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Abstract—Humans modify their facial expressions in order to communicate their internal states and sometimes to mislead observers
regarding their true emotional states. Evidence in experimental psychology shows that discriminative facial responses are short and
subtle. This suggests that such behavior would be easier to distinguish when captured in high resolution at an increased frame rate.
We are proposing SASE-FE, the first dataset of facial expressions that are either congruent or incongruent with underlying emotion
states. We show that overall the problem of recognizing whether facial movements are expressions of authentic emotions or not can
be successfully addressed by learning spatio-temporal representations of the data. For this purpose, we propose a method that
aggregates features along fiducial trajectories in a deeply learnt space. Performance of the proposed model shows that on average,

it is easier to distinguish among genuine facial expressions of emotion than among unfelt facial expressions of emotion and that certain
emotion pairs such as contempt and disgust are more difficult to distinguish than the rest. Furthermore, the proposed methodology
improves state of the art results on CK+ and OULU-CASIA datasets for video emotion recognition, and achieves competitive results

when classifying facial action units on BP4D datase.

Index Terms—Affective computing, facial expression recognition, unfelt facial expression of emotion, human behaviour analysis

1 INTRODUCTION

N “Lie to me”, an American crime television drama,

Dr. Cal Lightman, a genius scientist, is assisting investiga-
tors in the police departments to solve cases through
his knowledge of applied psychology. This is mainly done
through interpreting subtle facial expressions of emotion
(FEE) and body language of alleged offenders in order to
evaluate their authentic motivation or emotional experience.

However in real life, humans are very skilled in con-
cealing their true affective states from others and display-
ing emotional expressions that are appropriate for a given
social situation. Untrained observers tend to perform

o K. Kulkarni is with the Computer Vision Center, Barcelona 08193, Spain.
E-mail: kaustubh14jr@gmail.com.

o C. A. Corneanu and S. Escalera are with the Computer Vision Center,
University of Barcelona, Barcelona 08007, Spain, and the University of
Autonoma, Barcelona 08193, Spain.

E-mail: cipriancorneanu@gmail.com, sergio@maia.ub.es.

o 1. Ofodile is with the the iCV Lab, Institute of Technology, University of
Tartu, Tartu 50090, Estonia. E-mail: ike@icv.tuit.ut.ee.

o X. Baré is with the Computer Vision Center and Universitat Oberta de
Catalunya, Barcelona 08018, Spain. E-mail: xbaro@uoc.edu.

e S. Hyniewska is with the Institute of Physiology and Pathology of Hearing,
Warsaw 02-042, Poland. E-mail: s hyniewska@bath.ac.uk.

o | Allik is with the Department of Psychology, Estonian Center of Behav-
ioral and Health Sciences, University of Tartu, Tartu 50090, Estonia.
E-mail: juri.allik@ut .ee.

o G. Anbarjafari is with the iCV Lab, Institute of Technology, University of
Tartu, Tartu 50090, Estonia, and the Department of Electrical and
Electronic Engineering, Hasan Kalyoncu University, Gaziantep 27000,
Turkey. E-mail: shb@icv.tuit.ut.ee.

Manuscript received 24 Dec. 2017; revised 11 Sept. 2018; accepted 30 Sept.
2018. Date of publication 16 Oct. 2018; date of current version 28 May 2021.
(Corresponding author: Gholamreza Anbarjafari.)

Recommended for acceptance by S. P Zafeiriou.

Digital Object Identifier no. 10.1109/TAFFC.2018.2874996

barely above chance level when asked to detect whether
observed behaviours genuinely reflect underlying emo-
tions [1], [2]. This is a particularly difficult judgement
when relying on visual cues only [3]. Even for professional
psychologists it is difficult to recognise deceit in emotional
displays as there are numerous factors that need to be con-
sidered [4], [5].

Although human perception is naturally biased in its inter-
pretation of perceived facial displays (e.g., see [6]), an incor-
rect appraisal of the sincerity of observed facial displays can
have detrimental consequences [7]. In the clinical context,
credibility of patients is of great importance given the risk of
simulated affective reactions, psychiatric syndromes [8] or
the need to evaluate pain levels [9]. In the legal context, body
language (including facial displays) is often considered a
source of valuable information by judges and jurors [10], [11].
Beyond facts and evidence, facial displays, e.g., of remorse or
anger in the defendant, are one factor that influences jurors in
their verdicts [11]. These and other potential applications
would benefit not only from improved human detection
but also from the possibility to automatically discriminate
between subtle facial expressions such as displays of genuine
and unfelt emotional states. On top of legal and medical set-
tings, improved human-computer interaction for assistive
robotics [12], [13], [14], treatment of chronic disorders [15]
and assisting investigation conducted by police forces [16],
[17], [18] would be just a few.

An emotional display is considered unfelt (or masked)
when it does not match a corresponding emotional state.
There are three major ways in which emotional facial
expressions are intentionally manipulated [19]: an expres-
sion is simulated when it is not accompanied by any genuine
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Fig. 1. People may have difficulties in expressing emotions that look
genuine when these do not correspond to the emotional state they are
experiencing. In the case of smiling, differences can be observed in
the contraction of the orbicularis oculimuscle around the eyes. Left: The
lack of orbicularis oculi contraction has often been considered a marker
of unfelt or even deceitful expressions. Right. A strong orbicularis oculi
contraction, with very visible “crows feet” around the corners of the eyes,
has often been considered a marker of genuine expressions.

emotion, masked when the expression corresponding to
the felt emotion is replaced by a falsified expression that
corresponds to a different emotion, or neutralized when the
expression of a true emotion is inhibited while the face
remains neutral. All along this work, the term genuine FEE
is used to denote FEEs congruent with the affective state,
while the term unfelt FEE is used for denoting FEEs incon-
gruent with the emotional state (aka masked).

It has been argued that liers, deceivers and displayers of
unfelt emotions would be betrayed by the leakage of their
genuine emotional states through their nonverbal behaviour
[4], [20], [21]. This is supposed to happen through subtle
facial expressions of short duration, as well as changes in
pitch, posture and body movement.

Studies on the unfelt display of emotion mostly originated
based on Duchenne de Boulogne’s work, a nineteenth century
French scientist. He is considered the first to have differenti-
ated facial actions observed in displays of felt and unfelt emo-
tions [22], [23]. Part of his legacy concerns what is considered
the typical genuine smile—often called a Duchenne smile.
Duchenne smiles involve the contraction of the orbicularis
oculi muscle (causing lifting of the cheeks and crow’s feet
around the eyes) together with the zygomaticus major muscle
(pulling of lip corners upwards) [24], [25], [26], [27], [28], [29],
[30], [31], [32] (see Fig. 1). In contrast, a masking smile (aka a
non-Duchenne smile) can be used to conceal the experience of
negative emotions [28], [32], [33], [34], [35].

Although it has been argued that the orbicularis oculi acti-
vation is absent from masked facial expressions of enjoy-
ment, empirical evidence is not conclusive. For example, in a
database presenting 105 posed smiles 67 percent of them
were accompanied by the orbicularis oculi activation [36].
Another study showed that over 70 percent of untrained par-
ticipants were able to activate the majority of eye region
action units, although not one action at a time, as they man-
aged to perform them through the reliance and co-activation
of other action units. The poorest performance was for the
deliberate activation of the nasolabial furrow deepener, which
is often observed in sadness and which was performed suc-
cessfully only by 20 percent while the orbiculari oculi by
60 percent of participants.

Although a variety of studies have focused on the evalua-
tion of how genuine some FEEs might be while relying on the
analysis of still, i.e., static, images, not much attention has
been paid to dynamics as evaluated in a sequence of frames

[371, [38], [39], [40], [41], [42], [43]. In a naturalistic setting,
FEEs are always perceived as dynamic facial displays, and it
is easier for humans to recognize facial behaviour in video
sequences rather than in still images [44], [45], [46].

It has been asserted that while trying to simulate the
expression of an unfelt emotion, cues of the actual felt emo-
tion appeared along cues related to the masked expression,
which made the overall pattern difficult to analyse [47]. Lea-
kages of a genuine emotion have been observed more fre-
quently in the upper part of the face, while cues the lower
half of the face was more often manipulated in order to
express an unfelt emotion [48], [49], [50], [51].

In this work, we propose a new data corpus containing
genuine and unfelt FEE. While numerous studies involving
the analysis of genuine or truthful behaviours rely on video
recordings of directed interviews, such as the work in [2],
studies that analysed nonverbal behaviour while controlling
for the emotional state of subjects are rare [49].

When designing experiments that require facial emotion
displays as independent variables, posed facial expressions of
subjects being instructed to act out a particular emotion are
often used. This is thought to provide greater control over the
stimuli than a spontaneous emotion display might, in the sense
that other variables such as context and the physical appear-
ance of subjects (even hair style or make-up) are much less var-
iable and will not bias the observers in an uncontrolled way.

To record FEEs, participants are usually asked to practice
the display of specific emotions. In order to achieve a display
close to a genuine emotional expression, the process can be
facilitated through the presentation of FEEs [52], [53], or other
pictures [49] or videos inducing emotions in line with the
ones to be expressed [54], or mental imagery and related the-
atre techniques [55]. Such paradigms have been frequently
used for recording and creating emotional expression data-
bases [53], [55], [56], [57], [58].

In addition to the published dataset, we propose a com-
plete methodology that has the capacity to recognise unfelt
FEEs and generalises to standard public emotion recognition
datasets. We first train a Convolutional Neural Network
(CNN) to learn a static representation from still images and
then pull features from this representation space along facial
landmark trajectories. From these landmark trajectories we
build final features from sequences of varying length using a
Fisher Vector encoding which we use to train a SVM for final
classification. State-of-the-art results are presented on CK+
and Oulu-Casia, two datasets containing posed FEEs. More-
over, close to state-of-the-art results are shown on a more diffi-
cult problem of recognising spontaneous facial Action Units
on BP4D-Spontaneous. We finally provide benchmarking
and outperform the methods from the recent ChaLearn Chal-
lenge [59] on the proposed SASE-FE dataset.

The rest of the paper is organised as follows: in Section 2
we describe related work in FEEs recognition, in Section 3 we
introduce the new SASE-FE dataset, in Section 4 we detail the
proposed methodology, and Section 5 concludes the paper.

2 RELATED WORK

This section first reviews main works on recognition of FEE,
and then recognition of genuine and unleft FEE.

2.1 Recognizing Facial Expressions of Emotion
Automatic facial expression recognition (AFER) has been an
active field of research for a long time. In general, a facial
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expression recognition system consists of four main steps.
First the face is localised and extracted from the background.
Then, facial geometry is estimated. Based on it, alignment
methods can be used to reduce variance of local and global
descriptors to rigid and non-rigid variations. Finally, repre-
sentations of the face are computed either globally, where
global features extract information from the whole facial
region, or locally, and models are trained for classification or
regression problems.

Features can be split into static and dynamic, with static
features describing a single frame or image and dynamic
ones including temporal information. Predesigned features
can also be divided into appearance and geometrical.
Appearance features use the intensity information of the
image, while geometrical ones measure distances, deforma-
tions, curvatures and other geometric properties. This is not
the case for learned features, for which the nature of the
extracted information is usually unknown.

Geometric features describe faces through distances and
shapes. These can be distances between fiducial points [60]
or deformation parameters of a mesh model [61], [62]. In the
dynamic case the goal is to describe how the face geometry
changes over time. Facial motions are estimated from color
or intensity information, usually through Optical flow [63].
Other descriptors such as Motion History Images (MHI)
and Free-Form Deformations (FFDs) are also used [64].
Although geometrical features are effective for describing
facial expressions, they fail to detect subtler characteristics
like wrinkles, furrows or skin texture changes. Appearance
features are more stable to noise, allowing for the detection
of a more complete set of facial expressions, being particu-
larly important for detecting micro-expressions.

Global appearance features are based on standard feature
descriptors extracted on the whole facial region. Usually these
descriptors are applied either over the whole facial patch or at
each cell of a grid. Some examples include Gabor filters [65],
Local Binary Pattern (LBP) [66], [67], Pyramids of Histograms
of Gradients (PHOG) [68] and Multi-Scale Dense SIFT
(MSDF) [69]. Learned features are usually trained through a
joint feature learning and classification pipeline. The resulting
features usually cannot be classified as local or global. For
instance, in the case of Convolutional Neural Networks
(CNN), multiple convolution and pooling layers may lead to
higher-level features comprising the whole face, or to a pool
of local features. This may happen implicitly, due to the com-
plexity of the problem, or by design, due to the topology of
the network. In other cases, this locality may be hand-crafted
by restricting the input data.

Expression recognition methods can also be grouped into
static and dynamic. Static models evaluate each frame inde-
pendently, using classification techniques such as Bayesian
Network Classifiers (BNC) [61], [70], Neural Networks (NN)
[71], Support Vector Machines (SVM) [62] and Random For-
ests (RF) [72]. More recently, deep learning architectures have
been used to jointly perform feature extraction and recogni-
tion. These approaches often use pre-training [73], an unsu-
pervised layer-wise training step that allows for much larger,
unlabelled datasets to be used. CNNs are by far the dominant
approach [74], [75], [76]. It is a common approach to make use
of domain knowledge for building specific CNN architectures
for facial expression recognition. For example, in AU-aware
Deep Networks [77], a common convolutional plus pooling
step extracts an over-complete representation of expression

features, from which receptive fields map the relevant fea-
tures for each expression. Each receptive field is fed to a DBN
to obtain a non-linear feature representation, using an SVM to
detect each expression independently. In [78] a two-step itera-
tive process is used to train Boosted DBN (BDBN) where each
DBN learns a non-linear feature from a face patch, jointly per-
forming feature learning, selection and classifier training.

Dynamic models take into account features extracted inde-
pendently from each frame to model the evolution of the
expression over time. Probabilistic Graphical Models, such as
Hidden Markov Models (HMM) [79], are common. Other
techniques use Recurrent Neural Network (RNN) architec-
tures, such as Long Short Term Memory (LSTM) networks
[63]. Some approaches classify each frame independently
(e.g., with SVM classifiers [80]), using the prediction aver-
ages to determine the final facial expression. Intermediate
approaches are also proposed where motion features between
contiguous frames are extracted from interest regions, after-
wards using static classification techniques [61]. For example,
statistical information can be encoded at the frame-level into
Riemannian manifolds [81].

2.2 Recognizing Genuine and Unfelt Facial
Expressions of Emotion: Experimental
Psychology

Psychologists differentiate facial displays that are produced
involuntarily, e.g., automatic “expressions” of felt emoti-
onal states, and displays produced voluntarily, e.g., for social
purposes and not as a leakage of an experienced emotional
state. Unfelt displays of emotions are often necessary for social
acceptance. First, individuals judge whether any facial display
is appropriate for any given situation, which leads to display-
ing unfelt but socially expected emotions for a healthy identity
construction [82]. Second, societal norms tend to accentuate
the need for positive emotions and positive emotional dis-
plays, while devaluing native displays or even expecting indi-
viduals to inhibit any negative emotional experience [83].
Third, some displays are facilitated in situations where they
could provide social support, such as in the case of sadness
[84]. Finally, they can be used prosocially, e.g., in order not to
hurt other individuals’ feelings [85]. Already in early child-
hood individuals start to learn which facial displays are
appropriate in different daily life situations [86], [87] and
become very skilled displayers of unfelt emotions [88].
Human observers are less skilled in detecting displays of
unfelt emotions [4]. Psychologists accentuate the fact that
there is no golden channel for consistent deception detection
and no single cue at the nonverbal, verbal or physiological
level is currently considered sufficient (see [89] for additional
information). Whereas for a general deception detection sev-
eral prominent cues are expected to co-occur, e.g., illustrators,
blink and pause rate, speech rate, vague descriptions, repeated
details, contextual embedding, reproduction of conversations,
and emotional ‘leakage” in the face [89]; the subjective experi-
ence behind emotional displays might be judged by additional
rules. So far unfelt emotion research is less advanced than that
on pure deceit detection, and only a few emotions have been
studied by psychologists in terms of limitations observed
in voluntarily produced displays of unfelt emotions.

2.3 Recognizing Genuine and Unfelt Facial
Expressions of Emotion: Affective Computing

Emotion perception by humans or machines stands for

the interpretation of particular representations of personal
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TABLE 1
Summary of SASE-FE Database
# of persons 54
gender distribution female 41%, male 59%
Subjects age distribution 19 - 36 years
race distribution Caucasian 77.8%,
Asian 14.8%, African 7.4%
# of videos 643
. video length 3-4 sec
Videos resolution 1280 x 960
#frames (acted /unfelt) 120,216/118,712

feelings and affects expressed by individuals, which may
take different forms based on the circumstances governing
their behaviour at the time-stamp at which they are evalu-
ated [90], [91].

Amongst audiovisual sources of information bearing
clues to the emotions being expressed, the ones extracted
from single or multiple samples of facial configurations, i.e.,
facial expressions, provide the most reliable basis for devis-
ing the set of criteria to be incorporated into the foregoing
analysis [47], [92] and are, therefore, the most popular alter-
natives utilised in numerous contexts, such as forensic
investigation and security. These settings often rely on the
assessment of the correspondence of the displayed expres-
sion to the actual one.

3 SASE-FE DATASET

A number of affective portrayal databases exist; however,
none meets the required criteria for our analysis of con-
trolled genuine and unfelt emotional displays presented in
high resolution at an increased frame rate. To answer those
needs, the SASE-FE database was created.

The SASE-FE database consists of 643 different videos
which had been recorded with a high resolution GoPro-
Hero camera. From the inital 648 recordings, 5 were elimi-
nated post-hoc as the participants did not completely meet
the defined protocol criteria. As indicated in Table 1, 54
participants of ages 19-36 were recorded. The reasoning
behind the choice of such a young sample is that older
adults have different, more positive responses than young
adults about feelings and they are quicker to regulate nega-
tive emotional states than younger adults [93], [94].

Participants signed a written informed consent form after
the experimental and recording procedures were explained.
All participants agreed for their data to be released for
research purposes and all data can be accessed by contact-
ing the authors. The data collection and its use are based by
the ethical rules stated by University of Tartu, Estonia.

For each recording, participants were asked to act two
FEEs in a sequence, a genuine and an unfelt one. The partic-
ipants displayed six universal expressions: Happiness, Sad-
ness, Anger, Disgust, Contempt and Surprise. The subjects
were asked if they felt the emotion and the large majority
confirmed, but no recording of their answer was made. To
increase the chances of distinguishing between the two
FEEs presented in a sequence, two emotions were chosen
based on their visual and conceptual differences as
observed on the two dimensions of valence and arousal
[95], [96], [97]. Thus a visual contrast was created by asking
participants to act Happy after being Sad, Surprised after
being Sad, Disgusted after being Happy, Sad after being

WEIRD WORMS SHOOTS WHITE
GOO ALL OVER HUMAN HAND

(e) Surprise (f) Contempt

Fig. 2. A screenshot of some of the videos that have been used to induce
a specific basic emotion in participants.

Happy, Angry after being Happy, and Contemptuous after
being Happy [98], [99]. For eliciting emotion, subjects were
shown videos in line with the target emotion. Emotion elici-
tation through videos is a well established process in emo-
tion science research [100]. Videos were short scenes from
YouTube selected by psychologists. Fig. 2 shows captures
from videos that have been used for inducing specific emo-
tions in the participants.

Throughout the entire setup, participants were asked to
start their portrayals from the neutral face. The length of
facial expression was about 3-4 seconds. After each genuine
FEE, participants were asked to display a neutral state again
and then the expression of a second emotion, which was the
opposite of the former.

None of the participants were aware of the fact that they
would be asked to display a second facial expression. The
participant’s first two seconds of behavior when performing
a facial expression, and more exactly the opposite to the felt
emotion, were recorded with the same device and the same
configuration. As a result, for each participant we have col-
lected 12 different videos of which 6 are genuine FEE and
other 6 are unfelt FEE. The length of captured FEE is not
fixed. The process has been closely supervised by experi-
mental psychologists so that the setup would result in real-
istic recordings of genuine and unfelt FEE. The summary of
the SASE-FE dataset is provided in Table 1.

It is important to note that while preparing the SASE-FE
database, introduced and used in this work, external factors
such as personality or mood of the participants have been
ignored, due to the fact that in order to eliminate such exter-
nal factors several repetitions of the experiment would be
necessary, but as a result the participant could start to learn
to simulate the facial expressions better. Hence we have
decided to ignore such external factors.

4 THE PROPOSED METHOD

In this section, we present the methodology used for recog-
nising unfelt FEEs from video sequences. As showed in the
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(c) Surprise

Fig. 3. Selected examples of pairs of sequences showing genuine (top)
and unfelt (below) FEEs of anger, happiness, and suprise from the
SASE-FE dataset.

literature (see Sections 1 and 2) most discriminative infor-
mation is to be found in the dynamics of such FEEs. Follow-
ing this assumption, we consider learning a discriminative
spatio-temporal representation to be central for this prob-
lem. We first train a Convolutional Neural Network (CNN)
to learn a static representation from still images and then
pull features from this representation space along facial
landmark trajectories. From these landmark trajectories and
inspired by previous work in action recognition [101], a
well studied sequence modelling problem, we build final
features from sequences of varying length using a Fisher

CLASSIFICATION

I

Vector encoding which we use to train a SVM for final
classification.

Additionally, the amount of video data available is lim-
ited, which requires usage of advanced techniques when
training high capacity models with millions of parameters
such as CNNs. Fine-tuning existing deep architectures can
alleviate this problem to a certain extent but these models
might carry redundant information from the pre-trained
application domain. In this paper, we use a recently pro-
posed method [102] which proposes a regularisation func-
tion which helps using the face information to train the
expression classification net.

We follow this section by first discussing the technique
we have used to train a CNN on still images with a limited
amount of data in Section 4.1. Then we show how we build
a spatio-temporal representation from static features com-
puted by the CNN in Section 4.2. The reader can refer to
Fig. 4 for an overview of the proposed method. Specific
implementation details will be presented in Section 5.1.

4.1 Using Efficient Knowledge Transfer for Training
a CNN for Facial Expression Recognition

Our proposed training procedure of the CNN for learning
static spatial representation: first, we fine tune the VGG-
Face network for the facial expression recognition task
[103]. We then use this fine tuned network to guide the
learning of a so called emotion network (EMNet) [102]. Fol-
lowing [102] the EMNet is denoted as:

O = h92 (991 (I)>a (1)

where h represents the fully connected layers and g repre-
sents the convolution layers, 6; and 0, are the corresponding
parameters of the to be estimated of the fully connected
layers and the convolution layers respectively, I is the input
image and O is the output before the softmax.

We follow the two step training proposed in [102]. The
basic motivation behind this training procedure is that
the fine tuned VGG-Face network already gives a compet-
itive performance on the emotion recognition task. We
use the ouyput of the VGG-Face to guide the training of
the EMNet. In the first step, we estimate the parameters
of the only of the convolution layers of the EMNet. In this
step, the output of the VGG-Face acts as a regularisation
for the emotion net. This step is achieved by maximising
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Fig. 4. Overview of the proposed method.
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the following loss function:

G2, 2

Ly = max ll g6, (1)
1

where, G(I) is the output of the pool5 layer of the fine tuned
VGG-Face network. In the second step we learn the parame-
ters of the fully connected layer, 0, of the EMNet by training
together the convolution layers, estimated in the previous
step, and the fully connected layers. This step is achieved
by minimizing the cross entropy loss:

Z Z l; jlogls j, 3)

i=1 j=

where, I; ; is the ground truth label and [; ; is the predicted
label.

4.2 Learning a Spatio-Temporal Representation

For learning a spatio-temporal representation of the facial
video sequences we aggregate features computed by the
EMNet along trajectories generated by facial geometries
(we will name it TPF-FGT from Trajectory Pooled Features
from Facial Geometry Trajectories). First we detect facial
geometries in a form of a fixed set of fiducial points in the
whole video sequence in a per-frame fashion. To compute
the fiducial points we first frontalize all the cropped face
with [104]. Then on this cropped frontalized faces we esti-
mate the facial geometry with the with the facial alignment
method [105]. This will output 68 fiducial landmark points
on each image. The detected fiducial points are tracked
across the sequence to form trajectories corresponding to
specific locations on the face (e.g., corners of the eyes,
mouth, see Fig. 4 for an example). We pool features along
these trajectories from the EMNet feature space. Such a
pooling is advantageous because it captures the temporal
relations between the frames. After reducing the dimension-
ality of the pooled features we learn a set of clusters over the
distribution of the features using Gaussian Mixture Models
(GMMs). Once the clusters are learned we use Fisher Vector
(FV) [106] encoding to produce a compact feature vector for
each sequence. The final vectors are used to train a linear
classifier. In the rest of section we detail the main steps of
the proposed method.

4.2.1 Trajectory Pooled Features

Given a sequence of images we can compute all correspond-
ing facial geometries with the method previously presented.
As each geometry is described by a fixed set of ordered
points we can track these points along all the sequence to
form trajectories. Along these trajectories we pool features
from a feature space of choice. In our case, we use features
computed at different layers of an EMNet.

4.2.2 Fisher Vectors

The next step is to get a single vector representation of each
emotion video. On this vector an SVM classifier is trained.
We choose the Fisher Vector representation for this encoding
[107]. Each TPF is an observation vector corresponding to
each landmark trajectories. We denote all the observed TPFs
in the training set as X. We assume the trajectory pooled fea-
tures (TPF) are drawn from a Gaussian Mixture Model
(GMM). A K component GMM is computed over the

training set of TPF . Assuming that the observations in X are
statistically independent the log-likelihood of X given 0 is:

IOgP X|9 Zlog Zwk-/\/ xmal‘bb(o'k) )a (4)

where S wp =1 and 0 = {wy, puy, (54)°}. We assume
diagonal covariance matrices. The parameters of the per-
class GMMs are estimated with the Expectation maximiza-
tion (EM) algorithm to optimize the maximum likelihood
(ML) criterion. To keep the magnitude of the Fisher vector
independent of the number of observations in X we normal-
ize it by M. Now we can write the closed form formulas for
the gradients of the log-likelihood P(X|0) w.r.t to the indi-
vidual parameters of the GMM as:

uk A{\/—Z yk (5)

m=1
— MK
(6)
( = )
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m 1

where y,.(m) is the posterior probability or the responsibil-
ity of assigning the observation x,, to component k.

Now the FV for each video is constructed by stacking
together the derivatives computed w.r.t to the components
of the GMM in a single vector. The details of all the close
formed formulas can be found in the following paper [108].

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

The experimental results have been conducted on the intro-
duced SASE-FE dataset. For comparison, we have replicated
experiments on the Extended Cohn Kanade (CK+) [109] data-
set and the Oulu-CASIA dataset [110] and for spontaneous
expression recognition we provide results of the BP4D-
Spontaneous dataset [111].

Due to its relatively small size and simplicity, the CK+ is
one of the most popular benchmarking datasets in the field
of facial expression analysis. It contains 327 sequences cap-
turing frontal poses of 118 different subjects while perform-
ing facial expressions in a controlled environment. The
facial expressions are acted. Subjects’ ages range between 18
and 50 years old, consisting of 69 percent females and hav-
ing relative ethnic diversity. Labels of presence of universal
facial expressions and the Facial Action Units are provided.

The Oulu-CASIA dataset provides facial expressions
of primary emotions in three different illumination scenar-
ios. It includes 80 subjects between 23 to 58 years old
from whom 73.8 percent are males. Following other works
[102], we only use the strong illumination partition of
the data which consists of 480 video sequences (6 videos per
subject). It has higher variation and constitutes a good com-
plement to the CK+ for cross validating our method. We
also test our method on the 12 action unit recognition prob-
lem of in the BP4D-Spontaneous dataset. In this dataset,
there are 41 adults with 8 videos each giving a total of
328 videos. Each frame is annotated with 12 facial AUs. In
contrast with all previous set-ups, recognizing AUs is a
multi-label classification problem.
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Fig. 5. lllustration of the pre-processing we perform on the data.
Detected faces are first extracted and frontalized and facial landmarks
localised for each image in the input sequences.

In the following sections we first discuss the implementa-
tion details of each step of the proposed methodology fol-
lowed by discussion of the experimental results.

5.1 Implementation Details

The proposed methodology consists of the following steps:
first, given a video sequence we extract faces from back-
ground, frontalize them and localize facial landmarks (see
Fig. 5). Second, we fine-tune a pretrained VGG-Face deep
network [103] for recognising facial expressions. Third, we
use this network for guiding the training of a so called
EMNet following work proposed in [102] (see also Section
4.1). This second network is used to compute static repre-
sentations from still images. Fourth, we pool features from
the previously computed static representation space along
trajectories determined by the facial landmarks. Fifth, we
compute fixed length descriptors for each video sequence
using the Fisher Vector encoding. These final descriptors
are then classified with a linear SVM. We use a leave-
one-actor-out validation framework for all our experiments.
For the theoretical framework of the spatio-temporal repre-
sentation and the knowledge transfer training approach of
the EMNet, please refer to Section 4. For a visual overview
of the method see Fig. 4.

Preprocessing. We first extract faces from the video sequen-
ces. After faces are extracted we perform a frontalization
which registers faces to a reference frontal face by using the
method of Hassner et al. [104]. This removes variance in the
data caused by rotations and scaling. This frontalization
method estimates a projection matrix between a set of
detected points on the input face and a reference face. This is
then used to back-project input intensities to the reference
coordinate system. Self-occluded regions are completed in an
aesthetically pleasant way by using color information of the
neighbouring visible regions and symmetry. Finally in all syn-
thesised frontal faces we estimated the facial geometry, using
a classical, robust facial alignment method [105] trained to
find 68 points on the image (an example of the frontalization
process is showed in Fig. 5).

Fine-Tuning the VGG-Face. For all experiments, including
fine tuning of the VGG-FACE are done in a 10-fold cross
validation for the CK+ and Oulu-CASIA datasets to keep
the experiments consistent with [102]. We define a train set
of 40 actors, validation set of 5 actors and a test set of 5
actors for the SASE-FE dataset. This set is exactly similar to
the partitions defined in [59]. Here we estimate the parame-
ters of our proposed method on the validation set and final
results are reported on the unseen test set. Here we also per-
form an additional experiment, since the training data is
limited, we augment the training set of the SASE-FE dataset
with additional training data from the Oulu-CASIA [110]
and CK+ datasets. These experiments are denoted as Data

Augmentation. The training is done for 200 epochs with a
learning rate of 0.001. It is decreased every 50 epochs.
The fully connected layers are randomly initialised with
the Gaussian distribution. The min-batch size is 32 and the
momentum is 0.9. The dropout is set to 0.5. From each frame
the face is cropped and scaled to 224 x 224. The bottom two
convolution layers are left unchanged. In the testing phase,
if the CNN is able to recognise more than 50 percent of the
frames in the video correctly then the video is deemed to be
correctly classified. For the 6 genuine class and the 6 unfelt
class experiment the network is trained for the 12 class
problem, and the final fully connected layer is retrained
with the appropriate number of classes.

Training the EMNet. The architecture of EMNet is the
same as the one proposed in [102]. It consists of 5 convolu-
tional layers each followed by a ReLU activation and a max
pooling layer. The filter size of the convolutions layers is
3 x 3 and that of the pooling layer is 3 x 3 with a stride of 2.
The output of each layer is 64,128,256,512,512. Furthermore,
we need to add another 1 x 1 convolutional layer to match
the dimensionality of the output of the EMNet to the pool5
layer of the fine tuned VGG-Face net for the regularisation
in the first step. We append a single fully connected layer of
size 256. We just use one layer to prevent overfitting. We
use this size of 256 for distinguishing between all multi-
class experiments of classifying all emotions in the dataset.
The size of the fully connected layer is further reduced to
128 for the binary classification experiment of distinguish-
ing between genuine and unfelt FEEs. This is because the
training data available for binary classification is much less
than the training data for classifying all emotion.

Trajectory pooled features (TPF). The TPFs from the facial
geometry trajectories (TPF-FGT) are aggregated in a rectan-
gular region of pixel size 64 x 64 which we have experimen-
tally set. This size is scaled by a ratio of the size of the input
image and the feature map from the corresponding layer of
the neural network. For our experiments we use the TPF
descriptors extracted from the conv5 of the EMNet. In order
to train the Fisher vector for encoding we perform PCA to
decorrelate the dimensions. We experimentally set the num-
ber of first principal components to 32.

Fisher Vectors Encoding and Classification. For encoding
the TPFs into lower dimensional representations we used
the Fisher Vector encoding. Its efficacy for video analysis has
been proven for action recognition [112]. In order to train
GMMs, we first decorrelate the dimensions of the TPFs with
PCA and reduce its dimension to d. Then, we train a GMM
with £ = 16 mixtures. We can use a low value for £ as com-
pared to other papers in the literature because the trajectory
computed on the landmarks is already discriminative as
compared to the dense trajectory features. This enables us to
construct a compact feature representation with FV which is
also discriminative. Moreover, we square-root normalise
followed by the L2 norm of each vector. The video is repre-
sented with a 2kd dimensional vector. We use the Fisher
Vectors to train a linear SVM for classification. The value of
the regularisation parameter is set to C' = 100. The parame-
ters K and C were set using the validation set and then tested
on the unknown test set of the SASE-FE dataset.

5.2 Discussion

In this section, we discuss the experimental results obtained
by our proposed method. For brevity, we have denoted
both in the text and figures the genuine FEE labels by



384 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2021

TABLE 2
Our Method Shows State-of-the-Art
Results When Compared with Best
Performing Setups on the CK+ Dataset

Method Accuracy(%)
AUREF [77] 92.22
AUDN [113] 93.70
STM-Explet [114] 94.2
LOmo [115] 95.1
IDT+FV [116] 95.80
Deep Belief Network [78] 96.70
Zero-Bias-CNN [117] 98.4
Ours-Final 98.7

This proves generalization capacity of this
approach.

adding a G in front of the labels (e.g, GSad) and the corre-
sponding unfelt FEE by adding an U in the same fashion
(e.g., UAnger). We start by discussing results on the
Cohn-Kanade, the Oulu-CASIA and BP4D-Spontaneous
datasets and then we discuss the results on the proposed
SASE-FE dataset.

521 CK+

The performance of several state-of-the-art methods and the
performance of our final method is given in Table 2. We are
able to come very close to the state of the art performance
on this dataset.

In terms of methodology, [116] is the closest method to our
proposed method. The authors of this paper implement the
improved dense trajectories framework proposed for action
recognition [120] for emotion recognition. We are able to
improve their results by aggregating the feature maps along
the fiducial points and computing the TPF-FGT features.

We observe that our method is better than methods
which use a per frame feature representation rather than
per-video as in our case [114], [115]. In [115], this per-frame
feature is the concatenation of SIFT features computed
around landmark points, head pose and local binary pat-
terns (LBP). They propose a weakly supervised classifier
which learns the events which define the emotion as hidden
variables. The classifier is a support vector machine which
was estimated using the multiple-kernel learning method.
From the table we can observe that when landmarks are
used along with the CNN feature maps we are able to top
their performance. The rest of the methods listed in the table
use deep learning techniques to classify emotions [77], [78],
[117]. They design networks able to specifically learn facial
AUs. We can observe that we out perform the best perform-
ing method [117] on the CK+ dataset.

5.2.2 Oulu-CASIA

We also, show the efficacy of our method on a more difficult
dataset like the Oulu-CASIA dataset. In Table 3 we can
observe that our method outperforms the previous best per-
formance of [102] by 1.9 percent. In Table 4 we show the emo-
tion-wise comparison between our proposed method and
[102]. The two main differences between [102] and our
method are that we align the faces and then add the TPFs for
classification. In our experiments we observed that aligning
the faces on the Oulu-CASIA dataset gave only very marginal
improvement while once we add the TPFs for classification

TABLE 3
Our Method Shows State-of-the-Art
Results when Compared with Best
Performing Setups on the
Oulu-CASIA Dataset

Method Accuracy (%)
DTAGN [118] 81.46
LOmo [115] 82.10
PPDN [119] 84.59
FN2EN [102] 87.71
Ours-Final 89.60

This proves the generalization capacity of such
an approach.

then we can get significant improvements. The improvements
are especially observed in three emotions Anger, Disgust and
Sadness. These emotions are typically confused between each
other. This experiment shows that the temporal information
is important for emotion recognition.

5.2.3 BP4D-Spontaneous

Considerably more challenging is the recognition of sponta-
neous expression of emotion. For this purpose we show
results on the BP4D dataset. The evaluation is done in the 3-
fold cross validation framework. The evaluation metrics is
F1-segment score which is the harmonic mean of the preci-
sion and recall. We do the following steps to achieve the
final results. First, we finetune the VGG-FACE network on
the 12 action units. We sample 100 frames as positive and
200 frames as negative examples per sequence as done in
[121]. Then we train the EMnet from VGG-FACE network to
do AU recognition. From the EMnet we compute the TPF
and then finally the SVM for classification of AUs. We com-
pute a Fl-segment score as opposed to Fl-frame score as
done in [121] because the trajectories on the landmark-
points are computed over a 16 frame symmetric window
around each frame. For each video in the dataset the first
and the last 8 frames were discarded. We found that this
window size was a good choice. If a large window was
used then the Fisher vectors which are constructed for the
segments are not discriminative.

The results of comparison of our framework with the
state of the art are presented in Table 5. As we can see the
method trained to recognise a single emotion label does not
perform competitively as compared to the state-of-the-art.
This is because the methods which are designed to do
AU recognition are trained via local patches as opposed to
the trajectories from all the face landmarks. Since we
know the location of the action units we automatically

TABLE 4
Emotion-Wise Comparison between Our Proposed
Method and [102] on the Oulu-CASIA Dataset

Emotion Accuracy [102] (%)  Accuracy [Ours-Final] (%)
Anger 75.2 80.1
Disgust 87.3 88.0
Fear 94.9 95.1
Happiness 90.8 89.7
Sadness 88.4 91.3
Surprise 92.0 92.7
Average 87.7 89.6
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TABLE 5
This Table Presents the Comparison of
Our Method with the State-of-the-Art

on the BP4D Dataset
Method Average F1-score
LSVM-HOG [121] 32.5
JPML [123] 45.9
AlexNet [121] 38.4
Ours-Final 43.6
Ours-Final + SF 46.8
Ours-Final + SF + CO 48.1
DRML [121] 48.3
CNN + LSTM [122] 53.9

selected the trajectories to train the final SVM. For example
if the AU is a lip corner depressor we choose the trajectories
from the patch where the action unit is most likely to occur.
We know this location because of the landmark points.
This result is represented as Ours — Final + SF in Table 5.
Additionally AUs can co-occur. Therefore, we weight the
final recognition scores of the SVM with the co-occurrence
probability of the AU. We estimate this probability matrix
from the training data. This result is shown as Proposed+ SF
+ CO in Table 5. This way we can show that our method
is competitive for dynamic spontaneous AU recognition.
If one explicitly estimates the spatial representation tem-
poral modelling and AU correlation then this method can
achieve a higher accuracy. This is done with a CNN and
LSTM in [122].

5.2.4 SASE-FE

The set of experiments we present in this section has been
designed with the purpose of exploring spatial and temporal
representation for the proposed problem. We will show how
results improve by increased use of domain knowledge
for encoding temporal information and by using specially
learned representations. Furthermore, we can see more
improvement in the recognition results from learning a
EMNet from a finetuned VGG-Facenet. For example, in the
first conducted experiment we globally extract a handcrafted
descriptor (SIFT) and we disregard any temporal information.
On the proposed dataset, this produces results slightly above
chance. By computing local descriptors around Improved
Dense Trajectories (IDT), a proven technique in the action rec-
ognition literature, we obtain a small improvement. While the
tracked trajectories follow salient points, there is no guarantee
that these points are fiducial points on the face. Because fidu-
cial points are semantically representative on the facial geom-
etry, they are usually best for capturing local variations due to
changes of expression. This assumption is confirmed by
extracting local descriptors around landmark trajectories pro-
duced by the facial geometry detector. In the final setup, the
best performance is obtained by extracting the representation
from a feature space produced by the EMNet CNN. In Table 8
we compare the performance between the TPF-FGT obtained
from the last convolution layer of both the VGG-Face and
EMNet. Since the EMNet is trained only for the emotion rec-
ognition domain the performance of the EMNet is higher
than that of the VGG-Face.

In terms of the use of temporal information several
comments can be made. In line with the literature, temporal
information is essential in improving recognition of subtle
facial expressions. What we are presenting is by no chance

385

UAnger | 043 000 020 006 (020 003

UContempt Iu.oe 000 031 000 .
UDisgust ko.os 0.00 003 006 000
UHappy | 0.02 -0.07 0.02 0.05
Usad 0.32 0.00 0.08 0.40 0.12

USurprised | 000 000 0.0 0.02
o‘&é o‘“'&‘? o’\"&é o&QQ & &
&° N R
(a)

GAnger

GContempt

GDisgust

GHappy

GSad

GSurprised

(b)

Fig. 6. Confusion matrices for six classes classification. (a) Six class
classification on the unfelt subset of SASE-FE. (b) Six class classifica-
tion on the genuine subset of SASE-FE. Genuine FEEs are labelled with
an initial ‘G’ and unfelt FEEs with an ‘U’.
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Fig. 7. Confusion matrix for 12 class classification on the SASE-FE data-
set. Genuine FEE are labelled with an initial 'G’ and unfelt FEE withan’U’.

an exhaustive study. While a state-of-the-art method in pro-
ducing compact representations of videos, Fisher Vectors
encoding disregards some of the temporal information for
compactness. Other, more powerful sequential learning meth-
ods, like Recurrent Neural Networks, might be employed
with better results.

In Fig. 6 we present confusion matrices for a six class
classification problem on the proposed dataset. We split the
classification problem in two, training on the 6 genuine and
the 6 unfelt emotions respectively. On the SASE-FE, several
observations can be made. Both in the case of genuine and
unfelt FEE classifications, the expressions that are easier to
discriminate are Happiness and Surprise. This due to their
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TABLE 6
Genuine vs Unfelt FEE Classification Performance
on the SASE-FE Dataset

Emotion Pair Accuracy Genuine (%) Accuracy Unfelt (%)
Anger 72.5 66.3
Happiness 76.7 65.4
Sadness 71.5 61.3
Disgust 66.4 59.7
Contempt 63.4 58.3
Surprise 71.3 63.4
TABLE 7

The Average Recognition Rate for
12 Class Classification between
Several State-of-the-Art Methods
[59] and the Proposed Method;
DA = Data Augmentation

Method Accuracy
Rank-SVM [125] 66.67
LSTM-PB [124] 66.67
CBP-SVM [126] 65.00
HOG-LSTM [127] 61.70
CNN [128] 51.70
Ours-Final 68.7
Ours-Final + DA 70.2

particularly distinctive morphological patterns. The most
difficult expression to distinguish is contempt, which is in
alignment with the literature and with the result on the CK
+, the benchmark dataset as previously explained. On aver-
age, the proposed method gets better results when trying to
discriminate between the genuine emotions than when dis-
criminating between the unfelt ones. This is to be expected,
taking into account that when faking the expressions, the
subjects are trying to hide a different emotional state. This
will introduce particular morphological and dynamical
changes that makes the problem more difficult. Particularly
interesting is the difficulty the classifier has in recognizing
unfelt sadness. The high level of confusion with unfelt anger
should be noticed along with the fact that this is not the case
for genuine emotions.

In Fig. 7 we present the confusion matrix for the problem
of classifying between all 12 classes (genuine and unfelt
jointly). This can be interpreted together with results in
Table 8 where we present classification accuracies for each
pair (genuine/unfelt). When trained with all classes, the
best results are obtained for genuine sadness and the worst
for genuine contempt and genuine contempt. In Table 6,
overall accuracies of especially the unfelt ones remain low,
which underlines again the difficulty of the problem and
suggests more powerful sequential learning tools should be
employed. Interestingly, it is easiest to discriminate between
genuine and unfelt expressions of anger which is due to
the fact that anger is recognised a lot by the activation of
muscles in the eye region. Also the results show that the rec-
ognition rate of the unfelt expressed contempt is by chance,
i.e., contempt is easier to unfelt, hence more difficult to
detect, and this is due to the fact that the main facial features
expressing this emotion are mainly around the mouth
region which can be quickly and easily moved, whereas
muscles around the eyes (which are important in expressing

TABLE 8
Performance on the SASE-FE Dataset
Method Accuracy(%)
SIFT+FV 12.2
TPF-FGT(SIFT)+TPF-IDT(MBH)+FV 21.3
VGG-Face! 39.5
VGG-Face? 49.8
TPF-FGT(VGG-Face)+FV 50.2
12 classes X
TPF-FGT(VGG-Face)+FV+Aligned Faces 543
TPF-FGT(VGG-Face)+FV+Aligned Faces+DA 60.3
TPF-FGT(EMNet)+FV 65.7
TPF-FGT(EMNet)+FV Aligned Faces 68.7
TPF-FGT(EMNet)+FV Aligned Faces+DA 70.2
VGG! 65.2
VGG? 71.7
TPF-FGT(VGG-Face)+FV 73.7
6 classes TPF-FGT(VGG-Face)+FV Aligned Faces 74.2
(genuine) TPF-FGT(VGG-Face) +FV Aligned Faces+ DA 76.5
TPF-FGT(EMNet) +FV 77.2
TPF-FGT(EMNet) +FV Aligned Faces 78.7
TPF-FGT(EMNet) +FV Aligned Faces+ DA 80.3
VGG! 42.7
VGG? 59.2
TPF-FGT(VGG-Face) + FV 62.3
6 classes TPF-FGT(VGG-Face) + FV + Aligned Faces 64.2
(unfelt) TPF-FGT(VGG-Face) + FV + Aligned Faces + DA 67.5
TPF-FGT(EMNet) + FV 70.3
TPF-FGT(EMNet) + FV + Aligned Faces 72.2

TPF-FGT(EMNet)+FV Aligned Faces+DA (Ours-Final) 73.6

IDT = Improved Dense Trajectories, FGT= Facial Geometry Trajectories,
TPF-IDT = Trajectory Pooled Features Along IDT, TPF-FGT = Trajectory
Pooled Features Along FGT, DA = Data Augmentation, L Fine-Tune, no Data
Augment, 2 Fine-Tune, Data Augment.

other emotions) are not instantly deformable by signals
from brain.

Table 7 shows the comparison of the average recogni-
tion rate for a 12-class classification between recently pro-
posed techniques reported in [59] and the proposed
method. These results correspond to the winning methods
from the ChaLearn international competition we organize
at ICCV 2017. We outperform these winning methods. In
this table, we can also observe that our proposed method
outperforms the LSTM based approaches [124]. This is
because in the temporal stage we used a hand tuned
approach which requires fewer parameters to be tuned as
compared to a LSTM. This advantage would be negated
on a very large datasets but nevertheless it demonstrates
the efficiency of our method.

6 CONCLUSION

Previous research from psychology suggests that discrimi-
nating the genuineness of feelings or intentions hidden
behind facial expressions is not a well mastered skill. For
this reason, we provide for the first time a dataset capturing
humans while expressing genuine and unfelt facial expres-
sions of emotion at high resolution and a high frame rate.

In this paper, we also propose a method inspired from
action recognition and extend it to perform facial expres-
sion of emotion recognition. We combine the feature maps
computed from the EMNet CNN with a facial landmark
detector to compute spatio-temporal TPF descriptors. We
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encode these descriptors with Fisher vectors to get a single
vector representation per video. The feature vector per
video is used to train a linear SVM classifier. We outperform
the state of the art performance on the the publicly available
CK+ and Oulu-CASIA both containing posed FEEs, and
show competitive results on the BP4D dataset for facial
action unit recognition. Furthermore, we provide several
baselines on our SASE-FE dataset. We also improve the
results of the winning solutions of the recent ChaLearn com-
petition about our dataset. We show that even though we
obtain good results on the 6 class genuine and unfelt prob-
lem, the 12 class and the binary emotion pair classification
problem still remains a challenge. This is because the distin-
guishing factors between the unfelt and genuine expres-
sions occur in a very short part of the whole emotion and
are a challenge to model.

This preliminary analysis opens several future lines of
research. Our experiments showed two most important
problems of current state of the art methods. First, current
state of the art CNNs, such as VGG-Face, do not work at the
required spatial resolution to detect minute changes in
facial muscle movements, which are required to differenti-
ate and distinguish between unfelt FEEs. Second, alternative
temporal analysis strategies could be considered to analyse
SASE-FE at high fps, which may include variants of Recur-
rent Neural Nets or 3D-CNNs approaches.
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