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Digital image processing to detect 
subtle motion in stony coral
Shuaifeng Li1, Liza M. Roger2, Lokender Kumar3, Nastassja A. Lewinski2, 
Judith Klein‑Seetharaman4, Alex Gagnon5, Hollie M. Putnam6* & Jinkyu Yang1* 

Coral reef ecosystems support significant biological activities and harbor huge diversity, but they are 
facing a severe crisis driven by anthropogenic activities and climate change. An important behavioral 
trait of the coral holobiont is coral motion, which may play an essential role in feeding, competition, 
reproduction, and thus survival and fitness. Therefore, characterizing coral behavior through motion 
analysis will aid our understanding of basic biological and physical coral functions. However, tissue 
motion in the stony scleractinian corals that contribute most to coral reef construction are subtle 
and may be imperceptible to both the human eye and commonly used imaging techniques. Here 
we propose and apply a systematic approach to quantify and visualize subtle coral motion across a 
series of light and dark cycles in the scleractinian coral Montipora capricornis. We use digital image 
correlation and optical flow techniques to quantify and characterize minute coral motions under 
different light conditions. In addition, as a visualization tool, motion magnification algorithm 
magnifies coral motions in different frequencies, which explicitly displays the distinctive dynamic 
modes of coral movement. Specifically, our assessment of displacement, strain, optical flow, 
and mode shape quantify coral motion under different light conditions, and they all show that 
M. capricornis exhibits more active motions at night compared to day. Our approach provides an 
unprecedented insight into micro‑scale coral movement and behavior through macro‑scale digital 
imaging, thus offering a useful empirical toolset for the coral research community.

Reef-building corals, as keystone organisms, support diverse marine communities and provide a host of eco-
system functions for associated creatures, such as macrofauna. They are composed of coral organisms living in 
symbiosis with photosynthetic dinoflagellate algae and a complex of additional bacterial, archaeal and fungal 
 communities1. Coral behavior, physiology and ecology are impacted by anthropogenic global climate change 
through the global rise in sea-surface temperatures and ocean  acidification2. Simultaneously, coral reefs have 
experienced substantial decline due to disease  outbreaks3,  overfishing4, coastal development and associated 
 runoff5. The increasing frequency of marine heat waves has also resulted in mass coral  mortality6,7. The combina-
tion of these stressors is threatening coral reefs at an unprecedented scale.

One notable aspect of corals is their dynamic motion (i.e., temporal changes of the polyp and tissue behav-
ior), since it could play an important role in coral physiology and the coral health in a changing environment. 
Thus, understanding coral motion will help us to better assess coral performance in a proactive manner and 
understand coral physiology and the coral health in a changing environment in terms of the light condition, 
temperature, pH and other environmental  variables8–15. Some soft corals, such as the family of Xeniidae, exhibit 
a unique, rhythmic pulsation, which is believed to enhance  photosynthesis16,17. However, compared with the 
soft corals, the scleractinian corals responsible for the framework structure of most reefs mineralize a rock-like 
skeleton made of calcium carbonate. In many species of scleractinian corals, the motion of tissue is more subtle 
or imperceptible. Therefore, visualizing and quantifying the dynamic motion in order to extract information on 
coral behavior remains challenging for researchers studying scleractinia.

The dynamic motion of scleractinian corals interacts with a number of physiological processes and environ-
mental responses. For example, some branched corals with small polyps will expand their tentacles to expose the 
photosynthetic symbionts to light during  daytime15,18,19. However, under the strong light, the coral will retract 
the tentacles to protect photosynthetic symbionts from  irradiance15,18,19. These behavioral differences indicate 
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how coral movement can both impact and act as an indicator of ecological and physiological tradeoffs. Besides, 
some tentacles also serve as the probes to detect and kill competitors that settle within the wide aggressive reach 
of these massive  corals20. The ciliary motion of tentacles also contributes to the mass  transfer21–23. In areas away 
from coral polyps and their tentacles, the coenosarc, more subtle tissue movements have been revealed. These 
waves of tissue movement may speculatively be involved in enveloping or pumping seawater to different reser-
voirs within a  coral24. Recently, seawater exchange rates in a growing coral were found to respond to stressful 
conditions like extreme ocean  acidification25. Taken together, experiments like these hint at the rich connections 
that may exist between tissue movement, physiology, and how corals respond to environmental changes. New 
techniques that can image and quantify subtle tissue movements could uncover the role of motion in coral health 
and help predict the fate of coral reefs in a changing ocean.

Imaging is a powerful way to provide information about the time-varying nature of the world. Photogram-
metry microscopic imaging, and time-lapse imaging have resulted in the capacity of detecting change at both 
 reef26,27 and cellular  levels28–30. New imaging techniques borrowed from other fields, such as mechanics, aerospace 
engineering and biological engineering, promise even more detailed and quantitative information that could be 
applied to address the fine-scale analysis of coral movement under a changing  environment31,32. For example, 
correlation-based image registration and tracking methods such as digital image correlation (DIC) and particle 
image velocimetry (PIV) measure the mechanics of materials and  fluids31,33, and thus could be used to map 
movement of the coral tissue  surface22. Optical flow is another effective method to demonstrate the movement 
between the camera and moving  objects32. These approaches can potentially quantify the pixel-level motion in 
terms of displacement and velocity in biological fields.

To provide the evident motions, previous attempts on magnifying subtle and imperceptible movements 
have been made along two perspectives: Lagrangian perspective and Eulerian  perspective34–37. For instance, 
the imperceptible change in face color can be magnified to estimate the heart  rate38, and the functional role of 
tectorial membrane in mammalian hearing can be  revealed39. These approaches have rarely been used in marine 
biological systems including corals where they could quantify and visualize motion and further build a bridge 
between imaging techniques and biomechanics.

Here, we select one species of hard coral, Montipora capricornis, to study the dynamic motion of coral polyps 
and coenosarc under diel cycling light conditions using time lapse imaging. We first quantify the coral motion 
by DIC and extract barely visible mechanical quantities in terms of displacements and strains. Next we present 
the optical flow to show the velocity field and motion polarization. These two methods offer physiological 
information in corals with high consistency, which could not have been sensed by naked eyes. Typical modes of 
motion are visualized by the phase-based motion magnification, which clearly shows a pattern of motion related 
to the corals’ sensitivity to the changing light conditions. We provide a systematic and quantitative approach for 
characterizing and analyzing subtle and/or imperceptible coral tissue movements, thereby opening a new vista 
in coral behavioral, physiological, and cellular analysis.

Results
Experimental observation of Montipora capricornis. Figure 1a shows a schematic of the experimen-
tal setup used to observe the coral M. capricornis. The planar structure and textures on the surface of M. capri-
cornis are beneficial to the implementation of our algorithm, which makes this species a good candidate for this 
proof of concept study. It includes a digital single lens reflex (DSLR) camera with a macro lens to take pictures of 
the fine structures of coral tissue surface. To study the effect of light on coral tissue motion, aquarium light and 
ceiling light were used to mimic light conditions during the day and the night. Two hundred pictures are taken 
for each light condition with a rate of 30 frames per hour. Experimental setup details are shown in Supplemen-
tary Fig. 1 and are described in the Methods section.

Figure 1b,c display the pictures taken at day and at night, respectively. The green curves represent the coral 
tissue margins. The white curves indicate the positions of polyps. Four polyps with short tentacles are on the 
coral surface. The nearly planar arrangement of the coral provided the opportunity to obtain motion information 
from all polyps on the coral’s surface. The heterogeneity of the tissue on surface creates texture that is sufficient 
for applying DIC and optical flow techniques. Luminance (as calculated and shown in Supplementary note 1 and 

Figure 1.  Experimental observation of Montipora capricornis. (a) Schematic of experimental setup of a DSLR 
camera, aimed at the corals in the aquarium. (b) Daylight pictures were taken under white light, while (c) 
nighttime pictures were taken under blue light. The green curves in (b) and (c) enclose the coral tissue surface. 
The white curves in (b) and (c) enclose the polyps. Scale bars are shown in (b) and (c).
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Supplementary Fig. 2) was smaller in the blue light at night than at day. Besides, the hue is more blueish at night 
due to the lack of the ceiling light. Visualization of coral dynamic motion, not perceptible by the human eye, can 
be observed from the time-lapse video played at 10 frames per second (× 1200 speed; Supplementary movie 1).

Characterization by digital image correlation. In order to quantify coral tissue motion from a biome-
chanics perspective, we used a DIC technique to characterize the deformation of the surface relative to an initial 
reference picture (the first picture). Displacements ( ux ) along the horizontal direction between the reference 
picture and the second picture at day and night are shown in Fig. 2a, respectively. The strongest motions are 
concentrated around polyps and the edge of the fragment. At night, most of the coral tissues surface undergoes 
horizontal motion, while few coral tissues are moving horizontally at day. Displacements ( uy ) along the vertical 
direction were also quantified between the reference picture and the second picture at day and night, respectively 
(Fig. 2b). Similar to the distribution of displacement ux , the strongest motions are concentrated around polyps 
and the edge of the fragment. Vertical tissue motion is more widespread across the coral at night compared to 
daytime. The displacement of both ux and uy , in comparison to the reference picture between day and night, can 
be seen in videos created from two hundred pictures (Supplementary movie 2 and Supplementary movie 3). 
These visualizations highlight that the coral tissue surface is moving dynamically over time, with more move-
ment observed during the night than during the day.

In order to explore the statistics of DIC results, we show the histogram of displacements ux and uy . 
Across ~ 13 h, histograms of displacements ux and uy are continuously changing (Supplementary movie 4). 
Figure 2c exhibits the percentage histograms of the displacement ux and uy during day and night in the left and 
right panels. The red and blue curves in each panel indicate the mean of displacement distribution during day 

Figure 2.  Displacements of the coral tissue surface from digital image correlation. (a) The displacements ux 
along horizontal direction between the reference picture and the second picture at day and night are shown 
in the left and right panel, respectively. (b) The displacement uy along vertical direction between the reference 
picture and the second picture at day and night are shown in the left and right panel, respectively. Green curves 
in (a) and (b) represents the edge of the fragment and white curves enclose the polyps. (c) The percentage 
histograms of displacement ux and displacement uy are shown in the left and right panels, respectively. The red 
and blue curves indicate the means of each displacement during day and night. The pink and cyan regions are 
variations during day and night, respectively.
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and night. The corresponding variation ranges are shown in pink and cyan. According to the histogram (Fig. 2c), 
most of the areas of the coral tissue surface are barely moving, i.e., nearly zero displacement. For the moving part, 
more areas of the coral tissue surface are contributing to the motion at night since the blue curves are above the 
red curves, coinciding with the displacements shown in Fig. 2a,b. Furthermore, the histogram of displacement 
ux (Fig. 2c) illustrates the nearly symmetric distribution, suggesting that there is no motion preference and the 
system is balanced along the horizontal direction. However, the histogram of displacement uy shows an asymmet-
ric distribution. During the day, the coral tissue surface tends to move upwards because there are more positive 
values, while at night, the tissue tends to move downwards, which indicates that motion preference based on the 
light condition is shown along the vertical direction.

Strain measures the deformation of the material to identify whether it is under tension or compression. The 
linear strain is considered here. To obtain the accurate strain, smoothing and noise reduction of displacement 
field are necessary. We adopt the point-wise local least-square fitting  technique40,41. The strain calculation win-
dow is set to 19 × 19 points, which provides a trade-off between accuracy and smoothness of strain estimation. 
Supplementary movie 5 shows the normal strain εxx and εyy , shear strain εxy during day and night, respectively. 
The strains between the second picture and the reference picture are shown in Fig. 3a–c. Figure 3a shows the 
normal strain εxx during day and night. The largest strain is concentrated around the polyps and obviously the 
distribution of εxx is more evident at night (Fig. 3a), suggesting that more of the coral tissue surface participate 
in the motion at that time. Figure 3b,c, indicating shear strain εxy and normal strain εyy , show the same features 
as Fig. 3a. Compared with the εxx , εyy has clearer alignment along the wrinkles on the coral surface, indicating 
the anisotropy of the coral tissue surface motion. Similar to the analysis of displacement, the corresponding 
histograms are displayed from left to right in Fig. 3d. The red and blue curves in each panel indicate the mean 
of strain distribution during day and night throughout the strain result. The corresponding variation ranges are 
shown in pink and cyan. Most of the coral tissue was not either under tension or compression due to the nearly 
zero strains, which is corresponding to the nearly zero displacements in the above analysis. Corresponding to 
the displacement, strain measurements also show larger values at night.

We note that we have also conducted a noise effect study to test the statistical significance of the DIC results 
presented above. Although correlation functions act to normalize images during image processing, quantifica-
tion of noise effects provide a further verification of the observed  patterns42. The enclosed coral skeleton on 
which our coral is fixed, shown in Supplementary Fig. 3, is analyzed by DIC. Supplementary Fig. 4 and Sup-
plementary Fig. 5 show the displacements and strains information of the coral skeleton. Details and analysis 

Figure 3.  Strains of the coral tissue surface from digital image correlation. (a–c) Strains εxx , εxy and εyy 
between the first and the second picture from day and night are shown in the left and right panel, respectively. 
Green curves in (a) and (b) represents the edge of the fragment and white curves enclose the polyps. (d) The 
percentage histogram of the strains εxx , εxy and εyy are shown in the left, middle and right panels, respectively. 
The red and blue curves indicate the means of each strain during day and night. The pink and cyan regions are 
variations during day and night.
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are in the Supplementary note 2. The results indicate that the DIC results are valid, since the noise is smaller 
than the extracted signal (Supplementary Fig. 4 and Supplementary Fig. 5; see also Supplementary note 2 and 
Supplementary movie 6).

Characterization by optical flow. Measuring optical flow is an effective method to explore the pixel-wise 
motion information such as velocity. In order to increase the signal-to-noise ratio, we assume the motion field 
is constant in a small window (21 × 21) around each pixel and the smoothing kernel (19 × 19) is used for reduc-
ing noise. The basic optical flow equation is solved for all pixels in the window by the least squares criterion, 
which is also known as the Lucas-Kanade  method43. Similar to DIC, for each case, we take the first picture as the 
reference and calculate the optical flow for two hundred pictures. Supplementary movie 7 shows the velocities 
of the optical flow during day and night. Figure 4a,b exhibit the optical flow between the second picture and the 
reference picture. The optical flow is encoded by the color square. The color indicates the direction of velocity 
and the saturation of color represents the magnitude of velocity. The colors with high saturation are around the 
polyps (marked by black crosses) and margins, and colors with low saturation are distributed around the coral 
tissue surface margin. At night, there are more colors with high saturation in the optical flow, suggesting that 
coral movement is higher in magnitude at night.

The histograms of velocity vx and vy along horizontal and vertical directions are studied to explore the sta-
tistics of optical flow. Figure 4c shows the histogram of vx and vy . The red and blue curves in each panel indicate 
the mean of corresponding velocity distribution from day and night. The corresponding variation ranges are 
shown in pink and cyan dashed lines. While the DIC extracts the displacement information, optical flow can 
provide pixel-wise velocity information. Similar to DIC results, along the horizontal direction, the histogram is 
symmetric (Fig. 4c), indicating that the coral tissue surface does not have statistically significant motion prefer-
ence along the horizontal direction. The histogram of vy shows the similar trend with the displacement uy from 
DIC (Fig. 4c). During the day, the coral tissue surface tends to present a positive velocity translating upwards 
motion, while the tissue tends to move downwards with a negative velocity at night. This observation is even 

Figure 4.  Optical flow of the coral tissue surface. (a,b) Optical flow between the second and first pictures 
from day and night, respectively. White circles mark the position of polyps. (c) The percentage histograms of 
velocities vx and vy along horizontal and vertical directions. The red and blue curves indicate the means of each 
velocity from day and night. The pink and cyan regions are variations between day and night. (d) The percentage 
histogram of direction of velocity. The red and blue curves indicate the means of each angle from day and night. 
The pink and cyan regions are variations during day and night.
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more evident in Fig. 4d, which offers a histogram of direction of optical flow. 90° and – 90° represent the upward 
and downward direction, respectively. According to Fig. 4d, the dominated motion is along the vertical direction 
whatever light condition the coral is under since there are evident peaks in 90° and –90°. Besides, in different 
light conditions, the motion directions are different. At day, there is a higher peak in 90°, which means that the 
tissue tends to move upwards, while at night, the higher peak in –90° suggests the downwards motion. Similarly, 
we conducted the noise effect study as shown in Supplementary Fig. 6. The results show that the velocities on the 
coral skeleton are smaller, thus supporting the validation of the analysis mentioned above. Details are described 
in Supplementary note 3.

Motion microscope for the coral tissue surface. Exploring the biological and physical modes of coral 
tissue motion is crucial to understand the coral behaviors. Here we further process the optical flow result to 
obtain the deformation of coral tissue surface at different frequencies and magnify the biological modes of this 
movement to make them visible to human eyes. To this end, we perform the Fourier transform on the optical 
flow results and extract the absolute value of velocity in different frequencies. Zero padding is used to increase 
the frequency resolution. Supplementary movie 8 shows mode shapes of coral tissue in the frequency range of 
0   min−1 to 0.25   min−1 (Nyquist frequency). Typical mode shapes from day and night are shown in Fig. 5a–f, 
respectively, after normalization. As the frequency increases, the intensity of the motion decreases. In the fre-
quency 0.05  min−1 during the day, as shown in Fig. 5a, the motion is concentrated around the polyps and mar-
gins. In stark contrast, Fig. 5d exhibits the mode shape in the frequency 0.05  min−1 where the motion is not only 
around the polyps and margins, but also on the coral tissue surface. Under both light conditions, a greater pro-
portion of coral tissue contributes to the motion with the increasing frequency. Overall, the mode of extremely 
slow coral tissue motion is observed, which coincides with the phenomenon observed in DIC and optical flow.

In order to visualize the mode shape in different frequencies, we adopt the phase-based motion 
 magnification16. The complex steerable pyramid, which is an over-complete transformation that decomposes an 
image according to spatial scale, orientation and position, is used to magnify the motion in a specific frequency 
 range44. The image is completely decomposed into amplitudes Aω,θ

(

x, y
)

 and phases ϕω,θ
(

x, y
)

 at every scale 
ω and orientation θ . We augment the motion 75 times by magnifying phase in the frequency range of interest. 
We choose three frequency ranges, 0.04  min−1–0.06  min−1, 0.14  min−1–0.16  min−11 and 0.22  min−1–0.24  min−1 
to demonstrate the motion microscope for coral tissue mode shapes. Supplementary movie 9 shows the magni-
fied video played at 10 frames per second, which is made of pictures taken during the day. The movie presents 
the polyps motion in the low frequency range and the coral tissue surface motion in the high frequency range. 
Besides, the motion magnitude is decreasing as the frequency increases. Supplementary movie 10 shows the 

Figure 5.  Mode shape of coral tissue motion during day and night. (a–c) Mode shapes of coral tissue motion 
during day at frequencies 0.05  min−1, 0.15  min−1 and 0.25  min−1, respectively. (d–f) Mode shapes of coral tissue 
motion during night at frequencies 0.05  min−1, 0.15  min−11 and 0.25  min−1, respectively.
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magnified video at night in the frequency range mentioned above. According to the video, more coral tissue is 
involved in the motion, which coincides with the mode shape analysis from the optical flow.

Conclusion
We applied digital image correlation, optical flow, and motion microscopy techniques to a series of images of 
M. capricornis. Though this hard coral has slow and subtle tissue motion, which is hard to capture not only with 
naked eyes, but also with optical apparatus, we have successfully extracted its responsiveness to light conditions 
based on ~ 13 h of sampled digital images. The blending of powerful and effective tools from mechanics and 
computer science and coral biology opens avenues for studying coral physiology from macro-scale pictures. It is 
more than likely that different coral species present different levels of tissue motion in direct relation with their 
overall morphology (e.g. branching, corymbose, digitate, encrusting, foliose, laminar, massive, submissive, soli-
tary, tabulate). With this consideration in mind, imaging surface tissue motion could help predict species-specific 
responses to sediment  smothering45,46 and whether corals adapt the movements of the surface tissue according 
to particle loading in the water column in relation to flood plumes and land runoff. Reef-scale responses to flood 
plumes triggered by severe weather events could then be predicted according to coral surface tissue motion 
measurements, depending on coral cover and species representation. Investigations linked to coral tissue motion 
should also be considered with respect to exposure to pollutants generated by anthropogenic activities, e.g., oil 
and chemical  dispersant47,48. This systematic approach offers us possibilities to quantify and visualize the subtle 
coral tissue surface motion and important physical and biological modes in a time-efficient, yet accurate manner. 
In this proof of concept study, we only focus on the effect of light to motion for a single coral, but the proposed 
approach can be generalized to study the effect of a variety of environmental variables on coral tissue motion. 
Furthermore, this method could be applied to investigate the links between tissue motion and coral mucus 
(production, thickness, composition, spread), especially in response to excess sediment or bacterial  infection49,50.

Method
Aquarium maintenance. The M. capricornis (around 15  mm × 20  mm) was bought from a local store 
(Seattle Corals Aquariums) and was raised in a 11.36 L aquarium with specific density = 1.024  g/cm3 and 
pH = 8.4. Artificial seawater was made from Instant Ocean Reef Crystals Reef Salt with the salinity = 34.1 ppt. 
A one third water change was carried out every 3 days to maintain steady aquarium conditions. Regular tests 
on pH, NH+

4 ,NO−

2  and NO−

3  were conducted to ensure suitable water quality for coral growth. The continuous 
water flow within the tank was provided by the Hydor Koralia Nano Aquarium Circulation Pump with 908.5 L 
per hour flow rate. The temperature of the water was controlled by the 50-W FREESEA submersible heater and 
was maintained at 25.5 °C. Light was provided on a 14.5:9.5 light: dark cycle using a 6-W NICREW ClassicLED 
aquarium light and the ceiling light in the laboratory. The aquarium light emits blue light with 380 lumens, and 
it was turned on all day, while the ceiling light emits white light and it was controlled manually to be turned on 
at day and turned off at night.

Pictures acquisition. We used a Canon EOS 5D Mark IV and EF 100 mm f/2.8L Macro IS USM and timer 
to take pictures for the M. capricornis every 2  min automatically. The parameters for the camera were: F11, 
ISO4000, 1/10 s. The camera was put on a tripod to make it stable and ready for the long-period shooting. The 
macro lens was perpendicular to the wall of the aquarium to avoid the blurred effect caused by the refraction of 
light. The distance between the macro lens and the wall of the aquarium was 12.5 cm.

Data availability
Data and Matlab codes for digital image correlation, optical flow, and motion microscopy are available for 
download in Open Science Framework. https:// doi. org/ 10. 17605/ OSF. IO/ 49KMH.

Received: 10 December 2020; Accepted: 24 February 2021
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