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ABSTRACT OF THE DISSERTATION

TEMPORAL AND CAUSAL INFERENCE WITH LONGITUDINAL MULTI-OMICS

MICROBIOME DATA

by

Daniel Ruiz-Perez

Florida International University, 2020

Miami, Florida

Professor Giri Narasimhan, Major Professor

Microbiomes are communities of microbes inhabiting an environmental niche. Thanks

to next generation sequencing technologies, it is now possible to study microbial commu-

nities, their impact on the host environment, and their role in specific diseases and health.

Technology has also triggered the increased generation of multi-omics microbiome data,

including metatranscriptomics (quantitative survey of the complete metatranscriptome of

the microbial community), metabolomics (quantitative profile of the entire set of metabo-

lites present in the microbiome’s environmental niche), and host transcriptomics (gene ex-

pression profile of the host). Consequently, another major challenge in microbiome data

analysis is the integration of multi-omics data sets and the construction of unified mod-

els. Finally, since microbiomes are inherently dynamic, to fully understand the complex

interactions that take place within these communities, longitudinal studies are critical. Al-

though the analysis of longitudinal microbiome data has been attempted, these approaches

do not attempt to probe interactions between taxa, do not offer holistic analyses, and do not

investigate causal relationships.

In this work we propose approaches to address all of the above challenges. We propose

novel analysis pipelines to analyze multi-omic longitudinal microbiome data, and to infer

temporal and causal relationships between the different entities involved. As a first step,

we showed how to deal with longitudinal metagenomic data sets by building a pipeline,

PRIMAl, which takes microbial abundance data as input and outputs a dynamic Bayesian
vi



network model that is highly predictive, suggests significant interactions between the dif-

ferent microbes, and proposes important connections from clinical variables. A significant

innovation of our work is its ability to deal with differential rates of the internal biological

processes in different individuals. Second, we showed how to analyze longitudinal multi-

omic microbiome datasets. Our pipeline, PALM, significantly extends the previous state

of the art by allowing for the integration of longitudinal metatranscriptomics, host tran-

scriptomics, and metabolomics data in additional to longitudinal metagenomics data. The

predictive capability of PALM is on par with that of the PRIMAl pipeline while discov-

ering a web of interactions between the entities of far greater complexity. An important

innovation of PALM is the use of a multi-omic Skeleton framework that incorporates prior

knowledge in the learning of the models. Another major innovation of this work is devising

a suite of validation methods, both in silico and in vitro, enhancing the utility and validity

of PALM. Finally, we propose a suite of novel methods (unrolling and de-confounding),

called METALICA consisting of tools and techniques that make it possible to uncover

significant details about the nature of microbial interactions. We also show methods to

validate such interactions using ground truth databases. The proposed methods were tested

using an IBD multi-omics dataset.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Goals

Microbiomes are communities of microbes inhabiting an environmental niche. The

study of microbial communities offers a powerful approach for inferring their impact on

the host environment, and their role in specific diseases and health. Metagenomics in-

volves analyzing sequenced reads from the whole metagenome in a microbial community

in order to determine a detailed abundance profile of microbial taxa [139]. More recently,

additional types of biological data are being generated in microbiome studies, including

metatranscriptomics, which involves surveying the expression of the genes in the complete

metatranscriptome of the microbial community [12], metabolomics, which involves pro-

filing the concentrations of the entire set of small molecules (metabolites) present in the

microbiome’s environmental niche [182], and host transcriptomics, which provides infor-

mation about the expression levels of host genes [23].

A major challenge in microbiome data analysis is the integration of multi-omics data

sets [124]. Most multi-omic studies focus on a separate analysis of each omics data set

without building a unified model [14]. There have been some attempts [202, 99, 201,

203, 92] and tools to facilitate the analysis [16, 150], but there is still much room for

improvement regarding reproducibility, flexibility, and biological validity [124, 22, 184]

Deep learning approaches for integrating multi-omics [98, 111] have also been devel-

oped, but they are either not interpretable, or limited to predicting just one of the omics.

This, together with their computational cost prevents these models from being useful at pro-

viding insights into the interplay of the different omics entities. Even Partial Least Squares

models have been used to facilitate this integration [49], but they have their own set of

limitations depending on the underlying data generation model, and are prone to provide

spurious results when applied to high-dimensional data [145].
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In addition, microbiomes are inherently dynamic, and so to fully understand the com-

plex interactions that take place within these communities, longitudinal microbiome data

appears to be critical [57]. Many attempts have been made to analyze data from longitu-

dinal studies [86, 92, 203]; however, these approaches do not attempt to study interactions

between taxa. An alternative approach involves the use of dynamical systems such as the

generalized Lotka-Volterra (gLV) models [172, 58], however the large set of parameters in

these models diminishes their utility for probabilistic inference.

Finally, it is unclear if the interactions inferred by some of these methods represent

a true and direct causal interaction, and not merely the result of a statistical correlation

resulting from some indirect causal relationship or model overfitting. Microbiomes are

complex environments with many subtle relationships, while the inference of community

profiles relies on noisy data from error-prone technologies, and has to contend with a host of

hidden confounders that may be hard or impossible to measure, let alone be identified. The

jump to infer causality is a natural next step in inferring multi-omic interactions, and the

lack of research in this area is striking. Most of the causal microbiome literature focuses on

the causal impact of the microbiome to health or disease, but not on the causal interactions

between these microorganisms [69, 97, 151, 137].

1.2 Research Contributions

The contributions of this dissertation include a computational pipeline that enables the

integration of data across individuals for the reconstruction of dynamic models from time

series microbiome data. This pipeline was then extended to allow for the integration of

metagenomics, metatranscriptomics, host transcriptomics, and metabolomics longitudinal

data under a unified framework. Where possible, the interactions predicted by it were

validated both in silico and in vitro. Finally, a suite of methods for the analysis and aug-

mentation of causal networks was developed with the goal of addressing some of the most

fundamental issues in causal inference.
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• Longitudinal microbial network inference (PRIMAl). We developed a computa-

tional pipeline that enables the integration of data across individuals for the recon-

struction of dynamic models from time series microbiome data. Our pipeline starts

by aligning the data collected for all individuals. The aligned profiles are then used

to learn a dynamic Bayesian network which represents causal relationships between

taxa and clinical variables. Testing our methods on three longitudinal microbiome

data sets we show that our pipeline improves upon prior methods developed for this

task. We also discuss the biological insights provided by the models which include

several known and novel interactions.

• Longitudinal multi-omic network inference (PALM). A key challenge in the anal-

ysis of longitudinal microbiome data is the inference of causal interactions between

microbial taxa, their genes, the metabolites they consume and produce, and host

genes. To address these challenges we developed a computational pipeline PALM

that first aligns multi-omics data and then uses dynamic Bayesian networks (DBNs)

to reconstruct a unified model. Our approach overcomes differences in sampling and

progression rates, utilizes a biologically-inspired multi-omic framework, reduces the

large number of entities and parameters in the DBNs, and validates the learned net-

work. Applying PALM to data collected from inflammatory bowel disease (IBD)

patients, we show that it accurately identifies known and novel interactions. Targeted

experimental validations further support a number of the predicted novel metabolite-

taxa interactions.

• Longitudinal causal multi-omic network inference (METALICA) In an effort to

improve the state of the art in inferring meaningful multi-omic interactions, we ad-

dressed some of the most fundamental issues in causal inference. We developed a

suite of tools and techniques that discover strong interactions by uncovering hidden

multi-omic confounders by the method we called de-confounding, find the actual

reason two taxa interact with each other and how they do it by a process we called
3



unrolling, and finally automatically validate the feasibility of such interactions using

ground truth databases. We applied our methods to networks learned by causal al-

gorithms such as Tigramite and TETRAD, which we augmented with our restriction

framework and alignment techniques, among other improvements. The dataset used

was an IBD multi-omic dataset, and the findings were used to compare the inferences

of the various methods against the ones of PALM.

1.3 Road Map for the Dissertation

After setting up the stage for the drive in this introductory chapter, the rest of the journey

is organized as follows.

In Chapter 2, we will introduce the reader to all notations, definitions, and necessary

terminologies. In the process, we will also define all basic concepts, assumptions, and

general methods that are going to be used throughout this dissertation.

Chapter 3 provides the mathematical formulation necessary to understand Bayesian

networks, causality algorithms, and key bioinformatics techniques used. It also contains

a biological literature survey on microbial interaction inference and a description of the

different omics used in this dissertation.

Chapter 4 contains a detailed explanation of dynamic Bayesian networks (DBNs), from

the model construction to the parameter inference. In addition,we it contains a summary of

the contributions performed in this dissertation to the area of DBN learning.

Chapter 5 contains the work carried out on the area of longitudinal microbial network

inference. It contains the necessary specific background, and a comprehensive description

of the datasets and methods used and developed. Finally, the results of the application of

the pipeline developed are presented and discussed in detail.

Chapter 6 contains a description of PALM, the pipeline developed to integrate multi-

omic longitudinal data and carry out microbial interactions inference. We set the stage

with the appropriate background, a description of the dataset used, and the computational
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contributions. We then present the results of the execution of such pipeline, and validate its

findings both in-silico and in-vitro. We finally discuss the findings in detail.

Chapter 7 describes the work on the inference of causal interactions from multi-omic

data sets. We introduce some important problems in causal inference and present our pro-

posed methods to help address them in the multi-omic context. We then test our methods

on the networks learned by three state-of-the-art methods, and use them to perform a com-

parison among the tools.

We close the dissertation in Chapter 8 with a summary of the dissertation, together with

conclusions and suggestions for future work.
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CHAPTER 2

NOTATION AND TERMINOLOGY

2.1 Variables

A random variable (or just variable) is a numerical description of the outcome of

a statistical experiment. It may assume multiple values from its domain. Random vari-

ables are denoted by uppercase letters and their values are denoted by lowercase letter. For

example, when random variables X,Y,Z are instantiated, their values are denoted by cor-

responding lower case letters such as x, y, z respectively. For our purposes, these variable

can be discrete- or continuous-valued. A discrete variable can only take on values from a

finite or infinite set (for example, a random variable representing disease status can take

on one of two values {healthy, diseased}). Continuous random variables may assume any

value in some interval on the real number line (for example, relative abundance of a par-

ticular microbe). Response (dependent) variables are related to the outcome of a study

or experiment, and are a function of the explanatory (independent) variables of the sys-

tem. Confounding is the situation where the effects of two or more explanatory variables

are not separated. Because of this, any relation between an explanatory variable and the

response variables (or other explanatory variables) may be due to some other variable not

accounted for in the study. A confounding variable (or confounder) is any variable that

causes spurious associations. It is an extraneous variable that was not appropriately con-

trolled for [70], that is associated with both the response and explanatory variables being

contemplated [181]. A hidden (lurking, or latent) variable is an explanatory variable

that was not considered in the study, but that affects a response variable [175, 159]. When

a hidden variable also acts as a confounder, it is called a hidden confounder.
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2.2 Probability

Probability is the measure of how likely it is for a random variable to take a specific

value (event). The event X = 0.3 means that the random variable X took the value 0.3. The

probability of an event is always between 0 and 1, and the probability measure is denoted

by P. The conditional probability is the specific probability of an event given that some

other event has occurred. Conditional probability of an event X = x given another event

Y = y is denoted as P(X = x | Y = y).

To understand this dissertation it is important to understand the Bayesian approach to

probability. The Bayesian probability of an event X = 3 is a person’s degree of belief

in that event. While the classical probability is a physical property of the world (e.g., the

probability of getting a three on a die throw), the Bayesian probability is a property of the

person who assigns that probability (e.g., your degree of belief that you will get a three

when you throw the die) [64].

2.3 Basic Statistical Concepts and Notation

• The expected value of a variable X, denoted by E(X), is intuitively the mean of a

large number of independent realizations of X. It is calculated by

E(X) =
∑

x

P(X = x). (2.1)

• The variance of a variable X, denoted by Var(X) or σ2
X, measures how the values of

X are spread out from their mean. It’s calculated by

σ2
X =

∑
xi − µ

n − 1
= E[(X − µ)2]. (2.2)

where µ is the mean of X.
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• The standard deviation σX of random variable X is the square root of its variance.

• The covariance of X and Y , denotes as σXY , is a measure of the degree to which two

variables X and Y vary together. Formally,

σXY = E[(X − E(X))(Y − E(Y))], (2.3)

• The correlation or dependence between two variables is any statistical association

between them. It usually refers to the degree to which two variables are linearly

related. There are many ways of calculating correlation, but the simplest is probably

to directly use the covariance between the variables the following way:

ρXY =
σXY

σXσY
. (2.4)

However, there are many different measures of correlation, including the Pearson

correlation coefficient [127], Spearman correlation coefficient [169], Local Simi-

larity Analysis [144], SparCC [53], Maximal Information Coefficient [138], and

Bray–Curtis distance [20].

2.4 Probability Distributions

The probability distribution of a discrete random variable X is the set of probabilities

of all the different outcomes of X. If the outcomes of X are 1, 2, and 3 then one possible

probability distribution of X is P(X = 1) = 0.2, P(X = 2) = 0.45 and P(X = 3) = 0.35. The

sum of all probabilities from a probability distribution has to be 1.

The probability distribution of a continuous variable X is expressed as a probability

density function (PDF), denoted by fX.
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Because the probability of a continuous variable X taking a specific value is 0, the

PDF is used to specify the probability of the value of the random variable falling within a

particular range. This probability is given by the integral of fX over that specific range. The

area under the entire curve represents the probability of X taking any value, and is therefore

defined as

P[−∞ ≤ X ≤ ∞] =

∫ ∞

−∞

fX(x) dx = 1. (2.5)

The probability distribution most commonly used in this dissertation is the Gaussian or

Normal distribution, denoted as X ∼ N(µ, σ2) for the variable X. Its calculated as:

f (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

, (2.6)

where µ is the mean, σ is the standard deviation, and σ2 is the variance of the distribution.

When we are interested in modelling the probability distribution, or PDF of more than

one random variable, we use the notion of a joint probability distribution, or joint PDF,

which gives the probability that each of the random variables take some value in a particular

range.

2.5 Bayes’ Theorem

Arguably the most important theorem in this dissertation, Bayes’ theorem describes the

probability of an event conditioned on relevant prior knowledge for that event. Formally, it

is written as follows.

P(A | B) =
P(B | A)P(A)

P(B)
. (2.7)

Note that P(A | B) is called the posterior, P(B | A) is referred to as the likelihood, P(A) is

the prior, and P(B) is the marginal likelihood.
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2.6 Conditional Independence

Two variables X and Y are independent (denoted by X ⊥⊥ Y) if the probability of one

variable is the same as its probability when conditioned on the other. Formally,

X ⊥⊥ Y ⇐⇒ P(X | Y) = P(X). (2.8)

Note that this is a symmetric relation, meaning that X ⊥⊥ Y ⇐⇒ Y ⊥⊥ X. Two variables

X and Y are conditionally independent given another variable Z, if fixing Y does not add

any new information about X when Z is instantiated. Formally,

X ⊥⊥ Y | Z ⇐⇒ P(X | Y,Z) = P(X | Z)⇐⇒ P(Y | X,Z) = P(Y | Z). (2.9)

2.6.1 Conditional Independence Tests

Two of the most common conditional independence tests are the exact t test and the

Fisher’s Z test, which are based on correlation. There are multitude of other tests based on

other concepts, and their applicability highly depends on the underlying data distribution.

If X and Y are two continuous random variables and Z is a set of continuous variables,

then conditional independence tests between X,Y given Z can be written using the partial

correlation coefficient ρXY |Z [159].

The exact t test for Pearson’s correlation, which is distributed as a Student’s t with

n − |Z| − 2 degrees of freedom [159] is defined by:

t(X,Y | Z) = ρXY |Z

√
n − 2

1 − ρ2
XY |Z

, (2.10)

On the other hand, Fisher’s Z test [159] is calculated using the following formula:
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FisherZ(X,Y | Z) =

√
n − |Z| − 3

2
log

1 + ρXY |Z

1 − ρXY |Z
. (2.11)

2.7 Regression

Regression is a statistical process to estimate the functional relationship between a de-

pendent variable Y (outcome, or response variable) and one or more independent variables

X1, X2, . . . , Xn (predictors, covariates, or features). In this dissertation we mainly focus on

the concept of linear regression, where the goal is to find a linear function that describes

the output Y in terms of the values of the predictors such that the sum of squared errors is

minimized. When there are more than one predictor variables, it is referred to as multiple

linear regression. A regression model is expressed as follows.

Y = β0 + β1X1 + β2X2 + · · · + βkXn + ε, (2.12)

where βi ∈ R is the regression coefficient of Xi, i = 1, 2, . . . , n, and ε is the error term.

The best known way of estimating the regression coefficients is by a process known as

the method of least-squares. It makes the following assumptions:

• Weak exogeneity: Assumes that the predictor variables are error-free, and can be

treated as fixed values, rather than random variables.

• Linearity: Assumes the mean of the outcome variable is a linear combination of the

regression coefficients and the predictors.

• Constant variance (homoscedasticity): Assumes that the variance of the errors of

the response variable is the same for all of its values. In practice, this assumption

doesn’t usually hold.

• Independence of errors: Assumes the errors of the outcome are uncorrelated with

each other.
11



• Lack of perfect multicollinearity in the predictors: Assumes that there is no single

covariate that can be linearly predicted from the others with a substantial degree of

accuracy.

The method of least-squares calculates the regression coefficients by minimizing the

sum of the squares of the residuals for each point. The residual is the difference between

an observed value and the fitted value provided by the model.

The least-squares solutions of Ax = b are the solutions of AT Ax = AT b, and the re-

gression coefficients can be found by solving x̂ = (AT A)−1AT b, where x̂ are the estimated

regression coefficients, and A is the m×n matrix whose columns correspond to the n predic-

tor variables and the m rows correspond to the samples or realizations. Finally, the column

vector b contains the values of the outcome variable for the m realizations.

2.8 Time Series Correlations

The Crosscorrelation (sliding dot product) is the correlation between different time

series. It is a measure of similarity of two series as a function of the displacement of one

relative to the other. The Autocorrelation (serial correlation) is the correlation between

a signal and itself at different time points (lags). It is thus the crosscorrelation of a time

series with itself. The Partial correlation is the correlation between the same or different

time series with the effect of lower order correlations removed. It controls for other random

variables, by removing the effect of confounding variables, and it is calculated as follows:

ρXY ·Z =
ρXY − ρXZρZY√

1 − ρ2
XZ

√
1 − ρ2

ZY

. (2.13)

2.9 Graphical Models

An undirected graph is an ordered pair G = (V, E), where V = {v1, v2, . . . , vn} is the

collection of elements called vertices or nodes, and E ⊆ {(vi, v j) | (vi, v j) ∈ V2 and vi , v j)}12



is a set of unordered pairs of vertices, called edges (or links, or arcs) connecting the vertices.

Two nodes are called adjacent in a graph G if there is an edge between. A path p from X

to Y in G is a sequence of distinct nodes (X = Z1, . . . ,Zm = Y) such that Zi and Zi+1 are

adjacent in G for all i ∈ {1, . . . ,m − 1}. X and Y are called the endpoints of the path p. If

there is a path from X to Y , then X and Y are said to be connected. A path where the two

endpoints are the same vertex is called a cycle.

When the edges correspond to ordered pairs of vertices, the resulting graph is a directed

graph. A path is called a directed path from Z1 to Zm if Zi → Zi+1 for all i ∈ {1, . . . ,m − 1}

[129]. If there is a directed path from X to Y , then Y is said to be reachable from X. If

there is a directed edge ez from Xi to X j, we call Xi a parent of X j, and X j the child of

Xi. Furthermore, we define PaG(Xi) ⊆ V as the set of parents of Xi in G. The number of

incoming edges to a vertex is called the indegree (number of parents), and the number of

edges leaving the vertex is its outdegree (number of children).

A directed acyclic graph (DAG) is a directed graph with no directed cycles, i.e., no

collection of edges (e1, e2, . . . , en) in the DAG with a vertex sequence (v1, v2, . . . , vn, v1).

A related notion is that of a probabilistic graphical model (PGM), which is a DAG

that provides a convenient graphical representation of the structure of the joint probability

distribution it represents. Nodes represent random variables, while directed edges capture

conditional dependence relationships between the random variables. There are two main

types of PGM; Directed Graphical Models, otherwise known as Bayesian Networks (see

Section 3.1), and Undirected Graphical Models or Markov Random Fields [90].

A path p from nodes A to B is d-connected with respect to a set of nodes S if and only

if the following two conditions are satisfied:

1. For every chain X → Z → Y or fork X ← Z → Y on path p, the middle node Z < S.

2. For every collider X → Z ← Y on path p, either the middle node Z or one of its

descendants is in set S.
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A and B are d-separated with respect to S if they are not d-connected with respect to S.

This is a way of linking conditional independence with graphical representation [125]. If

X → Z and Y → Z are edges in graph G, and X and Y are not adjacent, then the triple

(X,Z,Y) is called a V-structure. The node Z is referred to as a collider in the V-structure,

and it is also a collider on any path p that uses the edges of the V-structure. A path p with

no collider is called an unblocked path.

Next we define the concept of the Y-structure. Let X → Z ←− Y be a V-structure. If

there is a node W such that there is an edge from Z to W, and no edges from X or Y to W,

then the nodes (X,Y,Z,W) form a Y-structure.

14



CHAPTER 3

BACKGROUND AND REVIEW

3.1 Bayesian Networks

A Bayesian Network (BN) [126, 35] is a PGM that represents the joint distribution

of a set of interdependent random variables. BNs allow to efficiently represent the joint

probability distribution of all the variables as the products of conditional probability distri-

butions [156]. Formally, a BN is represented by a DAG, G = (V, E), where V represents the

the set of n random variables {X1, X2, . . . , Xn}, and E represents the dependencies between

those variables. In addition to its graphical structure, the BN also contains a collection of

conditional probability tables for each node, since each random variable Xi has an associ-

ated probability distribution given its parents. The modifications that allow a BN to model

longitudinal data and make temporal inferences are called Dynamic Bayesian Networks

(DBNs), which are explained in detail in Chapter 4.

Under the first-order Markov assumption, Xi only depends on PaG(Xi), and is either

marginally or conditionally independent of all other variables. Thanks to this Markov prop-

erty, we can decompose the global (joint) probability distribution P(X) as the product of all

local conditional probabilities.

We say that a joint probability distribution factorizes with respect to the DAG G if:

P(X1, X2, . . . , Xn) = P(X1 | PaG(X1)) · P(X2 | PaG(X2))·, . . . , ·P(Xn | PaG(Xn)), (3.1)

which holds only under the Markov assumption. Then, we can compactly express the

global probability distribution of all variables of the BN as:

P(X) =

n∏
i=1

P(Xi | PaG(Xi)). (3.2)
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The explicit representation of G in Eq. 3.2 provides many advantages in terms of manage-

ability and computation cost. Take for example a simple case where each of the n vari-

ables are binary; a joint distribution would require the specification of a table of 2n − 1

entries, which are the probabilities of the 2n different combinations of assignments of

X1, X2, . . . , Xn. Thus the mere specification of the joint distribution becomes intractable as n

grows. The compact representation of the joint distribution as the product of the conditional

probabilities, conditioned on the parents, causes great savings in terms of computation and

memory.

The last concept that is important for the understanding of BNs is that of the Markov

blanket of a node MB(Xi); the set containing the node’s parents, children, and other parents

of its children. An important property is that any node is conditionally independent of every

other node in G given its Markov blanket. Formally, Xi ⊥⊥ X \ MB(Xi) | MB(Xi).

The BN formalism that we will be using through out this dissertation is that of condi-

tional Gaussian Bayesian network (CGBN), or mixed BN, where the nodes may represent

a mix of continuous and discrete random variables [65, 36, 105]. The main assumption is

that nodes representing continuous random variables follow Gaussian distributions that can

be expressed as a linear combination of the parent nodes with continuous distributions and

with parameters conditioned upon the values of any discrete parents. In this formalism,

discrete nodes can have continuous parents, but the discrete nodes cannot have continuous

parents, although the joint distribution can still be captured by the network. Formally, in

a CGBN, the set of nodes V is partitioned into a set of discrete nodes ∆, and a set of con-

tinuous nodes, Γ. Associated with each Γi ∈ Γ of the continuous nodes are conditional

Gaussian (CG) regressions, one for each configuration in the state space of its discrete

parents PaG(Γi).
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3.2 Bayesian Networks Learning

Learning a BN has two parts; structure learning, which infers all the statistical connec-

tions between the nodes, and parameters learning, which assigns a strength or statistical

measure to those connections. Cooper [33] showed that learning a BN is an NP-hard prob-

lem, therefor efforts should be placed in learning an approximate solution instead of the

optimal BN for a given problem. Moreover, Dagum and Luby [40] showed that approxi-

mating probabilistic inference is also NP-hard, so we should find ways to efficiently restrict

the search space to infer a BN in reasonable time.

3.2.1 Constraint-based Structure-learning Methods

Constraint-based algorithms stem from the inductive causation (IC) algorithm [188]

and the SGS algorithm [170] depicted in Algorithm 1. These procedures assume that graph-

ical separation and probabilistic independence imply each other (faithfulness assumption,

Section 3.4.1). Then they apply a series of conditional independence tests to learn the

structure of the network and a series of rules to learn the orientation of the edges (the

causal direction).

Algorithm 1: SGS algorithm [170]
Input: V , vertex set; Conditional independence information or conditional
independence test

Output: A directed or partially directed acyclic graph
Form the complete undirected graph H on the vertex set V .
For each pair of vertices A and B, if there exists a subset S of V \ {A, B} such that A
and B are d-separated given S, remove the edge between A and B from H.

Let K be the undirected graph resulting from Step 2. For each triple of vertices
(A, B,C) such that the pair (A, B) and the pair (B,C) are each adjacent in K, but
the pair A and C are not adjacent in K, orient A− B−C as A −→ B←− C if and only
if there is no subset S of {B} ∪ V \ {A,C} that d-separates A and C.

while more edges can be oriented do
If A −→ B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B −C as B −→ C. If there is a directed path from A
to B, and an edge between A and B, then orient A − B as A −→ B.

end
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3.2.2 Hybrid Structure-learning Methods

These algorithms combine constraint-based and score-based algorithms (described be-

low in Section 3.2.3) with the hope of learning better networks more efficiently. Two of

the most famous hybrid learning algorithms are Sparse Candidate [54] and Max-Min Hill-

Climbing [180]. Both these algorithms have mainly two steps: restrict and maximize. In

the restrict step, the candidate set for the parents of each node is reduced from the whole

node set to a small subset. The maximize phase, on the other hand, optimizes the score

among the available candidate networks to find the optimal DAG in the space restricted in

the maximize step [158].

3.2.3 Score-based Structure-learning Methods

The score-based approach considers structure learning as a search problem; it uses a

score to evaluate how well the network fits the data, and then searches over the space of

DAGs for a structure that optimizes the score. The score for a BN structure G with data D

can be broadly described as:

S core(G : D) = LL(G : D) − φ(|D|)‖G‖, (3.3)

where LL(G : D) is the log-likelihood of the data given the network, and is defined as

log P(D | Θ,G), Θ denotes the set parameters of the model, and φ(·) represents the penalty

term. Given that every edge added will improve the log-likelihood by at least a small quan-

tity, we would end up with a fully connected network without the penalty term. The penalty

term increases with the number of parameters (edges) in G. The two most commonly used

scoring functions are the Bayesian Information Criteria (BIC) [155], where the penalty

term used is φ(t) = 1 and the Akaike Information Criteria (AIC) [2], where φ(t) = log(t)/2.
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Bayesian Dirichlet (BD) represents yet another family of score functions [34]. The

probability of the data given the network structure is given by:

P(D | G) =

∫
P(D | G,Θ)P(Θ | G) dΘ, (3.4)

where Θ is the set of parameters of the model. Note that as in Bayesian approach, there is

considerably flexibility in assuming the prior probability, P(Θ | G). When we assume that

the prior probability follows a Dirichlet distribution, we have:

P(D | Θ) =

N∏
Xi

∏
PaG(Xi)

 Γ(
∑

j N′Xi,PaG(Xi), j
)

Γ(
∑

j N′Xi,PaG(Xi), j
+ NXi,PaG(Xi), j)

∏
j

Γ(N′Xi,PaG(Xi), j
+ NXi,PaG(Xi), j)

Γ(N′Xi,PaG(Xi), j
)

 ,
(3.5)

where Ni,PaG(Xi), j is the count of variable i taking value j with parent configuration PaG(Xi),

N′ represents the counts in the prior (equivalent sample size), and Γ() is the standard

Gamma function. With a prior for G, P(Θ) (a uniform one, for example), the BD score

can be defined as: log P(D|Θ) + log P(Θ).

We do not need to add an explicit penalty term, since the BD score implicitly penalizes

complicated structures by integrating over the parameter space. Since specifying all the

hyperparameters, N′i,PaG(Xi), j
, is non-trivial, the BD equivalent score (BDe) was developed

[66] assuming likelihood equivalence (P(Θ | G) = P(Θ | G′)) and that P(G) > 0 for any

complete DAG G. Buntine [21] proposed a particular variation of BDe called Bayesian

Dirichlet equivalent uniform (BDeu). This metric is the only score-equivalent BD score

[24], that is, the only BD score that takes the same value for DAGs in the same equivalence

class [157]. The downside is that in practice, BDeu is highly sensitive to the equivalent

sample size N′ chosen.

After defining a metric, we need to use a search algorithm to explore the search space

of possible structures. Common algorithms for BN learning are greedy search and local

search. However, since the graph space is highly “non-convex”, both approaches can get
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stuck at local optima. The greedy search, for example, the K3 algorithm [18], restricts

the parents of each variable to the variables whose nodes come after it in the topological

ordering. Then it adds the edge that increases a score by the largest amount, repeating the

process until it converges. Local search algorithms start with an empty graph and either add,

remove, or reverse the edges that contribute the most to the score, until convergence [41].

Of note is the Chow-Liu algorithm [27], that uses the simple maximum likelihood score,

because it restricts the search space to tree-like structures, which limits overfitting. Finally,

the integer linear programming (ILP) approach transforms the graph structure, scoring,

and constraints into a linear programming (LP) problem, and then uses state-of-the-art LP

solvers for the learning [11].

3.2.4 Parameters Learning

After the structure of the BN has been learned, parameter learning is the process of

estimating all the conditional probability tables (CPT) associated with each node in the

BN using the training data.

We assume that there are no missing data. However, algorithms for incomplete data,

such as Expectation-Maximization (EM) [44], the Robust Bayesian Estimate (RBE) [133],

the Monte-Carlo method [109], or the Gaussian Approximation [15], are also available.

For complete data the Bayesian Estimation, and the Maximum Likelihood Estimation

(MLE) are the best known ones.

Bayesian Estimation

For the discrete case, it assumes Θ is a random variable with a prior probability dis-

tribution P(Θ). The goal of the method is to calculate its posterior probability P(Θ | D),

given the complete data D. Let ni = |ΩXi | be the number of states of Xi, Θi = P(X = Xi),

Θi.k = {Θi, j,k | j = 1, . . . , ni}, and Θi, j,k = P(Xi = j | PaG(Xi) = k). It makes the assumptions

of local, and global independence, which together make for the parameter independence
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assumption:

P(Θ) =
∏

i,k

P(Θi.k), (3.6)

where P(Θi.k) is the Dirichlet distribution, and P(Θ) is the product Dirichlet distribution.

Maximum Likelihood Estimation

Likelihood is the standard approach to evaluate the quality of the parameters, Θ [77,

131], and it is given by:

L(Θ : D) = P(D | Θ) =

n∏
j=1

P(D j | Θ) =

r∏
i=1

Li(Θi : D),

where m is the number of samples, n the number of subjects, and r is the number of possible

states. If P(xi | PaG(i)) satisfies a polynomial distribution, the likelihood function can be

decomposed as follows:

Li(Θi : D) =

Xi∏
j

PaG(Xi)∏
k

Θi, j,k, (3.7)

where j represents the value Xi can take, and k iterates over each parent of Xi. If N(α) is the

number of cases that satisfy condition α, then MLE can obtain the estimated parameters of

Θ as:

Θi, j,k =
N(Xi = j, PaG(Xi) = k)

N(PaG(Xi) = k)
. (3.8)

3.3 Inference with Bayesian Networks

BNs perform three main inference tasks: probabilistic inference, exact inference, and

approximate inference. However, none of these methods will be used in this thesis, since

we adapt the less-Bayesian method of linear regression. Every edge of our BN is annotated

with a regression coefficient λi, which can be used to easily infer the value of the child

node, given the values of all the continuous parents. For the case of discrete parents, a
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set of coefficients will be learned for each node configuration, and the inference will then

proceed as outlined above.

3.4 Causality

Causality is the study of cause and effect. It is the influence that one event or process

(cause) exerts on another event or process (effect). The cause is responsible (at least partly)

for the effect, and the effect is (at least partly) dependent on the cause. More interesting for

this thesis is the concept of causal inference; the process of extracting these cause/effect

interactions between variables from training data.

3.4.1 Assumptions

Causal discovery from observational data depends on the following five assumptions[46,

187, 146]:

• Causal Sufficiency: Implies that there are no unmeasured common causes, i.e., hid-

den confounders. Formally, a set of variables S used is said to be causally sufficient

or causally complete, if every common cause of any two or more variables in S are

also in S.

• Causal Markov Condition: Establishes that once we know the parents of a variable

Xi, then all other variables of G become independent of Xi. Formally, Xi only de-

pends on PaG(Xi), and is either marginally or conditionally independent of all other

variables (see Section 3.1).

• Faithfulness (Stability): Implies that only the variables that are d-separated in G

will be independent (i.e., all others will be dependent), and vice-versa. This means

that a data set D does not contain any “accidental” independence relationships that

are not a consequence of the underlying causal model that generated them.

• i.i.d.: Assumes that all random variables are independent and identically distributed.
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• Consistency: Implies that all causal relationships remain consistent for all subset of

samples.

3.4.2 Inferring Causal Networks

Causal inference algorithms learn a causal BN where the edges represent not only sta-

tistical associations, but causal ones. They are usually learned by constraint-learning meth-

ods, and almost all stem from the SGS or IC algorithms. These methods evolved into the

PC algorithm [170], which tries to minimize the number d-separation tests, for a growing

set of neighbours. After the skeleton of the network is learned, it applies a series of rules to

orient the edges, based on the V-structure concept. However, V-structures are not sufficient

for discovering that X or Y causes Z. Unless we make the causal sufficiency assumption,

the most that could be made is an acausal discovery [102]. This is not the case for Y-

structures, where there is an extra arc from Z to W, which forms an un-confounded causal

relationship [102]. The PC-stable [31] algorithm addresses the order-dependency problem

of PC, i.e., its output is independent of the order of the input. However, it still produces

too many spurious relationships in the presence of hidden confounders. The Fast Causal

Inference (FCI) algorithm [31] applies two iterations of a modified version of PC-stable,

and extra edge-orientation rules. It has a better behaviour in the presence of these hidden

confounders, but it is computationally infeasible for large graphs. The RFCI algorithm

[32] was developed to address this issue.

Time series data facilitates the learning of these networks, because causal effects can

only go forward in time, helping in orienting the causal edges. Also, the stationarity and

Markov assumptions further simplifies the learning of temporal causal graphs. tsFCI [47]

uses a sliding window approach to be able to apply FCI without radical modifications,

and orients the edges based on the nature of time. This method eventually evolved into

SVAR-GFCI [101], which assumes the data-generation process is a structural vector au-

toregression (SVAR) with latent components. It is a hybrid method that combines a greedy
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approach to select causal models with incrementally improved score, in addition to other

improvements in the causal discovery and orientation rules. Other notable longitudinal

causal discovery algorithm is Tigramite (PCMCI) [147], which applies PC-stable and then

runs a momentary conditional independence (MCI) stage to further test for conditional

independence, and computes p-values and adjusts for false discovery.

3.5 Spline Interpolation

Splines are piece-wise polynomials with boundary continuity and smoothness con-

straints used especially for interpolation problems. They are widely used because of their

simplicity, accuracy, and ease of evaluation for a multitude of applications [10, 48, 75].

They can be used to smooth time series, avoiding problems such as overfitting, deal with

irregular sampling rate, missing timepoints, and more. In this dissertation we use cubic

splines, since they are the lowest degree polynomials that allow for an inflection point. A

cubic spline can be expressed as follows:

s(t) =

n∑
i=1

CiPi(t), tmin ≤ t < tmax, (3.9)

where Pi(t) are the spline polynomials as a function of time t, and the Cis are the coefficients

[8]. We need n equations to determine these coefficients, and it also typically requires

that the value of the function, and its first and second derivatives are continuous at every

boundary between the cubic pieces.

These splines can be made more mathematically flexible by writing down the cubic

polynomial as a function of a set of four normalized basis functions [143], which are called

B-splines. The basis coefficients Ci can be interpreted geometrically as control points, with

only local influence on the curve. A periodic cubic B-spline (o = 4) can be expressed as:

s(t) =

m∑
i=1

Cibi,4(t), k4 ≤ t ≤ kn+1, (3.10)
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where o is the order of the basis polynomials, and the values ki are called knots (values of

t at which the pieces join), where i = 1, . . . , n + o.

3.6 Time Series Alignment

A challenge when comparing biological time series obtained from different samples

is the fact that while the overall process studied in these individuals may be similar (i.e.,

follows the same sequence of steps), the rates of change may differ based on several “hid-

den” factors (age, gender, co-morbidities, etc.). Thus, prior to modeling the relationships

between the different taxa we first “temporally” align the data sets between individuals by

warping the time scale of each sample into the scale of another representative sample re-

ferred to as the reference. The goal of the temporal alignment step is to determine, for each

individual i, a transformation function τi(t) which takes as an input a reference time t and

outputs the corresponding time for individual i. Once the time series for each individual is

transformed using their transformation function, we can compare corresponding values for

all individuals sampled at equivalent time points. This approach effectively sets the stage

for accurate discovery of trends and patterns, hence, further disentangling the dynamic and

temporal relationships between entities in the microbiome.

While several options exist for the type of the transformation function τi that can be

used in the temporal alignment, most methods used to date use either a linear, piecewise

linear, or a polynomial function [7, 167]. Work on the analysis of gene expression data

have shown that if the number of time points is relatively small then simpler functions tend

to outperform the more complicated ones [9]. Therefore, we used a first degree polynomial

(linear) form: τi(t) =
(t−b)

a for the alignment function for tackling the temporal alignment

problem, where a and b are the parameters of the transformation function.

Formally, let s j
r(t) be the spline curve for microbial taxa j at time t ∈ [tmin, tmax] in

the reference time-series sample r, where tmin and tmax denote the starting and ending time

points of s j
r, respectively. Similarly, let s j

i (t
′) be the spline for individual i in the set of
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samples to be warped for taxa j at time t′ ∈ [t′min, t′max]. Next, analogously to Bar-Joseph et

al. [7], we define the alignment error for microbial taxa j between s j
r and s j

i is defined as

e j(r, i) =

∫ β

α
(s j

i (τi(t)) − s j
r(t))2dt

β − α
, (3.11)

where α = max{tmin, τ
−1
i (t′min)} and β = min{tmax, τ

−1
i (t′max)} correspond to the starting

and ending time points of the alignment interval. Observe that by smoothing the curves, it

is possible to estimate the values at any intermediate time point in the alignment interval

[α, β].

3.7 Bioinformatics Concepts

Metagenomics is the science of the study of the genomes in a microbial community

and constitutes the first step to investigating and understanding the microbiome [1], and its

main purpose is the inference of the taxonomic profile of microbial community. The two

main technologies used for this include Whole Metagenome Sequencing (WMS) and 16S

rRNA gene sequencing (MTS for metataxonomic sequencing). The two approaches cap-

ture different parts of the genomes of the microbes present in the sample: WMS captures

DNA fragments from anywhere on the microbe’s genome, while WTS captures and ampli-

fies specific parts of the 16S rRNA gene. Consequently, WMS datasets provide a higher

resolution of detection than WTS, but are more expensive and generate more data [135].

Standard analyses for sequencing datasets usually begin by aligning sequencing reads to

a microbial reference database [177, 194], and producing abundance counts [178]. The

quality of the analysis depends on the quality of the database of reference genomes. An al-

ternative metagenomics analysis pipeline could perform de novo assembly of the reads into

contigs. This method is limited by the ability of the algorithms to perform the assembly

correctly.
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Metatranscriptomics is the study of the genes expressed by the microbes in a micro-

bial community. Unlike WMS, which captures DNA material in the sample, this approach

captures the entire mRNA produced by transcriptional processes and that are present in the

sample. With the use of functional annotations of expressed genes, it is possible to infer the

functional profile of a community under specific conditions [110]. As with WMS, a meta-

transcriptomics analysis pipeline can either map the reads to a reference microbial genome

or transcriptome database, or perform de novo assembly of the reads into contigs. As with

WMS, the former is limited by the quality of the reference databases, while the latter is

limited by the quality of the assembly algorithms.

Metabolomics is the study of the metabolites present in a sample [51]. The metabolome

is considered the most direct indicator of the health status of an environment, and provides

information about the metabolic activities in the microbiome. This is of interest because

it complements the information provided by other omics, and sheds light on the result of

microbial interactions.

To summarize, metagenomics answers the question “what is the microbial composition

of a community?”, metatrascriptomics answer the question “what genes are expressed by

the microbial community?”, and metabolomics answers “what byproducts are produced by

the microbial community?”.

3.8 Prior work in interaction inference

Microbes in the microbiome are not isolated, and interact with each other in a way that

resembles a social network [50]. These interactions can be either positive (beneficial), or

negative (harmful). The interactions shape the composition and function of the microbiome

throughout time, thereby influencing the host’s health [140] [50].

Early work on identifying which microbial taxa interacted with each other relied on the

fact that two taxa cannot interact with each other consistently unless they have a strong

pattern of co-occurrence (or co-avoidance) [50]. Thus strong correlations (positive or neg-
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ative) between the vectors of abundance values of a pair of taxa was assumed to be a proxy

for the strength of the relationship between the taxa. Using correlation techniques it is

possible to learn a network where the nodes correspond to the entities of the microbiome,

and the edges represent the strength of their co-occurrence (and by proxy, the potential

strength of their relationships). Despite being useful in finding useful patterns in the micro-

bial relationships in a microbiome, they have significant limitations in deciphering indirect

relationships, and complex non-linear interactions such as between three or more species,

and are unable to detect some ecological relationships [197]. An important problem is the

lack of methods to detect false positives, i.e., pairs of co-occurring taxa that do not in-

teract. Furthermore, because of the nature of correlations, these inferred relationships are

symmetric and not directional. In conclusion, these limitations highlight the old adage that

“correlation does not imply causation”.

An alternative is to use the generalized Lotka-Volterra (gLV) equations, which are able

to describe the time-dependent population dynamics and predict ecological relationships

between members of different biological species. They are based on non-linear differential

equations, and have been widely used in the literature [173, 162, 52, 103, 112, 93, 56, 78].

However, gLV-based systems are best applied to understand transient behaviors, while most

of the data sets we consider are for systems that have reached homeostasis, with relatively

minor interest in understanding the dynamics prior to reaching equilibrium.

Another solution is to use Bayesian techniques. BNs suggest possible directional in-

teractions between the entities in a microbiome and can address the major limitation of

correlation analysis. Thus, Bayesian techniques provide a powerful approach in revealing

complex associations within microbes. They include implicit parameter estimation tech-

niques for inferring complex networks from noisy data, but have not been widely used in

the microbiome context [107, 96].
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CHAPTER 4

DYNAMIC BAYESIAN NETWORKS

4.1 Dynamic Bayesian network models

Dynamic Bayesian Networks (DBNs) are a flavor of BNs suited for the represen-

tation of temporal connections between variables, and conducting time-varying proba-

bilistic inference and causal analysis under system uncertainty, because its edges repre-

sent lagged dependencies. They were developed to unify models such as Kalman filters,

autoregressive–moving-average models (ARMA), or hidden Markov models (HHMs) into

a general probabilistic model and inference mechanism [38, 39], and are conceptually sim-

ilar to Probabilistic Boolean Networks (PBN) [87]. DBNs can model all the above types of

correlation and capture even more complex relationships.

Up to now, various DBN models based on different probabilistic representations have

been proposed in the literature [191]:

• Discrete models [121, 204]

• Multivariate autoregressive process (VAR) and structural VARs (SVARs), especially

popular in economics [165, 122].

• State Space (SSM) or Hidden Markov Models [13, 130, 134, 200],

• Nonparametric additive regression models [74, 84, 174], and

• Low-order independence models [89].

In this dissertation, we are going to focus on a version of DBNs called Two-Timeslice

BN (2TBN), which relates variables to each other over adjacent time steps. The variables

can be connected by intra edges (within the same time slice) or inter edges (between time

slices). Any variable Xt
i can be calculated from the internal regressors, the current time

point t and the previous time point t − 1. This is possible because of the following two

assumptions:
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• Stationarity or time invariance: Assumes that the data was generated by a stochas-

tic stationary process. This means that that the mean, variance and autocorrelation

structure do not change over time. Because of this, if the DBN has an edge between

Xi and X j (Xi 6⊥⊥ X j) in any time slice, that edge is also present for all of the time

slices. Formally,

P(Xt+1
i | Xt

j) ⊥⊥ t ∀i, j ∈ R, t ∈ [0,T ]. (4.1)

There has been some effort in developing DBNs that relax this assumption, and are

called non-stationary dynamic Bayesian networks (nsDBNs), but they are not going

to be used in this work [142, 61, 60].

• First order Markov assumption or forgetting rule. Under this assumption, all vari-

ables of the next timepoint are independent of all variables from the previous time-

point, given the current timepoint. Formally,

Xt+1
i ⊥⊥ Xt−1

i | Xt
i ∀ 0 ≤ i < n. (4.2)

4.2 Model construction

We use a “two-stage” DBN model (2TBN) in which only two slices are modeled and

learned at a time. Typically, analysis using DBNs is divided into two components: learning

the network structure and parameters and inference on the network. The former can be

further sub-divided into (i) structure learning which involves inferring from data the causal

connections between nodes (i.e., learning the intra and inter edges) while avoiding overfit-

ting the model, and (ii) parameter learning which involves learning the parameters of each

intra and inter edge in a specific network structure. There are only a limited number of open

software packages that support both learning and inference with DBNs [106, 198] in the

presence of discrete and continuous variables. We used the freely available CGBayesNets
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package [106, 108] for learning the network structure and performing inference for Con-

ditional Gaussian Bayesian models [88]. While useful, CGBayesNets does not support

several aspects of DBN learning including the use of intra edges, searching for a parent

candidate set in the absence of prior information and more. We have thus extended the

structure learning capabilities of CGBayesNets to include intra edges while learning net-

work structures and implemented well-known network scoring functions for penalizing

models based on the number of parameters such as Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) [128].

4.2.1 Learning DBN model parameters

Let Θ denote the set of parameters for the DBN and G denote a specific network struc-

ture over discrete and continuous variables in the microbiome study. As in McGeachie et

al. [108], we can decompose the joint distribution as

D(∆)C(Ψ|∆) =
∏
X∈∆

P(X | PaG(X))
∏
Y∈Ψ

F(Y | PaG(Y)), (4.3)

where D denotes a set of conditional probability distributions over discrete variables ∆,

C denotes a set of linear Gaussian conditional densities over continuous variables Ψ, and

PaG(X) denotes the set of parents of the node representing variable X in G. Since we are

dealing with both, continuous and discrete variables in the DBN, we will often use the

term “continuous node” (or “discrete node”) to mean that the variable represented by the

node is continuous (or discrete, respectively). In our method, continuous variables (i.e.,

microbial taxa compositions) are modeled using a Gaussian with the mean that is set based

on a regression model over the set of continuous parents as follows

F(Y |U1, · · · ,Uk) ∼ N(λ0 +

k∑
i=1

λi × Ui, σ
2), (4.4)
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where U1, · · · ,Uk are continuous parents of Y; λ0 is the intercept; λ1, · · · , λk are the cor-

responding regression coefficients for U1, · · · ,Uk; and σ2 is the standard deviation. For

example, the conditional linear Gaussian density function for variable T4 ti+1 in Fig. 5.3e is

modeled by

F(T4 ti+1 |T4 ti ,C3 ti ,T2 ti+1) = N(λ0 + λ1 × T4 ti + λ2 ×C3 ti + λ3 × T2 ti+1 , σ
2), (4.5)

where λ1, λ2, λ3 and σ2 are the DBN model parameters. We note that if Y has discrete

parents then we need to compute coefficients L = {λi}
k
i=0 and standard deviation σ2 for

the configuration of each discrete parent. In general, given a longitudinal data set D and

known structure G, we can directly infer the parameters Θ by maximizing the likelihood of

the data given by our regression model.

4.2.2 Learning DBN structure

Learning the DBN structure can be expressed as finding the structure and parameters

that optimizes the following likelihood expression:

max
Θ,G

P(D |Θ,G)P(Θ,G) = max
G

P(D,Θ |G)P(G), (4.6)

where P(D |Θ,G) is the likelihood of the data given the model. Intuitively, the likelihood

increases as the number of valid parents PaG(·) increases, thus, making it challenging to

infer the most accurate model for data set D. Therefore, the goal is to effectively search

over possible structures while using a function that penalizes overly complicated structures

and protects from overfitting.

Here, we maximize P(D,Θ |G) for a given structure G using maximum likelihood

estimation (MLE) coupled with BIC score instead of the Bayesian Dirichlet equivalent

sample-size uniform (BDeu) metric used in CGBayesNets [106, 108]. The BDeu score
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requires prior knowledge (i.e., equivalent sample size priors) which are typically arbitrarily

set to 1; however, multiple studies have shown the sensitivity of BDeu to these parame-

ters [163, 171], as well as the harm in using improper prior distributions [119]. In contrast,

BIC score does not depend on the prior over the parameters, and is thus an ideal approach

for scenarios where prior information is not available or difficult to obtain. The modified

log likelihood score using BIC is give as follows:

BIC(G,D) = log P(D |Θ,G) −
|Θ|

2
log |D|, (4.7)

where |Θ| is the number of DBN model parameters in structure G, and |D| is the num-

ber of observations in D. We also tried the AIC score given as follows: AIC(G,D) =

log P(D |Θ,G) − |Θ|. However, preliminary results have shown that the BIC score consis-

tently outperformed the AIC score (data not shown).

Next, in order to maximize the full log-likelihood term we implemented a greedy hill-

climbing algorithm. We initialize the structure by first connecting each taxa node at the

previous time point (for example T1 ti in Fig. 5.3e) to the corresponding taxa node at the

next time point (T1 ti+1 in Fig. 5.3e). We call this setting the baseline model since it ig-

nores dependencies between the taxa and only tries to infer taxon abundance levels based

on its levels at previous time points. For each node in the DBN, we considered adding

edges leading into it as follows. We ignored all parents that were disallowed by the spec-

ified constraints. We also ignored all parents for which the edges if added would form

cycles. For each remaining candidate, we computed the increase of the log-likelihood

score that resulted by adding edge from the parent to the node, and greedily picked the

edge that would lead to the largest increase until the bound on the number of parents was

reached. Note that we imposed an upper bound limit on the maximum number of pos-

sible parents (maxParents ∈ {1, 3, 5}) for each microbial taxon abundance node X (i.e.,

|PaG(X)| ≤ maxParents).
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4.2.3 Constraining the DBN structure

An important innovation in the work described in Chapters 5 and 6 lies in how we

constrain the DBN structure to conform to our proposed framework of relationships and

desired direction of interactions. These constraints (in the form of a matrix received as an

input to the function) only allow edges between certain types of nodes, highly reducing the

complexity of searching over possible structures and preventing over-fitting. Note that these

constraints can be readily changed during execution of the software by adding more data

types or different restrictions in the input file containing the adjacency matrix. Specifically,

we allowed intra edges from environmental and host transcriptomics variables to microbial

taxa (abundance) nodes, from taxa nodes to gene (expression) nodes and from gene nodes to

metabolites (concentration) nodes. All other interactions within a time point (for example,

direct gene to taxa) were disallowed. We also allowed inter edges from metabolites to

taxa nodes in the next time point, and self-loops from any node Xt
i to Xt+1

i for each i and

time t, except for environmental or host transcriptomics variables for which no incoming

edges were allowed (host genes were only measured at a single time point so no incoming

temporal edges were allowed for them). These restrictions reflect our understanding of the

basic ways the different entities interact with each other, i.e., environmental and host gene

expression variables are independent variables, taxa express genes, which are involved in

metabolic pathways; finally, the metabolites impact the growth of taxa (in the next time

slice).

4.3 Summary of DBN contributions

The following is a summary of the modifications made to the standard DBN and its

learning capabilities based on the CGBayesNets package [106, 108]:

1. Added self-loop initialization that connects variable Xt
i to Xt+1

i for each i and time t.
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2. Added support for BIC and AIC global measures, as opposed to the local measures

used in the original implementation.

3. Added regression coefficient and bootstrap score labelling into the edges of the output

network.

4. Re-implemented MLE capabilities.

5. Added parallel support for cross-validation and bootstrap learning.

6. Allowed for a multi-omic restriction framework to be inputed to the function, with

dynamic learning constraints based on the node types.

7. Added support for a prior network structure, that starts the learning process with a

skeleton structure of edges that do not have to be learned before the greedy hill-

climbing process starts.
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CHAPTER 5

LONGITUDINAL MICROBIAL NETWORK INFERENCE

Several studies have focused on the microbiota living in environmental niches includ-

ing human body sites. In many of these studies researchers collect longitudinal data with

the goal of understanding not just the composition of the microbiome but also their evolu-

tion over time. However, analysis of such data is challenging and very few methods have

been developed to reconstruct dynamic models from time series microbiome data. Even in

existing studies with limited time points, they do not focus on the interactions between the

different taxa or the evolution of the interactions.

In this chapter we present a computational pipeline called PRIMAl that enables the

integration of data across individuals for the reconstruction of such models. Our pipeline

starts by aligning the data collected for all individuals. The aligned profiles are then used

to learn a dynamic Bayesian network which represents causal relationships between taxa

and clinical variables. Testing our methods on three longitudinal microbiome data sets

we show that our pipeline improve upon prior methods developed for this task. We also

discuss the biological insights provided by the models which include several known and

novel interactions. The extended CGBayesNets package is freely available under the MIT

Open Source license agreement. The source code and documentation can be downloaded

from http://biorg.cis.fiu.edu/primal/.

In this chapter we propose a computational pipeline for analyzing longitudinal micro-

biome data. Our results provide evidence that microbiome alignments coupled with dy-

namic Bayesian networks improve predictive performance over previous methods and en-

hance our ability to infer biological relationships within the microbiome and between taxa

and clinical factors.
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5.1 Background

Multiple efforts have attempted to study the microbiota living in environmental niches

including human body sites. These microbial communities can play beneficial as well as

harmful roles in their hosts and environments. For instance, microbes living in the human

gut perform numerous vital functions for homeostasis ranging from harvesting essential

nutrients to regulating and maintaining the immune system. Alternatively, a compositional

imbalance known as dysbiosis can lead to a wide range of human diseases [26], and is

linked to environmental problems such as harmful algal blooms [3].

While many studies profile several different types of microbial taxa, it is not easy in

most cases to uncover the complex interactions within the microbiome and between taxa

and clinical factors (e.g., gender, age, ethnicity). Approaches based on co-occurrence pat-

terns of microbial taxa are useful in implicating interactions between taxa [50, 197], but

only provide circumstantial evidence. Approaches based on causal inferencing have been

tried using metagenomics data [152], but these methods have not ventured into analyzing

longitudinal microbiome data yet, with the isolated attempt from TIME [6] which is based

on Granger causality . Microbiomes are inherently dynamic, thus, in order to fully recon-

struct these interactions we need to obtain and analyze longitudinal data [57]. Examples

include characterizing temporal variation of the gut microbial communities from pre-term

infants during the first weeks of life, and understanding responses of the vaginal micro-

biota to biological events such as menses. Even when such longitudinal data is collected,

the ability to extract an accurate set of interactions from the data is still a major challenge.

To address this challenge we need computational time-series tools that can handle data

sets that may exhibit missing or noisy data and non-uniform sampling. Furthermore, a crit-

ical issue which naturally arises when dealing with longitudinal biological data is that of

temporal rate variations. Given longitudinal samples from different individuals (for exam-

ple, gut microbiome), we cannot expect that the rates at which interactions take place is
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exactly the same between these individuals. Issues including age, gender, external expo-

sure, etc. may lead to faster or slower rates of change between individuals. Thus, to analyze

longitudinal data across individuals we need to normalize for these variable rates by first

temporally aligning the microbial data. Using the aligned profiles we can next employ

other methods to construct a model for the process being studied.

Most current approaches for analyzing longitudinal microbiome data focus on changes

in outcomes over time [55, 86]. The main drawback of this approach is that individual

microbiome entities are treated as independent outcomes, hence, potential relationships

between these entities are ignored. An alternative approach involves the use of dynami-

cal systems such as the generalized Lotka-Volterra (gLV) models [28, 104, 172, 179, 58].

While gLV and other dynamical systems can help in studying the stability of temporal bac-

terial communities, they are not well-suited for temporally sparse and non-uniform high-

dimensional microbiome time series data (e.g., limited frequency and number of samples),

as well as noisy data [57, 58]. Additionally, most of these methods eliminate any taxa

whose relative abundance profile exhibits a zero entry (i.e., not present in a measurable

amount at one or more of the measured time points. Finally, probabilistic graphical models

(e.g., hidden Markov models, Kalman filters and dynamic Bayesian networks) are machine

learning tools which can effectively model dynamic processes, as well as discover causal

interactions [108].

In this work we first adapt statistical spline estimation and dynamic time-warping tech-

niques for aligning time-series microbial data so that they can be integrated across individ-

uals. We use the aligned data to learn a Dynamic Bayesian Network (DBN), where nodes

represent microbial taxa, clinical conditions, or demographic factors and edges represent

causal relationships between these entities. We evaluate our model by using multiple data

sets comprised of the microbiota living in niches in the human body including the gas-

trointestinal tract, the urogenital tract and the oral cavity. We show that models for these

systems can accurately predict changes in taxa and that they greatly improve upon models
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constructed by prior methods. Finally, we characterize the biological relationships in the

reconstructed microbial communities and discuss known and novel interactions discovered

by these models.

5.2 Methods

5.2.1 Data sets

We collected multiple public longitudinal microbiome data sets for testing our method.

Table 5.1 summarizes each longitudinal microbiome data set used in this study, including

the complete list of clinical features available.

Data set ni ns nt Sampling Clinical attributes

Infant gut 58 922 29 Every day or two

Day of life
Gestational age at birth
Post-conceptional age

Gender (female or male)
Mode of birth (C-section or vaginal delivery)

Room type (single or multi-patient)
Human milk used (% of enteral volume provided by human milk)

Days of antibiotics (% of days of life on antibiotic)

Vaginal 32 937 330 Twice a week

Day period (days since menses started)
Nugent category (low, intermediate , high)
Age group (≤ 30, > 30 and ≤ 40, or > 40)

Race (white, black, hispanic, or other)
Tampon used (yes or no)

Vaginal douching (yes or no)
Sexual activity (yes or no)

Oral cavity 18 374 1, 420 Every week during gestation Gestational day of delivery
Ethnicity (hispanic or non-hispanic)

Table 5.1: Summary of longitudinal microbiome data sets. For each data set, we show
the total number of individuals ni, number of time series samples ns, number of microbial
taxa reported nt, original sampling rate and list of clinical attributes available.

Infant gut microbiome This data set was collected by La Rosa et al. [86]. They sequenced

gut microbiome from 58 pre-term infants in neonatal intensive care unit (NICU). The data

was collected during the first 12 weeks of life (until discharged from NICU or deceased)

sampled every day or two on average. Following analysis 29 microbial taxa were reported

across the 922 total infant gut microbiome measurements. In addition to the taxa informa-

tion, this data set includes clinical and demographic information for example, gestational
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age at birth, post-conceptional age when sample was obtained, mode of delivery (C-section

or vaginal), antibiotic use (percentage of days of life on antibiotic), and more (see Table

5.1 for complete list of clinical features available).

Vaginal microbiome The vaginal microbiota data set was collected by Gajer et al. [55].

They studied 32 reproductive-age healthy women over a 16-week period. This longitudi-

nal data set is comprised of 937 self-collected vaginal swabs and vaginal smears sampled

two times a week. Analysis identified 330 bacterial taxa in the samples. The data also

contains clinical and demographic attributes on the non-pregnant women such as Nugent

score [118], menses duration, tampon usage, vaginal douching, sexual activity, race and

age. To test the alignment methods we further sub-divided the microbial composition pro-

files of each subject by menstrual periods. This resulted in 119 time-series samples, an

average of 3-4 menstrual cycles per woman. Figure 5.1a shows four sub-samples derived

from an individual sample over the 16-week period along with corresponding menses in-

formation.

Oral cavity microbiome The oral cavity data was downloaded from the case-control

study conducted by DiGiulio et al. [45] comprised of 40 pregnant women, 11 of whom

delivered pre-term. Overall they collected 3, 767 samples and identified a total of 1, 420

microbial taxa. Data was collected weekly during gestation and monthly after delivery

from four body sites: vagina, distal gut, saliva, and tooth/gum. In addition to bacterial

taxonomic composition, these data sets report clinical and demographic attributes which

include gestational status, gestational or postpartum day when sample was collected, race

and ethnicity. In this paper, we solely focus on the tooth/gum samples during gestation

from Caucasian women in the control group to reduce potential confounding factors. This

restricted set contains 374 temporal samples from 18 pregnant women.
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Figure 5.1: Representative vaginal microbiome sample for subject 28 over the 16-week
period. a) Relative abundance profile of six vaginal taxa for subject 48 over 16 weeks an-
notated with menses information. The vertical black lines correspond to the division of
sub-samples based on menstrual periods (i.e., 4 sub-samples). Note the interpolated shift
in dominance during menses between L. crispatus and L. iners. b) Temporal alignment be-
tween the sub-samples from subject 28 time-series data for taxa L. crispatus using the first
menstrual period sub-sample as reference (shown in orange). Figure also shows abundance
profile of L. crispatus for each sub-sample before (left) and after (right) alignment.

5.2.2 Data pre-processing

Since alignment relies on continuous (polynomial) functions while the data is sam-

pled at discrete intervals, the first step is to represent the sample data using continuous

curves as shown by the transition from Fig. 5.3a to Fig. 5.3b. Following prior work [9], we

use B-splines for fitting continuous curves to microbial composition time-series data, thus,

enabling principled estimation of unobserved time points and interpolation at uniform in-

tervals. To avoid overfitting we removed any sample that had less than nine measured time

points. The resulting pre-processed data is comprised of 48 individual samples of the in-

fant gut, 116 sub-samples of the vaginal microbiota and 15 pregnant women samples of

the oral microbiome. We next estimated a cubic B-spline from the observed abundance

profile for all taxa in remaining samples using splrep and BSpline from the Python func-
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tion scipy.interpolate. In particular, splrep is used to find the B-spline representation (i.e.,

vector of knots, B-spline coefficients, and degree of the spline) of the observed abundance

profile for each taxa, whereas BSpline is used to evaluate the value of the smoothing poly-

nomial and its derivatives. Figure 5.2 shows the original and cubic spline of a representative

microbial taxa from a randomly selected individual sample across each data set.
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Figure 5.2: Original and cubic spline of the abundance profile of a representative mi-
crobial taxa for each data set. Figure shows the original abundance values vs. the cubic
B-spline curve for a representative taxa profile from a randomly selected individual sample
across each data set. a) Bacilli from the infant gut microbiome. b) L. iners from the vaginal
microbiome. c) Prevotella from the oral cavity microbiome.

5.2.3 Aligning microbial taxon

To discuss the alignment algorithm we first assume that a reference sample, to which all

other samples would be aligned, is available. In the next section we discuss how to choose

such reference.

Formally, let s j
r(t) be the spline curve for microbial taxa j at time t ∈ [tmin, tmax] in

the reference time-series sample r, where tmin and tmax denote the starting and ending time

points of s j
r, respectively. Similarly, let s j

i (t
′) be the spline for individual i in the set of

samples to be warped for taxa j at time t′ ∈ [t′min, t′max]. Next, analogously to Bar-Joseph et

al. [7], the alignment error for microbial taxa j between s j
r and s j

i is defined as

e j(r, i) =

∫ β

α
(s j

i (τi(t)) − s j
r(t))2dt

β − α
, (5.1)
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where α = max{tmin, τ
−1
i (t′min)} and β = min{tmax, τ

−1
i (t′max)} correspond to the starting and

ending time points of the alignment interval. Observe that by smoothing the curves, it

is possible to estimate the values at any intermediate time point in the alignment interval

[α, β]. Finally, we define the microbiome alignment error for a microbial taxon of interest

S between individual samples r and i as follows

EM(r, i) =
∑
j∈S

e j(r, i). (5.2)

Given a reference r and microbial taxon S , the alignment algorithm task is to find

parameters a and b that minimize EM for each individual sample i in the data set subject

to the constraints: a > 0, α < β and (β−α)
(tmax−tmin) ≥ ε. The latter constraint enforces that

the overlap between aligned interval [α, β] and reference interval [tmin, tmax] is at least ε,

otherwise trivial solutions (for example, no overlap leading to 0 error) would be selected.

Here we used ε = 0.3 though results remain the same with larger values of ε. Fig. 5.3c

illustrates an aligned set of four samples where reference sample r is shown in orange.

Alternatively, Figure 5.1b shows the temporal alignment between the sub-samples of the

vaginal microbiome sample shown in Figure 5.1 for the taxon L. crispatus using the first

menstrual period sub-sample as reference (shown in orange).

5.2.4 Selecting a reference sample

Finding an optimal reference that jointly minimizes the error for all samples (EM) is

akin to solving a multiple alignment problem. Optimal solutions for such problems still re-

quire a runtime that is exponential in the number of samples [7] and so a heuristic approach

was used instead. For this, we first find the best pairwise alignments via a grid-search

parameter sweep between a ∈ (0, 4] with increments of 0.01 and b ∈ [−50, 50] with in-

crements of 0.5 in the linear alignment function τi previously described. It is important to

note that this restricted search space for parameters a and b may lead to some sample pairs
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(r, i) without a temporal alignment because overlap constraint is not met. Additionally, we

filtered out any microbial taxa j ∈ S for which the mean abundance in either s j
r or s j

i was

less than 0.1%, or had zero variance over the originally sampled time points. Lastly, an

optimal reference for each data set is determined by generating all possible pairwise align-

ments between samples. To select the best reference r∗ we employed the following criteria:

(1) at least 90% of the individual samples are aligned to r∗, and (2) the alignment error EM

is minimized. We note that if no candidate reference meets these criteria, a commonly used

heuristic for selecting r∗ picks the sample with the longest interval or highest number of

measured time points.

Abnormal or noisy samples filtering As a post-processing step, we implemented a

simple procedure which takes as input the resulting individual-wise alignments to identify

and filter out abnormal and noisy samples. Given an aligned microbiome data set, we

(1) computed the mean µ and standard deviation δ of the alignment error EM across all

aligned individual samples, and (2) removed all samples from an individual where EM >

µ+(2×δ). Fig. 5.3d shows the filtered set for the aligned taxa in the previous step (Fig. 5.3c).

This analysis can both, help to identify outliers and to improve the ability to accurately

reconstruct models for interactions between taxa as shown in the Results section.

Taxon selection from alignment As previously described, the microbiome alignment

error EM for a pairwise alignment is restricted to the set of microbial taxa S that contributed

to the alignment. However, this set of microbes can vary for different pairwise alignments

even with the same reference. Therefore, we focused on the subset of taxa that contributed

to at least half of the pairwise alignments for the selected reference. Table 5.2 lists align-

ment information for each data set such as reference sample, number of aligned samples

and selected taxa.

Alignment simulation experiments Since temporal alignment using splines does not

guarantee convergence to a global minimum [7], we performed simulation studies to in-

vestigate the susceptibility to the non-uniqueness and local optima of the splines-based
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Data set Reference sample nr Selected taxa

Infant gut Subject 48 47

Actinobacteria
Alphaproteobacteria

Bacilli
Bacteroidia

Betaproteobacteria
Clostridia

Cyanobacteria
Epsilonproteobacteria

Erysipelotrichi
Flavobacteria
Fusobacteria

Gammaproteobacteria
Holophagae
Unclassified

Vaginal Subject 26, Menses 1 112

Aerococcus
Anaerococcus
Ureaplasma
Parvimonas

L. iners
Finegoldia

Staphylococcus
Porphyromonas

Atopobium
Gardnerella
L. crispatus

Peptostreptococcus
Sneathia

Streptococcus
Prevotella

Peptoniphilus
Incertae Sedis XI.1

L. gasseri
Corynebacterium

Dialister
L. otu5
L. otu3

Ruminococcaceae.3

Oral cavity Subject T18 14

H. parainfluenzae
Streptococcus
Gemellaceae

Porphyromonas
Streptococcus
Leptotrichia

P. nanceiensis
V. dispar

Granulicatella
Veillonella

Streptococcus
Neisseria

N. subflava
Fusobacterium

P. melaninogenica
Haemophilus

Prevotella
Porphyromonas
Granulicatella

Table 5.2: Summary of alignment information. For each data set, we show reference
sample, number of aligned samples nr and selected taxa.
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heuristic approach described at the beginning of this section. In particular, we first used

the originally measured time points and observed abundance profile from three taxa of a

representative individual sample in the gut data set as the reference sample. We then simu-

lated 10 different individual samples as follows: for each individual sample, we manually

warped the time points with randomly selected parameters a (scaling) and b (translation)

such that a ∈ (0, 4] and b ∈ [0, 50]. We next added distinct percentage of Gaussian noise

selected from {0, 5, 10, 15, 20, 25} to the warped time points. To further test the robust-

ness of splines, we also added Gaussian noise to the observed abundance profile of each

taxa. Finally, we conducted three types of simulation experiments: (1) simulated noise-

free warped time points for each individual sample but with noisy abundance profile, (2)

simulated noise-free abundance profile but with noisy warped time points, and (3) noisy

simulated warped time points with noisy abundance profiles.

From each simulation experiment, we aligned all simulated individual samples to the

reference sample. We then computed and reported the mean absolute error (MAE) between

the observed alignment parameters (i.e, a and b), as well as alignment error EM on the

aligned simulated data.

5.2.5 Dynamic Bayesian network models

Bayesian Networks (BNs) are a type of probabilistic graphical model consisting of a

directed acyclic graph (see Section 3.1). In a BN model, the nodes correspond to random

variables and the directed edges correspond to potential conditional dependencies between

them. The absence of an edge connecting two variables indicates independence or condi-

tional independence between them. Conditional independence allows for a compact, factor-

ized representation of the joint probability distribution [148]. Dynamic Bayesian networks

(DBNs) are BNs better suited for modeling relationships over temporal data (see Section

4.1). Instead of building different models across time steps, DBNs allow for a “generic

slice” that shows transitions from a previous time point to the next time point, thus rep-
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resenting a generic temporal transition that can occur at any time during the computation.

The incorporation of conditional dependence and independence is similar to that in BNs.

DBNs have been widely used to model longitudinal data across many scientific domains,

including speech [116, 205], biological [42, 62, 108], or economic sequences [141, 196].

More formally, a DBN is a directed acyclic graph where, at each time slice (or time

instance), nodes correspond to random variables of interest (e.g., taxa, post-conceptional

age, or Nugent score) and directed edges correspond to their conditional dependencies in

the graph. These time slices are not modeled separately. Instead a DBN contains edges

connecting time slices known as inter edges that are repeated for each time point modeled

as depicted in Fig. 5.3e. In summary, the model learns the transition probability from one

time point to the next as a stationary conditional probability. DBNs are considered genera-

tive models, therefore, ideal for modeling the compositional interactions and dynamics of

the microbiota given the first time point.

5.2.6 Model construction

Using the aligned time series for the abundance of taxa, we next attempted to learn

graphical models that provide information about the dependence of the abundance of taxa

on the abundance of other taxa and clinical or demographic variables. Here, we use a “two-

stage” DBN model in which only two slices are modeled and learned at a time. Throughout

this dissertation, we will refer to the previous and current time points as ti and ti+1 for

variable t, respectively. Fig. 5.3e illustrates a skeleton of the general structure of a two-

stage DBN in the context of a longitudinal microbiome study. In this example, for each

time slice, the nodes correspond to random variables of observed quantities for different

microbial taxa (T1,T2,T3,T4) or clinical factors (C1,C2,C3) shown as circles and diamonds,

respectively. These variables can be connected by intra edges (dotted lines) or inter edges

(solid lines). In this DBN model, the abundance of a particular microbe in the current
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time slice is determined by parameters from both intra and inter edges, thus, modeling the

complex interactions and dynamics between the entities in the microbial community.

Typically, analysis using DBNs is divided into two components: learning the network

structure and parameters and inference on the network (see Section 4.2 for more infor-

mation). The former can be further sub-divided into (i) structure learning which involves

inferring from data the causal connections between nodes (i.e., learning the intra and in-

ter edges) while avoiding overfitting the model, and (ii) parameter learning which involves

learning the parameters of each intra and inter edge in a specific network structure. There

are only a limited number of open software packages that support both learning and in-

ference with DBNs [106, 198] in the presence of discrete and continuous variables. Here

we used the freely available CGBayesNets package [106, 108] for learning the network

structure and performing inference for Conditional Gaussian Bayesian models [88]. While

useful, CGBayesNets does not support several aspects of DBN learning including the use

of intra edges, searching for a parent candidate set in the absence of prior information

and more. We have thus extended the structure learning capabilities of CGBayesNets to

include intra edges while learning network structures and implemented well-known net-

work scoring functions for penalizing models based on the number of parameters such

as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [128]

instead of the BDeu score. Additionally, we imposed an upper bound limit on the maxi-

mum number of possible parents (maxParents ∈ {1, 3, 5}) for each bacterial node X (i.e.,

|PaG(X)| ≤ maxParents). For more information about the mathematical formulation and a

more detailed description of our contributions, please refer to Chapter 4.

5.2.7 Inferring biological relationships

Microbial ecosystems are complex, often displaying a stunning diversity and a wide

variety of relationships between community members. These biological relationships can

be broadly divided into two categories: beneficial: (including mutualism, commensalism
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and obligate), or harmful (including competition, amensalism and parasitism). Although

the longitudinal data sets considered in this study do not provide enough information to

further sub-categorize each biological relationship (e.g., mutualism vs. commensalism),

we use the learned DBN model from each microbiome data set and inspect each interac-

tion as a means for inferring simple to increasingly complex relationships. For example,

consider variable T4 ti in Fig. 5.3e. Given that ti and ti+1 represent the previous time point

and the current time point (respectively), the possible inference in this case is as follows:

Edges from T4 ti and C3 ti (inter edges), and from T2 ti+1 (intra edge) suggest the existence

of a temporal relationship in which the abundance of taxa T4 at a previous time instant and

abundance of taxa T2 at the current time instant, as well as condition C3 from the previ-

ous time instant impact the abundance of T4 at the current time. We previously stated that

F(T4 ti+1 |T4 ti ,C3 ti ,T2 ti+1) is modeled by N(λ0 + λ1 × T4 ti + λ2 × C3 ti + λ3 × T2 ti+1 , σ
2).

Therefore, inspecting the regression coefficients λ1, λ2, λ3 immediately suggests whether

the impact is positive or negative. In this example, the regression coefficients λ1, λ2 are

positive (λ1, λ2 > 0) while coefficient λ3 is negative (λ3 < 0), thus, variables T4 ti and C3 ti

exhibit positive relationships with microbial taxa T4 ti+1 shown as green edges in Fig. 5.3e,

whereas taxa T2 ti exhibits a negative interaction with T4 ti+1 shown as a red edge (Fig. 5.3e).

This simple analytic approach enables us to annotate each biological relationship with di-

rectional information.

5.2.8 Network visualization

All the bootstrap networks1 shown are visualized using Cytoscape [161] version 3.6.0,

using Attribute Circle Layout with Organic Edge Router. An in-house script is used to

generate a custom style XML file for each network, encoding multiple properties of the

underlying graph. Among these properties, the regression coefficients corresponding to

edge thickness were normalized as follows: Let Y be a microbial taxa node with continuous

1For each data set, we ran 500 bootstrap realizations and only reported edges with bootstrap
support of at least 50% in the consensus DBN.
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taxa parents U1, · · · ,Uk modeled by

F(Y |U1, · · · ,Uk) ∼ N(λ0 +

k∑
i=1

λi × Ui, σ
2), (5.3)

where λ1, · · · , λk are the corresponding regression coefficients for U1, · · · ,Uk as previously

described in this section. The normalized regression coefficients {λN
i }

k
i=1 are defined as

λN
i =

λi × Ūi∑k
j=1

∣∣∣λ j × Ū j

∣∣∣ , (5.4)

where Ūi is the mean abundance of taxa Ui across all samples.

5.3 Results

Fig. 5.3 presents a schematic diagram illustrating the whole computational pipeline we

developed for aligning and learning DBNs for microbiome and clinical data. We start by

estimating a cubic spline from the observed abundance profile of each taxa (Fig. 5.3b),

which enable principled estimation of unobserved time points and interpolation at uniform

intervals. Next, we determine an alignment which allows us to directly compare tempo-

ral data across individuals (Fig. 5.3c), as well as filter out abnormal and noisy samples

(Fig. 5.3d). We thenuse the aligned data to learn causal dynamic models that provide infor-

mation about interactions between taxa, their impact, and the impact of clinical variables

on taxa levels over time (Fig. 5.3e). Let nodes (T1,T2,T3,T4) represent microbial taxa and

(C1,C2,C3) represent clinical factors shown as circles and diamonds, respectively. Fig-

ure shows two consecutive time slices ti and ti+1, where dotted lines connect nodes from the

same time slice referred to as intra edges, and solid lines connect nodes between time slices

referred to as inter edges. Biological relationships are inferred from edge parameters in the

learned DBN which can be positive (green) or negative (red). Finally, Fig. 5.3f represents

the original and predicted relative abundance across four gut taxa. The prediction perfor-
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Figure 5.3: Schematic diagram illustrating the whole computational pipeline pro-
posed in this work. Figure shows microbial taxa Gammaproteobacteria at each step in
the pipeline from a set of five representative individual samples (subjects 1, 5, 10, 32 and
48) of the gut data set. a) Input is raw relative abundance values for each sample measured
at (potentially) non-uniform intervals even within the same subject. b) Cubic B-spline
curve for each individual sample. Sample corresponding to subject 1 (dark blue) contains
less than pre-defined threshold for measured time points, thus, removed from further anal-
ysis. c) Temporal alignment of each individual sample against a selected reference sample
(subject 48 shown in orange). d) Post-alignment filtering of samples with alignment error
higher than a pre-defined threshold. Sample corresponding to subject 5 (grey) discarded. e)
Learning a dynamic Bayesian network structure and parameters. f) Original and predicted
relative abundance across four gut taxa for subject 48 at sampling rate of 1 day.
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mance is evaluated by average mean absolute error (MAE) between original and predicted

abundance values (MAE = 0.011).

We applied our methods to study longitudinal data sets from three human microbiome

niches: infant gut, vagina and oral cavity (see Methods for full descriptions). In addition

to the differences in the taxa they profile, these data sets vary in the number of subjects

profiled (ranging from 15 to 48), in the number of time points they collected, the overall

number of samples and time series that were studied, etc. Thus, they provide a good set to

test the generality of our methods and their usefulness in different microbiome studies.

5.3.1 Temporal alignments

Below, we discuss in detail the improved accuracy of the learned dynamic models due to

use of temporal alignments. However, even before using them for our models, we wanted to

verify our splines-based heuristic alignment approach, as well as test whether the alignment

results agree with biological knowledge.

Simulation experiments: To investigate whether our splines-based greedy alignment ap-

proach is able to identify good solutions, we performed several simulation experiments (de-

scribed in Methods). In summary, we simulated data for 10 individual samples and aligned

them against a reference sample. We next computed the alignment accuracy (MAE) be-

tween the observed and expected alignment parameters (i.e., a and b), and alignment error

EM on the simulated data. These results are shown in Figure 5.4: Figure 5.4, where the

average error for alignment parameter a ranges between 0.030-0.035 at 5% noise up to

0.24-0.35 at 25% noise across all simulation experiments. Alternatively, the average er-

ror for alignment parameter b ranges between 0.25-0.30 at 5% noise up to 4.5-6.2 at 25%

noise across all three experiments. Finally, the alignment error EM is at most 7% at 25%

noise which indicates large agreement between the aligned samples. Overall, these simu-
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lation results provide evidence that the proposed greedy search method is able to find good

alignments, thus, supporting our prior assumptions as well as the use of B-splines.
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Figure 5.4: Temporal alignment accuracy on simulated data. Figure shows MAE along-
side standard deviation for alignment parameters a and b, as well as alignment error EM
using our heuristic alignment approach as a function of percentage of Gaussian noise. a)
Alignment performance on simulation experiment 1. b) Alignment performance on simu-
lation experiment 2. c) Alignment performance on simulation experiment 3.

Infant gut alignments capture gestational age at birth: To test whether the alignment

results agree with biological knowledge, we used the infant gut data. Infant gut microbiota

goes through a patterned shift in dominance between three bacterial populations (Bacilli to

Gammaproteobacteria to Clostridia) in the weeks immediately following birth. La Rosa

et al. [86] reported that the rate of change is dependent on maturation of the infant high-

lighting the importance of post-conceptional age as opposed to day of life when analyzing

bacterial composition dynamics in preterm infants. We found that our alignment method is

able to capture this rate of change without explicitly using gestational or post-conceptional

age.

Fig. 5.5 shows the relationship between alignment parameters a and b (from the trans-

formation function τi(t) =
(t−b)

a described in Methods) and the gestational age at birth for

each infant in the gut microbiome data set. Each aligned infant sample is represented by

a blue circle where the x-axis shows −b
a and y-axis shows the gestational age at birth. As
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Figure 5.5: Relationship between alignment parameters and gestational age at birth.
Figure shows the relationship between alignment parameters a and b and gestational age
at birth (measured in weeks) for the aligned infant gut microbiome data set. Each blue dot
represent an aligned infant sample i where x-axis shows −b

a from transformation function
τi(t) =

(t−b)
a and y-axis shows the gestational age at birth of infant i. Pearson correlation

coefficient = 0.35.

can be seen, the alignment parameters are reasonably well correlated with gestational age

at birth (Pearson’s correlation coefficient = 0.35) indicating that this method can indeed be

used to infer differences in rates between individuals.

5.3.2 Resulting dynamic Bayesian network models

We next applied the full pipeline to learn DBNs from the three microbiome data sets un-

der study. In particular, we use longitudinal data sets from three human microbiome niches:

infant gut, vaginal and oral cavity as described in Methods. In this section, we highlight

the overall characteristics of the learned DBN for each aligned and filtered microbiome

data set (Fig. 5.6 and Figure 5.7a). By contrast, we also show the learned DBN for each
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Infant gut from aligned samples Vaginal from aligned samples

a b

Figure 5.6: Learned dynamic Bayesian network for infant gut and vaginal micro-
biomes derived from aligned samples. Figure shows two consecutive time slices ti (or-
ange) and ti+1 (blue), where nodes are either microbial taxa (circles) or clinical/demo-
graphic factors (diamonds). Nodes size is proportional to in-degree whereas taxa nodes
transparency indicates mean abundance. Additionally, dotted lines denote intra edges (i.e.,
directed links between nodes in same time slice) whereas solid lines denote inter edges
(i.e., directed links between nodes in different time slices). Edge color indicates positive
(green) or negative (red) temporal influence and edge transparency indicates strength of
bootstrap support. Edge thickness indicates statistical influence of regression coefficient as
described in Network visualization. a) Learned DBN for the aligned infant gut microbiome
data at a sampling rate of 3 days and maxParents = 3. b) Learned DBN for the aligned
vaginal microbiome data at a sampling rate of 3 days and maxParents = 3.

unaligned and filtered microbiome data set in Figure 5.7b and Figure 5.8. In all these fig-

ures the nodes represent taxa and clinical (or demographic) variables and the directed edges

represent temporal relationships between them. Several triangles were also observed in the

networks. In some of the triangles, directed edges to a given node were linked from both

time slices of another variable. We will refer to these as directed triangles.

Infant gut microbiome data: The learned DBN model for the infant gut microbiome

data set smoothed, aligned and sampled every 3 days with maxParents = 3 was computed.

It contains 19 nodes per time slice (14 microbial taxa, 4 clinical and 1 demographic variable

nodes) and 39 directed edges (31 inter edges and 8 intra edges) with no directed triangles
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Figure 5.7: Learned dynamic Bayesian network of the oral microbiome derived from
unaligned and aligned tooth/gum samples. Figure shows two consecutive time slices
ti (orange) and ti+1 (blue), where nodes are either microbial taxa (circles) or clinical fac-
tors (diamonds). Nodes size is proportional to in-degree whereas taxa nodes transparency
indicates mean abundance. Additionally, dotted lines denote intra edges whereas solid
lines denote inter edges. Edges color indicates positive (green) or negative (red) temporal
influence and edge transparency indicates strength of bootstrap value. Edge thickness in-
dicates statistical influence of regression coefficient as described in Network visualization.
a) Learned DBN for the aligned oral microbiome data at a sampling rate of 7 days and
maxParents = 3. b) Learned DBN for the unaligned oral microbiome data at a sampling
rate of 7 days and maxParents = 3.

as shown in Fig. 5.6a. Since we only learn temporal conditional dependence (i.e., incoming

edges) for taxa nodes at time slice i + 1, the maximum number of possible edges is 14 ×

maxParents = 42, thus, most of the taxa nodes (11 out of 14) have reached the maximum

number of parents allowed (i.e., maxParents = 3). Additionally, the majority of these

temporal relationships are between microbial taxa. In particular, the model includes several

interactions between the key colonizers of the premature infant gut: Bacilli, Clostridia and

Gammaproteobacteria. Furthermore, the only negative interactions learned by the model

comprise these microbes which are directly involved in the progression of the infant gut

microbiota. Also, the nodes for gestational age at birth and post-conceptional age at birth

are not shown because they are isolated from the rest of the network, without any single
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Figure 5.8: Learned dynamic Bayesian network for gut and vaginal microbiomes de-
rived from unaligned samples. Figure shows two consecutive time slices ti (orange) and
ti+1 (blue), where nodes are either microbial taxa (circles) or clinical/demographic factors
(diamonds). Nodes size is proportional to in-degree whereas taxa nodes transparency in-
dicates mean abundance. Additionally, dotted lines denote intra edges (i.e., directed links
between nodes in same time slice) whereas solid lines denote inter edges (i.e., directed
links between nodes in different time slices). Edge color indicates positive (green) or nega-
tive (red) temporal influence and edge transparency indicates strength of bootstrap support.
Edge thickness indicates statistical influence of regression coefficient as described in Net-
work visualization. a) Learned DBN for the unaligned infant gut microbiome data at a
sampling rate of 3 days and maxParents = 3. b) Learned DBN for the unaligned vaginal
microbiome data at a sampling rate of 3 days and maxParents = 3.

edge. Overall, these trends strongly suggest that the DBN is capturing biologically relevant

interactions between taxa.

Vaginal microbiome data: As with the gut microbiome data set, we learned a DBN

model for the vaginal microbiome data at a sampling rate of 3 days and maxParents = 3

(Fig. 5.6b). The resulting DBN is comprised of 24 nodes per time instance (23 taxa and

1 clinical) and 58 edges (40 inter edges and 18 intra edges). Additionally, 12 directed

triangles involving taxa nodes were observed. In preliminary analyses, additional clin-

ical and demographic attributes (e.g., Nugent category, race and age group) resulted in

networks with these variables connected to all taxa nodes, thus, removed from further anal-

ysis. Specifically, we estimated the degree of overfitting of these variables by learning and
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testing DBN models with and without them. This resulted in the DBN shown in Fig. 5.6b

which exhibited lowest generalization error. In this case, the maximum number of potential

edges between bacterial nodes is 24 × maxParents = 72; however, only 16 out of 24 taxa

nodes reached the threshold on the maximum number of parents. Among all the 58 edges,

only one interaction Day Period ti+1 to L. iners ti+1 involves a clinical node whereas the

remaining 57 edges (including 15 negative interactions) captured temporal relationships

among microbial taxa. This mixture of positive and negative interactions between taxa

provides evidence of the DBNs ability to capture the complex relationships and temporal

dynamics of the vaginal microbiota.

Oral microbiome data: We learned a DBN with the longitudinal tooth/gum microbiome

data set with a sampling rate of 7 days and maxParents = 3. Figure 5.7a shows the learned

DBN which contains 20 nodes for each time slice (19 taxa and 1 clinical) and 52 edges (33

inter edges and 19 intra edges) out of 57 possible edges. In addition 2 directed triangles

were observed involving taxa nodes. Here, the DBN model includes multiple positive

and negative interactions among early colonizers (e.g., Veillonella and H. parainfluenzae)

and late colonizers (e.g., Porphyromonas) of the oral microbiota which are supported by

previous experimental studies [85].

5.3.3 Comparisons to prior methods

To evaluate the accuracy of our pipeline and to compare them to models reconstructed

by prior methods published in the literature [94, 108], we used a per-subject cross-validation

with the goal of predicting microbial taxon abundances using the learned models. In each

iteration, the longitudinal microbial abundance profile of a single subject was selected as

the test set, and the remaining profiles were used for building the network and learning

model parameters. Next, starting from the second time point, we used the learned model

to predict an abundance value for every taxa in the test set at each time point using the
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previous and current time points. Predicted values were normalized to represent relative

abundance of each taxa across the microbial community of interest. Finally, we measured

the average predictive accuracy by computing the MAE for the selected taxon in the net-

work. We repeated this process (learning the models and predicting based on them) for

several different sampling rates, which ranged from 1 up to 28 days depending on the data

set. The original and predicted microbial abundance profiles can be compared as shown in

Fig. 5.3f. The average MAE for predictions on the three data sets are summarized in Table

5.3. Furthermore, Fig. 4 and Figure 5.9 show violin and bar plots of the MAE distributions

for ten different methods on each data set, respectively. Along with two of our DBNs (one

with and one without alignments), four methods with and four without alignments were

compared. These are further described below.
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Figure 5.9: Comparison of average predictive accuracy and standard deviation be-
tween methods on the filtered data sets. Figure shows the average MAE and standard
deviation of our proposed DBN models against a baseline method and previously pub-
lished approaches as a function of sampling rates. Additionally, each method is run on the
unaligned and aligned data sets. a) Performance results for infant gut microbiome data. b)
Performance results for vaginal microbiome data. c) Performance results for oral cavity
microbiome data.

First, we compared the DBN strategy to a naive (baseline) approach. This baseline ap-

proach makes the trivial prediction that the abundance value for each taxa A at any given

point is exactly equal to the abundance measured at the previous time point. Given that

measured abundances are continuous variables, this turns out to be an extremely compet-
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Figure 5.10: Comparison of average predictive accuracy between methods on the fil-
tered data sets. Figure shows violin plots of the MAE distributions of our proposed DBN
models against a baseline method and previously published approaches for a sampling rate
that most closely resembles the originally measured time points. Additionally, each method
is run on the non-aligned and aligned data sets. a) Performance results for infant gut mi-
crobiome data for sampling rate of 3 days. b) Performance results for vaginal microbiome
data for sampling rate of 3 days. c) Performance results for oral cavity microbiome data
for sampling rate of 7 days.

itive method and performs better than most prior methods for the data sets we tested on.

Next, we compared our DBNs to three other methods suggested for modeling interactions

among taxa: (a) McGeachie et al. [108] developed a different DBN model where network

learning is estimated from the BDeu scoring metric [106] (instead of MLE), (b) McGeachie

et al.++ an in-house implementation that extends the method of McGeachie et al. to allow

for intra edges during structure learning, and (c) MTPLasso [94] that models time-series

microbial data using a gLV model. In all cases, we used the default parameters as provided

in the original publications.

As can be seen by Table 5.3 and Figure 5.9 our method outperforms the baseline and

previous methods for the infant gut data. It also performs favorably when compared to

baseline on the other two data sets. Temporal alignments improved the predictive perfor-

mance over unaligned samples across gut and vaginal microbiomes by about 1-4 percent-

age points. In particular, a two-tailed t-test indicates significant (denoted by *) perfor-

mance improvements for most sampling rates (infant gut: p-value = 0.043* for 1 day,
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p-value = 0.034* for 3 days, p-value = 0.109 for 5 days, and p-value < 1.00E-05*

for 7 days; vaginal: p-value < 1.00E-06* for 1 day, p-value < 1.00E-05* for 3 days,

p-value = 5.50E-05* for 5 days, p-value = 3.10E-03* for 7 days, and p-value = 0.097 for

14 days). On the other hand, alignments did not show significant predictive performance

improvements on the oral data set and is consistent with previous analysis on the same data

set [45]. Surprisingly, the simple baseline approach outperforms all previously published

methods: McGeachie et al. [108] and MTPLasso [94] across the three data sets. Finally,

Fig. 5.10 shows violin plots of the MAE results for each data set across a sampling rate that

most closely resembles the originally measured time points.

Data set sr Baseline McGeachie et al. McGeachie et al.++ MTPLasso Our
(days) non-aligned aligned non-aligned aligned non-aligned aligned non-aligned aligned non-aligned aligned

Infant gut

1 1.87 ± 1.11 1.37 ± 0.80 2.48 ± 1.03 1.97 ± 1.08 1.45 ± 0.76 1.16 ± 1.00 2.34 ± 1.10 1.74 ± 0.83 1.25 ± 0.81 0.91 ± 0.70
3 3.84 ± 2.09 2.88 ± 1.21 4.31 ± 1.53 3.38 ± 1.19 1.90 ± 0.94 1.51 ± 0.95 4.06 ± 1.43 3.16 ± 0.96 1.50 ± 0.97 1.10 ± 0.80
5 4.79 ± 2.41 4.11 ± 1.52 5.15 ± 1.56 4.25 ± 1.19 2.20 ± 1.05 1.71 ± 1.09 4.86 ± 1.64 4.17 ± 1.13 1.48 ± 1.01 1.16 ± 0.93
7 5.07 ± 2.05 4.62 ± 2.21 5.00 ± 1.69 4.65 ± 1.46 1.89 ± 0.90 1.91 ± 1.31 4.92 ± 1.54 4.48 ± 1.37 4.80 ± 1.63 0.99 ± 0.96

Vaginal

1 0.45 ± 0.17 0.21 ± 0.10 0.82 ± 0.21 0.61 ± 0.33 0.81 ± 0.23 0.62 ± 0.34 0.76 ± 0.15 0.58 ± 0.18 0.44 ± 0.15 0.24 ± 0.10
3 1.38 ± 0.42 0.64 ± 0.26 1.88 ± 0.40 1.22 ± 0.33 1.65 ± 0.50 1.21 ± 0.38 1.66 ± 0.52 1.16 ± 0.27 1.10 ± 0.38 0.65 ± 0.28
5 2.08 ± 0.58 1.05 ± 0.38 2.64 ± 0.54 1.67 ± 0.39 2.12 ± 0.69 1.63 ± 0.50 2.29 ± 0.68 1.62 ± 0.38 1.67 ± 0.67 1.02 ± 0.37
7 2.40 ± 0.76 1.43 ± 0.50 3.00 ± 0.70 2.08 ± 0.48 2.47 ± 0.95 1.97 ± 0.68 2.55 ± 0.80 1.98 ± 0.56 1.90 ± 0.90 1.28 ± 0.52
14 3.10 ± 0.77 2.60 ± 0.85 3.78 ± 0.84 3.05 ± 0.78 3.04 ± 1.17 2.66 ± 0.95 3.38 ± 1.11 2.81 ± 0.94 2.40 ± 1.09 1.91 ± 1.05

Oral cavity

1 0.47 ± 0.11 0.45 ± 0.21 0.96 ± 0.34 1.11 ± 0.28 0.95 ± 0.40 1.10 ± 0.29 0.96 ± 0.07 1.11 ± 0.19 0.56 ± 0.25 0.57 ± 0.38
3 1.38 ± 0.29 1.31 ± 0.48 1.98 ± 0.43 2.11 ± 0.39 1.83 ± 0.49 1.97 ± 0.40 1.92 ± 0.28 2.01 ± 0.22 1.46 ± 0.54 1.34 ± 0.61
5 2.16 ± 0.40 1.95 ± 0.54 2.66 ± 0.45 2.67 ± 0.44 2.30 ± 0.51 2.40 ± 0.42 2.59 ± 0.58 2.56 ± 0.27 2.09 ± 0.66 1.92 ± 0.58
7 2.70 ± 0.51 2.41 ± 0.61 3.11 ± 0.51 3.09 ± 0.52 2.54 ± 0.55 2.66 ± 0.47 2.99 ± 0.64 2.84 ± 0.23 2.44 ± 0.69 2.18 ± 0.68
14 3.05 ± 0.68 2.81 ± 0.46 3.44 ± 0.57 3.45 ± 0.64 2.88 ± 0.60 3.10 ± 0.61 3.21 ± 0.49 3.20 ± 0.26 2.61 ± 0.74 2.89 ± 0.78
21 3.02 ± 0.47 2.89 ± 0.62 3.43 ± 0.53 3.71 ± 0.62 3.06 ± 0.52 3.27 ± 0.69 3.27 ± 0.59 3.57 ± 0.38 2.67 ± 0.68 2.50 ± 0.78
28 3.09 ± 0.81 2.91 ± 0.55 3.67 ± 0.76 3.88 ± 0.88 3.35 ± 0.82 3.89 ± 0.87 3.44 ± 0.70 3.85 ± 0.29 3.00 ± 0.86 3.28 ± 1.04

Table 5.3: Summary of average predictive accuracy and standard deviation between
methods on the filtered data sets. For each data set, we list the average MAE and standard
deviation (presented as percentage) of our proposed DBN models against a baseline method
and previously published approaches across different sampling rates. Additionally, each
method is run on the non-aligned and aligned data sets. The highest predictive accuracy for
each sampling rate is shown in boldface.

5.3.4 Anomaly detection using alignment

When analyzing large cohorts of microbiome data, it is important to implement a strat-

egy to remove outliers as these can affect our ability to generalize from the collected data.

As discussed in Methods, we can use our alignment error EM score to identify such subjects

and remove them prior to modeling. In the context of the gut data set, this resulted in the

identification of two infant samples: Subjects 5 and 55 (highlighted in red within Figure

5.11a) which are likely processing errors, contaminated samples, or just natural anoma-
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lies. Sample 55 has been previously identified as a likely abruption event by McGeachie et

al. [108] using a different approach. Similarly, Figure 5.11b shows the distribution of align-

ment errors EM for the vaginal microbiome data. In this case, we remove 6 sub-samples

from 4 different women (highlighted in red). We note that there were no outliers identi-

fied in the oral cavity microbiome data set. When learning DBNs following the filtering

we obtain even better models. Figure 5.12 compares the average MAE results of our pro-

posed DBN model between the unfiltered and filtered samples for the gut and vaginal data

sets. As can be seen, a large performance improvement is observed for the gut data while

a slight improvement is observed for the vaginal data when removing the outliers. These

results suggest that even though the method uses less data to learn the models, the models

that it does learn are more accurate.
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Figure 5.11: Distribution of microbiome alignment error EM for infant gut and vaginal
data sets. a) EM scores for 47 infant gut samples aligned against a common reference gut
sample. b) EM scores for 112 vaginal microbiome sub-samples aligned against an optimal
reference sub-sample. In both panels, the scores highlighted in red represent samples with
EM at least two standard deviations away from the mean of the distribution of microbiome
alignment errors, thus, identified as outliers and removed.

5.4 Discussion

5.4.1 The power of temporal alignments

We developed a pipeline for the analysis of longitudinal microbiome data and applied

it to three data sets profiling different human body parts. To evaluate the reconstructed

networks we used them to predict changes in taxa abundance over time. Interestingly, ours
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Figure 5.12: Effect of outliers on average predictive accuracy from aligned data sets.
Figure shows the average MAE for our proposed DBN model and baseline method as
a function of sampling rates before (labeled as unfiltered) and after (labeled as filtered)
removal of outliers. a) Performance results for infant gut microbiome data. b) Performance
results for vaginal microbiome data.

is the first method to improve upon a naive baseline (Figure 5.9). While this does not fully

validate the accuracy of the models, it does mean that the additional interactions determined

by our method contribute to the ability to infer future changes and so at least some are likely

true.

As part of our pipeline we perform temporal alignment. While ground truth for align-

ments is usually hard to determine, in one of the data sets we analyzed we could compare

the alignment results to external information to test its usefulness. In the context of the in-

fant gut data, it has been shown that using day of life as the independent variable hinders the

identification of associations between bacterial composition and day of sampling. There-

fore, previous work have re-analyzed the premature gut microbiota with post-conceptional

age, uncovering biologically relevant relationships [86]. By using alignment we were able

to correct for this difference without the need to rely on the external age information. In

addition to the results presented in Fig. 5.5, the learned DBN in Fig. 5.6a does not show

any relationships to post-conceptional age or gestational age at birth indicating that our

alignment was able to successfully compensate for. By contrast, the learned DBN from
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unaligned samples in Figure 5.8: Figure 5.8 shows relationships to post-conceptional age.

While for this data such correction could have been made using post-conceptional age, in

other cases the reason for the rate change may not be obvious and without alignment it

would be hard to account for such hidden effects.

5.4.2 Uncovering biological relationships

We next discuss in more detail the learned DBN models.

Infant gut: As mentioned in Results, the only negative relationships identified supports

the known colonization order, that is, a shift in dominance from Bacilli to Gammapro-

teobacteria to Clostridia) [86], as the infant goes through the first several weeks of life.

These edges show incoming negative relationships to Bacilli from Gammaproteobacteria

and Clostridia. In particular, an increase in the abundance of the parents is associated with

a decrease in the abundance of the child. The negative edge from Gammaproteobacteria to

Clostridia agrees with previous findings where Clostridia’s abundance is found to increase

at a gradual rate until it peaks at post-conceptional age between 33 and 36 weeks whereas

Gammaproteobacteria decreases as infants age [86, 108]. It is important to note that this

negative edge from Gammaproteobacteria to Clostridia is not found in the learned DBN

from unaligned samples (Figure 5.8a). This relationship is also confirmed by the edges

from Day of life to Gammaproteobacteria and Clostridia (Fig. 5.6b). Moreover, the DBN

model indicates a relationship between breastfeeding and Actinobacteria, Bacteroidia, and

Alphaproteobacteria. These bacteria are known to be present in breast milk which is known

to heavily influence and shape the infant gut microbiome [79].

Vaginal: It has been established that microbial composition can change dramatically

during the menses cycle and later return to a ‘stable’ state before the next menstrual pe-

riod [67, 136]. Previous studies have identified a subset of individuals in this data set as

exhibiting a microbial composition dominated by L. crispatus with a notable increase of L.
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iners around the start of each menstrual period [55, 67] (Figure 5.1a). These interactions

were also captured by the learned DBN model in the form of a directed triangle involving L.

crispatus and L. iners (Fig. 5.6b). The edge from the Day Period to L. iners strengthens this

relationship, which is not present in the learned DBN from unaligned vaginal sub-samples

(Figure 5.8b). On the other hand, subjects from another group were characterized as dom-

inated by L. gasseri coupled with shifts to Streptococcus during menstruation [55]. These

relationships were also captured by the DBN. Furthermore, while L. iners has a lower pro-

tective value than the other Lactobacillus [132], the negative edge between L. iners and

Atopobium suggests a relationship related to environment protection. Also, the positive

edge from Atopobium to Gardnerella is supported by the synergy observed between these

two taxa in bacterial vaginosis [63]. Although many of these microbial relationships are

also observed in the learned DBN from unaligned sub-samples, there are some biological

relationships which cannot be found within the DBN derived without alignments. How-

ever, given our limited understanding of the interactions within the vaginal microbiome,

we cannot determine whether or not these previously unseen interactions are biologically

relevant. Finally, it is worth highlighting that the shifts and composition of the vaginal

microbiome vary considerably between each women [136, 55].

Oral: For oral microbiomes, several Streptococcus species, including S. oralis, S. mitis,

S. gordonii, and S. sanguis are well known as early colonizers lying close to the tooth

pellicle [85]. While our learned DBNs (Figure 5.7) cannot identify specific species, it

suggests interactions between some species of Streptococcus and other later colonizers

in the oral microbiome such as Porphyromonas and Prevotella. The learned DBN derived

from aligned tooth/gum samples also provided novel predictions, for example taxa Granuli-

catella is interacting with Veilonella. Furthermore, there are other microbial relationships

uniquely observed on each DBN which are also potentially interesting.
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5.4.3 Triangles in DBNs

An interesting aspect shared by all of the DBNs discussed above is the fact that they

contain triangles or feed-forward loops. In particular many of these directed triangles are

created from nodes representing both time slices of another variable, but with different signs

(one positive and the other negative). For example, microbial taxa L. crispatus displays a

directed triangle with another taxa L. iners in the vaginal DBN (Fig. 5.6b). In this triangle,

positive edges from L. iners ti interact with L. iners ti+1 and L. crispatus ti+1 whereas a

negative edge connects L. iners ti+1 to L. crispatus ti+1.

The triangles in the DBNs represent a relationship where the abundance of a child node

cannot be solely determined from the abundance of a parent at one time slice. Instead,

information from both the previous and the current time slices is needed. This can be

interpreted as implying that the child node is associated with the change of the abundance

values of the parents rather than with the absolute values which each node represents.

5.4.4 Limitation and future work

While our pipeline of alignment followed by DBN learning successfully reconstructed

models for the data sets we looked at, it is important to understand the limitations of the ap-

proach. First, given the complexity of aligning a large number of individuals, our alignment

method is based on a greedy algorithm, thus, it is not guaranteed to optimize our objective

function, i.e., total warping. Even if the alignment procedure is successful, the DBN may

not be able to reflect the correct interactions between taxa. Issues related to sampling rates

can impact the accuracy of the DBN (missing important intermediate interactions). On the

other hand, if not enough data is available the model can overfit and predict non-existent

interactions.

Given these limitations we would attempt to improve the alignment method and its

guarantees in future work. We are also interested in studying the ability of our procedure

to integrate additional molecular longitudinal information including gene expression and
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metabolomics data which some studies are now collecting in addition to the taxa abundance

data [72]. As we show in the next chapter, our approach for integrating information across

individuals in order to learn dynamic models is useful for analyzing longitudinal multi-

omics data from microbiome studies.

5.5 Conclusion

In this paper, we propose a novel approach to the analysis of longitudinal microbiome

data sets using dynamic Bayesian networks with the goal of eliciting temporal relationships

between various taxonomic entities and other clinical factors describing the microbiome.

The novelty of our approach lies in the use of temporal alignments to normalize the differ-

ences in the pace of biological processes inherent within different subjects. Additionally,

the alignment algorithm can be used to filter out abrupt events or noisy samples. Our results

show that microbiome alignments improve predictive performance over previous methods

and enhance our ability to infer known and potentially novel biological and environmen-

tal relationships between the various entities of a microbiome and the other clinical and

demographic factors that describe the microbiome.

67



CHAPTER 6

LONGITUDINAL MULTI-OMIC NETWORK INFERENCE

6.1 Introduction

Microbiomes are communities of microbes inhabiting an environmental niche. The

study of microbial communities offers a powerful approach for inferring their impact on

the host environment, and their role in specific diseases and health. Metagenomics involves

analyzing sequenced reads from the whole metagenome in a microbial community in order

to determine a detailed profile of microbial taxa [139]. More recently, additional types of

biological data are being profiled in microbiome studies, including metatranscriptomics,

which involves surveying the complete metatranscriptome of the microbial community

[12], metabolomics, which involves profiling the entire set of small molecules (metabo-

lites) present in the microbiome’s environmental niche [182], and host transcriptomics,

which provides information about the levels of genes expressed in the host [23].

The goal of the second phase of the Human Microbiome Project (HMP) [183], called

the integrative Human Microbiome Project [71], is to generate longitudinal multi-omics

data sets as a means to study the dynamics of the microbiome and the host across select

diseases, including preterm births, type 2 diabetes, and irritable bowel disorders.

A major challenge in microbiome data analysis is the integration of multi-omics data

sets [124]. Most multi-omic studies focus on a separate analysis of each omics data set

without building a unified model [14]. There have been some attempts [202, 99, 201,

203, 92] and tools to facilitate the analysis [16, 150], but there is still much room for

improvement regarding reproducibility, flexibility, and biological validity [124, 22, 184]

Deep learning approaches for integrating multi-omics [98, 111] have also been devel-

oped, but their lack of interpretability prevents these models from providing insights into

the interplay of the different omics entities. Even Partial Least Squares models have been

used to facilitate this integration [49], but they have their own set of limitations depending
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on the underlying data generation model, and are prone to provide spurious results when

applied to high-dimensional data [145].

In addition, microbiomes are inherently dynamic, and so to fully understand the com-

plex interactions that take place within these communities, longitudinal microbiome data

appears to be critical [57]. Many attempts have been made to analyze data from longitu-

dinal studies [86, 92, 203]; however, these approaches do not attempt to study interactions

between taxa. An alternative approach involves the use of dynamical systems such as the

generalized Lotka-Volterra (gLV) models [172, 58], however the large set of parameters in

these models diminishes their utility for probabilistic inference.

Previously, we have shown that probabilistic graphical models, specifically dynamic

Bayesian networks (DBNs), can be used to study metagenomic sequence data from mi-

crobiome studies leading to models that can accurately predict future changes as well as

identify interactions within the microbiome [96]. However, these prior methods were only

able to analyze a single omic data set. Here we present a new Pipeline for the Analysis

of Longitudinal Multi-omics data (PALM), which, in addition to modeling metagenomics

interactions can also incorporate time series metatranscriptomics, metabolomics and host

expression data to learn an integrated model of microbiome-host interactions.

PALM overcomes a number of challenges associated with such large scale integration.

First, modeling such data leads to a sizable increase in the size of the model and the number

of parameters in the DBN, which grows as the product of the number of entities in each

omics data set. Additionally, such large number of nodes and parameters can lead to over-

fitting. PALM overcomes these challenge by restricting the set of allowable interactions

(edges) between the omics entities based on sound biological assumptions and by relying

on continuous representation and alignment to integrate a large set of observations when

learning a specific model.

An additional challenge with modeling microbiomes is the difficulty of validating the

model’s predictions. To address this, PALM uses in silico approaches employing multi-
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ple public databases (genomic sequence database and metabolic pathway database) and

recently proposed software tools for the validation.

Applying PALM to Inflammatory Bowel Disease (IBD) data led to models that cor-

rectly predict microbiome levels and identifies known and novel interactions. Statistical

validations indicate that PALM can accurately recover known interactions and improves

upon prior approaches. We further experimentally validated a few of the high scoring

metabolite-taxa interactions predicted by the model.

6.2 Materials and Methods

Below we describe the computational pipeline, PALM, developed to integrate and model

the interactions between the different types of omics.

6.2.1 Data

To test PALM’s proposed analysis pipeline, which combines temporal alignment with

Bayesian network learning and inference for multi-omics microbiome data, we used the

Inflammatory Bowel Disease (IBD) cohort from a study that included 132 individuals

across five clinical centers [92]. During a period of one year, each subject was profiled

(biopsies, blood draws, and stool samples) every two weeks on average. This yielded

temporal profiles for metagenomes, metatranscriptomes, proteomes, metabolomes and vi-

romes across all subjects. Additionally, for each subject, host- and microbe-targeted hu-

man RNA sequencing was yielded from biopsies collected at initial screening colonoscopy

sampled at two locations (ileum and rectum). All data are fully described and available at

https://ibdmdb.org/.

Each data set was associated with the week when it was sampled. Because only a single

biopsy was obtained for each location sampled (ileum and rectum), host transcriptomics

were used as static variables in the DBN.
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6.2.2 Data pre-processing

The different data types were processed separately. First, the taxon, metabolite, and

gene abundances were normalized to make each type separately add up to 1 for each sub-

ject. Then metabolites and genes were scaled to match the mean of the taxa because of the

very distinct number of entities in each category. Additionally, RNA-seq data from ileum

and rectum of each host was analyzed using DESeq2 [95] and TPM values. Note that we

did not explicitly address the compositional nature of the taxa with projections like PhILR

[164], since they are not a normalization scheme. These approaches transform the data into

another non-compositional space, with different variables (balances) rather than taxa. As a

proof-of-concept, for each body site, we selected the top 20 genes with the highest variance

across all subjects. We note that this set of genes is limited as previous studies have reported

over 1000 differently expressed genes for IBD individuals at these two sampled locations

compared to individuals without IBD [92]. Metabolites without an HMDB correspondence

were removed. Next, we filtered out metabolites for which the mean intensity was less than

0.1%, or had zero variance over the originally sampled time points. Next, we performed

temporal alignment of time series data from individuals as described in Lugo-Martinez et

al. [96]. For this, we need to represent each discrete time series using a continuous func-

tion. Here we used B-splines for fitting continuous curves to the time-series multi-omic

data profiled from each subject, including the microbial composition, gene expression, and

metabolic abundance. To improve the accuracy of the reconstructed profiles, we removed

any sample that had less than five measured time points in any of the multi-omics measure-

ments. This led to the removal of 70 individuals from the cohort resulting in 62 individual

multi-omic time series that were used for further analysis.

6.2.3 Temporal alignments

Given longitudinal samples from different subjects, we cannot expect that the rates at

which various multi-omics levels change would be exactly the same between these in-
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dividuals [9]. To facilitate the analysis of such longitudinal data across subjects, we first

align the time series from the microbiome samples using the microbial composition profiles

(see Section 3.6). As described earlier, these alignments use a linear time transformation

function to warp one time series into a common, representative sample time series used

as the reference [96]. While prior alignment methods relied on taxa information, when

multi-omics data is available, PALM can use other genomic information for the alignment.

Specifically, here we also tested the use of gene expression and metabolite abundance pro-

files for determining accurate alignments of patients. As we show, by using a better omics

data type the resulting DBNs can more accurately capture and predict taxa-metabolite and

taxa-gene relationships.

For each omics data (i.e., taxa, genes, or metabolites) we select an optimal reference

sample from the 107 time series as follows: we generated all possible pairwise alignments

between them and selected the time series that resulted in the least total overall error in

the alignments. We then filtered out abnormal and noisy samples from the resulting set of

alignments as follows: (1) computed the mean µ and standard deviation δ of the alignment

error, and (2) removed all samples from an individual where alignment error exceeded

µ + (2 × δ), as previously described in [96]. Figure 6.1(a)-(d) shows the overall alignment

process of Bacteroides dorei, from the taxa-based alignment perspective.

Given an individual’s warped/aligned time series over a specific omic type, the other

multi-omics data were incorporated as follows: the same transformation applied to the

aligned sample was applied to all the complementary multi-omics time series data. The

resulting set used for the modeling comprised of 60 individual-wise heterogeneous align-

ments (after filtering out high alignment error individuals) involving 102 microbial taxa,

72 genes, and 70 metabolites. This smaller number of attributes was used because learning

a Bayesian network is NP-Hard [33, 40], and henceforth has an exponential run time with

the number of features.
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6.2.4 Dynamic Bayesian network models

Using the aligned time series multi-omics data, we next learned graphical models

that provide information about the relationships between the different omics (taxa, genes,

metabolites, host-genes) and environmental (exogenous) variables. In PALM, we extend

the DBN model proposed in Lugo-Martinez et al. [96] to account for multi-omics micro-

biome data with the goal of inferring the temporal relationships between the heterogeneous

entities in a microbial community. A DBN is a directed acyclic graph where, at each

time slice, nodes correspond to random variables of interest (e.g., taxa abundance, gene

expression, age, etc.), and directed edges correspond to their conditional dependencies in

the graph. These edges are defined as either: intra edges connecting nodes from the same

time slice, or inter edges connecting nodes between consecutive time slices. In our DBN

model, only two slices are modeled and learned, as shown in Figure 6.1(e). In PALM, our

DBN models encode five types of nodes: (i) taxon abundance, (ii) gene expression, (iii)

metabolite concentration, (iv) host gene expression, and (v) sample metadata information.

The first three types represent continuous variables, whereas the last two types can be ei-

ther discrete or continuous. For our DBNs, we use the formalism of conditional Gaussian

Bayesian networks [106] to take advantage of its ability to seamlessly integrate discrete

and continuous variables in a single probabilistic framework. For more information about

the mathematical formulation and our contributions, please refer to Chapter 4.

As highlighted in Figure 6.1(f), the conditional linear Gaussian density function for

variable T ti+1
1 is modeled by

f (T ti+1
1 |T

ti
1 ,M

ti
1 , E

ti+1
1 , Eti+1

2 ) = N(β0 + β1 × T ti
1 + β2 × Mti

1 + β3 × Eti+1
1 + β4 × Eti+1

2 , σ2), (6.1)

where Θ = {β1, β2, β3, σ2} are the DBN model parameters.
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Skeleton metabolic framework
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Figure 6.1: Computational pipeline proposed in this chapter. Figure shows microbial
taxa Bacteroides dorei at each step in the pipeline from a set of five individual samples
(subjects M2072, C3027, C3013, C3015, and E5002) of the IBD data set. (a) Relative
abundance for each sample. (b) Cubic B-spline curve for each individual sample. (c)
Temporal alignment of all taxa of each individual to correct for the different progression
rates. (d) Post-alignment filtering of samples with a higher alignment error than a pre-
defined threshold. (e) Biologically-inspired Skeleton constraints imposed on learning the
DBNs computed by PALM. (f) Learning a two-stage DBN structure and parameters for the
host genes, environmental variables, taxa, genes, and metabolites.

6.2.5 Constraining the DBN structure

An important innovation in PALM lies in the structure constraining of the network to

conform to our proposed metabolic framework that ensures the desired flow of interactions.
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These constraints (in the form of a matrix received as an input to the function) only allow

edges between certain types of nodes, highly reducing the complexity of searching over

possible structures and preventing over-fitting. Note that these constraints can be easily

changed by adding more data types, or different restrictions in the input file containing

the adjacency matrix. Specifically, we allowed intra edges from environmental and host

transcriptomics variables to microbial taxa (abundance) nodes, from taxa nodes to gene

(expression) nodes and from gene nodes to metabolites (concentration) nodes. All other in-

teractions within a time point (for example, direct gene to taxa) were disallowed. We also

allowed inter edges from metabolites to taxa nodes in the next time point, and self-loops

from any node Xt
i to Xt+1

i for each i and time t, except for environmental or host tran-

scriptomics variables for which no incoming edges were allowed (host genes were only

measured at a single time point so no incoming temporal edges were allowed for them).

These restrictions referred to as the Skeleton and depicted in 6.3(a) reflect our understand-

ing of the basic ways the different entities interact with each other, i.e., environmental and

host gene expression variables are independent variables, taxa express genes, which are

involved in metabolic pathways; finally, the metabolites impact the growth of taxa (in the

next time slice).

We also learned DBNs using a less constrained framework referred to as Augmented

as shown in 6.3(b). Unlike Skeleton, the Augmented framework also allowed direct edges

between taxa and metabolites to account for cases where noise or other issues related to

profiling of genes can limit our ability to indirectly connect taxa and the metabolites they

produce. 6.3 summarizes each framework in the form of an adjacency matrix.

Note that other constraints such as requiring that taxa could only connect to genes

present in their genome were not imposed since genomics reference databases are not al-

ways complete and so they may lead to missing key interactions.

We used a greedy hill-climbing approach for structure learning where the search is

initialized with a network that connects each node of interest at the previous time point to
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the corresponding node at the following time point. Next, nodes are added as parents of

a specific node via intra or inter edges depending on which valid edge leads to the largest

increase of the log-likelihood function beyond the global penalty incurred by adding the

parameters as measured by the BIC score approximation.

Every network was bootstrapped by randomly selecting with replacement as many sub-

jects as in the data set, and learning a different network 100 times. Although we explore

multiple values as the maximum number of possible parents for each node (see Figure

6.2), unless otherwise stated, the maximum number of possible parents was fixed to 3.

The networks were then combined, and the regression coefficient of the edges was aver-

aged. Each edge was also labeled with the bootstrap support (percentage of times that edge

appears). Each repetition was set to run independently on a separate processor using Mat-

lab’s Parallel Computing Toolbox. Other parallel implementations include parallelizing the

cross-validation computation of the inference error and each independent alignment error

calculation using Python’s Parallel library.
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Figure 6.2: Execution time for different maximum number of parents. The figure shows
experimentally that the execution time grows linearly with the number of parents. Note that
while the times shown are for 1 repetition, the DBN figures shown are with 100.

6.2.6 Validating DBNs

A major challenge in building models of biological interactions lies in developing meth-

ods to validate them and in providing confidence measures. Since DBNs are generative

models, one approach is to predict time series using previous time points and thus to achieve
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cross validation [96]. Such technical validations, while informative, could be thought as

of “black-box” validation, and do not shed light on the accuracy of specific edges and

interactions predicted by the model that we are interested in.

We broadly discuss approaches to validate the types of edges present in the DBN (see

Figure 6.1(e)), which are the parameters learned by the model, and hence closer to “white-

box” validation. Edges from taxa to genes can be circumstantially validated by verifying

that (a) the taxon presence is guaranteed by its non-zero abundance, (b) the taxon genome

has the gene, and (c) the gene is expressed. PALM, therefore, handles this using the in

silico validation strategies mentioned below in Section 6.2.7. Similarly, edges from genes

to metabolites or taxa to metabolites could potentially be validated.

The challenge is in validating edges from metabolites to taxa, for which an in silico

approach is unlikely to work since no such database has been compiled to the best of

our knowledge. In Section 6.2.8, we propose a validation approach involving laboratory

experiments.

6.2.7 In silico validation of DBN edges

In silico validations of DBN edges are handled by verifying the information against a

database of known interactions between taxa to genes and/or taxa to metabolites. Unfor-

tunately, no such comprehensive database exists. For example, highly curated databases

such as HMDB [199], MetaCyc [81], or the findings of the large scale study of Maier et

al. (2019) [100] turned out to be inadequate since the intersection of their contents with the

species and metabolites in our networks was too small.

To assist in the validation of taxa-metabolite (T → M) edges in our networks, we relied

on the tool MIMOSA [117]. MIMOSA calculates the metabolic potential of each species,

i.e., the capability of a species to produce a metabolite under the conditions of the data set.

The list of all taxon-metabolite pairs from our DBNs that resulted in a positive score in

MIMOSA was used as a validation database.
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For taxa-gene (T → G) validations, we used KEGG to build a validation database of

bacterial taxa and the genes present in their genomes. To keep this database small, we only

used taxa and genes present in our network. If multiple strains were available for a bacterial

species, then all genes from each strain were aggregated. The one-time creation of a local

validation database also speeded up our computations considerably.

To calculate the statistical significance of validated interactions compared to a null

model, a Poisson-Binomial distribution test was executed. The main reason that a simple

binomial test cannot be performed is the differences in the in-degree distribution between

different nodes in the validation set (essential metabolites or genes would have a high prob-

ability of being connected to any given bacteria in the validation database). Because some

nodes have many more validated interactions when compared to others, a uniform model

for each edge does not accurately capture the null probability of selecting such an edge.

This was solved with the function ppoisbinom from the R package poisbinom [120],

which gives the cumulative distribution function of the probability of validating by chance

at least as many interactions as the number of true positives, where each possible interaction

has a different probability of being selected. The validation precision of the network was

also calculated as the percentage of validated interactions from the ones predicted, even

though this homogeneous metric ignores the differential significance of each interaction.

6.2.8 Laboratory validations of edges from metabolites to taxa

Wet lab experiments were carried out to validate predicted M → T interactions. Testing

each such edge is not a feasible proposition. We first sorted all predicted M → T inter-

action based on their confidence, which we defined as the value of |normalize(weight)| ∗

bootstrap. We applied this operation to the three parents Skeleton for the gene-aligned and

no-alignment networks. The normalization was performed to counteract the differences of

the abundance between the parent and child nodes following [96]. We then narrowed it

down to edges that involved the species P. aeruginosa or E. coli because of the ready avail-

78



ability of these species and the expertise and facilities available to us in our laboratories.

Then, we selected the top three interactions involving these two taxa. The full list of sorted

interactions can be seen together with the source code and data. For positive controls we

selected metabolites known to enhance growth, and as negative control we selected one

metabolite that was not connected to the taxon in any of our learned networks.

The goal of the experiments was to validate a M → T edge by studying the impact of

the metabolite M on the growth of taxon T . While the experimental set up does not recreate

the conditions of the interaction in the microbiome, we consider this an important step in

the right direction. As with the in silico validations, the laboratory validation confirms

that the inferred interaction is a strong possibility. We selected three predicted interactions

involving readily available bacteria and metabolites from the generated networks. The

experiments were performed by growing relevant taxa in isolation, and adding the relevant

metabolite to measure impact on growth. These metabolites were expected to positively

impact the growth of the taxon because of the edge between metabolite concentration and

taxon abundance.

After plotting the growth curves with the bacterium and metabolite in question, we

assessed if each metabolite was enhancing/inhibiting the taxon growth using a two-tailed

paired t-test when compared to growth without the metabolite.

Preliminary experiments

Three preliminary experiments were run that paved the way for the final experiment.

The bacterial strains used Escherichia coli HB101 [19] and Pseudomonas aeruginosa

PAO1 [68] were routinely cultured in Luria Bertani (LB 20%) broth (5 g tryptone, 10 g

sodium chloride, and 5 g yeast extract per liter) or agar (LB broth with 1.5% agar) (Difco,

NJ, USA). Growth curve assays were performed in media supplemented with the metabo-

lites at 37°C. For the three preliminary experiments, we attempted to closely mimic limited

nutrient environment.

79



1. Experiment 1, tested 0.2 mM:

• Minimal Media (MM; gL−1: (NH4)2SO4, 2.0; K2HPO4, 0.5; MgSO4 · 7H2O,

0.2; FeSO4 · 7H2O, 0.01, pH 7.2±0.2).

• MM + Glucose

2. Experiment 2: LB 20%, tested 0.2, 1.0 and 2 mM

3. Experiment 3: LB 20%, tested 0.2, and 1.0 mM

4-methylcatechol (4-MC, C7H8O2) and 4-hydroxyphenylacetate (4-HPA, C8H8O3) was used

to grow E. coli. P. aeruginosa was grown in the presence of D-xylose (C5H10O5), and 1-

methylnicotinamide (1-MNA, C7H9N2O+).

1. Experiment 1 (0.2 mM of metabolites)

• The cells reached stationary phase at a very low OD; suggesting that this is not

the right media to be used.

• No effect on the exponential phase.

• Any effect of the compound seen at the stationary phase.

2. Experiment 2 (0.2, 1 and 2 mM of metabolites)

• The cells reached stationary phase at a higher OD.

• No effect on the exponential phase.

• 2 mM is lethal

3. Experiment 3 (0.2, and 1 mM of metabolites)

• The cells reached stationary phase at a higher OD.

• No effect on the exponential phase.

• Effect is seen during the stationary phase
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Final experiment

Because no significant difference was observed in the exponential growth rate and con-

sequently the doubling time in all the conditions tested for both E. coli and P. aeruginosa,

a new test was run in which the metabolites were added at the beginning of the stationary

phase to test its effect on it.

The growth of E. coli was monitored hourly in the absence (control) and presence of

4-MC, 4-HPA, D-Xylose and glucose at 0.2 and 1 mM. Glucose and D-Xylose were used

as enhancer positive controls. At the lower concentration (0.2 mM) compared to the control

(LB 20%), 4-HPA has no effect and 4-MC, D-Xylose and glucose are enhancing (Figure

6.14(a)). The compound 4-HPA has no effect at low concentration, however at 1 mM, there

is a significant enhancing effect starting at early stationary phase. At the highest concentra-

tion all metabolites produce an enhancer effect statistically significant (t-test, p<0.05), there

is also a more pronounced enhancer effect of 4-MC and glucose compared to D-Xylose and

4-HPA (Figure 6.13).

The growth of P. aeruginosa PAO1 was monitored hourly in the absence (control) and

presence of D-xylose, 1-MNA and succinate at 0.2 and 1 mM. Succinate was used as en-

hancer positive control, and 1-MNA as negative control. It is worth noting that 1-MNA

does not appear in any of our networks learned, for alignment, no-alignment, Skeleton,

Augmented, or any number of parents tested. D-Xylose, and succinate at 0.2 mM appears

to have an enhancer effect in the stationary phase (Figure 6.14(b)), but they are not statisti-

cally significant at this concentration (Table 6.2). No effect was observed on P. aeruginosa

growth in the presence 1-MNA. Though at 1 mM concentration, D-Xylose, and succinate

produce an enhance the growth and it is statistically significant (Table 1) (t-test, p<0.05).

The presence of 1-MNA did not have a significant effect on P. aeruginosa growth, it could

potentially be an inhibitory compound (Figure 6.13).
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6.3 Results

We developed a computational pipeline (PALM), presented in Figure 6.1, to process

multi-omic microbiome data and infer their interactions. The starting point is the the rela-

tive abundance for each sample measured at potentially non-uniform intervals, even within

the same subject (Figure 6.1(a)). PALM first normalizes the data and then performs Cubic

B-spline interpolation using continuous curves to enable imputation of missing time points

and to overcome irregular sampling (Figure 6.1(b)). Subject E5002 (yellow) does not con-

tain enough measured time points and was removed from further analysis. The remaining

smoothed curves enable estimation of unobserved time points and interpolation at specified

intervals. We next temporally align the data to correct for the different progression rates

of each individual (Figure 6.1(c)) against the optimal reference subject (M2072 in blue).

The learned warping function is extrapolated to all omics (taxa, genes, and metabolites)

of each subject. This process is then repeated, generating a different data set taking each

omic as reference. as well as filter out abnormal and noisy samples (Figure 6.1(d)). Sam-

ple C3015 in grey was discarded. Alignment can be performed using either of the data

types as we discuss below, and extrapolate the transformation to the other omics types, but

the Figure is showing just taxa for simplicity. Our DBN learning algorithm utilizes prior

knowledge to constraint the resulting model reducing overfitting and improving accuracy

(Figure 6.1(e)). The biological assumption is that at the current time (ti), the expression

of host genes (hexagons) and the environmental conditions (triangles) affect the abundance

of microbial taxa (circles), which impacts the expression of microbial genes (diamonds),

which in turn dictates the metabolites (squares) released, and which finally impacts the

abundance of taxa in the next time instant (ti+1). These restrictions are flexible and can be

specified as another input to the pipeline. These dynamic constraints can be customized

in the form of an adjacency matrix. Using the imputed, aligned data we learn a dynamic

Bayesian networks (DBN) to model interactions within and between the different data types
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(Figure 6.1(f)). Figure shows two consecutive DBN time slices ti and ti+1, where dotted

lines connect nodes from the same time slice referred to as intra edges, and solid lines

connect nodes between time slices referred to as inter edges. Note that because both slices

have the same intra edges, showing only the intra edges of slice ti+1 would be enough.

All the other DBN figures of this manuscript will make use of this simplification. Ac-

cording the specified multi-omic framework, only certain types of interactions are allowed

between different entities. Biological relationships are inferred from edge parameters in

the learned DBN which can be positive (green) or negative (red). Finally, we validate the

model predictive ability and the edges using a curated list of taxa-gene and taxa-metabolite

interactions.

6.3.1 Resulting Dynamic Bayesian network models

We used the Inflammatory Bowel Disease (IBD) cohort from the iHMP study [92] that

followed 132 individuals over a year. These were profiled every two weeks on average, for

different omics types. The pre-processing steps included filtering, interpolation, temporal

alignment, variable selection, and removal of subjects with too few time points or with

noisy alignment scores (see Methods for complete details). Based on these pre-processing

steps, the resulting set used to learn the model consisted of 60 individuals across 102 mi-

crobial taxa, 72 genes, and 70 metabolites. In addition, the model includes 40 host genes

from each individual (measured at a single time point), and the only environmental variable

considered was the week in which the sample was obtained. We used this data set to learn

multi-omic dynamic Bayesian models that provide information about interactions between

taxa, genes and metabolites, and the impact of environmental variables and host transcrip-

tomics on these entities over time. We used two sets of constraints; Skeleton and Augmented

depicted in Figure 6.3 and described in Section Constraining the DBN structure. The net-

work with the complete IBD data set is presented in Figure 6.4, but for illustrative purposes

the DBN learned for a subset of the data set with just the top 10 most abundant entities
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of each omic type is presented in Figure 6.5. In the DBN figures, each node represents

Inter-edges

Intra-edges

Self-loop

T G MEH

E

T

G

M

H
E Environmental

T Taxa

G Gene

M Metabolite

H Host gene

(a) Skeleton

T G MEH

E

T

G

M

H

Augmented(b)

Figure 6.3: Multi-omic frameworks used in this study. Figure shows an adjacency matrix
representation between microbiome entities for the two multi-omic frameworks used in this
study: Skeleton (a) and Augmented (b). Figure highlights in red the added edge types in
Augmented framework when compared to Skeleton framework.
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Figure 6.4: Learned DBN by PALM with the Skeleton framework on the IBD data set.
Figure shows a two-stage DBN learned by PALM with Skeleton constraints and a maxi-
mum number of parents of 3. Nodes are either taxa (circles), genes (diamonds), metabolites
(squares), host genes (hexagons), and environmental variables (triangles). The different
node types have been grouped in different circles, their transparency is proportional to their
average abundance relative to that node type. While there are two consecutive time slices ti
(blue) and ti+1 (orange), nodes with no neighbors and self loops were removed for simplic-
ity. Dotted lines denote intra edges (i.e., directed links between nodes in same time slice),
whereas solid lines denote inter edges (i.e., directed links between nodes in different time
slices). Edge color indicates positive (green) or negative (red) temporal influence, and edge
transparency indicates strength of bootstrap support. Edge thickness indicates statistical
influence of regression coefficient after normalizing for parent values
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Figure 6.5: Learned DBN by PALM with the Skeleton constrains on the top 10 most
abundant entities of each omic type and a maximum number of parents of 3. Nodes
are either taxa (circles), genes (diamonds), metabolites (squares), host genes (hexagons),
and environmental variables (triangles). The different node types have been grouped in
different circles, their transparency is proportional to their average normalized abundance
relative to that node type. While there are two consecutive time slices ti (blue) and ti+1 (or-
ange), nodes with no neighbours and self loops were removed for simplicity. Dotted lines
denote intra edges (i.e., directed links between nodes in same time slice), whereas solid
lines denote inter edges (i.e., directed links between nodes in different time slices). Edge
color indicates positive (green) or negative (red) temporal influence, and edge transparency
indicates strength of bootstrap support. Edge thickness indicates statistical influence of
regression coefficient after normalizing for parent values, as described in [96].

either a bacterial taxon, a gene, a metabolite, or an environmental variable; directed edges

represent inferred temporal relationships between these nodes. On the supporting website

we also provide a Cytoscape session with an interactive version of each network, together

with the original files and a list of each edge learned for every network.

Figure 6.4 shows the full network learned by PALM comprised of 284 nodes per time

slice (101 microbial taxa, 72 genes, 70 metabolites, 40 host genes, and 1 environmental

variable). To identify significant edges in the network we applied bootstrapping, rerunning

the method 100 times with each execution using a new data set created by randomly select-

ing, with replacement, as many subjects as there were in the data set. We next extracted

all edges from all executions, resulting in 1077 distinct directed edges (470 inter edges and
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607 intra edges). Among all the 1077 edges, we observed 362 (33%) negative interactions.

Interestingly, a closer look at the learned DBN revealed that 79% (193 out of 243) of nodes

with potential dependencies listed at least one negative interaction. Additionally, each edge

is annotated with the percentage of bootstrap iterations in which it appears. Note that while

there was considerable overlap between edges learned in each iteration, since we used the

union of all the networks, the number of edges in the final network is larger than the num-

ber of possible edges for a single iteration (1077 vs. 284*3 = 852). While we mainly focus

on the union since it leads to more novel predictions, analysis of the intersection leads to

similar statistical results. The DBN learned with the Augmented framework is shown in

Figure 6.6.

6.3.2 Evaluating the learned DBN model

We first performed a technical evaluation of the learned DBN model and compared it

to models constructed by other existing methods [94, 96]. The performance of each model

was evaluated through leave-one-out cross-validation with the goal of predicting microbial

composition using each learned model. Figure 6.7 represents the observed and predicted

taxa composition for subject C3013. Additionally, we explored the effects of several dif-

ferent temporal alignments using taxa, genes, or metabolites. In each iteration, the whole

longitudinal microbial abundance profile of a single subject was selected as the test set,

and the multi-omics data from all other subjects were used for building the network and

learning model parameters. Next, starting from the second time point, we used the learned

model to predict an abundance value for every taxon in the test set at each time point using

the previous and current time points. Finally, we normalized the predicted values in order

to represent the relative abundance of each taxon and measured the average predictive ac-

curacy by computing the mean absolute error (MAE) for the selected taxon in the network.

This process of predicting microbial composition was repeated for different combinations

of multi-omics training data (including metagenomics, metatranscriptomics, metabolomics

86



                        

                                  

                                  

                            

                               

                                  

                              

                          

                           

                           

                             

                         

                           

                            

                         

                                   

                           

                            

                                

                       

                        

                        

                                  

                           

                          

                                  

                              

                                               

                            

                       

                             

                                      

                            

                      

                                                   
                      

                         

                        
                              

                               

                          
                                                        

                               

                              

                                 

                        

                                

                         

                          

                                  

                          

                    

           

                    

                

                   

                                        

                  

                     

                                       

              

                   

            
                          

           

                       

           

                                          

                   

             

                  

                   

                   

      

                                     

                      

             

        

            

           

                   

               

             

           

           

                                        

                     

                   

         

          

           

            

           

           

                  

            

           

              

         

                      

                     

              

                        

              

                        

        

                  

            

         

       

          

                                           

         

             

                      

                           

               

                                             

               

                     

           

                

                

            

                    

                                                 

             

                    

            

           

            

             

              

                      

            

                            

                            

                 

                          

                           

              

                                    

         
                       

                

              

           

            

         
             

            

                

                       

       

             

                      

                   

                        

                

                  

         

                 

            

                      

         

            

            

                

      

                        

           

                      

                      

            

                
                      

             

            

                                       

              

                    

               

                 

            

                

         

              

                

         

                

                

               

          

                 

             

            

                  

            

                    

                       

                       

                             

                                

                        

                           

                       

                                 

                               

                           

                         

                            

                           

                         
                         

                        

                         

                                                                                                                       

                            
                                  

                                

                                         

                           

                             

                           

                            

                            

                                      

                                       

                           

                                    

                              

                                         

                                         

                                         

                                             

                              

                                         

                                         

                              

                                

                                

                           
                       

                        
                              

               

               

               

               

               

               

               

               

               

               

               
               

               

                              

               

               

               

               

               

               

               

               

               

               

                                             
               

               

               
               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

                               

                                

                         

                              

                               

                              

               

               

               

               
               

               

               

               
               

               

               

               

               

               

               

               

               

               

               

               

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                                                   

                                  
                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 
                 

                 

                 

                                  

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

               

            

                

           

               

   

               

                      

                 

             

              

                    

            

              

                

        

                                       

                

                

                  

            

        

             

                

                         

                      

             

          
                   

             

                  

                                        

           

            

           

                   

                             

           

             

                   

      

                                       

                                        

                       

          

             

                  

              

                        

                  

                     

            

                  

           
       

             

              

                 

              

           

           
           

                  

                

              

                    

          

           

                             

             

                      

            

             

            

             

                

            

                       

                              

                              

                   

                      

                        
                        

             

                      

           

            

                  
                      

             

              

                             

                             

                             

                         

                                  

                                   

                         

                               

                          

                              

                           
                              

                                  

                                    

                           

                              

                                 

                                         

                         

                             
                         

                          

                                               

                                           

                                           

                                

                                           

                                           

                             

                                           

                               

                                           

                             

                                  

                                        

                                    

                                  

                                

                                                 

                              

                        

                                      

                                    

                              

                              

                             

                                        

                                    

                                

                                
                                                                                                                

                           
                                                                    

                           

                 

                                             

                 

            

                  

             

                        

            

         

       

            

                                           

           

         

                

                          

                             

              

                                    

           
                       

                  

              

             

            

           
             

              

                     
                   

              
                    

                  

                       

          

           
           

                                            

                          

                    

             

                          

           

                         

                                       

                

                    

                  

              

               

               

                             

               

                 

               

              

             

               

             

           

             

                    

           

                

                        

                

                        

          

                     

                

         

                        

                        

                            
                                                      

                                                           
                           

                                 

                             

                           

                               

                           

                                     

                             

                             

                           

                            

                                 

                             

                                    

                          

                              

                            

                                

                             

                          

                                  

                                    

                                 

                             

                          

                         

                                

                          

                            

                                   

                                  

                                    

Ti+1

Gi+1

Mi
Mi+1

Hi+1Ti

Gi

Figure 6.6: Learned DBN by PALM with the Augmented framework on the IBD data
set. Figure shows a two-stage DBN learned by PALM with Augmented constraints and a
maximum number of parents of 3. Nodes are either host genes (hexagons), taxa (circles),
genes (diamonds), or metabolites (squares). The different node types have been grouped
in different circles, their transparency is proportional to their average abundance relative to
that node type, and the two time slices were separated. Dotted lines denote intra edges,
whereas solid lines denote inter edges. Edge color indicates positive (green) or negative
(red) temporal influence and edge transparency indicates strength of bootstrap support.
Edge thickness indicates statistical influence of regression coefficient after normalizing for
parent values

and host transcriptomics) on the aligned data sets, as well as unaligned data. A visual

representation of the predicted trajectories for taxa- and gene-based alignment for subject

C3028 is shown in Figure 6.8. The average MAE for the taxa predictions of PALM on the

IBD data set for a sampling rate of two weeks using a gene-based temporal alignment is

summarized in Figure 6.9. Figure 6.10 shows the average MAE of PALM across different

alignments based on taxa, genes, and metabolites, respectively. We used this process to

compare the multi-omics DBN strategy to the one that used only metagenomic data [96]
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Figure 6.7: Comparison of observed versus predicted microbial composition trajec-
tories. Figure shows the observed and predicted microbial composition trajectories for a
representative aligned subject (C3013). Microbiota composition profile for this subject is
comprised of the top 15 most abundant bacteria along with all remaining bacteria merged
into the “other” category. The y axis corresponds to the relative abundance of each bacteria,
while the x axis represents the original measured time point after alignment.

Figure 6.8: Comparison of observed versus predicted microbial composition trajec-
tories. Figure shows the observed and predicted microbial composition trajectories for a
representative aligned subject (C3028). Microbiota composition profile for this subject is
comprised of the top 15 most abundant bacteria along with all remaining bacteria merged
into the “other” category. The y axis corresponds to the relative abundance of each bacteria,
while the x axis represents the original measured time point after alignment. Figure high-
lights the observed and predicted trajectories of this subject between taxa-based alignment
(left) and gene-based alignment (right). We note that aligned interval for gene-based align-
ment is stretched and shifted when compared to the taxa-based alignment. For each align-
ment type, a DBN was learned with the Skeleton framework and a maximum number of
parents of 3, and tested on the previously unseen C3028 subject. Gene-based alignment ex-
hibits a lower prediction error (MAE=0.0043) than taxa-based alignment (MAE=0.0054).
In this example, taxa-based alignment does a worse job at predicting low abundance bacte-
ria than gene-based alignment.
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Figure 6.9: Comparison of average predictive accuracy between methods on the IBD
data. Figure shows the MAE of our proposed DBN models against a baseline method using
only metagenomic data and a previously published approach, MTPLasso, which models
longitudinal multi-omics microbial data using a generalizded Lotka-Volterra (gLV) model
for a sampling rate of two weeks which most closely resembles the originally measured
time points. Figure also compares the performance of each method on the unaligned and
aligned data sets.

Figure 6.10: Comparison of average predictive accuracy between methods on the IBD
data sets aligned using taxa, gene and metabolite data. Figure shows the MAE of PALM
models (Augmented and Skeleton) against a baseline method and a previously published
approach (MTPLasso) for a sampling rate of two weeks which most closely resembles the
originally measured time points. Although baseline method uses only metagenomic data,
gene- and metabolite-based alignment were generated using gene expression and metabo-
lite intensities data, respectively.

referred to as Baseline on the unaligned and aligned IBD data, as well as MTPLasso [94]

which models time-series multi-omics microbial data using a gLV model. In both cases,

we used the default setup and parameters, as described in the original publications. As

shown by Figure 6.9 our method outperforms Baseline and MTPLasso when using gene

expression data for temporal alignment of microbiome samples. Specifically, when using
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gene expression data for alignment the MAE significantly dropped to 4.01E-03 when com-

pared to a MAE of 6.03E-03 achieved using taxa alignment as indicated by a one-tailed

unpaired t-test with null hypothesis that the means are equal and alternative hypothesis

that population mean of method with gene expression-based alignment is less than mean

of (baseline) taxa-based alignment method (p-value = 6.71E-07). Figure also shows that

gene-based alignment significantly Figure 6.10 shows that our method outperforms MT-

PLasso when all microbiome entities are used in the model (taxa: 5.93E-03 vs. 7.93E-03;

metabolite: 5.82E-03 vs. 7.97E-03). Moreover, figure shows that our method outperforms

Baseline (taxa: 5.93E-03 vs. 6.03E-03; gene: 4.01E-03 vs. 4.19E-03; metabolite: 5.82E-03

vs. 6.01E-03). Overall, our results suggest that gene expression data is more suitable for

temporal alignment of multi-omics microbiome samples. This is consistent with previous

findings which reported technical noise dominates the abundance variability for nearly half

of the detected taxa in gut samples [76]. Therefore, we have used gene-based alignment

for the rest of the analysis discussed next.

6.3.3 Computationally validating predicted edges

We compiled a database of Taxon-Metabolite (T → M) and Taxon-Gene (T → G),

and used that database to validate the predicted edges and score each model. A (T → G)

interaction was added to the database if any strain of taxon T has gene G in its genome

according to KEGG. For T → M we relied on the tool MIMOSA [117], that calculates the

metabolic potential of each taxon for a particular data set. See Methods 6.2.7 for complete

details

Each predicted interaction was either considered “validated” if it appears in the valida-

tion database, or “not validated” if it was not found, but the parent and child nodes were

part of the database. Interactions predicted between taxa and/or metabolites not included

in the database were not used in this analysis. We compared the results between the DBNs

learned by PALM using the Skeleton and Augmented constraints, as well as a random net-
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work. To generate the random network, we used the same nodes in the multi-omic network

and assigned the same number of edges as in the learned DBN by randomly selecting a

parent and child from the possible interaction list (Figure 6.3). This was repeated 1000

times, averaging the metrics over all random runs. Figure 6.11(a) shows the validation

Figure 6.11: In silico validation results of the predictions of PALM for the IBD data set.
The left part of each subfigure shows the precision (percentage of predicted edges that were
validated) and the right part shows the probability of validating at least that many edges by
chance (y axis in reverse logarithm scale so higher is better for both). The x represents the
bootstrap value threshold that was used to select the edges included in the analysis. For
example, for a threshold of 0.7, the score for edges that appear in more than 70% of the
repetitions is shown. . (a) Validation for T → G interactions (bacterial taxon expressing a
gene) (b) Validation for T → M interactions (bacterial taxon consuming a metabolite)

comparison for edges of the form T → G. The Skeleton constraints were used to learn the

networks. The DBN learned with the gene-aligned data set (green) was compared against a

DBN learned with the data set that was not aligned (blue). As can be seen, the aligned data

set results in networks that outperform the networks from the unaligned data and random

networks, with the precision difference increasing as the threshold increases. This indicates

that the bootstrap score for an edge can serve as a way to determine its likely accuracy.

Figure 6.11(b) shows the comparison for edges of the form T → M. For this, we

can only use the network results from the Augmented constraints since no such edges are

permitted when using Skeleton. Again, we observe better performance for the networks

from aligned data when compared to the networks from unaligned data and random net-

works, with an improvement in performance for higher bootstrap thresholds. Note that for

both T → G and T → M, the not aligned network does not even outperform the ran-
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dom network, highlighting the importance of the alignment step. Figure 6.12 shows the

computational validation results of metabolites- and gene-based alignment.

Figure 6.12: In silico validation results with 100 bootstrap repetitions. Graphs from
(a) and b show the performance of different alignment types, while (c) and (d) vary the
number of parents used when learning the networks. The left part of each subfigure shows
the precision (percentage of predicted edges that were validated) and the right part shows
the probability of validating at least that many edges by chance (y axis in reverse logarithm
scale so higher is better for both). The x represents the bootstrap value threshold that was
used to select the edges included in the analysis. For example, for a threshold of 0.7, the
score for edges that appear in more than 70% of the repetitions is shown. The dashed
lines (T → G interactions) were learned using the Skeleton constraints, and the solid lines
(T → M interactions) were learned using the Augmented constraints, because the edges
T → M are not allowed directly in Skeleton. (a) Validation for T → G interactions (bac-
terial taxon expressing a gene) varying the alignment reference used. Noalignment barely
does better than the random baseline, followed closely by the metabolite-based alignment.
Taxon-based alignment has a slight better precision than gene-based, but the latter has a
much better probability score than the former. (b) Validation for T → M interactions (bac-
terial taxon consuming a metabolite) varying the alignment reference used. Taxon- and
metabolite- based alignment have a lower precision than the random baseline, but a bet-
ter probability score. (c) Validation for T → G interactions (bacterial taxon expressing
a gene) varying the maximum number of parents allowed. Learning with 3 Parents has a
much better precision than with 4 and 5, and a similar probability score. (d) Validation
for T → M interactions (bacterial taxon consuming a metabolite) varying the maximum
number of parents allowed. Learning with 3 Parents has a better precision than with 4 and
5 for small and big thresholds. Learning with 5 parents has a better probability score for
low thresholds, but it seems that it is by chance, because as the thresholds becomes more
stringent, it quickly fares worse, while 3 parents overtakes 4 parents by a small percentage.
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6.3.4 Biological validation experiments

We performed experiments to validate a few of the interactions predicted by the DBNs.

We focused on edges of the form M → T , i.e., edges where a metabolite is predicted

to impact the abundance of a bacterial taxon. Such edges imply that the metabolite M

promotes (or represses, depending on the sign) the growth of the bacterial taxon T under

appropriate growth conditions.

We first sorted all predicted M → T interactions based on their confidence (combina-

tion of normalized weight and bootstrap score). Next, we selected some of the top edges

to validate taking into account the availability of the metabolites and taxa and the labora-

tory resources for growth experiments at our disposal. See Methods Section Laboratory

validations of edges from metabolites to taxa for details on this process. Based on these

considerations we focused on two common model organisms, namely Pseudomonas aerug-

inosa and Escherichia coli and picked from the top predictions those involving any of these

two taxa for validation.

• 4-Methylcatechol (4-MC)→ Escherichia coli

• 4-Hydroxyphenylacetate (4-HPA)→ Escherichia unclassified

• D-Xylose→ Pseudomonas unclassified

Standard lab strains P. aeruginosa PAO1 [68] and E. coli HB101 [19] were used in the

laboratory experiments. The choice of chemicals used to verify was somewhat limited by

commercial availability. A standard Luria Bertani (LB 20%) culture media was used to

measure the bacterial growth curve (expressed as bacterial density, OD600) in the absence

and presence of metabolites. Metabolites were added at the stationary phase when the

bacteria were multiplying very slowly, mimicking a biofilm growth [113]. As positive

controls, the preferred carbon sources of E. coli and P. aeruginosa, glucose, and succinate,

respectively, were chosen. Figure 6.13 shows the resulting growth curves of the microbes
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before and after adding the metabolites, and a control case without adding the metabolites

(LB 20%). Confirming the predictions of our networks, D-xylose significantly enhanced

P. aeruginosa, and 4-HPA and 4-MC significantly increased the E. coli growth. Regarding

the controls, as expected D-xylose and glucose enhanced E. coli, and succinate enhanced

P. aeruginosa whereas the negative control 1-Methylnicotinamide (1-MNA) did not.

The p-values for all observations can be seen in Table 6.1, where a two-tailed paired

t-test was executed for the three time points with the highest difference from the baseline.

For more details on the experimental settings please refer to Methods Section Laboratory

validations of edges from metabolites to taxa, including Figure 6.14 and Table 6.2 for

growth results at a lower concentration of 0.2 mM.
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Figure 6.13: Growth curves at 1 mM. In this figure different metabolites were introduced
at 1mM concentration at the end of the exponential phase (0-14h). Figure shows the growth
curves after all data points were averaged over 10 replicates. (a) E. coli, with glucose and
D-xylose as positive controls. (b) P. aeruginosa, with succinate as positive control and
1-MNA as negative control.

6.4 Discussion

Previous microbiome studies focused primarily on metagenomics sequence data. More

recent data sets are much richer, notably including host and bacterial gene expression, and

metabolomics data. The ability to integrate these multi-omics, longitudinal data remained

a major challenge for microbiome analysis.
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Escherichia coli HB101
Met. 16h 17h 18h
LB 0.583 0.584 0.576

4-MC 0.750 (0.0002) 0.741 (0.0003) 0.724 (0.0003)
4-HPA 0.697 (0.0005) 0.692 (0.0005) 0.677 (0.0004)

D-xylose 0.704 (0.0017) 0.699 (0.0016) 0.684 (0.0019)
Glucose 0.774 (0.0005) 0.773 (0.0003) 0.758 (0.0003)

Pseudomonas aeruginosa PAO1
Met. 15h 16h 17h
LB 0.811 0.787 0.760

D-Xylose 0.860 (0.0189) 0.825 (0.0395) 0.810 (0.0317)
1-MNA 0.782 (0.0717) 0.761 (0.1551) 0.754 (0.7547)

Succinate 0.893 (0.0716) 0.893 (0.1195) 0.870 (0.0172)

Table 6.1: Effect of 1 mM metabolites on bacterial cell density. Taxa density appears in
black (OD600), while the p-values are inside parenthesis. Red p-values represent a signif-
icant difference compare to LB 20% (p<0.05). Green p-values represent a non-significant
difference from LB 20%.
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Figure 6.14: Growth curves (0.2 mM). In this figure different metabolites were introduced
at 0.2 mM concentration at the end of the exponential phase (up to time 14h). Figure shows
the growth curves after all data points were averaged over 10 replicates. (a) E. coli, with
Glucose and D-Xylose as positive controls. (b) P. aeruginosa, wich Succinate as positive
control and 1-MNA as negative control.

Here we have presented PALM, a new approach based on a temporal normalization us-

ing continuous curve alignment followed by DBN modeling. Our method first represents

each time series using continuous curves and then aligns them using a reference time se-

ries. Next, we sample the aligned curves uniformly and learn a DBN model that combines

data from taxa, host genes, bacterial genes, and metabolites. Edges in the DBN repre-
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Escherichia coli HB101
Met. 16h 17h 18h
LB 0.583 0.584 0.576

4-MC 0.617 (0.0108) 0.614 (0.0055) 0.602 (0.0026)
4-HPA 0.617 (0.1458) 0.616 (0.1332) 0.608 (0.1049)

D-Xylose 0.642 ( 0.0028) 0.635 (0.0073) 0.619 (0.0132)
Glucose 0.644 (0.0032) 0.644 (0.0036) 0.633 (0.0049)

Pseudomonas aeruginosa PAO1
Met. 15h 16h 17h

LB 0.811 0.787 0.760
D-Xylose 0.812 (0.9029) 0.793 (0.7561) 0.763 (0.7710)
1-MNA 0.813 (0.9117) 0.786 (0.9416) 0.772 (0.6110)

Succinate 0.889 (0.0128) 0.830 (0.6979) 0.795 (0.0530)

Table 6.2: Metabolite effect at 0.2 mM. Taxa density appears in black, while the p-
values are inside parenthesis. Red p-values represent a significant difference compare to
LB (p<0.05). Green p-values represent a non-significant difference from LB.

sent predicted interactions between the entities and can be used to explain changes in the

microbiome over time.

Applying our methods to data from IBD patients, we show that multi-omics DBNs can

successfully predict taxa abundance at future time points, thus improving on models that

do not use all available data and on previous methods developed for modeling temporal

taxa interactions. We curated validations for taxa-to-metabolite and taxa-to-gene interac-

tions; interactions predicted by the learned DBNs significantly intersect these interactions.

Finally, we experimentally tested and validated select predictions of metabolite → taxa

relationships.

Microbiome interaction databases are critical for evaluating learned DBNs, but appear

to be incomplete. More complete databases of validated interactions would help validate

computational methods for this task. The laboratory validations show a viable way to

validate some of the interactions. However, they could also be improved by attempting to

recreate more realistic conditions for the experiments and could be enhanced to validate

other omics observations as well.

Comparing DBNs constructed using different omics data allows for an important kind

of inference (Figure 6.15). According to this, in the DBN built using only metagenomics
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s__Streptococcus_parasanguinis_ti+1 g__DNA-directed
RNA

polymerase_ti+1

m__HMDB00098_ti s__Pseudomonas_unclassified_ti+1

s__Streptococcus_parasanguinisTT_ti

m__HMDB00098_ti+1

s__Pseudomonas_unclassifiedTT_ti+1

Figure 6.15: Multi-omics inferred chain of interactions. The edge Streptococcus
parasanguinis→ Pseudomonas unclassified on the bottom gets explained when added mul-
tiomic data (TT stands for Taxa-Taxa network). In the multi-omic network that interaction
gets replaced by Streptococcus parasanguinis (T)→ rna polymerase (G)→ D-Xylose (M)
→ Pseudomonas unclassified (T).

data, the edge Streptococcus parasanguinis → Pseudomonas unclassified appears with a

high confidence (bootstrap score of 1). In the multi-omic DBN the following chain of

interactions can be found: Streptococcus parasanguinis (T) → rna polymerase (G) → D-

Xylose (M) → Pseudomonas unclassified (T). It is important to note that though DBN

edges may not imply causal relationships, the in silico validation process described in this

chapter supports the above relationships. Finally D-Xylose → Pseudomonas unclassified

was validated experimentally (Section Biological validation experiments). Thus, compar-

ing DBNs before and after adding additional multi-omics data can “unroll” and “explain”

relationships between taxa.

Our alignment, DBN methods, validation software and other scripts are implemented

in either Python, R, or Matlab. The source code for PALM and the data set used will

be freely available under the MIT Open Source license agreement upon publication at

http://biorg.cis.fiu.edu/palm/. We will also include the networks learned and

interactions predicted, sorted by relevance.
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CHAPTER 7

LONGITUDINAL CAUSAL MULTI-OMIC NETWORK INFERENCE

In this chapter we present METALICA, a suite of novel tools and techniques to uncover

significant details about the causal nature of microbial interactions.

7.1 Background

The methods described in the previous two chapters for inferring DBNs involved start-

ing from next generation sequencing data and other omics measurement technologies. Ev-

ery attempt was made to ensure that the resulting networks had biologically meaningful

edges and were not a result of overfitting. However, even if an edge was directed from

an entity measured at a previous time point to an entity measured at a later time point, it

did not guarantee that a DBN edge represented a true and direct causal interaction, or if it

was merely the result of a statistical correlation caused by an indirect causal relationship.

Microbiomes are complex environments with many subtle relationships. However, causal

inference relies on noisy data from error-prone technologies, and has to contend with a

host of hidden confounders that may be hard or impossible to identify, let alone measure

them. The jump to infer causality is a natural next step in inferring multi-omic interactions,

and the lack of research in this area is striking. Most of the causal microbiome literature

focuses on the causal impact of the microbiome to health or disease, but not on the causal

interactions between these microorganisms [69, 97, 151, 137].

Another major challenge in building causal models of biological interactions lies in

developing methods to validate them and in providing confidence measures. Validation by

calculating the prediction error of the model, while informative, does not shed light on the

accuracy of specific edges and interactions predicted by the model that we are interested

in. We broadly discuss approaches to validate the different types of edges present in the

networks, which are the parameters learned by the model. Edges from a taxon to a gene

can be circumstantially validated by verifying that (a) the taxon has a non-zero abundance,
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(b) the taxon’s genome includes at least one copy of the gene, and (c) the gene is expressed.

Similarly, edges from a gene to a metabolite or a taxon to a metabolite could potentially

be validated by verifying that (a) the gene has a non-zero expression value, (b) the gene is

involved in the metabolic pathway for that metabolite, and (c) the metabolite is produced

and has a non-zero concentration.

7.2 Methods

Below we describe the datasets used and the network learning methods that were exe-

cuted to create different causal networks. Finally, we introduce the causal network analysis

methods that we developed to evaluate and compare the inferences made by the network

learning algorithms.

7.2.1 Data sets and pre-processing

To test our proposed methods, we used the Inflammatory Bowel Disease (IBD) cohort

from a study that included 132 individuals across five clinical centers [92]. During a period

of one year, each subject was profiled (biopsies, blood draws, and stool samples) every

two weeks on average. This yielded temporal profiles for metagenomes, metatranscrip-

tomes, metaproteomes, metabolomes and viromes across all subjects. Additionally, for

each subject, host- and microbe-targeted human RNA sequencing was yielded from biop-

sies collected at initial screening colonoscopy sampled from two sites in the gut (ileum and

rectum). All data are fully described and available at https://ibdmdb.org.

We used the dataset generated in Chapter 6, which provides aligned and unaligned

versions of metagenomics, metatranscriptomics, metabolomics, and host transcriptomics

data. See Sections 6.2.1, 6.2.2, and 6.2.3 for more details on the processing that led to

the data. As explained in those sections, the data were normalized and centered, the time

series were smoothed, and then temporally aligned prior to inferring the Dynamic Bayesian

Network models.
99

https://ibdmdb.org


Since two of the methods that we used require a higher number of timepoints than the

DBN method applied in Chapter 6, new datasets were generated increasing the sampling

frequency. This way, instead of a sampling rate of 14 days, we duplicated the number of

time points by sampling at a sampling rate of seven days. We then generated different

subsets from the full dataset, each with different omic types. Let �, �, and� represent the

entities in the datasets with just taxa, genes, and metabolites, respectively. We can combine

them and generate different subsets. The resulting datasets are the aligned and unaligned

versions of the following: {�, �,�, ��, ��, ��, ���}.

In an effort to increase the number of biologically interpretable results and to get the

most significant validations of the interactions, we focused on attributes that were cataloged

in KEGG. We first selected the top 50 taxa, genes, and metabolites, and then intersected that

selection with the attributes supported in the databases created from KEGG and MIMOSA

in Section 6.2.7. The outcome of this was the selection of 27 bacterial species, 34 genes,

and 19 metabolites, in addition to one clinical variable (sampling time, represented by the

week during which the sample was obtained).

7.2.2 Constraining structures

As explained in Section 4.2.3, we constrain the set of allowable edges by providing a

Skeleton structure, which is part of the input to the DBN construction step. These con-

straints (in the form of a matrix received as an input to the function) only allow edges

between certain types of nodes, greatly reducing the complexity of searching over possi-

ble structures and preventing over-fitting. Specifically, we allowed intra edges (i.e., edges

within same time point) from taxa nodes to gene (expression) nodes and from gene nodes

to metabolites (concentration) nodes. All other interactions within the same time point (for

example, direct gene to taxa) were disallowed. We also allowed inter edges (i.e., edges

between nodes from adjacent time points) from metabolites to taxa nodes in the next time

point, and self-loops from any node Ati
1 to Ati+1

1 . The restrictions in the Skeleton reflect our
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understanding of the basic ways the different entities interact with each other, i.e., taxa

express genes that they carry on their genomes; these, in turn, are involved in metabolic

pathways for metabolites that they are able to produce; the metabolites impact the growth

of taxa (in the next time slice).

We also used a less constrained framework referred to as the Augmented skeleton. Un-

like the original Skeleton, the Augmented framework also allowed direct edges between

taxa and metabolites to account for cases where noise or other issues related to profiling of

genes can limit our ability to indirectly connect taxa and the metabolites they produce. All

other edges from the skeleton were maintained. Figure 6.3 summarizes each framework in

the form of an adjacency matrix.

7.2.3 Dynamic Bayesian Networks

With edges that represent lagged dependencies, DBNs are a type of BNs suited for

representing temporal connections, conducting time-varying probabilistic inference, and

performing causal analysis under uncertainty. In this dissertation, we focus on a version

of DBNs called Two-Timeslice BN (2TBN), which relates variables to each other over

adjacent time steps. Any variable Xt
i can be calculated from the internal regressors, the

current time point t and the previous time point t − 1. For more detailed discussions, refer

to Chapter 4 and Chapters 5 and 6.

DBNs were learned for all subsets of datasets from Section 7.2.1 (i.e., {�, �, �,

��, ��, ��, ���}), for several different number of allowable parents ({3, 4, 5, 6}),

for aligned and unaligned datasets, and for the Skeleton and Augmented constraint frame-

works. A total of 100 networks were learned by subsampling subjects with replacement

from each dataset (100 bootstrap repetitions). The networks were then combined, averag-

ing the regression coefficient of the edges. Each edge was also labeled with the bootstrap

support (percentage of times that edge appears). Each repetition was set to run indepen-

dently on a separate processor using Matlab’s Parallel Computing Toolbox. The following
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two methods do not learn based on a global score such as Likelihood, but rather on condi-

tional independence tests.

7.2.4 Causal Networks using the TETRAD Suite

The tsGFCI (SVAR-GFCI) [101] algorithm is implemented in the TETRAD package

[153, 30], for which PyCausal [25] is the wrapper that was used in this dissertation. The

tsGFCI algorithm is a version of tsFCI [47] and GFCI, while tsFCI is, in turn, the evolution

of FCI [31], which in turn is a modification of PC-stable, which was designed by changing

PC, which an adaptation of the SGS algorithm [170] (see Section 3.4.2 for a more detailed

description).

Algorithm tsFCI (SVAR-FCI) is based on the FCI algorithm, with the following mod-

ifications: it uses the direction of time to orient interactions, and it enforces repeating

structures for both adjacencies and orientations based on the stationarity assumption. Since

the hybrid score-based GFCI is usually more accurate in finite samples than FCI, similar

modifications were made in the development of tsGFCI; It uses a greedy initial adjacency

search enforcing time order and repeating structures, and scores the structures using BIC

[155].

Different networks were learned with N bootstrapping repetitions for each significance

threshold, α ∈ {0.0001, 0.001, 0.01, 0.1}, for the PositiveCorr CI test (one of seven pos-

sible tests available), for the FisherZScore network score (one of eight possible choices

available), and for each combination of omics datasets. For our experiments, we used

N = 10.

7.2.5 Causality with Tigramite

Tigramite [147] implements the PCMCI algorithm, which has two stages:

1. Condition selection via PC1: It obtains an estimate of a superset of the parents

Pa(Xi)G for all variables from U = {X1, X2 . . . , Xn}, with a modified version of the
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PC-stable algorithm, adapted for time series. For every variable, first the preliminary

parents are initialized to all possible parents. Then, for a growing conditioning set

size, test for all variables Xt−τ
i from Pa(Xt

j) if the null hypothesis,

H0 : Xt−τ
i 6⊥⊥ Xt

i | S, for any S ⊆ Pa(Xt
j) with | S |= p, (7.1)

can be rejected at a significance threshold α and removes the current parent from the

set. We iterate over all possible sets S ⊆ Pa(Xt
j) \ {X

t−τ
i } with cardinality p, up to a

maximum number of combinations qmax.

2. Causal discovery stage: Using the parents from the previous stage, we apply the

MCI algorithm, which tests all pairs of variables, and a set of time delays τ ∈

{1, . . . , τmax}, and establishes the edge Xt−τ
i −→ Xτ

j if and only if

Xt−τ
i 6⊥⊥ Xt

j | Pa(Xt
j) \ {X

t−τ
i }, Papx(X

t−τ
i ), (7.2)

where Pap(Xt−τ
i ) denotes the p strongest parents.

Since Tigramite assumes that all the data points belong to one subject, bootstrap cannot

be implemented in the usual way of subsampling subjects with replacement. Instead, a

different network was learned for each subject, and the resulting networks were then com-

bined. The percentage of times that a given edge appears in all the different networks was

annotated in the edge, together with the averaged cross-link strength. Different networks

were learned for each significance threshold in α ∈ {0.0001, 0.001, 0.01, 0.1}, for each CI

test available (GPDC, CMIknn, ParCorr) [147] and for each omics dataset.

The following sections introduce a series of causal network analysis techniques, which

will be applied to the networks learned with the methods introduced in Sections 7.2.3 –

7.2.5 using DBNs, TETRAD and Tigramite.
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7.2.6 Unrolling

Typical algorithms for network learning and analysis do not differentiate between direct

and indirect interactions, and fail to elucidate the actual reason why two entities are causally

related to each other. An important challenge in microbiome analysis is to determine why

and how two taxa are interacting with each other given multi-ommics data. We introduce

the term unrolling as the process of determining the sequential steps by which two omic

entities potentially interact with each other. This is done by learning different independent

networks using different subsets of omics. By learning the networks with the � and the

�� datasets, we can explain away interactions between microbial taxa as suggested by the

former using the interactions between microbial taxa through metabolic intermediaries as

suggested by the latter.

To make this more formal, we will let G�,V�, and E� represent the graph, the vertex set

and the edge set, respectively, of the network learned using dataset�. Now, an explanation

by unrolling occurs if the following three conditions are true:

1. There is an edge between Ti and T j in G�, for some Ti,T j ∈ V�, i , j.

2. There is no edge between Ti and T j in the network G��.

3. The edges from Ti to Mx and from Mx to T j exist in G�� for some metabolite in V��.

If the above three conditions are met, we infer that the interaction between the taxa Ti and

T j is not direct, but is happening through an intermediary metabolite Mx, which is produced

by Ti and consumed by T j.

This process can be replicated by unrolling the edges of the network inferred from �

with the one inferred from �� to discover the genes that are likely driving the interaction

between the same pair of taxa. Finally, the network from �� (G��) or �� (G��) can

be unrolled using G��� to find fully unrolled chains of the form Ti −→ Gy −→ Mx −→ T j

in G��� with the capability to simultaneously explain the edges Ti −→ T j in G�, the chain

Ti −→ Mx −→ T j in G��, and the chain Ti −→ Gy −→ T j in G��.
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This step-wise unrolling is necessary to discover unrollings, where the network learned

from � was unrolled in a network learned from some subset of {��,��,���}. The

number of the networks from {��,��,���} that support the unrolling provide a degree

of confidence for that unrolling. Furthermore, the bootstrap score for each of the edges

involved in the process is reported, together with an overall score that is computed as the

product of the individual bootstrap scores of the two replacement edges.

7.2.7 De-confounding

Most current causal inference techniques rely on the causal sufficiency assumption,

which assumes that there are no hidden confounders (for any pair of variables) in the data.

These are variables that are either (a) unknown, (b) known but not measured, or (c) mea-

sured but not used in the analysis, but affect both the cause and the effect of at least one

predicted interaction. Predictions of interactions with hidden confounders could be incor-

rect. The predicted interaction may be enhanced or diminished when the hidden confounder

is not used in the analysis. It is also possible that the predicted interaction may introduce

spurious edges when the hidden confounder is not used in the analysis.

In general, the causal sufficiency assumption may be “too strong” and may be impos-

sible to verify, even with the availability of richer data sets that include multi-omics data,

thus making this assumption a key obstacle to performing accurate causal inference [4].

Going beyond the multi-omic domain, causal sufficiency is an assumption that does not

strictly hold in most observational datasets, since it is difficult or impossible to include all

possible explanatory variables in a study.

A recent paper by Wang and Blei [193] attempts to perform de-confounding, which

is the process of removing the effect of all confounders. They introduce the concept of

“substitute confounders”, which attempts to account for the effect of all hidden confounders

in order to arrive at unbiased estimates of causal effects. Note that one of the limitations of

their method is that the de-confounded interactions are not identified, which is something
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that would be of interest. Furthermore, there may not be a one-to-one correspondence

between the substitute confounder and some real confounder, meaning that one substitute

confounder may be an approximation for a combination of several hidden confounders.

In this chapter we take on a different approach for the task of de-confounding inter-

actions and is inspired by the unrolling approach of Section 7.2.6. We iteratively learn

independent networks with different subsets of data with the hope that by adding a new

omics layer we would be able to identify some of the problematic variables and interac-

tions. As before, we let G�,V�, and E� represent the graph, the vertex set and the edge

set, respectively, of the network learned using dataset �. By learning a network with the

� and �� datasets, we can de-confound interactions if the following three conditions are

satisfied:

1. There is an edge between Ti and T j in G�, for some Ti,T j ∈ V�, i , j.

2. There is no edge between Ti and T j in the network G��.

3. The edges from Mx to Ti and from Mx to T j exist in G�� for some metabolite Mx ∈

V��.

Using this method, if the above conditions are satisfied for a pair of taxa, Ti and T j,

we can deduce that the directed edge (Ti,T j) in G� and the inferred interaction between

the two taxa were spurious, and that the metabolite Mx was the responsible confounder.

We can also infer that the metabolite impacts the abundance of both taxa, Ti and T j. One

possible scenario is that the metabolite, Mx, could be an essential metabolite for both taxa,

and its absence from the analysis could make their abundance appear correlated.

As before, this process can be repeated by de-confounding G� with edges from G�� to

discover genes/proteins that could nullify a causal connection between the taxa. In general,

the networks learned using the �,�, and/or�} datasets can be de-confounded by networks

learned using one or more of the datasets from {��,��,��,���}. Similarly, networks

learned using one of ��,��, or ��} datasets can be de-confounded by networks learned
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using ���. This could lead to chains of de-confoundings when an interaction that led to

the de-confounding a relationship is itself later de-confounded.

As before, for each de-confounding discovery, we report (a) the confounded edge, (b)

the de-confounder, (c) the bootstrap score for the edges involved in the discovery, (d) the

overall score of the discovery computed as the product of the individual bootstrap scores of

the two replacement edges, and (e) the two datasets that were used to discover the specific

de-confounding.

7.2.8 Validation

Validations of DBN edges that are directed from taxon to gene, taxon to metabolite, or

gene to metabolite are handled by verifying the information against existing databases of

genomes, genes, and metabolic pathways (as outlined in Section 6.2.7). To assist in the

validation of taxa-metabolite (T → M) edges in our networks, we relied on the tool MI-

MOSA [117], which calculates the capability of a species to produce a metabolite under the

conditions of the data set. For taxa-gene (T → G) validations, we used the KEGG database

to build a validation database of bacterial taxa and the genes present in their genomes. The

one-time creation of a local validation database also speeded up our computations consid-

erably. We evaluated our results using the precision metric. We calculated the statistical

significance of validated interactions by comparing the validation statistics to a null model

using a Poisson-Binomial distribution test.

7.3 Results

A large number of networks were learned with the different data subsets, modified

methods, and parameter settings as mentioned in Sections 7.2.3, 7.2.4, 7.2.5 respectively

for DBN, TETRAD, and Tigramite. We implemented unrolling and de-confounding, and

applied them to all the learned networks. Results are presented below.
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7.3.1 Resulting networks

Figure 7.1 shows the DBNs learned from the �, ��, �� datasets, and ��� without

alignment. Self loops were hidden to avoid unnecessary clutter. The remarkable informa-

tion gain obtained by using additional omics data sets is readily observable in Figure 7.1 d),

with a more complete picture of the state of the whole system. The one non-omics variable

(week of sample obtained), which we generically refer to as a “clincal variable” did not

have a strong enough effect in ��, but it did have an effect in the other networks.

7.3.2 Tool analysis

In addition to analyzing the networks, we also explored the effect of the different net-

work parameters. The heatmap of Figure 7.2 shows the percentage of unrolling taking place

in the networks learned by PyCausal (TETRAD). The first three columns represent the per-

centage of taxon to taxon interactions in the network learned with � that got unrolled with

the networks learned with ���, ��, and �� respectively. It is obvious that as the alpha

parameter decreases, the percentage of unrolling cases drastically decreases. The smaller

the alpha, the easier for two variables is to be dependent, so the more edges the network

has. This means that for a bigger alpha, the average confidence on each edge should be

higher, since it is more difficult for it to get learned by chance. This is in accordance with

the higher percentage of unrolling, indicating that the edges with higher support get un-

rolled more frequently, adding support for the unrolling process. Interestingly, there is a

clear reversal of the pattern for the overall bootstrap score (last column) for no-aligment,

where the smaller the alpha, the larger the overall score is, which would seem to contradict

our intuition. Interestingly, aligning the dataset seems to fix this problem, which would

support the necessity of alignment as a pre-processing step.

Figure 7.3 shows the average percentage of unrolling taking place in the different meth-

ods, averaged over all parameters. The first three columns represent the percentage of taxon

to taxon interactions in the network learned with � that got unrolled with the networks
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Figure 7.1: The two-time-slice DBN networks for four different multi-omic subsets,
hiding self-edges. Each network was learned with a maximum number of parents of 3,
and has two versions of each node organized in large circles, one representing the variable
for the current time point (blue) and the other for the next time point (orange). Taxa nodes
are represented as filled circles, metabolites as filled squares, genes as filled diamonds, and
clinical variables as filled triangles. Red (green) edges represent negative (positive resp.)
regression coefficients. Edge width is proportional to the regression coefficient and edge
opacity to the bootstrap score. Finally, node opacity is proportional to abundance. a) DBN
learned with just taxa abundance (�). The dataset included abundance of 27 bacteria and
a clinical variable indicating the week the sample was obtained and resulted in a network
with 95 edges. b) DBN learned with taxa and metabolites (��). A set of 19 metabolites
were added to the previous dataset, and 164 edges were learned in this network. c) DBN
learned with the taxa and genes dataset (��). A set of 34 genes were added to the taxa
dataset, and a network with 230 edges was learned. d) DBN learned with the 27 taxa, 34
genes, and 19 metabolites (���), resulting in a total of 311 edges.
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Figure 7.2: PyCausal (TETRAD) network unrolling analysis for alignment and no-
alignment as the alpha parameter varies. The heatmap contains information for the
percentage of unrolling happening in each of the parameter configurations, together with
the overall bootstrap score.

learned with ���, ��, and �� respectively. Tigramite unrolls a larger percentage with

�� and �� than the other two methods, but falls short when unrolling with ���, where

DBN does a better job. Interestingly, alignment seems to drastically improve the unrolling

results for our DBN method for ��� going from 24.7% to 78.8%, and mildly helps for

the other two datasets. Also, our DBN method seems more stable than the other two, since

the much higher average overall bootstrap score indicates that in each bootstrap, the edges

learned are consistent with the ones learned in other bootstrap runs. This lower variability

across the different random data subsamples used is a clear advantage of our DBN method.

Figure 7.3: Unrolling percentages for all methods averaging over all different param-
eters. The heatmap contains information for the percentage of unrolling happening in each
of the methods, together with the overall bootstrap score.

7.4 Discussion

The top unrollings and de-confoundings discovered by all the methods were sorted by

the combined overall bootstrap score, and other factors like the number of networks they
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appear in, or the different network types that supported this particular finding. Below we

discuss some particularly interesting results from our analysis above.

7.4.1 Uncovering unrolled biological relationships

The unrolling of the an edge Eubacterium siraeum → Bacteroides thetaiotaomicron

in G�, manifests itself as the unrolled path Eubacterium siraeum → uridine kinase →

cytidine → Bacteroides thetaiotaomicron in G���, as shown in Figure 7.4. Interestingly,

Figure 7.4: Biologically confirmed unrolling. The edge Eubacterium siraeum → Bac-
teroides thetaiotaomicron learned in G� (T) is unrolled into Eubacterium siraeum → uri-
dine kinase→ cytidine→ Bacteroides thetaiotaomicron in G���

each edge in the unrolled path was validated in the literature and the knowledge bases.

Both E. siraeum and B. thetaiotaomicron contain the enzyme uridine kinase [83, 82]. This

enzyme can be commonly found in prokaryotes and eukaryotes, and phosphorylates both

uridine and cytidine to their mono-phosphate forms, and vice-versa. The specific reactions

that this enzyme is capable of performing are the following [186, 123, 166]:

• ATP + Uridine⇐⇒ ADP + UMP

• ATP + Cytidine⇐⇒ ADP + CMP,

where ATP stands for adenosine tri-phosphate, ADP stands for adenosine di-phosphate,

UMP stands for uridine mono-phosphate, and CMP stands for cytidine mono-phosphate.

Since B. thetaiotaomicron also contains uridine kinase, it has the ability to perform the

forward reaction and consume it by phosphorylating cytidine to CMP. More importantly,
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B. thetaiotaomicron also contains cytidine deaminase, which scavenges exogenous and en-

dogenous cytidine for UMP synthesis [185]. This reaction performed by this enzyme is

cytidine + H2O ⇐⇒ uridine + Ammonia [189, 168, 192], which validates the third and

last edge (cytidine → B. thetaiotaomicron). In addition, experimental results show that a

cytidine-scavenging system confers colonization fitness to B. thetaiotaomicron, and there-

fore positively impact its abundance [59]. Interestingly, uridine may be playing a role in

this connection between the two taxa, since both enzymes discussed involve uridine, so

both taxa can produce and consume uridine. Reinforcing this argument is the fact that

the edge uridine→ B. thetaiotaomicron is also present in the same network G���. More-

over, this unrolling can be important for IBD. Treatment for Crohn’s disease with live B.

thetaiotaomicron or its products displays strong efficacy in preclinical models of IBD, with

multiple benefits [43]. Similarly, there is precedent to treat gastrointestinal problems with

E. Siraeum [17], and activation-induced cytidine deaminase seems to prevent colon cancer

development despite persistent inflammation in the colon [176].

In summary, our unrolling methods allow us to make biological sense out of a set of

related edges in the series of networks generated from the multi-omics data.

As a second example, we can also validate the circular path: Bacteroides stercoris →

uridine kinase → cytidine → Bacteroides stercoris, which can be thought of as an un-

rolling of the self-loop from Bacteroides stercoris to itself in G� as shown in Figure 7.5.

B. stercoris contains both uridine kinase [115] and cytidine deaminase [114], so it can both

produce and consume cytidine, and since cytidine deaminase can scavenge endogenous cy-

tidine, this lends further support to the self-loop edge from B. stercoris to itself; it might

be regulating itself through the cytidine or uridine internally. Interestingly, Bacteroides

stercoris is linked to colorectal cancer [91], and an increased abundance of B. stercoris

was detected in fecal samples of Crohn’s Disease (CD) patients [190]. Also, there is an in-

creased reactivity of Immunoglobulin G from Crohn’s Disease patients toward B. stercoris

and other species of Bacteroides in the serum of CD patients [80].
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Figure 7.5: Biologically confirmed unrolling. The edge Bacteroides stercoris → Bac-
teroides stercoris learned in G� (T) is unrolled into Bacteroides stercoris→ uridine kinase
→ cytidine→ Bacteroides stercoris in G���

We provide two examples of partial unrollings from our experiments. The unrolled path

Bacteroides finegoldii → phosphatidate cytidylyltransferase → Betaine → Eubacterium

ventriosum was discovered by our search. It first appeared as an edge Bacteroides fine-

goldii → Eubacterium ventriosum in �, which then got unrolled in ��, ��, and ���.

Bacteroides finegoldii is an anaerobic gram-negative bacteria that has been found to be

generally beneficial in the gut [5]. It contains the gene BN532 01044 which expresses the

phosphatidate cytidylytransferase protein. This is a membrane-bound enzyme that partic-

ipates in the glycerophospholipid metabolism and phosphatidylinositol signaling system.

Moreover, Bacteroides finegoldii is known to produce the metabolite Betaine [37]. In-

creased levels of betaine have been found to benefit IBD patients, allowing for proper

digestion and assimilation of nutrients. Over the last decade, doctors have recommended

betaine-rich foods as a way to help IBD patients rapidly absorb and distribute vital vita-

mins and minerals needed to maintain diversity in the gut [37]. Additionally, recent studies

have shown betaine to be correlated to the Eubacterium genus and to be of general im-

portance for osmotic adaptation of most species of Eubacterium [73]. Even though no

specific study was found about the species Eubacterium ventriosum, the fact that betaine

was found to increase the abundance of the Eubacterium genus lends support to the argu-

ment that Eubacterium members consume betaine through the conversion of Acetate [195],

thus validating the unrolling. Moreover, while Acetate was not contemplated in the dataset,
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one of its precursors, Choline, was. Many strong unrollings have a link from Choline to a

member of the Eubacterium genus in the dataset (E. ventriosum, E. siraeum, E. rectale),

and almost every method learned the edge Betaine → E. ventriosum as part of specific

unrollings, which could be an indication of a pathway transforming Choline to Acetate to

Betaine, which may be facilitated by the taxon, Eubacterium.

The path: Bacteroides ovatus→ DNA helicase→ Pyridoxine→ Bacteroides ovatus in

��� can be thought of as an unrolling of a self-loop edge in � from Bacteroides ovatus

to itself, which got unrolled in ��, ��, and ���. Moreover, Bacteroides ovatus is

present in the gut microbiome, and plays a crucial role in the dysbiosis of the gut health.

This anerobic bacteria has been found to be significantly elevated in abundance in patients

suffering from IBD. Findings suggest that some species of Bacteroides injure gut tissue and

induce inflammation [149]. This bacteria does contain the gene dnaB which expresses the

protein DNA helicase, an enzyme responsible in unpacking genes in an organism and DNA

repair. The production of the metabolite pyridoxine has been found in great proportion

when there is an abundance of Bacteroides ovatus [160]. However, evidence suggesting the

consumption of pyridoxine by the taxa could not be found. When pyriodoxine is present

in great abundance, it is involved in many biochemical pathways that lead to the synthesis

or metabolism of nucleic acids, immune modulatory metabolites and many others [160].

However, when scarce, it leads to inflammation.

7.4.2 Uncovering de-confounded biological relationships

The edge: thymidylate synthase→ glutamate dehydrogenase was inferred in the � net-

work but disappeared in the �� network, possibly because both genes are present in the

taxon haemophilus parainfluenzae. This suggests that the relationship between the two

genes is spurious and the taxon is the confounder. Haemophilus parainfluenza is an op-

portunistic pathogen that has been found in elevated levels in patients suffering from many

diseases including pneumonia and conjunctivitis. Recent studies have shown that high
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abundance of this pathogen was found in patients suffering from IBD. Different dynamics

have been noted for the abundance of haemophilus parainfluenza in the literature. For in-

stance, when IBD patients enter remission, there is a steep decline in this pathogen [154].

Additionally, the two genes that are present in haemophilus parainfluenzae were found to

produce proteins that help drive diseases including colon cancer.

7.4.3 Limitations and future work

The main limitation of the methods described in this chapter is that they are only appli-

cable to multi-omic datasets, which are relatively uncommon. We, however, expect this to

change with the increased effort to understand the underlying mechanisms within biolog-

ical processes. Secondly, these methods do not provide definitive evidence for the causal

chains, but rather lend support to generate hypotheses that would have to be proved with

experiments in the laboratory. Also, as larger datasets become available these methods

will become increasingly useful. Regarding the future work, the following are research

directions that are currently being taken:

• Logically, since the three methods use very different approaches, any edge that is

confirmed by more than one method is noteworthy. The validation part could be

combined with the other two methods. We are working on combining validation

with unrolling and de-confounding, with the intention of testing if the unrolled or

de-confounded interactions get validated more frequently. This would be consistent

with our hypothesis that interactions inferred by more than one method have a higher

chance of being truly causal than others. Also, we can use some of the different

network-inferring algorithms to validate the others.

• We are working on combining de-confounding and unrolling in the following syn-

ergistic manner: We can start with the � network and eliminate from it all edges

that were de-confounded with �� and ��. Then, we could perform unrolling with-
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out these “spurious” edges in a way that we hope would lead to more meaningful

discoveries.

• Y-structures are causally fascinating subgraphs in the sense that one of their edges

(the Y-leg) cannot have been confounded. We plan on integrating the post facto

discovery of these structures in the networks learned by the methods we utilized, and

explore the Y-structure unconfoundability claim.

• It would be useful to make the three main methods of this chapter (unrolling, de-

confounding, and validating) available to a wider audience. The software PluMA

[29] would allow us to develop them in the form of plugins, that could then be inte-

grated into a multitude of bioinformatic pipelines.

• Finally, our largest work-in-progress contribution would be the creation of a holis-

tic novel validation score that could be applied to compare and evaluate biological

networks. This score would be a combination of the interaction validation precision,

probability, and their average derivatives as a function of a changing bootstrap score

threshold. We then would also weight the impact of the amount of unrolling and de-

confounding that took place for those networks, and other metrics calculated in this

chapter. This will give us a “confidence” measure for the biological validity of the

claims made by the network, and allow us to compare different learning algorithms

from a biological point of view.

7.5 Conclusion

We have developed three novel biological network analysis algorithms, namely un-

rolling, de-confounding, and validating. We learned biological networks based on a lon-

gitudinal multi-omic IBD dataset, with three state-of-the-art network and causal inference

tools. We then applied the three algorithms (unrolling, de-confounding, and validating) to

the networks learned by the tools (DBNs, tsGFCI, and Tigramite), and compared their pre-
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dictive performance. The top findings by our algorithms were then analyzed, and interest-

ing biological interpretations were found for several of the network-inferred interactions.
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CHAPTER 8

CONCLUSIONS

Typical microbiome studies focused primarily on static metagenomics sequence data .

More recent data sets are much richer, notably including time series information of host and

microbial gene expression, and metabolomics data. The ability to integrate and learn mod-

els using these multi-omics, longitudinal data, the inference of direct causal interactions

between the omics entities, validating these interactions, and drawing useful biological in-

terpretations remain major challenges for microbiome analysis.

8.1 Longitudinal microbial network inference

In Chapter 5, we developed PRIMAl, a computational pipeline that enables the integra-

tion of data across individuals for the reconstruction of dynamic models from time series

microbiome data. First, we smoothed each time series using b-splines and the interpolated

them, thus addressing irregular sampling rates and missing timepoints. Then our pipeline

aligned the data collected for all individuals, to adjust for the different metabolic speeds of

each individual and to align the internal biological processes in the different subjects with

each other. The aligned profiles were then used to learn a dynamic Bayesian network with

the expectation that it represents temporal causal relationships between taxa and clinical

variables. We improved the open source CGBayesNets package [106, 108] by adding the

capability to learn intra edges (within the same time slice) and implemented better per-

forming network scoring functions to address overfitting, such as the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC). We also implemented a

custom network robust to artifacts generated by large differences in the values of the child

and parent nodes, and visualization capabilities. Testing our methods on three longitudi-

nal microbiome data sets (infant gut, vagina, and oral cavity) we showed that our pipeline

improved upon prior methods developed for this task. We also discussed the biological
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insights provided by the models which shed light on several known and novel interactions,

in addition to finding interesting interaction relationships.

8.2 Longitudinal multi-omic network inference (PALM)

A key challenge in the analysis of longitudinal microbiome data is the inference of

causal interactions between microbial taxa, their genes, the metabolites they consume and

produce, and the host genes that are expressed in the environmental niche. To address these

challenges, in Chapter 6 we developed a computational pipeline called PALM that first tem-

porally aligned the multi-omics data and then used dynamic Bayesian networks (DBNs) to

construct a unified model. Our approach overcame differences in sampling and progres-

sion rates and reduced the large number of entities and parameters in the DBNs. It also

utilized a biologically-inspired, customizable multi-omic framework, which was provided

as an input to the algorithm, and ensured that the inferred interactions represented a flow of

information that is consistent with biological realities, prevented spurious connections and

greatly reduced computational costs. Moreover, a set of in silico validation methodologies

were developed to consult with existing databases and help evaluate the biological valid-

ity of edges that suggest directed interactions from taxa to genes and taxa to metabolites.

Applying PALM to data collected from inflammatory bowel disease (IBD) patients, we

showed that it accurately identified known and novel interactions. Targeted experimental

validations further supported a number of the predicted novel metabolite-taxa interactions.

Moreover, we showed how PALM can be extended to infer not only taxa abundance, but

also other types of omics datasets, greatly improving over the state-of-the-art algorithms

such as MMvec for metabolite prediction [111], and MTPLasso for taxa prediction [94].

8.3 Longitudinal causal multi-omic network inference

In an effort to improve the state of the art in inferring meaningful multi-omic interac-

tions, in Chapter 7 we addressed some of the most fundamental issues in causal inference.
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We developed METALICA, a suite of tools and techniques that inferred strong interac-

tions between microbiome entities. We also developed and applied novel unrolling and

de-confounding techniques to uncovered multi-omic entities that are believed to act as con-

founders for some of the inferred relationships, thereby lending support for a biological

model and process by which two taxa interact with each other. The unrolling process helps

to find intermediaries to explain interactions, while the de-confounding process finds com-

mon causes that causes spurious relationships to be inferred. Finally, we showed how to

automatically validate such inferences using ground truth databases. We applied our meth-

ods to networks learned by causal algorithms such as Tigramite [147] and tsGFCI [101],

which we augmented with our restriction framework and alignment techniques, among

other improvements. The dataset used was an IBD multi-omic dataset, and the findings

were used to compare the inferences of the various methods against the ones of PALM.

The top unrollings and de-confoundings were compared against the literature, and partial

or total validation for some of them was found.

The problem of holistically analyzing dynamic microbiomes had not been addressed.

The work in this dissertation makes a sizable dent in the challenging problem of study-

ing, exploring, and understanding data sets generated by longitudinal microbiome studies.

This dissertation also generates a suite of valuable tools for this work, thus addressing the

lack of accurate tools for studying dynamic microbiomes and investigating the interactions

between their entities.

8.4 Future work

This dissertation addressed several fundamental problems in multi-omics microbiome

studies. However, other challenges in this domain still remain unresolved, from both the

computational and biological points of view. These challenges span the whole end-to-end

pipeline of analysis, from the data collection, study and algorithm design, implementation,
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and the validation and usage of the conclusions. Some natural extensions of this dissertation

are the following:

8.4.1 Extend the causal tools developed

The application of interventional techniques would help us determine the average causal

effect of one entity on any other entity in our dataset. But these effects may not apply to

a particular individual. Applying counterfactual theory would allow us to understand how

the different entities interact and affect each other at the patient level. There are still many

setbacks before this can be applied, but it would open the door to personalized medicine that

not only depends on the genome of the patient, but also the person’s current microbiome.

8.4.2 Develop a microbiome model to perform causal reasoning

While microbiome analysis can help identify one or more specific microbial taxa within

the microbiome as the reason for the condition of a patient, any attempt to address the

dysbiosis will also need to take into account the entire web of interactions between the taxa

in the microbiome. Otherwise, unexpected side-effects are prone to occur and interventions

may not right the dysbiosis. Our vision of a futuristic solution for any dysbiosis is to initiate

a sequence of steps that would lead to a new homeostasis in a state that corresponds to a

healthy symbiosis. It would allow us to perform personalized reasoning about possible

treatments. We believe this to be the future of personalized medicine.

8.4.3 Learning models with even more variables

Ideally, we would like to get a holistic perspective of each subject by integrating as

many omics data sets as possible. However, because of the high dimensional nature of

these data sets we are facing, several challenges remain unsolved. First, because condi-

tional independence tests available are not reliable with an insufficient sample size, new

theoretical frameworks need to be developed. Second, since the structure learning with a
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large number of samples and variables is computationally very expensive, the new meth-

ods being developed need to take advantage of high performance computing and cloud

computing infrastructures.

8.4.4 Address all compositionality problems

One of the main problems with microbiome studies is the inherent compositionality of

the data. This could be solved by either developing sequencing techniques that could yield

absolute abundance values, or mathematical frameworks and normalizations techniques to

address this issue in a fundamental manner. Every step of any microbiome analysis pipeline

would benefit from either of these.
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