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Abstract 11 

Sources of exposure to per- and polyfluorinated alkyl substances (PFAS) include food, 12 

water, and given that humans spend typically 90% of our time indoors, air and dust. 13 

Quantifying PFAS prevalent indoors, such as neutral, volatile PFAS, and estimating their 14 

exposure risk to humans is thus important. To accurately measure these compounds indoors, 15 

polyethylene (PE) sheets were employed and validated as passive detection tools, and analyzed 16 

by gas chromatography-mass spectrometry. Air concentrations were compared to dust and 17 

carpet concentrations reported elsewhere. Partitioning between PE sheets of different 18 

thicknesses suggested that interactions of the PEs with the compounds are occurring by 19 

absorption. Volatile PFAS, specifically fluorotelomer alcohols (FTOHs), were ubiquitous in 20 

indoor environments. For example, in carpeted Californian kindergarten classrooms, 6:2 FTOH 21 

dominated with concentrations ranging from 9-600 ng m-3, followed by 8:2 FTOH. 22 

Concentrations of volatile PFAS from air, carpet and dust were closely related to each other, 23 

indicating that carpets and dust are major sources of FTOHs in air. Nonetheless, air posed the 24 

largest exposure risk of FTOHs and biotransformed perfluorinated alkyl acids (PFAA) in 25 

mailto:rlohmann@uri.edu
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young children. This research highlights inhalation of indoor air as an important exposure 26 

pathway and the need for further reduction of precursors to PFAA. 27 

 28 

Passive sampling, Polyethylene sheets, PFAS precursors, gas-phase, Carpet, Dust, Risk 29 

Assessment 30 

 31 

Polyethylene (PE) sheets are effective passive samplers for PFAA precursors which are 32 

ubiquitous in indoor air and dominate indoor exposure. 33 

 34 

Introduction 35 

Human exposure to fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides 36 

(FOSAs) and perfluorooctane sulfonamidoethanols (FOSEs) and other precursors to 37 

perfluoroalkyl acids (PFAA) comes primarily from consumer and industrial products readily 38 

available in people’s homes.1–4 FTOHs were the dominant polyfluorinated compounds in 39 

indoor air 5 where ~60% of detected per- and polyfluorinated alkyl substances (PFAS) were 40 

associated with the particle phase.2  Since most people spend more than 90% of their time 41 

indoors,2 indoor air and dust are important uptake pathways for human PFAS exposure6 in 42 

addition to the widely recognized exposure sources of diet and water.7–9 Indeed, correlations 43 

between elevated indoor air exposure to precursors and increased PFAS serum concentrations 44 

have been reported.10,11 45 

The use of passive sampling, which can measure the concentration of freely dissolved 46 

or gas-phase trace organic contaminants, has been widely accepted as an effective detection 47 

tool.12,13 Single-phase polymers, such as polyethylene (PE) sheets, have been able to detect a 48 

wide range of non-polar and moderately polar contaminants in the gas phase or dissolved in 49 
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water.14,15 In addition, PE sheets are inexpensive, easy to handle, and can be easily transported 50 

and deployed.13 Recently, neutral PFAS were successfully measured in outdoor air and water 51 

using PE sheets.16 However, the partitioning of neutral PFAS into or onto the PE sheets indoors 52 

is not yet fully understood. 53 

To further assess the role that indoor environments play as an exposure source of 54 

airborne PFAS in gas-phase and dust, the main objectives of this research were to (i) derive 55 

indoor PE-air partitioning coefficients (KPE-air); (ii) compare the volatile PFAS composition in 56 

different indoor environments using PE sheets as passive samplers; (iii) evaluate the air-dust 57 

partitioning of PFAS in carpeted kindergarten classrooms, and  (iv) estimate daily intake (EDI) 58 

in children 2-6 years of age. 59 

Materials and Methods 60 

Sampling of neutral PFAS was performed in carpeted kindergarten classrooms, 61 

residences, an outdoor gear and apparel store in northern California; university offices, 62 

classrooms, laboratories, and a carpet store in southern Rhode Island between 2018 and 2020. 63 

A total of 90 PE sheets were deployed in the indoor locations, in addition to eight radiello 64 

samplers (Sigma Aldrich) with precleaned XAD-4 as sorbent used for active sampling. 65 

Two types of precleaned PE passive samplers differentiated by thickness (25 m and 66 

50 m) were deployed for 14 days (validation study), 21 days (kinetic study), and 28 days 67 

(measurements). Active sampling was performed on days 1, 7 and 14 where the radiello 68 

samplers were attached to a QuickTake 30 SKC Pump at a constant flow of 5 L min-1 for 240 69 

minutes. All samples were kept in a freezer at -20˚C until extraction (for details, see SI).  70 
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Instrumental analysis 71 

Samples were analyzed for nine neutral PFAS on an Agilent 7890B gas chromatograph 72 

coupled to an Agilent 5977A mass selective detector (MSD) device operating in positive 73 

chemical ionization mode using selected ion monitoring (for details, see SI). 74 

Data interpretation 75 

The partitioning constants of neutral PFAS between PE and air (KPE-air) were derived 76 

in the validation study as: 77 

𝐾𝑃𝐸−𝑎𝑖𝑟 =
𝐶𝑃𝐸

𝐶𝑎𝑖𝑟
    (1), 78 

where CPE is the concentration in PE sheets (ng g-1
PE ), and 79 

Cair is the gas-phase concentration (ng m-3). 80 

Active sampling was used in the KPE-air validation study only. For all other campaigns, Cair was 81 

calculated using equation (1). Partitioning within the PE sheets was derived as the ratio of the 82 

25 m passive sampler (C25) to the 50 m passive sampler (C50) amounts at equilibrium (for 83 

details, see SI). 84 

Daily intake 85 

The total estimated daily intake (EDI) of neutral PFAS via air and dust was calculated 86 

from PFAS concentrations measured here, and dust concentrations reported elsewhere17 based 87 

on established methods 18,19 (for details, see SI). 88 

QA/QC 89 

Field blanks, matrix spikes, matrix blanks, and field duplicate samples were included 90 

with each sample batch. Matrix spikes were prepared by spiking 50 L of an 80 pg/L native 91 

standard solution and 50 L of an 80 pg/L mass labelled standard solution into a clean (unused 92 

and never removed from the laboratory) sampler. Method detection limits (MDL) were 93 

calculated as the blank average plus three times the standard deviation; however, when a 94 

compound was not detected in the blanks, instrumental limits of detection (ILOD) were used. 95 
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Only values above limits of quantitation (LOQ) were reported (for details, see SI, Table S2). 96 

Recoveries of the matrix spikes ranged between 81% (35) to 111% (19) for all compounds 97 

(for details, see SI, Table S2). 98 

Results and Discussion 99 

PE-air Partitioning Constants 100 

Results from the kinetic study showed that 6:2 FTOH and 8:2 FTOH reached 101 

equilibrium after 14 days (see SI Figure S1). Log KPE-air values were approximately 4 -5 for 102 

the FTOHs, ~ 5 for 8:2 FTAcr, and increased with molecular weight. Although 10:2 FTAcr, 103 

FOSAs and FOSEs were detected by PE sheets, none were detected by active sampling; 104 

calculating their equilibrium partitioning constant was not possible (see SI Table S6). There 105 

were only minor differences between the 25 m and 50 m KPE-air results, indicating good 106 

reproducibility of PE sheets as passive samplers. 107 

Mean log KPE-air values from the FTOHs of this study were approximately three log 108 

units lower than those reported for outdoors (see SI Table S3)16 where break-through and 109 

environmental factors could have affected the partitioning of the compounds. Missing KPE-air 110 

values were derived based on a correlation between previously reported16 and currently 111 

measured PE-air partitioning constants. Further studies are needed to corroborate the 112 

partitioning coefficients of the FOSAs and FOSEs. 113 

 114 

Table 1. Indoor log KPE-air values from the validation study for 25 and 50 um PE sheets. 115 

Compound Molecular weight 

(g mol-1) 

Mean log KPE-air 25 

(this study) 

Mean log KPE-air 50 

(this study) 

6:2 FTOH 364.1 4.4  0.1 4.3  0.0 

8:2 FTOH 464.1 4.3  0.1 4.5  0.0 

10:2 FTOH 564.1 5.0 5.0  0.0 

8:2 FTAcr 518.1 4.9  0.4 5.0  0.2 
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10:2 FTAcr 618.1 5.2* 5.3* 

MeFOSA 527.2 5.1* 5.2* 

EtFOSA 513.1 ND  ND  

MeFOSE 571.2 5.2* 5.3* 

EtFOSE 557.2 5.2* 5.2* 

ND=not detected, *KPE-air from this study was estimated based on a correlation between those measured here  and those 116 
reported by Dixon-Anderson and Lohmann, (2018)16. Estimated KPE-air = 0.44 x KPE-air, measured (Dixon-Anderson and Lohmann, 117 
2018) + 1.30 (RSQPE50=0.67). 118 

 119 

PE-air Partitioning ratios  120 

The partitioning ratios of the weight-normalized neutral PFAS between 25 and 50 m 121 

thick PE sheets were ~1 (see SI Figure S2) implying absorption as the mechanism of 122 

partitioning. The greater mass of the 50 m PE sheets for the same size resulted in easier 123 

detection and is thus preferable for future studies.  124 

 125 
Figure 1. Indoor air concentrations measured at California Kindergarten classrooms 126 

and an outdoor clothing store, and university classrooms, offices and laboratories, and a 127 

carpet store in southern Rhode Island. H: home; KG: kindergarten classrooms; Lab: laboratory; 128 
Off: office; Elev: elevator; Clrm: classroom; Ctst: carpet store; Strm: storage room. Numbers (i.e. 129 
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KG7) are indicative of separate/individual samples. Off3 and CtSt2 have concentrations above 1000 130 
ng m-3.   131 

Neutral PFAS Indoor Air Concentrations 132 

Indoor air concentrations were derived from the PEs for neutral PFAS in (1) California 133 

Kindergarten classrooms (SI Table S4); (2) offices, classrooms and laboratories at a university, 134 

and a nearby carpet store in southern Rhode Island (SI Table S5); and (3) a storage room at an 135 

outdoor clothing store in California (SI Table S6), see Figure 1. Neutral PFAS were present at 136 

all locations, dominated by FTOHs, in-line with previous results.5,20,21 PFAS profiles and 137 

concentrations varied between locations, though, likely driven by the different PFAS-138 

containing products present. These results indicated that PE-sheets can be used to determine 139 

differences in PFAS profiles and concentrations in various indoor air settings. 140 

In the California kindergarten classrooms, 6:2 FTOH dominated with concentrations 141 

ranging from 10-600 ng m-3 (accounting for 29-96 % of sum of nine PFAS), followed by 8:2 142 

FTOH (2-160 ng m-3, 3-54% of total PFAS) (Figure 1; SI Table S2). In three kindergarten 143 

classrooms (KG2, KG3, and KG5), concentrations of 8:2 FTOH exceeded those of 6:2 FTOH. 144 

In all kindergarten classrooms, EtFOSE was present at low concentrations, while MeFOSE was 145 

below method detection limits (MDLs) (Figure 1; SI Table S2). EtFOSA, 8:2 FTAcr, and 10:2 146 

FTAcr were not detected (SI Table 3). 147 

When detected, 6:2 FTOH (with detection frequency of 83%, and ranging from < MDL 148 

– 1900 ng m-3), and 8:2 FTOH (17%, < MDL-270 ng m-3) also dominated total PFAS in the 149 

university rooms (Figure 1; SI Table S5). FTOHs were detected only in carpeted rooms and in 150 

the analytical laboratory (SI Table S5). The detection of 10:2 FTOH was sporadic, with 151 

concentrations up to 33 ng m-3 (Figure 1; SI Table S5). MeFOSA, EtFOSE, and MeFOSE were 152 

at or < MDL at all sites, while EtFOSA and FTAcr were rarely above MDLs (SI Table S5). 153 

Volatile PFAS were present in all replicates from the outdoor clothing store (Figure 1). 154 

FTOHs were the most abundant and dominant group; consistent with previous studies on the 155 
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composition of PFAS in various indoor environments.5,20,21 The most abundant compound was 156 

8:2 FTOH, with an average concentration of ~200 ng m-3, followed by 6:2 FTOH and 10:2 157 

FTOH with average concentrations of 70 ng m-3 and 30 ng m-3 respectively (Figure 1). The 158 

dominance of 8:2 FTOH is concerning since this and other longer-chain PFAS have been 159 

phased out by PFAS producers in the United States, European Union, and Japan22. These 160 

results show that these compounds are still being used for textiles, and possibly point to textile 161 

imports from other countries where PFAS are poorly regulated.23 162 

Fraser et al. (2011)11 reported concentrations of FTOHs ranging from <MDL to 11 ng 163 

m-3 (6:2 FTOH),  0.3 - 70 ng m-3 (8:2 FTOH), and 0.14 - 12 ng m-3 (10:2 FTOH) in multiple 164 

office spaces in Boston, Massachusetts, similar to results report here and in other studies.5,21 A 165 

study in Ottawa, Canada, in 2005 reported concentrations of MeFOSE, EtFOSE and EtFOSA 166 

in indoor air of ~ 7 ng m-3, 2 ng m-3 and 0.1 ng m-3, respectively 2, and even lower in Vancouver, 167 

Canada in 2011, at 0.4 ng m-3, 0.06 ng m-3, 0.03 ng m-3, and 0.02 ng m-3 respectively.21 In the 168 

present study, although present in many locations, FOSEs rarely exceeded concentrations of 169 

0.001 ng m-3. FOSAs were detected even fewer times. The difference in concentrations of the 170 

FOSAs and FOSEs in different locations across North America could reflect geographic 171 

differences of indoor sources. Additionally, the difference between older and newer data could 172 

point to the phase out of PFOS-based chemicals, including FOSAs and FOSEs since 2002, 173 

whereas the use of replacement FTOHs in North America has increased since 2000.21,24,25 174 

 175 

Air-dust-carpet partitioning 176 

Concentrations of neutral PFAS in dust and carpet of the same kindergarten classrooms 177 

were measured by Wu et al. (2020)17 (see SI Table S7). Strong correlations (RSQ > 0.7, P≤0.05) 178 

were observed between different FTOHs in air-dust,  and air-carpet (and dust-carpet from Wu 179 
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et al. (2020)17, see SI Table S8), except for 6:2 FTOH in air-carpet. On the other hand, FOSEs 180 

were not strongly correlated in air, dust or carpet. 181 

Distribution of PFAS between indoor air and floor dust were reported to be controlled 182 

by partitioning between the gas phase and PFASs sorbed to the organic phases in the dust.26 183 

Our results corroborated that neutral PFAS were present in air and partitioned to dust. Given 184 

that the origin of volatile PFAS in air in the (carpet-free) outdoor clothing storage room was 185 

likely to be textiles, it is possible that multiple products in the kindergarten classrooms were in 186 

fact the source of these compounds that also partitioned into carpet and dust. Previous work 187 

demonstrated that FTOHs, FOSAs, and FOSEs degrade in the atmosphere into more stable 188 

PFAA.27,28 Significant associations between precursors in air and PFCAs in dust have been 189 

reported (e.g., 6:2 FTOH and PFHxA).29 Similarly, significant associations were observed 190 

between FOSAs/FOSEs in air and PFOS and PFDS in house dust.28  191 

In contrast to FTOHs, there were no significant correlations between the 192 

FOSAs/FOSEs in air, dust and carpet from this study, suggesting that the sources of 193 

FOSAs/FOSEs were different and likely not linked to carpets or textiles. A previous study did 194 

not find significant correlations between the FOSEs in kindergarten classrooms either, but did 195 

however find strong associations in offices30, implying that there were common sources of 196 

these sulfonamidoethanols in items associated with office spaces that perhaps were not usually 197 

found in kindergarten classrooms. Additionally, as previously mentioned, the production of 198 

FOSAs/FOSEs has been largely phased-out of production since 200224, and thus their low 199 

concentration or absence is expected31. 200 

 201 

Estimated daily intake of volatile PFAS through air and dust 202 

To assess the relevance of volatile and neutral PFAS in indoor air for children aged two 203 

to six years old, the estimated daily intake (EDI) was calculated (SI Table S8) for three 204 



 10 

exposure estimates (low, medium, high, see SI). Biotransformation constants for each 205 

compound were used to calculate their contribution to the ∑PFAA intake (SI Table S8). 206 

Total EDI (SI Table S9) was 1.5 ng kg-1 bw day -1 for low exposure, 14 ng kg-1 bw day-207 

1 for intermediate exposure, and 150 ng kg-1 bw day-1 for high exposure. Compounds that were 208 

regularly detected in both air and dust were 6:2 FTOH, 8:2 FTOH, and, to a lesser extent, 10:2 209 

FTOH; while MeFOSE and EtFOSE appeared to have significantly larger contributions in dust 210 

than air (Figure 2, SI Table S9). Volatile and neutral PFAS measured in air contributed 4.9-62 211 

% to ∑PFAA intake, while ionic PFAS measured in dust contributed 34-95 % (SI Table S9). 212 

These results are similar to other studies that found precursors contributing 41–68 % to ∑PFOS 213 

uptake via all investigated exposure pathways, 32 and precursors responsible for 90 % to the 214 

∑PFOS intake in air (Figure 2).26,33 Our results imply that air inhalation was a major exposure 215 

pathway for FTOHs, while dust ingestion was dominant for FOSEs in children, similar to prior 216 

results.30 217 
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 218 

 219 

Figure 2. Percent of volatile and neutral PFAS (top panel) and indirect or 220 

biotransformed PFAA (bottom panel) intake via air inhalation (pink) and dust ingestion 221 

(blue) for children at ages 2 through 6.  Bars represent the relative contribution of 222 

individual precursors to total PFAS (left axis); bars are differentiated by color for both 223 

matrices. Lines represent the percent estimated contribution for each compound in air and 224 

dust (right axis). MeFOSE was detected at low concentrations in dust and <MDL in air.  225 

 226 

Given the potential for precursors to be biotransformed into more stable PFAA, 227 

estimations of PFAA indirect exposure were also calculated as 1.2 ng kg-1 bw day-1, 75 ng kg-228 

1 bw day-1, 2800 ng kg-1 bw day-1 for the low, intermediate, and high exposure scenario 229 

respectively (SI Table S9). The major contributors to indirect PFAA exposure were 6:2 FTOH 230 

and 8:2 FTOH in air, and MeFOSE in dust (Figure 2). This study demonstrated that volatile 231 

neutral PFAS, such as FTOHs, are major contributors to exposure in air.  232 
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Supporting Information 233 

The Supporting Information contains additional details on the analysis, data interpretation 234 

and EDI calculation, and is available free of charge at https://pubs.acs.org/doi/XXX. 235 

 236 

Acknowledgements 237 

The authors acknowledge funding from NIEHS (P42ES027706). The analysis was conducted 238 

at a Rhode Island NSF EPSCoR research facility, Molecular Characterization Facility, 239 

supported in part by the EPSCoR Cooperative Agreement # OIA-1655221.  We thank Marta 240 

Venier (Indiana U) for comments on a previous version of this manuscript. 241 

 242 

Conflict of interest 243 

The authors declare no competing financial interests. 244 

245 

https://pubs.acs.org/doi/XXX


 13 

References 246 

 247 

(1)  Prevedouros, K.; Cousins, I. T.; Buck, R.; Korzeniowski, S. H. Critical Review 248 

Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006. 249 

https://doi.org/10.1021/es0512475. 250 

(2)  Shoeib, M.; Harner, T.; Wilford, B. H.; Jones, K. C.; Zhu, J. Perfluorinated 251 

Sulfonamides in Indoor and Outdoor Air and Indoor Dust: Occurrence, Partitioning, 252 

and Human Exposure. Environ. Sci. Technol. 2005. https://doi.org/10.1021/es048340y. 253 

(3)  Langer, V.; Dreyer, A.; Ebinghaus, R. Polyfluorinated Compounds in Residential and 254 

Nonresidential Indoor Air. Environ. Sci. Technol. 2010. 255 

https://doi.org/10.1021/es102384z. 256 

(4)  Gremmel, C.; Fr, T.; Omel, €; Knepper, T. P. Systematic Determination of 257 

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Outdoor Jackets. 2016. 258 

https://doi.org/10.1016/j.chemosphere.2016.06.043. 259 

(5)  Schlummer, M.; Gruber, L.; Fiedler, D.; Kizlauskas, M.; Müller, J. Detection of 260 

Fluorotelomer Alcohols in Indoor Environments and Their Relevance for Human 261 

Exposure. Environ. Int. 2013, 57–58, 42–49. 262 

https://doi.org/10.1016/j.envint.2013.03.010. 263 

(6)  Ericson Jogsten, I.; Nadal, M.; Van Bavel, B.; Lindström, G.; Domingo, J. L. Per- and 264 

Polyfluorinated Compounds (PFCs) in House Dust and Indoor Air in Catalonia, Spain: 265 

Implications for Human Exposure. Environ. Int. 2012, 39, 172–180. 266 

https://doi.org/10.1016/j.envint.2011.09.004. 267 

(7)  Sunderland, E. M.; Hu, X. C.; Dassuncao, C.; Tokranov, A. K.; Wagner, C. C.; Allen, 268 

J. G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl 269 

Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. 270 

Environ. Epidemiol. 2019, 29 (2), 131–147. https://doi.org/10.1038/s41370-018-0094-271 



 14 

1. 272 

(8)  EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, 273 

D.; Bignami, M.; Bodin, L.; Chipman, J. K.; del Mazo, J.; Grasl-Kraupp, B.; 274 

Hogstrand, C.; Hoogenboom, L. (Ron); Leblanc, J.-C.; Nebbia, C.S.; Nielsen, E.; 275 

Ntzani, E.; Petersen, A.; Sand, S.; Vleminckx, C.; Wallace, H.; Barregård, L.; 276 

Ceccatelli, S.; Cravedi, J.P.; Halldorsson, T.I.; et al. Risk to Human Health Related to 277 

the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18 (9), e06223. 278 

https://doi.org/https://doi.org/10.2903/j.efsa.2020.6223. 279 

(9)  ATSDR. Toxicological Profile for Perfluoroalkyls. (Draft for Public Comment); 280 

Atlanta, GA, 2018. 281 

(10)  Makey, C. M.; Webster, T. F.; Martin, J. W.; Shoeib, M.; Harner, T.; Dix-cooper, L.; 282 

Webster, G. M. Airborne Precursors Predict Maternal Serum Perfluoroalkyl Acid 283 

Concentrations. Env. Sci Technol 2017, 51, 7697–7675. 284 

https://doi.org/10.1021/acs.est.7b00615. 285 

(11)  Fraser, A. J.; Webster, T. F.; Watkins, D. J.; Nelson, J. W.; Stapleton, H. M.; Calafat, 286 

A. M.; Kato, K.; Shoeib, M.; Vieira, V. M.; McClean, M. D. Polyfluorinated 287 

Compounds in Serum Linked to Indoor Air in Office Environments. Env. Sci Technol 288 

2011, No. 46, 1209–1215. https://doi.org/10.1021/es2038257. 289 

(12)  Lohmann, R. Critical Review of Low-Density Polyethylene’s Partitioning and 290 

Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use 291 

As a Passive Sampler. 2011. https://doi.org/10.1021/es202702y. 292 

(13)  Lohmann, R.; Booij, K.; Smedes, F.; Vrana, B. POPs Workshop, Ten Years after the 293 

Signature of the Stockholm Convention. Use of Passive Sampling Devices for 294 

Monitoring and Compliance Checking of POP Concentrations in Water. Environ. Sci. 295 

Pollut. Res. 2012, No. 19, 1885–1895. https://doi.org/10.1007/s11356-012-0748-9. 296 



 15 

(14)  Booij, K.; Sleiderink, H. M.; Smedes, F. Calibrating the Uptake Kinetics of 297 

Semipermeable Membrane Devices Using Exposure Standards. Environ. Toxicol. 298 

Chem. 1998, 17 (7), 1236–1245. https://doi.org/10.1897/1551-5028. 299 

(15)  Adams, R.; Lohmann, R.; Fernandez, L.; MacFarlane, J.; Gschwend, P. Polyethylene 300 

Devices: Passive Samplers for Measuring Dissolved Hydrophobic Organic 301 

Compounds in Aquatic Environments. Environ. Sci. Technol 2007. 302 

https://doi.org/10.1021/es0621593. 303 

(16)  Dixon-Anderson, E.; Lohmann, R. Field-Testing Polyethylene Passive Samplers for 304 

the Detection of Neutral Polyfluorinated Alkyl Substances in Air and Water. Environ. 305 

Toxicol. Chem. 2018, 37 (12), 3002–2010. https://doi.org/10.1002/etc.4264. 306 

(17)  Wu, Y.; Romanak, K.; Bruton, T.; Blum, A.; Venier, M. Per-and Polyfluoroalkyl 307 

Substances in Paired Dust and Carpets from Childcare Centers. Chemosphere 2020. 308 

https://doi.org/10.1016/j.chemosphere.2020.126771. 309 

(18)  USEPA. Exposure Factors Handbook (EFH); Washington, DC, 2008. 310 

https://doi.org/EPA/600/R-06/096F. 311 

(19)  Gebbink, W.; Berger, U.; Cousins, I. Estimating Human Exposure to PFOS Isomers 312 

and PFCA Homologues: The Relative Importance of Direct and Indirect (Precursor) 313 

Exposure. Environ. Int. 2015, 74, 160–169. 314 

https://doi.org/10.1016/j.envint.2014.10.013. 315 

(20)  Liu, W.; Takahashi, S.; Sakuramachi, Y.; Harada, K. H.; Koizumi, A. Polyfluorinated 316 

Telomers in Indoor Air of Japanese Houses. 2012. 317 

https://doi.org/10.1016/j.chemosphere.2012.09.062. 318 

(21)  Shoeib, M.; Harner, T.; Webster, G. M.; Lee, S. C. Indoor Sources of Poly-and 319 

Perfluorinated Compounds (PFCS) in Vancouver, Canada: Implications for Human 320 

Exposure. Environ. Sci. Technol 2011, 45, 7999–8005. 321 



 16 

https://doi.org/10.1021/es103562v. 322 

(22)  Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; Voogt, P. De; 323 

Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. J. Perfluoroalkyl and 324 

Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and 325 

Origins. Integr. Environ. Assess. Manag. 2011. https://doi.org/10.1002/ieam.258. 326 

(23)  Vestergren, R.; Herzke, D.; Wang, T.; Cousins, I. T. Are Imported Consumer Products 327 

an Important Diffuse Source of PFASs to the Norwegian Environment? 2015. 328 

https://doi.org/10.1016/j.envpol.2014.12.034. 329 

(24)  Barber, J. L.; Berger, U.; Chaemfa, C.; Huber, S.; Jahnke, A.; Temme, C.; Jones, K. C. 330 

Analysis of Per- and Polyfluorinated Alkyl Substances in Air Samples from Northwest 331 

Europe. J. Environ. Monit. 2007, 9 (6), 530–541. https://doi.org/10.1039/b701417a. 332 

(25)  OECD. RESULTS OF THE 2006 SURVEY ON PRODUCTION AND USE OF PFOS, 333 

PFAS, PFOA, PFCA, THEIR RELATED SUBSTANCES AND 334 

PRODUCTS/MIXTURES CONTAINING THESE SUBSTANCES; 2006. 335 

https://doi.org/ENV/JM/MONO(2006)36. 336 

(26)  Winkens, K.; Giovanoulis, G.; Koponen, J.; Vestergren, R.; Berger, U.; Karvonen, A.; 337 

Pekkanen, J.; Kiviranta, H.; Cousins, I. Perfluoroalkyl Acids and Their Precursors in 338 

Floor Dust of Children’s Bedrooms – Implications for Indoor Exposure. Environ. Int. 339 

2018, 119 (June), 493–502. https://doi.org/10.1016/j.envint.2018.06.009. 340 

(27)  Ellis, D. A.; Martin, J. W.; De Silva, A. O.; Mabury, S. A.; Hurley, M. D.; Sulbaek 341 

Andersen, M. P.; Wallington, T. J. Degradation of Fluorotelomer Alcohols:  A Likely 342 

Atmospheric Source of Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2004, 343 

38 (12), 3316–3321. https://doi.org/10.1021/es049860w. 344 

(28)  Haug, L.; Huber, S.; Schlabach, M.; Becher, G.; Thomsen, C. Investigation on Per-and 345 

Polyfluorinated Compounds in Paired Samples of House Dust and Indoor Air from 346 



 17 

Norwegian Homes. Environ. Sci. Technol 2011, 45, 7991–7998. 347 

https://doi.org/10.1021/es103456h. 348 

(29)  Huber, S.; Haug, L.; Schlabach, M. Per-and Polyfluorinated Compounds in House 349 

Dust and Indoor Air from Northern Norway-A Pilot Study. 2011. 350 

https://doi.org/10.1016/j.chemosphere.2011.04.075. 351 

(30)  Goosey, E.; Harrad, S. Perfluoroalkyl Substances in UK Indoor and Outdoor Air: 352 

Spatial and Seasonal Variation, and Implications for Human Exposure. Environ. Int. 353 

2012, 45 (1), 86–90. https://doi.org/10.1016/j.envint.2012.04.007. 354 

(31)  Karásková, P.; Venier, M.; Melymuk, L.; Bečanová, J.; Vojta, Š.; Prokeš, R.; 355 

Diamond, M. L.; Klánová, J. Perfluorinated Alkyl Substances (PFASs) in Household 356 

Dust in Central Europe and North America. 2016. 357 

https://doi.org/10.1016/j.envint.2016.05.031. 358 

(32)  Vestergren, R.; Cousins, I.; Trudel, D.; Wormuth, M.; Scheringer, M. Estimating the 359 

Contribution of Precursor Compounds in Consumer Exposure to PFOS and PFOA. 360 

Chemosphere 2008, 73, 1617–1624. 361 

https://doi.org/10.1016/j.chemosphere.2008.08.011. 362 

(33)  Winkens, K.; Koponen, J.; Schuster, J.; Shoeib, M.; Vestergren, R.; Berger, U.; 363 

Karvonen, A. M.; Pekkanen, J.; Kiviranta, H.; Cousins, I. T. Perfluoroalkyl Acids and 364 

Their Precursors in Indoor Air Sampled in Children’s Bedrooms. Environ. Pollut. 365 

2017, 222, 423–432. https://doi.org/10.1016/J.ENVPOL.2016.12.010. 366 

 367 

  368 



 18 

Graphical TOC 369 

 370 

 371 


	The Air that we Breathe: Neutral and volatile PFAS in Indoor Air
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Citation/Publisher Attribution
	Authors

	tmp.1631626964.pdf.yIxhs

