Molecular dynamics simulations of vibrational infrared and Raman spectra of H₅O₂⁺

Oluwaseun Omodemi, Ivonne Meares, Gabriella Garofalo, Martina Kaledin

Abstract

We report infrared (IR) and Raman vibrational spectra of $H_5O_2^+$ protonated water dimer using computational chemistry methods, the normal mode analysis (NMA) and molecular dynamics (MD) simulations. Various computational methods and basis sets were used. We also located the $H_5O_2^+$ stationary points on the potential energy surface using the Gaussian 16 program. The $H_5O_2^+$ Zundel complex serves as a benchmark system to study the proton transfer process. We also investigated IR and Raman intensities of other deuterated analogs, such as $D_5O_2^+$, $D_4HO_2^+$, and $H_4D^+O_2$.

Proton transfer frequencies estimated using the NMA method at the MP2/aug-cc-pVTZ-level of theory for $H_5O_2^+$, $D_5O_2^+$, $D_4HO_2^+$ and $H_4D^+O_2$ were 911.3 cm⁻¹, 660.2 cm⁻¹, 831.2 cm⁻¹, and 719.6 cm⁻¹, respectively. Corresponding CCSD(T)/aug-cc-pVTZ values using the analytical potential energy surface were 861 cm⁻¹, 627 cm⁻¹, 786 cm⁻¹, and 692 cm⁻¹. Proton motion in $H_5O_2^+$ yields high IR activities, while OH-stretch vibrations show strong Raman activities. Currently we are running MD simulations at 100 K and 300 K to obtain IR and Raman spectra. This computational work will provide the baseline information to assess the anharmonic effects in the vibrational spectra.