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In most small-scale fisheries (SSF), there is limited or null information about the
distribution and spatial extent of the fishing grounds where the fleets operate, due to
the lack of explicit spatial and temporal data. This information is key when addressing
marine spatial planning and fisheries management programs for SSF. In addition to
technical or biogeographic restrictions, environmental conditions in the area influence
the way fishers operate. Making use of data from a pilot Vessel Monitoring System
(VMS) project tested in a small-scale fleet in the Southeastern Gulf of Mexico (SGoM),
for the first time in the region, we were able to learn what role environmental factors play
in the distribution of potential fishing grounds for this fleet. We got tracking information
of 1,608 daily fishing trips from vessels operating in four states using the VMS for 7
months. We used a correlative modeling approach to identify potential fishing grounds
where this fleet operates along the SGoM, accounting for environmental variables. We
assumed that environmental conditions can shape the spatial distribution of species
targeted by this fleet and hence influence fishers’ operations. The results indicated
that net primary production and sea surface temperature were the main drivers that
shape the spatio-temporal potential distribution of fishing grounds in the study site.
The approach employed here seems appropriated and opens an opportunity to learn
more about the factors that define the spatial distribution of small-scale fleets and their
potential fishing grounds.
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INTRODUCTION

The continuous increase of fishing pressure on marine resources
is a worldwide concern for fisheries managers because it threatens
the sustainability of fisheries and the ecosystems supporting
them, potentially impacting the people that depend on this
activity (Coulthard et al., 2011; Watson et al., 2013). Coastal
planning faces growing challenges from sectors competing for
space on land and at sea (Campbell et al., 2014). Marine spatial
planning needs to take into account the spatial extent of fishing
activity (Stelzenmüller et al., 2008). However, fisheries are not
fully integrated into marine spatial plans (Janßen et al., 2018).
For fisheries’ spatial management planning, the identification
of fishing grounds has been recognized as an important
feature, both spatially and temporally, to be incorporated into
the design and implementation of regulatory measures (Daw,
2008; McCluskey and Lewison, 2008). Understanding spatial
distribution of fishing vessels and the factors that determine this
distribution, can facilitate identification of current and potential
fishing grounds, so this knowledge can inform coastal planning
that accounts for multiple users of spatial regions (fisheries,
energy, and conservation; see McCluskey and Lewison, 2008;
Campbell et al., 2014; Maina et al., 2016, 2018).

Spatial distribution of fishing activities has been mainly
assessed for industrial fisheries at large spatial scales when the
data is available (e.g., Torres-Irineo et al., 2014). However,
for small-scale fisheries (SSF) which spread along a wide
range of landing sites, it has been difficult obtaining this type
of information, thus hindering the implementation of spatial
management, but also exposing these fisheries of being excluded
from new programs or plans (Daw, 2008; James et al., 2018). The
acquisition of spatio-temporal data to determine fishing grounds
in SSF has been challenging due to (1) a lack of systematic data
collection and limitations in sampling programs; (2) the wide
range of landing sites from dispersed fishing communities; (3)
the unreliability of some official records on catch and fleet size;
(4) the lack of remote tracking devices for this fleet (Metcalfe
et al., 2017; Chuenpagdee et al., 2019). These factors limit the
implementation of management programs, and this condition
gets aggravated by the malleability of these fleets, allowing fishers
to search for alternative target species or to exploit new fishing
grounds when catches decline, making it difficult to track changes
in the spatial extent and distribution of the fleet (McCluskey and
Lewison, 2008; Gonzalez-Mon et al., 2021).

Vessel Monitoring Systems (VMS) have been introduced to
support fishing authorities with enforcement and surveillance
(Lee et al., 2010), mainly on industrial and semi-industrial
fleets. The introduction of these systems has allowed access to
high-resolution data that helps to understand the dynamics of
fishing activities and the spatial distribution of the vessels among
alternative fishing grounds (Jennings and Lee, 2012; Katara
and Silva, 2017). This information can also offer an invaluable
opportunity to learn more about the spatial distribution of small-
scale fleets. Because VMS data mirror the vessels’ geographical
position, as well as speed and course, some methods have been
developed to identify the vessels’ activity, i.e., fishing, searching,
or transit (e.g., Joo et al., 2013; Behivoke et al., 2021). In some

cases, spatial effort distribution has been used to indirectly reflect
the spatial dispersion of target species (Bertrand et al., 2008).
Furthermore, the use of the Automatic Identification System
(AIS) has been implemented to monitor fishing effort allocation
(e.g., Natale et al., 2015). However, VMS and AIS monitoring
systems have been implemented in industrial fleets, and in limited
cases in SSF in developed countries (James et al., 2018). More
recently, some interactive platforms that combine tracking data
and catch data have been developed to support fishers and
managers decisions (e.g., D’Andrea et al., 2020; Tilley et al., 2020).
Unfortunately, some regions lack logistic or technical capabilities
to monitor small-scale fleets over a wide range of fishing areas to
obtain explicit spatial data (catch and effort).

In this line, the use of correlative models in combination
with information about fishing operations derived from tracking
data and environmental information offer a window to assess
potential distribution of species and the vessels targeting them
(D’Andrea et al., 2020).

The assumption here is, from an ecological perspective,
that fishers generally operate under uncertainty to locate the
target species, and as natural predators do (Bertrand et al.,
2007), their spatial behavior depends on identifying where
the target species are, which in turn can be constrained by
environmental conditions (Joo et al., 2014). Therefore, potential
fishing grounds can be inferred through the identification of
environmental suitable conditions that ensure location of targets.
Variables such as sea surface temperature, chlorophyll-a, net
primary production, oxycline depth, and bathymetry, have been
considered to determine suitable areas for fishing in different
areas (e.g., Joo et al., 2014; Lezama-Ochoa et al., 2016; Lan et al.,
2017; Damasio et al., 2020).

Fisheries Background
In the Southeastern Gulf of Mexico (SGoM: Tabasco, Campeche,
Yucatan, and Quintana Roo states), small-scale vessels (8 and
12 m long) represent 90% of the fishing fleet (Fernández
et al., 2011) where close to 46,000 people benefit directly from
jobs and food. Approximately 70% of the total catch comes
from the small-scale fleet, which targets a high diversity of
valuable species (Coronado et al., 2020). In the region, more
than 50 species are caught but the main species targeted,
which vary in proportion through the fishing season, include
Caribbean lobster (Panulirus argus), Mayan octopus (Octopus
maya), red grouper (Epinephelus morio), red snapper (Lutjanus
campechanus), sea cucumber (Isostichopus badionotus), Atlantic
seabob (Xiphopenaeus kroyeri), pink shrimp (Farfantepenaeus
duorarum), blue runner (Caranx crysos), common snook
(Centropomus undecimalis), and Atlantic sharpnose shark
(Rhizoprionodon terranovae) (DOF, 2018).

Fisheries policies and regulations for SSF are established
within fisheries management schemes and are applied
homogeneously in the region over the most important resources
(Coronado et al., 2020). These regulations include both
input controls (e.g., fishing licenses, seasonal closures, fishing
concessions, control of fishing gears) and output controls
(e.g., quotas, minimum legal size). Up to this point, there has
been no spatial management scheme for SSF in SGoM. For
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instance, in Tabasco and Campeche, where several oil platforms
operate, fishing is forbidden. Also, some marine protected areas
were established along the coast to protect mangroves and the
resources of the coastal lagoons, but no consideration about the
impact on fishing operations of SSF that take place nearby or
around them was made. Currently, the management schemes
in place, disregard the spatio-temporal distribution of the
small-scale fleet, mainly because of the limitations to monitoring
such many sites where it lands.

In 2010 a pilot VMS for small-scale fleets in SGoM was
developed and tested with 191 vessels in four states. This
pilot system facilitated learning about the extent of the spatial
distribution of small-scale vessels in the region, which was
unknown before. However, as stated earlier, even if VMS can
be useful to get georeferenced information regarding fishing
grounds and their characteristics (Joo et al., 2014), this does
not tell the whole story, as these data do not necessarily inform
about all vessels’ activities at sea. In this study, we aimed to
identify fishing grounds where fishers can potentially operate to
target their species. Assuming that fishers will respond to changes
in resource availability, and that resources will be available
where habitats are suitable given environmental conditions
(Bastardie and Brown, 2021; Marco et al., 2021). Hence the
data coming from VMS in combination with environmental
information could generate knowledge about potential fishing
grounds in fishing communities where this system was not
tested or implemented.

MATERIALS AND METHODS

Study Area
In the SGoM region, there are more than 25 coastal communities
where SSF operate over a mix of resources, and alternating
among target species throughout the year, depending on species
availability, regulations, and market demand (Coronado et al.,
2020). Small-scale vessels usually perform daily fishing trips
(∼9 h/trip). It is common to use GPS to register suitable
fishing grounds, and later, fishers return to these locations if
they get good catches. Furthermore, fishers adapt their fishing
operations in accordance with previous knowledge about the
seasonal availability of target species and their local conditions.
For instance, the small-scale vessels from Campeche and Yucatan
operate in shallow waters (up to ∼30 m depth) near to the
coastline (∼40 km). In Tabasco, the vessels perform their fishing
trips close to their base port or can move offshore, near to
the continental slope (∼200 m), but within a similar distance
from coastline than those of Yucatan, given the biogeographic
characteristics of the area and the constrains defined by the oil
operators. In Quintana Roo, vessels operate near to the coast
(∼10 km) because the continental shelf is narrow.

In the SGoM, there are two upwellings (uplift of nutrient-
rich and cold waters), one in the north and northeast of the
Yucatan shelf (Merino, 1997) and the other has been reported
along within the Tabasco and Campeche states (Zavala-Hidalgo
et al., 2006). Both upwellings are present throughout the year,
but the former is stronger from late spring to autumn, and the

latter intensifies from May to September. Nutrients and organic
matter are exported into Campeche Bank (toward Campeche
and Tabasco) by a westward wind-driven circulation (Zavala-
Hidalgo et al., 2006; Estrada-Allis et al., 2020). Furthermore,
during autumn-winter, sea surface temperature (SST) depicts
cold temperatures (around 23.5–26◦C) (Varela et al., 2018).

Collection of VMS Data and Observers
Onboard
The VMS data were collected from vessels departing from 12
coastal communities located in the states of Tabasco, Campeche,
Yucatán, and Quintana Roo in the SGoM (Figure 1). The
pilot monitoring system operated between November 2012
and June 2013. A total of 191 vessels participated in the test
and 1,608 fishing trips were recorded. Each vessel position
was recorded every 30 min from the start to the end of the
journey. Fishers’ participation within de pilot VMS derived from
informative workshops about this project carried out with fishing
cooperatives, then, VMS devices were installed on their vessels
with their approval. In addition, onboard observers recorded
GPS tracks of 14 fishing trips, and registered information
associated with the fishing activity along each fishing trip (i.e.,
fishing or transit).

Environmental Data
Environmental variables measures paired with the records of the
VMS were not available; thus we used indirect sources, such
as SST from MODIS Aqua satellite images (cell size of 4 km)1,
net primary production (NPP) from the Oregon State Ocean
Productivity standard products (cell size of 9 km)2. We acquired
information on NPP and SST on monthly basis from 2010 to
2014 to cover a period that accounted for the implementation of
the pilot VMS (i.e., environmental data before, during, and after
implementation). In addition, we used bathymetry (BAT) derived
from the General Bathymetric Chart of the Oceans (GEBCO, cell
size of 1 km)3. Furthermore, we estimated a distance grid (DIS)
from the coastline to each cell based on the bathymetry layer.
We assumed that SST and NPP were associated with the species
availability in the fishing grounds visited by fishers (Lezama-
Ochoa et al., 2016). Furthermore, we used BAT and DIS to
consider the observed spatial distribution of small-scale vessels.
The average monthly layers of NPP and SST are depicted in
Supplementary Figures 1, 2, respectively.

Classification of VMS Geographical
Positions
Pilot VMS did not provide information about vessels’ activities
at sea, therefore, in order to distinguish fishing activities from
those associated to vessel transit, we used onboard observers’ data
to compute at each vessel position: speed, heading, changes of
speed, and turning angles between the previous and the current
position, and between the current and the next position; we also

1https://giovanni.gsfc.nasa.gov/giovanni/
2http://sites.science.oregonstate.edu/ocean.productivity/
3https://www.gebco.net/
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FIGURE 1 | Fishing communities in Southeastern Gulf of Mexico where the study was undertaken. Orange dots represent the geographical coordinates acquired
from the pilot vessel monitoring system.

took into account the time of day when fishers performed their
fishing activities.

For the behavioral states’ classification (i.e., fishing or transit)
within recorded trajectories, we performed random forest models
that have been shown to work well to comply with this procedure
(Joo et al., 2013; Behivoke et al., 2021). Random forest (RF;
Breiman, 2001) is a supervised machine learning model with
a flexible structure that learns a classification rule to predict a
class (e.g., fishing/transit) from observed variables (e.g., speed,
heading, time). A random forest comprises a set of N decision
trees, where each tree discriminates patterns recursively in a
tree-like structure. Then, m variables (e.g., speed, heading, time
of day) are randomly selected among the subset of observed
variables at each tree node. In order to minimize the within-group
variance and maximize the between-group variance, data are split
following thresholds of those m variables. The output of each tree
corresponds to its classification in a given activity (i.e., fishing or
transit). Therefore, the result of the random forest is the statistical
mode of the classification outputs from N trees.

The RF model used 927 transit positions and 4,102 fishing
positions from onboard observers’ data to train and test the
algorithm. We randomly selected half of the trips to train the
model, and the other half was used as an independent dataset to
assess its performance. This procedure of random partitioning of

the data for training and validation of the model, was repeated
100 times. The performance was assessed with the specificity
and sensitivity indicators. The former indicates the proportion
of observed fishing activities that were well classified; the latter
indicates the proportion of observed transit activities that were
well classified. This analysis was performed with the R package
randomForest (Liaw and Wiener, 2002). We used the RF fitted to
classify geographical coordinates from the VMS into fishing and
transit activities.

Determining Fishing Grounds
For the determination of potential fishing grounds, we performed
correlative models in the BIOMOD platform (Thuiller et al.,
2009) implemented in the R statistical software (R Core
Team, 2020). BIOMOD intends to model species distribution
by examining species-environment relationships through
correlative models. Adapting to the fleet distribution, given
the assumptions referred to earlier, we used Generalized
Linear/Additive/Boosting Models (GLM, GAM, GBM,
respectively), Classification Tree Analysis (CTA), Artificial
Neural Network (ANN), Surface Range Envelope (SRE),
Flexible Discriminant Analysis (FDA), Multiple Adaptive
Regression Splines (MARS), and RF. These single-models,
need presence/absence data, thus, we assumed that fishing
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records can be considered as presences (expected to be suitable
for fishing), and transit records as absences (expected to be
unsuitable for fishing). Therefore, instead of estimating the
potential species distribution, we estimate the potential vessels’
distribution (i.e., fishing grounds) characterized by suitable
environmental conditions. A key feature of BIOMOD is that
it can generate ensemble models which can ameliorate the
prediction of distribution models (Araujo and New, 2007). The
nine single-models were run 100 times (i.e., 900 models were
built), for each run BIOMOD split the dataset to train (70%) and
test (30%) the models. This sort of cross-validation allows having
a quite robust test of the models when independent data are not
available (Thuiller et al., 2009).

We resized SST and NPP layers to cells of 1 km2 based on BAT
layer and we restricted depths to above 250 m. Then, the variables’
values were extracted from the raster layers’ cells corresponding
to the geographic coordinates of the VMS. Regarding SST and
NPP, we extracted their values on monthly basis according to
the VMS records’ dates, e.g., from SST and NPP raster layers
for November 2012, we extracted their values only for the VMS
geographical coordinates for the same month. This procedure
was carried out with the extract function from the raster R
package (Hijmans et al., 2020). Consequently, the input data
set to build the correlative models consisted of fishing/transit
activities (derived from the classification procedure above) and
their corresponding environmental variables’ values.

The ensemble models use a combination of the single-models,
choosing those with the model performance evaluation of a
metric threshold. This metric was the True Skill Statistic (TSS;
Allouche et al., 2006); it is defined as sensitivity + specificity
−1. Additionally, it is not dependent on prevalence and is
not affected by the size of the validation dataset (below 50
sample points), that can affect model accuracy. TSS ranges from
−1 to +1, where +1 points to perfect agreement (Allouche
et al., 2006). We used TSS to assess the performance of both
single-models and ensemble models. In addition to TSS, we
assessed the performance of ensemble models with sensitivity
and specificity indicators. The sensitivity indicates the probability
that the model correctly predicted presences (i.e., suitable
fishing grounds), while specificity indicates the probability that
the model accurately predicted the absences (i.e., unsuitable
fishing grounds).

Finally, we carried out by averaging monthly values of NPP
(Supplementary Figure 1), SST (Supplementary Figure 2), and
layers of BAT and DIS to predict the spatial distribution of
the fishing activities (i.e., fishing grounds). These predictions
were mapped to forecast potential fishing grounds given
environmental characteristics. Raster layers and predictions were
analyzed with the R package raster.

RESULTS

Classification of Fishing and Transit
Activities
From the RF results, both types of activities (transit and fishing;
see Supplementary Figure 3) were well identified by the model.

The fishing positions seem to be the easiest activity to identify
and showed a specificity indicator of 0.95 (±0.004 SE), while for
transit positions, the sensitivity was 0.72 (±0.006 SE).

Determination of Fishing Grounds From
Correlative Modeling Approach
From the 100 runs for each single-model, high TSS values were
observed with RF (average of 0.6 ± 0.0009 SE) (Figure 2). The
TSS metric threshold for single-models was 0.6. Thus, we used
47 RF models to build the ensemble models, where the Median
ensemble model showed the best performance (TSS = 0.801); this
model corresponds to the median probability over the selected
single-models. Sensitivity and specificity indicators were 0.931
and 0.9, respectively, which means that the Median ensemble
model performed well to correctly classify both: presences
(i.e., suitable fishing grounds) and absences (i.e., unsuitable
fishing grounds).

The highest variable importance values were with NPP (0.53)
and SST (0.518), followed by DIS (0.483), and BAT (0.206).
Contribution of NPP to the probability of occurrence of fishing
occurs below 1,000 mgC.m−2.day−1 (Figure 3A). The range
of SST values that contributes the most to the probability of
occurrence of fishing in the ensemble model was between 24.5
and 26◦C (Figure 3B). DIS values between 20 and 65 km
contribute the most to the probability of occurrence of fishing
for small-scale fleet (Figure 3C). BAT values from 20 m up to
100 m increase the probability of occurrence of fishing of this
fleet (Figure 3D).

Predicted Potential Fishing Grounds
We were able to predict the potential fishing grounds monthly,
derived from the ensemble median model. Overall, along the
coast of the SGoM, we found high probabilities to perform fishing
operations, i.e., fishing grounds (from Tabasco to Quintana Roo)
(Figure 4). The northeastern region of Yucatán Peninsula showed
suitable areas for fishing (high probability values of occurrence)
from November to April (Figures 4A–D,K,L). Another region
with suitable areas for fishing is offshore Tabasco, mainly from
December to May (Figures 4A–E,L). From November to May, the
areas of these potential fishing grounds, NPP and SST were below
1,500 mgC.m−2.day−1 and 26◦C, respectively (Supplementary
Figures 1, 2). From June to October, the probability of occurrence
of fishing zones range between 0.6 and 0.8 along the coast in the
study region (Figures 4F–J). These areas from June to October
showed low values of NPP but SST was warm (Supplementary
Figures 1, 2). Beyond 60 km, we did not identify suitable areas
for fishing for the small-scale fleet (Figure 4).

DISCUSSION

It has been reported that fishers’ behavior could be a result of
their adaptation for success when fishing (Salas and Gaertner,
2004; McCluskey and Lewison, 2008; Gonzalez-Mon et al.,
2021). Fishers’ behavior is not usually considered when analyzing
relationships between environmental conditions and target
species (Torres-Irineo et al., 2014; Naranjo-Madrigal et al., 2015).
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FIGURE 2 | Boxplot of the true skill statistic values from 9 single-models run 100 times each. ANN, Artificial Neural Network; CTA, Classification Tree Analysis;
FDA, Flexible Discriminant Analysis; GAM, Generalized Additive Model; GBM, Generalized Boosting Model; GLM, Generalized Linear Model; MARS, Multiple
Adaptive Regression Splines; RF, Random forest; SRE, Surface Range Envelope.

From an ecological perspective, fishers must operate under
uncertainty to locate the target species, as natural predators
do (Bertrand et al., 2007). In the case of small-scale fishing
vessels, fishers rarely have specialized technology to find their
target species, unlike industrial vessels. Therefore, the analysis
of monitoring systems and observers’ data could contribute to
improving the understanding of small-scale fleet dynamics at
a high resolution scale, generating different outputs that can
support management decision such as the definition of marine
protected areas, rights’ allocation by zone when applicable,
introduction of fishing refuges or solving potential conflicts
among different productive sectors (e.g., oil-fishing; fishing -
tourism).

Maina et al. (2016, 2018) identify the bottom fishing grounds
in a trawl fishery in Greece, showing the usefulness of data
coming from VMS. This type of analyses is less common in small-
scale fisheries (e.g., James et al., 2018). However, in a recent

study, promising results were shown by Damasio et al. (2020)
who used a Bayesian hierarchical spatial modeling approach to
characterize small-scale fleet fishing grounds. In this study, a set
of statistical methods allowed us to learn about the potential
fishing grounds visited by small-scale fleets in the SGoM by
using VMS data. The results showed that NPP and SST were
the most important variables associated with the potential fishing
grounds selected by the small-scale fishing fleet in the SGoM.
Environmental variables have been declared as relevant with
the spatio-temporal distribution of species targeted commercially
(Lan et al., 2017; Murillo-Posada et al., 2019). The SST has
been considered as a key variable regarding species distribution
in marine ecosystems, while NPP refers to available carbon for
consumption by the heterotrophic community and is estimated
from a chlorophyll-based model (e.g., Arrizabalaga et al., 2015;
Lezama-Ochoa et al., 2016). Thus, the association with suitable
fishing grounds makes sense, especially in the case of benthic
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FIGURE 3 | Predicted response curves of SST (A), NPP (B), DIS (C), and BAT (D) covariates. Each figure represents the expected contribution to the probability of
occurrence of fishing activities while the other covariates were set constant to their mean value.

and demersal species, as the main species caught in the studied
region. Unlike planktivorous species, these species did not depict
high abundances with NPP peaks. Lan et al. (2017) reported that
high catch rates occur in areas with intermediate productivity,
and hence there is a positive association between high target
species abundance and high chlorophyll concentrations in a time-
lagged correlation. This can explain that low values of NPP
contribute to high probabilities of fishing grounds occurrence in
the present study. Our results related to SST and NPP seem to
be supported by physical and biogeochemical processes reported
before in the area. Estrada-Allis et al. (2020), through a coupled
physical-biogeochemical model, analyzed the nitrogen budget in
the Yucatan shelf, and reported that during autumn and winter,
when the upwellings weaken, there is an efficient biogeochemical
cycle in which dissolved inorganic nitrogen (key factor to
primary productivity) is highly consumed by phytoplankton and
then becomes particulate organic nitrogen. Furthermore, during
autumn-winter (where the ensemble model depicted suitable
fishing grounds), SST depict temperatures around 23.5 and 26◦C
(see Supplementary Figure 2; Varela et al., 2018).

In the Yucatan shelf (with a wide extension), the distance
traveled from the coast to fishing grounds is a limiting factor
for the small-scale vessels, due to their technical characteristics,
such as low motility or low investment to perform long fishing
trips and also due to fuel costs (Salas et al., 2019). However,
an increase in the distance fishers venture from the coast has
been reported through the years due to a decrease in target
species availability in Yucatan (Saldaña et al., 2017), such a
pattern is common in SSF (e.g., Damasio et al., 2020). This
is consistent with our results, as the most suitable fishing
grounds can be located far from the coast. Depth (associated
with distance in the continental shelf) has been reported as a
limiting factor for the allocation of the fishing effort of small
vessels, limiting the range of operation (e.g., Saldaña et al.,
2017). Our results showed that depth seemed less important
to characterize the suitable fishing grounds. Therefore, fishers
from the different states need to adapt to their particular
conditions, for instance, vessels in Tabasco usually operate in
areas near to the shelf break, while in Yucatan, they do it in
shallower waters.
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FIGURE 4 | Monthly ensemble model forecasting (median ensemble model; A-L) for potential fishing grounds. Color scale represents the probability of occurrence
of fishing activities given certain environmental conditions; the darker the color, the higher the probability.

The access to detailed information from the VMS allowed
us to disentangle evidence of fishing operations of SSF in the
region. If well, we addressed only a part of the complexity
associated with the SSF using the RF model to classify fishing
and transit positions of vessels, it is still necessary to increase
the number of trips with onboard observers to improve the
analytical forecasting capacity of the approach used in this
study. Lastly, it is important to indicate that from the pilot
VMS data, we could not infer which species were caught

or the fishing gear used; thus, incorporation of these data
could help to analyze such relationships (fishing gears-target
species) and add more detail to differentiate the potential fishing
grounds according to different target species (e.g., D’Andrea
et al., 2020; Tilley et al., 2020). Despite the limitations in our
study, our results showed the usefulness of VMS for SSF to
help understand the fleet dynamics and provided insights into
the potential fishing grounds available in the SGoM region
for the first time.
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Generally, SSF in Mexico have not been fully integrated within
marine spatial planning, partly because of the lack of explicit
spatial data, fishing operations are variable in time and space,
and spatial distribution patterns of species is dynamic (e.g.,
Trouillet et al., 2019). In this context, the results presented here,
make evident the usefulness of the VMS data, which paired
with analytical tools, can help to provide sound information
for fisheries decision-makers, for implementation of fisheries
programs such as the fishing refugees (CONAPESCA, 2018), or
even within the context of countries moving toward the blue
economy, with the potential introduction of wind energy in the
region and other activities, so the government agencies require
relevant information to implement marine spatial planning in a
harmonious way in order to enhance communities’ livelihoods
and preserve ecosystem services (Janßen et al., 2018; Morzaria-
Luna et al., 2020).

Nowadays, the implementation of a VMS in the region is
challenging, from gaining the acceptance of fishers to issue of
the costs involved in the implementation of the system and its
maintenance, especially given the size of the fleet (in the region
there are around 20,000 small-scale vessels; Coronado et al.,
2020). Thereby, a VMS for SSF demands the development of a
cost-effective platform for daily catch recording in an integrative
way, including the type of gears and species captured whenever
possible (e.g., D’Andrea et al., 2020; Tilley et al., 2020). This
type of data could be coupled with that obtained from onboard
observers, and a program of monitoring systems in the coast,
thus the acquisition of explicit spatial data from the small-
scale vessels (Russo et al., 2018). Studies that jointly integrate
fishing methods, species, catch, and location can be merged
with VMS data and allow the identification of management
units (Campbell et al., 2014; Russo et al., 2015; Salas et al.,
2019; Méndez-Espinoza et al., 2020). These management units
can be used with correlative models to predict potential fishing
grounds per unit. With these results as an incentive, it is expected
that both fishers and managers can see the potential benefits
from implementing monitoring systems throughout the analyzed
region and elsewhere.
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