior, apparently for the better, depending on the change in the magnitudes of 

these EEG feedback effects after certain therapeutic procedures, and expansion of the 

scope of application. 

Conclusions for Chapter 1 

A hybrid model of a neuro-bio-system has been developed, which describes 

the state and behavior of 3D elements of trajectories of T-objects of ANM taking into 

account the matrix of cognitive influences of neuro-node groups of the CC. Using the 

methods of hybrid integral Fourier transforms, an analytical solution to the model is 

constructed in the form of vector functions, defining trajectory elements on each 

ANM segment. On the basis of this, high-performance algorithms for identifying the 

parameters of the studied feedback systems are proposed for component-wise 

estimation of mutual influence by obtaining explicit expressions for the gradients of 

the residual functional, allowing parallelization of computations on multicore 

computers. In contrast to the generally accepted classical approach, the proposed 

hybrid model, focused on deep decomposition of the system without violating its 

integrity and all-important connections makes it possible to describe more 

qualitatively the complex of hidden mechanisms process with a large number of 

internal connections and feedback influences of a cognitive nature, provide more 

data completeness, previously disappeared during classical statistical processing. 



Chapter 2. High-performance methods of modeling and 

identification of feedback influences of competitive adsorption of 

gaseous air pollutants at micro- and macro-levels in nanoporous 

systems  

The experimental and theoretical study of the competitive adsorption and 

competitive diffusion of several gases through a microporous solid and the 

instantaneous (out of equilibrium) distribution of the adsorbed phases is particularly 

important in many fields, such as gas separation, heterogeneous catalysis, 

purification of confined atmospheres, reduction of exhaust emissions contributing to 

global warming, etc. The original NMR imaging technique used gives a signal 

characteristic of each adsorbed gas at each instant and at each level of the solid, and 

therefore the distribution of several gases in competitive diffusion and adsorption. 

But it does not allow one to separately determine inter and intra-crystallite quantities. 

A new fast and accurate analytical method for calculation of the coefficients 

of co-diffusing gases in intra and inter-crystallite spaces of microporous solid (here 

ZSM 5 zeolite) is developed, using high-performance methods (iterative gradient 

methods of residual functional minimization and analytical methods of influence 

functions) and mathematical competitive adsorption models, as well as the NMR 

spectra of each adsorbed gas in the bed. These diffusion coefficients and the gas 

concentrations in inter and intra crystallite spaces are obtained for each position in 

the bed and for different adsorption times. 

2.1. Analysis of research state 

Knowledge of the competitive diffusion and competitive adsorption 

coefficients of reactants and products is essential when a heterogeneous catalytic 

reaction is performed by gas flow through a microporous catalyst bed. But generally, 

the distribution of the various reactants adsorbed on the catalyst is very 
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heterogeneous and, moreover, very variable from one reactant to another. It is 

therefore necessary to determine at every moment the diffusion coefficient of each 

reactant in the presence of the others and its instantaneous distribution along the 

length of the catalyst bed.  

Classical H-MRI should be a good technique for monitoring the competitive 

diffusion and competitive adsorption of several gases flowing through a microporous 

bed. However, since the signal obtained is not specific for each gas, this requires that 

each experiment be performed several times under identical conditions, and each 

time with only one not deuterated gas. To remedy the drawbacks of classical 

imaging, we have used the NMR imaging technique, named slice selection 

procedure, to follow the diffusion and adsorption of a gas in a microporous bed [6,7]. 

The sample is displaced vertically, step-by-step, relative to a very thin coil detector 

during the adsorption of the gas. The bed is assumed to consist of N very thin layers 

of solid, and the region probed is limited to each layer, so that the variation of the 

concentration of gas absorbed at the level of each layer is obtained as a function of 

time. An interesting feature of this technique is its ability to visualize directly the 

competitive diffusion of several gases. Indeed, the NMR signals are quantitatively 

characteristic of the adsorbed gases. They can, therefore, provide directly the 

distribution of several gases competing in diffusion and adsorption at every moment 

and at every level of the bed. We presented the experimental results of the 

competitive diffusion of benzene and hexane through a silicalite bed in a previous 

paper [15]. In [16-18] we developed a mathematical methodology for efficient 

linearization of similar models. Using Heaviside’s operational method and Laplace’s 

integral transformation method, we made solutions allowing fast calculations for 

two-component competitive adsorption in a heterogeneous zeolite bed and for the 

dehydration of natural gas [19]. In this chapter we have improved the methods 

previously used to compute the diffusion coefficients against time, increasing the 

accuracy and speed of calculations by significantly reducing the iterations number. 

This made it possible to use them for the competitive adsorption of  several gases 

diffusing along such a column.  
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2.2 Experimental setup 

The NMR imaging technique, the sample-holder bulb containing the liquid 

phase in equilibrium with the gas phase, and the narrow zone monitored by the 

detector were described in [15, 16] respectively.  
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Figure 2.1. Distribution of the layers (left) and corresponding parameters (right) 

The upper face of the cylindrical bed of zeolite crystallites is exposed to a 

constant pressure of each gas (Figure 2.1). The diffusion of the two gases is axial in 

the macropores of the intercrystallite space (z direction along the height, l, of the 

bed) and radial in the micropores of the zeolite. According to the experimental 

conditions, the zeolite bed consists of a large number, N, of very thin layers of solid, 

of thickness 1k k kl l l , perpendicular to the propagation of the gas in the z 

direction. The corresponding coefficients of inter and intra-crystallite space are 

Dinter,k and Dintra,k , respectively.   

2.3 Experimental results: Gaseous benzene and hexane competitive 

adsorption curves 

The experimental results were summarized in [15-17]: the spectrum of each gas 

at every instant and every level of the solid, and the benzene and hexane 

concentrations along the sample, for each diffusion time. Here we shall only use the 

Diffusion in macropores; length of the bed, l 
Characteristic position of the layer: lk    
Thickness of the k-th layer:  lk = lk -lk-1  
Intercrystallite diffusion coefficient in the k-th layer: 
Dinter,k    
In the theoretical part, l is the top of the bed and 0 is the 
bottom.  

Diffusion in micropores;   
Intracrystallite diffusion coefficient in the k-th layer: 
Dintra,k  
In the theoretical part, zeolite crystallites are assumed to 
be spherical (radius R); x = 0 corresponds to the center 
of   the sphere and x = R to its surface.  

l >> R ;  Dinter,k  >> Dintra,k
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evolution, as a function of time, of the benzene and hexane concentrations at 

different levels of the sample, on which are based the calculations of the diffusion 

coefficients and the instantaneous inter- and intracrystallite concentrations [16]. 

Figure 2.2 clearly shows that under the chosen experimental conditions, benzene 

hinders the diffusion of hexane at every moment. Moreover, it can be noticed that at 

equilibrium the amount of benzene within zeolite is twice that of hexane, indicating 

quantitatively the relative affinity to the two adsorbates.  

    These curves display modulations as a function of time, which must be 

averaged for all subsequent mathematical representations. These modulations are 

weak at the lower layers of the tube and can be due to errors in the measurement of 

small amounts. Those closer to the arrival of the gas are greater and are similar for 

the two gases. We suggested that these fluctuations may be due to the fact that 

intercrystallite adsorption at levels close to the gas phase is fast compared to the 

liquid-gas equilibrium, which is not as instantaneous for a mixture as for a single 

component [16]. To each slight decrease of the gas pressure could correspond a 

slight fast desorption.  

Figure 2.2. Evolution versus time of the benzene and hexane concentrations 

(arbitrary units) at different levels of the sample (continuous –   experimental curves; 

dotted – their approximations used for simulation) [from reference 16, reprinted with 

permission from ACS] 
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2.4 A mathematical model of competitive adsorption and competitive 

diffusion in microporous solids 

2.4.1. Competitive adsorption model in general formulation 

The model presented is similar to the bipolar model [7-9]. By developing the 

approach described by Ruthven & Kärger [10] and Petryk et al. [15] concerning the 

elaboration of a complex process of competitive adsorption and competitive 

diffusion, it is necessary to specify the most important hypotheses limiting the 

process. 

The general hypothesis adopted to develop the model presented in the most 

general formulation is that the interaction between the co-adsorbed molecules of 

several gases and the adsorption centers on the surface in the nanoporous crystallites 

is determined by the nonlinear competitive equilibrium function of the Langmuir 

type, taking into account physical assumptions [10, 16]: 

1. Competitive adsorption is caused by the dispersion forces whose

interaction is established by Lennard-Jones and the electrostatic forces of gravity and 

repulsion described by Van der Waals [10]. 

2. The competitive diffusion process involves two types of mass transfer:

diffusion in the macropores (intercrystallite space) and diffusion in the micropores of 

crystallites (intracrystallite space). 

3. During the evolution of the system towards equilibrium there is a

concentration gradient in the macropores and/or in the micropores;  

4. Competitive adsorption occurs on active centres distributed over the entire

inner surface of the nanopores (intracrystallite space) [10]. All crystallites are 

spherical and have the same radius R; the crystallite bed is uniformly packed. 

5. Active adsorption centres adsorb molecules of the i-th adsorbate, forming

molecular layers of adsorbate on their surfaces. 

6. Adsorbed molecules are held by active centers for a certain time,

depending on the temperature of the process. 

       Taking into account these hypotheses, we have developed a nonlinear 

competitive adsorption model. The meaning of the symbols is given in the 

nomenclature.   
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Here the activation energy is the heat of adsorption defined as: 

( )
s ss g ads gH U U R T , where g adss sU U - the difference between the 

kinetic energies of the molecule of the i-th component of the adsorbate in the gaseous 

and adsorbed states is the magnitude of the Lennard-Jones potential, averaged over 

the pore volume of the adsorbent [10]. 
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     The non-isothermal model (2.1) - (2.8) can easily be transformed into isothermal 

model, removing the temperature equations (2.2) and conditions (8) and replacing the 

functions sK T with the corresponding equilibrium constants sK . The competitive

diffusion coefficients sintraD and sinterD can  be considered as functions of the

time and the position of the particle in the zeolite bed.  

2.4.1. The inverse model of competitive diffusion coefficients 

identification. Application to the benzene-hexane mixture 

On the basis of a developed nonlinear co- adsorption model (2.1) - (2.8), we 

construct an inverse model for the identification of the competitive diffusion 

coefficients     sintraD  and  sinterD as a function of  time and coordinate in the

zeolite bed. 

The mathematical model of gas diffusion kinetics in the zeolite bed is defined 

in domains: 

1 0 1 1(0, ) , , , 1, 1, 0 ... 1
t

total
k k k k k Nt L L k N L L L by the 

solutions to the system of differential equations:   

inter
s sk k k k k
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, (2.9)          

sk k k k
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(2.10)        

with initial conditions:  

ksC t 0,Z 0;  ksQ t 0,X ,Z 0 ;  0,1 , , 1, 1kX Z k N ,          (2.11)        

boundary and interface conditions for coordinate Z: 
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Additional condition (NMR-experimental data):    
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The problem of the calculation (2.9) - (2.15) is to find unknown functions 

s sintra inter,t tD D   (
s sintra inter0, 0D D , 1,2s ), when absorbed masses 

, ,
k ks sC t Z Q t Z  satisfy the condition (2.15) for every point k kh   of  the k-

th  layer [16, 21]. 
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component absorbed in macro- and micropores at k kh  (results of NMR data, 

Figure 2.2).  

2.4.2. Iterative Gradient method of competitive diffusion coefficients 

identification  

The calculation of  intrask
D  and  intersk

D  is a complex mathematical problem. In 

general, it is not possible to obtain a correct formulation of the problem (2.9) - (2.15) 

and to construct a unique analytical solution, because of the complexity of taking 

into account all the physical parameters (variation of temperature and pressure, 

crystallite structures, non-linearity of Langmuir isotherms, etc.), as well as the 

insufficient number of reliable experimental data, measurement errors and other 

factors. 

Therefore, according to the principle of Tikhonov and Arsenin [22], later 

developed by Lions [23] and Sergienko et al [24], the calculation of diffusion 

coefficients requires the use of the model for each iteration, by minimizing the 

difference between the calculated values and the experimental data.  

The calculation of the diffusion coefficients (2.9) - (2.15) is reduced to the 

problem of minimizing the functional of error (16) between the model solution and 

the experimental data, the solution being refined incrementally by means of a special 

calculation procedure which uses fast high-performance gradient methods [15, 16, 

20, 24].  

According to [16, 20], and using the error minimization gradient method for 

the calculation of intrask
D and  intersk

D  of the s-th diffusing component, we obtain the 

iteration expression for the 1n -th calculation step:     
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where 
s sinter intra,
k k

J D D - the error functional, which describes the deviation of the

model solution from the experimental data on k kh , is written as: 

s s s s s s

2

inter intra inter intra inter intra
0

1, , , , , , , ( )
2 kk k k k k k

k

T

s s s
h

J D D C Z D D Q t Z D D M t d ,

, 1, 1k kh k N , (2.17) 

inttersk

n
DJ t ,

intrask

n
DJ t   - the gradients of the error functional, 

s sinter intra,
k k

J D D . 

inter inter

2 2

0
sk sk

T
n n
D DJ t J t dt ,

intra intra

2 2

0
sk sk

T
n n
D DJ t J t dt .

2.4.3. Analytical method of competitive diffusion coefficients 

identification  

With the help of iterative gradient methods on the basis of the minimization 

of the residual functional, very precise and fast analytical methods have been 

developed making it possible to express the diffusion coefficients in the form of time 

dependent analytic functions (2.16). For their efficient use, it is necessary to have an 

extensive experimental database, with at least two experimental observation 

conditions for the simultaneous calculation of intrask
D  and intersk

D  coefficients. Our 

experimental studies were carried out for 5 Z positions of the swept zeolite layer for 

each of the adsorbed components. The data were not sufficient to fully apply this 

simultaneous identification method to these 5 positions. We, therefore, used a 

combination of the analytical method and the iterative gradient method for 

determining the competitive diffusion coefficients. 

Using equations (2.9) - (2.15), it is possible to calculate  intra inter,
s skk

D D as a 

function of time using the  experimental data  obtained by  NMR scanning.  In 

particular, in the equations (2.9) and (2.10), the competitive diffusion coefficients 

can be set directly as functions of the time t: intra inter,
s skk

D t D t . In this case, the 

boundary condition (2.11) can be given in a more general form - also as a function of 

time 
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initial
1s sC t ,1 C t  . (2.18) 

Experimental NMR scanning conditions are defined simultaneously for all P 

observation surfaces: 

     
1 1

10

, , , , , 1, , 1,2;
i i

i

N

sk sk sk i kh
kZ h

C t Z Q t X Z dX M t Z i P s h ,         (2.19)  

For simplicity we design: sk sku t,Z C t,Z , v t,X,Z Q t,X,Z ,

sk i
2

intra i skb t D t / R , t M t , i 1,P

and considering equation (2.10) in flat form its solution can be written as [26]: 

(2)
4

0

, X, Z , , X,1) ( ) , Z
t

v t t b u dH ,     (2.20) 

where     2 2
2 (t) ( )(2)

4
0

, ,X, 2 cos 1 mm
m m

m
t XeH .

Here the Green influence function of the particle (2) , 1, 4k kH  is used; it has 

the form [12]:  

2 2
2 (t) ( )(2)

4
0

2 1, ,X, 2 cos cos , ,
2

m
m m m

m

mt XeH

2 2
2 (t) ( )(2)

3
0

2 1, , X, 2 sin sin , ,
2

m
m m m

m

mt XeH

2 2
2 (t) ( )(2)

2
1

, , X, 1 2 cos cos , ,m
m m m

m
t X meH  

where     2
0

t

t b s ds .

The notation (2) (2)
4 4,H H  means partial derivatives of the influence function 

(2)
4H relative to the definite variables    and    respectively.  

Based on formula (2.20), we calculate  

(2)
4

0

,X, Z , ,X,1) ( ) , Z
t

X Xv t t b u dH .                    (2.21) 

Integrating parts (2.21), taking into account the relations: 
(2) (2)
4 3, , X, , , ,X t t XH H , (2) (2)

3 3, , , ( ) , , ,t X b t XH H , 

and the initial condition 0 0tu , we find 
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(2)
3

0

,X, Z , ,X,1) , Z
t

Xv t t u dH .        (2.22) 

 We substitute the expression , X, Zv t  (2.20) in the observation conditions (2.19):  

              
1

(2)
4

0 0

, , ,X,1) ( ) , (t), 1,P
t

i i iu t h XdX t b u h d iH .       (2.23)

Integrating parts (2.23) and taking into account equality 
(2) (2)
4 3, , ,1 , , ,1Xt X t XH H , 

 we obtain [26]: 

(2)
3

0
1

(2)
3

0 0

, (t) , ,1,1) ( ) ,

, ,X,1) ( ) , , 1,P

t

i i i

t

i

u t h t b u h d

t b u h dXd i

H

H
.              (2.24) 

Let's first put initial
P sP su t ,h t C t , where PZ h  - the observation 

surface, approaching the point of entry into the work area Z = 1.   

Then equation (2.24) for i = P will be : 
1

(2) (2)
3 3

0 0 0

, ,1,1) ( ) ( ) ( ) ( ) , ,x,1) ( ) ( )
t t

sP sP sP sPt b t d t t t b t dxdH H .  (2.25)

Applying the formula (2) (2)
2 4( ) , ,0,0) , ,0,0) 1

t

b t t dH H ,  

obtained by Ivanchov [26], to (2.25) and  taking into account 
(2) (2)
3 4, ;1,1 , ;0,0t tH H , we obtain: 

(2)
2

0 0
1

(2) (2)
2 3

0 0 0

( ) ( ) , ,0,0) ( )( ( ) ( ))

, ,0,0) ( ) , ,x,1) ( ) ( ) , [0, ]

t t

sP sP sP

t
total

sP

b d t b d

t b d b t dXd t t

H

H H
. (2.26) 

Differentiating (26) by t, after the transformations series we obtain 

(2)
2

0

( ) , ,0,0) ( ( ) ( ) ( ) ( ))
t

sP sP sP sPt t b dH .              (2.27)  
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After multiplying eq. (2.27) on the expression (2)
4 , ,0,0) ( )t bH , the integration 

by  and the differentiation by t:  

(2)
2

0

( ) ( ) ( ) ( ) ( ) , ,0,0) ( ))
t

sP sP sP sPb t t b t t dH .  

 So, we obtain the expression for calculating the competitive diffusion 

coefficient in the intracrystallite space: 

2 2
int

(2)
2

0

( ) ( )
( ) ( )

, ,0,0) ( ) ( )
sP

sP sP
ra t

sP sP

t t
D t R b t R

t d tH
, [0, ]totalt t .     (2.28) 

Using calculated intra ( )
sP

D t  with the formula (2.28) on the observation limit Ph , we 

define the gradient method inter ( )
sP

D t in the same way. With intra ( )
sP

D t  and inter ( )
sP

D t  

in Ph , we calculate ( , )sk Pt h , substituting it in  sP 1 sk Pt ( t ,h )  for next

coefficients inter ( ), 1,1
si

D t i P  calculations.    All subsequent coefficients 

int ( )
siraD t will be calculated by the formula  

2 2
int

(2)
2

0

( ) ( )
( ) ( ) , 1,1

, ,0,0) ( ) ( )
si

si si
ra si t

si si

t t
D t R b t R i P

t d tH
        (2.29) 

with parallel computing inter ( ), 1,1
si

D t i P . 

2.5 Numerical simulation and analysis: Competitive diffusion 

coefficients. Concentration profiles in inter- and intracrystallite spaces 

The variation against time of the benzene and hexane intracrystallite diffusion 

coefficients, 
1,kintraD  nd 

2,kintraD respectively,  are presented in Figure 2.3 for the five 

coordinate positions: 6, 8, 10, 12 and 14 mm, defined now from the top of the bed. 

The curves for benzene 
1,kintraD   are pseudo exponentials. 

1,kintraD  decreases from 9.0 

E-13 to about 1.0 E-14 a.u. (equilibrium) depending on the position of the crystallite

and the time, as well as on the amount of adsorbed gas. The shapes of the variations

of 
2,kintraD for hexane are roughly the same, but the diffusion coefficients are higher, 

from about 9.0 E-12 to 3.0 E-13 a.u.  
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Figure 2.3.   Variation of intracrystallite diffusion coefficients (arbitrary units) for 

benzene 
1,kintraD  (left) and hexane 

2,kintraD  (right) against time, at different positions 

in the bed.  (Top) time range 6-240 mn, (bottom) time range 100-240 mn  
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Figure 2.4 presents the variation against time of the benzene and hexane 

diffusion coefficients in intercrystallite space, 
1,kinterD  nd 

2,kinterD , for the same 

positions 

These coefficients decrease with time from 2.0 E-6 to 1.0 E-7 a.u. 

(equilibrium) for benzene and from 3 E-5 to 1.0 E-6 a.u. for hexane, depending on 

bed position and increase adsorbed concentrations.  
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Figure 2.4.  Variation of intercrystallite diffusion coefficients (2.u.) for benzene 

(left), and hexane (right) against time at different positions of the bed 

Figure 2.5 shows the variation against time of the calculated concentrations C 

for benzene and hexane in the intercrystallite space. As can be seen, these 
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concentrations approach the equilibrium values for a diffusion time around 250 min. 

But the variations of the concentrations with time are rather different for the two 

gases. 
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Figure 2.5. Variation of the intercrystallite concentration (2.u.) calculated for 

benzene (left) and hexane (right) against time and at different positions in the 

bed 

Figure 6 shows the variation of the concentrations Q(t,X,z) of adsorbed 

benzene (left) and hexane (right) in the micropores of the intracrystallite space from 

the surface (abscissa -1) to the center (abscissa -0) of the crystallites located between 

6 to 14 mm from the top of the bed, and after 25 to 200 min. of diffusion (a, b, c, and 

d, respectively). The gradients increase and the mean concentrations decrease with 

the increasing distance of the particles from the arrival of the gases. The particles at 6 

and 8 mm are saturated with benzene after 100 min., but not yet with hexane.  



METHODS OF MATHEMATICAL MODELING (…) 65 

Mykhaylo PETRYK (TNTU) chaire du Génie Logiciel 121 – Software Engineering 15/36

Tremor model
l’analyse du MNA:

Figure 2.6. Distribution of the benzene (left) and hexane (right) concentrations in 

the intracrystallite space from the surface (abscissa 1) to the center (abscissa 0) of 

the crystallites, at different times  1- dark blue: t = 25 min.; 2 -green: t 50 min; 3 

- brown: t =100 min.; 4 - red: t =200 min

2.6 Iterative gradient method of the identification of competitive 

diffusion coefficients 

The methodology for solving the direct boundary problem (2.9) - (2.15), 

which describes the diffusion process in a heterogeneous nanoporous bed was 

developed in [16, 20]. According to [20] the procedure for determining the diffusion 

coefficients (2.16) requires a special technique for calculating the 

gradients
intrask

n
DJ t , 

intersk

n
DJ t  of the residual functional (2.17). This leads to the 

problem of optimizing the extended Lagrange functional [21].  

sk skinter intra,
macro micros s sD D J I I , (2.31)

where  ,
macro micros sI I  are the components  given by equations (2.32)  and (2.33), 

corresponding to the macro- and micro- porosity, respectively: 
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1

2
intrainter

inter2 2 2
0

1

, ,
,

k sk sk k k k
macro k k k

k

LT s s s
s s s

L
X

Q t X ZDC D C
I t Z e K dZdt

t Xl Z R
 ,      (2.32) 

    
1

21 int
2 2

0 0

, , 2, ,
k

k sk k k
micro k

k

LT s ra s s
s s

L

Q t X Z D Q Q
I t X Z XdXdZdt

t X XR X
,     (2.33) 

sJ  is the residual functional (2.17),  , 1,2, ,
k ks s s  – unknown factors of Lagrange  

to be determined from the stationary condition of the functional 

sk skinter intra,D D [16, 21]:  

                
sk skinter intra, 0

macro micros s sD D J I I  .                      (2.34) 

The calculation of the components in eq. (2.34) is carried out by assuming that the 

values 
sk skinter intra,D D  are incremented by

sk skinter intra,D D . As a result, 

concentration ,
ksC t Z changes by increment ,skC t Z  and concentration 

, ,
ksQ t X Z   by increment , , , 1, 2

ksQ t X Z s .   

Conjugate problem. The calculation of the increments sJ ,
macrosJ , 

microsJ   in (2.34)  (using integration by parts and the initial and boundary conditions 

of the direct problem (2.9)-(2.15)),   leads to solving the additional conjugate 

problem to determine the Lagrange factors 
ks , 

ks  of the functional (2.31) [20] : 

     
2

intrainter
inter2 2 2

1

, , ,
( )sk sk k k k

k k k

s s s n
s s k

X

Dt Z D t X Z
e K E t Z h

t Xl Z R
,          (2.35)     

where  
int int int int

( ) , ; , , ; ,
k k ra er k ra ersk sk sk sk

n n n n n
s s k s k skE t C D D t h Q D D t h M t , 

kZ h  -  function of Dirac [22].  

                 
2

int
2 2

, , 2 ( )k sk k k
k

s ra s s n
s k

t X Z D
E t Z h

t X XR X
.                   (2.36)          

               , 0; , , 0total total
k ks st t t t

t Z t X Z  (conditions at totalt t );         (2.37)  

                     
0 1

, , 0; , , ,
k k ks s sX X

t X Z t X Z t Z
X

;                      (2.38)  
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k k 1s k s k 1t ,Z L 0, t ,Z L 0; s 1,2, k N ,2,              (2.39)  

1s 1t ,L 0 , 1s t ,Z 0 0
Z

.                                       (2.40)  

We have obtained the solution sk , sk  to problem (2.35) - (2.40) using Heaviside 

operational method in [29].  

Substituting in the direct problem (2.9) - (2.15) 
sk skinter intra,D D , ,

ks t Z  and 

, ,
ksQ t X Z  by the corresponding values with increments 

sk sk sk skinter inter intra intra,D D D D , , ,
k ks sC t Z C t z  and

, , , ,
k ks sQ t X Z Q t X Z , subtracting the first equations from the transformed ones 

and neglecting second-order terms of smallness, we obtain the basic equations of the 

problem (2.9) - (2.15) in terms of increments ,
ksC t Z and , ,

ksQ t X Z , 1, 2s

in the operator form: 

( , , ) , (0,1) , 1, 1
k k ks s s ktw t X Z w k NL . (2.41) 

Similarly, we write the system of the basic equations of conjugate boundary problem 

(2.35) -(2.40) in the operator: 

           ( , , ) ( ) , (0,1) , 1, 1
k k ks s k s ktt X Z E t Z h k NL ,          (2.42)  

where

sk

sk

sk

intra
inter int 1

2
intra

2 2

20

ker X

D
D e

t Z Z R X
D

t R X X X

= L ,

sk

sk

sk

intra
inter int 12

2
intra

2 2

20

ker X

D
D e

t Z Z R X
D

t R X X X

= L , 

,
, ,

, ,
k

k

k

s
s

s

C t Z
w t X Z

Q t X Z
, 

,
, ,

, ,
k

k

k

s
s

s

t Z
t X Z

t X Z
. 
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sk

sk

sk

intra
inter int 2 1

2
intra

2 2

, ,
( , , )

2 , ,

k k k

k

k

s er s X

s

s

D
D C e Q t X Z

Z Z R X
t X Z

D
Q t X Z

R X X X

,        (2.43)  

where  L  is the conjugate Lagrange operator of operator L . 

The calculated increment of the residual functional (2.17), neglecting second-order 

terms, has the form:  

sk sk ,1
1

2
1

1
intra inter

0

1
1

0 0

, ( , ) ( )

( , , ) ( )

k

k k
k

k

k k
k

LT

s s s k
L

LT

s s k
L

J D D t Z E t Z h dZdt

t X Z E t Z h XdXdZdt

L

L
 , (2.44) 

wher 1
k ks sw L , 1L  is the inverse operator of operator L .

Defining the scalar product: 

0,

, ,

, , , , ,
, , , ,

k k

kT

k k

k k

kT

s s

s s

s s
R

C t Z t Z dZdt

w t X Z t X Z
Q t X Z t X Z XdXdZdt

L

L w
L

   (2.45) 

and taking into account (2.19) Lagrange's identity [16, 21]: 

, , , , , , , , , ,
k k k ks s s sw t X Z t X Z w t X Z t X ZL L w          (2.46)

and the equality: 1 ( )
k ks k sE t Z hL , we obtain the increment of  the residual

functional expressed by the solution of conjugate problem (2.35) – (2.40) and the 

vector of the right-hand parts of equations  (2.43): 

sk skinter intra, ( , , ), ( , , )
k ks s sJ D D t X Z t X Z , (2.47)  

where ,
ks t Z  and , ,

ks t X Z  belong to kt and 0,1 kt , respectively; 1L  -

conjugate operator to inverse operator  1L ,  
ks - solution to conjugate problem 

(2.35) - (2.40). 

Reporting in equation (2.47) the components ( , , )
ks t X Z taking into account the 

equality  (2.48), we obtain the formula which establishes the relationship between the 

direct problem (2.9) - (2.15) and the conjugate problem (2.36) - (2.40) and which 
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makes it possible to obtain the analytical expressions of components of the residual 

functional gradient: 

    

sk
sk

sk sk
sk

intra
inter int 2 1

intra inter 2
intra

2 2

( , ), , ,

,
2( , , ), , ,

k k k k

k k

s s er s X

s

s s

D
t Z D C e Q t X Z

Z Z XR
J D D

D
t X Z Q t X Z

X XR X

          (2.48)  

Differentiating expression (2.18), by 
skintraD  and 

skinterD , respectively, and 

calculating the scalar products according to (2.45), we obtain the required analytical 

expressions for the gradient of the residual functional in the intra- and intercrystallite 

spaces, respectively: 

             
intrask

1

1

inter
2

21

2 2
0

,1, ( , )

1 2 , , ( , , )

k
k

k k
k

k

k k
k

L

D s s
L

L

s s
L

e
J t Q t Z t Z dZ

XR

Q t X Z t X Z XdXdZ
X XR X

,         (2.49) 

                           
intersk

1

2

2

( , )
( , )

k
k

k
k

L
s

D s
L

C t Z
J t t Z dZ

Z
.                           (2.50) 

The formulas of gradients 
intrask

n
DJ t  ,

intersk

n
DJ t   include analytical 

expressions of the solutions to the direct problem (2.9) - (2.14) and inverse problem 

(2.35) - (2.40). They provide high performance of computing process, avoiding a 

large number of inner loop iterations by using exact analytical methods [20]. 

 

2.7 The linearization schema of the nonlinear competitive adsorption 

model.  System of linearized problems and construction of solutions  

The linearization schema of nonlinear competitive adsorption (2.1) - (2.8) is 

shown in order to demonstrate the simplicity of implementation for the case of two 

diffusing components ( 2m ) and isothermal adsorption. The simplified model (2.1) 

- (2.8) for the case 2m   is converted into the form: 

               inter
s s

2inter intras s s
s2 2 2

X 1

D Dt ,Z Q
e K

t Xl Z R
,                (2.51)  
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s
2intras s s

2 2

DQ t , X ,Z Q Q2 , s 1,2
t X XR X

(2.52)  

with initial conditions:  

sC t 0,Z 0;     sQ t 0, X ,Z 0 ; 0,1 , 1,2X s , (2.53) 

 boundary conditions for coordinate X of the crystallite: 

sQ t , X 0,Z 0
X

, (2.54) 

1 2
1

1 1 2 2

K C t,Z
Q t,X 1,Z

1 K C t,Z K C t,Z
,  (Langmuir equilibrium) 

2 2
2

1 1 2 2

K C t,Z
Q t,X 1,Z

1 K C t,Z K C t,Z
, (2.55) 

boundary and interface conditions for coordinate Z: 

sC t ,1 1 , s t ,Z 0 0
Z

,     0, totalt t ; (2.56) 

1 2
1 2

1 1 2 2 1 2
K , K

p 1 p 1
,  1 2p , p  - competitive adsorption 

equilibrium constants and partial pressure of the gas phase for 1-th and 2-th 

component, 1 2,  - the intracrystallite space  occupied by the corresponding 

adsorbed molecules.  The expression  s
s 1 2

1 1 2 2

C t,Z
C ,C

1 K C t,Z K C t,Z
 is 

represented by the series of Tailor  [17, 26]:   

2 2
2
1 1 12

1 21 (0,0) (0,0)
1 2 1 2 2

1 2(0,0) (0,0) 2
22

2 (0,0)

2
1, 0,0 C C ...
2!

C
C

s s

s s
s s

s

C CC
CCC

C C
C C

    (2.57) 
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        As a result of transformations limited to the series not higher than the second 

order, we obtain:   

1 1 2 2
1 1 1 1 1 2 1 2

1 1 2 2

, 1, , , ,
21 , ,

K C t Z
K C t Z K C t Z K K C t Z C t Z

K C t Z K C t Z
,   

2 2 2 1 2 2
2 2 1 2 1 2 2 2

1 1 2 2

, 1, , , ,
21 , ,

K C t Z
K C t Z K K C t Z C t Z K C t Z

K C t Z K C t Z
.   (2.58) 

Substituting the expanded expression (2.58) in the equations (2.55) of nonlinear 

system (2.50)-(2.56), we obtain: 

2 2
1 1 1 1 1 21

1

1, X, , , , ,
2X

K
Q t Z K C t Z C t Z C t Z C t Z

K
, 

2
22 2

2 2 2 1 2 21
1 1

1,X, , , , ,
2X

K K
Q t Z K C t Z C t Z C t Z C t Z

K K
,  (2.59) 

where  2
1 1K   -  small parameter . 

Taking into account the approximate equations of the competitive adsorption 

kinetic (2.59) containing the small parameter , we search for the solution to the 

problem (2.51)-(2.56) by using asymptotic series with a  parameter  in the form 

[20, 26]:   

0 1 2

2, Z , Z , Z , Z ... ,s s s sC t C t C t C t (2.60) 

0 1 2

2, , , , , , , , ... , 1,2s s s sQ t X Z Q t X Z Q t X Z Q t X Z s .         (2.61) 

As the result of substituting the asymptotic series (2.30)-(2.31) into equations of the 

nonlinear boundary problem (2.51)-(2.56) considering eq. (2.58),  the  problem 

(2.51)-(2.56) will be parallelized into two types of linearized boundary  problems 

[26]: 

The problem 
0
, 1,2sA s  (zero approximation with initial and boundary 

conditions of the initial problem): to find a solution in the domain 
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, X, Z : 0, 0,1 , 0,1D t t X Z of a system of partial differential

equations : 

inter
0 s 0 s 0

2
s inter s intra s

s2 2 2
X 1

t ,Z D D Q
e K

t Xl Z R
,            (2.62) 

0 s 0 0
2

s intra s s
2 2

Q t , X ,Z D Q Q2
t X XR X

, (2.63)  

with initial conditions:  

0sC t 0,Z 0; 0sQ t 0,X ,Z 0 ; 0,1 , 1,2X s , (2.64) 

 boundary conditions for coordinate X of the crystallite: 

0sQ t , X 0,Z 0
X

(2.65)  

0 0s s sQ t,X 1,Z K C t,Z , s 1,2 (2.66)  

boundary and interface conditions for coordinate Z: 

0sC t ,1 1 ,  0s t ,Z 0 0
Z

,     0,t T ; (2.67)  

The problem ; 1,nA n  (n-th approximation with zero initial and 

boundary conditions): to construct in the domain  D  a  solution to a system of 

equations: 

inter
n s n s n

2
s inter s intra s

s2 2 2
X 1

t ,Z D D Q
e K

t Xl Z R
,               (2.68)  

n s n n
2

s intra s s
2 2

Q t , X ,Z D Q Q2
t X XR X

, (2.69) 

with initial conditions:  
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nsC t 0,Z 0;     nsQ t 0,X ,Z 0 ; 1, 2s , (2.70) 

boundary conditions for coordinate X of the crystallite: 

nsQ t , X 0,Z 0
X

(2.71) 

n n v

n 1 2
1 1 1 1 1,n 1 2,n 1X 1

0 1

K1Q t,X,Z K C t,Z C t,Z C t,Z C t,Z
2 K

,   

n n s

2
n 1 2 2

2 2 2 2 1,n 1 2,n 1X 1
0 1 1

K K1Q t,X,Z K C t,Z C t,Z C (t,Z) C t,Z
2K K

,        (2.72) 

boundary and interface conditions for coordinate Z: 

nsC t ,1 0 , 0s t ,Z 0 0
Z

,     0, totalt t ; (2.73) 

The problems 
0
, 1,2sA s  are linear with respect to zero approximation 

0 0
,s sC Q . The problems ;n 1,

nsA  are linear with respect to the n-th 

approximation ,
n ns sC Q and nonlinear with respect to all previous n-1 

approximations 
0 1
,...,

ns sC C . 

As demonstrated for the 2 component adsorption model (2.21) - (2.26), our 

proposed methodology can easily be developed and applied to the competitive 

adsorption of any number of gases.  

The main result of this work is the possibility, from a single experiment, of 

simultaneously distributing several co-diffusing gases in a porous solid and using the 

methods of mathematical modeling to analyze for each of them the distribution of 

their concentrations in the intra and inter-crystallite spaces. Using experimental 

NMR data and proposed competitive adsorption models, the identification 

procedures for calculating the competitive diffusion coefficients for two or more 

components in intra- and inter-crystallite spaces are developed. These procedures use 

the iterative gradual identification methods on minimizing of the Lagrange error 

function and rapid analytic methods based on the influence function. The competitive 
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diffusion coefficients were obtained as a function of time for different positions 

along the catalyst bed. In particular, those in the intracrystallite space were computed 

by the analytical method which allowed a calculation with a relatively high degree of 

discretization over time and to reduce practically twice the volume of iterative 

calculations. Using these results, the concentrations of co-diffusing benzene and 

hexane in the inter- and intra-crystallite spaces were calculated for each time and 

each position in the bed. 

Nomenclature for Chapter 2 

1, 1k N - layer number, subscript k will be added to all the following symbols to 

specify that they are characteristic of the k-th layer,  

c - adsorbate concentration in macropores,  

c  - equilibrium adsorbate concentration in macropores,  

C = c/c  : dimensionless adsorbate concentration in macropores, 

Dinter - diffusion coefficient in macropores, m2/s, 

Dintra - diffusion coefficient in micropores, m2/s, 

K  - adsorption equilibrium constant,   

l - bed length, m,

1; 1, 1k kl l l k N : layer thickness (all layers have the same thickness),  

L - dimensionless bed length (L = 1), 

q - adsorbate concentration in micropores,   

q  - equilibrium adsorbate concentration in micropores, 

Q = q/q  - dimensionless concentration of adsorbate in micropores,  

T - temperature of gas phase flow, °K   and time total, s,  

M – mass total, 

u - velocity of gas phase flow, m/s2,

 - coefficient of thermal diffusion along the columns;

gh  - gas heat capacity, kJ/(kg.K),

  – molecular mass of adsorbat, kg/mole, 

H - total heat capacity of the adsorbent and gas, kJ/(kg.K), 

h - heat transfer coefficient; 
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Rcolumn -    column radius, m  

Rg -   gas  constant, kJ.mol/(m3.K), 

iH - activation energy  ( /i iH H  ), kJ/mol; 

iH -  adsorption heat, kJ/kg; 

0ik – empirical equilibrium coefficient for the i adsorbat,  depends on the adsorbent 

properties  and the diffusing  adsorbate component ( 0ik  equal to the ratio of  the 

desorption and adsorption rate constants) ; 

x – distance from crystallite center, m,  

R – mean crystallite radius, m  (we assume that the crystallites are spherical), 

X = x/R: dimensionless distance from crystallite center, 

z – distance from the bottom of the bed for mathematical simulation, m , 

Z = z/l – dimensionless distance from the bottom of the bed, 

t – time,  

, - variables of integration, 

totalt - total duration of competitive adsorption, mn, 

Lk - dimensionless position of the k-th layer, 

hk = (Lk –Lk-1)/2, 

inter   – intercrystallite bed porosity, 

einter    - value utilized in eq. (9), 

n - iteration number of identification, 

m - number of adsorbed components, 

P - number of NMR-observation surfaces, 

s - index of adsorbat component,  

i - index of NMR-observation surface, 

initial – index of initial value (concentations, temperature), 

macro – index of extended Lagrange functional  component for intercrystallite space,  

micro – index of extended Lagrange functional component for intracrystallite space, 



Chapter 3.  High computational methods and simulation technology 

nanoporous systems with feedback adsorption for gas purification 

The experimental and theoretical study of the adsorption and diffusion of several 

gases through a microporous solid and the instantaneous (out of equilibrium) 

distribution of the adsorbed phases is particularly important in many fields, such as 

gas separation, heterogeneous catalysis, purification of confined atmospheres, 

reduction of exhaust emissions contributing to global warming, etc. [6] Taking into 

account the influence of physical factors that limit the adsorption kinetics on the 

surface of nanopores, the quality of the mathematical models for the adsorption of 

exhaust gases (hydrocarbon components, 2) in a microporous bed determines the 

effectiveness of technological solutions to the neutralization of gas emissions [6-8].  

However, most of these models do not fully reflect the complex spatial-temporal 

representations of the variations of the heat and mass transfers in inter- and intra- 

crystalline spaces, including the internal kinetics of the adsorption and desorption. In 

particular, the equations of adsorption equilibrium are mainly determined by 

simplified quasi-stationary and isothermal dependences without taking into account 

changes in gas flow, ambient temperature and activation energy of adsorption which 

is determined by the Lennard-Jones energy potential and is the main thermal 

characteristic of adsorption. Therefore, it is necessary to develop rigorous 

mathematical models of adsorption processes in the form of systems of differential 

equations in partial derivatives, taking into account the completeness of all the 

physical factors mentioned above, including efficient methods of constructing their 

solutions and implementing software. The development of such models should 

summarize the available results of experimental research and optimize programs for 

their implementation in the future. In this publication, which is the development of 

references [15-20], we propose a solution to this problem. 

For modelling, we use the high-performance methods of the Heaviside 

operational calculus and the Landau approach to linearization and expansion into a 
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series of non-isothermal Langmuir adsorption equilibrium at the temperature of 

desorption equilibrium [10, 17, 27]. 

3.1 Nonlinear mathematical model of nonisothermal adsorption and 

desorption based on the generalized Langmuir adsorption equilibrium equation 

The inlet gas diffuses into the macropores (inter-crystalline space) and 

micropores of the crystallites. The model we have implemented in a generalized 

formulation takes into account the dependence of the Langmuir adsorption 

equilibrium on the gas flow temperature and the activation energy H  of  adsorption, 

which determines the degree of adsorption exothermicity. These two important 

limiting kinetics factors are interrelated and included in the exponential dependence 

into the nonlinear equilibrium equation, taking into account the physical assumptions 

described in [7, 10, 11]. In this case, the residence time of the adsorbed molecules on 

the adsorption sites  in crystallites decreases exponentially as its temperature grows. 

This approach should make it possible to deepen the nanoprocess rather than treating 

it as a "black box". 

Therefore, taking into account the previous remarks, the kinetics of 

nonisothermal adsorption for capture of gas (for example greenhouse) in nanoporous 

materials is described by the following system of nonlinear differential equations 

[10, 11]: 

2

int 2

( , ) ( , )
er

c t z a t z c cu D
t t z z , 

(3.1)

2

2

2( , ) 0h
g ads

column

T t z T a TH uh Q T
t z t R z , 

(3.2)

0

1 )
exp full

a ac
Ht a ab

RT . 

(3.3)
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Differential equations (3.1) - (3.3) satisfy the following initial conditions: 

a) adsorption: b) desorption:

,0),( 0tztc   ,),( )0(
00 cztc t  

,),( )0(
00 TztT t ,),( )0(

00 TztT t  (3.4) 

and boundary conditions: 

a) adsorption: b) desorption:

( , ) |
inz oc t z c ,  0( , ) | ( )

inzc t z c t , 

( , ) | 0zc t z
z ,  

( , ) | 0zc t z
z

0( , ) |z inT t z T ( , ) | 0zT t z
z 0( , ) | ( )z inT t z T t  0( , ) | ( )z inT t z T t   (3.5) 

The different symbols are defined at the end of the nomenclature. Model (3.1) 

- (3.5) is presented mathematically in a more generalized form.

The length of the column is considered infinite for the construction of a 

general solution based on the Heaviside method. In the specific calculations, a finite 

value l is used. 

Parallelizing a nonlinear model to the system of linearized boundary 

problems.  

We develop some elements of differential equation (3). By expanding the 

expression exp H
RT

 in 1

exp full

a
H a a

RT

, according to the Landau approach, in a

Taylor series in the vicinity of the desorption equilibrium temperature eqT  we obtain

[17, 27, 28]: 

2
2

2 4 3
4

1 1 1 1exp exp exp exp ...
2! 2eq eq

eq eq eqeq eq eq

H H H H H H RT T T T
RT RT R RT R RT HT T T (3.6)
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Taking into account that / 1fulla a , the expression
/ / 1full

full

aa a
a  is laid out in 

a series of Maclaurin as:  

2
/ 1 1 ... ...

1 1

n

full

full full full

full full

a a a a a
a a a a a

a a

 . 
(3.7)

Neglecting terms of at least second order in (6) and (7), the expression 

1

exp full

a
H a a

RT

   takes the form [17]:  

2

0

/1 , , , ,
1 /

exp

full

full

eq

a a
a t z a t z a t z T t z

a aHb
RT

. 
(3.8)

Substituting (3.8) in eq. (3.3) we obtain: 

( ( , ) ( , ) , , )a c a z t a z t a t z T t z
t

, (3.9)

where 
0

1
exp

eqfull

H
HR

RTa b
 - the coefficient of the linear component of the

transformed function of adsorption equilibrium (8);   2
0

1
exp

( ) eqfull

H
HR

RTb a
= /afull

small parameter taking into account the nonlinear component of the adsorption 

isotherm,  2
1

1

full

eq

a H
H R T
R

. 

Taking into account (3.9), the solution to the problem (3.1)-(3.5) will be in 

the form of the series [21]:  

2
0 1 2,z ,z ,z ,z ... ,c t c t c t c t  

2
0 1 2,z ,z ,z ,z ... ,T t T t T t T t  

2
0 1 2,z ,z ,z ,z ...a t a t a t a t  

(3.10)
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As a result of substituting the asymptotic sums (10) into equation (3.1) - (3.5), the 

output nonlinear problem (3.1) - (3.5) is parallelized into two types of quasi-linear 

boundary -value problems [18]: 

Problem 0A  (zero approximation with initial and boundary conditions of the 

original nonlinear problem): find a solution in the field , : 0, 0,D t z t z  of a 

system of partial differential equations: 

2
0 0 0 0

int 2

( ,z) ( ,z)
er

c t a t c cu D
t t x z , (3.11)

2
0 0 0 0

0 2

( , ) 2
0h

g ads
column

T t z T a T
H uh Q T

t z t R z
,

(3.12)

0
0 0

a c a
t .

(3.13)

Initial conditions: 

a) adsorption: b) desorption:

,0),( 00 tztc ,),( )0(
000 cztc t    

)0(
000 ),( TztT t , )0(

000 ),( TztT t , 
(3.14)

and boundary conditions: 

a) adsorption: b) desorption:

0( , ) |
inz oc t z c ,              

0 0( , ) | ( )
inzc t z c t ,  

(3.15)
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0 ( , ) | 0zc t z
z

,
0 ( , ) | 0zc t z

z
, 

0 0( , ) |z inT t z T  , 
0 ( , ) | 0zT t z

z
, 0 0( , ) | ( )z inT t z T t ,

0 ( , ) | 0zT t z
z

. 

Problem ; 1,nA n 3. 

2

inter 2

( ,z) ( ,z)n n n nc t a t c cu D
t t z z ,

(3.16)

2

2

( , ) 2
0n n n h n

g ads n
column

T t z T a T
H uh Q T

t z t R z
, (3.17)

1

1 1
0

( , z) ( , z) ( , z)
n

n
n n i n i n i

i

a Rc a a t a t T t
t H .

(3.18)

The problem 0A  is linear respectively to the zero approximation 0 0 0, ,c a T ; the 

problem ; 1,nA n   is linear in the n-th approximation and nonlinear in all previous 

approximations, 0, 1i n . 

3.2 The methodology for constructing analytical solution systems to 

heterogeneous adsorption / desorption problems 

We construct analytical solutions to problems 0A and ; 1,nA n  , using the 

Heaviside operational method [29, 30]. Applying the integral operator of the direct 

Laplace transform to the time variable t in problems (3.11) - (3.15) and (3.16) - 

(3.18), we obtain the corresponding system of problems in Laplace images [29]: 

Problem *
0A : to find in the domain * 0,D z  a solution to the system of 

equations: 

0

2 * *
2 * *0 0

1 1 02

( ,z)
c

d p du q p c p
dz dz

F
,

(3.19)



82 METHODS OF MATHEMATICAL MODELING (…) 

0

2
2 *

0 2 0 2 02 ( ) T
d dT u T q p T p
dz dz

F
, 

(3.20)

* *
0 0

1,z ,za p c p
p . 

(3.21)

Boundary conditions are as follows: 

a) adsorption: b) desorption:

*
0 ( , ) |z o inc p z c p ,              , *

0 ( , ) | 0z
d c p z
dz

, 

*
0 ( , ) | 0zc p z

z
, *

0
1( , ) |z o inc p z c
p

, 

*
0 0

1( , ) |z inT p z T
p

, *
0 ( , ) | 0zT p z

z
, *

0 ( , ) | 0zT p z
z

, *
0 0( , ) | ( )z inT p z T p . 

(3.22)

Problem *; 1,nA n : to find in the domain * 0,D z  a solution to the 

system of equations: 

2 * *
2 * *

1 12 ,z
n

n n
n c

d c dcu q p c p
dz dz

F
,

(3.23)

2
2 *

2 22 ( ) ,
nn n n T

d dT u T q p T p z
dz dz

F
,

(3.24)

*1
* *

1
0

1, ,
n

n n i n i
i

a p z c a a p z
p

,
(3.25)

where 

1
inter

,uu
D

2
1

inter

( 1)
,

p p
q p

D p
   2 21 h

column

q p Hp
R

, 

0

0
* 0

int
c

er

c
D

F , 
0

* *
0 0

1, 1 ( , )T adsp z HT Q c p z
p

F , 
(3.26)
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*1
*

1 1
0inter

, 1 ,
n

n

c i n i n i
i

Rp z a a T p z
D p H

F , 

* *
1 1

0
, 1 ( , ) ,

n

n
ads

T n i n i n i
i

Q Rp z c p z a a T p z
p H

F , 

0 0 0

( , ) ( , )e [ ], ( , ) ( , )e [ ], ( , ) ( , )e [ ]pt pt ptc p z c t z dt L c a p Z a t z dt L a T p z T t z dt L T . 

Solution to problem 0A . We construct a solution to the heterogeneous 

problem *
0A  (using the Cauchy method) [29, 30]: 

1 11 1

11

( ) ( )
* * 02 2
0 0

( )
0 2
0

1 1 1, ( ( ))
1 1

( 1)

u up z p zz z

in

up z z

e ec p z pc p e c e
p p p p

ec e
p p

(3.27)

2
2

2 22

0

( )
2

* 2
0

2 20

, ( ) , ,
2 2

u p z p z p zu z

in T
e e eT p z pT p e p z d

p p p
F ,(3.28)

where 

1/22
21

1 14
up q p , 

1/22
22

2 2 ,
4
up q p  1 2Re 0, Re 0. (3.29)

Applying the integral operator of the inverse Laplace transform  

0

0

1 1... ,z ... ,z
2

i
pt

i

L p p e
i (3.30)

to formulas (3.27) and (3.28), we obtain their originals on the basis of [29] and form 

an analytical solution to the zero-approximation problem: the dependence on the 

temperature and time of the adsorbate concentration in inter-particle space and in 

micropores along the coordinate z: 
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inter inter

inter inter

2 20 0
0

0

1 12 20 0 0 0
0 0

0

, 0 , ,

1 11 , ,
1

u u tz z
D D

in c in c

u u tz z
t t sD D

c c

dc t z c e t z e c t z d
d

c e e t z c e e z d
,(3.31)

0 0
0

0

0
0 0

0 0 0

, (0) , , ( )

1 , , , , , , ( , )

t

in T T in

t t
t s

T ads T T

dT t z T t z t z T d
d

HT t z Q t z s z e ds c d dH H H
,(3.32)

0 0
0

, ,
t

ta t z e c z d  
(3.33)

Solution to problem ; 1,nA n .  The solutions to problem *; 1,nA n  are 

functions [29, 30]: 

1 11
* *2

1 10

, z ,
2 2 n

p z p zu z

n c
e ec p e p d

p p
F

,
 

(3.34)

2 22
* 2

2 20

, ,
2 2 n

z p z pu z

n T
e eT p z e p d

p p
F

, 
(3.35)

*1
* *

1 1
0

,z ( ,z) ,z
n

n n i n i n i
i

Ra p c p a a T p
p H

. 
(3.36)

Substituting the  * ,
nc pF  and * ,

nT pF , respectively, into equation (3.31),

(3.32) and applying the operator of the inverse Laplace transform to formulas (3.34) - 

(3.36), we obtain on the basis of [29, 30, 31] their originals, which form the 

analytical solution to the problem ; 1,nA n : 

1

1 1
0int 0 0 0

, z ; , s; , ,
t n

s
n c c i n i n i

ier

Rc t t z e z ds a a T d d
D H

H H
, 

(3.37)

1

1 1 0
00 0 0

, , , , , , ( , )
t t n

t sads
n T T i n i n i

i

Q RT t z t z s z e ds a a T c d d
H

H H , (3.38)
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1

1 1
00

, z ( , z) , z
t n

t
n n i n i n i

i

Ra t e c a a T d
H .

 
(3.39)

Here ,n t z , ,na t z  - the n-th approximation of the adsorbate concentration in 

inter-crystallites space and in nanopores of crystallites,  ,nT t z - the n-th 

approximation of temperature of gaze flow; 

0 ,c t z inter1

2
2 2( )

0

sin1 u z
Dz

t z
e d e , 

2 21 2

1/22 2 2
0 1 2

( ) cos ( ) z ( )sin ( ) z1, z
2 ( ) ( )

t t
t d . 

inter1

2
2 2( )0

0

sin1,
u z

Dz
T

t z
t z e d e , 

2 2

1 2

1 2

1/22 2 2
0

( ) cos ( ) z ( )sin ( ) z1, z
2 ( ) ( )

T

T T

t t
t d ,  (3.40) 

2
2; , , ,

u z

T T Tz e z zH  

1
2; , , ,
u z

c c cz e z zH  

1/21/22 2 2 2
1 2 1

1,2

( ) ( ) ( )
( )  

2
, 

2 2

1 2 2 2 2 2
inter inter

( )
4

u
D D  

3 2

2 2 2 2
inter

( 1)( )
D , 

1 2 1

1/21/22 2 2 2

1,2

( ) ( ) ( )
( )

2
T T T

1

2 2

2

4( )
4T

u

, 
2
( )T

H
. 
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3.3 Computer simulation. Analysis of the distributions of the adsorbent 

concentration in the gas phase and nanopores of zeolite and temperatures  

The objective of this computer modelling is to study the capabilities of the 

proposed model for its use in gas separation technologies, in catalysis, for the 

purification of air, in particular for the elimination of carbon emissions into the 

atmosphere from industry and transport (propane, CO2 and other combustion 

products). This is one of the main ways to solve the problem of global warming and 

to create a secure energy strategy [6]. 

Propane was chosen as the adsorbate because it corresponds to approximately 

30% by volume of the total gas flow emitted by car engines [7]. Using the developed 

mathematical theory and technology oriented to parallel multicore computer 

calculations, the modeling and calculation of concentration dependences of non-

isothermal adsorption and desorption curves in a zeolite ZSM 5 bed are carried out. 

Computational calculations were performed with such experimental 

conditions [10, 17]: 

- geometric dimensions of the column open at both ends:

length: 21.5 10 ml and radius 0,3collonR m;  

-thermal and mass transfer characteristics: Qads=2800 kJ/kg; = 0,5 kJ

/(m2 h), hg = 1,2 kJ / m3   (for propane at 3 bar); = 600-700 kg/m3 (bulk density 

of zeolite);  H = 0,96 kJ/kg K; 20h  kJ/(m2 h);  

- Dinter= 5,0.10-6 m2/  ; =0,95 -1 [10, 17].

Initial gas flow temperature: for adsorption T = 20 °C, for desorption T = 300 

- 350°C. In order to analyze the effect of changes in flow velocity, a range of 0.2 -2

m/s was considered (adsorption, desorption). The number of members in the series of

approximation expressions (3.13) was taken from 15 to 20.

To desorb propane from the nanopores of the zeolite, the column  with zeolite 

simple was heated to a temperature of 300-350 °C and an inert gas (argon) was 

passed through it at a pressure of 10-12 bar. 
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Using the equations (3.36) and (3.40), the adsorbate concentrations in inter- 

and intra-crystallites spaces were calculated. Figures 1a, 1b, c, d show the variation 

against time of the concentration, C, in such column and at the temperature of 30 °C, 

60 °C, 100° C, 350°C of the bed.   
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Figure 3.1.  Variations against time of the adsorbate concentration in the inter-

crystallites space ( , )c c t z  at different levels of the column ( / 0,2; 0,4; 0,6; 0,8)z z l  were 

calculated at the temperature of 30 0  ( ), 60 0  (b), 100 0  ( ), 3500  (d) of the bed 

As can be seen, their general character is qualitatively similar: for each of the 

values /z l , the adsorbate concentration ( )c t  increases with time. Moreover, in 

Figure 3.1 a, b, a slight decrease in the concentration of the adsorbate can be 

observed, and then an increase again, reaching equilibrium. It should be noted that 

with increasing temperature the detected effect is becoming less and less 

pronounced. The appearance of this effect is due to the fact that at low temperatures 

the molecules repel each other, as shown by the Lennard-Jones relationship, and 

cause a slight decrease in the molecules adsorbed in the nanopores.  With increasing 

temperature, the repulsive forces between the molecules weaken, and the 

aforementioned effect becomes weaker.  
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Figure 3.2 a, b, c, d show modelled variations against time of the adsorbate 

concentration, a(t,z), in the nanopores, at different position z and temperature of the 

bed.  
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Figure 3.2. The dependence of the concentration ( , )a a t z  in the nanopores of 

the adsorbent at fixed values ( / 0,2; 0,4; 0,6; 0,8)z z l  calculated at the  temperature of 

30 0  ( ), 60 0  (b), 100 0  ( ), 3500  (d) 

These four Figures all have the same shape and the same relative position of 

the curves with  Z position in the column. After a few minutes the adsorption in the 

pores increases rapidly with time and reaches a maximum in about 125 seconds 

regardless of the adsorption temperature T, whose value decreases with increasing T 

and decreasing z/l.  

After reaching the maximum, a rapid desorption can be obtain which is 

practically complete after about 125 seconds.  
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Comparing the dependences of Figure 2 a, b, c, d and Figure 3.3, it can be 

seen that the process of absorption in nanopores occurs in the interval from 25 s to 

250 s, while the temperature inside the test sample varies on average from 30 °C to 

350 °C.  This process is significantly affected by an increase in temperature inside 

the bed. 

Figure 3.4. represents the variation of the adsorbate concentration in the 

interparticle space, C as a function of the flow rate at the inlet and the temperature at 

fixed values of the adsorption time t = 300 s.  

z/l

Figure 3.3. The time dependence on the temperature ( , )T T t z  inside the micropores 

for fixed values ( / 0,2; 0,4; 0,6; 0,8)z z l  
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Figure 3.4. Adsorbate concentration C in the interparticle space as a function of the 

inlet flow rate  and temperature of gas flow at fixed adsorption durations t=400 s 

and z/l = 0.4 

Our computer-based research has confirmed the effectiveness of the proposed 

model and software for adsorption-desorption technology to absorb gases, in 

particular carbon oxydes that cause global warming.  The spatial distribution of the 

adsorbate concentrations in inter-particle space and in micropores of solid are 

obtained with the achievement of equilibrium conditions, as well as the distributions 

of the gas flow temperature over time and the coordinates of the column length. It 

also allows to evaluate the behavior of concentration dependences, achieving their 

equilibrium from temperature and gas flow rate for different coordinate positions 

along the column length and other factors. But this was not only the main goal of this 

study. Analytical solutions to the proposed mathematical model of the gas adsorption 

on microporous bed is based on the original mathematical apparatus and an efficient 

high-performance algorithm using the Heaviside operational method and the Laplace 

transform using the generalized Langmuir equilibrium equation, which most fully 

describes the processes of phase transformations. The development of calculations is 

quite original. The result allows to instantly get the dynamics of the kinetics of the 

process in columns during non-isothermal adsorption and desorption - the current 

adsorbate concentrations in interparticle space and in micropores of the bed and the 

temperature of gas flow. This original mathematical treatment can serve as a model 
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for many applications related to this type of process, mainly to clean atmospheres, 

which will help reduce the impact of global warming 

Nomenclature for Chapter 3 
c – current adsorbate concentration in interparticle space, 
c0 – current adsorbate concentration in interparticle space at z=0, 
T– current temperature of gas phase flow, 0  
Teq   – the desorption equilibrium temperature, 0  (Teq=350 0C) 
a – current adsorbate concentration in micropores, 

interD –  effective longitudinal diffusion coefficient, m2/s, 

H  –  adsorption activation energy, kJ/mol, 
R – gas constant, kJ/mol/(m3), 

0 00 1,b b  –   empirical coefficients depending on the properties of nanoporous 

adsorbents and adsorbate components ( 0b equal to the rate constants of desorption 

and adsorption), 

fulla  – concentration of adsorbate in nanopores with full filling of adsorption centers, 

mol/g, 

columnR – radius of adsorption column, m,

l - height of adsorption column, m (l >> columnR );

Qads – heat of adsorption on micropores kJ/kg; ( ads adsH M Q ), 

Mads – molecular weight of the adsorbent,
u – gas flow rate, m/c;

 – coefficient of thermal diffusion of the adsorption along the column, kJ /(m2 K c),
H – total heat capacity of gas and adsorbent kJ /(kg K),

gh  – heat capacity of gas,

2 /h collonR  – coefficient of heat loss through the wall of the column, 

h – coefficient of heat transfer, 

Dinter – diffusion coefficient in interparticle space, m2/c,  

 – total mass transfer coefficient, -1, 
z – distance coordinate from the top of the bed, m, 

Z – dimensionless coordinate = abscissa z/height of the column, 

 –  specific masse of the adsorbent kg/m3. 



Chapter 4. High-performance algorithms for solving systems of 

nonlinear equations on supercomputers with parallel organization 

of computations 

In the numerical modeling of natural phenomena, the behavior of objects 

under the influence of the environment, the design of buildings and mechanisms, etc. 

often arise, for example, when using three-dimensional models, computational 

(discrete) problems to an extremely large number (which can exceed 107) equations, 

including nonlinear ones. Moreover, the data (Jacobi matrices) of such nonlinear 

systems (SNQ) have a sparse structure, for example, block-tridiagonal or block-five-

diagonal. That is, the number of nonzero elements is much less (approximately equal 

to kn, where n is the order of the matrix, and k << n) - the total number of matrix 

elements. 

The growth o f the parameters for the problems being solved, the calculation 

on computers of more complete models of objects, processes, phenomena requires a 

corresponding increase in the productivity of computers. Currently, the increase in 

computing performance is achieved through parallelization, based on the use of 

computers with many processor devices, in particular with multi-core processors. In 

these computers, as a rule, the MIMD architecture (architecture with multiple 

instructions and data flow) is implemented. In recent years, hybrid computing 

systems have also become widespread, in which coprocessors are used, for example, 

graphics processing units (GPUs) to speed up computations when performing large 

volumes of homogeneous arithmetic operations. On such coprocessor accelerators, as 

a rule, the SIMD parallel computing architecture is implemented. Such computers of 

hybrid architecture have already taken leading positions in the world ranking of the 

most computers TOP500 [32]. 
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Let us consider the solutions to systems of nonlinear equations on computers of 

hybrid architecture and computers with multi-core Intel Xeon Phi x200 series processors, 

in particular, using a multilevel model of parallel computing. 

4.1 Layered parallel computing model 

The architecture of modern high-performance computers allows the use of a 

multilevel parallel computing model - multilevel parallelism:  

– upper level (MIMD model) - process level parallelism (PLP) - processes in

parallel perform macro-operations (subtasks), for example, multiplication of matrix 

blocks, using both distributed between them and shared memory and synchronizing 

calculations and data exchanges; 

– the second level (SIMD model) - thread level parallelism (TLP) -

parallelization of the execution of each of the macro-operations using several threads 

and shared memory; 

– the third level (vectorization) parallelism of data processing by vector

processing units (data level parallelism, DLP) - operations with vectors are 

performed in parallel, for example, addition of vectors. 

At the top level, MPI tools are used (as a rule), at the second level, OpenMP 

(Open Multi-Processing) tools (directives) or program modules of the Intel MKL 

multithreaded library are used. The third level is to automatically enable parallelism 

when compiling a program. 

Problem statement. In the region },,2,1,{ nibxaD iii  find 

n-dimensional vector Dxxxx T
n ),,,( 21 , which satisfies a system of n linear

equations 

F( ) = 0, (4.1) 

where T
n xFxFxFxF ))(,),(),(()( 21   n-dimensional vector function, and

F(x) is an approximation to the exact vector function (x) and these functions satisfy 

the inequality F(x) – (x)    for any Dx . To solve problem (4.1), an initial 

approximation is given Dx )0(
  and the required accuracy  of obtaining an

approximation to the solution of the system. 
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In applied sciences, in particular, in calculating the stress-strain state of 

structures of complex energy systems and objects [33], the following formulation of a 

nonlinear problem is used. The mathematically static nonlinear problem of calculating 

the strength of structures of these objects, using the principle of possible 

displacements, can be posed in the infinite-dimensional functional space of possible 

displacements U0 in the form of a variational problem: find the vector function u U0, 

which for any vector function v U0 satisfies the corresponding integral identity 

),(),( vflvua ,                                               (4.2) 

where the functional ),( vua  nonlinear on u and linear on v is proportional to the 

potential energy of deformation, and the functional ),( vfl linear on v is proportional 

to the work of the applied forces f under load. 

Solutions to nonlinear problems (4.2) are found by one of the projection-

variational methods, mainly by the finite element method (FDM). Approximate ITU 

solutions are sought in the finite-dimensional (n-dimensional) subspace 00 UU h .

Vector functions from a subspace hU0  are piecewise polynomial and can be

represented as a linear combination of basis vector functions 
n

=j
jjh x=u

1
, 

where j(j = 1, 2, …, n) – the mentioned  above piecewise polynomial basis hU0 .

Substituting vector functions from the subspace hU0  into (4.2), we obtain the system

of nonlinear (with respect to xj) equations 

nkflua kkh ,,2,1),,(),( . (4.3)

The solution of SNE (4.3) is based, as a rule, on the linearization of nonlinear 

equations - the search for solutions is realized through the solution of a sequence of 

linear systems with approximate Jacobi matrices. In many applications, this is done 

using the derivative of the functional ),( vua  

0
0
,),(),,( Uwvwua

d
dwvua (4.4)

for calculating approximations of the Jacobian matrix of system (4.3). Then the 

matrix of the linearized system  
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Ax = b (4.5)

can be calculated by the formula 
n

jijih
n

jiij uaa
1.1.

),,( , (4.6)

where uh is the approximate solution obtained in the previous step (iteration step). 

The matrix n
jiija

1.
 can be obtained by differentiating (according to (4.4) ) 

),( khua  on xi from (4.3).

In many applied applications, iterative methods for solving the SNS (4.1) or 

(4.3) are implemented, based (see papers [34, 35]) on the classical Newton's method 

to one degree or another, have a quadratic convergence rate. In this case, at each 

iteration, a SLAE is solved with the Jacobian matrix of the system or some matrix 

close to it, and the elements of the matrices and the components of the vectors of the 

right-hand sides of these SLAE’s are calculated using the solutions obtained at the 

previous iteration. 

We denote 

n

jij

i
x
FxH

1,

)(   the Jacobi matrix of the system (4.1) or 

(4.3), B(x) – some approximation to H(x). If the derivative of the functional is often 

used to calculate the approximate Jacobian matrix of system (4.3) ),( vua  (4.4), 

then yxHwvua hhh )(),,(  (if ,,,, 21
T

nyyyy
n

=j
jjh x=u

1
, 

n

=j
jjh y=w

1
, 

n

=j
jh =v

1
). 

The iterative process is the same if an estimate is 

performed |||||||| 1 xxcxx kk , where c – some quantity bounded from

above;  – method convergence order. If  = 2, then the quadratic rate of 

convergence of the iterative process is achieved, if 1 <  < 2, then the iterative 

process coincides nonlinearly. 
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The iterative process of Newton's method for a given initial approximation is 

written as (k = 1, 2, ... – is the iteration number, )( )()( kk xFF  and 

)( )()()( kkk xHHB ) 

 )1()()1( kkk FwB , (4.7) 

 )()1()( kkk wxx . (4.8) 

In many cases, to solve the SNE, modifications of the Newton method are 

used, which, with some approximations to the Jacobi matrix (these methods often 

have an overline convergence rate), include: 

–  Broyden's and Powell's methods (for symmetric Jacobi matrices), in which in 

the course of the iterative process (4.7), (4.8) are calculated based on the initial 

approximation )0()0( HB  matrices are refined using matrix-vector operations 

according to the formulas: in Powell's method – 

2)()(

)()()()(

)()(

)()()()(
1

))((
)())((

)(
)()(

kTk

TkkkTk

kTk

TkkTkk
kk

ww
wwwy

ww
ywwyBB , in 

Broyden's method – )()(

)()(
1

)(
)(
kTk

Tkk
kk

ww
wyBB ; here 

)()1()1()()( kkkkk wBFFy ; 

– Burdakov's method, which, with a special choice of the iterative parameter, 

ensures global convergence to one of the solutions of the system based on a given 

initial approximation; the iterative process is realized by formulas (4.7) and 
)()1()( k

k
kk wxx , where B(k) – finite-difference approximation of the Jacobi 

matrix H(k), and the iterative parameter k is calculated by special way. 

So, the solution to a SNE with a sparse data structure, as a rule, is based on 

the linearization of nonlinear equations - the search for solutions is realized through 

the solution to a sequence of systems of linear equations. These SLAEs (4.4) have 

several features that affect the choice of methods and means for solving them on 

computers by organizing computations, namely: 

– high order - from 100,000 to tens of millions; 

– sparse structure of SLAE matrices - strip, profile, block-sparse, etc.; 
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– symmetry or asymmetry of SLAE matrices;

– positive definiteness or semi-definiteness of the matrices of the SLAE.

When choosing an iterative method for solving the SNE, an important 

condition is the preservation of the sparse structure of the SLAE matrices, which is 

solved at each iteration. Therefore, the decisive algorithm for the choice of 

computation distribution schemes, decomposition and data storage on parallel 

computers is the corresponding SLAE solution algorithm. This algorithm, in turn, is 

chosen based on the type and sparse structure of the SLAE matrix. 

4.2 Parallel algorithms for solving SNE with a sparse data structure 

In the general case, the iterative processes of the above methods for solving 

an SNQ with a sparse data structure can be written in the following form 
)1()()1( kkk FwB , )()1()( k

k
kk wxx  (k = 1, 2, ...).

For the case of block-diagonal matrices with framing, block (non-cyclic) 

algorithms are used. Accordingly, in this case, block schemes for the distribution and 

storage of matrix elements and the right side of the SLAE are used. At the upper 

level of parallelism, nonzero data blocks distributed to a given process (stream) are 

calculated, maximally using (if possible) the lower levels of parallelism to perform 

matrix-vector and matrix-matrix operations [36, 37]. 

To solve SLAEs with sparse matrices other than block-diagonal structures 

with framing, block-cyclic algorithms are used. In accordance with the requirements 

of the parallel algorithms used, the elements of the matrices and the right-hand sides 

of such SLAEs are distributed. That is, block-cyclic schemes are used. In this case, 

also (but according to a block-cyclic scheme), at the upper level of parallelism, non-

zero data blocks are distributed to a given process (stream), the maximum using (if 

possible) the lower levels of parallelism to perform matrix-vector and matrix-matrix 

operations. 

SNE solution methodology. So, the main operation at each iteration is the 

solution of SLAE (4.4) with a sparse matrix )1(kB . The following sequence of

actions is proposed for solving the SNE with sparse data on modern high-

performance computers, including hybrid architecture: 
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 using one of the structural regularization algorithms, the formation of a block-

sparse structure of matrices of SLAE (4.6) based on the original structure of its 

nonzero elements; 

 decomposition of sparse matrices and distribution of the resulting rows or 

columns of nonzero blocks between processor devices; 

 iterative process for solving SNE – on k-th iteration (k = 1, 2, … )  

algorithm of Newton's or quasi-Newtonian method, the following macro-operations 

are performed: 

1) computation of components of a vector function distributed between MPI 

processes )1(kF  and elements of nonzero blocks of the matrix )1(kB ; 

2) solution to the obtained SLAE (4.4) using the corresponding (in the structure of 

the matrix )1(kB ) parallel algorithm [37, 39], and calculation of the components of 

the next approximation to the solution distributed between MPI processes NSE )(kx ; 

3) checking the conditions for the end of the iterative process by formulas [34]:  

first – |||| )(kF , next – ||||||)(|| )(1)( kk FH .  

These macro-operations are performed at the upper level of parallelism, using 

the lower levels to perform large amounts of homogeneous computations, including 

matrix-vector and matrix-matrix operations. 

It should be noted that the number of arithmetic operations in the 

development of matrices of SLAEs is significant (for example, for strip matrices - 

about m times, m is the half-width of the tape) more than the number of other 

arithmetic operations. Therefore, the decomposition of sparse matrices of SLAE 

plays a decisive role in assessing the efficiency of the algorithm for solving the SNS. 

The efficiency of the algorithm can be increased if the solution to the SLAE with a 

lower triangular matrix (direct move) is performed simultaneously with the 

developed matrices of the system. 

Structural regularization of sparse matrices. So, the main operation at 

each iteration is the solution to SLAE (4.4) with a sparse matrix )1(kB . The 

structure of sparse matrices is determined by the numbering of the unknowns and can 

be regular (e.g., Band) or irregular. 
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In order to reduce the number of arithmetic operations for solving SLAE (4.5) 

with a sparse matrix by structural regularization - permutations of rows and columns 

(i.e., renumbering unknowns), such a matrix leads to one of the standard looks: strip, 

profile, block-diagonal with framing, "skyscraper" and others. There are several 

algorithms [39] for optimizing the structure of a sparse matrix (factor trees, Cathill-

McKee, parallel sections, minimum degree, etc.). 

Multilevel parallelism assumes the use of block and block-loop algorithms 

based on the block representation of matrices. Therefore, it is advisable to 

structurally regularize the sparse matrix - to optimize the block-sparse structure of 

the matrix by defining zero blocks in the block partition and filling nonzero blocks as 

much as possible and using one of the above algorithms (moreover, the algorithms 

use blocks instead of matrix elements) [49]. 

4.3 Parallel algorithms for solving systems of linear equations with a 

sparse matrix 

As was noted above, most of the methods for solving computational problems 

that go into the mathematical modeling of various processes, phenomena and objects 

are based on the solution to systems of linear algebraic equations (SLAE) with sparse 

matrices. 

The SLAE can be solved by direct and iterative methods. Most direct 

methods are based on the idea of successive equivalent transformations of a given 

system in order to eliminate unknowns from a part of the equations. Various 

modifications of the elimination methods are, in fact, methods of factorizing the 

matrix of the system, that is, decomposing the matrix into a product, for example, of 

triangular matrices or orthogonal and triangular matrices. Matrix factorization can 

also be used in iterative methods.  

In this case, in the problems of solving the SLAE, as a rule, three 

subproblems can be distinguished: (i) decomposition of the matrix of the system 

  LR, (ii) solutions to a SLAE with a left matrix (direct substitution or direct move) 

Ly = b, (iii) solutions to a SLAE with a right matrix (backward substitution or 

backward move) Rx = . 
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When factorizing a matrix, much more arithmetic operations are performed 

than when solving a SLAE with decomposition matrices. For example, the 

decomposition of a strip symmetric matrix requires O(nm2) arithmetic operations 

with floating point, and the solution of two SLAEs with decomposition matrices 

requires O(nm). Therefore, the efficiency of factorization of sparse matrices plays a 

key role in the development of efficient methods and parallel algorithms for solving 

computational problems arising in mathematical modeling. Next, we will consider 

methods and parallel algorithms for factorizing sparse matrices. 

4.3.1 Block algorithms for the decomposition of non-degenerate 

matrices 

As noted above, the highest performance of modern computers can be achieved 

using matrix-matrix operations and the corresponding program modules of program 

libraries from hardware developers, for example, Intel MKL [40] (on multi-core 

processors) or CUBLAS [41] (in coprocessor-accelerators - GPU). Therefore, the classical 

methods and algorithms (Gauss, Cholesky [42]) should be modified by presenting them in 

block form. 

Block algorithm of the Gauss method LU-decomposition of square matrices. 

Consider the LU-decompositions of a square matrix A of order n. Let's break it down 

into blocks of size s s. Without losing the generality of reasoning, we can assume that 

n/s – integer. After K-1 (K = 1, 2, …, n/s–1) steps blocks of the modified matrix A(k-1) 

can be schematically represented in the form shown in Fig. 4.1 on the left. Here blocks, 

for which LU-decompositions are obtained, are indicated: )1(
1

)1(
1

)1( kkk
f ULA  – 

square diagonal block of order ks–s, )1(
1

)1(
2

)1( kkk
l ULA – subdiagonal rectangular

block of size (r+s) (ks–s), where r=n–ks, )1(
2

)1(
1

)1( kkk
u ULA – superdiagonal

rectangular block of size (ks–s) (r+s), and a square diagonal block whose expansion is 

still in progress, )1(
2

)1(
2

)0()1()1( kk
R

kk
R ULAPA  of order r+s. In the )1(k

RA  in 

turn, 4 blocks are allocated: A11 – square diagonal block of order s (k-th step leading 

block), A12 – rectangular block of size s r, A21 – rectangular block of size r s, A22 – 

square diagonal block of order r. 
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Figure 4.1 – Scheme of one step of the block version of the LU-

decomposition 

At the k-th step, decomposition (modification) of the block is performed 
)1(k

RA  due to the formulas:

)(
12211121

12111111
)(

1211

21

11

2221

1211

0
0

k
R

kk
Rr

k AULUL
ULUL

P
A
UU

IL
L

P
AA
AA

,  (4.9) 

where Pk – k-th step permutation matrix. 

First, according to (4.9), the LU decomposition of the block is performed by 

the Gaussian method A11, and blocks L21 and U12 it is possible to obtain solutions to 

matrix SLAEs TTT ALU 212111
~

 and 121211
~AUL , where IJA~   -  the corresponding

matrix blocks after permutations have been denoted. The black )(k
RA  is calculated

due to the expression: 

122122
)( ~ ULAA k

R . (4.10)

This operation is also called s-rank modification. 

It should be noted that the efficiency of block algorithms is greatly influenced by 

the strategy of choosing the main element. For example, the selection of the main element 

only within the diagonal block A11 allows all other calculations to be reduced to matrix-

matrix operations. But if the search for the main element is performed, for example, in a 

column, then blocks A11 and A21 must be decomposed simultaneously (in this case, using 

transformations of columns, that is, vectors). The pivot selection strategy affects the 

number and volume of data exchanges between parallel processes. In the case of a sparse 

matrix, a good choice of strategy can reduce the total amount of arithmetic operations. 
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We note that it is not necessary to perform block row permutations 
)1(

2
)1(

1 , kk LL  or/and columns of blocks )1(
2

)1(
1 , kk UU , but these permutations must

be taken into account when using the matrices of the LU-decomposition of the 

original matrix. 

In the case of a sparse matrix of system A, the decomposition matrices L and U 

also remain sparse, although in the general case the number of nonzero elements 

increases (and only within the matrix profile). Therefore, when the expansion (4.9) of the 

block )1(k
RA  , it is advisable to carry out calculations only with nonzero elements of the

corresponding blocks of the matrix. So, the element with indices i and j of the matrix 

(block) )(k
RA  is modified only if the scalar product of the i-th row of the matrix L21 and

j-th columns of the matrix U12 is not identically zero. The same is true for the blocks into 

which the matrix is divided. Therefore, the s-range modification (4.10) is performed only 

from the submatrix of the matrix L21U12, which consists of its nonzero elements or 

nonzero blocks. 

Block algorithms of the Cholesky method of decomposition of symmetric 

matrices. LLT- decomposition of a symmetric matrix is carried out in a similar way, 

taking into account that in this case U12 = (L21)T. This allows us to reduce the number 

of arithmetic operations by almost 2 times. 

In the case of the LDLT decomposition in formulas (4.9) and (4.10), it is 

necessary to set U11 = D1(L11)T, U12 = D1(L21)T, where D1 is the diagonal matrix for 

LDLT- decomposition of the block A11. We note that in this case the product 

L21U12  L21D1(L21)T – is the symmetric matrix. Therefore, in this case, the number of 

arithmetic operations decreases by almost 2 times, if the calculations are carried out 

in such a sequence: (i) LDLT- decomposition of the block A11, (ii) - calculation of the 

block U12, (iii) - calculation of the block L21 = (U12)T(D1)-1, (iv) s- range modification 

(4.10). 
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4.3.2 Block-cyclic algorithms for LU-decomposition of sparse 

asymmetric matrices  

For the case of a multilevel model of parallel computations in [43-57], a 

number of variants of parallel block-cyclic algorithms for solving SLAEs with 

sparse, in particular, strip matrices, are proposed and investigated. These algorithms 

use cyclic distribution schemes of nonzero matrix blocks - row and column. 

Moreover, the distribution is carried out so that each process (thread) has at least one 

row or column of blocks, it is modified according to (4.10) at this stage. If it is 

necessary to select the principal elements in the columns of the matrix, the cyclic 

distribution scheme of the columns of the matrix blocks turns out to be the more 

effective. 

Block cyclic algorithm for LU-decomposition of a banded non-symmetric 

matrix. We consider on the matrix A of order n with m subdiagonal and m 

overdiagonal. When LU is developed due to permutations choosing a principal 

element, in the general case, the number of superdiagonals in the upper triangular 

matrix U can increase to mu + ml. In most cases, the lower triangular matrix L is not 

explicitly formed, and permutations are taken into account when solving the SLAE 

Ly = Pb [48, 54]. 

The proposed algorithm is based on the above-mentioned block algorithm of 

the Gauss method – LU decomposition of square matrices. 

Decomposition and distribution of matrix elements between processing 

units. The matrix A is divided into square blocks of order s (to simplify the 

presentation, we will assume that n = Ns, ml = MLs, ml + mu= MUs): 

NNNN

NNNN

M

MM

MM

M

AA
AA

A
AA

AAAA
AAA

A
L

LL

UU

U

,1,

,11,1

2,2

2,11,1

2,21,22,21,2

1,12,11,1

00

00
0

00
000

. 

Taking into account the following division of one step of the algorithm into 

macro-operations, it is advisable between threads of the highest level of parallelism 
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cyclically distribute columns of matrix blocks (they are also called "tiles" - tiles) so 

that each process must have at least one column of blocks, modified according to 

(4.10) at this stage. For example, the blocks that are in the t column are allocated by 

the stream with the logical number (t-1) mod p. In the algorithms presented here and 

below, it is advisable to combine square blocks of the corresponding column of 

blocks into rectangular blocks, the size of which should be optimal from the point of 

view of data caching (to optimize data exchange between memories of different 

performance) or the use of GPU computers of hybrid architecture. From the same 

considerations, the storage scheme (column or row) of the elements of these blocks is 

also selected. 

MPI- process (thread) that contains the K-th column of blocks at the K-th step 

of the algorithm (the block’s )(
11

KA  and )(
21

KA ), hereinafter referred to as the master

CPU (like the associated GPU in the case of the hybrid algorithm). In the GPU 

memory, at each step of the hybrid algorithm, it is sufficient to store only (also 

cyclically distributed) nonzero submatrix blocks that are processed. 

Algorithm. In Fig. 4.2 the form of fragments of an asymmetric banded matrix 

is shown before the K-th step of the algorithm - on the right, if ml + mu > s, and on 

the left, if the width of the tape ml + mu  s. As we can see in Fig. 4.2, the ability to 

parallelize computations between threads of the highest level of parallelism is only in 

the case ml + mu  ps, p > 1, and the larger p is, the higher the efficiency of this 

parallelization. On the other hand, as shown by numerical experiments, the highest 

efficiency of using both modern GPUs and multi-core Intel Xeon Phi x200 series 

processors is achieved for sufficiently large values s – from 64 to 192. Therefore, the 

algorithm proposed below should be applied precisely in the case ml + mu  ps, p > 1. 

In the case of selecting the main element in the columns of the diagonal block 

for K = 1, ..., N the following macrooperations are performed (below the tilde marks 

the blocks of the matrix after the permutations, see Fig. 4.2) 
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Figure 4.2 – Schemes of one step of the block LU decomposition of banded 

matrices 

1) For K > 1, using the s-rage modification (4.10) for calculating diagonal block

KKKKKK
K ULAA ,11,,

)(
11

~
.

2) For K > 1 sending the computed block to the master CPU of the K-th step
)(

11
KA  (on a hybrid computer or when using distributed memory). 

3) LU-decompositions with partial choice of the principal element of the diagonal

block 
)(

11
)(

11
)(

11
KKK ULA . (4.11)

It is advisable to perform decompositions (4.11) on the master CPU using 

high-performance program modules of the multithreaded Intel MKL library [40], 

with a partial choice of principal elements in the columns of the submatrix )(
11

KA . 
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4) For K < N-1 s-range modification (4.10) for nonzero block’s JIA ,
~

( NIK , NJK , including the nondiagonal block KKA ,

~
) of the submatrix 

)(
22

~ KA :

JKKIJIJI ULAA ,11,,,

~
. (4.12)

Macro-operations (4.12) are executed at the lower levels of parallelism under 

the conditions 0, ,, JKKI UL  according to block allocation JIA ,  between processor

devices. 

5) For K < N-1 distribution of calculated blocks )(
11

)(
11 , KK UL  and information about 

permutations to all processor devices that are used. 

6) For K < N-1 computation of nonzero blocks KIL ,  )1( NIK  submatrix 

)(
21
KL  – solutions of matrix SLAEs with lower triangular matrix:

7) 
T

KI
T

KI
TK ALU )~()()( ,,

)(
11 . (4.13)

The macrooperations (4.13) are executed on the master processor units of the 

K-th step at the lower levels of parallelism.

8) For K < N-1 broadcasting non-zero computed blocks to all processor devices

that are in use KIL ,  )1( NIK  submatrix )(
21
KL . 

9) For K < N-1 computation of nonzero blocks JKU ,  ( NJK 1 ) of the 

submatrix )(
12

KU  – solutions of matrix SLAEs with lower triangular matrix: 

10)  

JKJK
K AUL ,,

)(
11

~
. (4.14)

Macro-operations (4.14) are performed (taking into account row 

permutations) at the lower levels of parallelism in accordance with the block 

allocation JKA ,

~
. 
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An analysis of formulas (4.11) - (4.14) showed that most calculations can be 

implemented at lower levels of parallelism, using software modules for matrix-

matrix (or matrix-vector) operations from hardware developers, for example, the 

Intel MKL multithreaded library (on multicore processors) or the CUBLAS library 

(on coprocessor-accelerators - GPU). 

The efficiency of the algorithm can be increased by performing 

decompositions (4.11) (item 3) and sending the decomposition blocks (item 5) 

simultaneously (in parallel, asynchronously) with the end of the macrooperations 

(4.12) (item 4) of the previous step, using different streams of the upper level of 

parallelism or CPU and GPU on hybrid computers. It is also possible to increase the 

efficiency of the algorithm due to the simultaneous execution of computations and 

data exchanges between different processor devices, for example, data exchanges 

(items 2, 7) are performed against the background of computations. 

If the GPU memory is not enough to store all the data that is distributed by a 

given processor device, then Section 5 is supplemented with the operations of 

sending the previously calculated nonzero submatrix blocks to the CPU and sending 

the blocks of the original matrix necessary for the K-th step to the GPU in 

accordance with their distribution. Copying to the CPU memory is also performed to 

save the LU-decomposition matrices for their reuse. 

If you need to select the main elements in the columns of submatrices )(
11

KA  

and )(
21

KA , then instead of (4.11) and (4.13) the expansions

II

IK

II

I

IK

II

U
L

L
P

A

A

,

,

,

,

,

, (4.15)

and the following changes must be made to the algorithm laid out: 1-3 replace the 

diagonal block )(
11

KA  of a rectangular submatrix, consisting of a diagonal block )(
11

KA  

and a subdiagonal rectangular block )(
21

KA , item 6 - exclude.

We note that at the I-th step of this algorithm, operations are performed only 

with blocks of the submatrix of size (J+1)s  (K+1)s, the upper left block of which is 

AI,I. The number of arithmetic operations can be reduced by excluding operations 

with the last zero columns of a rectangular block in (4.12) and (4.13) U12 from (4.9) 
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(block lines UI,I+1, UI,I+2, …, UI,J ). In this case, at the I-th step of the algorithm, 

operations will be performed from a submatrix of size (jI – Is+s)  (K+1)s, where jI – 

maximum value of the second index of nonzero elements of the block U12. 

As it was noted above, the efficiency of algorithms that implement the block 

version of the LU-decomposition is greatly influenced by the strategy of choosing the 

pivot element. This strategy affects the number and volume of data exchanges 

between computing devices that are used. For example, with a partial selection of the 

main element among the elements of the matrix column, the most effective option is 

when the main element is selected only among the elements of the column of the 

leading diagonal block; number of operations, exchanges and synchronizations) is a 

choice among all non-zero elements of the column. 

The proposed algorithm can be implemented both on single-node computers 

with several GPUs (using POSIX Threads, OpenMP) and on multi-node computers 

(using MPI). 

The efficiency of the algorithm. The efficiency of parallelizing the solution 

of a SLAE is determined by the efficiency of the decomposition algorithms for the 

matrix of the system, since the number of arithmetic operations performed during the 

development of (4.11) is many times greater than the number of operations 

performed when solving systems PLy = b or Ux = y. 

Let us investigate the efficiency of the hybrid version of the block cyclic LU-

decomposition algorithm (with the choice of the principal element within the diagonal 

block) of a banded asymmetric matrix of order n with ml subdiagonals and mu 

superdiagonals (architecture used with p CPU and p GPU). 

Let Ok denote the number of arithmetic operations performed in the 

implementation of the k-th macro-operation of the algorithm. The following estimates 

are valid: 3/2 3
4 sO a , 2

4 smO lb , psmmO ul /26 , psmO u /2
8

(operations of item 1 of the leading GPU are taken into account in O6). We denote: tC, tG 

– average execution times of one arithmetic operation on the CPU and on the GPU,

respectively, no - the number of arithmetic operations the GPU can perform

simultaneously. Since the GPU implements the SIMD architecture, the average time

spent by one GPU on performing O homogeneous arithmetic operations is estimated as

OG nOt / .
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Macro operations items 2, 3, 5, 7, 8 are associated with data exchange within or 

between processor devices. In most cases, the time of exchange between the CPU and 

the GPU, as well as row permutations, can be neglected. If the “tree” algorithm [41] is 

used to send data from one GPU to all others, then the total time of a multi-force (with 

one GPU p CPU or with one CPU p GPU, including synchronization) of an array of q 

double words can be estimated on average by the value )log( 2 pttq CCCG . Here tCC 

– average time to transfer one double word between two CPUs; tCG – double word

exchange time between CPU and GPU.

For the variant of the hybrid algorithm under consideration, the following 

estimates are valid (Tk - execution time of one step of the algorithm for k CPU and k 

GPU, pp TTS /1  – is the acceleration factor, /p pE S p  – efficiency ratio [52]). 

If 2 ups m , 
22

3CG C
u

pst t
m

, 
2

3
l u G

CG C
o

m m ps tst t
ps n

,  

then, for the hybrid block-cyclic algorithm for the LU-decomposition of a 

nonsymmetrical banded matrix, the following estimates are valid: 

1 (2 ) G
u l u

o

tT m s m sm s
n

, (2 ) G
p u l

o

tsT m ps m
p n

, 

( 1)1
(2 ) )

l u
p

u l

p sm smS p
m ps m

, ( 1)1
(2 ) )

l u
p

u l

p sm smE
m ps m

, (4.16) 

where         

2

2 2

( log ), if

( log ) ( log ), if

o CG CC u
u

G l

o CG CC o CG CC
l l

G G

n t t p s msm
t p m

n t t p n t t ppm m
t t

. 

We note that the conditions can be met by choosing the number of processing 

units p and the block size s. 

Estimates (4.16) show that the efficiency of the algorithm does not depend on 

the order of the matrix, and under certain conditions is determined by the number of 

nonzero blocks in a row of blocks and the sizes of these blocks. The efficiency of the 

algorithm can also be influenced by the ratio of the time of the multi-force of one 

double word and the value tG /no. If the proposed algorithm is implemented on a 

computer with multi-core processors using the multilevel parallelism model, then the 

acceleration and efficiency of this version of the algorithm can be estimated by the 
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same formulas (4.16). In this case: p is the number of processes (threads) of the 

upper level of parallelism, tG = tC, no – the number of low-level parallelism threads 

associated with one high-level thread, tCG = 0. 

Block-cyclic algorithms for LU-decomposition of sparse matrices. The 

block-cyclic algorithm of LU-decomposition of a strip matrix without significant 

changes can be used for sparse asymmetric matrices with other structures (for 

example, profile, block-skyscraper), provided that either it is not necessary to 

perform a choice of the main element, or it is enough to make this choice within a 

diagonal block, or it is possible to provide for the structure of the upper triangular 

decomposition matrix U. The block algorithm for LU-decomposition of a block-

diagonal matrix with a frame is considered below in Section 4.3.4. 

4.3.3 Block cyclic algorithms for decomposition of sparse symmetric 

positive definite matrices  

Similarly, to the block-cyclic implementation of the LU-decomposition of sparse 

matrices, the block-cyclic algorithms LLT or LDLT developed are implemented. It also 

uses a one-dimensional block-cyclic scheme for the distribution and processing of 

nonzero blocks of a symmetric matrix, but not all, and only the upper or lower triangle 

(and for symmetric matrices, these are the same blocks up to transposition). If operations 

are performed with the lower triangle, then columns of nonzero blocks or rows of 

nonzero blocks (including the lower or upper triangle of the diagonal block, respectively) 

are cyclically distributed if the upper triangle of the matrix is used. 

Decomposition and distribution of elements of sparse matrices between 

processing units. We will consider the following sparse matrices: tape, profile and 

skyscraper structure. It should be noted that these are sparse structures of triangular 

developments of the original matrices, which are obtained by performing the 

corresponding symbolic development. 

Divide the sparse symmetric matrix A into square blocks of order s (to 

simplify the presentation, we will assume that n = Ns). For example, the block 

representation of a strip matrix is ( 1/ smM , m – half-width of the tape, a  – 

the integer part of number a): 
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NN
T

NN

NNNN

T
M

T
M

T
M

MM
T

M

AA
AA

A
AA

AAAA
AAA

A

,,1

,11,1

1,2

,2,1

1,2,22,22,1

,12,11,1

00

00
0

00
000

. (4.17) 

Further, rows of matrix blocks are cyclically distributed between the threads 

(processes) of the higher level of parallelism so that each process must include at 

least one row of blocks, modified according to (4.10) at this stage. For example, the 

blocks that are in the line with the number t are allocated by the thread with the 

logical number (t–1) mod p. 

It is advisable to combine nonzero blocks (or their nonzero parts) of the 

corresponding line of blocks located side by side into rectangular blocks, the size of 

which should be optimal from the point of view of data caching (to optimize data 

exchange between memories of different performance) or the use of GPU computers 

of hybrid architecture. From the same considerations, the storage scheme (column or 

row) of the elements of these blocks is also selected. In the case of a strip or profile 

matrix, with such a combination, each (K-th) row of blocks consists of a diagonal 

block (of order s) AK,K and rectangular block AK,K+1 (which has s lines). Further, such 

a matrix can be considered (respectively) as a block-tape or block-profile. In the case 

of a matrix, a skyscraper structure with such a combination can be obtained in 

addition to the diagonal block AK, K several (MK) nonzero rectangular blocks AK,K+L 

(L = 1, …, MK), between which are rectangular zero blocks. 

The MPI-process (stream), which contains the K-th line of blocks at the K-th 

step of the algorithm (the block’s )(
11

KA  and )(
12

KA ), hereinafter referred to as the

master CPU (like the associated GPU in the case of the hybrid algorithm). In the 

GPU memory, at each step of the hybrid algorithm, it is sufficient to store only (also 

cyclically distributed) nonzero submatrix blocks that are processed. 

Cyclic algorithm for LDLT-decomposition of symmetric matrix of block-

skyscraper structure. Consider the most general case of a block-sparse structure - 
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block-cloud. Indeed, block-tape or block-profile structures are in fact special cases of a 

block-skyscraper structure - with one over-diagonal block in a row of blocks. The choice 

of the LDLT decomposition is due to the fact that the LDLT decomposition can be used 

for a larger set of matrices than the LLT decomposition, for example, for non-degenerate 

symmetric matrices. Moreover, the algorithms for these expansions do not differ 

significantly. Only for LDLT decomposition, it is necessary to have an additional 

working array so that the number of arithmetic operations does not increase. 

This algorithm is developed on the basis of parallel algorithms for LDLT 

decomposition of symmetric matrices of strip, profile and cloud structures (see, e.g., 

[42, 44]) and is based on the block algorithms described in Section 4.3.1. 

Consider a variant of the algorithm that uses a multilevel parallel computing 

model. At the highest level, p processes (threads) are used, which mainly provide 

communication between themselves and between processor devices that implement 

the vast majority of arithmetic operations at the lowest levels of parallelism. 

We denote (hereinafter, the notation in Fig. 4.1, 4.2 is used) DK is the 

diagonal matrix with the LDLT decomposition of the diagonal block )(
11

KA , JKU ,  – 

square block of s submatrix order )(
12

KU , K
T

JKKJ DUG ,,  (K = 1, ..., N, J = K, ..., N). 

Then for K = 1, ..., N the following macro-operations are performed: 

1) For K > 1 when condition 0,1 KKU  is fulfilled, using the s-range 

modification (4.10), computing the upper triangle of the diagonal block. 

2) 

KKKKKK
K UGAA ,11,,

)(
11 . (4.18)

3) For K > 1 sending the calculated block to the leading CPU of the K-th step
)(

11
KA  (on a hybrid computer). 

4) LDLT- decomposition of the diagonal block.

5)
)(

11
)(

11
)(

11 )( K
K

TKK UDUA . (4.19)
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It is advisable to perform decompositions (4.19) on the master CPU using 

high-performance program modules of the multithreaded Intel MKL library. 

6) For K < N-1 s- range modification (4.10) of nonzero blocks JIA ,  ( NIK , 

IMJK , excluding diagonal block KKA , ) of the submatrix )(
22

KA :

JKKIJIJI UGAA ,11,,, . (4.20)

Macro-operations (4.20) are performed at lower levels of parallelism under 

conditions 0, ,11, JKKI UG  according to block allocation JIA ,  between

processor devices. 

7) For K < N-1 distribution of calculated blocks )(
11, K

K UD  to all processor 

devices used. 

8) For K < N-1 computation of nonzero blocks KIG ,  )1( NIK  –

solutions of matrix SLAEs with lower triangular matrix: 

T
KI

T
KI

TK AGU )()()( ,,
)(

11 . (4.21)

Macro-operations (4.21) are executed on the master processor units of the K-

th step at the lower levels of parallelism. 

9) For K < N-1 broadcasting non-zero computed blocks to all processor devices

that are in use KIG ,  )1( NIK . 

10) For K < N-1 computation of nonzero blocks JKU ,  ( NJK 1 ): 

T
KJKJK GDU )( ,

1
, . (4.22)

Macro operations (4.22) are performed at the lower levels of parallelism. 

Analysis of formulas (4.18) - (4.22) showed that most calculations can be 

implemented at lower levels of parallelism, using software modules for matrix-

matrix (or matrix-vector) operations from hardware developers, for example, the 
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Intel MKL multithreaded library (on multicore processors) or the CUBLAS library 

(on coprocessor-accelerators - GPU). 

The efficiency of the algorithm can be increased by performing 

decompositions (4.19) (item 3) and sending the decomposition blocks (item 5) 

simultaneously (in parallel, asynchronously) with the end of the macrooperations 

(4.20) (item 4) of the previous step, using different streams of the upper level of 

parallelism or CPU and GPU on hybrid computers. It is also possible to increase the 

efficiency of the algorithm due to the simultaneous execution of computations and 

data exchanges between different processor devices, for example, data exchanges 

(items 2, 5, 7) are performed against the background of computations. 

If the GPU memory on the hybrid computer is not enough to store all the data 

that is distributed by this processor device, then item 5 is supplemented with the 

operations of transferring the previously calculated nonzero submatrix blocks to the 

CPU and sending to the GPU the blocks of the original matrix necessary for the K-th 

step in accordance with their distribution. Copying the decomposition blocks to the 

CPU memory is also performed to save the LDLT decomposition matrices for their 

reuse. 

In this algorithm, the vast majority of arithmetic operations are performed at 

the lower levels of parallelism. Therefore, it is possible to use one top-level process 

(thread), but it is necessary to ensure efficient parallelization of computations at the 

lower levels (between the threads of the lower level or between GPUs). 

LLT- decomposition of a symmetric matrix of a block-cloud structure. If LLT 

decomposition is performed, then some changes must be made to the algorithm. In items 

1, 4, 6, 7 to replace blocks KJG ,  with blocks T
JKU , , in item 3 replace formula (4.19)

with )(
11

)(
11

)(
11 )( KTKK UUA   and delete item 8. 

Everything else, including distribution of calculations between levels of 

parallelism and processor devices, remains without changes. 

Decompositions of symmetric block-band and block-profile matrices. As 

was noted above, in the matrices of such structures, nonzero blocks of the decomposition 

matrix U are densely located above the diagonal. Therefore, in the algorithms for the 

decomposition of the symmetric matrix, the block-skyscraper structure N should be 
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replaced by MK-1 or by MK from condition (4.18) in the definitions of the set of index 

values J or I. That is, at the K-th step of these algorithms, operations are performed only 

with blocks of the submatrix of size (MK+1)s  (MK+1)s, the upper left block of which 

AK,K. 

Efficiency of algorithms. Let us investigate the efficiency of the hybrid 

version of the block cyclic algorithm for LDLT decomposition of a symmetric tape 

matrix of order n with tape half-width m (architecture with p CPU and p GPU is 

used). 

Using here and below the notation of § 4.3.2, we have the following 

estimates: 3/3
3 sO , psmO /2

4 , 2
6 msO , msO6  (operations of item

1 of the master GPU are taken into account in O4).  

Macro operations items 2, 5, 7 are associated with data exchanges within or 

between processor devices. In most cases, the transfer times between CPU and GPU 

can be neglected. If the “tree” algorithm [34] is used to send data from one GPU to 

all others, then the total time of a multi-force (with one GPU p CPU or with one CPU 

p GPU, including synchronization) of an array of q double words can be estimated on 

average by the value )log( 2 pttq CCCG . 

For the variant of the hybrid algorithm under consideration, the following 

estimates are valid. 

If mps2 , CCG t
m

pst
2

3
1 , 

o

G
CCG n

t
ps

psmtst
22

3
, then, for the hybrid 

block-cyclic algorithm for the LDLT decomposition of a symmetric banded matrix, 

the following estimates are valid: 

o

G

n
tsmsmT1 , 

o

G
p n

t
p
smpsmT )( ,

mpsm
smppS p )(

)1(1 , 
mpsm

smpEp )(
)1(1 , (4.23) 

where 
m

t
pttn

t
pttnpm

p
s

t
pttnsm

G

CCCGo

G

CCCGo

G

CCCGo

)log(,)log(

)log(,

22
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.    
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Note that the conditions of the theorem can be fulfilled by choosing the 

number of processing units p and the size of blocks s. 

Estimates (4.23) show that the efficiency of the algorithm does not depend on 

the order of the matrix, and under certain conditions is determined by the number of 

nonzero blocks in the row of blocks and the sizes of these blocks. The efficiency of 

the algorithm can also be influenced by the ratio of the time of the multi-force of one 

double word and the value tG /no. 

If the proposed algorithm is implemented on a computer with multicore 

processors using the multilevel parallelism model, then the acceleration and 

efficiency of this version of the algorithm can be estimated by the same formulas 

(4.23). In this case: p is the number of processes (threads) of the upper level of 

parallelism, tG = tC, no – the number of low-level parallelism threads associated with 

one high-level thread, tCG = 0. 

In the case of a block-profile matrix, estimates (4.23) are also valid if the 

half-width of the tape m is replaced by the average number of overdiagonal elements 

in one line of the profile of the upper triangular matrix U. 

4.3.4 Parallel algorithms for decomposition of a block-diagonal matrix 

with a frame  

Historically, the first parallel algorithms for triangular decomposition of a sparse 

matrix were developed for a block-diagonal with a framing s [39] (item 4.1 and Fig. 4.3.) 

for representation of this matrix. This algorithm is also used for the LU-decomposition of 

strip matrices with a narrow strip by virtual construction of the matrix in a block-

diagonal form with a frame using the method of parallel sections. In [47], hybrid 

algorithms for LU-decomposition of a block-diagonal matrix with framing were 

proposed. 
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Figure 4.3 Scheme of LU-decomposition of a block-diagonal matrix with a 

frame 

Parallel block algorithm for LU-decomposition of a block-diagonal 

matrix with framing. Consider a framed block-diagonal matrix consisting of p 

diagonal blocks Ak,k and framing - diagonal block Ap+1,p+1, rows with p subdiagonal 

blocks Ap+1,k and columns with p superdiagonal blocks Ak,p+1 (k = 1, …, p). All 

diagonal blocks Ak,k (k = 1, …, p) have approximately the same order, significantly 

(by an order of magnitude or more) exceeds the block order Ap+1,p+1. We note that in 

the case of raising a banded matrix to a block-diagonal matrix with a frame, this 

frame has a block-two-diagonal structure. 

The proposed algorithm is also based on the block algorithm of the Gauss 

method of LU-decomposition of square matrices, described above in Section 4.3.1, 

and the block-diagonal matrix structure with a frame allows performing LU-

decompositions of large diagonal blocks Ak,k (k = 1, …, p) independently of each 

other, that is, in parallel. 

Decomposition and distribution of matrix elements between processing 

units. It is advisable to distribute data between p parallel threads (processes) of the 

highest level of parallelism as follows: thread with ordinal number k (k = 1, …, p) 

blocks are allocated Ak,k,, Ap+1,k, Ak,p+1, in place of which the corresponding blocks of 

matrices can be placed in the future L and U, and memory is allocated for a square 

block Gk,k = -Lp+1,kUk,p+1 and (if necessary) for blocks Lk,k, Lp+1,k, Uk,k, Uk,p+1. The 
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block Ap+1,p+1 is allocated to one of the streams, for example, with a sequence number 

p. 

It should be noted that the capabilities of the algorithms of this group are limited 

due to a significant increase in density with the development of framing blocks. This, in 

turn, causes a significant increase in the number of arithmetic operations. So, the 

efficiency of the algorithm (for computers only with multi-core processors) for the case 

of a strip matrix is limited from above by 25% due to the fact that when raising such a 

matrix to a block-diagonal matrix with framing, the number of arithmetic operations 

increases by 4 times. Therefore, to implement operations with framing blocks, it is 

advisable to use parallelization at lower levels, for example, use a GPU on computers of 

hybrid architecture 

The algorithm. Thus, the LU-decomposition of a block-diagonal matrix with 

a frame is performed in two stages according to (4.21). At the first stage, the 

following operations are performed independently (k = 1, …, p): 

1) LU- decomposition of the diagonal block Ak,k = Lk,kUk,k with partial selection

of the main elements in the columns of the block Ak,k, for this decomposition, you 

can use the fine-tiled algorithm [55-56] and high-performance program modules of 

the multi-threaded Intel MKL library (on multi-core processors) or the CUBLAS 

library (on the GPU); 

2) calculating the subdiagonal block Lp+1,k – solutions to matrix SLAE
T

kp
T

kp
T

kk ALU ,1,1,  with lower triangular matrix; 

3) superdiagonal block computation Uk,p+1 - solution to matrix SLAE

1,1,, pkpkkk AUL  with lower triangular matrix; 

4) calculating a square block Gk,k = -Lp+1,kUk,p+1.

Calculations items 2-4 (subdiagonal blocks Lp+1,k, superdiagonal blocks Uk,p+1

and square blocks Gk,k) are performed at the lower levels of parallelism, taking into 

account the block structure using high-performance software modules of the multi-

threaded Intel MKL library (on multi-core processors) or CUBLAS libraries (on the 

GPU).  
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At the second stage, the following macro-operations are performed: 

5) diagonal block modification
p

k
kkpppp GAA

1
,

)0(
1,1

)1(
1,1 , executed by 

threads (processes) of the highest level of parallelism using multi-blocking operation 

Gk,k; 

6) LU- diagonal block modification 1,11,1
)1(

1,1 pppppp ULA  with partial

selection of the main elements in the columns of the block )1(
1,1 ppA , for this

decomposition, the fine-tiled algorithm and high-performance program modules of 

the Intel MKL multithreaded library (on multi-core processors) or the CUBLAS 

library (on the GPU) can be used. 

We note that it is possible to organize the parallel execution of the operations 

of items 1-4 at different levels of parallelism, using a small-tiled LU-decomposition 

algorithm for a block-diagonal matrix with a framing that implements this idea. 

In the case of the original block-diagonal matrix with framing, the formation and 

further solution to the so-called summary system has a significant effect on the 

efficiency of the proposed algorithm (with matrix )1(
1,1 ppA ). In order to reduce the

number of computations required for this, it is advisable to optimize the sparse structure 

of both diagonal blocks and framing blocks. 

Parallel block decomposition algorithm for symmetric positive definite 

block-diagonal matrices with framing. As noted above, matrices of this type can 

be obtained by applying the method of parallel sections to the original matrix. In 

particular, such a reordering is used for matrices with a narrow band (that is, if the 

condition ml + mu  ps, p > 1). 

Decomposition and distribution of matrix elements between processing units. 

Taking into account the symmetry of the original matrix, only the elements of its upper 

triangle and the main diagonal are distributed and preserved. It is advisable to distribute 

data between p parallel threads (processes) of the highest level of parallelism as follows: 

thread with ordinal number k (k = 1, …, p) nonzero block elements are allocated Ak,k,, 

Ak,p+1, in the place of which the corresponding nonzero elements of the blocks of the 

matrix U and memory are allocated for the upper triangle (including the main diagonal) 
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of the square block 1,1, pk
T

pkkk UUG  and (if necessary) for blocks Uk,k, Uk,p+1. The 

block Ap+1,p+1 is allocated to one of the streams, for example, with a sequence number p. 

It should be noted that the capabilities of the algorithms of this group are also 

limited due to a significant increase in density with the development of framing 

blocks. Therefore, when implementing this algorithm, operations with framing 

blocks are advisable to use at lower levels of parallelism. 

The algorithm. Thus, the LLT decomposition of a symmetric block-diagonal 

matrix with a framing is performed as follows: (i = 1, …, p): 

1) LLT- decomposition of diagonal blocks : ii
T
iiii UUA ,,, ; 

2) computation of behind-angular blocks framing - solution to matrix SLAEs

with triangular matrices 1,1,, pipi
T
ii AUU ; 

3) calculating a square block 1,1,, pi
T

piii UUG . 

4) diagonal block change 
p

i
iipppp GAA

1
,

)0(
1,1

)1(
1,1 , executed by threads 

(processes) of the highest level of parallelism. using multi-blocking operation Gi,i; 

5) LLT- decomposition of diagonal blocks 1,1
)(

1,1
)1(

1,1 pp
T

pppp UUA , for this 

decomposition, the fine-tiled algorithm and high-performance program modules of 

the Intel MKL multithreaded library (on multi-core processors) or the CUBLAS 

library (on the GPU) can be used. 

Each of the macro-operations of items 1-3 algorithms for one block does not 

depend on similar operations with other blocks and can be performed in parallel. For 

LLT decompositions (items 1, 5), we can use a small-tiled algorithm and high-

performance software modules of the multithreaded Intel MKL library (on multi-core 

processors) or the CUBLAS library (on the GPU). Calculations items 2, 3 (supra-

diagonal blocks Uk,p+1, and square blocks Gk,k) are executed at the lower levels of 

parallelism, taking into account the block structure using high-performance software 

modules of the multithreaded Intel MKL library (on multi-core processors) or the 

CUBLAS library (on the GPU). 
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Thus, as a result, we obtain the upper triangular matrix 

11 1,

22 2,

33 13

1, 1 1,

,

0 0 0
0 0

0

0

p

p

p

p p p p

p p

U U
U U

U U
U

U U
U

. 

The efficiency of the algorithm. As noted above, the efficiency of 

parallelization of the solution to SLAE is determined by the efficiency of the 

algorithms for decomposing the matrix of the system. 

Let us investigate the efficiency of the hybrid version (architecture with p 

CPU and p GPU is used) of the block algorithm of LLT-decomposition of a 

symmetric block-diagonal matrix with a framing of order n, obtained as a result of 

structural regularization of a banded symmetric matrix (whose tape half-width is 

equal to m). 

We use the notation of Subsection 4.3.1. Then the following estimates are valid 

(if condition ( ) / 2in m n m p m  is provided): 2
1 iO n m , 2

2 2 iO n m , 

2
3 iO n m , 2

4 22 logO m p , 3
5 (7 13) / 3O m p . Macrooperations item 4 of the 

algorithm is associated with the operation of multi-rounding, that is, data exchange 

within and / or between processor devices. If the “tree” algorithm is used for this 

operation [35], then the total time of multi-rounding (with p GPUs to one GPU, 

including synchronization) of an array of q double words can be estimated on average by 

the value )log2( 2 pttq CCCG  (in most cases, the time of exchange between CPU and 

GPU tCG can be neglected). 

We note that the efficiency of the algorithm under consideration can be 

estimated based on either the strip (original) structure of the matrix, or from the 

block-diagonal one with a frame. So, for the variant of the hybrid algorithm under 

consideration, the following estimates are valid: ( )(
1

bT  – time of LLT-decomposition

of a strip matrix on 1 CPU and 1 GPU using a fine-tiled algorithm, )(
1

pT  – time of

LLT-development of a block-diagonal matrix with a frame with p large diagonal 

blocks on 1 CPU and 1 GPU, using a fine-tile algorithm). 
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If pmmn 2 , then, for the hybrid block LU decomposition algorithm 

for a banded symmetric matrix, which is rearranged into a block-diagonal matrix 

with a frame, the valid estimates  

     ( ) 2 ( ) 2
1 1, 4 2 ,b pG G

o o

t tT nm T n m m
n n

 
2

4 G
p

o

tmT n m
p n

, 

( )

( )

1 ,
4 4

( 2)1 ,
4

b
p

p
p

p mS
n m

mS p
n m

( )

( )

1 ,
4 4(4 )

( 2)1 ,
4

b
p

p
p

mE
n m

mE
n m

 (4.24) 

where 
27 25 12

3
p p , 22 log o CC

G

n tp p
t

. 

We note that the condition can be met by choosing the number of processor 

units p of the upper level of parallelism (respectively, and the number of the main 

diagonal blocks) Estimates (4.24) show that the reordering of a banded matrix into a 

block-diagonal matrix with a framing and this algorithm is expedient to use for p > 4. 

The efficiency of the algorithm can also be influenced by the ratio of the multi-

hitting time of one double word and the value tG /no. 

If the proposed algorithm is implemented on a computer with multi-core 

processors using the multilevel parallelism model, then the acceleration and 

efficiency of this version of the algorithm can be estimated by the same formulas 

(4.24). In this case: p is the number of processes (threads) of the upper level of 

parallelism, tG = tC, no – the number of low-level parallelism threads associated with 

one high-level thread. 

Similar estimates )( p
pS  and )( p

pE  can be obtained for other (other than strip)

structures of the main diagonal blocks, as well as other structures of framing blocks. 

4.3.5 Parallel algorithms for decomposition of block-diagonal matrices 

In some iterative methods for solving linear algebra problems, a regularizer is 

used - a symmetric matrix of a block-diagonal structure. A matrix of such a structure, 

for example, can be obtained after rejecting the behind-angular blocks of a block-

diagonal matrix with a frame or breaking the original (for example, strip) matrix into 

a relatively small number of square blocks (their order should significantly exceed 
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the average number of elements in one row of the matrix profile), we discard all out-

of-diagonal blocks. 

The block-diagonal regularizer makes it possible, when implementing the 

iterative process, to calculate corrections to the approximate solution by 

simultaneously and independently (in parallel) solving the SLAE with diagonal 

blocks of the pre-bummer, which are, in the general case, sparse symmetric positive 

definite matrices. 

Thus, operations, including factorization of a block-diagonal matrix, are 

naturally parallelized between threads (processes) of the highest level of parallelism. 

To parallelize the factorization of diagonal blocks at lower levels, you can use 

variants of the fine-tiled sparse matrix decomposition algorithm that uses one higher-

level CPU and several lower-level threads (on multicore computers) or one GPU (on 

hybrid computers). 

Fine-tiled sparse matrix decomposition algorithms. The variants of this 

algorithm, which were proposed to be used in the previous and in this Section, use 

one thread (process) of the highest level of parallelism on multicore computers or 

one CPU on computers of hybrid architecture. 

Let us consider such a variant of the algorithm LLT-decomposition of a sparse 

symmetric matrix. This algorithm essentially coincides with the block-cyclic 

decomposition algorithms for a sparse symmetric matrix described in Section 4.3.3. 

The difference is that there is no high-level parallelization. As in Section 4.3.3, the 

matrix is divided into square blocks of order s. 

So, for K = 1, ..., N the following macro-operations are performed. 

1) For K > 1, using the s-rank modification (4.10), calculating the upper triangle

of the diagonal block KK
T

KKKK
K UUAA ,1,1,

)(
11  taking into account 

0,1 KKU ; on a computer of hybrid architecture CPU forwards this calculated

upper triangle. 

2) LLT- decomposition of the diagonal block )(
11

)(
11

)(
11 )( KTKK UUA ; on a 

computer of hybrid architecture, the resulting decomposition )(
11

KU  unit is sent to the 

GPU. It is advisable to perform these decompositions on a CPU using high-

performance program modules of the Intel MKL multithreaded library. 
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3) For K < N-1 s- range modification (4.10) of nonzero blocks JIA ,

( NIK , IMJK , excluding the diagonal submatrix KKA ,  block )(
22

KA :

JK
T

IKJIJI UUAA ,1,1,, . These macro-operations are performed under

conditions 0, ,1,1 JKIK UU  at the lower levels of parallelism.

4) For K < N-1 computation of nonzero blocks IKU ,  )1( NIK  –

solutions to matrix SLAEs with lower triangular matrix: IKIK
TK AUU ,,

)(
11 )( . 

These macro-operations are also performed at the lower levels of parallelism. 

Analysis of macro-operations items 1-4 of this algorithm shows, that most 

computations can be implemented at lower levels of parallelism using program 

modules for matrix-matrix (or matrix-vector) operations from hardware developers, 

for example, the Intel MKL multithreaded library (on multi-core processors) or the 

library CUBLAS (on coprocessor-accelerators - GPU). 

The efficiency of the algorithm can be increased by performing LLT-

decomposition of the diagonal block (item 2) and sending of decomposition blocks 

(item 5) simultaneously (in parallel, asynchronously) with the end of the execution of 

s-rank modifications (4.10) of nonzero blocks (item 3) of the previous step, using

different flows of the upper and lower levels of parallelism, or CPU and GPU on

hybrid computers. It is also possible to increase the efficiency of the algorithm due to

the simultaneous execution of computations and data exchanges between different

processor devices, for example, data exchanges (items 1, 2) are performed against the

background of computations.

A similar single-threaded drop-tile algorithm for the LU-decomposition of a 

sparse nonsymmetric matrix can be developed on the basis of the block-cyclic 

algorithm for the LU-decomposition of such a matrix (see Section 4.3.2).  

The efficiency of such (single-threaded) drop-tile algorithms for 

decomposition of sparse matrices is determined by the efficiency of the 

implementation of matrix-matrix (or matrix-vector) operations in software from 

hardware developers - the Intel MKL multithreaded library (on multi-core 

processors) or the CUBLAS library (on the GPU). 
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4.4 Hybrid algorithms for solving linear systems with sparse matrices of 

irregular structure based on LLT-decomposition of block-diagonal matrices 

with framing 

We consider on SLAE  

bAx (4.25)

ppppppp

pppp

p

p

p

T

AAAAA
AA

AA
AA
AA

APPA

1,321

,11,1

333

222

111

000

000
000
000

~

, 

where P – permutation matrix, and blocks Aii, Aip, Api preserve a sparse structure, p is 

the number of diagonal blocks in the matrix. Thus, solving the original problem 

(4.25) reduces to solving the equivalent problem Ax b , where 

Tx P x, Tb P b , that is, to a system with a block-diagonal matrix with a 

frame. The most effective direct method for solving such a problem, as it is known, 

is the Cholesky method [53]. 

The solution to SLAE with a block-diagonal matrix framed by the Cholesky 

method is reduced to the steps i = 1, …, p-1 including such stages of calculations: 

 factorization of diagonal blocks  due to the formula  
T

ii ii iiA L L ; (4.26)

 modification of framing blocks - solution to SLAE with triangular matrices by 

the formula  
T

pi pi iiL A L ; (4.27)

 calculating the product of matrices , ,
T
i p i pL L  and modifying the diagonal block pp 

by the formula 
p 1

( m ) T
pp pp pi pi

i 1
A A ( L L ) ; (4.28)

 block ( m )
ppA  factorization by formula 
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( m ) T
pp pp ppA L L .  (4.29) 

Since each of the first three operations for one block does not depend on 

similar operations with other blocks, they can be performed in parallel on a parallel 

computer.  

As a result of the performed calculations, we obtain the lower triangular 

matrix 

11

22

33

p 1,p 1

p1 p2 p3 p ,p 1 pp

L 0
0 L
0 0 L

L

0 0 0 L
L L L L L

. 

To solve the system Ly b  it is necessary to perform for i = 1, …, p-1 such 

matrix-vector operations: 

 systems solutions ii i iL y b ; 

 modification ( m )
p p pi ib b L y ; 

 system solutions ( m )
pp p pL y b . 

To solve the system yxLT  it is necessary to perform for i = 1, …, p-1 

such matrix-vector operations:  

 system solutions T
pp p pL x y ; 

 modification ( m ) T
i i pi py y ( L x ) ; 

 systems solutions T ( m )
ii i iL x y . 

Hybrid block algorithm for solving SLAE based on LLT decomposition on 

architecture p CPU + p GPU includes the following steps: 

1) Data decomposition:

 on GPUs corresponding to CPU processes with logical numbers

(i-1), i = 1, …, p, sent out according to blocks Aii, Api and parts of vectors i, yi, bi;

 on GPU, which corresponds to the CPU process with logical number 0, the block

is saved A +1, +1.

2) Implementing LLT decomposition on architecture p CPU+  GPU:
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 parallel to all p-processes, LLT-opening of all diagonal blocks  (i = 1, …, p) on 

formula (4.26) using GPU [45, 51] 

 computation by all p GPUs of the corresponding framing blocks L p+1,i , as 

solutions to matrix SLAEs, and products of blocks T
p 1,i p 1,i iL L G  due to the 

formula (4.27); 

 copying the corresponding CPU blocks to the memory Gi. 

 multicollection of blocks Gi by the zero process, calculation of the modified 

diagonal block 
p

( m )
p 1,p 1 p 1 p 1 i

i 1
A A G , according to (4.28) and copying it into the

memory of the corresponding GPU; 

 LLT- decomposition of the diagonal block )(
1,1

m
ppA  on a zero process GPU by the 

formula (4.29). 

3) Solution to the Ly=b system on architecture p CPU+  GPU:

 parallel (simultaneous) solution by all p GPUs of the corresponding systems Liiyi;

 computation by all p GPUs of the corresponding products of blocks p 1,i i iL y g

 copying the corresponding CPU blocks to the memory gi; 

 multicollection of blocks gi by zero process, calculation of the modified block 
p

( m )
p 1 p 1 i

i 1
b b g  and copying it to the memory of the corresponding GPU;

 GPU solutions to a zero-process system ( m )
p 1,p 1 p 1 p 1L y b . 

4) Solution to the LTx = y system on architecture p CPU+  GPU:

 Solution to the system  T
p 1,p 1 p 1 p 1L x y  on a zero process GPU; 

 copying to the memory of the zero process, multi-linking to other processes and 

copying to the memory of the corresponding GPU xp+1; 

 modification on appropriate GPU ( )
1, 1( )m T

i i p i py y L x ; 

 development on alternate GPU systems )(m
ii

T
ii yxL . 

 Depending on the structure of the diagonal blocks, hybrid algorithms for 

their decomposition are used on one CPU and on one GPU for dense or tape 

matrices. 
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It should be noted that the complexity of the hybrid factorization algorithm for one 

diagonal block is mainly determined by the component of the matrix processing on the GPU. 

In case the blocks D  , 
_________

1,1 pi  are band matrices of order q with half-

width of the tape k, the block D  – the density matrix of order s satisfies the 

following estimates. 

The number of operations performed per GPU to find the LLT-decomposition 

of a sparse block-diagonal matrix with a frame A is estimated by the value 

s
kkqqsN p

2

44
2

. 

Note. If k << q, s  pk, then Np  2q2s. 

Hereinafter, o opp
opp

g

n t
t

, 0 opg
opg

g

n t
t

.  

Since the calculations are carried out for the most part on the GPU, it implements 

the SIMT (Single Instruction, Multiple Threads) architecture, then in further calculations 

it should be borne in mind that one instruction is executed on a group of data. That is, n0 

floating point operations occur simultaneously. The value of n0 depends on the hardware 

characteristics of a particular graphics accelerator. 

The acceleration of the hybrid algorithm LLT-decomposition of a sparse 

block-diagonal matrix with framing A is 
1

2

2
2

1)1( opgopp
p

p N
pspS

. 

Note. If k << q, s  pk, then 
1

2 2
4

1)1( opgoppp q
sppS

. 

The proposed algorithm is most effective in cases when the diagonal blocks 

have a regular structure and can be represented as dense or strip matrices. In this 

case, efficiency is achieved through the use of optimized software libraries in 

calculations. One of the disadvantages of this algorithm is the large amount of 

memory for storing framing blocks and diagonal blocks. 
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 Hybrid fine-tiled LLT decomposition algorithm block-diagonal matrix with 

framing [55, 56]. We split the matrix A into blocks of size × . To factorize a block-

diagonal matrix, we apply the algorithm proposed in [58] for dense matrices. 

To factorize the matrix at step k, we use the following relation 

T

TT
k

L
LL

LL
L

AA
AA

A
22

2111

2221

11

2221

1211

0
0

, (4.30)

where are the block sizes ccA
11

, 21A n kc c , kcnkcnA22 , the 

block’s 21A  and 22A  take into account the block structure Dii, Cpi, Dpp. 

From this we obtain an algorithm according to which the decomposition is 

carried out at the k step: 

11 11 11
TA L L ; (4.31)

1

21 21 11
TL A L ; (4.32)

22 22 21 21.
TA A L L (4.33)

We note that the implementation (4.31) - (4.33) at each step modifies only the 

blocks Dii, Cpi, 1,1 pi , Dpp.  

To implement the algorithm, we will use the distribution proposed above. 

That is, in GPU , 1,1 pi  contains blocks Dii, pi and block ( i )
ppA  of the same size 

as D ; in GPUp the block Dpp is saved. 

In Fig. 4.4 the block distribution of data at the k-th step of factorization of a 

block-diagonal matrix with a frame is shown, taking into account the above proposed 

decomposition.  
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Figure 4.4 – data decomposition in GPUi 

Parallelization of triangular factorization calculations is that the 

decomposition of blocks 11A  and 21A  and 22A  modification can be carried out 

independently in each CPUi and GPUi, where 1, 1i p . 

At every step ( 1,1 pi ) in all pairs of CPUi and GPUi we perform: 

 in CPUi, factorize 11A  from Di
T

11 11 11A L L ; 

 in GPUi, the column of blocks is modified 21L  
1T

21 21 11L A L ; 

 in GPUi, matrix blocks are modified A22 with ( i )
ppA  due to the 

T
22 22 21 21A A L L . 

 In the CPUp, using multicollection, we modify ppD

p 1
* ( i )
pp pp pp

i 1
D D A .

After that, we factorize the block *
ppD , thereby completing the process of 

factorizing the matrix. 

The number of operations performed on 1 GPU to find the factorization of a 

sparse block-diagonal matrix with framing is estimated by the value 
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sqqsqqN p 3
33

2
2

3

. 

The acceleration of the small-tiled hybrid algorithm LLT-decomposition of a 

sparse block-diagonal matrix with framing A is as follows: 
1

22

2

1
44

1
2

32
)1(311 opgoppp sp

c
s
qc

p
p

sqq
sppS

, 

where c – is the plate dimension. 

This algorithm has several advantages over the factorization algorithm 

proposed above. You can adjust the size of the block with which the calculations are 

carried out at each step of the algorithm. Due to this effect of caching, calculations 

can be achieved when the blocks are completely located in the fast memory of the 

GPU. Also, such a block structure allows us to work with continuous data arrays on 

the GPU, reduce the number of index operations and check, which are quite 

expensive on a graphics accelerator.  

4.5 Experimental study of parallel algorithms 

The developed parallel algorithms were tested on a MIMD-architecture 

computer with multicore processors, as well as on a hybrid computer. In particular, 

SNNs with strip Jacobi matrices, which arise in the mathematical modeling of 

nanoporous systems, were used as test ones [37]. 

The table shows the results of solving test SNS with banded Jacobi matrices, 

which arise in the mathematical modeling of the studied systems. 

Table 4.1 

  

Jacobi matrix parameters solution time 

rank 
half-width of 

the tape 

consistent 

algorithm 

parallel 

algorithm 

hybrid 

algorithm 

1 55 650 1 052  84 h.  4 h.  2 h. 

2 52 500 1 052  84 h. 5 h. 42 min. 1h. 12 min. 
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The testing results showed that the developed parallel algorithms are well 

scalable. It also provides higher performance for higher order SNNs with Jacobi 

matrices with larger tape widths due to increased use of computational resources. 

Additionally, to test the algorithms proposed in the section for solving SLAEs 

with banded matrices, several SLAEs were used whose parameters are presented in 

Table 4.2. 

Table 4.3 shows the solution times for the SLAE, the parameters of which are 

given in Table 4.2, on computers of different architectures, using different 

algorithms. Here, a computer with 1 Intel Core I7 4 core processor was mainly used 

as a personal computer (designated PC), the Inparkom cluster is equipped with multi-

core Intel Xeon 5606 4 core processors, and on each of the four Inparkom_g nodes, 2 

of the same processors and 2 Nvidia Tesla video cards are installed M2090. Clusters 

of the Inparkom family present a joint development of V.M. Glushkov Institute of 

Cybernetics of National Academy of Sciences of Ukraine and State Research and 

Production Enterprise "Electronmash". 

Table 4.2. 

  Name Rank  n 
Number of 

subdiagonals ml 

Number of 

superdiagonals 

mu 

1 A-126-20 126 000 2 001 2 001 

2 A-126-09 126 000  902  902 

3 A-055-10  55 650 1 052 1 052 

4 A-052-10  52 500 1 052 1 052 

5 A-137-44 137 826 4 448 4 448 
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Table 4.3. 

The  

SLAU matrix 

Solution time (sec.) 

consistent 

algorithm 

parallel 

algorithm 

hybrid 

algorithm 

PC Inparkom Inparkom _g

A-126-20  2 240 62,32

A-126-09  660 11,11

A-055-10  170 7,08 3,96

A-052-10  210 14,28 2,93

A-137-44  7 080 202,70

The results presented showed that the use of parallel computations can 

significantly reduce the time for solving problems - from 15 to 60 times. And the use 

of a computer of hybrid architecture reduces the time by another 2-5 times. 

The study of the created hybrid algorithms for solving SLAEs with sparse 

matrices was carried out on a hybrid computer SKIT-4. The programs are written in 

the algorithmic language C using the parallelization systems MPI and CUDA [60]. 

The functions of the program libraries Intel MKL [40], cuBLAS [41], cuSPARSE 

[61] were also used.

In Table 4.4 test matrices are presented on which numerous experiments of 

the developed hybrid algorithms for solving SLAEs with sparse matrices were 

carried out.  
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Table 4.4 – Test matrices for the study of hybrid algorithms for solving SLAEs 

with sparse matrices 

  

Name Problem area
Matrix 

order 

Quantity 

of non-zero 

elements 

1. ecology2 2D/3D problem 999999 49591

2. apache2 structural problem 715176 4817870

3. thermomech_d

M 

thermal problem 20416 1423116 

4. G2_circuit circuit simulation problem 150102 726624 

5. Dubcova3 2D/3D problem 146689 3636643

6. cvxbqp1 optimization problem 50000 349968

7. minsurfo optimization problem 40806 203622

In Fig. 4.5 the dependence of the solution time for SLAE with sparse matrices on 

the number of GPUs used are shown. To solve SLAEs with sparse matrices numbered 1, 

2, 6, 7, we used a program that implements the hybrid block algorithm for LLT -

decomposition of block-diagonal matrices with framing, and for matrices numbered 3, 4, 

5 the calculations were carried out by a program that implements fine -Tiled algorithm 

for LLT-decomposition of block-diagonal matrices with framing. 
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Figure 4.5– Solving times of SLAEs by hybrid algorithms of LLT - decomposition 

of block-diagonal matrices with framing  

In Fig. 4.6 the graphs of acceleration of hybrid algorithms for solving SLAEs with 

sparse matrices based on LLT -decomposition of block-diagonal matrices with framing 

are shown. 

Figure 4.6 – Acceleration of hybrid algorithms for solving SLAE 

with sparse matrices based on LLT decomposition 



136 METHODS OF MATHEMATICAL MODELING (…) 

Conclusions for Chapter 4 

Using a multilevel model of parallel computing, taking into account the 

peculiarities of the computer architecture, effective algorithms and programs for 

solving SNS and SLAE have been developed on parallel computers of hybrid 

architecture and with Intel Xeon Phi x200 series processors. Simultaneously, the time 

for solving problems is significantly reduced, which makes it possible to solve high-

order problems in real time, which, nowadays, science is facing. 

In this Section, new hybrid algorithms and programs of direct methods for 

sparse matrices of various structures are developed and investigated based on the 

methods of LU, LLT -matrix linkage.  

Experimental studies indicate high efficiency and scalability of the created 

algorithms. These algorithms and programs were included in the intellectual system 

of computer mathematics and were used in the mathematical modeling of a wide 

class of physical and technological processes in the creation of structures for energy 

facilities. 



Chapter 5. The methods of integral transformations for creation of 

hybrid ANM-models 

5.1. Finite integral Fourier transforms with spectral parameter for 

homogeneous domains 

5.1.1. Finite integral Fourier transform for finite media  

The finite integral Fourier transform on the set 10101 ,0;,: llllxxI  was 

introduced and mathematically substantiated in [11]. The boundary conditions have 

the form: 
kjk jk jk x l k jk jk

dB u u g , 0; j,k 1,2.
dx

This structure of boundary operators assumes that at the boundaries of the medium 

mass transfer occurs at constant gradients, i.e., stationary modes of motion are set. 

Taking into account the rates of changing the gradients of the defining (basic) 

parameters of the ANM and their gradients in the formulation of boundary value 

problems, which are mathematical descriptions of the considered transfer in 

boundary conditions, the operator 
t

 or  2

2

t
 (for dynamic problems) is presented. 

This leads to the appearance of a spectral parameter in the boundary conditions of the 

corresponding Sturm-Liouville spectral problem. We construct a finite integral 

Fourier transform using the Cauchy kernel, a fundamental solution to the Cauchy 

problem for an equation under a homogeneous boundary condition. We consider the 

boundary value problem of constructing a parabolic-type equation bounded in the 

solution domain 1010 ,0;,,,0:, llllxtxtD  [11, 12] 

2
2 2 2

2 0, 0, 0u uu a a
t x

  (5.1) 

 under the initial condition: 
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0, tu t x g x (5.2) 

and boundary conditions:  

  
0

1

0 0 0 0
11 11 11 11

1 1 1 1
11 11 11 11

0

0.

x l

x l

u
t x t

u
t x t

(5.3) 

0 0 0 0 1 1 1 1
11 11 11 11 11 11 11 11

0 0 1 1
11 11 11 11 11 11

0, 0,

0, 0, 0, 0, 0,1 .m m m

Assuming that the function ,u t x is a Laplace original with respect to the argument

t [19]. In the image by Laplace  

0
, * ,ptL u u t x e dt u p x  (5.4) 

we obtain the problem of constructing on the segment  10 , ll   the solution to the

heterogeneous modified Fourier differential equation  
2

2 2 2 2 2 2
2
* * ; , , 0d u q u g x g a g q a p

dx
(5.5) 

 under boundary conditions:  

0 1

0 0 0 1 1 1
11 11 x l 1 0 11 11 x l 1 1

d du* l , u* l .
dx dx        (5.6) 

Here:  0 0 0 1 1 1
11 11 11̀ 11 11 11 1 0 11 0 11 0 1 1 11 1 11 1, ; ,m m m m m mp p l g l g l l g l g l . 

We assume 0 1
1 0 1 1l 0, l 0 . Otherwise, we put g x x ax b and 

calculate the coefficients  ba, from the algebraic system: (5.7) 

0 0 0 0
11 11 0 11 1

1 1 1 1
11 11 1 11 1

l a b

l a b
 ! (5.7) 

It follows that 001
1
11

0
11

0
11

1
11

1
11

0
110 ll  when 

., 1
0

0
11

1
11

1
11

1
10

0
11

0
11

1
0

0
11

1
1

1
11

0
1 llba   As a result, we obtain a 

function  ,
0

1
10

0
11

0
11

0
11

1
11

1
11

0

0
1

1
11

1
1

0
11 ll

xxgx



METHODS OF MATHEMATICAL MODELING (…) 139 
 

 

for which  we have equations .0,0
10

1
11

1
11

0
11

0
11 lxlx xxxx  

The  functionschqx  and shqx  form the fundamental system of solutions to the 

homogeneous equation corresponding to (5.5) [11]. We define the functions: 

,ch  ~ql  ~ ~~
m

1
m

m
jk

m
jklx

m
jk

m
jkm

m
jk qlshqqxh

dx
dqlV

m
, 

,sh  ~ch  ~sh  ~~2
m

m
jkm

m
jklx

m
jk

m
jkm

m
jk qlqlqqx

dx
dqlV

m
 

.sh  ch  , 12 xqqlVxqqlVqxql mm
m
jkmm

m
jkm

m
jk  

The general solution to  the boundary value problem (5.5) - (5.7)  is 

 
0

, , ,
l

l

u p x p x g dH  . (5.8) 

Here , ,p xH  - fundamental function Cauchy of the problem (5.5) - (5.7) 

      1 1 0 1

2 2 0 1

( , , )  ch  sh ,
( , , )

( , , )  ch  sh ,

p x A qx B qx l x l
p x

p x A qx B qx l x l

H
H

H
,           (5.9) 

that satisfies  the conditions [11]: 

1) at 
2

2
2:  ( , , ) 0dx q p

dx
� ;  

2) at :x  

 ) 0 0( , , ) ( , , ) 0x xp x p x� �    (5.10) 

) 0 0, , , , 1x x
d dp x p x
dx dx

� �  

3)
0 1

0 0 1 1
11 11 x l 11 11 ( , , ) 0;  ( , , ) 0x l

d dp x p x
dx dx

H H .          (5.11) 

Substiting  , ,p xH  in conditions (5.9), (5.10), we obtain the system  for 

finding  unknow coefficients   jA and jB : 

 

 ch  sh 

 sh  ch 
2 1 2 1

1
2 1 2 1

01 02
1 11 0 1 11 0

11 12
2 11 1 2 11 1

A A q B B q 0

A A q B B q q

AV ql B V ql 0

A V ql B V ql 0

  (5.12) 
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From the first two equations (5.12) we find: 

 sh     ch 1 1
2 1 2 1A A q q , B B q q .

Putting 2 2, B  in he third and fourth equations (5.12), we obtain the system

for determinig 1  and 1

01 02
1 11 0 1 11 0

11 12 1 1
1 11 1 1 11 1 11 1

AV ql B V ql 0

AV ql B V ql q ql ,q
.  (5.13)

We suppose that contition of unambiguous solvability of boundary value 

problelm (5.5) - (5.7) is  satisfied: the determinant of system (5.13) 
01 12 02 11

11 0 11 1 11 0 11 1* 0p V ql V ql V ql V ql  (5.14) 

for 0 Re  pip , where  0  the abscissa of the convergence of the 

Laplace integral and ., Im p  

As a result, we uniquely find

.,
*

  ,,
* 1

1
11

0
01

11
11

1
11

0
02

11
1 qql

pq
qlV

Bqql
pq

qlV
A  This defined the Cauchy 

function, which has a simmetrical structure  relative  to the diagonal x  : 

 

0 1
11 0 11 1 0 1

0 1
11 0 11 1 0 1

, , ,1( , , )
* , , ,

ql qx ql q l x l
p x

q p ql q ql qx l x l
� .     (5.15) 

Returning to equation (5.8) in the  Laplace original, we obtain the solution to 

the problem (5.1) - (5.3): 
1

0

2, ( , , ) ,
l

l

u t x t x g d a�   (5.16)

Here  [19] 

0

0

1( , , ) ( , , )
2

i
ptt x p x e dp

i
H H    (5.17) 

We calculate the integral (5.17). 

Putting ip 2  or 22p . As a result, we obtain

       ch cos       sh  sin 1q ia i , qx x, qx i x,  
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m

 sin  cos 

 cos sin l

m1 m m m1
jk m jk m jk m jk

m2 m m m2
jk m jk m jk jk

V i l l l ,

V i l i l i ,
 

  

2 2
01 12 02 11
11 11 11 11p

m m m 2 2 m m m 2 2
jk jk jk jk jk jk

* p i i ;

, ;m 0,1.
 

We consider the transcendental equation 

                        01 12 02 11
11 11 11 11 0.   (5.18) 

        Theorem 5.1.1. (on the discrete spectrum): the roots of the transcendental 

equation (5.18) form a discrete spectrum: the roots are different, real, symmetrical 

about 0  the half-axis 0 , form a monotonically increasing numerical 

sequence with a single boundary point .  

         Proof: the proof of the theorem is carried out on the basis of the method of 

work [11].  

        Since for a function ( , , )p xH  the points 2 2
n np  are simple 

poles, then by the generalized development theorem [11] we obtain 

. 

                            
2 2

0 0
2

1 0

, ,
( , , )

,
n t n n

n n

V x V
p x e

V x
H .                    (5.19) 

Here  0 , nV x  - spectral function: 

01 02 0 0
0 11 11 11 0 11 0,  sin  cos  sin  cos n n n n n n n n

x xV x x l x l
a a

,          (5.20)  

the square of the norm of which: 

                     
1

0

02
2 11

0 121
11

2 22 0 0
0 11 0 0 11 0 00 0 0 0

11 11 11 11

2 21 1
11 0 1 11 0 11 1 1 1

11 11 11 11

1, *

, , ,

, ,

n

n
n n p p

n

l

n n n
l

n n

dV x p
i dp

V x dx V l V l

a V l V l

            

(5.21) 
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       Theorem 5.1.2. (on the spectral function) The function 0 ( , )nV x defined by 

formula (5.21) is the spectral function of the Sturm-Liouville problem: 

                                             
2

2 2
2( ) ( , ) 0n n

d a u x
dx

  (5.22) 

                             
0 1

0 0 1 1
11 11 11 110, 0.x l x l

d du u
dx dx

 (5.23) 

Proof: Since   
2

2
0 02 sin sin ,n n n

d x l x l
dx

 

2
2

0 02 cos cosn n n
d x l x l
dx

,  

then 
2

2 2 2
0 0 02 , , ,n n n n n

d V x V x a V x
dx

, that is, equation (5.22) 

holds. 

We have directly  

0

0 0 01 02 02 01
11 11 0 11 11 11 11, 0n x l n n n n

d V x v v v v
dx

, 

1

1 1 01 12 02 11
11 11 0 11 11 11 11, 0n x l n n n n

d V x v v v v
dx

 

due to identity 0n .  

 The identy 01 12 02 11
11 11 11 11 0n n n nv v v v  allows the spectral function to be 

rewritten as  

                   

01 11
11 1111 02

0 11 1111 01
11 11

01
11 11 12

11 1111
11

01
11 1 1

11 1 11 111
11

, sin sin

sin sin

sin cos

n n
n n n n n

n n

n
n n n n

n

n
n n n

n

v v
V x v x v x

v v

v
v x v x

v

v
l x l x

v

  (5.24) 

From equations (5.20), (5.24) we have:  
01 01 01
11 11 110 0 0 2

0 0 11 0 1 11 1111 11 11
11 11 11

, ; ,n n n
n n n n

n n n

v v v
V l V l a

v v v
. 

Based on the transcendental equation (5.18) and equations (5.20), (5.24) we 

can obtain the square of the norm of the spectral function 0 0 , nV l : 
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1

0

22 010 22 2 110 0 0 1 111
0 0 0 0 11 1 0 11 11 11 112 11

11

1, ,
2

l
n

n n n
nl

v
V l V l dx l l

a a v
. (5.25) 

Due to equality (5.19), the solution to the boundary value problem (5.1) - 

(5.3) is a function  
12 2

0

0
02

1 0 1

,
( , ) ( ) ,

,
n

l
t n

n
n ln

V x
u t x e g V d

V x
� � .   (5.26) 

Hence, due to the initial condition, we obtain at t = 0 an integral 

representation of the function g(x): 
1

0

0
02

1 0 1

,
( ) ( ) ,

,

l
n

n
n ln

V x
g x g V d

V x
� .  (5.27) 

Since the system of functions 0 1
, n n

V xu u is orthogonal in

understanding
1

u. , complete and closed [11], equality (5.29) is a Fourier series for 

the function g (x). 

The consequence of these considerations is the following theorem:  

Theorem 5.1.3 (on Fourier series development): If the function 
3

0 1g(x) ( , )C l l  and satisfies boundary conditions  

0

2 2
0 0 2 2 0 2 2 0

0 11 11 11 112 2( ) ( ) ( ) 0,x l
d d dB g a a g x
dx dx dx

       (5.28) 

1

2 2
1 1 2 2 1 2 2 1

1 11 11 11 112 2( ) ( ) ( ) 0,x l
d d dB g a a g x
dx dx dx

        (5.29) 

then it is represented by an absolutely and uniformly convergent Fourier series 

(5.27). 

The Fourier series defines direct 
1

0
0( ) ( ) ( , )

l

n n nl
F g x g x V x dx g (5.30)

and inverse 

1 0
2

1 0 1

( , ) ( )
( , )

n
n n n

n n

V xF g g g x
V x

(5.31)
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finite integral Fourier transformation with spectral parameter in boundary 

conditions. 

Theorem 5.1.4 (on basic identity): If the function 3
0 1g(x) ( , )C l l  and 

satisfies the boundary conditions  

                                                0 0 ,B g g 1 1,B g g   (5.32) 

then the basic identity of the integral transformation of the differential Fourier 

operator 
2

2
2

dB a
dx

 is true : 

 

012 1 12 2 1 0 2 11
11 0 1 1 11 0 0 0 1 0 02 11

11

2 0 0 0 0 1 0 0
11 11 11 11 11 0 0 11 0 0

1 1 1 1 1 1
11 11 11 11 11 0 0

( )( ) ( , ) ( , )
( )

( ) ( , ) ( , )

( ) ( , )

n
n n n n n n n n

n

n n n n

n

dF a g x g V l g V l g g g g
dx

g V l V l

V l 1
11 0 0( , )nV l

       (5.33) 

Proof: Identity (5.33) is established directly by the method of integration 

twice by parts under the sign of the integral, followed by the use of the properties of 

the functions g (x) and 0 ( , )nV x .  

5.1.2. Fourier integral transformation for a halflimided homogeneous 

media  

The integral Fourier transformation for a halflimided homogeneous media 

related to a boundary operator  1 2,B h h
x

 1 0,h  2 0,h  1 2 0h h  is 

constructed and mathematically substantiated in [11]. We construct it using the 

Cauchy kernel as a fundamental solution to the Cauchy problem for a parabolic 

equation under a homogeneous boundary condition. 

We consider the problem of limited solution constructing of differential 

equation of the second-order in the domain ( , ) : (0, ), (0, )D t x t x  [19] 

                                    
2

2 2 2
2 0, 0, 0u uu a a

t x
  (5.34) 

under the initial condition: 

                                                       0, tu t x g x   (5.35) 
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and boundary conditions: 

0 0 0
11 11 11 0

0, 0.
x

x

uu
t t x

(5.36) 

We assume, that 0
11 0,  0

11 0, 0
11 0,  0

11 0,  0 0
11 11 0,  

0 0
11 11(0) (0) 0.g g  

and the function ,u t x is the original for Laplace with respect to the variable t [29].

In the Laplace image we have the problem of construction of a limited solution to 

equation in domain D :
2

2 2 2 2 2 2
2

* * ; , , 0d u q u g x g a g q a p
dx

  (5.37) 

 under boundary conditions: 

0 0
11 11 0( , ) 0,x

d u p x
dx

 0.
x

du
dx

  (5.38)

Let's fix that a branch of ambiguous function 1 2 1/ 2( ) ,q a p on 

which 0eq . It is directly verified that the solution to the boundary value problem 

(5.37), (5.38) is the function: 

0

, , ,
l

l

u p x p x g dE .  (5.39)

The formula (5.39) involves the fundamental function of the boundary value 

problem (5.37), (5.38)  
0 0

11 11
0 0

11 11

( , , )
2 2

q x q xe q ep x
q q q

E .  (5.40) 

The special points of the function ( , , )p xE are the points of branching 

2p and .p  As a result of Jordan's lemma and Cauchy's theorem [11], we 

obtain the formula for calculating the original of the fundamental function: 
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0 2 2

0

1 2 2

0

1 2( , , ) ( , , ) m ( ), ,
2

i
tpt i

i

t x L p x e dp e x e d
i

E E E Im Em

. (5.41) 

We put 2 ,p i  or 2 2 2 2( ) exp ( ).p i  Here 

2dp d . 

Let us define the spectral function 
0 0

11 11,  sin bx  b cos bxnV x  

and spectral density 0 0 0 2 2
11 11 11  

12 21 0 2 0
11 11( ) ,b b

 
1 ,b a  0 0 0 2 2

11 11 11( ),  

0 0 2 2
11 11( ).  

According to the formula (5.41) we have: 

                     
2 2

2

0

2( , , ) , , ( )tt x e V x V d aE .   (5.42) 

 The solution to the parabolic boundary value problem of mass transfer (5.34) 

- (5.36) is the function: 

                            1

0

, , , ,u t x L u p x t x g dE  2.a  (5.43) 

 Due to the initial condition (5.34) we obtain an integral image: 

                              
0 0

2( ) ( , ) ( ) ( ) ( , ) .g x V x d g V d   (5.44) 

 The integral image (5.44) for a halflimited domain 0x  generates a direct 

                                       
0

( ) ( ) ( , ) ( ).F g x g x V x dx g   (5.45) 

and inverse  

                          
1

0

2( ) ( ) ( , ) ( ).F g g V x d g x
 (5.46) 

Integral transformation of Fourier with spectral parameter. 
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Theorem 5.1.5: (on an integral image). If the function ( )f x  is definite, 

piecewise - continuous, absolutely sum and has limited variation on the set 0, , 

then the integral image comes true:  

0 0

1 2( 0) ( 0) ( , ) ( ) ( ) ( , ) .
2

f x f x V x d f V d  (5.47) 

Theorem 5.1.6 (on the basi  identity): If a function ( )f x  has three 

continuous derivatives on the set 0, , ie (3)( ) (0, ),f x C disappears together 

with its first-order derivative at x  and at the point 0x l  satisfies the boundary 

condition:  

0

0 0
11 11 0( ) ,x l

d f x f const
dx   (5.48) 

then the basic identity of the integral transformation of the Fourier differential 

operator £
2

2
2

da
dx

 is true: 

2
2 2 1

02 ( ) .d fF a f a f
dx   (5.49) 

 Proof: Proof of identity (5.49) is established directly by the method of 

double integration of parts under the sign of the integral using the properties of 

spectral functions  ,V x and conditions (5.49).

5.2 Finite hybrid integral Fourier transforms for bounded heterogeneous 

n-component media

Consider the Sturm-Liouville problem about the construction on the set 

1

1 0 1
1

: , ; l 0,
n

n j j n
j

I z z l l l l  nonzero solution to the system of the 

second-order differential Fourier equations: 
2 1/ 22 2 2 2
2

10; , 1, 1j jj j j j
j

dL V b V b j n
dz D

  (5.50) 
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with boundary conditions: 

0 1

0 0 1 1
11 11 1 22 22 10, 0

n

n n
z l n z l

d dV V
dz dz

 (5.51) 

and a system of n– interface conditions: 

1 1 2 2 1 0, 1,2, 1, .
k

k k k k
j j k j j k z l

d dV V j k n
dz dz

  (5.52) 

In equalities (5.50) - (5.52) magnitudes are involved: 
2 0 0 1 1 2 2

11 11 22 22

2 2 2 2; 2 2
1 2 1

0, 0, ( , ); 0, 0; ;

, 0, 1; max{ ;....; }.

n n m m m
j j jk jk jk

m m m
jk jk k n

a o

m n

Let's write numerical matrices

1 1 1 1

2 2 2 2
1, 2,, ; 1,2; 1,

k k k k
j j j j

k k k k
j j j j

j k j kA A j k n  

and numbers: 

1, 1, 2 1 1 2

2, 2, 2 1 1 2

det ,

det ,; 1,2; 1, ;

k k k k
j k j k j j j j

k k k k
j k j k j j j j

c A

A j k n

12, 21,
11,12 11 21 21 11 11,12 11 21 21 11

12, 21,
21,22 12 22 22 12 21,22 12 22 22 12

, ,

, .

k k k k k k k k k

k k k k k k k k k k

c c

c c
  (5.53)

We will also require the fulfillment of relations: 
12, 21,

11, 21, 2, 11,12 11,12

12, 21,
21,22 21,22

0; 0; ;

; 1, 2; 1, .

k k
k k j k

k k

c c c

c c j k n
  (5.54)

Fundamental system of solutions to the equation 0jL V  form functions 

jsq z   sin jq z , j jq , therefore, the solution to the boundary value problem 

(5.50) - (5.52) looks as: 

( , ) ( )cos ( )sin ,j j j j jV z A q z B q z  j= .1,1 n  

Boundary conditions (5.51) and a system of n - interface conditions (5.52) to 

determine arbitrary constants jA  and jB  give an algebraic system with (2 2n ) 

equations: 
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01 02
11 1 0 1 11 1 0 1

1 2 1 2
1 1 2 1 1 2 1 1

1,1 1,2
22 1 1 22 1 1

( ) ( ) 0

( ) ( ) ( ) ( ) 0, 1,2; 1,
( ) ( ) 0

k k k k
j k k k j k k k j k k k j k k k

n n
n n n n

v q l A v q l B

v q l A v q l B v q l A v q l B j k n
v q l A v q l B

     (5.55) 

In order to have a nonzero solution to an algebraic system (5.55), it is necessary 

and sufficient that its determinant be equal to zero 

                      1,2 1,1
1 22 1 2 22 1( ) ( ) ( ) ( ) ( ) 0.n n

n n n n nv q l v q l                (5.56) 

Here 

1

2

( ) ( ) cos sin cos ,

( ) ( )sin cos sin ;

m

m

k k k k k
ij s m ij ij s ij s s m ij s m

z l

k k k k k
ij s m ij ij s ij s s m ij s m

z l

dv q l q z q q l q l
dz

dv q l q z q q l q l
dz

 

11 22 21 12

01 02
01 11 1 0 02 11 1 0

1,2 1 1 1,1 2 1

( , ) ( ) ( ) ( ) ( );

( ) ( ), ( ) ( );

( ) ( ) ( , ) ( ) ( , ).

k kj km kj km
jm

j j
jm j m j j j j j m j j j j

z y v z v y v z v y

q l q l

q l q l q l q l

 

Theorem 5.2.1 (about the discrete spectrum). Roots 1 2, ,..., ,...m  

transcendental equation (5.56) form a discrete spectrum: the roots are real, simple, 

(except maybe zero), symmetrically located relative to zero and form in the region 

0  monotonically increasing sequence with a single boundary point .  

Proof:  The proof of the theorem is performed using the method of works [11]. 

We show that the spectrum of eigenvalues is real numbers. Assuming that the 

eigenvalue of the boundary value problem (5.50) - (5.52) is a complex number 

is , which corresponds to the eigen-vector function ( , )V z . At the same 

time, its own number will be conjugated to it is , which corresponds to the 

eigen-vector function ( , )V z . Since ( , )V z  and ( , )V z  are eigenvector functions 

corresponding to different eigenvalues, then the condition of orthogonality is fulfilled 

(for different are generalized orthogonal): 

0 0

2 20 ( , ) ( , ) ( ) ( )
l l

l l

V z V z z dz V z dz V , 

hence the equality ( , ) 0V z , which is impossible, and therefore, eigenvalues are 

not complex, but are real. The symmetry of the roots is obvious here. 
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It is possible to see by the method of the opposite that the roots 1 2, ,..., ,...m  

are different. Because ( )n  is the entire analytical function of , then the 

transcendental equation (5.56) has a countable set of roots that do not have a finite 

boundary point [11]. That means that lim mm
. Theorem is proved. 

Discrete spectrum of eigenvalues n  corresponds to a discrete eigenvector 

function 1 2 1( , ) ( , ), ( , ),..., ( , ), ( , ) .m m m n m n mV z V z V z V z V z  Structure of 

functions ( , )k mV z  is obtained as follows: 

Substitute into the system (5.55) m  and discard the last equation due to its linear 

dependence. Let's put it as 02
1 0 11 1 0 0 02( ) ( ),m mA A q l A  

01
1 0 11 1 0 0 01( ) ( )m mB A q l A . For the first component of the eigenvector function, 

defined on the interval ( 10 , ll ) take the function.  

1 0 02 1 01 1( , ) ( ) ( )cos ( )sin ,m m m m m mV z A q z q z  
12 2 21 ( ) ,jn m j

j

q
D

 ,02
j  

.1,1 nj  

Coefficient 0A  to be determined. The remaining equations are broken up into n  

separate systems of two equations each. Due to recurrent dependencies: 

1 12 1, 22 1,
21, 1,

1 ( , ) ( , ) ,k k
k k km k k m k k km k k m k

k k m

A A q l q l B q l q l
c q

 

1 11 1, 21 1,
21, 1,

1 ( , ) ( , ) ,k k
k k km k k m k k km k k m k

k k m

B A q l q l B q l q l
c q

nk ,1  

we get: 

                          0
2

21, 1,
1

( )k k mk

i i m
i

AA
c q

; 0
1 1

21, 1,
1

( )k k mk

i i m
i

AB
c q

.  (5.57) 

If we put 0 21, 1,
1

n

i i m
i

A c q ; 

1,2 1,1( , ) ( ) cos ( )sink m k n km k m kmG z q z q z , 

then components kV  of spectral vector function ( , )mV z  will be determined: 
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21, 1,( , ) ( , )
n

k m i i m k m
i k

V z c q G z , 1,k n ; (5.58)

1 2 1, 1 1,( , ) ( ) cos ( )sinn m n m n m n m n mV z q z q z . 

If )(x - Heaviside function, the spectral vector function is written as: 
1

1
1

( , ) ( , ) ( ) ( )
n

j k j k k
k

V z V z z l l z .  (5.59)

Theorem 5.2.2 (about the discrete function). The system of eigenfunctions 

1j j
V z,  Fourier differential operator Fn, defined by equality (1.3.0), is 

generalized orthogonal, complete and closed on the set In. 

Proof: Let us show that the system of eigenvector functions 
1

( , )j j
V z  is 

generalized orthogonal to the set nI  with weight function 

1

1
1

( ) ( ) ( )
n

k k k
k

z z l l z , 

11,

21,

1 n
m

k
m kk m

c
D c

, nk ,1 , 1
1

1
n

nD
. 

Indeed, consider two eigenvector functions ( , )jV z  ( , )mV z , which 

correspond to their own values mj . From identities: 

2
2

2 ( , ) 0sj s j
d q V z
dz

, 
2

2
2 ( , ) 0sm s m

d q V z
dz

, 1,1 ns  

we get the ratio 

  
2

2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .s
s m s j s m s j s j s m

m j

a d d dV z V z V z V z V z V z
dz dz dz

  (5.60)

Multiply the equality (5.60) by zdz , integrate from 1sl  to sl  and add to s

from 1 to 1n . As a result, we obtain equality 

1

0 1

21

2 2
1

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )
sn

s

ll n
s s

j m s m s j s j s m
s m jl l

a d dV z V z z dz V z V z V z V z
dz dz

2
1 1 1 0 1 0 1 0 1 0 1 12 2

1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )m j j m n m n j
m j

d d da V l V l V l V l V l V l
dz dz dz
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2
1 1

1
( , ) ( , ) ( ( , ) ( , ) ( , ) ( , ))

n

n j n m k k k m k j k j k m
k

dV l V l a V z V z V z V z
dz

  (5.61) 

2
1 1 1 1 1( ( , ) ( , ) ( , ) ( , ) .

k
k k k m k j k j k m z l

a V z V z V z V z  

Consider the matrix 
kk

kk

kA
2121

1111
,11 ~~

~~~ , 
kk

kk

kA
2222

1212
,12 ~~

~~~  and determine the 

number of 
kkkkkc 12212211

,11
12,11

~~~~~ , kkkkkc 12212211
,12
12,11

~~~~ ,

kkkkkc 12212211
,21
12,11

~~~~~ , kkkkkc 12212211
,22

12,11
~~~~~ .

Because of

0~~)~~(~)(~)(~)(~)(~
,11

4
,12

2,21
12,11

,12
12,11,1111212111 kk

kk
k

kkkk ccccc , then 

an algebraic system is 

),,(~),(~),(~),(~
1121121111 kk

k
kk

k
kk

k
kk

k lVlVlVlV

),,(~),(~),(~),(~
1221222121 kk

k
kk

k
kk

k
kk

k lVlVlVlV   (5.62) 

relatively ),( kk lV and ),( kk lV  have a unique solution: 

),()(~),()(~1),( 1
,11
12,111

,12
12,11

,11
kk

k
kk

k

k
kk lVclVc

c
lV ,  

),()(~),()(~1),( 1
,21
12,111

,22
12,11

,11
kk

k
kk

k

k
kk lVclVc

c
lV .  (5.63) 

Putting for simplicity jm , , consider the expression 

),(),(),(1),(),(),(),( 11112
,11

kkkk
k

kkkkkkkk lVlVA
c

lVlVlVlV

),(),(),(),(),(),(),(),(),( 112211211112 kkkkkkkkkkkk lVlVAlVlVAlVlVA

)(~)(~)(~)(~),( ,1
12,11

,2
12,11

,2
12,11

,1
12,11

kikikjki
ij ccccA ; 2,1, ji ; nk ,1 .   (5.64) 

We establish equations by direct calculations: 

,)()(~)(~)(~)(~
11

22
11111111

kkkkk 01111111111
kkkkk ; 

,)()(~)(~)(~)(~
22

22
21212121

kkkkk 02121212122
kkkkk ; 

2 2
21 11 11 21 11, 12,1( ) ( ) ( ) ( ) ( )k k k k k

kc ;  (5.65)
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kkkkkkkkkk
211121112,12112121111,12 . 

Due to equations (5.65) we have: 
2 2 22,

22 11 22 22 22 12 12 12 12 22 12 22 11, 21,22( , ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))k k k k k k k k k k k k
kA c c

; 
2 2 11,

11 11 22 22 22 12 12 12 12 12 12 22 11, 21,22( , ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))k k k k k k k k k k k k
kA c c

; 
2 2

12 11 22 22 22 12 12

12,
12 22 12 12 22 11, 21,22 11, 21,

( , ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ))

k k k k k k

k k k k k k
k k k

A

c c c c
. 

Define the functions ),()(~),()(~)( 1212 kk
k
jkk

k
jjk lVlVz , 2,1j . 

As a result of the substitution of equations (5.66) to (5.64), we obtain: 

1 2 2
11, 11 2 2 22 1 1( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( )k k

k k k k k k k k k k k k kV l V l V l V l c a z z a z z
 

11, 11,
12 1 2 1 2 11, 21,22 1 1 21,22 1 1( ( ) ( ) ( ) ( )) ( ( , ) ( , ) ( , ) ( , ))k k k

k k k k k k k k k k k k ka z z z z c c V l V l c V l V l
12,
21,22 1 1 1 1 11, 21,( ( , ) ( , ) ( , ) ( , ))k

k k k k k k k k k kc V l V l V l V l c c  

                                 ),(),(),(),( 1111 kkkkkkkk lVlVlVlV .  (5.67) 

Because of 2
12 11 22 12,1 12,2 11 22 11, 12, 11,( ) 0 0k k k k k k k k k

k k ka a a a a a a c c c , 

12, 2 11, 22, 12, 21, 11, 22,
21,22 21,22 21,22 21,22 21,22 21,22 21,22 21, 22,( ) 0k k k k k k k

k kc c c c c c c c c , then the sum (5.61) takes 

the form: 

2 2 11,
11, 11 2 22 1 11 2 22 1 11, 21,22 1

1
( ) ( ) ( ) ( ) ( , )

n
k k k k k

k k k k k k k k k k
k

c a a z a z a z a z c c V l

 

22, 11, 22, 2 2 2 2
21,22 1 21,22 1 21,22 1( , ) ( , ) ( , ) ( ) ( ) ( , ).k k k

k k k k k k nc V l c V l c V l G   (5.68) 

Assume that 11,
21,22 12 22 22 12 0k k k k kc , 22,

21,22 12 22 22 12 0.k k k k kc  At point 

0z l  at 2 0  (for simplicity) we have identical equations: 

0 0 2 0 0
11 1 0 11 1 0 11 1 0 11 1 0( , ) ( , ) ( , ) ( , ) 0n n n n nV l V l V l V l , 

                   0 0 2 0 0
11 1 0 11 1 0 11 1 0 11 1 0( , ) ( , ) ( , ) ( , ) 0j j j j jV l V l V l V l . (5.69) 

On the one side 
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0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

0 0 0 0
11 11 11 11 1 0 1 0 1 0 1 0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , )

m m j j

j j m m

j m m j

V l V l V l V l

V l V l V l V l

V l V l V l V l

 (5.70) 

On the other side, due to equations (5.69) we have 

           

0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

2 0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

m m j j

j j m m

m m m j j

V l V l V l V l

V l V l V l V l

V l V l V l V l
2 0 0 0 0

11 1 0 11 1 0 11 1 0 11 1 0

2 2 0 0 0 0
11 1 0 11 1 0 11 1 0 11 1 0

( , ) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , )

j j j m m

m j m m j j

V l V l V l V l

V l V l V l V l

  (5.71) 

From equations (5.70) and (5.71) we find that 

   
1 0 1 0 1 0 1 0

2 2
0 0 0 0

11 1 0 11 1 0 11 1 0 11 1 00 0 0 0
11 11 11 11

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

m m j m

m j
m m j j

V l V l V l V l

V l V l V l V l
   (5.72) 

Similarly, we find that 

1 1 1 1 1 1 1 1

2 2
1 1 1 1

22 1 1 22 1 1 22 1 1 22 1 11 1 1 1
22 22 22 22

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

n n m n n j n n j n n m

m j n n n n
n n m n n m n n j n n jn n n n

V l V l V l V l

V l V l V l V l
 (5.73) 

Substitution of equations (5.68), (5.72) and (5.73) in (5.61) leads to the 

relation: 
1

0

2
0 01 1

11 1 0 11 1 00 0 0 0
11 11 11 11

2
0 0 1 11 1

11 1 0 11 1 0 22 1 1 22 1 11 1 1 1
22 22 22 22

22

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

nl

m j m m
l

n nn n
j j n n m n n mn n n n

V z V z z dz V l V l

V l V l V l V l

11 1
1 1 22 1 1 , ,( , ) ( , )n n

n n j n n j n m j n m jV l V l G G

  (5.74) 

If we determine the generalized scalar product [11] 

                  1

1
( , ), ( , ) ( , ) ( , ) ( , )m j m j n m jV z V z V z V z G ,  (5.75) 

where the classical scalar product 
1

0

( , ) ( , ) ( , ) ( , )
nl

m j m j
l

V z V z V z V z z dz , 

then from equality (5.74) it follows that for all m j  
1

( , ), ( , ) 0m jV z V z . 
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The latter equality means that the system of eigenfunctions is generalized 

orthogonal. 

Equation (5.75) generates the square of the norm of eigenfunction ( , )jV z : 

2 2 1

1
( , ) ( , ) ,j j n j jV z V z G .   (5.76)

The standard method [12] can be shown to be generalized orthogonal to the 

set In system of vector functions 
1

( , )j j
V z  is complete and closed. 

The following statements are fair. 

Theorem 5.2.3 (type of Steklov's theorem): Any three times continuously 

differentiated on the set In vector function f(z), which satisfies the boundary 

conditions (1.51) and a system of interface conditions (1.52) is represented on each 

compact set In*  In absolutely and uniformly convergent Fourier series according 

to the system of eigenvector functions 
1

( , )j j
V z : 

0

2
1

1

( , )
( , )

( , )

l
j

j
j l j

V z
f z f V d

V z
  (5.77)

Proof: The proof of the theorem is based on the use of the work approach 

[11]. Taking into account that the vector function f 2 ( )nC I , satisfies the boundary 

and interface conditions of the boundary value problem and with the help of the 

influence functions of the problem, taking into account that 

( ) ( ) , 1, 1k k k kL f z g z k n , where ( )g z - defined by f and operator L  

continuous vector function in nI , we receive: 

1

1

1 1

1 1
, ,

k
k

k
k

ln n l

m mk k k mk kl
k kl

f z z g z g dH K   (5.78) 

where core , ,mk mk m kz zK H ( m k ) are also generalized-symmetric 

with respect to the diagonal z : 
1

1

2

, ,
k

s
mk km

s i s

cz z
c

K K .  

Let's write down the Sturm-Liouville boundary value problem (5.50) - (5.52) 

in integral form with respect to functions 
,

,
,

m
m m

V z
z

V z
 through

influence functions: 
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1
2

1
1

, ,
,

, ,

n km m
mk kk

k

V z V
z d

V z V z
H . 

This statement means that the eigenvalues and eigenvectors are functions for 

the problem (5.50) - (5.52) are respectively characteristic numbers and characteristic 

vector-functions of the system of integral equations: 

                      
1

2

1
1

, ,
,

, ,

n km kk
mkk

i m

V z V
z d

V z V z
K ; 1,n n .   (5.79) 

Since ,m jV z  are generalized orthonormal with weight m  vector-

functions of the boundary value problem, then we have 

1
1

2
1

, ,

,
k

k

n l k j k i
jil

k i

V z V z
z dz

V z
. 

Cores ,ik zK  of the systems of integral equations (5.79) are continuous at 

, nz I , evenly bounded by z, and therefore are integrated with the square of the 

variable : 
1

1

1
,k

k

n l

mkl
k

z d const2K  and then as functions of a variable 

 can be formally developed into a Fourier series by a system of eigenfunctions:  

1

,
, ~ ,

,
k j

mk m j k
j j

V
z a z

V z
K ; 

where by 

definition:
1

1

2
1

, ,
, ,

, ,
k

k

n l k j m j
m j mk k kl

k j j j

V V
a z z d

V z V z
K , 

(according to (5.79)).  

So, 

                  221

, ,
, ~

,

m j k j
mk m k

j
j j

V z V
z

V z
mK , , 1, 1m j n .  (5.80) 

According to the Bessel inequality, which holds for the series of the right-

hand side (5.80), the estimate is fair: 
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1

2

2
221 1

,
,

,

k

k

lm j
m mkl

j k
j j

V z
z d

V z
K .  (5.81) 

Vector function g  with (5.77), continuous on nI  we develop into a Fourier 

series according to the system of orthonormal vector functions ,

,
k j

j

V

V z
: 

                               
1

,
~ ( )

,
m j

m j m
j j

V z
g b

V z
;  (5.82) 

 
1

1

1

,
( )

,
k

k

n l k j
j k kl

k j

V
b g d

V z
; 

1

12 2

1 1

k

k

n l

j kl
j k

b g d  (according to the Bessel inequality), coincides with 

a series with a term 
2

jb . 

Develop the system of vector functions 
,

,
m j

j

V z

V z
 formally in the Fourier 

series also the left part of the equality (5.78): 

                                                  
1

,
~

,
m j

m j
j j

V z
f z

V z
,  (5.83) 

where by definition: 

                        

1

1

1 1
1 1

1

1

1

1

1 1

,
1 1

1

2 2
1

,

,

,
,

,

,1 .
, ,

k

i

k i

k i

k

k

n l k j
j k kk

k j

n nl l k j
k k k kl l

k k j

n l k j j
k k kl

kj j j j

V z
f z dz

V z

V z
g d z dz

V z

V b
g d

V z V z

K  (5.84) 

Taking into account (5.84) the decomposition (5.83) will look like 

  
2

1

,
~

,
j m j

m m
j j j

b V z
f z

V z
, 1, 1m n .                 (5.85) 
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We show that a series of (5.85) is completely and evenly convergent and has 

sum mf z . Using the Cauchy criterion of uniform convergence of functional series 

[11], Cauchy-Bunyakovsky inequality, inequality (5.81) and an estimate of the 

convergence of the series (5.82), we obtain a segment of a series for evaluation by 

modulus: 

1 11 1

1 11 1 1 1

1

1 1
1 1 1

1

2 2
1 1

1
1 12 2
2 22 2

221 1 1

,,

, ,

,
0.

j L j L j m jj m j
m m

j j j jj j j j

j L j L m j

j m j
j j j j j jj

b V zb V z

V z V z

V z
b M b

 (5.86) 

Since the estimates, and hence the marginal ratio (5.86) are absolute and 

uniform, then according to the Cauchy criterion a number (5.85) coincides regularly 

and its sum is a continuous function.  

Let us show that the sum of this series is mf z , estimating the average 

difference: 

1 1

1
1 11 1

1 1

1
1 1 1 1

1 1

1
1

1

2
1 1

1

2
1 1

21
1

,
,

,

, ,

, ,

, ,
, , .

,

k

k

k

k

j n lj m j
m mk kl

j kj j

n lm j k j
k kl

j kj j j

jk m j k j j
mk m k k mk kk l

j
j

b V z
f z z g d

V z

V z V
g d

V z V z

V V
z g d z g d

V z

K

K K
1

1 1

1 1

k

k

n n l

k k

(5.87) 

We show that any characteristic number 2 0j i i  and the corresponding 

characteristic vector-function ( , )j iV z  core ,zK  are respectively characteristic 

vector core function and ,j zK , is also symmetrical. Consider the equation: 
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1

1

1

1
1 1

2

1

1
2

1

1
2

22
1

, ,
, ,

, ,

,
, ,

,

, , ,

, ,

k

k

k

k

k

k

m lm j i k j ij
m j i m j i mk kl

kj j i

n l k j ij
m j i j i mk kl

k j i

n lm j k j i k j
j i m kl

kj j j

V z V
z z d

V z i V z

V
z x d

V z

V z V V
d

V z V z

K

K

1 1
.

j

j

 

By identity (5.78) and orthogonality of vector functions 

1 1, , , ; 1, ; , 0j j iV z V z j j j i , we get the identity , 0m jz  that is 

needed to be shown.  

A fair and converse statement is that any characteristic number 2
j  of core 

,j zK  will be one of the characteristic numbers 2
j i  of core ,zK , and 

corresponding to this number nontrivial vector function  will be a characteristic 

function of both cores. For this purpose, it is enough to consider identity (given the 

symmetry of the nucleus  

,j zK ): 1

1

1
2

1
, ,k

k

n l j
m mk kl

k
z z dK ,  2 2

j , 1 1,j j , 

which leads to identity 
1

1
2

1
, ,k

k

n l

m mk kjl
k

z z dK . 

Next, using the known quadratic estimate [11] 1 , for the 

integrated operator  with a symmetrical core, where  - the minimum 

characteristic number of the nucleus, with (1.87) we will get an estimate: 

1 ` 1 `1 1

1
1 11 1 1 1

1 1

1
2 2

1

2 2
1 1 1

1 1
21 12 2

2
2 2

1 11 1

, ,

, ,

1 1, ,

k

k

k k

k k

j jn lj m j j m j

m ml
j k jj j j j

n nl lj
mk k kl l

k kj j

b V z b V z
f z f z dz

V z V z

z g d g d gK

 

where  2
1j  is the minimum characteristic number of core ,j zK . According to 

the theorem on the discrete spectrum 2
1j j , and hence a number (5.85) 
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coincides on average with the function mf z . Since this series coincides uniformly 

with its sum, which is a continuous function, this sum is a function mf z : 

`

2
1 1

,,

, ,
m jj m j

m j
j jj j j

V zb V z
f z

V z V z
, 

where 
1

1

1
( ) ( , )

k

k

ln

j k k k j
k l

a f z V z dz . 

So, we establish equality 

1

1

2
1 1

1

( , )
( ) ( , )

( , )

k

k

ln
k j

m k k j k
j k l j

V z
f z f V d

V z
,  (5.88) 

which confirms the regular convergence of the series to mf z . Theorem is proved. 

The Fourier series (5.77) generates a direct Fn and inverse Fn-1 finite integral 

Fourier transforms for a finite heterogeneous n+1 – component environment in the 

case when the spectral parameter is included in the boundary conditions and in the 

system of interface conditions: 

0

( , )
l

n n n
l

F f z f z V z z dz f ,  (5.89)

1
2

1 1

( , )
( , )

n
n n n

n n

V zF f f f z
V z

.  (5.90) 

In order to apply the constructed integral transformations to find analytical 

solutions of the considered mathematical models taking into account the non-stationary 

modes on the surfaces , 0,jz l j n  we obtain the basic identity of the integral 

transformation of the Fourier differential operator 
1

2 2
1

1
/

n

n i i i
i

L D z l l z d dz . 

Theorem 5.2.4 (about the basic identity): If the vector function 

f(z) 3
nC I , satisfies the system of interface conditions (5.52) and boundary 

conditions 

0

0 0 1 1
11 11 1 10 22 22 1 1,, n n

n n l
z l z l

d df z f f z f
dz dz

,  (5.91) 
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then the basic identity of the integral transformation of the differential operator n  

comes true: 

                       1

1
2 2

1

1 11 0
22 1 1, 1 1 11 1 10

,

, ,

i

i

ln

n n n n i i i n i
i l

n
n n n l n

F f z f f z V z dz

V l f D V l f

 (5.92) 

Substantiation: Based on the system of interface conditions, we establish the 

basic identity: 

21,
1 1 1 1

11,

, , , , 1,
k k

k
k k n k k n k k n k k nz l z l

k

c
f z V z f z V z f z V z f z V z n

c
 (5.93) 

If on the left (5.91) we integrate twice into parts, then the non-integral terms into 

points z=lk due the elections k and basic identity (5.93) turn to zero. Additions in 

points z=l0 and 1nz l l  are converted in the standard way. The consequence of all 

this is equality: 

1

11

0

21

2
1

21 1
2

2
1 1

1 1 1 1 1 1 1 1 1

,

, ,

, , ,

i

i

i i

ii

ln
i

n n i i n i
i l

z l ln n
i i

i i i i n i i n i i i i
i i lz l

n n n n n nz l

d fF f z D V z dz
dz

df d fdD V z f z V z f D V dz
dz dz dz

D f z V z f z V z f z V z f z

1

1

2 21

1

,

i

i

n n z l

ln
n i

i i i i
i il

V z

f z D V dz
D

 (5.94) 

Dividing the sum by two terms and converting the non-integral terms in the 

standard way, we obtain the identity (5.92). 

If the system of interface conditions is heterogeneous, namely 

                             1 1 2 2 1

k

k k k k
j j k j j k jk

z l

d dg z g z
dz dz

,  (5.95) 

then the basic identity (5.93) takes the form: 

21,
1 1 1 1

11,

12 12 1 2 22 22 1 1
11,

, , , ,

1 , ,

k k

k k

k
k k j k k j k k j k k j

z l z lk

k k k k
k j k k j k

k z l z l

c
g z V z g z V z g z V z g z V z

c

d dV z V z
c dz dz

 .  (5.96) 

Due to equalities: 
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1 10 0 0 0 0 0 0
11 1 0 11 11 11 11 11 1 0 11 1 0

1 11 1 1 1 1 1 1
22 1 1 22 22 22 22 22 1 1 22 1 1

, , , ,

, , ,

j j j

n n n n n n n
n n j n n j n n j

V l V l V l

V l V l V l

and basic identity (5.93) the main identity (5.92) has a structure: 

1

1
2 2

1

2
0 01 1

11 1 0 11 1 0 100 0 0 0
11 11 11 11

1 11 1
22 1 1 22 1 1 1,1 1 1 1

22 22 22 22

2

1 11,

,

, ,

, ,

i

i

ln

n n n n i i i j i
i l

j j

n nn n
n n j n n j n ln n n n

k k

k k

F L g z g g z V z dz

V l V l g

D V l V l g

c 12 12 1 2 22 22 1 1, ,
k k

n
k k k k

k j k k j k
z l z l

d dV z V z
dz dz

 (5.97) 

The logical scheme of application of the introduced finite integral Fourier 

transforms nF and 1
nF  will be demonstrated on separate mathematical models for 

heterogeneous signal propagation media. 

Quasi-static hybrid model: Build limited in area , : 0;n nt z t z ID

solution to a system of differential equations with partial derivatives of the 2nd order 

of parabolic type in bounded (n+1)- component heterogeneous medium taking into 

account the rates of change in the gradients of the defining parameters on the 

surfaces , 0, 1jz l j n  

2
2

12 , , , , 1, 1m m
m m m m m m

u uu D f t z z l l m n
t z

 (5.98) 

under the initial conditions: 

10
, , , , 1, 1m m m mt

u t z g z z l l m n ,  (5.99)

boundary conditions: 

0

0 0 0 0
11 11 11 11 1 0

1 1 1 1
22 22 22 22 1

,

,

z l

n n n n
n l

z l

u t z t
t z t

u t z t
t z t

 (5.100) 

and system n - interface conditions: 
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1 1 1 1 1 2 2 2 2 1, , ;

1,2; 1,
k

k k k k k k k k
j j j j k j j j j k jk

z l

u t z u t z t
t z t t z t

j k n

  (5.101) 

We write (5.98) and the initial conditions (5.99) in matrix form: 

 

2
2
1 1 12

12
2
2 2 2 22

12
2

1 1 12

,

,
............

.........................................
,n

n n n

D u
t z

f t z

D u f t z
t z

f t z
D u

t z

  (5.102) 

1 1

2 2

1 10

, ,

, ,
............ ............

, ,n nt

u t z g t z

u t z g t z

u t z g t z

. 

Integral operator nF  we represent in the form of an operator matrix-line: 

11 2

0 1 1

1 1 2 2 1 1... ... , ... , ... ... , ... ,
n n

n n

l ll l

n m m n m n n m n
l l l l

F V z dz V z dz V z dz V z dz . (5.103) 

Assuming that 
2 2 2 2 2
1 2 1 1max ; ;...; ;n n nz z z z z , we will put 

2 2 2
1 0, 1,i n i i n .  

We apply the operator matrix-string (5.103) to the problem by the rule of 

multiplication of matrices (5.102). As a result of identity (5.97), we obtain the 

Cauchy problem: 

                                         
2 2

1

0

;m n m m

m mt

d z u t t
dt

u t g

F
.  (5.104) 

Here: 
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1

1

1

2
0 01 1

11 1 0 11 1 0 00 0 0 0
11 11 11 11

11 1 1 1 1 1
22 22 22 22 22 1 1 22 1 1

2

12
1 11,

; , , ;

, ,

, ,

j

j

ln

m jm jm j j m j
j l

m m m m

n n n n n n
n n m n n m l

n
kk k

k k

u t u t u t u t z V z dz

t f t V l V l t

V l V l t

d
c

F

12 1 2 22 22 1 1, , ,
k k

k k k
k m k k m k

z l z l

dV z V z t
dz dz

1 1

1 1
, ,

n n

m jm m jm
j j

f t f t g g z  

The solution to the Cauchy problem (5.104) is a function 

2 2 2 2
1 1

0

m n m n
t

t t
m m mu t e g e dF .  (5.105)

Integral operator 1
nF  as inverted to nF is represented in the form of an operator 

matrix-column: 
12

1 1
1

12
21 1

1

12
1 1

1

... , ,

... , ,
...

..............................................

... , ,

m m
m

m m
mn

n m m
m

V z V z

V z V z
F

V z V z

 .  (5.106) 

If we now apply the operator matrix-column (5.106) to the matrix-element 

according to the rule of multiplication of matrices mu t , where the function 

mu t  is defined by the formula (5.105), then after elementary transformations we

receive the following components: 
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1

1

1 0

0 0
0

(1) (2)
1 2

1 0

, , , ,

, ,

, , , 1, 1

k

k

ltn

j jk k k k
k l

t

j lj l

tn

jk k jk k
k

u t z t z f g d d

W t z W t z d

t z t z d j n

Hh

Rh Hh

  (5.107) 

vector functions 1 2 1, , ; , ;...; , ; ,n nu t z u t z u t z u t z u t z , which completely 

defines a single solution to boundary problem (5.98) - (5.101). 

Here are the main solutions: 

-  matrix of influence functions generated by the inhomogeneity of the system 

(5.107):  

2 2
1

2
1

1

, ,
, , ; , 1, 1

,
m n t j m k m

jk
m m

V z V
t z e j k n

V z
Hh , 

-  Green's vector functions generated by boundary conditions at the boundaries 

0z l  and 1nz l l : 

2 2
1 1 0

0 1 1 20 0 2 2
1 11 11 1 1

, ,
, ;

,
m n t m j m

j
m m n m

V l V z
W t z D e

V z

2 2
1 1

21 1 2 2
1 22 22 1 1

, ,
, ; 1, 1

,
m n t j m n m

lj n n
m m n m

V z V l
W t z e j n

V z
, 

-  matrix of Green's functions generated by the system of interface conditions 

kz l . 

2 2
1

2 2
1

22 1 22 1(1)
2

111,
1

12 1 12 1(2)
2

111,
1

, ,
, ,

,

, ,
, , .

,

m n

m n

k k
t k k m k k mk k

jk j m
mk m

k k
t k k m k k mk k

jk j m
mk m

V l V lDt z e V z
c V z

V l V lDt z e V z
c V z

R h

R h
 

The solution (5.107) to the considered boundary value problem, we obtained 

provided that  
0 0 1 1

1 11 1 0 11 1 0 1 22 1 1 22 1 1

1 1 2 1 2 1

0, 0,

0.

n n
n n n n n

k k k k
jk j k k j k k j k k j k k

g l g l g l g l

g l g l g l g l
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Otherwise in the solution (5.107) of functions 0 , ,l jk  must be 

replaced according to the function 

0 1 1, ,l n jk jk . 

This means that in formula (5.107) more terms will appear 

1 2
0 1 1 1 2

1
, , , ,

n

j lj n jk k jk k
k

W t z W t z t z t zR R . 

Dynamic hybrid model. Build limited in area nD  solution to a system of 

differential equations with partial derivatives of the 2-nd order of hyperbolic type for 

limited (n+1)- component of a heterogeneous environment taking into account the 

dynamics of changes in the velocities of the gradients of the defining transfer 

parameters at the edges and interface surfaces , 0,jz l j n : 

2 2
2

12 2 , , , , 1, 1j j
j j j j j j

u u
u D f t z z l l j n

t z
(5.108)

with the initial conditions: 

1 20
0

, , , 1, 1j
j j jt

t

u
u t z g z g z j n

t
 (5.109)

and boundary conditions: 

0

2 2
0 0 0 0
11 11 11 11 1 02 2

2 2
1 1 1 1

22 22 22 22 12 2

,

,

z l

n n n n
n l

z l

u t z t
t z t

u t z t
t z t

 (5.110) 

and a system of interface conditions:  

2 2 2 2

1 1 1 1 1 2 2 2 2 12 2 2 2, , ;

1,2; 1,
k

k k k k k k k k
j j j j k j j j j k jk

z l

u t z u t z t
t z t t z t

j k n

 (5.111) 

Let's use the system (5.108) and initial conditions (5.111) in matrix form: 
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2 2
2

1 1 12 2

12 2
2
2 2 2 22 2

12 2
2

1 1 12 2

,
,

, ,
............

..................................................
,

,
n

n n n

D u t z
t z

f t z

D u t z f t z
t z

f t z
D u t z

t z

  (5.112) 

11 211 1

12 222 2

1, 1 2, 11 10 0

, ,

, ,
;

............ ........................ ............
, ,n nn nt t

g z g zu t z u t z

g z g zu t z u t z
t

g z g zu t z u t z

. 

Assuming that 2 2 2 2 2
1 2 1 1max ; ;...; ;n n n , apply to the problem (5.112) 

according to the rule of multiplication of matrices, the operator matrix is a string 

(5.103). Due to identity (5.97) we obtain the Cauchy problem: 

         
2

2 2
1 1 , 22 00

;m n m m m m m mtt

d du t t u t g u t g
dt dt

F h .  (5.113) 

The solution to the Cauchy problem (5.113) is a function 

1/22 2
2 1 1

0

sinsin sin ,
t

mm m
m m m m m m n

m m m

q tq t q tdu t g g d q
q dt q q

Fh .  (5.114) 

Applying to the matrix-element mu t , defined by the formula (5.114), by 

the rule of multiplication of matrices, by the operator matrix-column (5.106), after 

elementary transformations we obtain a single solution to the hyperbolic problem 

(5.108) - (5.111): 

            

1

1

1

2
1 0

1

1
1

0 0
0

1 2
1 2

1 0

, , , ,

( , , )

, ,

, , , 1, 1

k

k

k

k

ltn

j jk k k k
k l

ln

jk k k
k l

t

j lj l

tn

jk k jk k
k

u t z t z f g d d

t z g d
t

W t z W t z d

t z t z d j n

Hh

Hh

R R

 (5.115) 
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Here are the main solutions to the hyperbolic problem (5.108) - (5.111): 

- matrix of influence functions generated by the inhomogeneity of the system

(5.108):

2
1

1

, ,sin, , ; , 1, 1
,

j m k mm
jk

m m m

V z Vq tt z j k n
q V z

H

- Green's vector functions generated by boundary conditions at the boundaries

0z l  z l :

1 02
0 1 1 20

1 11 1

, ,sin,
,

m j mm
j

m m m

V l V zq tW t z a
q V z

;  

1
21

1 22 1

, ,sin, ; 1, 1
,

j m n mm
lj n

m m m

V z V lq tW t z j n
q V z

 

- and matrices of the Green's function generated by the inhomogeneity of the

system of interface conditions:

1 22 1 22 1
2

111,
1

2 12 1 12 1
2

111,
1

, ,sin, , ,
,

, ,sin, , .
,

k k
k k m k k mk k m

jk j m
mk m m

k k
k k m k k mk k m

jk j m
mk m m

V l V lD q tt z V z
c q V z

V l V lD q tt z V z
c q V z

R

R

The solution to this hyperbolic boundary value problem is constructed with the 

condition:  
0 0 1 1

1 11 1 0 11 1 0 1, 22 , 1 1 22 , 1 1

0
, 1 1 2 , 1 2 , 1

0, 0,

0, 1,2

n n
i i n i i n n i n n

k k k k
jk i j ik k j ik k j i k k j i k k

g l g l g l g l

g l g l g l g l i

Otherwise, next components will appear in formula (5.115) 
2 2

0 11 0 12 1,1 1,12 2

2 2
1 2 1 2

1 ,1 2 ,1 1 ,2 2 ,22 2
1

, , , ,

, , , , .

j j lj n lj n

n

jk k jk k jk k jk k
k

W t x W t x W t x W t x
t t

R t x R t x R t x R t x
t t
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5.3 Integral Fourier transform for semi-bounded heterogeneous n – 

component media 

Let us introduce an integral transformation generated on the set 

1

1 0 1
1

:  z , ; 0,
n

t
n j j n

j

I z l l l l  of the second-order Fourier differential 

operator: 
2

1 1 2
1

n

n k k k n n
k

dL D z l l z D z l
dz  (5.116)

assuming that for any vector function 1 2 1( ) ( ), ( ), , ( ), ( )n ng z g z g z g z g z

from the area of definition of the operator nL  boundary conditions come true:

            
0

0 0 1
11 11 1 x

( ) 0,         lim 0,   0,1
m

n
x l m

d d gg z m
dz dz

 (5.117) 

and interface conditions systems: 

1 1 2 2 1   0;   1,2;   1,
k

k k k k
j j k j j k z l

d dg g j k n
dz dz

. 

(5.118) 

Consider the construction problem of a bounded domain 

nD ={ ,t z : 0, , nt z } solution to the system of differential equations in partial 

derivatives of wave signal propagation [11, 12] 
2

2
2 ,j j jD u t x

t x
=0, z 1, ,j jl l j = 1,j n , 1nl =  (5.119) 

under the initial conditions: 

10
, , , , 1,j j j jt

u t z g z z l l j n (5.120) 

and boundary conditions: 

0

0 0 0 0 1
11 11 11 11 1 0; 0n

zz l

uu
t z t z

  (5.121) 

and a system of interface conditions: 
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1
1 2 1 1 1 1 1

2 2 2 2 1

,

, 0; 1, ; 1,2

k

k

k k k k k
j k j k j j j j kz l

k k k k
j j j j k

z l

L u L u u t z
t z t

u t z k n j
t z t

 (5.122) 

Assume that the vector is a function 

1 2 1( , ) , , , ,..., ( , )nu t z u t z u t z u t z  is the original Laplace relative to t [29]. 

Using the transform integral of the Laplace to the problem (5.116) - (5.122), we 

obtein the problem: to  find in domain 1  the solution to   differential  equation 

system  
2

2
2 , ; 1, 1j j j

d q u p z g z j n
dz

(5.123)

under boundary conditions: 

0

0 0 1
11 11 1 0, 0n

z l z

d duu g
dz dz

, (5.124)

and a system of interface conditions: 

1

1 1 1 1
1 1 1 2 2 2 1, , , 1, 2j j j j j

x l

d du p x u p x j
dx dx

     (5.125) 

Here: 
1

1 1/2 2 22

0 0
0 11 1 0 11 1 0 1 1 2 1 1

; , 0, 0, 0;

, ; 0, ; , 1,2;

; , 1,2.

j j j j j j j j j

m m m m m m
ji ji ji ji jk jk

k k k k
jk j k k j k k j k k j k k

g D g z q D p D Req

p p m n j k

g g l g l q l g l g l q l j

Replacing variables in a task (5.123) – (5.125) is easily reduced to a problem 

with homogeneous boundary conditions ( 0 0g ) and a homogeneous system of

interface conditions ( 1 0; 1,j j n ). 



METHODS OF MATHEMATICAL MODELING (…) 171 
 

 

Fundamental system of solutions to the Fourier differential equation 
2

2
2 0d q V

dz
 form functions exp qz and exp qz  or their linear 

combinations 1V ch qz  and 2V sh qz .  

Fixing the branch Re ( ) 0kq p , solution to a heterogeneous boundary 

value problem (5.116) – (5.118) is constructed by the method of Cauchy functions 

[11, 19]: 

1

( , ) ( , , ) ( , ) ; 1,
k

k

l

k k k k k k k
l

u p z A chq z B shq z p z p d k nE F ; (5.126) 

          1( )
1 1 1 1( , ) ( , , ) ( , )n n

n

q z l
n n n n

l

u p z B e p z p dE F ;  (5.127) 

where ( , , ), 1, 1k p z k nE  - Cauchy functions that satisfy the conditions: 

                
( , , ) ( , , ) 00 0

( , , ) ( , , ) 1.0 0

p z p zk kz z

d d
p z p zk kz zdz dz

E E

E E
 (5.128) 

Cauchy functions ( , , ), 1,k p z k nE  are as follows: 

    
;1 1 1

( , , )
;2 2 1

D chq z E shq z l z lk k k k kk kp zk D chq z E shq z l z lk k k k kk k

E
E

E
,  (5.129)  

satisfying additional homogeneous conditions: 

   
1

12 12
0

0
k

k k
k

z l

d
dz

E ; 11 11
0

0
k

k k
k

z l

d
dz

E , 1,k n .  (5.130)  

Cauchy function 1( , , )n p zE  is as follows: 

           1 1

1

1

1 1 1 1 1
1 ( )

1 2

;
( , , )

;
n n

n n

n

n n n n
n q z l

n n

D chq z E shq z l z
p z

E e l z

E
E

E
,  (5.131)  

satisfying the additional condition: 
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                                  12 12 1
0

0
n

n n
n

z l

d
dz

E .   (5.132) 

Find the Cauchy functions ( , , ); 1,k p z k nE . From condition (5.128) we 

obtain: 

2 1 2 1( , , ) ( , , ) ( ) ( ) 0
k k k k

k
k k k kz l

p z p z D D chq E E shq� �  

2 1 2 1
1 1( , , ) ( , , ) ( ) ( )

k k k k
k

k k k kz l
k k

d p z p z D D shq E E chq
q dz q

� �

 

So, relatively 2 1( )
k k

D D and 2 1( )
k k

E E  we obtain an algebraic system: 

                        
2 1 2 1

2 1 2 1

( ) ( ) 0;

1( ) ( ) .

k k k k

k k k k

k k

k k
k

D D chq E E shq

D D shq E E chq
q

 (5.133) 

Hence we get value: 

                        2 1 2 1
1 1( ) ;( )

k k k kk k
k k

D D shq E E chq
q q

 . (5.134) 

From the interface conditions (5.130) we have equality: 

   1

1,1 1,2
12 12 1 12 1 1 12 1

1 2
11 11 2 11 2 11

( ) ( ) 0

( ) ( ) 0

k k

k

k k

k

k k k k
k k k k k

z l

k k k k
k k k k k

z l

d D V q l E V q l
dz

d D V q l E V q l
dz

E

E
  (5.135) 

Substituting in the first equation of the system (5.135) values 2 2,
k k

D E  from 

relations (5.134), we obtain a system of equations for determining the unknown 

coefficients 1 1,
k k

D E : 

1,1 1,2
1 12 1 12 1( ) ( ) 0

k k

k k
k k k kD V q l E V q l  

1 2
1 11 1 11 11

1( ) ( ) ( , )
k k

k k k
k k k k k k k

k

D V q l E V q l q l q
q

. 
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Hence, we find: 
1,2

12 1

2
11 11

1,211
1 12 11,1 1,2

11 112 1 12 1
1 2

11 11

0 ( )
1 ( , ) ( )

( , ) ( )
( , )( ) ( )

( ) ( )

k

k
k k

k k
k k k k k k

kk k k k
k kk k

k k k k kk k k k
k k

k k k k

V q l

q l q V q l
q q l qD V q l

q q l q lV q l V q l
V q l V q l

 

1,1
11 12 1

1
11 1

( , ) ( )
( , )k

k k
k k k k k

k k k k k

q l q V q lE
q q l q l

. 

This Cauchy function ( , , ); 1,k p z k nE  determined due to the symmetry 

relative to the diagonal z  has the following structure: 

k 1 k
12 11

k 1 n
12 11

k k 1 k k k k

k k 1 k k k k

q l ,q z q l ,q ,l z l1 k 1 k( p,z, )k q q l ,q l q l ,q q l ,q z ,l z l11k k k 1 k k k 1 k
E (5.136) 

here 

1,1 2 1 1,2
12 1 11 11 12 1

11 1 1
11 1 0 1 1

( ) ( ) ( ) ( ); 2,( , )
( , ); 1

k k k k
k k k k k k k k

k k k k
V q l V q l V q l V q l k nq l q l

q l q l k
1 01 12 11 0,2

1 1 0 1 1 11 1 0 1 1 1 1 1 1 11 1 0( , ) ( ) ( ) ( ) ( )j j jq l q l V q l V q l V q l V q l  

Calculate the expression for the Cauchy function 1( , , )n p zE . From 

condition (5.132) we find an additional equation: 

1 1

1 2
12 12 1 1 12 1 1 12 1( , , ) ( ) ( ) 0

n nn

n n n n
n n n n nz l

d p z D V q l E V q l
dz

E .  (5.137) 

As a result of conditions (5.128), we obtain an algebraic system: 

1

1 1 1

( )
1 1 2 1 1 1 1( , , ) ( , , ) 0n n

n n n

q l
n n n nz

p z p z E e D chq E shqE E . (5.138) 

1

1 1 1

( )
1 1 1 2 1 1 1 1 1( , , ) ( , , ) 1n n

n n n

q l
n n n n n nz

d p z p z q E e q D shq E chq
dz

E E

. 
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From the system (5.130) we obtain: 

1

1

1

1

1

1 1

1 1

( )
2 1

( )
2 1

1
1 2 2

1 1

2 21 1
2 1 1 2

1 1

1

;

n n

n

n n

n

n

n n n n

n n

q l
n

q l
n

n

n n

q l q ln n
n n

n n

E e shq

E e chq
q

D
ch q sh q

shq shqE e ch q sh q E e
q q

1

1

1

1

1

1 1

( )
1 2

( )
1 2

1 1
1 22 2

1 1 1

1

n n

n

n n

n

n n

n n

q l
n

q l
n

q ln n

n n n

chq D e

shq E e
q chqE E e

ch q sh q q
. 

Substituting 
1 11 1,

n n
D E  in (5.137), we obtain:  

1

1

2 1
2 12 1 1 12 1 1

1

12 1 1
1 2

12 1 12 1 1 12 1 12

1 ( ) ( ) *

,
* .

( ) ( )

n

n n

n n
n n n n n n

n
nq l

n n n
n n n n

n n n n

E V q l chq V q l shq
q

q l qe
V q V q q q

Here 

1

1 2
12 1 12 1 12 1 1 12 1 12 1 1 12 1

12 12 1 1 1 12 12 1

( ) ( )

( ) .n n

n n n n n n
n n n n n n n n n n n n

q ln n n n
n n n n n n

V q V q q shq l chq l q chq l shq l

q chq l shq l q e

This Cauchy function 1( , , )n p zE  determined due to the symmetry relative 

to the diagonal z  has the following structure: 

n 1 n

n 1 n

q ln
12 n 1 n n 1 n

n 1 n n q z ln
n 1 12 n 1 12 12 n 1 n n 1 n

q l ,q z e ,l z1( p,z, )
q q q l ,q e ,l z

� .  (5.139) 

As a result of solving the corresponding systems of algebraic equations to find 

the unknowns 
1

, , ; 1, ; 1,2
k k ni i iD E E k n i , Cauchy functions will also be defined 

due to the symmetry with respect to the diagonal z  and will have a structure: 
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k 1 k
12 11

k 1 n
12 11

k k 1 k k k k

k k 1 k k k k

q l ,q z q l ,q ,l z l1 k 1 k( p,z, )k q q l ,q l q l ,q q l ,q z ,l z l11k k k 1 k k k 1 k
� , 

1,k n  

n 1 n

n 1 n

q ln
12 n 1 n n 1 n

n 1 n n q z ln
n 1 12 n 1 12 12 n 1 n n 1 n

q l ,q z e ,l z1( p,z, )
q q q l ,q e ,l z

� . (5.140) 

Here:  

1,1 2 1 1,2
12 1 11 11 12 1

11 1 1
11 1 0 1 1

( ) ( ) ( ) ( ); 2,
( , )

( , ); 1

k k k k
k k k k k k k k

k k k k
V q l V q l V q l V q l k n

q l q l
q l q l k

 

1 01 12 11 0,2
1 1 0 1 1 11 1 0 1 1 1 1 1 1 11 1 0( , ) ( ) ( ) ( ) ( )j j jq l q l V q l V q l V q l V q l  

1( ( )k
ij

dk k k kV q l chq z q shq l chq ls s s s sij ij ij ijz lk k kdz k
 

2 ( ( )) ;k
ij s k s s

k

dk k k kV q l shq z q hq l shq ls sij ij ij ijz l k kdz
c

 
2 1( , ) ( ) ( )k k k

ij ij ijq l q z V q l chq z V q l shq zs s s s s sk k k . 

With known Cauchy functions k ( p,z, )E  boundary condition at a point 

0z l  and interface conditions (5.7) for determining unknown coefficients 

k kA ,B ( k 1,n )  and n 1B , participating in the structures (5.126) – (5.127) of general 

solution to the boundary value problem (5.123) – (5.125), give an algebraic system with 

(2n+1) – th equation:  
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1

01 02
12 1 0 1 12 1 0 1

11 12 11 12
11 1 1 1 11 1 1 1 12 2 1 2 12 2 1 2

11 12 11 12
21 1 1 1 21 1 1 1 22 2 1 2 22 2 1 2

1 2 1
11 11 12 1 1

0

0

k k k
k k k k k k k k k

V q l A V q l B

V q l A V q l B V q l A V q l B

V q l A V q l B V q l A V q l B G

V q l A V q l B V q l A 2
12 1 1

1 2 1 2
21 21 22 1 1 22 1 1

,1 ,2
11 11 12 12 1 1

,1 ,2
21 21 22 22 1 1

0

0

k

n

k
k k k

k k k k
k k k k k k k k k k k k

n n n n
n n n n n n n n

n n n n
n n n n n n n n

V q l B

V q l A V q l B V q l A V q l B G

V q l A V q l B q B

V q l A V q l B q B G

 (5.141) 

Functions *
k

G , participating in the system (5.134) have the form:  

1

1

1 1
* 11 1 1 1 12 1

2 1 1
11 1 1 1 11 1

( , ) ( , )( , ) ( , )
( , ) ( , )

k k

k k k

k k

l lk k
k k k k k k

k k
k k k k k k k kl l

q l q q l qG c p d c p d
q l q l q l q l

F F ,

1, 1k n  

1

1

( ) 1
* 12 1

2 1 1
12 12 1 11 1

( , )( , ) ( , )
( , )

nn n

n n n

n n

lq l n
n n n

n nn n
n n n n nl l

e q l qG c p d c p d
q q l q l

F F .  (5.142)  

Here 2 1 1 2 ; 1, ; 1,2
k

k k k k
j j j j jc k n j . 

Assume that the condition of unambiguous solvability of the boundary value 

problem is satisfied (5.123) – (5.125): for p iz  from 0Re p  , where 

0  - the abscissa of the convergence of the Laplace integral and 

Im ,p  the determinant of the algebraic system (5.141) of the

nonzero system: 

22 1 22 22 1 221,2 1,2( ) 0n n n n
n nn np q q .  (5.143)

As a result of the unambiguous solvability of the algebraic system (5.134) and 

substitution of the received values , ; 1,k kA B k n  and 1nB  in formulas (5.126), 

(5.135), we obtain a single solution to the boundary value problem (5.116) – (5.118) 

as: 
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1

1

, 1
1

( , ) ( , , ) ( ) ; 1, 1; .
j

j

ln

k k j j n
j l

u p z p z g d k n lH                (5.144) 

Here are the elements of the influence function matrix 

( , , ) , , 1, 1ij p z i j nH :

0
1 112 1 0 1

11 21 1 1 1 11 1 1 1* 1,2 1,2
1

( , )( , , ) ( , ) ( , )
( )

q l q zp z q l q q l q
q p

� ; 

1

2
* 01
1 , 12 1 0 1 21 11* 1,2 1,2

1

( , ) ( , ) ( , ) ( , ) ; 2,
( )

s

j

s
j js

j j j j j j jj j

q c
H p z q l q z q l q q l q j n

q p
; 

1

2
( )* 01

1, 1 , 12 1 0 1*
1

( , ) ( , )
( )

s
n n

n

s
q ls

n

q c
H p z q l q z e

q p
; 

0 1
12 1 0 1

1 1 21 11* 1,2 1,2
11

( , )( , , ) ( , ) ( , )
( ) s

k
k k

k s k k k k k kk k
s

q l qp z c q q l q z q l q z
q p

� ; 

1

1

11 211,2 1,2

1 1
22 12 11,2 2 1,2 2

( , , ) ( , ) ( , )
( )

( , ) ( , ) ; 2, 1

s

k

ss j k k
kj k k k k k kk k

j

j j
j j j j j jj j

q c
p z q l q z q l q z

q p

q l q q l q j k

�

1

2 1 1
12 1 22 11,2 2 1,2 2

1,

21 111,2 1,2

, , ( , ) ( , )
( )

( , ) ( , ) ;

s

s

s k ks k
kj k k k k k kk k

j k n k

j j
j j j j j jj j

q c
p z q l q z q l q z

q p

q l q q l q

H

1 1
22 1 12 11,2 2 1,2 2

11 211,2 1,2

1( , , ) [ ( , ) ( , ) ]
( )

[ ( , ) ( , ) ];

k k
kk k k k k k kk k

k
k k

k k k k k kk k

p z q l q z q l q z
q p

q l q q l q

H
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1

2
( )1 1

, 1 22 1 12 11,2 2 1,2 2( , , ) ( , ) ( , ) , 1,
s

n n

n

s
q lk ks k

k n k k k k k kk k
k

q c
p z q l q z q l q z e k n

q p
H

1( )0
1,1 1 12 0

11

1( , , ) ( , , , )
( )

n n

s

n
q z l

n s
s

p z c q q l q e
q p

H ; 

1

1
( ) 1 1

1, 22 1 12 11,2 2 1,2 2( , , ) ( , ) ( , ) , 2, ;
( )

s

n n

n

s
s j q z l j j

n j j j j j j jj j
j

c q
p z e q l q q l q j n

q p
�

1( )
1, 1 22 1 1 12 1 11,2 1,2

1

1( , , ) ( , ) ( , )
( )

n nq l n n
n n n n n n n nn n

n

p z q l q z q l q z
q

H

. 

Here 1,2k  – determinant formed from the determinant of the system *( )p  by 

deleting the first 2k rows and columns (under the numbers 1, 2 , 1,k k n ); 1,2k  – 

determinant formed from the determinant of the system *( )p  by deleting the first 

2k+1 lines except 2k–th (under the numbers 1, 2 1,2 1; 1,k k k n ) and the first 2k 

columns (under numbers 1,2 , 1,k k n ); 1,2k  – determinant formed from the first 

2k rows and columns (under numbers 1,2 , 1,k k n ) determinant of the system 

*( )p ; 1,2k  – determinant formed from the first 2k+1 lines except 2k–th (under 

numbers 1,2 1,2 1; 1,k k k n ) and the first 2k columns (under numbers 

1,2 , 1,k k n ) of the determinant of the system.  

Recurrent algorithms for calculating determinants 1,2k 1,2k 1,2k 1,2k  and 

matrix elements ( , , ) , , 1, 1ij p z i j nH  were filed in [20].

Special points of functions of influence of a boundary value problem (5.119) -

(5.123) 
1, 1( , , ), , 1, 1k k p z k k nH  there are branching points 

2, 1, 1kp k n  and p . As a result of Lem Jordan and Cauchy's theorem 
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[29], we have the following formulas for finding the original functions of influence 

1, 1( , , ), , 1, 1k k p z k k nH : 

2 2

1 1 1

1 2 2 ( )
, , ,

0

2( , , ) ( , , ) m ( ( ), , )k k k k k kt z L p z z e d� � �� � . (5.145) 

We assumed that 2 2 1
1max{ }n

k k  and put qk=ibk,  bk=( 2+k2k)1/2D-1/2k, 

k2k= 2- 2k  0, 1, 1k n . Directly counting, we obtain: 

1,1 2 1,2 1
1 1 1 1 2 1 11 2 1 11, ( , ) [ ( ) ( ) ( ) ( )]k k k k

m k k k k m k k k k m k k k k m k k k kib l ib l i b l b l i v b l v b l v b l v b l

1,1 2 1,2 1
2 1 2 1 2 1 21 2 1 21, ( , ) [ ( ) ( ) ( ) ( )]k k k k

m k k k k m k k k k m k k k k m k k k kib l ib l i b l b l i v b l v b l v b l v b l

01 12 02 11
1 1 0 1 1 1 1 0 1 1 11 1 0 1 1 1 11 1 0 1 1 1, ( , ) [ ( ) ( ) ( ) ( )]; 1,2m m m mibl ibl i bl bl i v bl v bl v bl v bl m

1 11 1 0 1 1 1 21 1 0 1 11,2 1,2 1,2 1,2( ) ( , ); ( ) ( , )ib i i b l b l ib i i b l b l  

11 1 21 11,2 1,2 2 1,2 2 1,2[ ( , ) ( ) ( , ) ( )] ( )k k
k k k k k k k kk k k ki i b l b l b l b l i  

12 1 22 11,2 1,2 2 1,2 2 1,2[ ( , ) ( ) ( , ) ( )] ( )k k
k k k k k k k kk k k ki i b l b l b l b l i  

2 2
22 1 22 12 1 121,2 1,2

12 22 1 12 221,2 1,2 1,2 1,2

( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n n
n nn n

n n n n n
nn n n n

i i b i b

i i b

1 1 2 2( ) ( ); ( ) ( ); ( , ) ( , ), , 1,2k k k k k k
jm s k jm s k jm s k jm s k jm s k k jm s k sV i q l v bl V i q l i v bl i bl i b z i bl b z j m

1 2( ) sin cos ; ( ) cos sink k k k k k
jm s k jm s s k jm s k jm s k jm s s k jm s kv b l b b l b l v b l b b l b l

; 
2 1( , ) ( ) cos ( )sink k k

jm s k s jm s k s jm s k sb l q z v b l b z v b l b z ; 

2 2 2 2( ); ( )k k k k k k
jm jm jm jm jm jm . 

Define numerical matrices 1 1 1 1
1, 2,

2 2 2 2

, , 1, 2; 1, ;
k k k k
j j j j

j k j kk k k k
j j j j

A A j k n  and 

numerical values:  
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1, 1, 2 1 1 2det k k k k
j k j k j j j jc A ; 2, 2, 2 1 1 2det k k k k

j k j k j j j jc A  

12, 21,
1, 2 1 2 2 2 1, 2 1 2 2 1;k k k k k k k k k k

j j j j j j j j j j j jc c . 

Because ,)( 2
,2

,12
2,1

,21
2,1,1 pcpcccc kj

k
jj

k
jjkjjk  then we demand the equality 

12, 21,
1, 2 1, 2 2,, 0, 1, 2; 1, .k k

j j j j j kc c c j k n  Regarding numbers j1,k will require that 

c11,kc21,k>0. 

Define the functions: 

                         1 21,1 2 02 1 01 1( , ) ( ) cos ( )sin ;V z c b b z b z   (5.146) 

               21, 1 1,2 1,1( , ) ( ) cos ( )sin ;
n

k j j k k k k
j k

V z c b b z b z   (5.147) 

                           1 ,2 1 1,1 1( , ) ( ) cos ( )sin ;n n n nV z b z b z   (5.148) 

Here 
01 02

01 11 1 0 02 11 1 0( ) ( ); ( ) ( )v b l v b l ; 

     1,2 1 1 1,1 2 1( ) ( ) ( , ) ( ) ( , )k k
km k m k k k k k m k k k kb l b l b l b l ; (5.149) 

1 11 22 1 21 12 1( , ) ( ) ( ) ( ) ( )k kj km kj km
jm k k k k k k k k k k k kb l b l v b l v b l v b l v b l  

We introduce a spectral function 

            1 1
1

( , ) ( , ) ( ) ( ) ( , ) ( )
n

k k k n n
k

V z V z z l l z V z z l ,  (5.150) 

spectral density 

                         2 2
1 ,1 ,2

( )
( ) ( )n

n n nb
  (5.151) 

and weight function 

        1 1
1

( ) ( , ) ( ) ( ) ( , ) ( )
n

k k k n n
k

z z z l l z z z l   (5.152) 

                  11, 11,
1

21, 21, 1

1 1 1, 1, 1; ;
n

j n
k n n

j k j k n n n

c c
k n

c D c D D
.  (5.153) 
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As a result of the specified in  formula (5.145) operations, we have the original 

elements of the matrix of influence functions: 

2 2( )

0

2( , , ) ( , ) ( , ) ( ) ; , 1, 1.t
jk j k n k kt z e V z V D d j k nH  

(5.154) 

Returning in formulas (5.144) to the originals, we obtain a single solution to 

the parabolic boundary value problem (5.119) - (5.123): 

1
2 2

1 1 1
1 11

1
( )

10

1

2( , ) ( , ) ( , ) ( ) ( ) ,

1, 1,

k

k

ln
t

k k k k k n
k l

n

u t z e V z V g d d

j n l

 (5.155) 

From here, due to the initial conditions (5.120), we obtain an integrated image: 

             
1

10

2( ) ( , ) ( ) ( , ) ( )
k

k

l

k k n k k k
l

g z V z V g d d .   (5.156) 

If we put 1 1
1

( ) ( ) ( ) ( ) ( ) ( )
n

k k k n n
k

g z z l l z g z z l g z  and 

spectral density functions defined by (5.153), (5.154), the integral image (5.155) can 

be written in invariant form: 

           
00

2( ) ( , ) ( ) ( , ) ( ) ( )n
l

g z V z V g d d   (5.157)

The integral image (5.155) defines a straight line F+,n+1 and inverse 1
, 1nF

integral Fourier transform with spectral parameter for n -component heterogeneous 

medium: 

0

, 1[ ( )] ( ) ( , ) ( ) ( ),n
l

F g z g z V z z dz g  (5.158) 

1
, 1

0

[ ( )] ( ) ( , ) ( ) ( )n nF g g V z d g z .  (5.159) 

Mathematical substantiation of the introduced formulas (5.150) (5.151) of 

integral Fourier transform is a statement: 



182 METHODS OF MATHEMATICAL MODELING (…) 
 

Theorem 5.3.1 (about the integrated image): If the vector-function g(z) 

continuous, absolutely summed up and she has limited variation on the set then for 

any nz I  integral image is fair (5.150). 

Proof: Functions ( , )jV z  and ( , )jV z  by construction satisfy the 

differential equations: 

                           
2

2 2
2 ( ) ( , ) 0j j j

d k D V z
dz

, (5.160) 

                           
2

2 2
2 ( ) ( , ) 0j j j

d k D V z
dz

.  (5.161) 

Multiply equality (5.133) by the function ( , )jV z , and equality (5.160) by 

the function ( , )jV z  and subtract the second from the first: 

2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )j
j j j j j j

D d d dV z V z V z V z V z V z
dz dz dz

.  (5.162) 

Let's set a fairly large number nA l . Due to the properties of the functions 

( , ) ( , )j jV z V z , structures of constants k  and equality (5.152) we receive the 

following: 

0

1 1 1 12 2
1( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )

A

n n n n
l

d dV x V x x dx V A V A V A V A
dx dx

 (5.163) 

Non-integral term in a point z = l0 equal to zero due to the boundary condition at the 

point z=l0  function V1(z,…), non-integral terms in points z = lk turn to zero due to 

selection k , and interface conditions (we will remind, that g0=0, jk=0 , j=1,2; 1,k n ). 

For arbitrary positive numbers c and d (c < d ) and arbitrary limited to the segment [ c, d ] 

of functions ( ) , calculate the double integral: 

                   0

0

2 ( ) ( , ) ( ) ( , ) ( )

2lim ( ) ( , ) ( ) ( , ) ( ).

d

n n
l c

A d

nA
l c

J V z d V z z

g V z d V z z
  (5.164) 

Due to equality (5.163) double integral (5.164) takes the form: 
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 1 1 1 12 2

2 ( )lim ( , ) ( , ) ( , ) ( , ) ( )
d

n n n n n nR
c

J V A V A V A V A d .     (5.165) 

We receive directly: 

1 1 1 1 1 2 2 1 1 1

1 1 1 2 2 1 1 1 2 1 2 1

1 1 2 1 2

2 ( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) sin

( ) ( ) ( ) ( ) sin ( ) ( ) ( ) ( ) cos

( ) ( ) ( ) ( ) cos

n n n n n n n n n n

n n n n n n n n n n n n

n n n n

V A V A V A V A z z A

z z A z z A

z z 1 1 1 1; ( ) .n n nAz b b

  (5.166) 

Assuming that function ( )  is continuous, fully integrated and has limited 

variation on the set [c, d], substitution (5.158) into (5.157) followed by the use of 

Riemann and Dirichlet lemmas [12] leads to equality 

0

( ), , ,2 ( ) ( , ) ( , ) ( ) ( )
0, , .

d

n
l c

c d
V z V z d z dz

c d
 (5.167) 

If the function ( )  has the above properties on the interval (0, ), then we 

get: 

0 0

( ), (0, )2 ( ) ( , ) ( , ) ( ) ( )
0, (0, )n

l

V z V z d z dz .  (5.168) 

Suppose that a vector is a function ( )g z  that looks like 

0

2( ) ( ) ( , ) ( )ng z V z d .  (5.169) 

Multiply (5.168) by V(z, ) (z)dz, where  - arbitrary positive number and 

integrated from z=l0 to z= . Based on equality (5.168) we obtain: 

0

( ) ( , ) ( ) ( ) ( )
l

g z V z z dz S ; 
.0,0
,0,1

)(S

If now we substitute the function 
0

)(),(
l

dVfg  in equation 

(5.169), then we obtain the formula (5.155) - integral image of a vector function 

g(z)={g1(z), g2(z), … ,gn+1(z,}. The proof of the theorem is complete. 
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In order to apply the obtained integral transformation to construct exact 

analytical solutions to mathematical models we obtain the basic identity of the integral 

transformation of the differential operator nL . 

Theorem 5.3.2 (about the basic identity). Let the relations hold: 

               nkjCCCCC k
jj

k
jjkjkk ,1  ;2,1     ;   ,0    ,0 ,12

2,1
,21

2,1,2,21,11           (5.170) 

If the vector-function ),()( )3(
nICxg  satisfies boundary conditions: 

     
0

0 0
11 11 1 10 1z

( ) ,         lim ( ) 0,   0,1
m

z l nm

d dg z g g z m
dz dz   (5.171) 

and coupling conditions (5.171), then the basic identity of the integral 

transformation of the differential operator comes true nL : 

    
[ ]

( )
1

2 0 1
, 1 1 11 1 0 10

2 2
1 1 1 1

1

( ) ( ) ( ) ( , )

( , ) ( ) ( , )
j

j n

n n

ln

j j j j n n n n
j l l

F L g z g D V l g

k g z V z dx k g z V z dz

b b s a b

b s b s
-

-
+

+ + + +
=

é = - × - × -ë

- -

%
  (5.172)  

 Proof: Because the functions ( )jg z  and ( , )jV z b  ( )1, 1j n= +  satisfy the 

system of interface conditions (5.115), then when performing relations (5.163) we 

obtain the basic identity: 

           
( ) ( )

( ) ( )21,
1 1 1 1

11,

( , ) ( , )

( , ) ( , ) ; 1,

j

j

j j j j z l

j
j j j j z l

j

g z V z g z V z

c
g z V z g z V z j n

c

b b

b b

=

+ + + + =

é - =ë

é= - =ë
 (5.173) 

Integrate twice in parts in the left part (5.165) under the signs of integrals: 
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                                                                                                       (5.174) 
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Non-integral terms in points ( 1, )jz l j n= =  become zero due to the basic

identity (5.173) and structure ( ), 1, 1k k ns = + . Non-integral term in a point 0x l=

turns into a view ( ) ( )10
11 1 0 10,V l ga b

-
% . Due to the condition of behavior 1( )ng z+  

about z ®  we have: 

( ) ( )( )1 1 1 1lim ( , ) ( , ) 0n n n nz
g z V z g z V zb b+ + + +®

- = . 

Dividing the remaining amount into two, we come to an identity (5.172). 





Conclusions 

The monograph highlights new approaches to the creation of high-

performance supercomputer technologies of multiparameter identification of 

complex cyberphysical systems (neuro-bio-nanomedical and nanoporous physical 

systems) with feedback-connections and interactions, including cognitive ones for 

neuro- biosystems on the basis of parallel computations to determine the parameters 

of their behavior and the state of individual executive elements of systems. High-

performance supercomputer technologies for identification of complex feedback 

systems (neuro-bio- and nanoporous CPSS) are proposed, in the development of 

which new science-intensive technologies and computational solutions are used, 

which have practical application for the development of the European socio- 

economic systems. The first type of development is related to solving an important 

social problem - the introduction of effective mobile digital technologies for 

neurological diagnosis of patients with severe signs of tremor (in the world there are 

about 100 ml. of such people). The studied nanomedical neuro-bio-system is focused 

on determining the parameters of abnormal movements of patients with tremor-signs 

(T-object) caused by the negative effects of a number of neural nodes of cerebral 

cortex. The second type of information systems being developed is nanoporous 

cybersystems related to an important global environmental problem - finding ways to 

reduce the impact of global warming and implementing a European strategy for safe 

energy by drastically reducing air pollution caused by harmful emissions of carbon 

products (CO2, CO) and transport, which requires constant research and 

development of new science-intensive absorption technologies (adsorption and 

catalysis), the main elements of which are nanoporous catalysts of a new generation. 

In this context, the main results obtained are as follows.  

1. A hybrid model of a neuro feedback system has been developed, which

describes the state and behavior of tremors (T) objects based on wave signal 

propagation.  

2. New science-intensive mathematical models of nanoporous CPSoS are

built, which take into account a set of limiting physical factors and inverse influences 

and nano-sources in the competent nanosorption processes occurring in them.  
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3. High-speed analytical solutions to both classes of feedback models are

obtained on the basis of parallelization of calculations and efficient linearization 

schemes, methods of hybrid integral transformations (Fourier, Bessel) and Heaviside 

operating method, including adaptive matrices (response) for determining parameters 

of feedback states, interactions (groups of neuro-objects and nano-sources).  

4. The hybrid spectral function of ANM, systems of orthogonal basic

functions and spectral values of hybrid transformation of construction of solutions of 

feedback-models are constructed. 

5. Models of multiparameter identification of the specified feedback-systems

are developed, including minimization of residual functionalities, and constructing 

the explicit expressions of gradients of residual functionalities on their basis. High-

performance regularization identification algorithms have been constructed, which 

allow parallelization of calculations taking into account the supercomputer 

architecture of computer systems.  

6. Software is developed for high-performance super-computer identification

technologies and modeling tools based on parallel computations of complex 

feedback systems (neuro-bio- and nanoporous systems), which is an important step 

in the development and implementation of digital neurodiagnostics and effective 

strategy for implementation of secure energy based on modern cyberphysical 

systems, science-intensive technologies and artificial intelligence. The results are 

new, have a high degree of generalization, and are based on modern neurobiological, 

nanomedical and nanophysical representations, fundamental laws of transfer, 

catalysis, cognitive feedback-neuro-bio-interactions and nanoprocesses in media of 

nanoporous structure particles, on the application of the theory of control of complex 

systems, gradient methods of parameter identification, software engineering. The 

results lead to the increase in the quality and accuracy of identifying and recognizing 

relationships and interactions; make it possible to significantly optimize the amount 

of calculations by parallelization, reduce the number of computing elements; provide 

real-time growth in data requirements, develop platform-independent dynamic 

software architectures of the studied feedback systems. 
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