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a b s t r a c t 

Maghemite/magnetite nanocomposite ( γ -Fe 2 O 3 /Fe 3 O 4 ) was prepared via an electrochemical method us- 

ing pulse alternating current and applied for electrocatalytic reduction and sensing of hydrogen perox- 

ide. The structural and compositional analysis of the γ -Fe 2 O 3 /Fe 3 O 4 was characterized by XRD, SEM, 

TEM and XPS. Its thermal decomposition behavior was studied using TG/DSC. The mechanism for γ - 

Fe 2 O 3 /Fe 3 O 4 nanocomposite formation was proposed. Furthermore, the H 2 O 2 sensing performance of the 

γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite was evaluated in 0.1 M KH 2 PO 4 . The sensor exhibited a fast electron trans- 

fer process in γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite. The optimized H 2 O 2 sensor revealed a remarkable low limit 

of detection of 0.05 μM, a wide linear range from 0.0 0 02 to 8 mM, and a fast response time of 2 s. These 

results demonstrated that γ -Fe 2 O 3 /Fe 3 O 4 prepared via an electrochemical method using pulse alternating 

current is a promising efficient material for electrochemical sensing of H 2 O 2 . 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Hydrogen peroxide (H 2 O 2 ) is a simple compound, but it plays 

n important role in biological, environmental, pharmaceutical and 

thers applications [1–3] . Besides its well-known cytotoxic effects 

ydrogen peroxide is formed in the human body as a by-product 

f some oxidative metabolic reactions [ 4 , 5 ]. Excessive amount of 

 2 O 2 can trigger cell proliferation that may culminate into vari- 

us diseases such as cancer, cardiovascular and neurodegenerative 

isorders [6] . Thus the H 2 O 2 detection with a reliable, rapid and 

conomic method is of great important in many industrial fields. 

A wide range of techniques including spectrophotometry [7] , 

uorimetry [8] , and chemiluminescence [9] has been developed to 

etect H 2 O 2 . However, these methods have significant drawbacks 

10] . Since H 2 O 2 is an electroactive molecule, an electrochemical 

pproach can be extensively employed for hydrogen peroxide de- 

ermination [11] . The electrochemical sensing technologies have re- 

ently attracted a great deal of interest due to their simplicity, low 

ost, high sensitivity, and fast response [ 12 , 13 ]. 

Various materials such as noble metals and transition metal ox- 

des [ 1 , 14 , 15 ] have been exploited as the electrocatalysts for hy-
∗ Corresponding author. 
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rogen peroxide sensing. Magnetite (Fe 3 O 4 ) is considered to be a 

uitable candidate for electrochemical sensor applications owing to 

ts unique peroxidase-like activity, excellent biocompatibility, low 

oxicity, good stability and high electrochemical activity [16–20] . 

oreover, maghemite, γ -Fe 2 O 3 , (magnetic modification of iron ox- 

de) has been explored as an active and stable electrocatalyst for 

 2 O 2 reduction [21] . 

Many ways to prepare Fe 3 O 4 and γ -Fe 2 O 3 nanoparticles such as 

o-precipitation, microemulsion, arc-discharge, solvothermal, sono- 

hemical, microwave-assisted, chemical vapor deposition, combus- 

ion, laser ablation, carbon arc, laser pyrolysis, sol-gel and high 

emperature decomposition of organic precursors have been re- 

orted [ 22 , 23 ]. Recently, electrochemical synthesis of magnetite 

nd maghemite nanoparticles has gained greater attention due to 

ts advantages over other methods including simplicity, shape and 

ize control, and low cost [ 17 , 24–26 ]. 

In this study, the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite was prepared 

ia an electrochemical method using pulse alternating current 

PAC). The synthesis of other metal oxide-based materials such as 

nO 2 -SnO, TiO 2 , CuO x , Co 3 O 4 /CoOOH and NiO/C nanocomposite us- 

ng PAC technique has already been described in our previous re- 

orts [27–31] . 

The obtained γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite exhibits excellent 

lectrocatalytic activity for H 2 O 2 reduction with a wide linear 

ange from 0.0 0 02 to 8 mM, a low detection limit (LOD) of 

https://doi.org/10.1016/j.electacta.2021.137723
http://www.ScienceDirect.com
http://www.elsevier.com/locate/electacta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2021.137723&domain=pdf
mailto:molodtsovatat@yandex.ru
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.05 μM, a fast response time of 2 s, good stability and selectiv- 

ty. 

. Experimental 

.1. Materials and reagents 

Iron foil (99%), sodium hydroxide, hydrogen peroxide, potas- 

ium dihydrogen phosphate, potassium hydroxide, isopropyl alco- 

ol, Nafion aqueous dispersion, bidistilled water. The nitrogen used 

n this study was obtained from a local supplier with a purity of 

9.9999%. 

.2. One-step synthesis of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite using PAC 

The selection of appropriate synthesis conditions was made 

uring the preliminary investigation on the influence of electrolyte 

ature and current density on the rate of iron oxidation and the 

omposition of the final products. 

The iron foils with the area of 1 cm 

2 and thickness of 

.5 mm have been employed as the anode and cathode for the γ - 

e 2 O 3 /Fe 3 O 4 nanocomposite preparation. Preliminary the iron elec- 

rode surfaces were mechanically polished using sandpaper and 

ashing with bidistilled water. The electrochemical synthesis was 

arried out using a home designed PAC source (average current 

ensity j a :j c = 3:3 A/cm 

2 ) under constant stirring at 200 rpm and

ooling conditions to maintain the temperature of 50–60 °C. The 

lectrode potentials were measured relative to an Ag/AgCl refer- 

nce electrode. The aqueous solution of 2 M NaOH was used as an 

lectrolyte. The resulting precipitate was separated by filtration us- 

ng a glass filter, washed with bidistilled water to a neutral pH and 

ried at room temperature. 

.3. Fabrication of sensor 

A typical suspension of γ -Fe 2 O 3 /Fe 3 O 4 was prepared by dis- 

ersing γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite (7 mg) in 10% Nafion so- 

ution (10 μL) and isopropyl alcohol (1 mL) and sonicated for 

0 min. 8 μL of this suspension was transferred on to the surface 

f the polished glassy carbon rotating disk electrode and dried at 

oom temperature. 

.4. Characterization of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite 

The X-ray diffraction (XRD) measurements were carried out on 

 X-ray powder diffractometer (ARL X’TRA Thermo Fisher Scien- 

ific) using Cu K α radiation ( λ= 1.5406 Å). The morphology and 

urface elemental composition were determined using a SEM (Tes- 

an Vega 3 sb) equipped with an Energy Dispersive Spectrometer 

EDS, Oxford Instruments x-act). TEM images were obtained us- 

ng a JEOL JEM 1400 with an accelerating voltage of 120 kV. Ther- 

al properties were studied by a differential scanning calorimetry 

DSC) using SDT Q600 V20.9 Build 20 model. The measurements 

ere carried out at a heating rate of 10 °C min 

−1 in an air at-

osphere within a temperature range of 25–900 °C. X-ray photo- 

lectron spectroscopy (XPS) were obtained with a Thermo Scien- 

ific ESCALAB 250 Xi with an Al K α source (1486.6 eV). 

A potentiostat-galvanostat (P-45X, Elins) was used to control 

he applied potential in a three-electrode configuration for all the 

yclic voltammetry (CV) and steady-state amperometric measure- 

ents. Electrochemical impedance specta (EIS) were recorded with 

he frequency ranging from 1 Hz to 120 kHz. Modulated speed ro- 

ator (model AFMSRCE, PINE) was used for all the electrochemi- 

al experiments. This system contains a glassy carbon rotating disk 

lectrode (5.0 mm diameter, PINE) with a motor controlled rotor 

AFMSRX, PINE), an Ag/AgCl reference electrode (3 M KCl), and a 
2 
latinum wire (99.95% purity) counter electrode. All electrochem- 

cal experiments were carried out at room temperature. All solu- 

ions were deaerated using nitrogen for at least 30 min in order to 

emove the dissolved oxygen. 

The pH measurements were performed with a pH meter 

Mettler-Toledo AG, CH). 

The electrochemical surface area (ECSA) can be estimate accord- 

ng to the equation: ECSA = R f × S, where R f is the roughness 

actor and S was usually corresponding to their geometric area 

 S = 0,248 cm 

2 , in this work). According to the double-layer capac-

tance ( C dl ) of a smooth oxide surface per square centimeter (60 μF 

m 

−2 ) [ 32 , 33 ], R f was calculated using the equation: R f = C dl /60

F cm 

−2 . The double-layer capacitance was determined via plot- 

ing the �I ( I a –I c ) against the scan rate of CVs, where I a is the

ouble-layer anodic current, I c is the double-layer cathodic current 

rom CV in a narrow potential window . 

. Results and discussion 

.1. Material characterization 

The crystal structure and crystallinity of γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite were determined by XRD. Maghemite/magnetite 

rystalline peaks were observed ( Fig. 1 a) at 18.3 °, 30.10 °, 35.50 °,
3.16 °, 53.62 °, 57.05 °, 62.61 °,74,03 ° and 86.97 ° assigned to the 

111), (220), (311), (400), (422), (511), (440), (533), and (642) 

lanes, respectively. All the main peaks can be indexed as both 

aghemite ( γ -Fe 2 O 3 ) and cubic Fe 3 O 4 (space group: Fd-3 m) 

hich are in good agreement with the reported data (ICSD №

59,971). No characteristic peaks of other impurity phases have 

een detected indicating high purity of the obtained product. More 

pecifically, the crystallite size calculated using the Scherrer for- 

ula was about 30 nm. 

TG results demonstrate a slight weight loss about 4% for γ - 

e 2 O 3 /Fe 3 O 4 nanocomposite at the temperatures ranging from 

5 °C to 150 °C and from 250 °C to 350 °C, and DSC results show

 weak endothermic peaks at approximately 100 °C and 330 °C 

ue to desorption of physically and chemically adsorbed water, re- 

pectively [ 23 , 34 ] (Fig. S1). The oxidation of magnetite to hematite 

ccurs at temperature close to 350 °C [35] through the forma- 

ion of intermediate product such as metastable maghemite [36] . 

o weight loss is observed for the maghemite-hematite ( α-Fe 2 O 3 ) 

ransformation. 

The morphology of the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite was 

valuated by SEM. According to the previous studies reported in 

he literature, it is difficult to distinguish between magnetite and 

aghemite due to their similar structural and magnetic proper- 

ies [37] . Fig. 1 b depicts SEM micrograph which reveals the two 

ypes of morphology: plate-shaped and complex (sometimes splin- 

er). The average particle size (complex shape) is about 100 nm. 

he particle agglomeration was observed and the size of particle 

ggregates varies from 1 to 9 μm. This agglomerate formation indi- 

ates that the surface energy of the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite 

s relatively strong [ 38 , 39 ]. 

The elemental map acquired by EDS is shown in Fig. S2. This 

nalysis clearly demonstrates a uniform distribution of Fe and O 

lements in the structure of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite. 

The morphological properties of the γ -Fe 2 O 3 /Fe 3 O 4 nanocom- 

osite were determined using TEM and revealed an octahedral 

hape of magnetite particles, which is the main phase of the 

anocomposite ( Fig. 1 c). The strong diffraction rings are visible in 

he selected area of the electron diffraction pattern (SAED) (Fig. 

3) indicating the crystalline nature of the prepared magnetite 

roduct. These results were consistent with those obtained from 

RD measurements. A poorly crystallized maghemite was formed 

ecause of the application of low-temperature synthesis [40] . 
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Fig. 1. a) XRD pattern, b) SEM and c) TEM images and e) particle size distribution of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite; d) Fe2p (top) and O1s (bottom) spectra from the 

γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite’s surface. 
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ig. 1 e demonstrates a histogram of the Fe 3 O 4 particle size distri- 

ution obtained from TEM images. The results show that the Fe 3 O 4 

article sizes range from 20 to 100 nm with an average grain size 

lose to 50 nm. Thus, the particle size obtained by TEM is slightly 

igher than the crystallite size determined by XRD, that is consis- 

ent with data reported in the literature [41] . Fe 3 O 4 nanoparticles 

end to form clusters and short chains of octahedra along the (111) 

rystallographic direction due to inter-particle magnetic force [42] . 

The chemical state and surface composition of the γ - 

e 2 O 3 /Fe 3 O 4 nanocomposite were analyzed by using XPS. The sur- 

ey spectrum (Fig. S4) indicates the coexistence of Fe, O and C el- 

ments. The C1s line contains four components, which can be at- 

ributed to C 

–C, C 

–COO, CH 2 –O and C = O bonds and refers to hy-

rocarbon contamination of surface, since the nanocomposite pow- 

er was exposed to air before XPS studies [43] . 
3 
The Fe2p and O1s spectra to make it possible to evaluate the 

hemical state of Fe on the nanocomposite’s surface is shown in 

ig. 1 d. The O1s spectrum profile consists of three components A, 

, and C with binding energies of 530.0 eV, 531.7 eV, and 533.3 eV, 

espectively, which are referred to Fe 2 O 3 oxide, as well as oxygen 

hemisorbed on the nanocomposite surface and to oxygen of OH 

roups and water [44] . The Fe 2p spectrum shows the broad main 

eaks of Fe 2p 3/2 and Fe 2p 1/2 locate at 710.6 eV and 724.2 eV, 

espectively, which exhibit the typical structure of Fe 3 O 4 nanopar- 

icle in the composites [45] . However, the presence of a charge 

ransfer satellite with an energy of 718.6 eV makes it possible to 

nambiguously assign the Fe chemical state on the nanocomposite 

urface to the bonds between O and Fe in Fe 2 O 3 oxide, i.e. to ferric

ron Fe 3 + [46] . 
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Moreover, the Fe3s spectrum was obtained to assess Fe mag- 

etic state. As is known, the length between the high-spin and 

ow-spin components in the Fe3s spectrum corresponds to the 

agnetic moment on the Fe atom [47] . The monocrystalline Fe 2 O 3 

agnetic moment leads to the Fe3s spectrum splitting up to 6.3 eV 

48] . The obtained Fe3s spectrum splitting on the γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite surface is 6.8 eV. This indicates the presence exis- 

ence of a larger local magnetic moment on the Fe atom located in 

he nanocomposite surface layer. 

.2. The study of the electrocatalytic activity of γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite 

Hydrogen peroxide is reduced on a Fe 3 O 4 cathode via the well- 

nown mechanism as follows [ 19 , 49 ]: 

F e 3+ + H 2 O 2 + ̄e → HO O 

. + 2F e 2+ + H 

+ (1) 

F e 2+ + HO O 

. + H 

+ → 2F e 3+ + H 2 O + 

1 

2 

O 2 (2) 

The electrocatalytic activity of the γ -Fe 2 O 3 /Fe 3 O 4 nanocompos- 

te was studied using cyclic voltammetry (CV). Fig. 2 a demonstrates 

he CV response of γ -Fe 2 O 3 /Fe 3 O 4 sensor obtained in N 2 -saturated 

.1 M KH 2 PO 4 solution containing H 2 O 2 with different concentra- 

ions. It can be seen that hydrogen peroxide reduction occurs at 

he potential nearly −250 mV. The rate of H 2 O 2 reduction gradu- 

lly increases with an increase in the hydrogen peroxide concen- 

ration that may be applied for quantitative analysis [19] . Mean- 

hile, the reduction current is drastically enhanced and the peaks 

f the Fe 2 + / 3 + redox couple are disappeared, when H 2 O 2 is added 

o the supporting electrolyte. This indicates an obvious electrocat- 

lytic behavior of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite during the reduc- 

ion of H 2 O 2 over a wide concentration range [18] . Fig. 2 b shows

he CV curves of the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite recorded at 

ifferent scan rates from 5 to 200 mV s −1 . It is obvious that the

athodic current increases with increasing the scan rate. More- 

ver, the relation between cathodic peak current at −300 mV and 

quare root of sweep rate gives a straight line with a correlation 

oefficient of 0.9998 (inset in Fig. 2 b) indicating that the redox 

rocess of the electrode surface is diffusion-controlled with an ir- 

eversible H 2 O 2 electroreduction [ 18 , 19 ]. Besides, the electrochem- 

cally active surface area (ECSA) was also examined for evaluating 

he intrinsic activity of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite. The rough- 

ess factor and the double-layer capacitance using the �I (I a –

 c ) versus the CVs scan rate (Fig. S5) were calculated to deduce 

CSA. The electrochemical active surface area of γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite was estimated about 0.82 cm 

2 . 

Various factors affecting the operation of the sensor were eval- 

ated and the sensor was optimized to achieve maximum perfor- 

ance. 

.3. The influence of the Fe 3 O 4 NPs amount and the supporting 

lectrolyte optimization 

A glassy carbon rotating disk electrode coated with different 

mount of γ -Fe 2 O 3 /Fe 3 O 4 (1 - 12 mg mL −1 ) was used to explore

ensing performance of the prepared nanocomposite. As shown in 

ig. 2 c, the current response increases with an increase in amount 

f γ -Fe 2 O 3 /Fe 3 O 4 to 7 mg mL −1 and decreases above 7 mg mL −1 .

n appropriate amount of the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite can 

mprove the electron transfer. Further increase of the nanocompos- 

te amount and the thickness of the film can lead to a decrease in

he amperometric response due to hindering the electron trans- 

er [4] . The optimal nanocomposite loading used in this work and 

as estimated to be 7 mg mL −1 . Furthermore, the charge transfer 
4 
f γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite was evaluated by EIS measure- 

ents of different loading nanocomposite. As shown in Fig. S6, the 

yquist plots consist of two distinct parts: a linear part at low fre- 

uency and a semicircle part at high frequency for all nanocom- 

osite loading. It is well known that a smaller arc radius means 

 smaller charge transfer resistance at the electrode/electrolyte in- 

erface [ 50 , 51 ]. The high-frequency semicircle starting from the Re 

Ohm) axis negative region was apparently associated with the ref- 

rence electrode behavior (its inertia) and no greater interest for 

nalysis, since it is probably not related to the processes taking 

lace on the working electrode. The low-frequency arc radius of 

he 7 mg mL −1 nanocomposite loading is smaller than with other 

oading, which indicates that the charge transfer layer resistance of 

he nanocomposite loading (7 mg mL −1 ) interface was the small- 

st. 

The pH value of 0.1 M KH 2 PO 4 solution is very essential for the 

mprovement of the electrocatalytic performance of the electrode 

odified with γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite [19] . 

Fig. 2 d reveals the effect of pH varying from 7.0 to 7.6 on the

mperometric response. As can be seen at pH values above 7.3, a 

oticeable decrease in the current response is observed. Therefore, 

he electrolytes with pH values in the range from 7,0 to 7,3 were 

elected for further testing. 

.4. The amperometric response of H 2 O 2 

It is worth noting that γ -Fe 2 O 3 /Fe 3 O 4 sensor is very sensitive to 

he change of H 2 O 2 concentration. Fig. 2 e shows the typical amper- 

metric responses of the γ -Fe 2 O 3 /Fe 3 O 4 sensor upon the succes- 

ive addition of H 2 O 2 into the stirring (10 0 0 rpm) 0.1 M KH 2 PO 4 

pH = 7.3) solution. The operating potential was −300 mV. The 

urrent signal has a significant step and reaches a stable level 

ithin 2 s when a small amount of H 2 O 2 is added. This short re-

ponse time can be attributed to the fact that H 2 O 2 is rapidly ad-

orbed on the surface of the γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite and its 

lectroreduction process is activated [52] . 

The relationship between current and H 2 O 2 concentration is 

resented in Fig. 2 f. The γ -Fe 2 O 3 /Fe 3 O 4 sensor shows two linear

esponses in the ranges of 20 0–10 0 0 nM and > 10 0 μM (up to

 mM tested in this work). The limit of detection around 50 nM 

an be obtained from this γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite based on 

 signal-to-noise ratio (S/N) of 3. 

Table 1 shows the comparison of different electrodes for the 

 2 O 2 sensing ever reported. The proposed material displayed an 

xcellent comprehensive performance and can be easily prepared 

y means of a fast and simple procedure. The γ -Fe 2 O 3 /Fe 3 O 4 sen-

or has the lowest LOD compared with Fe 3 O 4 -based sensors and 

he wider linear range that may be due to the larger surface- 

rea-to-volume ratio of magnetic iron oxide particles for H 2 O 2 

olecules to adsorb or react [ 53 , 54 ]. Therefore, the γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite prepared via an electrochemical method using 

ulse alternating current is an ideal electrode material for detect- 

ng H 2 O 2 . 

Fig. 3 (a–c) demonstrates the sensor response before and af- 

er washing and long-term stability of the γ -Fe 2 O 3 /Fe 3 O 4 sensor. 

he γ -Fe 2 O 3 /Fe 3 O 4 sensor has an excellent response to the sens- 

ng. There was no significant change in the amperometric response 

ven after washing the sensor. These results indicate good stabil- 

ty γ -Fe 2 O 3 /Fe 3 O 4 sensor towards the detection and determination 

f H 2 O 2 . Long-term stability of the developed sensor was eval- 

ated by measuring its amperometric response towards 0.5 mM 

 2 O 2 over 8 days under room temperature. The sensor response 

emains quite stable with retention of about 83.4% after 8 days, 

howing good long-term stability of γ -Fe 2 O 3 /Fe 3 O 4 at room tem- 

erature ( Fig. 3 c). 
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Fig. 2. The γ -Fe 2 O 3 /Fe 3 O 4 sensor properties in N 2 saturated 0.1 M KH 2 PO 4 (pH = 7.3) solution: a) CVs in the presence of different H 2 O 2 concentrations at a scan rate of 

100 mV s −1; b) CVs at different scan rates in the presence of 1 mM H 2 O 2 (Inset: linear relationship between the cathodic currents and the square root of scan rates); c) the 

influence of the γ -Fe 2 O 3 /Fe 3 O 4 amount on H 2 O 2 detection; d) the effect of the pH value on the amperometric responses of 1 mM H 2 O 2 ; e) amperometric response with 

successive addition of H 2 O 2 at potential of −300 mV (vs Ag/AgCl) into the stirring (10 0 0 rpm) solution; f) the relationship between the amperometric response and the 

H 2 O 2 concentration. 

Table 1 

The comparison of different electrodes for H 2 O 2 detection. 

Electrode LOD ( μM) Linear range (mM) Response time Ref 

Fe 3 O 4 1000 – – [55] 

Fe 3 O 4 –Fe 2 O 3 200 0.2 - 1.8 < 3s [56] 

Fe 3 O 4 /3DG NCs 0.078 – < 3s [18] 

3D - Fe 3 O 4 2 0.005–4.995 – [19] 

Fe 3 O 4 @C–Cu/GCE 32.6 0.08 –372 – [57] 

AgNPs-P(ABA)-Fe 3 O 4 1.74 0.005 - 5.5 – [58] 

SPCE|GS–Nafion/Fe 3 O 4 –Au-HRP 12 0.02–2.5 3s [54] 

γ -Fe 2 O 3 /Fe 3 O 4 0.05 0.0002 - 8 2s This work 

5 
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Fig. 3. (a–b) Stability of γ -Fe 2 O 3 /Fe 3 O 4 sensor before and after washing towards H 2 O 2 sensing at various additions; c) long-term stability of γ -Fe 2 O 3 /Fe 3 O 4 sensor; d) an 

amperometric response of the γ -Fe 2 O 3 /Fe 3 O 4 sensor to the successive addition of H 2 O 2 , EtOH, AA, Glu-and H 2 O 2 (each 2 mM) respectively. 
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As it is well known, some co-existing physiological species in- 

luding ethanol (EtOH), ascorbic acid (AA), and glucose (Glu), influ- 

nce the sensor responses [ 57 , 58 ]. The amperometric responses of 

-Fe 2 O 3 /Fe 3 O 4 to the consecutive addition of H 2 O 2 (2 mM) and

elevant electroactive species including EtOH, AA and Glu (each 

 mM) into the stirring (10 0 0 rpm) 0.1 M KH 2 PO 4 (pH = 7.3) solu-

ion were recorded ( Fig. 3 d). The γ -Fe 2 O 3 /Fe 3 O 4 sensor was highly

elective to H 2 O 2 detection and displayed remarkable tolerance to 

nterfering substances. These results indicate that our sensor ex- 

ibited good anti-interference ability in practical applications. 

.5. The formation mechanism of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite via 

n electrochemical method using pulse alternating current 

Electrochemical and chemical processes involving iron (ions, 

ydroxo-complexes, particles of oxides and hydroxides) are 

xtremely diverse and complex. Various iron (III) hydroxo- 

ompounds are formed in an aqueous medium mainly depending 

n the synthesis conditions [ 53 , 59 ]. There are 16 types of iron ox-

des and oxyhydroxides which occur comprising iron and oxygen 

53] . 

We propose the following mechanism for γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite formation via an electrochemical PAC method tak- 

ng into account the analysis of the oxidation products, the values 

f the electrode potentials in different synthesis periods and liter- 

ture data [ 40 , 60–62 ]. The processes of water discharge with oxy- 

en (3) and hydrogen (4) evolution during the anodic and cathodic 

ulses, respectively, are essential in determining a synthesis path- 
6 
ay. Electrochemical synthesis using PAC is characterized by the 

igh-rate processes and intense gas bubbling under high current 

ensity in pulses. 

O H 

− → O 2 + 2 H 2 O + 4 ̄e (3) 

 H 2 O + 2 ̄e → 2O H 

− + H 2 (4) 

Iron is oxidized during the anodic half-period (pulse and 

ause). In alkaline solutions, iron hydroxide (II) is formed via oxi- 

ation of iron (5) [63] : 

e + 2 H 2 O → Fe(OH) 2 + 2 H 

+ + 2 ̄e (5) 

Moreover, Fe(OH) 2 can undergo a number of chemical (in solu- 

ion or in solid phase) and electrochemical (on the electrode sur- 

ace) transformations including oxygen-involved reactions (3). After 

 few minutes of the electrosynthesis the reaction media displayed 

 light brown color as a result of iron hydroxide (III) or ferric oxy- 

ydroxide FeOOH (6) formation ( Fig. 4 a) [64] : 

 Fe ( OH ) 2 + 

1 

2 

O 2 → Fe ( OH ) 2 + 2 FeOOH + H 2 O (6) 

Alternatively, a direct electrochemical generation of ferric oxy- 

ydroxide involving iron oxidation process (7) is possible [65] : 

e + 3O H 

− → γ − FeOOH + 3 ̄e (7) 

The chemical interaction of ferric oxyhydroxide obtained by 

6) and (7) and iron hydroxide (II) in solution is actual route of 

agnetite F e 3 O 4 formation (8) [64] : 

e ( OH ) 2 + FeOOH → F e 3 O 4 + 2 H 2 O (8) 
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Fig. 4. a) The formation of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite; b) electrode potential and current variation during synthesis; c) temperature gradient within electrochemical cell 

during synthesis. d) Scheme of the main chemical and electrochemical reactions of γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite formation involving iron under PAC in a NaOH solution. 
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The direct growth of magnetite on the electrode surface accord- 

ng to reaction (9) is plausible under severe pulsed electrosynthesis 

onditions [63] : 

 Fe + 4 H 2 O → F e 3 O 4 + 8 H 

+ + 8 ̄e (9) 

Anodic water oxidation produces oxygen bubbles, which pro- 

ote the removal of the already formed magnetite particles from 

he electrode surface. The suspended solids give a black color to 

ndicate F e 3 O 4 formation (8, 9) ( Fig. 4 a). 

An intense hydrogen bubbling (4) occurs via water reduction 

uring the cathodic pulse and causes the electrode potential in- 

rease at the pulses due to ohmic losses ( Fig. 4 b) and electrolyte 

eating ( Fig. 4 c). 

Additionally, ferric oxyhydroxide can be reduced to magnetite 

oth electrochemically on the electrode surface (10) or chemically 

y generated hydrogen (11) [26] : 

eOOH + ̄e → F e 3 O 4 + H 2 O + O H 

− (10) 
7 
eOOH + 

1 

2 

H 2 → F e 3 O 4 + 2 H 2 O (11) 

Magnetite F e 3 O 4 is thermodynamically unstable and rapidly 

onverted to maghemite (isostructural to magnetite) even at room 

emperature [66] . The formation of a thin layer of maghemite γ - 

e 2 O 3 proceeds via the diffusion of Fe 2 + cations onto the nanoparti- 

le surface and oxidation to Fe 3 + in oxygen-saturated alkaline elec- 

rolyte under PAC synthesis conditions (12) : 

F e 3 O 4 + 

1 

2 

O 2 → 3F e 2 O 3 (12) 

According to the above chemical and electrochemical reactions, 

he proposed scheme for the formation of Fe 2 O 3 /Fe 3 O 4 nanocom- 

osite under PAC in a NaOH solution is shown in Fig. 4 d. 
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. Conclusion 

In summary, γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite was prepared via 

n electrochemical method using pulse alternating current and was 

haracterized by XRD, TG/DSC, XPS, SEM and TEM. The mechanism 

f γ -Fe 2 O 3 /Fe 3 O 4 nanocomposite formation was proposed. The 

ensor exhibited a fast electron transfer process in γ -Fe 2 O 3 /Fe 3 O 4 

anocomposite. The optimized H 2 O 2 sensor revealed a remark- 

ble low limit of detection of 0.05 μM, a wide linear range from 

.0 0 02 to 8 mM, and a fast response time of 2 s. These results

emonstrated that γ -Fe 2 O 3 /Fe 3 O 4 prepared via an electrochemical 

ethod using pulse alternating current is a promising efficient ma- 

erial for electrochemical sensing of H 2 O 2 . 
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