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Abstract 30 

Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles 31 

remain to addressing worldwide contamination by these chemicals and their associated impacts on 32 

environmental quality and health. Here we propose six urgent questions relevant to science, technology, 33 

and policy that must be tackled in order to address the “PFAS problem”: (1) What are the global 34 

production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in 35 

the environment? (3) How can we make the measurement of PFAS globally accessible? (4) How can we 36 

safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of 37 

PFAS exposure? And (6) Who pays the costs of PFAS contamination? The importance of each question 38 

and barriers to progress are briefly described, and several potential paths forward are proposed. Given the 39 

diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of 40 

fundamental information, and the inequity of the health and environmental impacts from PFAS 41 
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contamination, there is a need for scientific and regulatory communities to work together, with 42 

cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the 43 

environment. 44 

 45 

Synopsis: This article discusses key gaps in data, understanding, and technology to address the problem 46 

of global PFAS contamination, identifies persistent barriers, and suggests useful paths forward. 47 

 48 

Introduction 49 

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of chemicals1–3 with perfluorinated 50 

carbon moieties that impart physical stability, chemical resistance, and, for most PFAS, extreme 51 

environmental persistence4. For decades, PFAS have been incorporated into a vast array of products and 52 

applications,5 and as a result, are pervasive environmental contaminants6,7.  The beginning of the 21st 53 

Century saw increasing detection of long-chain perfluoroalkyl acids (PFAAs) in the environment and 54 

organisms on a global scale. Recognition that some of these chemicals are globally transported, 55 

bioaccumulate, and exert multiple adverse effects in biological systems led to regulation and phase-out of 56 

several PFAS8–11. In response, an array of other PFAS have been used as substitutes and are increasingly 57 

detected in the environment, in wildlife, and in humans12–16.  58 

 59 

Despite two decades of research on fate and transport, biological effects, and environmental emissions, 60 

critical gaps remain in our knowledge, preventing researchers and society from finding effective solutions 61 

to the “PFAS problem”. This is due to the diversity of chemicals in the PFAS class, to ongoing analytical 62 

challenges in detecting, characterizing, and quantifying different PFAS, and to a continued lack of 63 

transparency on the part of industry concerning which PFAS are produced, where they are used, and in 64 

what quantities. As society grapples with how PFAS may best be regulated and how to prioritize efforts 65 

to minimize environmental and human exposure, major challenges remain. Here, we identify a set of six 66 

urgent questions that must be addressed for the effective global management and eventual phase-out of 67 
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PFAS (Figure 1), building on the Zurich Statement on Future Actions on PFAS17. We also highlight 68 

major barriers that impede progress in answering these questions, and provide potential paths forward 69 

from the perspectives of science, technology, and policy. 70 

 71 

 72 

Figure 1: Six urgent questions relevant to science, technology, and policy that must be tackled in order to 73 
address the “PFAS problem”. 74 

 75 

1. What are the global production volumes of PFAS, and where are PFAS used? 76 

Importance: This deceptively simple question highlights a fundamental gap in society’s knowledge about 77 

nearly all PFAS. Despite painstaking emission estimates for the best-characterized 78 

sub-classes of PFAS18,19, there is a lack of information on historical and ongoing 79 

production volumes of most PFAS, including even their identities1,20,21. This 80 

information is needed to build reliable emissions inventories, investigate 81 

environmental fate and transport, and assess associated exposures and health risks. While this is a general 82 

problem for most chemicals in commerce22, the multitude of uses for PFAS and the transformation of  83 

various precursors into the same PFAS end-products make tracking the sources of PFAS exposure to 84 
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production and use particularly difficult. Without these data, society will fail to protect its members from 85 

unknown exposures until or even after harmful and irreversible effects are discovered. 86 

 87 

Barriers: Regulatory bodies in many countries have developed registries of chemicals produced or used 88 

in their jurisdictions18,19,22–24, but much of the collected information is confidential. In addition, many 89 

newer uses of PFAS remain poorly documented in the technical literature. The Kirk-Othmer 90 

Encyclopedia of Chemical Technology (2004)25 and Kissa (2001)26 are considered authoritative reference 91 

sources for industrial applications of PFAS. However, most of the PFAS-relevant content in both were 92 

written before the EPA’s Stewardship Program (2006)8, the addition of perfluorooctanesulfonic acid 93 

(PFOS; 2009), perfluorooctanoic acid (PFOA; 2019) and their precursors to the Stockholm Convention,11 94 

and a number of PFAS restrictions under the European Union REACH legislation27. The EPA’s Toxics 95 

Release Inventory (TRI), designed to inform the public of releases of toxic chemicals in their 96 

communities, can shed light on some larger sources of PFAS releases. However, it often falls short of the 97 

level of detail needed to characterize environmental contamination because it requires only self-reporting 98 

and contains extensive exemptions for many industry sectors (e.g., oil and gas), small businesses, facility 99 

cleaning and maintenance applications, and trade secret claims, among others.  A recently proposed new 100 

rule under the Toxic Substances Control Act (TSCA) could overcome some of these key limitations for 101 

PFAS, as discussed in the “Paths Forward” section that follows.  102 

 103 

As a further complication, emissions and exposures vary depending on the properties, production, use 104 

patterns and end-of-life treatments of the product and the PFAS applied. A recent broad overview of 105 

PFAS uses5 in different consumer and industrial applications revealed a large number of little known uses 106 

such as in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. For other areas 107 

(e.g., cosmetics, paints), PFAS use is known, but it is often less clear which specific PFAS have been 108 

employed and at what quantities. Such lack of knowledge about PFAS in industrial processes and 109 

products also impacts retailers and consumers. Public pressure to phase out hazardous chemicals has led 110 
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major retailers to remove certain PFAS from food packaging, clothing, and household furnishings28,29. 111 

However, retailers and product manufacturers often run into issues wherein PFAS are used somewhere 112 

along the supply chain but the exact use, PFAS type, and concentration are unknown. Proprietary 113 

information is used by industry as a justification for withholding the identity and concentration of 114 

chemicals in commercial products, with Confidential Business Information (CBI) claims used to protect 115 

details of formulas and manufacturing processes that confer an advantage over a company’s competitors. 116 

This means that often little is publicly known about the identity and quantity of specific chemical 117 

structures present within a substance, formulation, or product.  118 

 119 

Potential Paths Forward: Chemical identities, production and consumption volumes, use locations and 120 

emikssions, including of byproducts and impurities, need to be reported by industry, and such information 121 

needs to be made publicly accessible. Retailers and product manufacturers need to know and publish 122 

where PFAS are present in their supply chains to foster greater transparency and confidence in the 123 

composition and safety of end products. This will require public pressure, rules, and regulations. In June 124 

2021, the US EPA published a proposed update to the reporting requirements for PFAS under TSCA30 125 

that could facilitate this type of reporting. The new rule potentially applies to a larger number of PFAS 126 

and no longer exempts small-scale businesses that manufacture PFAS from reporting requirements, an 127 

acknowledgment of the particular concern raised by these chemicals. However, this rule is still limited to 128 

producers, and as such will not resolve the supply chain issues of identifying PFAS in and emissions from 129 

downstream products. In addition, confidentiality of production and import volumes and chemical 130 

identity are still supported under the proposed rule, thus continuing to limit public access to these critical 131 

data under CBI claims.  Another potentially useful mechanism is greater use of product registries, such as 132 

are maintained by the Scandinavian countries31–33. These require manufacturers and importers to declare 133 

chemical substances and products (excluding food, cosmetics, and medicinal products) in excess of 100 134 

kg per year per company. Finally, a researcher-led approach to identifying PFAS occurrence in products 135 

and environmental emissions could entail greater use of coordination networks like NORMAN34. Such a 136 
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network can serve as a central touchpoint to harmonize analytical methods and share information on 137 

occurrence and effects of PFAS, but is limited to detecting pollution after it has occurred. 138 

 139 

2. Where are the unknown PFAS hotspots in the environment? 140 

Importance: The ability to identify geographic areas, environmental media, and populations with high 141 

PFAS concentrations is crucial to manage exposures and for the development of 142 

models to predict PFAS transfer across environmental media, geographic borders, and 143 

food webs. The scientific community is well aware of certain contaminated sites such 144 

as airports and military facilities,35–37 pulp and paper mills38 and fluoropolymer 145 

manufacturing  facilities39–43, but others have only recently come to light44. Certain activities can lead to 146 

decade-long local releases that are poorly documented, because the respective PFAS amount is not 147 

substantial on a regional or global scale, and therefore difficult to identify without local knowledge. 148 

 149 

Barriers: Region- or country-specific uses exist that may constitute important but primarily local 150 

contamination hot-spots. For example, high volumes of PFOS have been emitted in South America 151 

through the use of Sulfluramid, an insecticide containing the PFOS-precursor N-ethyl perfluorooctane 152 

sulfonamide used to control leaf-cutting ants45,46 Moreover, small-scale manufacturers in both developed 153 

and developing countries have very different control practices in place, leading to PFAS emissions that 154 

are poorly understood in light of the current knowledge of a few large industries, mostly in the developed 155 

world. In developing countries, a general lack of access to the equipment, supplies, and infrastructure 156 

needed to perform PFAS analyses can hinder identification of hotspots, a particularly critical barrier 157 

discussed in detail under Question 3. 158 

 159 

Potential Paths Forward: A systematic inventory of all PFAS industries is needed to identify current and 160 

former sites of emissions on a global scale. This requires international collaboration to integrate 161 

knowledge about locally important industries and practices. These inventories of industrial activities can 162 
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then be connected to known PFAS uses, enabling a systematic population of maps of potential PFAS 163 

contamination on a global scale, and bringing into focus areas that have been historically neglected in 164 

monitoring campaigns and/or research. This type of approach, for example using geographic information 165 

systems (GIS) to share and distribute data, is a means to organize knowledge and plan sampling 166 

campaigns on a global scale.  167 

 168 

At the same time, funding from multiple sources (industries, governments, foundations) for monitoring 169 

campaigns that screen diverse media (e.g. air, water, soils, sediments) for PFAS can identify geographical 170 

hot spots not connected to a known or suspected PFAS-associated activity. Data on emissions and 171 

environmental occurrence could be integrated and evaluated through the use of environmental fate and 172 

transport models47,48. Mismatches between model predictions and measurements can provide clues to 173 

missing emissions sources or hot spots. The data generated through these concerted efforts will be key to 174 

raising awareness at the governmental level on the urgency and scale of PFAS pollution, with the intent to 175 

motivate sufficient funding for monitoring and remediation activities on a large scale, as well as stopping 176 

ongoing emissions of identified local sources. 177 

 178 

3.      How can we make measuring PFAS globally accessible? 179 

Importance: Overcoming uncertainties in global and local PFAS distribution and exposure, and closing 180 

critical geographical and biological data gaps as discussed above also requires, 181 

fundamentally, the ability to actually detect and measure a wide range of PFAS 182 

compounds in myriad locations and in diverse environmental and biological 183 

media. Analytical methods are needed for environmental media, drinking water, 184 

sewage sludge, foods, blood, fat, and various kinds of products and technical mixtures for monitoring and 185 

enforcement of current and upcoming regulations. Giving more researchers, communities, health-care 186 

providers, utilities, and businesses the ability to accurately detect PFAS will facilitate efforts to minimize 187 

exposure, protect vulnerable populations of humans and wildlife, and evaluate the effectiveness of 188 
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interventions. Making resources available to scientists in developing countries and developing rapid and 189 

cost-effective analytical approaches that are reliable and accessible will greatly improve the 190 

understanding of PFAS sources, fate and transport in areas where relatively little is currently known, such 191 

as Africa, Central America and parts of Asia. 192 

 193 

Barriers: Until now the ability to measure and monitor PFAS has largely been restricted to well-194 

resourced groups and countries with access to equipment, standards, infrastructure, and expertise. Well-195 

established methods that can achieve high sensitivity with robust quality control require sophisticated 196 

analytical equipment (e.g. liquid chromatography tandem mass spectrometry, LC-MS/MS) that is 197 

expensive to acquire and requires specialized expertise to operate and maintain. In the past, the analysis of 198 

PFAS has been particularly challenging due to the presence of PFAS in certain laboratory and sampling 199 

materials and equipment, requiring control and monitoring of contamination, though measures have been 200 

developed to overcome this challenge49,50.  201 

 202 

Reliable and well-documented protocols are still limited to a narrow range of PFAS, and high-quality 203 

analytical reference standards that enable targeted analysis with reliable quantification are expensive, and 204 

still unavailable for many PFAS. Commercial standard providers51,52 cover only about 80 different PFAS, 205 

plus variations (i.e., branched isomers or mass-labeled compounds). Without the availability of analytical 206 

standards, non-targeted analysis methods with expensive equipment and expertise are needed to identify 207 

unknown PFAS53,54. Recent actions by a PFAS producer may set a worrisome precedent. According to a 208 

letter sent by Wellington Laboratories to its customers in January 2021, the PFAS manufacturer Solvay 209 

has threatened to sue Wellington for patent infringement for their sale of a standard for a novel PFOA-210 

replacement in Solvay’s fluoropolymer production (CAS 1190931-41-9)55. This raises the potential for 211 

industry to monopolize access, maintain secrecy, and delay progress in establishing occurrence and 212 

toxicity data for these substances. 213 

 214 
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Potential Paths Forward:  While the low (part per trillion) limit levels instituted for PFAS in drinking 215 

water in many jurisdictions 9,56 require high sensitivity methods and rely on the availability of standards, 216 

for purposes such as screening of sites or products, simpler lower-cost methods may suffice. There are 217 

several Total Fluorine (TF) methods to detect the presence of fluorine or fluorinated compounds (e.g. 218 

CIC57, PIGE58, and XPS83), which can be combined with sample preparation methods such as extractable 219 

organic fluorine (EOF59) to provide rapid screening of both abiotic and biotic matrices. Much research is 220 

ongoing to develop additional methods, such as versatile and low-cost PFAS sensors60–62. Whatever their 221 

technical approach, methods should be validated across laboratories and ideally standardized. Positive 222 

steps in this direction were recently illustrated for EOF measurements in water compared to total targeted 223 

PFAS in a Swedish interlaboratory comparison study63.  224 

 225 

Capacity building efforts can support a pipeline for training and technology transfer from better resourced 226 

countries and institutions. Some programs already exist for instrument donation, such as the Seeding Labs 227 

program on Instrumental Access that donates equipment to promote research and education in developing 228 

countries64. Such programs are important, but represent only a small part of the solution to this enormous 229 

challenge. In addition to equipment, access to supplies (e.g. standards, solvents) and reliable infrastructure 230 

(electricity, water, gases) is crucial and often unavailable. To make these efforts accessible and 231 

sustainable, traineeships could be established for scientists in under-resourced regions to learn PFAS 232 

analysis at host laboratories.  This would provide the opportunity for scientists in regions without 233 

adequate infrastructure to collect local samples to be analyzed at the host institution, while retaining 234 

ownership of the data and authorship in resulting publications. 235 

 236 

4.      How can we safely manage PFAS-containing wastes? 237 
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Importance: As PFAS are phased out of specific products and uses, safe disposal of existing stockpiles 238 

becomes an urgent need. There are many diffuse sources of PFAS, such as textiles, 239 

food contact materials, personal care products, and household furnishings, that 240 

eventually enter landfills and wastewater, and are later re-emitted to the 241 

environment through the air, landfill leachate, or into soil from biosolids 242 

application65–67. Within recycling streams, separation and safe disposal of PFAS contained within 243 

complex matrices become extremely challenging, given knowledge gaps on which types of PFAS are 244 

present, and at which levels, in various types of waste. Knowledge on how to deal with PFAS-containing 245 

waste is also critical for legislation related to regulations such as EU REACH and the Stockholm and 246 

Basel Conventions and ongoing PFAS restrictions. 247 

 248 

Barriers: Multiple technologies are being developed to remove PFAS from contaminated soil and water, 249 

some of which have proven effective, but high long-term cost and energy use remain major challenges. 250 

For example, sorptive or membrane-based processes result in contaminated wastewater streams (spent 251 

sorbent, membrane rejectate) that must be disposed of. Most desirable are in-situ clean-up methods (not 252 

“pump and treat”) but, so far, such a remediation solution has not been found. Large-scale water treatment 253 

facilities can be equipped with advanced treatment technologies (e.g. reverse osmosis) to remove 254 

persistent and mobile (water-soluble) chemicals like PFAS, but these are prohibitively costly to install 255 

and maintain for small systems68–72 and also generate PFAS-containing waste.  256 

 257 

High-temperature incineration has been proposed for some concentrated stocks (e.g. aqueous film-258 

forming foams), but given the high stability of the carbon-fluorine bond, there are concerns whether 259 

incineration is consistently operated under conditions that ensure the full mineralization of PFAS. In 260 

Europe, flue gases from municipal waste incinerators are meant to run at a temperature of 850 °C for at 261 

least two seconds73, but studies show that complete combustion of PFAS such as PFOA and PFOS 262 

requires temperatures of at least 1000 °C74. Limited work is underway to monitor incineration plants for 263 
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emissions of PFAS, but few data from full-scale studies are yet available75. While intensive research is 264 

ongoing to identify and optimize routes of PFAS biodegradation76–78 as a potentially less energy- and 265 

cost-intensive solution, none are currently effective at complete mineralization under reasonable time-266 

scales.  267 

 268 

Potential Paths Forward: Given the difficulties and costs associated with the disposal of PFAS, an 269 

upstream solution (i.e. avoiding PFAS except for cases of essential uses) is the most effective means of 270 

dealing with future PFAS-waste. The production of PFAS for essential uses should also be carefully 271 

controlled to result in close-to-zero emissions, because the few options available for safe disposal will 272 

always be costly based on currently available and foreseeable technologies. Recovery of PFAS from such 273 

uses is another important measure to ensure the need for energy-intensive destruction is avoided. Product 274 

labeling can be effective in reducing use and emissions of hazardous chemicals including PFAS, but trace 275 

PFAS contamination within recycling streams may prevent recycled materials from being incorporated 276 

into goods labeled PFAS-free.  Given existing background levels, it may be necessary for PFAS-free 277 

labeling to include an allowance for trace, non-functional levels of PFAS for industry partners trying to 278 

move away from fluorinated chemicals.   279 

 280 

Even when an “ideal” future can be achieved where only essential uses of PFAS occur and PFAS from 281 

these uses are recovered and not released, there are still the problems of legacy PFAS contamination and 282 

ongoing PFAS emissions. To address existing and ongoing waste issues, funding and research should be 283 

targeted towards technologies that can destroy PFAS with reasonable cost and environmental 284 

performance. Hybrid technologies that combine sorption and mineralization (“concentrate and destroy”) 285 

approaches may be particularly helpful in dealing with initially complex and dilute waste streams. 286 

Whatever the approach, the re-emission and shifting of contamination across environmental media (e.g. 287 

from soil to air) must be prevented. This also argues against testing of destruction technologies at scale 288 

until proven strategies are in place to prevent re-emission. Until these technologies can be better 289 
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developed, confined disposal facilities that store PFAS wastes while preventing emissions via air and 290 

leachate may be a best imperfect choice. 291 

 292 
5. How can we understand and describe the health effects of PFAS exposure? 293 

Importance: Toxicological assessment of each of the thousands of PFAS is not required to decide that 294 

further environmental contamination by PFAS and subsequent exposure should be 295 

avoided. However, pressing questions remain about how to deal with historical and 296 

ongoing PFAS pollution and associated health effects. To address the potential 297 

effects of existing exposures, and to prevent the extensive use of similarly 298 

bioavailable and toxic substances in the future, it is important to understand how to link measured 299 

exposures (e.g., levels of specific PFAS in blood) to current or anticipated health effects. It is also critical 300 

to link those health effects to specific physical-chemical properties and modes or mechanisms of 301 

toxicological action of PFAS, for example through adverse outcome pathways, AOPs. Concerns about 302 

their bioaccumulation and toxicity led to the global phase-out of a number of PFAAs. Yet advances in 303 

non-targeted analysis have facilitated discovery of many other structurally similar compounds in the 304 

environment, wildlife, and humans16,42,80,81. Some of the newly detected compounds are attracting 305 

increasing attention as they replace phased-out PFAAs in processes and products41,82,83, although 306 

they have in fact been released for decades in certain industries84–86 but were under the radar of the 307 

scientific and regulatory communities. The tissue distributions and bioaccumulation potentials are still not 308 

well understood79,80, but laboratory studies suggest that several replacement PFAS bioaccumulate and/or 309 

exert toxic effects similar to the compounds they have replaced, as well as other distinct toxic effects44,81–310 

84. 311 

 312 

Barriers: One of the most difficult questions scientists working on PFAS face is that of causality: is a 313 

health condition suffered by a community member the result of their exposure to PFAS, or does a blood 314 

test indicating the presence of PFAS mean that they will become sick in the future? Communities with 315 
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contaminated water supplies face challenges in court to having their health and remediation costs covered 316 

by the parties thought responsible for the contamination. To make the link between exposure and effect, 317 

clear lines of evidence are needed to both document the exposure and explain how it leads to an observed 318 

adverse health impact87. A striking feature of PFAS toxicity is the diversity of biological pathways that 319 

are affected88, especially given that most of the toxicological data currently available for PFAS are for a 320 

few single PFAAs. Understudied groups of PFAS (e.g. neutral, cationic, zwitterionic, cyclic) may have 321 

substantially different biological behavior that could be missed by established sampling approaches. For 322 

example, if their tissue distributions vary from those of anionic PFAAs, focusing on only serum or liver 323 

concentrations could miss critical accumulation sites for these PFAS (e.g. in lipids89). The structural 324 

diversity of PFAS and the fact that exposures are nearly always to mixtures rather than single substances 325 

complicates the search for mechanisms and structure-activity relationships.  326 

 327 

Potential Paths Forward:   The use of class-based methods to evaluate PFAS can work as a 328 

precautionary approach in the face of continuing uncertainty, particularly with respect to curtailing new or 329 

continuing uses of PFAS90. For existing exposures, additional, appropriately funded epidemiological 330 

studies that target large populations with a diversity of primary exposure routes can help to develop better 331 

links between exposure and effect, especially for less-studied PFAS and exposure routes. Analyses in 332 

these studies should include not only blood but also other matrices (urine, breast milk, hair, lipid tissues) 333 

to capture a wider diversity of PFAS physicochemical properties, half-lives of elimination, and potential 334 

internal storage sites. When occurrence data in populations are combined with PFAS identities and 335 

concentrations in products and environmental matrices, as discussed under questions 1 and 2, scientists 336 

can begin to develop “signatures” for exposures to PFAS from specific sources. Such information would 337 

be highly useful in the design of effective interventions to minimize exposures. Strategic and periodically 338 

implemented human biomonitoring studies combined with environmental exposure assessments can also 339 

evaluate effectiveness of regulatory initiatives91,92.  340 

 341 



15 
 

Better integration of mechanistic and observational studies can reveal how PFAS induce adverse health 342 

outcomes in humans and wildlife. Computational and in-vitro approaches (e.g. toxicokinetic models93,94, 343 

food-web bioaccumulation models95–97, protein and phospholipid interaction models and in-vitro 344 

studies98–103) can provide insight into expected exposures and effects in diverse species. However, these 345 

newer approaches still face substantial barriers to inform policy, as regulatory approaches still often 346 

require that risk assessment used to support regulatory standards be based on human epidemiology data or 347 

in vivo animal toxicology data. These data are largely lacking for many of the PFAS now widely detected 348 

in the environment. Strategies to incorporate in vitro and computational data into regulatory framework 349 

would allow for more rapid expansion of risk assessment to emerging PFAS. Such studies could be 350 

further strengthened by systematic reviews of existing data to confirm or refute linkages between 351 

exposures and outcomes. To avoid regrettable substitution with existing PFAS and non-PFAS 352 

alternatives, information revealed about modes or mechanism of toxic could also be used to inform future 353 

chemical design. Chemists should incorporate principles of hazard assessment, including structure-354 

activity relationships, early in the molecular design phase to aid in the development of chemicals that are 355 

less persistent, bioavailable and toxic. 356 

 357 

6. Who pays for the impacts of PFAS contamination? 358 

Importance: A 2019 study for the Nordic Council of Ministers estimated the costs for Europe of water 359 

treatment and soil remediation due to contamination of a sub-set of PFAS at between 360 

EUR 10-20 billion over a 20-year period104. Testing of publicly supplied drinking 361 

water sources indicates that as many as 80 million US residents may be receiving 362 

water with PFAS levels exceeding limits recommended by regulatory agencies and 363 

toxicologists.9,105–107 These communities may face costs ranging from purchase of replacement (bottled) 364 

water to major capital expenditures and long-term maintenance of water treatment technologies by their 365 

water utilities, which are transferred to consumers through their water bills108–111. Removal and disposal 366 

of contaminated soil or treatment of groundwater (e.g., pump and treat) is particularly expensive112, and is 367 



16 
 

therefore rarely undertaken. Indirect costs can include loss of property value or closure of a business if 368 

contamination is found. Examples include an organic farm in Colorado that had to stop growing crops 369 

because its water supply had been contaminated by PFAS from fire-fighting foam113, and a dairy farm in 370 

Maine that had to cull its herd because the milk had levels of PFAS 60 to 150 times higher than health 371 

advisory levels, due to applications of contaminated paper mill sludge to pastures as fertilizer114. 372 

 373 

Moreover, projected health-related costs due to effects of PFAS exposure are many times higher than the 374 

costs of environmental remediation. The Nordic study estimated the costs of human-health impacts from 375 

exposure to PFAS to be a minimum of EUR 54-82 billion each year in Europe. Direct costs will include 376 

medical treatment for PFAS-related health impacts such as cancer, high blood pressure, obesity and low 377 

birth weight. Indirect costs range from lost years of life and/or lost quality of life, impacts on family or on 378 

mental health because of anxiety about PFAS exposure, and ongoing health monitoring.  379 

 380 

Barriers: Costs of environmental and health impacts from PFAS exposure, like most environmental 381 

damages, continue to be treated as negative externalities – costs not borne by the polluter carrying out the 382 

activity causing the exposure, but by society at large. The major barrier to covering these enormous costs 383 

is lack of political agreement concerning who is responsible for this contamination and exposure, and who 384 

should pay. While the “Polluter Pays Principle” was first defined and championed by the OECD in 1972, 385 

it has rarely been implemented115. When local, regional, or national governments step in to finance clean-386 

up of drinking water and other remediation processes, the costs are ultimately passed on to the taxpayer.   387 

 388 

The costs of health impacts from PFAS exposure are often borne directly by the individuals who have 389 

developed the disease and by healthcare systems, because of complexities associated with establishing 390 

direct causal links between pollution and the health impact. The relationship between exposure and 391 

disease can be particularly difficult to verify when impacts of exposure do not arise until many years later 392 

(e.g., cancer). In the US, a few legal actions for compensation have been successful, e.g., a class action 393 
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suit against Dupont/Chemours on behalf of 70,000 persons exposed to industrial discharges in West 394 

Virginia settled for $670 million and a State of Minnesota lawsuit against 3M for water contamination 395 

settled for $800 million. However, the PFAS released by these companies remain in the environment and 396 

will likely remain a source of exposure for generations, not covered by these lawsuits.  397 

 398 

Potential Paths Forward: The extreme persistence of nearly all PFAS highlights the absurdity of 399 

continuing to treat environmental damage—including damage to public health—as a negative externality 400 

that can be ignored or even denied by the emitter. Such long-lived environmental contamination does not 401 

simply shift a burden but rather extends it, indefinitely, to future generations and all species. This is not a 402 

transaction that can be supported in a sustainable society for the sake of preserving a specific market or 403 

manufacturer. Mechanisms already exist that could be activated to shift cost burdens away from 404 

communities and taxpayers, such as the aforementioned Polluter Pays Principle. The Superfund program 405 

under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 406 

in the United States116 can hold polluters retroactively liable, but requires that the chemical to be 407 

remediated is first designated as a hazardous substance. The designation of PFAS as hazardous substances 408 

in the US is still under debate117, but would mark an important step forward in assigning liability.  409 

 410 

However, liability might justifiably lie with different parties under different circumstances. Should the 411 

polluter be defined as the company that released the PFAS-containing material into the environment or 412 

the company that manufactured the material in the first place? Was the product that contained PFAS 413 

properly used? Was it properly disposed of? Was the user sufficiently informed about the risks of release? 414 

How should that liability be treated when companies merge, split, and otherwise change their structure 415 

and identities, such as when Dupont spun off Chemours in 2015 and offloaded much of their PFAS-416 

related liability118? A number of cost recovery mechanisms have been suggested under the Strategic 417 

Approach to International Chemicals Management119 that could help countries to address these issues, by 418 

funding assessment, remediation, and health care costs. These include collecting fees from companies 419 
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who wish to register chemicals for use, charging environmental protection taxes, and charging for 420 

permits.  421 

 422 

Conclusions: Answering Urgent Questions to Address the PFAS Problem 423 

While these urgent questions highlight critical gaps in current understanding of the PFAS problem, 424 

enough is already known to take action. Costs associated with environmental cleanup and ongoing health 425 

effects of chemicals are magnified for extremely persistent environmental contaminants4,120, adding 426 

urgency to efforts to phase out current non-essential uses of PFAS121. Beyond these well-founded 427 

precautionary actions, the most important step is to improve the transparency about where and in what 428 

quantity PFAS are used. This will aid in identifying and phasing out all non-essential uses of PFAS and 429 

provide opportunities to identify less hazardous substitutes for PFAS. Production of safer chemicals and 430 

products must be seen as a competitive advantage and as a driver for innovation and the opening of new 431 

markets.  432 

 433 

Consumers are increasingly demanding that the products they use minimize their own health risks as well 434 

as risks to environmental health. These consumer-driven initiatives place pressure on major retailers to 435 

remove known problematic chemicals—e.g., bisphenol A (BPA)122, polybrominated diphenyl ethers 436 

(PBDEs)123, and, now, PFAS—from their products, and have proven enormously effective. However, this 437 

is not a perfect system, as illustrated by the case of BPA, where consumer pressure led to its replacement 438 

by bisphenol S (BPS), which has turned out to be just as harmful as BPA124. Thus, while consumers can 439 

demand that known harmful chemicals be removed from their products, it is up to industry under the 440 

purview of scientific and regulatory communities to ensure that regrettable substitutions do not occur. A 441 

first step would be to move towards household goods, cosmetics, food-packaging materials, and personal 442 

care products with a smaller total number of ingredients, simplifying the assessment of a particular 443 

formulation. 444 

 445 
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While consumers have direct purchasing power, their ability to use this to avoid hazardous substances is 446 

impeded by the lack of transparency in product ingredients and increasing cases of ‘greenwashing’. Major 447 

retailers and institutions in charge of public procurement, on the other hand, can wield much more 448 

concentrated power as well as knowledge about product supply chains. When large multinational 449 

corporations demand that their product lines remove certain hazardous chemicals, it helps in the voluntary 450 

restriction of those chemicals and also serves as a driver for innovation in the search for less hazardous 451 

alternatives. One particularly effective means for public agencies and retailers is through the use of lists 452 

of prohibited chemicals, such as the “Substitute it Now” (SIN) list,31 which can serve as a scientifically-453 

vetted ‘manual’ of chemicals to avoid. Compilation and curation of such lists, as well as their 454 

counterparts—lists of preferred less hazardous chemicals and products such as US EPA’s Safer 455 

Choice125—can help to prevent the chemical whack-a-mole game of regrettable substitutions. 456 

 457 

The environmental health impacts of a chemical used in a product are often not borne by the same 458 

population who benefits from the sale and use of these products. Production of PFAS has shifted to 459 

China, India, Brazil, and other countries where there is little awareness of the public health risks from 460 

PFAS and almost no environmental or human health monitoring. Extremely high exposures are already 461 

occurring, as was recently documented near a production facility in China44. A key component of the 462 

solutions we propose here is to ensure that PFAS research and monitoring is supported in more countries, 463 

with the goal to alleviate the impacts of “off-shoring” the negative repercussions of emissions associated 464 

with the production and end-of-life of PFAS and PFAS-containing products. In answering urgent 465 

questions for the sustainable management of PFAS, technological and policy interventions cannot be 466 

effective without also addressing environmental equity.  467 
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