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GA 

In this study, we investigated liver injury reports submitted to the FAERS database and 

compared the frequency of reports between drugs that can cause hepatotoxicity via 

mitochondrial mechanisms and those without mitochondrial mechanisms of toxicity. 
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Abstract Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and 

post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an 

essential role in various forms of DILI, especially in idiosyncratic liver injury. This study 

examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse 

Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial 

mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of 

hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio 

(ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI 

involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42–1.45; P < 0.0001) 

times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. 

Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top 5 drug 

classes with the highest ROR values. Although the top 20 drugs with the highest ROR values 

included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top 4 

drugs (ROR values >18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with 

mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also 

examined. There was a higher mean patient age among reports for drugs that were associated 

with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial 

mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility 
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to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed 

that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be 

associated with older patient age, as compared with reports involving patients less than 65 years 

of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61–

0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity 

mechanisms. Given the higher proportion of severe liver injury reports among drugs associated 

with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes 

mitochondrial toxicity during preclinical drug development when drug design alternatives, more 

clinically relevant animal models, and better clinical biomarkers may provide a better translation 

of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings 

from this study align with mitochondrial mechanisms of toxicity being an important cause of 

DILI, and this should be further investigated in real-world studies with robust designs. 

KEY WORDS Mitochondrial toxicity; FAERS database; Adverse event reporting; Drug-

induced liver injury; Hepatotoxicity 

Abbreviations: AE, adverse event; CI, confidence interval; CNS, center nervous system; DILI, 

drug-induced liver injury; DNA, deoxyribonucleic acid; FAERS, FDA’s Adverse Event 

Reporting System; FDA, US Food and Drug Administration; MedDRA, Medical Dictionary for 

Regulatory Activities; NCTR-LTKB, National Center for Toxicological Research-Liver Toxicity 

Knowledge Base; NSAID, nonsteroidal anti-inflammatory drugs; ROR, Reporting Odds Ratio 

 

1. Introduction  

Severe drug-induced liver injury (DILI) is a rare, potentially life-threatening adverse event with 

an incidence of 10–15 cases per 10,000 to 100,000 patients per year
1-4

. The clinical profile of 

DILI is challenging to diagnose as it can mimic almost any type of liver disease
5,6

 and mild, 

asymptomatic transaminase elevations may mimic those caused by diet
7
. Prediction of liver 

injury remains a challenge for the pharmaceutical industry, regulators, and clinicians
5
. DILI 

symptoms range from non-specific mild elevations in liver enzymes (aminotransferases) to 

severe liver illnesses such as cirrhosis or acute hepatitis
5,6

 and there is no specific biomarker that 

links drug exposure as the contributing cause of liver injury
8
.  
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There are two types of DILI: intrinsic (i.e., dose-dependent) and idiosyncratic (i.e., dose-

independent)
6
. A well-known example of intrinsic DILI is acetaminophen-induced liver injury, 

as it is dose-dependent, the onset is hours to days, and predictable
9
. On the other hand, 

idiosyncratic DILI is not dose-dependent, occurs in a small portion of drug-exposed individuals, 

its onset is days to weeks, and unpredictable
9
. Idiosyncratic DILI is highly dependent on 

environmental and host factors that alter the susceptibility of individual patient responses to the 

drug. Hamilton et al.
10

 suggested that DILI is the convergence of three influencing risk factors: 

host factors, environmental factors, and drug-specific factors. Host-related risk factors include 

genetics, ethnicity, gender, comorbidities, alterations in drug transport, drug clearance 

capabilities, age, and mitochondrial function variability
10

. Environmental risk factors include 

lifestyle, viral co-infection, co-prescriptions, diet, and alcohol consumption
10

. Finally, drug-

specific risk factors include the relationship of applied dose (exposure) and chemical structure 

with reactive metabolite formation, mitochondrial dysfunction, and lipophilicity
10-12

. Therefore, 

mechanisms of DILI, whether intrinsic or idiosyncratic, are a multivariable, highly complex 

process that varies from patient to patient and is influenced by host, environmental, and drug-

specific factors that influence the liver’s ability to adapt and recover from an injury caused by a 

drug
8
.  

In recent years, drug-induced mitochondrial toxicity has been shown to play an essential role 

in intrinsic and idiosyncratic DILI. Many medications from different drug classes, such as 

antidiabetic, antilipidemic, antiviral, antibiotic, anti-inflammatory, and antipsychotic agents have 

toxicities mediated by mitochondrial mechanisms, which may contribute to DILI
13

. 

Mitochondrial toxicants affect mitochondrial homeostasis by numerous mechanisms such as 

oxidative stress, inhibition or uncoupling of respiratory complexes of electron transport chain, 

impairment of mitochondrial replication or promoting mitochondrial DNA damage
14

. Drug-

induced mitochondrial toxicity is difficult to be detected in standard preclinical animal testing 

models and requires specific studies to examine disruptions in liver energy status
15

. Only 

recently, there has been the development of clinical biomarkers specific for mitochondrial 

dysfunction in disease
16

 and DILI
17

 beyond changes in blood lactate. With these inadequacies, a 

drug candidate can enter human clinical trials only to fail for evidence of mitochondrial 

toxicity
18,19

. Examples of non-mitochondrial toxicity mechanisms that drive DILI are generation 

of reactive metabolites, activation of cell death pathways, activation of innate or adaptive 
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immune response pathways, or disruption of cellular homeostasis
20

. This study evaluates the 

frequency of reports of hepatotoxicity injury in drugs that cause DILI with mitochondrial and 

non-mitochondrial mechanisms.   

Patient demographics influence risk or susceptibility for DILI. Boelsterli and Lim
21

 

indicated that older age and female gender were important susceptibility factors for DILI; 

however, the reasons were still unknown. There are no clinical studies that link the sensitivity of 

the female gender to DILI caused by mitochondrial dysfunction. Amacher et al.
22

 indicated that 

women are more susceptible to DILI than men. Several hypotheses were proposed to explain 

gender differences in susceptibility, including pharmacokinetic or pharmacodynamic differences, 

interactions of sex hormones with signaling molecules, and a difference in immune system 

responses
22

. Similarly, it is believed that older adults are more susceptible to DILI caused by 

mitochondrial dysfunction. The review published by Will et al.
13

 indicated that the most 

commonly used prescription and over-the-counter medications for geriatric patients, such as 

antilipidemic, pain, and heartburn medications, had published reports of toxicities linked to 

mitochondrial dysfunction
13

. As the United States’ elderly population is growing rapidly, 

identifying and addressing risk factors of DILI, where mitochondrial dysfunction may play a 

substantial role in adverse events, will be beneficial to this vulnerable patient population. 

Therefore, in this study, we evaluated the patient age and gender associated with DILI reports 

(measured by reporting odds ratio) for hepatotoxicants with mitochondrial and non-

mitochondrial injury mechanisms.   

Given that mitochondrial dysfunction is a common characteristic of drugs that cause liver 

injury, a better understanding of the association between the probability of liver injury induced 

by drugs that are mitochondrial toxicants and the influence of patient’s age and gender would be 

beneficial for clinicians and drug developers. If a drug is associated with mitochondrial 

mechanisms of liver injury, clinicians could incorporate mitochondrial injury-specific 

biomarkers into clinical trials
23-25

. Additionally, the development of clinically relevant animal 

models or study designs may provide drug-induced mitochondrial toxicity risk translation from 

animals to humans
24

.  

This study investigated liver injury reports submitted to the US Food and Drug 

Administration (FDA) Adverse Event Reporting System (FAERS) and compared the frequency 
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of reports between drugs that can cause hepatotoxicity via mitochondrial mechanisms and those 

without mitochondrial mechanisms of toxicity. Additionally, we determined if there were age 

and gender differences associated with DILI reports involving drugs with or without 

mitochondrial toxicities.  

2. Methods 

2.1. Study design 

2.1.1. Data source 

FAERS database is the largest national repository of spontaneous drug event reports, having 

accumulated over 28 million adverse events reports. Healthcare professionals, patients, 

manufacturers, and lawyers can submit potential drug-induced adverse events of small and large 

therapeutic (biologics) classes and medical devices to the FAERS database. The FAERS 

database has a vital role in post-market drug surveillance in terms of detection and 

characterization of drug and device-related adverse events.   

We extracted adverse event reports from the FAERS database for the timeframe from 

January 1998 to May 2019. In this study, the reports included severe adverse events, such as 

hospitalization, disability, or death. The types of reports were classified by FAERS as direct, 

expedited, or periodic. Direct reports were submitted to FDA from consumer or health care 

professionals; whereas, expedited reports were sent from the manufacturer within 15 days of 

severe adverse events occurrence not included in the product label
26

. Adverse drug event reports 

considered periodic were submitted from manufacturers, included in the label, and sent to the 

FDA quarterly or annually
26

. The main selection criterion was “primary suspect” drugs. 

“secondary suspect” drugs were excluded because of the greater uncertainty of the association 

between the drug and the reported adverse events. FAERS reports were coded using the 

MedDRA (Medical Dictionary for Regulatory Activities) terms for DILI
27

. Although DILI has 

complex clinical symptoms, there has been documentation for the utilization of the FAERS 

database to investigate emerging DILI adverse events for newly marketed drugs
8
.  

2.1.2. Inclusion/exclusion criteria 

Drugs that cause liver injury have been annotated using the United States National Center for 

Toxicological Research Liver Toxicity Knowledge Base (NCTR-LTKB), which utilizes 
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hepatotoxic descriptions from the FDA-approved drug labeling regulatory documents as well as 

evaluating causality evidence in the literature
28

. This database was created by the FDA to help 

clinicians, toxicologists, and researchers access information on DILI annotation of various 

drugs
28,29

. NCTR-LTKB serves as a centralized source to study the mechanism of DILI and the 

development or validation of emerging biomarkers and predictive models
29

. This is the largest 

publicly available annotated DILI dataset containing three groups based on their potential to 

cause liver toxicity [Most DILI concern-(192 drugs), Lesser DILI concern-(278 drugs), and No-

DILI concern (312 drugs)] with confirmed causal evidence connecting a drug to liver injury
28

. 

The FAERS database uses FDA drug labeling information for the classification of drugs 

according to their potential to cause DILI. This study utilized drugs with “most-DILI concern”, 

which were defined based on hepatotoxicity resulting in market withdrawal (in US and ex-US), 

black box warning, or high severity of liver injury noted as part of the warning and precautions 

label
28-30

.  Therefore, both mitochondrial and non-mitochondrial mechanisms of toxicity groups 

are associated with severe hepatic injury. 

The study drugs represented various drug classes such as analgesic, anti-inflammatory, 

antidepressant, antibiotic, antidiabetic, and antineoplastic agents. Most of these drugs had been 

withdrawn, have boxed warnings, or have warnings and precautions for liver injury in their 

prescribing labels. The details of DILI severity categories based on the DILI description are 

included in the drug labeling: severity level 1; steatosis, level 2; cholestasis and steatohepatitis, 

level 3; liver aminotransferases increase, level 4; hyperbilirubinemia, level 5; jaundice, level 6; 

liver necrosis, level 7; acute liver failure, and level 8; hepatotoxicity
28

. Examples of withdrawn 

drugs include bromfenac, chlorzoxazone, troglitazone, and trovafloxacin, which have been 

assigned a severity level of 8, suggesting evidence of fatal hepatotoxicity. Drugs such as 

bosentan, danazol, ketoconazole, nefazodone, tolcapone, and valproic acid have box warning in 

their product labeling and have severity categories ranging from 3 to 8.   

2.1.3. Classification of drugs as mitochondrial toxicants 

Drugs with mitochondrial mechanisms of toxicity were defined by literature evidence of 

mitochondrial injury mechanisms (yes or no) of in vitro (e.g., cellular production of reactive 

oxygen species via oxidative stress, inhibition or uncoupling of respiratory complexes of 

electron transport chain, induction of mitochondrial membrane permeability transition pore, 
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inhibition of mitochondrial fatty acid oxidation or mitochondrial DNA damage, etc.)
31-42

 or in 

vivo mitochondrial toxicity from animal studies (evidence of impairment of oxidative 

phosphorylation complexes or histopathological alterations of mitochondria in in vivo animal 

models, etc.)
43,44

. Our classification was based on the parent drug-induced toxicity (direct impact 

on mitochondria) and not the metabolite. Possible drug effects on mitochondrial biogenesis or 

respiratory capacity were not considered. Drugs with the non-mitochondrial mechanisms of 

toxicity were defined by literature evidence of the alternative mechanisms of injury or lack of 

evidence. It is important to note that 8.2% of drugs had no literature evidence of the type of 

toxicity mechanism, meaning it could be a mitochondrial or non-mitochondrial mechanism. 

Furthermore, the non-mitochondrial mechanisms of toxicity drugs are not proven to have non-

mitochondrial mechanisms. For these drugs, there is simply no evidence of mitochondrial 

mechanisms of toxicity information that is publicly available yet.   

2.2. Outcome 

We determined the number of reports for hepatotoxicity at a group level and an individual drug 

level using the Reporting Odds Ratio (ROR). As shown in Table 1, we calculated total 

hepatotoxicity and all other adverse events for both the DILI groups. For ROR calculations, 

numerators are derived by multiplying the hepatotoxicity reports for mitochondrial mechanisms 

of toxicity drug group with all other adverse event reports of non-mitochondrial mechanisms of 

toxicity per drug group. The denominator is calculated by multiplying hepatotoxicity adverse 

event reports of non-mitochondrial mechanisms of toxicity with all the adverse events reported 

for mitochondrial mechanisms of toxicity per drug group
45

. Therefore, the ROR for drugs 

associated with mitochondrial mechanism of toxicity was 1.43 

[ROR=(40,343×1,342,486)/(586,989×64,358)=1.43].   

Insert Table 1 

We also examined the RORs at the individual drug level, as shown in Table 2. A case 

(hepatotoxicity reports) or non-case (all other adverse event reports) disproportionality approach 

was utilized by creating a two-by-two contingency table, as demonstrated below using 

acetaminophen as an example
45

. During this timeframe, a total of 383,540 hepatotoxicity reports 

and a total of 27,852,908 adverse event counts of any drug type were collected. For ROR 
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calculations, numerators are derived by multiplying the hepatotoxicity reports for a drug of 

interest with all other adverse events reports. The denominator is calculated by multiplying 

hepatotoxicity adverse event reports of all other drugs (excluding acetaminophen) with all the 

adverse events reported with a drug of interest
45

 (ROR for 

acetaminophen=[8,509×27,852,908)/(51,732×383,540)=11.94]. Within the timeframe, a ROR 

higher than 1 for a drug indicates a higher proportion of severe liver injury reports for a drug of 

interest than all the other drug reports in the database. In this case, acetaminophen was 

associated with proportionally more reports for serious liver adverse events than other drugs in 

the database.  

Insert Table 2 

2.3. Association of age, gender, and other factors in two groups of DILI (mitochondrial and non-

mitochondrial mechanisms of toxicity) 

Mitochondrial function declines with aging
13

; therefore, we evaluated if reports of severe DILI 

were disproportionately associated with older patient age, indicating potential susceptibility to 

DILI from mitochondrial mechanisms of toxicity. Furthermore, since gender may play an 

important role in the sensitivity of DILI, we also evaluated the frequency of reports according to 

patient gender. The mean and standard deviation (SD) of patient age were calculated and 

compared between DILI reports caused by drugs associated with mitochondrial mechanisms of 

toxicity and DILI reports associated with non-mitochondrial mechanisms. Patient age was 

dichotomized into ≤65 years or >65 years for comparison. Other factors, including drug severity 

class, patient weight, report type, and label section, were examined in a descriptive analysis.  

2.4. Statistical analysis 

Descriptive statistics were used to compare the gender and age of reports for the DILI drug 

groups associated with mitochondrial mechanisms of toxicity and associated with non-

mitochondrial mechanisms. The statistical significance of differences in categorical variables 

such as age group, DILI severity, drug label, and report type between two categories of DILI 

drugs was examined using the chi-square test. Whereas, differences in continuous variables such 

as mean patient age between the two categories of hepatotoxic drugs were compared with the 

two-tailed Student’s t-test for independent samples. The unadjusted association of age and 
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gender with mitochondrial mechanisms of toxicity DILI group (against non-mitochondrial 

mechanisms of toxicity DILI group) was determined using univariate logistic regression 

analysis. ROR calculations were carried out using a two-by-two contingency table using 

OpenEpi (version 3.01; Centers for Disease Control and Prevention), which calculates 95% CI 

and P-values via Taylor series
46

. Chi-square tests were performed with SAS version 9.4 (SAS 

Institute, Cary, NC, USA), and two-sided t-tests were performed at the 0.05 significance level 

via GraphPad Prism version 8 (La Jolla, CA, USA). All statistical tests were two-sided with a 

significance level at 0.05. 

3. Results 

We included 192 drugs classified as having the highest DILI risk (“Most-DILI concern”) via the 

NCTR-LTKB database. Out of these 192 drugs, 134 drugs had searchable FAERS reports, while 

the remaining 58 drugs were either withdrawn before our study period or were withdrawn from 

the European market before US approval. Therefore, the final data set contained 134 drugs, 

which were categorized as 56 drugs causing hepatotoxicity via mitochondrial mechanisms, and 

78 drugs were classified as causing hepatotoxicity via non-mitochondrial mechanisms.   

Table 3 indicates the characteristics of the event reports included in the study. A total of 

104,701 adverse event reports were extracted from FAERS for the period spanning January 

1998 to May 2019. Of these, 40,343 (38.5%) reports of hepatotoxicity were for drugs that were 

associated with mitochondrial mechanisms of toxicity, whereas 64,358 (61.5%) reports of 

hepatotoxicity were for drugs associated with non-mitochondrial mechanisms of toxicity. 

Furthermore, drugs were categorized based on the NCTR-LTKB severity classification. There 

was a statistically significant difference in DILI severity (P < 0.0001) between the two groups of 

DILI drugs (mitochondrial mechanisms compared to non-mitochondrial mechanisms). There 

was a 5.5 percentage point difference in reports for more severe DILI (liver 

failure/hepatotoxicity) for drugs associated with mitochondrial mechanisms of toxicity 

compared to non-mitochondrial mechanisms (76.3% compared to 70.8%, respectively, P < 

0.0001). As shown in Table 3, the FAERS reports were classified based on the drug label 

section for liver injury; there was a statistically significant difference in drug labels (P < 0.0001) 

between the two groups of DILI drugs (mitochondrial mechanisms compared to non-

mitochondrial mechanisms). Additionally, 24.6% of mitochondrial mechanisms of toxicity 
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drugs had a box warning label as compared to 19.8% of non-mitochondrial mechanisms of 

toxicity drugs, and 64.9% of mitochondrial mechanisms of toxicity drugs had warning and 

precautions label as compared to 79.1% of non-mitochondrial mechanisms of toxicity drugs. For 

drugs withdrawn due to hepatotoxicity, there were high numbers of reports (n = 4227, 10.5%) 

for drugs that are associated with mitochondrial toxicity mechanisms, compared to a lower 

number of reports (n = 747, 1.2%) for drugs with non-mitochondrial mechanisms of toxicity (P 

< 0.0001). Over 88% of reports were expedited, while the rest of the reports were either direct or 

periodic. In summary, there was a statistically significant difference between drug severity 

classification, label, and liver injury severity according to the drug’s ability to cause toxicity 

through mitochondrial mechanisms.  

We also examined patient bodyweight, but 79%–81% of the reports did not have this 

information documented. Among the 19%–21% of reports where the bodyweight data was 

present, the average difference between the two groups of DILI drugs (mitochondrial compared 

to non-mitochondrial mechanisms) was only 1.6 kg (68.6 ± 20.8 compared to 70.2 ± 23.4; P < 

0.0001). In this case, the small P-value may be because the large sample size overpowered the 

comparison. As large numbers of the reports were missing bodyweight, further analysis was not 

performed.  As shown in Table 3, a higher percentage of males were the subjects of 

hepatotoxicity reports via mitochondrial mechanisms compared to the subjects of reports 

involving hepatotoxicity via the non-mitochondrial mechanisms (49.1% compared to 37.8%, P 

< 0.0001). About 7% to 8.3% of reports were missing information about the patient’s gender.   

Insert Table 3 

Table 3 presents the difference in the mean and distribution of age among the two groups. 

The patient’s age was recorded in more than 71% of the reports from both the groups. As shown 

in Table 3, there was a statistically significant difference (P < 0.0001) between the mean age of 

patients with hepatotoxicity in drugs that are associated with mitochondrial mechanisms [56.1 ± 

18.33 (SD)] compared to non-mitochondrial mechanisms of toxicity [48 ± 19.53 (SD)]. In other 

words, reports involving drugs associated with mitochondrial mechanisms of hepatic toxicity 

displayed a higher mean age than reports for drugs associated with non-mitochondrial 

mechanisms of hepatic toxicity.  
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Fig. 1 indicates the ROR values of drugs associated with mitochondrial mechanisms of 

toxicity; benzbromarone, troglitazone, isoniazid, rifampin, and nimesulide had the highest ROR 

values in the group. Fig. 2 indicates the ROR values of drugs associated with non-mitochondrial 

mechanisms of toxicity; telithromycin, gemtuzumab ozogamicin, mexiletine, dactomycin, and 

disulfiram had the highest ROR values in the group. Table 4 indicates the top 20 drugs with the 

highest ROR values in both groups of hepatotoxicants. The top 20 drugs with the highest ROR 

values included drugs with either mitochondrial or non-mitochondrial injury mechanisms. The 

top 4 drugs, which had ROR values higher than 18 (benzbromarone, troglitazone, isoniazid, 

rifampin), were associated with mitochondrial mechanisms of toxicity. Furthermore, the top two 

drugs, benzbromarone, and troglitazone were withdrawn from the market.   

Insert Table 4 

Insert Figs. 1 and 2 

Table 5 indicates the RORs between the two groups of drugs that caused liver injury via 

mitochondrial compared to non-mitochondrial mechanisms. Between the two DILI groups, 

reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42–1.45; 

P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial 

mechanisms of toxicity. The univariate logistic regression model was used after dichotomizing 

age and gender. Table 6 indicates a statistically significant risk association of age or gender with 

hepatotoxic drugs with mitochondrial toxicity mechanisms. Reports of liver injury were 2.2 

(odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be associated with older patient age, as 

compared with reports involving patients under 65 years of age. On the other hand, female 

patients were 37% less likely to be subjects of liver injury reports for drugs associated with 

mitochondrial mechanisms of toxicity compared to males (Odds Ratio 0.63, 95% CI 0.61–0.64). 

Supporting Information Tables S1 to S7 contain DILI reports, all adverse event reports, ROR, 

and 95% Confidence Interval (CI) for all the drugs evaluated in the study.  

Insert Tables 5 and 6 

Fig. 3 indicates the totality of all ROR scores of DILI drugs with mitochondrial or non-

mitochondrial mechanisms of toxicity. Drugs from the antineoplastic, antiviral, analgesic, 

antibiotic, and antimycobacterial classes were the top 5 drugs classes associated with higher 
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ROR scores. Drugs from the antidiabetic, antiretroviral, anti-inflammatory, anti-Parkinson, 

vasoactive, neuroprotective, and antihyperlipidemic drug classes were primarily associated with 

mitochondrial mechanisms. Alternatively, leukotriene pathway modulators, alcohol antagonists, 

CNS stimulants, and platelet inhibitor drug classes were the drugs with non-mitochondrial 

mechanisms having higher RORs. Figs. 4 and 5 categorize these two groups of drugs based on 

the drug label section and severity class. We did not observe any notable trend between 

mitochondrial and non-mitochondrial mechanisms and drug label section, or severity class. 

Insert Fig. 3–5 

4. Discussion 

Prediction and characterization for DILI during preclinical drug development and post-approval 

remains a challenge for the pharmaceutical industry, toxicologists, clinicians, physicians, health 

authorities, and regulators
5
. Characterizing DILI has been a challenge due to its unpredictability, 

lack of accurate biomarkers, poorly defined pathogenesis, and its potential to cause fatal liver 

failure
5
. In the past two decades, drug-induced mitochondrial dysfunction has been established as 

an important contributing mechanism associated with liver, muscle, heart, kidney, and central 

nervous system toxicity
13

. Mitochondrial dysfunction is one of the reasons known to cause 

muscle toxicity by HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitor 

(cerivastatin), cardiovascular toxicity by anthracyclines (daunorubicin, doxorubicin, idarubicin), 

and DILI by an antidepressant (nefazodone), antibiotics [isoniazid, ketoconazole(oral)], and 

anxiolytic (panadiplon) drugs
19,47-50

.  

We calculated the ROR for reports of severe hepatotoxicity adverse events among drugs 

with the highest risk for DILI, for drugs having mitochondrial or non-mitochondrial mechanisms 

of toxicity. Brinker et al.
8
 indicated that various measures of disproportionate reporting of 

adverse events such as Proportional Reporting Ratio, Multi-item Gamma Poisson Shrinker, and 

the Bayesian Confidence Propagation Neutral Network had been used in analyses of surveillance 

databases. Each of these methods may have different strengths and limitations and may lead to 

different sensitivity and specificity for a drug's risk reporting
8
. Various health regulatory 

authorities use different statistical measures for reporting. For example, the European Medicines 

Agency uses Proportional Reporting Ratio; FDA and UK’s Medicines and Healthcare products 
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Regulatory Agency uses Multi-item Gamma Poisson Shrinker. Whereas, the World Health 

Organization has utilized the Bayesian Confidence Propagation Neutral Network method for 

reporting
8
. These reporting measures have been used to generate hypotheses and do not infer 

adverse event-causal associations. It has been suggested that there is not one single measure of 

effect that is superior to the others
8,51,52

. Our study utilized reporting odds ratios to characterize 

the frequency of liver injury reports as it is a straightforward and frequently used measure for the 

analysis of FAERS data
45,53-57

.  

The review published by Will et al.
13

 indicated that the most commonly used 

prescriptions and over the counter medications for geriatric patients had published reports of 

various toxicities linked to mitochondrial dysfunction. Our study reported that reports for DILI 

involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42–1.45; P < 0.0001) 

times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. 

The ROR scores with the highest risk of liver injury based on mitochondrial or non-

mitochondrial mechanisms were highest for drugs from the antineoplastic, antiviral, analgesics, 

antibiotics, and antimycobacterial classes. This finding agreed with the published literature. 

Sonawane et al.
26

 indicated that antineoplastic, analgesics, and antibiotics were among the top 10 

drugs that reported severe adverse events in the FAERS database from 2006 to 2014. 

Additionally, our study observed that over 88% of adverse reports were expedited, while the rest 

of the reports were either direct or periodic in both drug categories. This observation also agreed 

with the published literature. Sonawane et al.
26

 also reported that expedited reports were the most 

common and over 72% of all serious adverse events with available data on the report type.  

Antidiabetic, antiretroviral, anti-inflammatory, anti-Parkinson, vasoactive, 

neuroprotective, antihyperlipidemic drug classes were primarily associated with mitochondrial 

toxicity mechanisms. In recent years, an impaired mitochondrial function has been documented 

as one of the critical factors in inflammation, sarcopenia, metabolic (obesity, type 2 diabetes, 

non-alcoholic fatty liver disease), and neurodegenerative diseases (Parkinson’s, Alzheimer’s, 

Huntington’s diseases)
13,58-60

. Patients with reduced mitochondrial function occurring as a 

manifestation of their underlying disease state may be more vulnerable to drugs that cause 

toxicity via mitochondrial mechanisms. Alternatively, antiadrenergic, leukotriene pathway 
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modulators, alcohol antagonist, CNS stimulants, and platelet inhibitors were drug classes that 

were primarily associated with non-mitochondrial toxicity mechanisms.   

We identified statistically significant differences (P < 0.0001) in drug severity 

classification, label section for liver injury, and report type between these two mechanisms for 

DILI.  For drugs withdrawn for liver injury, there were a higher number of hepatotoxicity reports 

(10.5%) associated with mitochondrial than non-mitochondrial mechanisms (1.2%). Dykens and 

Will (2007) noted that 38 marketed drugs withdrew from the market between 1994 and 2006.  

Among these, for cerivastatin, nefazodone, troglitazone, and tolcapone, there was substantial 

evidence of mitochondrial-induced organ toxicity
48

. Therefore, our observations agreed with 

reports in the medical literature of drug-induced mitochondrial dysfunction playing an important 

role in drug withdrawal. Furthermore, Boelsterli and Lim
21

, in 2007, suggested that several 

drugs, such as amiodarone, dantrolene, diclofenac, isoniazid, lamivudine, leflunomide, 

mefenamic acid, nimesulide, perhexiline, simvastatin, stavudine, sulindac, tolcapone, 

troglitazone, trovafloxacin, and valproic acid, are associated with idiosyncratic DILI with a clear 

link to mitochondrial toxicity. Many of these drugs reported a relatively higher ROR in our 

study. 

Our study reported an older mean patient age [56.1 ± 18.33 (SD)] associated with reports 

for drugs that cause DILI via mitochondrial mechanisms compared to mean age [48 ± 19.53 

(SD)] associated with reports for drugs that cause injury via non-mitochondrial mechanisms (P 

< 0.0001). This was further substantiated in a univariate logistic regression analysis where 

reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be 

associated with older patient age, as compared with reports involving patient ages under 65 

years. This finding is consistent with physiological information indicating age as a risk factor for 

both mitochondrial DNA abnormality and increased oxidative stress-related injury
59

. There is 

evidence that mitochondrial function declines with age, including the role of mitochondrial 

DNA mutation, increased production of reactive oxygen species, and the dysfunction in 

oxidative phosphorylation pathways
58

. The hallmark of mitochondrial aging includes a 

decreased mitochondrial number, reduced mitochondrial function, and individual electron 

transport chain activities
13

. Mitochondrial function deteriorates progressively with age. 
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Therefore, older age populations may be more vulnerable to hepatotoxic drugs associated with 

mitochondrial mechanisms of toxicity.   

Our study indicated that female patients were 37% less likely to report liver injury 

adverse events for drugs associated with mitochondrial mechanisms of toxicity compared to 

males. There are conflicting reports associating male gender as a susceptibility factor for DILI, 

and a clear link for this association is absent in the literature
21,61

. Several articles allude to the 

potential involvement of a reactive metabolite, and differences in pharmacokinetics, 

pharmacodynamics, sex hormones, and immune system response between males and 

females
21,22

.  

5. Conclusions 

Mitochondria play an important part in DILI, including idiosyncratic liver injury. There have 

been various proposed mechanisms for mitochondrial involvement in DILI
59

. There is a gap in 

the literature describing the differences in clinical outcomes for patients who experienced DILI 

from mitochondrial mechanisms of toxicity as compared with non-mitochondrial mechanisms of 

toxicity drugs. There are limitations in detecting drugs that have mitochondrial liability in the 

drug development phase of the discovery. For the most part, drug-induced mitochondrial 

toxicity does not reveal itself in animal models due to the young age, lack of genetic divergence, 

health status, and lack of concomitant drug exposure
13

. Therefore, drug-induced mitochondrial 

toxicity is often idiosyncratic, meaning it is not predictable until a large population is 

exposed
21,60

. Based on this study, we provide evidence of a higher proportion of reports of 

severe liver injury adverse events among drugs associated with mitochondrial mechanisms of 

toxicity as compared with non-mitochondrial mechanisms of toxicity. Furthermore, we found 

that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be 

associated with older patient age, as compared with reports involving patients ages under 65 

years. This finding aligns with the theory that age is a susceptibility factor in liver injury via the 

mitochondrial mechanisms of toxicity. 

6. Limitation 

The FAERS database describes adverse event reports but does not include information about the 

number of patients treated with a drug. Therefore, incidence rates, prevalence rates, and causal 
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relationships between drugs and safety adverse events cannot be determined for drugs according 

to mitochondrial or non-mitochondrial mechanisms of toxicity. For example, the population 

incidence of DILI may be higher for drugs associated with non-mitochondrial mechanisms than 

mitochondrial mechanisms of toxicity. Nevertheless, researchers and health authorities have 

used the FAERS database for adverse event signal identification, developing ideas, and 

hypothesis generation despite this limitation. The hypothesis and ideas generated using this 

database could serve as a foundation for more robust study designs, and for in vitro or in vivo 

studies investigating the causal relationship of a drug with liver injury. The FAERS database 

provides a suitable source to evaluate the volume and characteristics of adverse event reports for 

marketed medications. Furthermore, factors such as age, gender, weight, drug severity class, and 

label section of FAERS reports can provide valuable insights to health authorities during the 

post-market surveillance of marketed medications.   

The FAERS database is a spontaneous reporting system with limitations when used for 

drug safety research, including the potential for under or over-reporting events, duplicate reports, 

influence of media, and uncertainty of reported events
8,62

. For example, troglitazone received 

significant media attention due to a class-action lawsuit which called attention to its DILI risk. 

Therefore, troglitazone may have a higher number of hepatotoxicity reports than some drugs that 

did not receive media attention. Moreover, the FAERS database could be associated with the 

“Weber effect”, where adverse event reports are higher in initial marketing stages following a 

gradual decline
8
.  

Mitochondria have a diverse role in the pathophysiology of DILI. In current literature, 

most of the mitochondrial-induced toxicity is derived from in vitro studies. In vitro assays using 

immortalized cell lines or primary human hepatocytes have their limitations as they generally 

lack competent metabolic function, xenobiotic biotransformation capacity, appropriate drug 

receptors and transporters, and cellular architecture. Therefore, it is unclear how mitochondrial in 

vitro mechanisms truly translate to liver injury outcomes in humans; there appear to be strong 

associations as outlined here. 

Characterizing DILI drugs based on mitochondrial dysfunction versus other mechanisms 

may have limitations. For acetaminophen, mitochondrial dysfunction plays an essential role in 

liver injury. This was demonstrated in primary human hepatocytes and preclinical models. 
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Mechanistically, acetaminophen produces a reactive metabolite leading to disruption of cellular 

homeostasis. However, acetaminophen as a parent drug does not directly affect the mitochondrial 

respiratory chain or cause direct toxicity to mitochondria. Therefore, we included acetaminophen 

in non-mitochondrial DILI drugs while considering that mitochondrial dysfunction plays an 

important role in acetaminophen-induced liver injury. Moreover, given the limitations of the data 

source we were unable to discern intrinsic from idiosyncratic DILI. 

Patients with an underlying condition such as obesity may be more vulnerable to drugs 

that cause toxicity via mitochondrial mechanisms; thus, we attempted to include patient weight 

in our study.  However, about 79%–81% of the reports missed the bodyweight information; 

therefore, the effect of patient weight was not examined. The study may also have several 

unmeasured confounding factors as patient comorbidities, pre-existing liver disease, and 

concomitant drug use is not captured in FAERS reports. Additionally, the findings regarding age 

and gender are unadjusted; therefore, it should be used merely for hypothesis generation. 

Moreover, gender bias may be due to disease demographics. Some of the DILI drugs with 

mitochondrial toxicity mechanisms are prescribed for diseases with a higher male predisposition. 

For example, benzbromarone is prescribed for gout, which has six times higher occurrence in 

males
63

. Similarly, isoniazid and rifampin are prescribed for the treatment of tuberculosis, which 

has two times higher occurrence in males
64

.  

ROR depends on the reporting rates of liver injury adverse events and all other adverse 

events reports in compared drug classes. DILI drugs associated with non-mitochondrial 

mechanisms of toxicity have a significantly higher number of non-hepatic adverse events 

reports. Therefore, we are not sure if larger ROR values are due to the higher reporting of 

hepatotoxicity in the drugs with mitochondrial mechanisms of toxicity, or higher reporting of 

non-hepatic adverse events reported for the drugs with non-mitochondrial mechanisms of 

toxicity.   

For this analysis, we utilized ROR, which is a disproportionality measurement of 

spontaneous reports and not a method to measure drug-related risks quantitatively. Regulatory 

actions in response to safety concerns related to age and gender using the FAERS database must 

be determined via individual cases to determine causality. Despite these database limitations, we 

were able to show that drugs that cause hepatotoxicity via mitochondrial mechanisms were 
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associated with a higher proportion of adverse event reports than drugs having non-

mitochondrial mechanisms of toxicity. Additionally, age may play a role in susceptibility to 

DILI via mitochondrial mechanisms of toxicity. Our findings from this study align with 

mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be 

further investigated in real-world studies with robust designs. 
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Tables 

Table 1 Reporting odds ratio estimates for DILI drug groups (FAERS reports). 

DILI groups Hepatotoxicity All other adverse events Total 

Drugs associated with mitochondrial 

mechanisms of toxicity 
40,343 586,989 627,332 

Drugs associated with non-mitochondrial 

mechanisms of toxicity 
64,358 1,342,486 1,406,844 

Total 104,701 1,929,475 2,034,176 

 

Table 2 Example reporting odds ratio estimate for an individual drug: acetaminophen (FAERS 

Reports). 

Drug Hepatotoxicity All other adverse events Total 

Acetaminophen 8,509 51,732 60,241 

All other drugs of any type 383,540 27,852,908 28,236,448 

Total 392,049 27,904,640 28,296,689 

 

Table 3 Characteristics of patients and hepatotoxic drugs associated with mitochondrial 

mechanisms of toxicity compared to non-mitochondrial mechanisms.  

Characteristics Hepatotoxicity via 

mitochondrial mechanism 

(56 drugs) 

Hepatotoxicity via 

non-mitochondrial 

mechanism (78 drugs) 

FAERS report counts (n) 40,343 (38.5%) 64,358 (61.5%) 

Reports based on NKTR drug severity classification  

3 - Liver aminotransferases 

increase 

0 (0%) 3,048 (4.7%) 

4 - Hyperbilirubinemia 1,958 (4.9%) 2,292 (3.6%) 

5 - Jaundice 7,526 (18.7%) 13,392 (20.8) 

6 - Liver necrosis 0 (0%) 35 (0.05%) 

7 -Acute liver failure 4,581 (11.3%) 17,207 (26.7%) 

8 - Fatal hepatotoxicity 26,278 (65%) 28,384 (44.1) 

Reports combined based on less and severe DILI  

Less severe injury 9484 (23.5%) 18,767 (29.2%) 

Liver failure/hepatotoxicity 30,859 (76.5%) 45,591 (70.8%) 

Reports based on drug label section 

Warning & precautions 26,177 (64.9%) 50,898 (79.1%) 

Box warning 9,939 (24.6%) 12,713 (19.8%) 

Withdrawn 4227 (10.5%) 747 (1.2%) 

Report type 

Direct 1,992 (4.9%) 2,393 (3.7%) 

Expedited 35,569 (88.2%) 57,119 (88.8%) 

Periodic 2,782 (6.9%) 4,846 (7.5%) 

Patient characteristics 

Weight (kg) 

FAERS report counts (n) 7666 (19%) 13532 (21%) 

  Weight missing 32677 (81%) 50826 (79%) 

Weight Mean ± SD 68.6 ± 20.8 70.2 ± 23.4 

Gender 

Male 19,818 (49.1%) 24,353 (37.8%) 

Female 17,711 (43.9%) 34,690 (53.9%) 

Gender missing 2,814 (7%) 5315 (8.3%) 

Age (year) 
FAERS report counts (n) 30,324 (75.2%) 46310 (71.9%) 

Age missing 10019 (24.8%) 18046 (28%) 
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Age Mean ± SD 56.1 ± 18.33 48 ± 19.53 

A statistical difference between two DILI groups across categorical variables was performed using 

a chi-square test. Comparisons of continuous variables were performed using t-tests; P values were 

< 0.0001 for all the variables (P<0.05 was considered significant); n is number of instances. 

 
Table 4 Top 20 drugs with the highest reporting odds ratio in both DILI groups.  

Drug class Drug name Severity 

class 

Label section Mitochondrial 

toxicity 

ROR 

Antigout agent Benzbromarone 8 Withdrawn Yes 36.31 

Antidiabetic agent Troglitazone 8 Withdrawn Yes 31.02 

Antimycobacterial Isoniazid 8 Box warning Yes 20.79 

Antimycobacterial Rifampin 8 Warnings and precautions Yes 18.64 

Antibiotics Telithromycin 8 Warnings and precautions No 18.33 

Antineoplastics Gemtuzumab ozogamicin 8 Box warning No 18.08 

Antiarrhythmics Mexiletine 3 Box warning No 17.8 

Antineoplastics Dactinomycin 8 Warnings and precautions No 17.25 

Anti-inflammatory agent Nimesulide 8 Withdrawn Yes 15.07 

Antialcoholics Disulfiram 8 Warnings and precautions No 14.82 

Antivirals Didanosine 8 Warnings and precautions Yes 14.38 

Stimulants; central 

nervous system 

Pemoline 8 Withdrawn No 14.24 

Platelet inhibitors Ticlopidine 4 Warnings and precautions No 13.51 

Antibiotics Trovafloxacin mesylate 8 Withdrawn Yes 13.48 

Antithyroid agents Propylthiouracil 8 Box warning No 13.33 

NSAID Bromfenac 8 Withdrawn No 13.01 

Antiretroviral drugs Stavudine 8 Box warning Yes 12.83 

Hormone modifiers Danazol 8 Box warning Yes 12.82 

Antiparkinson agents Tolcapone 8 Box warning Yes 12.25 

Antivirals Tipranavir 8 Box warning No 12.04 

 

Table 5 Reporting odds ratio estimate for hepatotoxic drugs associated with mitochondrial 

mechanisms of toxicity compared to non-mitochondrial mechanisms. 

DILI group Odds ratio 95% CI P-value 

Drugs associated with 

mitochondrial mechanisms 

of toxicity 

1.43 1.42-1.45 <0.0001 

 

Table 6 Association of age and gender with hepatotoxic drugs with mitochondrial toxicity 

mechanisms as compared with non-mitochondrial mechanisms, using a univariate logistic 

regression model.  

 

 

 

 

Independent 

variable 

Odds ratio 95% CI P-value 

Age       

<65 years Reference 

>65 years 2.2 2.12–2.26 <0.0001 

Gender 

  

  

Male Reference 

Female 0.63 0.61–0.64 <0.0001 
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Figures 

 

Figure 1 Reporting odds ratios (RORs) for hepatotoxic drugs associated with 

mitochondrial mechanisms of toxicity. Benzbromarone, troglitazone, isoniazid, 

rifampin, and nimesulide had the highest ROR values in this group. 
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Figure 2 Reporting odds ratios (RORs) for hepatotoxic drugs associated with 

non-mitochondrial mechanisms of toxicity. Telithromycin, gemtuzumab ozogamicin, 

mexiletine, dactomycin, and disulfiram had the highest ROR values in the group. 
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Figure 3 Sum of all ROR of “most-DILI-concern” drugs associated with 

mitochondrial and non-mitochondrial mechanisms of toxicity per therapeutic class. 

Drugs from the antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial 

classes were the top 5 drugs classes associated with higher ROR scores. Drugs from 

the antidiabetic, antiretroviral, anti-inflammatory, anti-Parkinson, vasoactive, 

neuroprotective, and antihyperlipidemic drug classes were primarily associated with 

mitochondrial mechanisms. Alternatively, leukotriene pathway modulators, alcohol 

antagonists, CNS stimulants, and platelet inhibitor drug classes were the drugs with 

non-mitochondrial mechanisms having higher RORs.   
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Figure 4 Categorization based on liver injury drug label for “most-DILI concern” 

drugs based on their association with mitochondrial and non-mitochondrial 

mechanisms of toxicity. There was not any notable trend between two groups based 

on drug label. 

 

Figure 5 Categorization based on liver injury severity class for “most-DILI concern” 

drugs based on their association with mitochondrial and non-mitochondrial 
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mechanisms of toxicity. There was not any notable trend between two groups based 

on severity class. 
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