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Abstract  1 

Cigarette smoking and poor air quality are the greatest risk factors for developing COPD, 2 

but growing evidence indicates genetic factors also affect predisposition to and clinical 3 

expression of disease.  With the exception of α1-Antitrypsin deficiency (AATD), a rare 4 

autosomal recessive disorder that is present in 1-3% of individuals with COPD, no single gene is 5 

associated with the development of obstructive lung disease.  Instead, a complex interplay of 6 

genetic, epigenetic, and environmental factors are the basis for persistent inflammatory 7 

responses, accelerated cell aging, cell death, and fibrosis, leading to the clinical symptoms of 8 

COPD and different phenotypic presentations. In this brief review, we discuss current 9 

understanding of the genetics of COPD, pathogenetics of AATD, epigenetic influences on 10 

development of obstructive lung disease, and how classifying COPD by phenotype can influence 11 

clinical treatment and patient outcomes.  12 

 13 
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Introduction 1 

Chronic obstructive pulmonary disease (COPD) affects approximately 6.4% of the U.S. 2 

adult population.  It is the third leading cause of death worldwide, with estimated U.S. direct 3 

costs of 49 billion dollars annually (National Center for Health Statistics, 2016).  Cigarette 4 

smoking and poor air quality are the greatest risk factors for COPD (GBD Chronic Respiratory 5 

Disease Collaborators, 2017), but there is growing evidence that genetic factors affect 6 

predisposition to and clinical expression of disease.  Having a family history (FH) of COPD 7 

markedly increases an individual's risk of developing disease, especially in people who smoke.  8 

Compared to smokers without FH of COPD, smokers whose parents had COPD were three times 9 

as likely to develop disease, but non-smokers with FH of COPD had no increased risk compared 10 

to non-smokers without FH (Zhou et al., 2013).  Thus, development of COPD is attributable to a 11 

combination of environmental and genetic factors. 12 

Genetics 13 

With the exception of α1-Antitrypsin deficiency (AATD), which occurs in 1-3% of 14 

patients with COPD, no single gene is associated with the development of obstructive lung 15 

disease (Sakornsakolpat et al., 2019).  AATD is a rare disorder typically seen in people of 16 

European ancestry.  Among people with AATD, Pulmonary disease occurs primarily as a result 17 

of abnormally shaped α1-Antitrypsin proteins (AAT) synthesized by the liver, rather than from 18 

environmental exposures.  Normally, AAT protects lung tissue from being damaged by cytotoxic 19 

enzymes secreted by roaming neutrophils, a subset of white blood cells that act as first-20 

responders in non-specific immunity. However, in AATD, the abnormal proteins do not function 21 

correctly and are instead retained in the liver, causing cirrhosis and progressive lung damage 22 

through loss of neutrophil elastase inhibition (Strnad, McElvaney, & Lomas, 2020).   23 
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Misfolded AAT proteins are created due to a single DNA point mutation (change in one 24 

nucleotide base pair) at the allele SERPINA1, located on chromosome 14.  An allele is a gene 25 

pair, with one gene derived from each parent.  AAT alleles can be homozygous (same genetic 26 

sequence on chromosome 14) or heterozygous (different genetic sequences).  These variations 27 

are called protease inhibitor (PI*) types, and are used to classify AATD.  The unusual taxonomy 28 

is based on nomenclature created prior to the identification of the SERPINA1 allele (Stoller, 29 

Hupertz, & Aboussouan, 2020).   30 

PI*M is the predominant (normal) AAT allele, whereas PI*Z is the most common 31 

pathologic allele, followed by variants of PI*S, PI*I, and PI*F (Miravitlles et al., 2017).  32 

Homozygous individuals without AATD would thus have the genotype PI*MM (i.e. two normal 33 

PI*M genes).   Because AATD is an autosomal recessive disorder, an individual must have two 34 

abnormal genes to express disease.  Therefore, an individual without clinical disease could also 35 

have genotype PI*MZ or PI*MS (one normal and one disease allele).  Similarly, an individual 36 

with AATD could have genotype PI*ZZ, PI*ZS, or any other combination of two disease alleles.  37 

AATD ranges from mild to severe, depending on the pathogenic variant of the PI* mutations.  38 

For heterozygous individuals with one normal gene (PI*M), risk of developing obstructive lung 39 

disease may still be elevated, even though clinical AATD is not present.   40 

For the preceding reasons, in addition to usual COPD management, AATD should be 41 

treated with intravenous infusion of plasma-purified AAT protein to promote correct immune 42 

functioning and to slow the progression of emphysema (Miravitlles et al., 2017).  Thus, while a 43 

rare disorder, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines 44 

recommend that all individuals with COPD should be tested for AATD to facilitate identification 45 
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and proper treatment of affected individuals (Global Initiative for Chornic Obstructive Lung 46 

Disease, 2021). 47 

Like asthma and other complex diseases, COPD is otherwise genetically heterogenous, 48 

with wide variability in genes, disease expression, progression, and subjective symptomatology 49 

(Corlateanu et al., 2020).  Prior to the advent of economical whole-genome sequencing, studies 50 

in COPD genetics focused primarily on identifying discrete, shared DNA variations specific to 51 

affected, related individuals (i.e. linkage studies).  This was done by examining a series of 52 

"candidate genes" thought to be related to COPD.  However, linkage studies were unsuccessful 53 

in finding any monogenic patterns of heredity, as occurs in other respiratory conditions like AAT 54 

and cystic fibrosis. 55 

With increasingly economical whole-genome sequencing, research into COPD genetics 56 

transitioned from linkage studies to genome-wide association studies (GWAS), which enable the 57 

examination of subtle variations in DNA across the entire genome, along with associations 58 

between genetic patterns, clinical traits, and treatment responsiveness (Visscher et al., 2017).  59 

Researchers using this approach have identified 156 different genes at 82 significant loci, of 60 

which >15% overlap with asthma and pulmonary fibrosis (Sakornsakolpat et al., 2019).  61 

The importance of genetics for COPD lies in the fact that inflammatory responses, which 62 

modulate disease progression and clinical presentation, are driven by DNA.  Genetic code 63 

defines how and when inflammatory mediators are created, and how noxious stimuli (e.g. 64 

particulates) are perceived and processed.  Cigarette smoking, the primary cause of COPD, 65 

exposes lung tissue to elevated levels of reactive oxygen species (ROS).  Excess ROS damages 66 

DNA and leads to increased expression of genes that control inflammation through altered 67 

activity of intracellular mediators, most commonly Nuclear factor E2-related factor (Nrf2). Nrf2 68 
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regulates hundreds of genes downstream, and is central to cellular management of oxidative 69 

stress and inflammation.  With dysregulation of Nrf2, cellular stress and aging are greatly 70 

accelerated.  These intracellular changes cause the release of pro-inflammatory mediators into 71 

the extracellular space.  Chemical messengers then attract other inflammation-regulating cells 72 

(e.g. macrophages, neutrophils, T-helper cells), which precipitate the release of additional 73 

cytotoxic chemokines and cytokines (commonly interleukins), further damaging surrounding 74 

tissues. Cumulatively, these processes form a reinforcing cycle of damage, inflammation, 75 

accelerated cell death, and fibrosis (Hikichi, Mizumura, Maruoka, & Gon, 2019).  It is also worth 76 

noting that like asthma, inflammation in COPD can be mediated by different T-helper (Th) 77 

pathways.  Inflammation in COPD typically follows Th1 and Th17 pathways (also known as 78 

Type 1 non-allergic airway inflammation), but may also be mediated by Th2 pathways.  This has 79 

been referred to as Type 2 (allergic) airway inflammation or Type 2 COPD (Oishi, Matsunaga, 80 

Shirai, Hirai, & Gon, 2020).  It has been suggested that the inflammatory mechanism via 81 

different T-helper pathways may underlie variable responsiveness to treatments; Th2 pathways 82 

are susceptible to use of inhaled corticosteroids (ICS), whereas Th1 and Th17 pathways have 83 

poor ICS-responsiveness.    84 

Epigenetics 85 

Early stage evidence indicates that epigenetic influences also play an important role in 86 

COPD development through a secondary process called DNA methylation (He, Tang, Huang, & 87 

Li, 2020).  Methylation occurs when a histone molecule becomes entangled with a portion of 88 

DNA, blocking translation and effectively "silencing" that section of genetic code.  (This can be 89 

conceptualized as bubble gum tangled in a strand of hair.)  Methylation is actually a normal 90 

process and acts as an essential on/off switch for gene expression during growth and 91 
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development.  However, abnormal methylation causes increased down-regulation of protective 92 

genes, contributing to accelerated cellular aging and death (Du et al., 2019).  Furthermore, 93 

evidence indicates that prenatal smoke exposure might also increase risk for later developing 94 

COPD through epigenetic mechanisms, as hyper-methylated DNA has been observed in the cord 95 

blood of infants exposed to cigarette smoke in utero (Krauss-Etschmann, Meyer, Dehmel, & 96 

Hylkema, 2015).  This suggests that exposure to environmental toxins could have prolonged 97 

epigenetic effects contributing to development of disease.  Because methylation is reversible, it 98 

is hypothetically amenable to targeted drug therapy, and is therefore an area of active 99 

pharmaceutical research.   100 

Clinical Phenotypes 101 

Consistent with the complex underlying genetics, clinical presentation of COPD is also 102 

highly variable.  Once treated as a single entity, COPD is now considered to be an umbrella term 103 

with several distinct phenotypes (Sakornsakolpat et al., 2019).  Phenotypes are essentially sub-104 

groups within COPD that have shared clinical characteristics of obstructive lung disease, but also 105 

have clinically important between-group differences, such as who is typically affected, patterns 106 

of symptoms and disease progression, and variable responsiveness to treatments.  Classifying 107 

and treating COPD by phenotype can help to predict outcomes and improve clinical 108 

management.   109 

The first phenotypic classification system for COPD was proposed in 1989, and included 110 

chronic bronchitis, emphysema, and asthma (Snider, 1989).  Since then, multiple taxonomies 111 

have been proposed, with currently accepted phenotypes including AATD, chronic bronchitis, 112 

emphysema, frequent exacerbator and rare exacerbator (Corlateanu et al., 2020).  Asthma and 113 

COPD are now considered fully-distinct diseases entities, albeit sharing common characteristics, 114 
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and the use of "Asthma-COPD overlap" is no longer encouraged (Global Initiative for Chornic 115 

Obstructive Lung Disease, 2021).  Emerging evidence points to additional phenotypic variations 116 

that may include a "no smoking COPD" group or overlap with other co-morbidities such as 117 

bronchiectasis.  118 

Implications for Practice 119 

Since 2011, GOLD guidelines for pharmacologic management of COPD have capitalized 120 

on four broad phenotypic groupings to determine the most appropriate first line therapy, based 121 

on responsiveness to treatment (Global Initiative for Chornic Obstructive Lung Disease, 2021).  122 

These phenotypes (GOLD Group A, B, C, D) are clustered by two clinical characteristics: risk of 123 

exacerbation with or without hospitalization (low risk/high risk) versus overall symptom burden 124 

(low symptoms/high symptoms).  While spirometric classification is assessed (grade of FEV1% 125 

predicted), it is not used as a sole factor in treatment selection, as there is no evidence to support 126 

efficacy.  Serum eosinophil counts (>100-300 cell/μL) can be predictive of ICS responsiveness 127 

and Type 2 airway inflammation, and can help to determine if inhaled or oral corticosteroids 128 

could be beneficial.  At present, biomarkers, genomic, and pharmacogenetic testing are not 129 

recommended for clinical management, with the exception of AATD testing, which should be 130 

performed once for all patients with COPD (ICD-10-CM code E88.01).  If not covered by 131 

insurance, free confidential DNA test kits are available to providers or patients directly (Alpha-1 132 

Foundation, n.d.).  Similarly, most contemporary direct-to-consumer genetic testing services can 133 

identify SERPINA1 variants (Hersh, Campbell, Scott, & Raby, 2019; Horton et al., 2019).  134 

 135 

Conclusion 136 
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In conclusion, COPD is a common, preventable inflammatory disease that occurs due to a 137 

complex interplay of genetic and environmental factors. Current understanding of COPD 138 

supports use of broad phenotypic categories to inform clinical management and predict 139 

outcomes.  Increased understanding of genetic and epigenetic factors will likely result in 140 

increasingly targeted treatment options over time. 141 

 142 

  143 
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