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Fast Key-Value Lookups with Node Tracker

MUSTAFA CAVUS, MOHAMMED SHATNAWI, RESIT SENDAG, and

AUGUSTUS K. UHT, Dept. of Elect., Comp. and Biomed. Eng., Univ. of Rhode Island

Lookup operations for in-memory databases are heavily memory bound, because they often rely on pointer-
chasing linked data structure traversals. They also have many branches that are hard-to-predict due to random
key lookups. In this study, we show that although cache misses are the primary bottleneck for these applica-
tions, without a method for eliminating the branch mispredictions only a small fraction of the performance
benefit is achieved through prefetching alone. We propose the Node Tracker (NT), a novel programmable
prefetcher/pre-execution unit that is highly effective in exploiting inter key-lookup parallelism to improve
single-thread performance. We extend NT with branch outcome streaming (BOS) to reduce branch mispre-
dictions and show that this achieves an extra 3× speedup. Finally, we evaluate the NT as a pre-execution
unit and demonstrate that we can further improve the performance in both single- and multi-threaded exe-
cution modes. Our results show that, on average, NT improves single-thread performance by 4.1×when used
as a prefetcher; 11.9× as a prefetcher with BOS; 14.9× as a pre-execution unit and 18.8× as a pre-execution
unit with BOS. Finally, with 24 cores of the latter version, we achieve a speedup of 203× and 11× over the
single-core and 24-core baselines, respectively.
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execution, branch prediction
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1 INTRODUCTION

In-memory database lookups are highly memory and branch bound, because they rely on traver-
sals of linked data structures (LDS) (e.g., hash-table walk, binary search tree) whose detailed
dependence structure is unknown until runtime. The resultant sequential nature of dependent
pointer dereferences causes long memory stalls for each lookup. Executing multiple lookups is an
effective way of hiding memory latencies by exploiting memory-level parallelism (MLP). One
way to achieve inter-lookup parallelism is multithreading. However, threads stall often due to
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frequent cache misses, which results in highly inefficient use of today’s aggressive out-of-order
cores. Increasing single-thread performance requires launching multiple lookups, which is cur-
rently not possible due to limited instruction window size.

Helper threads [4] can be added to issue prefetches for increased MLP. However, they eventually
tend to stall and struggle to stay ahead of the main thread due to load-miss chains created by
LDS traversals. Recent work by Kocberber et al. [1], called Asynchronous Memory Chaining

(AMAC), redesigned the lookup code for exploiting inter-lookup parallelism by maintaining the
state of each lookup separately from that of other lookups. AMAC provides a significant advantage
over prior software prefetching techniques [2, 3]. However, it requires substantial programming
effort, incurs large instruction overhead with the modified algorithm, and its effectiveness relies
on the timeliness of software prefetches.

Continuous Runahead (CR) [12] is a pre-execution engine that can run ahead of the demand
execution to prefetch future lookup traversals. However, the CR engine uses the same traversal
loop as the main core and is subject to the same stalls as the main core. Therefore, for control-
dependent LDS traversals with hard-to-predict (HTP) branches that resolve late, CR can also not
stay ahead of the main core. Recently, Ainsworth and Jones [5] proposed a more general system
with programmable RISC cores to implement an event-triggered prefetcher (ETP). While this
method performs well for prefetching nodes in lookup traversals, it does this with high hardware
cost and significant fetch and executes cycles per event. In addition, its programming is complex.

Despite their drawbacks, AMAC, CR, and ETP can perform relatively well for prefetching lookup
traversals. However, we observe that single-thread performance, especially true for in-memory
key-value lookups, is severely bottlenecked by frequent branch mispredictions in the presence of
prefetching. Prior work [1, 4, 5, 11, 12] overlooks this important fact and considers prefetching in
isolation, and hence can achieve only a fraction of the performance headroom. In this article, we
propose a configurable hardware prefetcher/pre-execution unit called Node Tracker (NT) that ex-
ploits inter-lookup parallelism by effectively integrating prefetching with branch pre-execution.
We show that NT can reclaim most of the lost performance opportunities due to branch mis-
predictions by employing branch outcome streaming (BOS). With BOS, pre-executed branch
outcomes are stored in a buffer and are used to override the branch predictor’s predictions. The
detailed mechanism and operation of our proposed BOS are described in Section 3.7.

Another important issue for performance is that long dependency chains for a single key-value
lookup limit the number of simultaneous lookups in the instruction window. Further improvement
is possible by running NT in a pre-execution/accelerator mode that feeds future lookup results to
the core. Unlike prior on-chip accelerators [6, 14], our design for NT is tightly integrated to the
processor pipeline to allow the core to handle synchronization and algorithm-specific processing
of key-matching nodes.

In this article, we make the following contributions:

• We show that although cache misses are the primary bottleneck for in-memory lookup
operations, even a perfect prefetcher can only achieve a fraction of the potential speedup,
because a large performance opportunity is lost due to branch mispredictions. That is, as
one bottleneck is removed, the relative impact of the other bottleneck increases.

• We introduce the NT, which is a configurable prefetcher/pre-execution unit that exploits
inter-lookup parallelism in hardware with software-exposed data structure traversal knowl-
edge. NT is tightly integrated into the core pipeline; it accelerates lookup operations and
leaves synchronization and other functions to the main core.

• We propose BOS to alleviate the branch misprediction bottleneck for lookup operations.
BOS is based on the pre-execution of hard-to-predict data-dependent branches and is tightly
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Fast Key-Value Lookups with Node Tracker 34:3

Fig. 1. The speedup of PHT and BST over the baseline.

(L1: perfect L1D, BP: perfect BP, L1_BP: perfect L1D/BP).

integrated with prefetching for its successful operation. BOS practically eliminates mispre-
dictions in the studied workloads.

• Finally, we evaluate NT as a prefetcher and a pre-execution unit and quantify speedups
due to alleviating memory and branch mispredictions. We show that combining accurate
prefetching and branch prediction results in synergistic performance improvement.

The four NT variants: prefetcher-only (ntpf), prefetcher with BOS (ntpf+bos), pre-execution
unit (ntpx), and pre-execution unit with BOS (ntpx+bos) evaluated in this article achieve 4.1×,
11.9×, 14.9×, and 18.8× speedups, respectively, on average, over a no-prefetching baseline. In
contrast, AMAC [1] and ATP [11] provided 2.4× and 1.2× speedups, respectively. Other recent
prefetchers (BO [16], ISB [18], and SPP [17]) do not offer significant performance gains for
the workloads in this article. Although we did not evaluate the recent programmable ETP [5]
prefetcher, we expect it to, at best, match the performance of ntpf (4.1×), NT’s prefetch-only vari-
ant, since ntpf can eliminate almost all cache misses. Finally, our method scales well with the
core-count. On average, with 24 cores, ntpx+bos achieves a speedup of 203× and 11× across all
benchmarks over the single-core and 24-core baselines, respectively.

2 MOTIVATION

A lookup in a pointer-intensive data structure (e.g., a hash table or binary search tree, etc.) requires
chasing pointers, resulting in low MLP as the next pointer cannot be discovered until the current
access completes. Algorithm 1 shows a probe hash table (PHT) routine. Each key in a table of
keys probes the hash table. Each hash table entry is a linked list of nodes searched for a key match.
The lookup performance strictly depends on an arbitrary number of dependent memory accesses
(i.e., number of pointers chased) required to locate an item. This also makes its branches HTP due
to irregularities in the traversal path (e.g., early exit).

ALGORITHM 1: Pseudocode of PHT
Algorithm

for key ← KEYS do � outer loop
Node ← BUCKETS[hash(key)]
while Node do � inner loop

for keynode ← Node .Keys do

� key-search loop
Compare key with keynode

end for

if node_not_match then

Node ← Node .next
end if

end while

end for

Similarly, the performance of a lookup in a search tree (binary search tree (BST)) is directly
related to the number of nodes traversed before finding a match. A single tree lookup is an in-
herently serial operation as the next tree node (i.e., child) to be traversed cannot be determined
before the comparison in the current (parent) node is resolved. The data-dependent control flow
also makes it hard to predict branches.

In-memory databases employ pointer-intensive data structures such as those in PHT and BST,
and hence their performance is limited due to frequent cache misses and branch mispredictions.
Fortunately, database operations such as indexing have abundant inter-lookup parallelism that can
be exploited to increase the MLP extracted by each core.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.
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In our experiments, we observed that both DL1 cache miss and branch misprediction rates were
very high for PHT and BST. For a 64-KB L1 data cache, miss rates for PHT and BST were 68%
and 62%, respectively. Also, with the state-of-the-art TAGE-SC-L [15] predictor, the branch mis-

predictions per kilo instructions (MPKI) for PHT and BST are 32 and 52, respectively. To
understand the impact of cache and branch mispredictions, we simulated a perfect L1 cache (L1),
perfect branch prediction (BP), and both a perfect L1 cache and branch prediction (L1_BP).
Figure 1 shows the results. A perfect cache improved the performance by 4.5× for PHT and 3.2×
for BST. The perfect branch prediction impact was lower: A 1.6× performance boost for PHT and
1.8× for BST. Interestingly, when both BP and cache were perfect, the speedups for PHT and BST
improved dramatically, reaching 14× and 11×, respectively.

This experiment shows that although eliminating cache misses is clearly more important at
first sight, once the cache bottleneck has been removed, the relative negative impact of the branch
mispredictions increases dramatically. For example, initially, perfect branch prediction improved
baseline BST’s performance by 1.8×. However, after cache misses were eliminated, BP boosted
performance by 3.8×. This is an important observation, because, for an application with both high
cache miss rate and high branch MPKI, the real performance potential of either bottleneck cannot
be accurately measured when they are studied in isolation.

Since memory bottlenecks are more significant for in-memory database workloads, we first
motivate our effort by comparing the most recent techniques that can potentially be used for
hiding memory latencies for the workloads that we used in this study. Many recently proposed
prefetchers, such as BO [16], SPP [17], and ISB [18], exploit dynamic memory access histories and
are not effective for control-flow dependent LDS traversals, providing almost no speedup (up to
only 3%) for the workloads in this article. Therefore, they are not included in the discussion.

Figure 2 illustrates how the most effective recent techniques impact key-value lookup execu-
tions (shown as lookups) on the CPU core and compares them with our proposed mechanism, NT.
The key-value lookups on the CPU core are shown using numbers 0,1,2,3,. . . ,n. 0 denotes lookup
number 0, 1 denotes lookup number 1, and so on. Execution time for each lookup on the CPU core
is broken into three parts: stalls for data (shown in green), stalls for branch mispredictions (shown
in red), and execution time with no stalls (shown in blue). All lookups are shown to execute in
equal time for illustrative purposes. In the following, we explain each of the techniques presented
in Figure 2 in the order they appear.

Continuous Runahead [12] can execute future lookups providing prefetches by running a
stripped-down version of the traversal loop on a separate RISC core, but it runs the same algo-
rithm as the main core and is subject to the same stalls. In Figure 2, Runahead is shown to start
execution 4 lookups ahead of the CPU core. That is, when the core is executing lookup 0, Runahead
engine is executing Lookup 4. When the core reaches Lookup 4, it can execute it faster, since the
data have already been prefetched by the Runahead engine. Since the core is now faster in com-
pleting lookups, it eventually catches up with the runahead engine because of the serial nature of
the traversals (linked data structures).

The recently proposed ETP by Ainsworth and Jones [5] is a sophisticated programmable
prefetcher that employs many mini RISC cores to execute short program snippets to calculate
prefetches on cache fill events (demand or prefetch requests). This method runs multiple lookups
simultaneously (4 in the example) as shown in Figure 2, providing prefetches for the core. It can be
more effective than the Runahead, because it can stay ahead of the core, since it handles multiple
lookups simultaneously. However, it does not help with the stalls due to mispredictions. In addi-
tion, for more accurate prefetching, the original ETP in Reference [5] has to be extended to support
the fetching of node keys and to make prefetching decisions on key comparisons. Otherwise, it
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Fig. 2. Comparison of NT with runahead, ETP and AMAC. The CPU stalls due to cache misses and mispre-

dictions are shown as red/blue boxes, respectively. Each hardware method runs four tasks ahead of the core.

AMAC switches between multiple lookups and issues prefetches for future tasks at the cost of adding extra

instructions per lookup. Runahead identifies future load misses but cannot effectively provide prefetching

for load miss chains. ETP overlaps multiple tasks but with expensive operations per event. NT achieves ETP

performance with ntpf but can execute more lookups with the addition of ntpx and BOS. (Note: figure data

is not to scale.)

cannot be very effective for the workloads in this article because of potentially prefetching a large
number of incorrectly predicted addresses.

AMAC [1] is a software method that is specifically designed to accelerate key-value lookups
for in-memory databases. It works by employing a buffer to keep track of the full state of each
in-flight traversal separately. A lookup executes by visiting each buffer entry multiple times, in a
round-robin fashion, each time executing part of the lookup (and/or issues software prefetches for
the next visit). In Figure 2, we show how lookups are executed with a 3-entry buffer. The figure
shows how the CPU core can start lookup 1 before lookup 0 has been completed, overlapping
multiple lookups by moving from one to the other after issuing a prefetch. AMAC overlaps multiple
lookups effectively but requires substantial modifications to the source code and incurs significant
instruction overhead due to state tracking. Furthermore, its effectiveness depends on the timeliness
of software prefetches. Also, as Figure 2 shows the misspeculated execution would cause frequent
squashes and re-execution of lookups.

Although these three recent methods are valid candidates for effective prefetching for key-value
lookup traversals, each has the drawbacks described above. More importantly, as Figure 1 suggests,
branch mispredictions are significant bottlenecks in the presence of prefetching alone, missing
substantial performance potential. In fact, coordination of prefetching and branch pre-execution is
necessary for the best performance gains. Prefetching can improve branch prediction by supplying
data for pre-execution of future HTP branches—a mechanism that can be used as a helper for the
branch predictor. Similarly, control-flow-dependent memory accesses cannot be predicted well due
to HTP branches, but pre-execution of HTP branches can, in turn, improve prefetching accuracy.

Our proposed NT exploits inter-lookup parallelism and effectively integrates prefetching with
branch pre-execution. Even without BOS, ntpf uses prefetched data to pre-execute branches, which

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.
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in turn guides prefetching. ntpf can effectively eliminate all cache misses and is expected to
perform at least the same or better than Runahead, ETP, and AMAC, because it can eliminate
or reduce their drawbacks. Figure 2 shows ntpf as capable of executing four lookups simultane-
ously and achieving performance similar to ETP. ntpf+bos can effectively pre-execute branches,
overriding branch predictions in the core. By eliminating both memory stalls and branch mispre-
dictions it can achieve unprecedented performance gains. Figure 2 shows that lookups in the core
run much faster with ntpf+bos, since both branch mispredictions and cache misses are dramat-
ically reduced or eliminated. In ntpx mode, the NT provides the key-matching node to the core
and hence reduces the number of instructions to run for each lookup considerably (represented
using smaller boxes in Figure 2), providing further speedups. We explain the details of NT and its
operation modes in Section 3.

3 NODE TRACKER

We develop a novel prefetching/pre-execution scheme called the NT to accelerate key-value
lookups for in-memory databases. To achieve this, NT employs mechanisms for accurate prefetch-
ing as well as mechanisms for BOS.

3.1 NT Architecture Overview

NT employs a mechanism that keeps the full state of each in-flight traversal separate from that
of other in-flight traversals. This allows multiple LDS traversal-misses from different lookups to
overlap, increasing MLP. Similarly to recent prefetchers [3, 11] and on-chip accelerators [4, 12],
NT reduces design cost and complexity through tight integration with the core, eliminating the
need for dedicated TLB and cache units.

NT is configured using special instructions inserted by the programmer/compiler before the
outer loop, where indicated in Algorithm 1. These special instructions simply record the traversal
details into NT’s configuration registers. The configuration information includes the PC of the load
instruction that reads the target keys; encoded hash operations if any; base addresses and sizes of
the traversed data structure (including the number of keys per node, key and pointer offsets, etc.);
and the data structure type (e.g., hash table buckets, binary search tree).

To configure NT for the benchmarks tested, we have used at most 11 NT instructions. As men-
tioned, these instructions are executed only once, before the outer loop in Algorithm 1. Therefore,
the impact of configuration on execution time is insignificant, considering millions to billions of
key lookups.

Figure 3 shows the overall architecture of the NT. There are four main components: the Key and

Node-Address Provider (KNAP); which prefetches the target keys and the head nodes where the
lookup should start (Section 3.3), the Wait Queue (WQ) that holds pending lookups to be executed
(Section 3.4); the Node Traversal Engine (NTE), which processes multiple in-flight lookups by
maintaining their individual states in a Task Buffer (TB) (Section 3.5); and the Result Buffer

(RB), which holds the final lookup results (Section 3.6) to be consumed by the CPU.

3.2 Core Pipeline Modifications

The core pipeline is minimally changed to accommodate NT’s operation. We added two new in-
structions: ntcfg and read_RB. ntcfg is the configuration instruction for the NT. Multiple ntcfg in-
structions are used to program the NT. A separate ID field in the ntcfg instruction is used by NT’s

Configuration Unit (NTCU). As the configuration instructions are fetched by the core, they are
forwarded to the NTCU at the decode stage of the core pipeline (not executed to configure NT
before they are committed).
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Fig. 3. Overview of the Node Tracker.

The NTCU processes ntcfg instructions with a specialized Finite State Machine (FSM), which
simply updates NT registers. However, NT’s operation is initiated after the ntcfg instructions have
been committed. This ensures that NT has not been configured speculatively after a branch mis-
prediction. Once initialized, NTCU notifies the core to start detection of the instruction address
that marks a new lookup (next outer loop iteration in Algorithm 1). This is initiated by setting
three specialized registers at the fetch. A 1-bit ntStart register is set for activating NT’s operation
in the core. A 32-bit itrPtr register holds the least significant 32-bits of the PC of the instruction to
detect the start of new lookups. A 6-bit counter, itrCnt, assigns a lookupID for each key lookup.
Once itrPtr matches the least significant 32 bits of the fetch PC, itrCnt is incremented, and all fol-
lowing instructions are tagged with that lookupID until the next iteration has been detected. A
lookupID field in the ROB is used to track iterations as tagged instructions are placed in the ROB.

On a branch misprediction, itrCnt must be restored to its value prior to the fetching of the mis-
predicted branch instruction by simply copying the latest valid lookupID from the ROB. There
is nothing special to be done at the NT, since new lookups are only triggered by committed
instructions.

NT’s KNAP (Section 3.3) monitors committed load PCs (accessing the target-key array) and their
corresponding addresses and lookupIDs to initiate prefetch address calculations. read_RB is the
only new instruction that is executed in the core, as explained in Section 3.6. The most significant
changes to the core are due to BOS, which is explained in detail in Section 3.7.

3.3 Key and Node-Address Provider

KNAP is a programmable prefetcher that fetches the target key (i.e., the key to be searched) and
computes the address of the node where the lookup should start. KNAP is similar to the recent
sophisticated programmable prefetchers ATP [11] and ETP [5]. Both ATP and ETP can prefetch
irregular patterns—they were initially designed to target indirect access patterns. KNAP’s imple-
mentation was made similar to ATP because of ATP’s simplicity and good performance.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.
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KNAP employs configurable registers and tables (see ATP [11]) that are configured by special
instructions provided by compiler/programmer. It effectively creates a dependency graph between
arrays using an array table (one entry for each array) and a relation table (keeps an entry for each
relationship between two arrays). The prefetch is triggered whenever there is an access to the
root array (which is the access to array B in A[B[i]]), and it creates the corresponding prefetch
accesses (for both array B and array A in A[B[i]]). KNAP runs N iterations, or lookupIDs (32, in our
evaluation) ahead of the demand access of the target key array. The lookup operation is triggered
when the load instruction reading the target key array commits. Referring to Algorithm 1, KNAP
prefetches the elements of the “Keys” array and the “Buckets” array that holds the head node
pointers, by using the PC of the load instruction passed from the software.

KNAP is programmed using three instructions (same as in ATP [11, 64]): ATCL, ATAR, and
ATRL (for more complex hashing behavior, a fourth instruction ATOP is utilized as described in
References [11, 64]). ATCL clears all KNAP tables. ATAR insert entries in the array table. ATRL

inserts relationship information between two arrays. For example, for the A[B[i]] structure, ATRL

creates an entry in the relation table between target array A and index array B. ATRL has three
operands: PC of target array, PC of index array and a 1-bit operand that specifies whether the array
access is in the form of A[B[i]] or A[B[i][j]]. In Section 3.3, we show how to configure KNAP for
the PHT algorithm. More details about ATP can be found in References [11, 64].

3.4 Wait Queue

KNAP is decoupled from NTE through a circular-FIFO WQ. When KNAP calculates the prefetch
address of a head node, it assigns a new future lookupID or iteration number (calculated by adding
the prefetch distance of 32 and the currently committed lookupID), and inserts a lookup task in
the WQ. WQ holds the target key values and head node addresses along with the lookupIDs of the
target keys. Lookup tasks wait in the WQ until they are fetched by the NTE.

3.5 Node Traversal Engine

The NTE consists of a TB to hold lookup tasks received from the KNAP/WQ, a FSM to process
the tasks in the TB, and a Branch Pattern Table (BPT) to generate future branch outcomes and
facilitate BOS.

The TB resembles the software structure that AMAC implements to keep track of in-flight
lookups. When a TB entry is available, NTE initiates a new lookup (retrieved from the WQ) by
saving the status of the task in the TB entry. TB is a circular buffer whose entries keep the full
status of each independent in-flight key lookup. The status of every task contains all the informa-
tion necessary to continue or terminate the lookup. The key field contains the lookup key and is
used for node comparisons throughout the lookup. Upon a match, the lookupID field is used for
communicating the results. The state field indicates the current state to process. Finally, the ptr
field points to the node being prefetched but not yet visited. Using the combination of state and
ptr fields, the exact status of each in-flight lookup is preserved.

The lookup operations in TB entries are executed by an FSM, shared by all TB entries. The first
step in processing a TB entry is to load its state (the latest state in its execution) into the local
registers of the NTE. Execution starts from that state. The lookup key is retrieved, and the key is
compared against the ptr->key to determine the next state. If the lookup is not yet completed,
then a new memory prefetch is issued to the next linked node, and the TB entry’s ptr field is
updated with the address of the node that will be visited in the next state. Then the next TB
entry is read and processed in a round-robin fashion. If the lookup task of a TB entry has been
completed, then a new lookup is initiated by fetching from the head of the WQ.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.



Fast Key-Value Lookups with Node Tracker 34:9

Table 1. Simplified FSM of NT (CS: Current State, NS: Next State)

CS PHT, BST NS CS Skip-List NS

S0 Load new lookup from WQ S1 S0 Load new lookup from WQ S1
Load num-keys: S1 Get num-keys S2

S1 PHT? Get num-keys in node S2 Load node-key address, Update BOS
BST? S2 key == node-key? S4

Load node-key address, Update BOS S2 key != node-key?
key == node-key? level >0? S3

Match? S4 level == 0? S4
S2 No match? Load next-node address

PHT: More keys? T→ S2 next-node is null?
F→ S3 Level >0? S3

BST: S3 Level == 0? S4
Load next-node address, Update BOS S3 More nodes? S2

S3 next-node is null? S4
more nodes to traverse? PHT: S1

BST: S2
S4 Update RB with lookup result S0 S4 Update RB with lookup result S0

Table 1 shows the FSM of task execution for the benchmarks tested. There are five different
states: (1) S0 is the starting state for all lookups in which a search key is loaded. (2) S1 loads the
number of keys in each lookup. (3) S2 compares the key throughout the node traversal process. (4)
S3 traverses to the next nodes. Finally, (5) S4 writes the result into the RB.

NT performs several memory accesses while transitioning between the FSM states. If a data
load instruction (key, num-keys, node-key, next-node, etc.) leads to a cache miss, then NT has to
issue a prefetch to bring the data into the L1 cache. However, to ensure reliable NT performance,
each TB entry is associated with a (pfState) bit that is initially set to 1 when an access to the
corresponding task entry is created, and it is set to 0 when the data are filled into the cache. If
pfState is 0, then NT performs an access to the cache to read the data. If the data are in the cache,
then they continue with the execution of the lookup. However, if it is a cache miss, then NT creates
a memory access and switches to another task entry in the TB.

3.6 Result Buffer and NT as a Pre-execution Unit

As shown in Algorithm 1, a lookup operation consists of several node visits until a matching
node is found. Since NT has already pre-executed these node visits, the CPU pipeline does not
need to revisit the non-matching nodes again. A RB stores the matching node addresses and their
lookupIDs for the completed lookups. The CPU pipeline can read the node addresses from the RB,
and instead of starting the inner loop from the head node, it can start from the matching node (i.e.,
the inner loop will be executed for one iteration), thereby improving performance.

We introduce a new instruction called read_RB to fetch the matching node address from the
RB. If the lookupID is found in the RB, but the result is not ready yet, then the CPU stalls until the
result is available. This also means that demand execution starts to catch up with the NT, which
causes the oldest lookup entry of the WQ to be dropped. The reason behind this is that that lookup
would probably be late in entering the TB. read_RB acts as a NOP if the lookupID is not found in
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the RB (which might happen due to drops). In this case, the CPU must perform the traversals for
that lookupID itself, sharing the lookup tasks with NT.

The choice of inserting a read_RB instruction into the code determines whether NT acts a pre-
execution unit (called ntpx) or simply as a prefetcher (called ntpf). This is a distinguishing feature
of the NT that differentiates it from both prior prefetchers and hardware accelerators.

3.7 Branch Outcome Streaming

Since NT must determine future conditional branch outcomes for correct prefetching/pre-
execution, it can be programmed to also generate and store branch results for each key lookup
ahead of their demand fetch. Both ntpf and ntpx can benefit from BOS. We call ntpf (or ntpx)
that also employs BOS as ntpf+bos (or ntpx+bos).

To configure BOS for NT, the compiler/programmer passes branch patterns for different exe-
cution path scenarios to hardware using special instructions. Each pattern is stored in a BPT, and
each entry in the BPT is mapped to a unique case. As TB visits nodes in buckets, it refers to the
BPT for observed cases and creates the BOS by appending bit patterns read from the BPT. Once
the lookup has been completed, BOS for the corresponding lookup is stored in the RB. We now
explain how BOS is generated for each lookup in PHT.

Code Snippet 1 shows the C code, and Code Snippet 2 the x86 assembly code for the PHT
algorithm. Important branches (B1–B7) are marked in both the C code and the x86 assembly code.
Table 2 shows unique cases for the PHT in Code Snippet 1, regardless of the number of nodes in a
bucket. For example, the C1 and C1′ cases represent whether or not the node’s first key is a match.
Similarly, C2 and C2′ show whether or not the second key (or the next key) is a match or not. C3
determines if the next node exists, and C0 checks if the bucket exists (head node not NULL).

Code Snippet 1. C code of PHT algorithm.

Figure 4 shows the possible paths of execution for a node in a hash table bucket, using the cases
in Table 2. As the TB completes each node visit, one of three execution paths can occur: 1) the
first-key matches (C1), 2) the first-key does not match, and the second-key matches (C1′C2), or no
match is found on the node (C1′C2′). To visit the next node, as shown in Code Snippet 1, the next
node address is calculated and checked to see if it is not NULL, forming a pattern C3.

In this work, we have generated branch outcomes for each BOS case presented in Table 2 by
employing a simple script that runs these cases using predetermined inputs. The configuration
instructions are then hand inserted. However, both BOS and configuration instructions can be
generated and inserted by a compiler automatically (e.g., can be implemented as LLVM [60] passes)
similar to the work by Ainsworth and Jones [5].
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Table 2. Branch Patterns for PHT in Code Snippet 1

Case Sequence of branches Pattern Meaning

C0 B1 1 Initial head node check: bucket exists

C0′ B1 0 Head node NULL: lookup terminates

C1 B5, B6 00 First key in the node matches

C1′ B5, B6 01 First key in the node does not match

C2 B2, B3 01 Next key in the node matches

C2′ B2, B3 00 Next key in the node does not match

C3 B4 0 Next node exists

C3′ B4 1 Next node NULL: lookup terminates

Fig. 4. Possible PHT execution cases.

Code Snippet 2. x86 assembly code of PHT algorithm.

Figure 5 shows how the BOS for each lookup can be generated by appending these cases. Two
examples are shown. In the top bucket, a match is found on the second node’s first key. In the
bottom bucket, the third node’s second key has a match. For the top bucket in Figure 5, the BOS
generated is C0C1′C2′C3C1: C0 for the initial check for the head node, C1′C2′ for no key match
in the first node, C3 for getting to the second node, and finally, C1 for the match in the first key of
the second node. The branch pattern cases are known at compile-time, and bit patterns are stored
in the BPT using the NT’s configuration instructions. The TB refers to the BPT after a node visit
has been completed and the case has been observed.

Although we only described how BOS worked for PHT, the same mechanism can be used for
BST and Skip-List with minor modifications.

Whether NT is configured as a prefetcher (ntpf) or as a pre-execution unit (ntpx), BOS can be
combined and integrated into NT to speedup key lookups. When NT acts as a pre-execution unit
(ntpx), BOS generates a short sequence of patterns for each lookup, since the matching node is
determined ahead of demand execution. This applies for PHT and BST workloads where the CPU
starts executing from the matching node skipping all unnecessary comparisons, which results in
a sequence of bits that consist of the starting branch outcomes combined with the corresponding
matching pattern. However, for Skip-List, BOS is expected to produce long patterns even with the
matching node being identified. The reason is that the algorithm will still traverse down between
the levels until it reaches the node that contains the matching key.
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Fig. 5. Branch Outcome Stream Generation for two lookups in PHT. For this example, we assume a maximum

of 4 nodes for each bucket and exactly two keys per node. For the bucket on top, there is a key match in

the second node’s first key. In the bottom bucket, a match has been found in the third node’s second key.

The branch outcome streams generated for each lookup are shown. For example, for the lookup in the top

bucket, C0C1′C2′C3C1 is the branch outcome stream generated where C0–C3 are different branch pattern

cases listed in Table 2.

Fig. 6. BOS integration with the branch predictor.

The integration of BOS into the Branch Predictor: To facilitate BOS, the fetch stage of the
pipeline must keep track of lookupIDs. This can be done with a simple counter that increments
when a new key lookup (i.e., a new outer loop iteration) has been detected (via the entry PC
(0x401a80) of the outer loop in Code Snippet 2). When a branch misprediction is detected, the
lookupID counter at fetch can be restored using the latest valid instruction’s lookupID.

Once the TB has completed a task, it updates the RB with the matching node’s address and sets
the ready flag for the RB entry, at which point, the BOS for that lookup is also ready to be used.
The RB forwards the BOS with its lookupID (in program order) to a 4-entry FIFO buffer called the
Stream Predictions Buffer (SPB). The SPB is physically located near the I-cache and the branch
predictor for fast access. For every new lookupID at fetch, if that lookupID matches the lookupID
of the oldest entry of the SPB, then the BOS in this entry is placed in a shift register, and the branch
outcomes from it override all branch predictor’s predictions for that key lookup until a new lookup
has been reached at fetch. Figure 6 shows how BOS is integrated with the branch predictor.

It is important to note that NT does not use nor does it interact with any of the BP hardware
structures, and thus, it does not change the state of the BP or BP’s predictions. Furthermore, BOS is
only activated when NT is programmed for it. Similarly, NT can be turned off completely when it is
not programmed, and therefore, it does not have any negative performance impact on applications
that do not use it.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.



Fast Key-Value Lookups with Node Tracker 34:13

Table 3. List of NT Internal Registers

NT Register Description

NTRM Holds the type of data structure to be traversed. (Linked-List, Binary Tree,
Skip-List)

NTR0 Holds the PC of the keys array’s load instruction
NTR1 Holds the PC of the bucket array’s load instruction, which reads the head

node address
NTR2 Holds the distance between elements in key array
NTR3 Holds num-keys offset (offset from the node’s address to the value where the

number of keys is stored).
NTR4 Holds the key array offset value at which the key array within each node is

located from the node address
NTR5 Holds the offset needed to calculate the address of the next-pointer within

each node.
NTR6 Single-bit that defines whether the number of keys per node is dynamic or

fixed.
NTR7 Holds the key element size.

For simplicity, the descriptions correspond to PHT Algorithm.

Table 4. Configuration Instructions: Configuring NT for PHT Algorithm

ntcfg
ntcfg
ntcfg

ntcfg
ntcfg

ntcfg
ntcfg
ntcfg
ntcfg

NTRM, 0x0
NTR0, 0x401a80
NTR1, 0x401a90

NTR2, 0x10
NTR3, 0x4

NTR4, 0x8
NTR5, 0x28
NTR6, 0x0
NTR7, 0x10

; configure NT mode to run a linked-list
; pass the PC of the keys array’s load instruction which reads the key value
; pass the PC of the bucket array’s load instruction which reads the head

node address
; pass the distance between elements in keys array
; number of keys stored inside each node is located at 0x4 bytes from the

node address
; the offset value to be used to calculate the address of the node’s keys array
; node address + this offset (0x28) is used to get the address of next pointer
; inform NT that the number of keys within each node is dynamic.
; pass the key element size in bytes

3.8 Example: Configuring NT for the PHT Workload

NT has two programmable units: KNAP and NTE. Detailed description of how to program KNAP
can be found in Cavus et al. [64]. NTE employs several configuration registers (NTRM, NTR0-7),
which are set by a newly introduced ntcfg instruction. ntcfg instructions are inserted in the code
before the main key-value lookup loop, as shown in Code Snippet 2. These instructions are fetched
by the core and flow through the pipeline. They are, however, forwarded to NT’s configuration
unit only after they are known to be non speculative (i.e., oldest instructions in the instruction
window). ntcfg instruction has two arguments. The first argument is the NT register id (e.g., NTR0,
the destination), and the second argument is the source value. The details of NTE’s configuration
registers are shown in Table 3. NTRM register holds the type of data structure that NT is configured
for (BST (0), PHT (1) or Skip-List (2)). NTR0-7 are general-purpose and their use depends on the
data structure. The detailed explanations given in Table 3 are for the PHT algorithm. Table 4 shows
the sequence of ntcfg instructions used to configure the NTE for the PHT workload.

Table 5 shows the sequence of instructions that are used to program the KNAP (see Section 3.3)
for the PHT workload. To program the KNAP, the load instruction PCs for the keys and the buckets
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Table 5. Configuring KNAP to Issue Indirect Prefetches

atcl
atar 0x401a80
atar 0x401ab4
atrl 0x401a80, 0x401ab4, 0

; clear AT tables
; pass PC of key array (tuples[].key)
; pass PC of hash array
; pass the relationship between tuples and hash arrays

arrays as well as the relation information between these arrays are needed. Although not shown
in the example, atop instructions [64] can be used for implementing complex hashing operations
when needed.

4 DISCUSSION

Exceptions and Faults: Most common faults encountered by NT are TLB misses, and they are
handled by the host core’s MMU in its usual fashion. Since the memory request that causes the
fault is reissued when the corresponding NT task buffer entry is revisited, there is no need for the
core MMU to signal NT to retry after the missing translation is available. This greatly simplifies
the process. Other types of faults and exceptions trigger handler execution on the host core, and
the problem causing lookup is dropped from the task buffer entry, and lookup is executed in the
core. An alternative implementation may prevent NT from triggering any exceptions by simply
dropping lookup tasks from NT. This would slightly reduce NT’s performance potential.
Support for KVS writes: In single-threaded mode, key insertion and deletion operations can also
be supported with minor modifications to ntpx. NT’s multi-threaded mode with the BOS versions
would require a complicated mechanism to support KVS writes. In the existing implementation
only prefetching is allowed in those cases. This is done by the compiler/programmer simply not
inserting the read_RB instruction into the code. In this article, we only consider key-value lookups
without updates, allowing the employment of both ntpx and ntpf, with and without BOS.

Simultaneous Multi-Threading (SMT): NT assumes that each core runs a single thread. In
an SMT core, if only one thread uses NT, then we just need to add the thread id to NT. However, if
two or more threads on the same core need to use NT, then additional hardware and mechanisms
would be needed. SMT support is beyond the scope of this article.

Why is NT not an attached accelerator? Our focus in this article was not to design an ac-
celerator as is usually done in computer architecture research, but to show that prefetching and
branch outcome streaming together could result in performance as good as if not better than a
plain accelerator, especially in the case of in-memory database lookups. Also, with NT, the core is
not idle and can run any functions on the payload before all the lookups have been completed –
that is, operations on a record can run in the core while lookups are simultaneously carried out in
the NT, further improving performance.

NT as a prefetcher for other applications: Although the NTE component is workload-
specific, the KNAP component of NT can also be used for other applications. KNAP can currently
prefetch for stride and indirect access patterns and be used without activating the NTE compo-
nent (that targets multiple lookup traversals). However, KNAP would not be effective alone for the
workloads in this article. Finally, NT can co-exist with other prefetchers or accelerators without
significant complexities. On the whole, NT is more general than a typical accelerator.

5 METHODOLOGY

Processor parameters: NT is implemented on the gem5 simulator [8]. We modeled an aggressive
out-of-order core with a 256-entry instruction window size and a 20-stage pipeline, implementing
the x86 ISA. We assume a 64-KB private L1D with 4-cycle latency and 256-KB unified L2 cache
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Table 6. Processor Parameters

Parameter Value

ISA x86

Number of cores 1-24

Architecture 2GHz OoO: 4-wide, ROB:256, LQ/SQ:96/64

Branch Predictor TAGE-SC-L BP

L1D cache 64KB, 8-way, 4-cycles latency, 64Byte block, MSHR:24

L2 cache 256KB, 8-way, 12-cycles latency, MSHR: 24

L3 cache Multi-core : 16-way, 32-cycles latency, 1 shared L3/4-cores,
1MB/1core, MSHR:48

Single-core : 1 L3 (4MB)

Memory 8GB DDR3, 800MHz, 4 MCs (2 channels / MC)

Table 7. Hardware Cost of NT

Component Size/Count Bytes

KNAP 1 512

RB 32-entries 1284

TB 16-entries 388

WQ 16-entries 128

Misc. Reg 1 16

NTE 1 334

BPT 8-entries 11

SPB 4-entries 144

ROB Inst. Counters 6-bit/Ins 192

Total Size = 2.94KB

with 12-cycle latency, both with 64-B blocks and 8-way set-associativity. We used 24 miss-status

holding registers (MSHRs) for the L1D cache. This is on par with the recent Intel (e.g., Sunny
Cove [9]) and AMD (e.g., Family 17h [7]) processors. Finally, our baseline configuration used the
state-of-the-art TAGE-SC-L [15] branch predictor.

The multicore system is modeled after the AMD Epyc SoC [10]. Multiple CPU complexes are
initiated at the SoC level. Each CPU complex is four cores connected to an L3 cache. The L3 cache
is 16-way associative, 4 MB, made of four slices and supports 48 in-flight misses. Every core can
access every slice with the same average latency of 32-cycles. The processor has four memory
controllers with two channels each. The architectural parameters of the evaluation environment
are summarized in Table 6.

Workloads: In this study, we use three commonly used data structures for database indexing,
PHT, BST and Skip List. We focus on indexing, because it is the most significant part of the exe-
cution time for the end-to-end query operation. Kocberberger et al [42] showed that TPC-H and
TPC-DS queries on MonetDB spend, on average, 35% and 45% of their execution times, respectively,
on indexing.

PHT: Hash tables are commonly used in modern databases for accelerating indexing opera-
tions. The hash table lookup throughput is the main bottleneck, and its performance depends on
the number of pointer chasing memory accesses required to locate an item. When build relation
keys follow a skewed value distribution, hash collisions are unavoidable. Probing such hash table
buckets requires as many memory accesses as the number of hash table nodes present in that
bucket. One cannot guarantee a constant number of memory accesses for each probe. For the PHT
workload, we use the highly optimized chained hash table implementation of Balkesen et al. [55,
56]. Each hash table bucket contains two 16-byte tuples and an 8-byte pointer to the next hash
table node to be used in the case of collisions.

BST: Tree index search is a fundamental operation in database systems to handle large datasets.
The performance of a lookup in a search tree is directly related to the number of nodes traversed
before finding a match. A single tree lookup is an inherently serial operation as the next tree node
to be traversed cannot be determined before the comparison in the current node is resolved. Due
to the control flow and large datasets, traversing BST cause frequent memory stalls. We use a
canonical implementation of a binary search tree by Balkesen et al. [55, 56]. The tree was built by
using an input relation with uniformly distributed random keys and payloads. Each binary tree
node contains an 8-byte key, an 8-byte payload and two 8-byte child pointers (i.e., left and right).
The probe relation contains uniformly distributed random unique keys.

Skip List: Skip list is another commonly used data structure for indexing in database sys-
tems. Fast search is made possible by maintaining a linked hierarchy of sub-sequences, with each
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successive sub-sequence skipping over fewer elements than the previous one. For the skip list
workload, we adopt the implementation from ASYCLIB [19]. In our implementation, both the build
and probe relation contain uniformly distributed random unique keys and payloads.

We simulated three variants of PHT (PHT-B2, PHT-B4, and PHT-B8) with two, four, and eight
nodes per bucket, respectively. The number of keys per node is two for PHT, one key per node for
BST and Skip-List. The number of buckets for PHT is 222 while the depth of the unbalanced tree is
65 for BST. In Skip-List, the number of levels is 9. The number of lookups is 225 for all workloads.
Each lookup finds exactly one node match with a uniformly distributed random unique key.

For all the workloads, we start a simulation from the beginning of the region of interest, which
is the beginning of the outer loop traversing the target keys. We simulated 100M instructions, with
10M instructions used for warm-up. For multi-core simulations, each core is simulated for 100M
instructions.

Hardware budget: NT is evaluated with a 16-entry WQ, 16-entry TB, 8-entry BPT, and 32-entry
RB. KNAP is about 0.5 KB in size while the total size of the NT is only about 3 KB. The hardware
budget of NT is summarized in Table 7.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of NT in terms of the overall throughput, million

keys per second (MKPS), and MPKI. NT is evaluated both as a prefetcher ntpf and as a pre-
execution unit ntpx, both with and without BOS. It is compared to both a baseline (no prefetching)
and the recent prefetchers ATP [11], BO [16], SPP [17], and ISB [18], and the AMAC method [1].
Although we have not implemented the recent programmable ETP [5], we expect it to, at best,
match the performance of ntpf, since ntpf can eliminate almost all cache misses, and because
NT’s accuracy and timing are expected to be better than ETP’s. The latter is true, since ETP does
not pre-execute branches to guide prefetching decisions.

All the simulations are evaluated on single and multi-core systems. We demonstrate the sub-
stantial performance gains of NT over the state-of-the-art, as well as BOS’s ability in many cases
to practically eliminate branch mispredictions.

6.1 Single-Core Analysis

NT is first evaluated assuming it is implemented in a single-core processor. NT works well both
as a prefetcher and as a pre-execution unit.

6.1.1 NT as a Prefetcher. The plots on the left side of Figure 7 show the throughput speedup in
MKPS normalized to baseline of the different prefetchers on a single-core processor. The plots
on the right side indicate the branch mispredictions in MPKI. ntpf has a large speedup over
the baseline, improving the performance by 2.6×, 4.3×, 6.5×, 3×, and 2.4× for PHT-B2, PHT-B4,
PHT-B8, BST, and Skip-List, respectively. ntpf significantly outperforms AMAC and other
prefetchers tested for all workloads.

ISB and BO provide no speedup for the evaluated workloads. SPP provides a marginal 1.03×
speedup, on average. These state-of-the-art prefetchers were tested using their original configu-
rations. Because they provide insignificant speedups, we have not analyzed them any further for
the remainder of the article.

ATP benefits from prefetching stride and indirect array accesses but it cannot prefetch for LDS
traversals. ATP provides 1.45× speedup for PHT-B4 but no speedup for BST and Skip-List. AMAC
allows multiple traversals to be performed concurrently; however, it also has significant instruc-
tion overhead (2.2×–3.5×) and its performance depends on the timeliness of software prefetches.
AMAC’s speedup for PHT-B4, BST, and Skip-List are 2.26×, 2.54×, and 1.27×, respectively.
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Fig. 7. Normalized throughput (MKPS: million keys/sec) compared to baseline, and branch MPKI.

The branch bottleneck and ntpf+bos: In the PHT workload, the MPKI increases as the num-
ber of nodes per bucket decreases due to accessing more linked lists when the number of nodes
is small, resulting in mispredicting the last iteration within a linked list traversal more often. For
example, the baseline’s MPKI decreases from 40 in PHT-B2 to 31 in PHT-B4 down to 18 when 8
nodes are used in each linked list (i.e., PHT-B8). In Skip-List, AMAC’s MPKI is almost one third
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Fig. 8. The number of in-flight lookups in the CPU instruction window at a snapshot in time. We observe

the same distribution in many snapshots and present only one. However, the numbers should be very close

to the average number of in-flight lookups over many snapshots.

less than baseline, ntpf and ATP. This is due to the extra instructions (2.8× extra) added to the
original algorithm while the number of conditional branches is fixed. In contrast, ntpf does not
alter the algorithm and executes more lookups than AMAC.

Since MPKI is very high for baseline and ntpf in all workloads (MPKI of BST is 52), eliminating
these mispredictions has a noticeable impact on the throughput. To demonstrate this we simulated
a perfect branch predictor on ntpf. ntpf+perf improves the throughput by 9.04×, 14.09×, 17.5×,
11.52×, and 6.05× for PHT-B2, PHT-B4, PHT-B8, BST, and Skip-List, respectively. The baseline also
benefits from eliminating mispredictions achieving up to 2× for PHT-B2, and marginally more than
1.4× to 1.96× for the other workloads.

Adding BOS to ntpf can improve the throughput remarkably. ntpf+bos can effectively generate
branch results for each lookup ahead of their demand fetch, thus eliminating almost all branch mis-
predictions. ntpf+bos consequently increases MKPS by 3.6×, 3.3×, 2.6×, 3.5×, and 2.4× over ntpf
for PHT-B2, PHT-B4, PHT-B8, BST, and Skip-List, respectively. As shown in Figure 7, branch MPKI
is reduced to less than 0.8 for all workloads and nearly to zero for Skip-List. For BST, ntpf provides
only slightly better speedup than AMAC (3.1× versus 2.5×) (see Figure 7, on the left). However,
both AMAC and ntpf are significantly bottlenecked by branch mispredictions. ntpf+bos provides
10.5× speedup over the baseline and 3.5× and 4.2× speedups over ntpf and AMAC, respectively.

6.1.2 NT as a Pre-execution Unit. Using NT as a pre-execution unit, ntpx, improves the perfor-
mance dramatically for all workloads by reducing the number of instructions executed per lookup.

Figure 7 shows that ntpx increases the throughput by 3.6×, 7.5×, 14.7×, 22.3×, and 17.2× over
the baseline, and by 1.4×, 1.8×, 2.3×, 7.4×, and 7.2× over ntpf for PHT-B2, PHT-B4, PHT-B8, BST,
and Skip-List, respectively.

Similarly to ntpf, ntpx is extended with BOS (ntpx+bos). Figure 7 shows that ntpx also has high
MPKI for PHT (especially because ntpx reduces the number of instructions per lookup), therefore,
providing branch outcomes will likely enhance the performance. ntpx+bos improves ntpx by 2.9×,
2.8×, and 1.4× for PHT-B2, PHT-B4, and PHT-B8, respectively. For BST and Skip-List workloads,
BOS does not increase the throughput further, because ntpx has already significantly lowered
MPKI compared to ntpf.
ntpx+bos performs better than ntpf+bos, because it reduces the number of instructions exe-

cuted per lookup reducing the pressure on CPU buffers. Figure 8 shows that the number of in-flight
lookups in the instruction window is significantly higher for ntpx over ntpf for BST and Skip-List.
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Fig. 9. Effect of varying number of cores on performance normalized to single-core baseline. PHT-B2 and

PHT-B4 results are not shown, because the trend is similar to PHT-B8.

6.2 Multi-Core Evaluations

We evaluate the performance of NT on 4–24 cores for all variants of NT, AMAC, and ATP. The re-
sults are depicted in Figure 9. As the number of cores increases, ntpf and ntpx scale very well
achieving up to 55×–150× throughput speedup with ntpf, and 82×–312× with ntpx over the
single-core baseline. Exploiting BOS in a multi-core processor also affects the performance posi-
tively. BST benefits from branch outcomes strongly on a multi-core with a throughput speedup of
312× compared with the baseline on a single-core. On average, ntpx+bos achieves 203× through-
put speedups (over single-core) for all workloads on 24 cores.

6.3 The Impact of Prefetching Distance

The prefetch distance in NT defines how far ahead of the demand execution to trigger a lookup
prefetch. Increasing the distance may result in early prefetches causing high cache misses, while
short distances impact the timeliness and conflicts with demand executions. Since all workloads
show the same behavior on 1–24 cores, we only show how the distance affects NT for the BST
benchmark on a single-core. Figure 10 shows the sensitivity of performance to prefetch distance
on ntpf, ntpx, ntpx+bos. As the distance increases from 8 to 32, NT eliminates cache misses
proportionally.

6.4 The Effect of Number of L3 MSHRs

Figure 11 plots the throughput of all methods for different L3 MSHR sizes. ntpx exhausts more
than 16–32 MSHR entries on a single core, which makes the cache stop accepting new memory
requests.
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Fig. 10. Effect of prefetching distance for BST on single and 16 cores. Other workloads show the same be-

havior on 1–24 cores.

Fig. 11. Impact of the number of L3 MSHRs for BST. PHT-B2, PHT-B4, PHT-B8, and Skip-List are similar.

Lower unlabeled overlapping lines correspond to baseline, AMAC, and ATP.

Fig. 12. Impact of task buffer size for Skip-List on single and multi-core processors. Lower unlabeled over-

lapping lines correspond to baseline, AMAC, and ATP.

In our design, the typical number of L3 MSHRs is 48 after which NT behaves steadily (i.e., the
MSHR size is large enough to service all of the memory requests issued by NT). However, NT as
a prefetcher (ntpf) requires fewer memory requests than ntpx, showing a constant performance
with 16–56 MSHR entries. The reason ntpx exhausts more than 16–32 MSHRs is that, with ntpx,
the core will execute iterations very efficiently, since key-matching nodes are provided by NT.
This will push KNAP to issue prefetches more frequently (for future lookup keys and head nodes),
because KNAP keeps a fixed 32-iterations distance from the core. As TB receives lookup tasks more
frequently, TB entries fill quickly. Once TB is full and all entries are stalled due to cache misses
(because of each TB entry’s prefetch requests), NT exhausts more than 32 MSHRs as TB and WQ
both fill their 16 entries.

6.5 The Effect of Task Buffer Size

Each entry in the TB corresponds to a separate lookup to be performed by NT. Figure 12 shows the
Skip-List throughput of all methods for varied TB sizes on single/multi-core. Increasing TB size
more than 16 has no impact on the performance as NT has to keep up with demand execution,
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Fig. 13. Dynamic energy reduction normalized to baseline.

and service these lookups before dropping their tasks from TB entries. Other workloads share the
same behavior and use 16 TB entries for close to the best results.

6.6 Energy Efficiency

We use McPAT [20], assuming a 45-nm process technology, to measure the overall dynamic energy
reduction for all NT variants. Figure 13 shows the energy estimates. Energy usage is significantly
reduced with all NT variants. Most improvement comes with ntpx+bos as it provides best perfor-
mance and reduces the number of instructions per lookup significantly. ntpx+bos achieves 80% to
95% energy reductions over all workloads.

7 RELATED WORK

Recent hardware prefetchers targeting regular/repetitive patterns: Recent proposals in data
prefetching include AAMPM [22], BO [16], SPP [17], ISB [18], VLDP [23], Bingo [24], and most re-
cently, IPCP [25]. AMPM, BOP, and IPCP are the first-, second-and third-place winners of the 2019
data prefetching competition [26], respectively. All of these prefetchers use temporal and spatial
behavior they observe at runtime to make predictions. They are successful in regular repetitive
patterns; however, they are not effective for complex data structure traversal behavior that we
target in this article. Finally, BFetch [27] leverages control flow prediction to generate an expected
future path of the executing application. It then speculatively computes the effective address of the
load instructions along that path. However, BFetch is unsuccessful for workloads where branch
MPKI is high.

Software Prefetching: Software prefetching [28–33] provides a way for programmers to in-
sert prefetching instructions into a program targeting various simple and complex patterns. In
Ainsworth [34], while the insertion of software prefetches for indirect memory accesses is auto-
mated and eliminates the requirement for programmer effort, it cannot guarantee insertion of the
instructions in an optimized way for a specific architecture. Furthermore, significant instruction
overhead may offset its benefits. Finally, Lee et al. [28] studied the interaction between software
and hardware prefetching and found that inserting software prefetching instructions in the pres-
ence of hardware prefetchers may hurt the over-all prefetching performance due to the incorrect
training of hardware prefetchers. NT does not have this problem, because prefetching is only ini-
tiated by hardware, not by software prefetch instructions; coarse-grain metadata instructions are
used to guide the hardware prefetcher.

Helper Threads: Helper threads are separate threads that are used to prefetch future data ac-
cesses, and they are useful for applications with irregular memory access patterns. Kim and Yeung
[35] developed a compiler-based approach for creating helper threads that can capture irregular
memory accesses. Lau et al. [36] proposed a small helper core, and Ham et al. [37] provide a differ-
ent scheme to create separate access and execute threads. Ganusov and Burtscher [38] proposed
a lightweight architectural framework for efficient event-driven software emulation of complex

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 34. Publication date: June 2021.



34:22 M. Cavus et al.

hardware accelerators, which can be applied to implement a variety of prefetching techniques. In
general, helper threads are unable to deal with stalling on intermediate loads created by the ac-
cesses of indirect or LDS memory access chains, making it difficult for them to keep ahead of the
main thread.

Accelerators: Most of the recent work proposes specialized hardware accelerators to efficiently
execute targeted irregular workloads. Ho et al. [39] proposed to encode memory accesses as a set
of rules to allow them to be mapped to a dataflow architecture. Kumar et al. proposed sqrl [40]
and dasx [41] to accelerate iterative accesses of B-tree and hash table structures. Lloyd et al. [54]
proposed a near-memory accelerator emulated in an FPGA that combines hardware and software
to service multiple lookups in a hash table-based key/value store. Kocberber et al. [42] designed
an accelerator for database inner joins exploiting parallel hash table walks.

Although accelerators often provide large performance improvements, the original application
has to be modified, making it incompatible with devices not having the accelerator.

Prefetchers targeting Irregular Patterns: Prefetching techniques targeting pointer-based
applications have been studied in References [43–48]. Guided Region Prefetching [48] is a hard-
ware/software scheme that uses compiler hints encoded in load instructions to regulate an aggres-
sive hardware prefetching engine. Indirect memory prefetching has been studied in References [34,
49]. ATP [11] and ETP [5] have significantly improved indirect prefetching with software-provided
course-grain metadata.

CR execution [12] proposed a complex mechanism to dynamically identify the dependence chain
of a load that is likely to create a cache miss. It can accurately prefetch data needed in the near
future. However, CR cannot provide effective prefetching for load miss chains, which prevents CR
from running sufficiently ahead.

Ainsworth and Jones’ [5] ETP uses event-triggered programmable RISC cores, each of which
executes a compiler-generated subprogram to calculate a prefetch address for a prefetching trig-
ger event. This requires relatively expensive operations per event. NT is a more specialized yet
programmable prefetcher/pre-execution unit that integrates branch streaming with prefetching,
important for in-memory database lookups.

Hashemi et al. [63] propose to pass the dependent operations between a source miss and a
dependent miss to the (enhanced) memory controller (EMC), where it is executed immediately
after the source data arrives from DRAM. EMC can help improve the single lookup performance
by cutting round-trip travel of data between the core and the memory controller. Our NT provides
the ability to perform multiple lookups simultaneously. In that sense, the methods are orthogonal.

Branch Pre-execution: Today’s best-known branch predictors, such as TAGE-SC-L [15] and
Multiperspective Perceptron [50], push the envelope of what is possible using dynamic branch
histories. Yet, for some programs, branch history alone cannot provide very high accuracy. Prior
work in References [51, 52] recognized the need to sometimes correlate on program values. Gao
et al. [51] developed the ABC (address-branch correlation) predictor specifically for HTP branches
that depend on loads that miss in the L2 cache. Al-Otoom et al. [52] proposed the EXACT predictor
targeting all address branch correlations by actively communicating the value changes in these
addresses to the branch predictor. More recently, Farooq et al. [53] proposed the SLB predictor
targeting store-load-branch correlations by providing compiler hints to the branch predictor.

Prior work also explored pre-execution for HTP branches. Dundas et al. [59] employs runahead
execution using a stripped-down version of the traversal loop to stay ahead of the main thread,
providing future branch outcomes for the latter. However, since it runs the same algorithm as
the main thread, it is subject to the same stalls and, therefore, cannot stay ahead. Slipstream [57]
proposes to run a shorter version of the program (called A-stream) ahead of the original one (called
R-Stream) by removing ineffectual computations. A-Stream supplies R-stream with control and
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dataflow outcomes. For LDS traversals whose control-flow is highly unpredictable, A-stream fails
to stay ahead of R-stream. NT with BOS, however, is able to exploit MLP and hence stays ahead
of the main thread.

Control-Flow Decoupling [58] is a pre-execution method for so-called separable branches,
whose backward slices do not depend on their control-dependent instructions. This is not ap-
plicable to our study, where the targeted branches are very serial in nature: A dynamic branch
guards instructions that are predicates of future dynamic branches.

BFetch [27] leverages control flow prediction to speculatively compute the addresses of the load
instructions along that path. However, BFetch is only successful when branch prediction is highly
accurate, which is not the case for our workloads.

Chen et al. [61] propose a mechanism to speculatively execute the instruction stream using the
feedback from the branch predictor. When a branch is encountered, the prefetching unit predicts
the most likely path to be executed and starts fetching these instructions ahead of the regular
program counter. All branches and correct paths are recorded on a log, and this log is fed to the
CPU in demand execution. The PC (halt execution) is reset if misprediction happens as they use
the predicates produced by branch prediction (which is not 100% accurate). Finally, Ferdman et al.
[62] propose a method to use control flow information to do accurate instruction prefetches. In
both cases, the methods are only effective when there is no hard-to-predict branch in the loop,
which is the case for the workloads that we studied.

8 CONCLUSIONS

Lookup operations for in-memory databases are primarily bottlenecked by frequent cache misses
caused by traversing LDS. We introduced the Node Tracker, a configurable prefetcher/pre-
execution unit that exploits inter-lookup parallelism in hardware. NT is tightly integrated into
the core pipeline, accelerating lookup operations and leaving the synchronization and other func-
tions to the rest of the main core.

We evaluated NT as a prefetcher and an accelerator and quantified the speedups due to al-
leviating memory or branch mispredictions. We discussed four NT variants: prefetcher (ntpf),
prefetcher with BOS (ntpf+bos), pre-execution unit (ntpx), and pre-execution unit with BOS
(ntpx+bos). Our results show that ntpf, ntpf+bos, ntpx, and ntpx+bos achieve 4.1×, 11.9×, 14.9×,
and 18.8× speedups, respectively, over a no-prefetching baseline. Furthermore, our method scales
well with an increasing number of cores. With 24-cores of ntpx+bos, we achieve a speedup of
203× and 11× over the single-core and 24-core baselines, respectively.
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