
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

African Conference on Information Systems
and Technology The 7th Annual ACIST Proceedings (2021)

Aug 26th, 12:00 AM - Aug 27th, 12:00 AM

Certificate-Less Searchable Encryption with a Refreshing Keyword Certificate-Less Searchable Encryption with a Refreshing Keyword

Search Search

Kuma Ejeta
Addis Ababa University, kumabek4@gmail.com

Minale Ashagrie
Addis Ababa University, minale.ashagrie@aau.edu.et

Follow this and additional works at: https://digitalcommons.kennesaw.edu/acist

Ejeta, Kuma and Ashagrie, Minale, "Certificate-Less Searchable Encryption with a Refreshing Keyword
Search" (2021). African Conference on Information Systems and Technology. 7.
https://digitalcommons.kennesaw.edu/acist/2021/allpapers/7

This Event is brought to you for free and open access by the Conferences, Workshops, and Lectures at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in African Conference on
Information Systems and Technology by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/acist
https://digitalcommons.kennesaw.edu/acist
https://digitalcommons.kennesaw.edu/acist/2021
https://digitalcommons.kennesaw.edu/acist?utm_source=digitalcommons.kennesaw.edu%2Facist%2F2021%2Fallpapers%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/acist/2021/allpapers/7?utm_source=digitalcommons.kennesaw.edu%2Facist%2F2021%2Fallpapers%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

1

Certificate-Less Searchable Encryption with a Refreshing Keyword Search
Kuma Ejeta, Minale Ashagrie

Addis Ababa University, Addis Ababa, Ethiopia

kumabek4@gmail.com

minale.ashagrie@aau.edu.et

Abstract

Public Key Encryptions with Keyword Search (PEKS) scheme had been hosted for keeping data security

and privacy of outsourced data in a cloud environment. It is also used to provide search operations on

encrypted data. Nevertheless, most of the existing PEKS schemes are disposed to key-escrow problems

due to the private key of the target users are known by the Key Generating Center (KGC). To improve the

key escrow issue in PEKS schemes, the Certificate-Less Public Key Encryptions with Keyword Search

(CL-PEKS) scheme has been designed. Meanwhile, the existing CL-PEKS schemes do not consider

refreshing keyword searches. Due to this, the cloud server can store search trapdoors for keywords used in

the system and can launch keyword guessing attacks. In this research work, we proposed Certificate-Less

Searchable Encryption with a Refreshing Keyword Search (CL-SERKS) scheme by attaching date

information to the encrypted data and keyword. We demonstrated that our proposed scheme is secure

against adaptively chosen keyword attacks against both types of adversaries, where one adversary is given

the power to select a random public key as a replacement for the user’s public key whereas another

adversary is allowed to learn the system master key in the random oracle model under the Bilinear Diffie-

Hellman problem assumption. We evaluated the performance of the proposed scheme in terms of both

computational cost and communication cost. Experimental results show that the proposed CL-SERKS

scheme has better computational cost during the key generation phase and testing phase than two related

schemes. It also has lower communication costs than both related schemes.

Keywords

Refreshing keyword search, key escrow, trapdoor.

1. Introduction

A cloud is an environment that allows ubiquitous resource sharing and data access to the client efficiently

and effectively while reducing the up-front infrastructure costs (Kamara & Lauter, 2010). Apart from the

enormous advantages of relying upon the cloud, it also poses a serious threat to the privacy and security

of the client and the data that is outsourced. To keep the security of sensitive data, cryptographic

encryption mechanisms are used to encrypt the user data before outsourcing it to the cloud (Bosch, 2014).

However, how to process and search on the encrypted data becomes an intractable problem (Kamara &

Lauter, 2010). To solve these problems, two methods were designed. The first method requires

downloading the whole ciphertext data, decrypt it locally, and then search for the preferred results in the

plaintext data. This approach would be impractical for most applications, because it requires downloading

a large number of files and a lot of computational cost for decryption and (Bosch, 2014).

The second method is to let the server decrypt the data, runs the query on the server-side, and sends only

the results back to the target user (Bosch, 2014). In this method, the target user sends the secret key to the

cloud server to decrypt the query. This lets the server learn the plaintext being queried and hence makes

encryption less useful. Instead, it is suitable to support the fullest possible search functionality on the

server-side, without decrypting the data which is called searchable encryption (Bosch, 2014).

Searchable encryption can be classified into symmetric and asymmetric encryption. In 2000, Song et al

(Song D X, 2000) first provided a practical searchable encryption technology, which became

groundbreaking in the development of searchable encryption. The scheme is based on performing a

sequential scan of the document without an index. Following Song et al (Song D X, 2000), Kamara et al

(Kamara S, 2012) and Wang et al (Wang G. L., 2017) proposed searchable encryption schemes based on

symmetric cryptography. In symmetric searchable encryption, the encryption and decryption parties need

to exchange the key beforehand. To address this limitation, public-key searchable encryption (PEKS) was

first proposed by Boneh et al. (D. Boneh, 2004). The PEKS doesn’t require a prior key agreement

mailto:kumabek4@gmail.com

2

between the data owner and target user, the data owner generates ciphertext containing both encrypted

documents and encrypted keywords using the target user's public key. Then, upload the ciphertext to the

cloud service provider. When the target user needs to search the ciphertext for a certain keyword, it uses

the secret key to generate the search trapdoor of the keyword and sends it to the cloud server. The server

then runs a test operation to select the ciphertext file containing the target keyword and returns it to the

target users.

On the other hand, certificate-less searchable encryption with keyword search (CL-SEKS) scheme is a

public-key cryptosystem based on identity-based encryption (Zhou, 2020). It enables a cloud service

provider to get the search trapdoor to identify ciphertext containing the target keyword without decrypting

the ciphertext or knowing the target keyword. The private key in certificate-less public key encryption is

no longer independently generated by the Public Key Generator (PKG), which is a device or program

used to generate keys, but it is jointly generated by the PKG and the target users (Al-Riyami, 2003). Since

certificate-less encryption based on the identity-based public-key cryptosystem was proposed by Al-

Riyami et al (Al-Riyami, 2003), the scheme overcomes the problem of key escrow in identity-based

searchable encryption, in which completely trusted private key generator can know all users’ private keys.

This is because it supports partial private key generation by the PKG for the target users and provides to

generate their secret key, which is only known by the target user. Additionally, the scheme preserves the

certificate-less advantages, it overcomes certificate management problems based on PKI encryption.

Despite the certificate-less schemes provides the above-mentioned advantages, there are remaining

enormous issues and challenges. To perform certificate-less searchable encryption with keyword search,

the data owner encrypts both keywords and data using the target users public key and identity (Yanguo,

Jiangtao, Changgen, & Zuobin, 2014). Then, it sends the encrypted document to the cloud service

provider. Then, the target user generates a search trapdoor using its complete private key and sends it to

the cloud service provider to conduct a keyword search. Whenever the target user sends the trapdoors, the

cloud service provider can store a trapdoor and it can use the trapdoors to search in ciphertexts (Baek,

Safavi-Naini, & Susilo, 2008). By using the stored trapdoors for keywords used in the system, an

adversary can launch a keyword guessing attack by checking all the encrypted documents and keywords

without receiving the trapdoor from the receiver (J. Li, 2017). Even though there was a proposed

certificate-less-based keyword searchable encryption (Yanguo, Jiangtao, Changgen, & Zuobin, 2014),

(Baek, Safavi-Naini, & Susilo, 2008), (J. Li, 2017) the trapdoors for a keyword were never refreshed. For

this reason, their schemes are vulnerable to keyword guessing attacks (KGA), which allows an attacker to

recover the keyword from the trapdoor (Zhou, 2020). A keyword guessing attack is a type of attack in

which the attacker can correctly guess the keyword encoded in a given keyword trapdoor (Bosch, 2014).

This attacker can be, the outside keyword guessing attack (OKGA), a malicious entity that has no

relationship with the cloud service provider. It is also called adversary type one and represented as A1.

The inside keyword guessing attack (IKGA), which is usually launched by the cloud service provider or

any other role inside the cloud service management (Zhou, 2020). It is also called adversary type two and

represented as A2.

 Following (D. Boneh, 2004) work, (Baek, Safavi-Naini, & Susilo, 2008) have been proposed a notion of

keyword guessing attack and secure channel free PEKS scheme. The notion of KGA realizes the fact that

the space of the keyword used is limited in practice. These are due to fact that the people usually select

the keyword that is easy to remember. The notion of secure channel-free is the removal of secure channels

for trapdoors between the data receiver and cloud service provider. Furthermore, there is no complete

definition that captures secure channel-free PEKS schemes that are secure against chosen keyword attacks

in their works. Later on, Chao et al (Wu T. M., 2017) demonstrated that their Certificate-less Designated

Server Based Public Key Encryption with Keyword Search (CL-dPEKS) schemes (Baek, Safavi-Naini, &

Susilo, 2008), (Wu, Meng, Chen, Liu, & Pan, 2016) suffered from KGA on ciphertext and trapdoor by the

outside adversary. Chao et al (Wu T. M., 2017) also argued research works to design a new security

model and secure scheme to overcome the known attacks.

To overcome the problem of the server storing trapdoor, Baek et al. (Baek, Safavi-Naini, & Susilo, 2008)

and Bosch et al. (Bosch, 2014) suggested that “refreshing keyword will improve the vulnerability of KGA

3

on searchable encryption”. Baek et al. (Baek, Safavi-Naini, & Susilo, 2008) argued that research works

need to take on finding an efficient and convenient way to refresh frequently used keywords. The idea

behind refreshing keyword search is to generate a trapdoor that is only valid in a specific time interval

(Bosch, 2014) (Baek, Safavi-Naini, & Susilo, 2008). Considering the E-mail communication, the data

sender defines the time interval for trapdoor generation by the data receiver. Every time the data receiver

generates its trapdoor and search information from the cloud service provider, the trapdoor information is

made to expire after the time defined by the data sender. Both Bosch et al (Bosch, 2014) and Baek et al

(Baek, Safavi-Naini, & Susilo, 2008) suggested that searchable encryption with the refreshing keyword

will improve the security of public encryption with keyword search. The literature shows that there is a

gap in conducting research work in PEKS with a refreshing keyword and demonstrate its security.

Certificate-less searchable encryption with a refreshing keyword search can be defined as a public-key

cryptosystem based on identity-based encryption and refreshing keyword search. The concept behind

refreshing keyword search is to generate a trapdoor that is only valid in a specified time frame by the data

sender. This helps to generate different trapdoors for the same keyword by attaching time information to

the trapdoor indicating its validity. It also limits the time in which an adversary can launch KGA by

captured trapdoors and is unable to distinguish active trapdoors from expired trapdoors. This research

aims to design certificate-less searchable encryption with a refreshing keyword search CL-SERKS

scheme. This needs to limit the duration of time the trapdoor remains active and to refresh keywords

every time searching is conducted, by attaching time information to encrypted data and keywords.

1.1 Our contributions

In this paper, we first propose a CL-SERKS scheme and then prove its security in the random oracle

model under the bilinear Diffie-Hellman problem assumption. The proposed CL-SERKS scheme

refreshes the keyword by attaching time information to the encrypted keyword and the encrypted

document. Similar to other certificate-less primitives, the proposed certificate-less keyword search

scheme leverages the identity as the user’s partial public key and eliminates the key escrow problem. We

demonstrate that our scheme can resist adaptive chosen keyword attacks even in the presence of both two

types of adversaries. Finally, the performance of the proposed scheme is evaluated in terms of

computational and communication costs.

The rest of this paper is organized as follows. In Section 2, we discuss related work. In Section 3, we

present some preliminaries, which give background information on concepts that are used to design the

proposed scheme. In Section 4, we present the system model of the proposed scheme. Section 5 describes

the proposed scheme, security model and security proof of the proposed scheme. In Section 6, we present

the performance analysis of our proposed scheme. Finally, we conclude the paper in Section 7.

2. Related work

In this section, we discuss related work conducted in the field of certificate-less searchable encryption

with keyword search (PEKS).

Peng et al (Yanguo, Jiangtao, Changgen, & Zuobin, 2014) introduced the concept of certificate-less

public key encryption with keyword search, a key part of searchable encryption for both protecting data

and providing operability of encrypted data. The authors’ eliminated the problem of key escrow for the

first time. They designed a certificate-less PEKS (CL_PEKS) scheme in an email system and constructed

a secure channel-free scheme. The scheme only supports a single keyword search function. They proved

its security under the bilinear Diffie–Hellman assumption. However, the scheme was later found out to be

vulnerable to attacks involving a malicious key-generation-center and an offline keyword guessing attack

(Wu, Meng, Chen, Liu, & Pan, 2016).

Mima et al (Ma, He, Kumar, Choo, & Chen, 2017) designed a certificate-less searchable public-key

encryption with multiple keywords (SCF-MCLPEKS) scheme for IoT (Internet of Things). They

demonstrated the security of the scheme in the random oracle model against both types of adversaries,

where type I adversary one is given the power to select a random public key as a replacement for the

user’s public key and type II adversary two is capable to learn the master key. The performance of the

4

proposed scheme was evaluated in terms of communication and computational cost. Zheng et al. (Zheng,

Li, & Azgin, 2015) integrate certificate-less cryptography with a keyword search on encrypted data. They

presented a concrete construction and proved its security under the decisional linear assumption in the

standard model.

Wu et al. (Wu, Meng, Chen, Liu, & Pan, 2016) proved that the certificate-less searchable public-key

encryption scheme of Peng et al. (Yanguo, Jiangtao, Changgen, & Zuobin, 2014) cannot resist a malicious

PKG attack and an offline keyword guessing attack. Therefore, the main contribution of the research

work of (Wu, Meng, Chen, Liu, & Pan, 2016) was to address the vulnerability of the CL-PEKS schemes.

Even though there was a proposed certificate-less-based keyword searchable encryption, the trapdoors for

a keyword were never refreshed. For this reason, their schemes are vulnerable to KGA, which allows an

attacker to recover the keyword from the trapdoor (Zhou, 2020). To reduce the vulnerability of certificate-

less searchable encryption with keyword search to keyword guessing attacks, we propose a CL-SERKS

scheme that resists KGA.

3. Preliminaries

3.1 Bilinear pairing

Let G1 is an additive cyclic group and GT is a multiplicative cyclic group having the same order q with

G1, we build bilinear pairing ℯ: 𝐺1 × 𝐺1 → 𝐺T is a map. This mapping satisfies the following properties.

1. Bi-linearity: ∀a, b ∈ 𝑍𝑞∗ and ∀K, L ∈ 𝐺1, ℯ (𝑎K, 𝑏L) = ℯ (𝑏L, 𝑎K) = ℯ (K, L) 𝑎𝑏, where Z be a set

of integers and a, b ∈ 𝑍𝑞∗ is a cyclic group of prime number.

2. Non-degenerate: there exists K, L ∈ 𝐺1 so that ℯ (K, L) ≠ 1 ∈ GT.

3. Computable: ∀K, L ∈ G1, there is an efficient algorithm to compute ℯ (K, L).

3.2 Bilinear Diffie-Hellman problem assumption

Let e: G1 × G1 → GT be a bilinear pairing. Suppose that we have a generator 𝑃 of 𝐺1 and some known

points 𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃 ∈ 𝐺1, where 𝑎, 𝑏, 𝑐 ∈ 𝑍𝑞∗ are unknown numbers, the bilinear Diffie-Hellman

(BDH) problem is to compute ℯ(𝑃, 𝑃)𝑎𝑏𝑐 ∈ 𝐺T. It can be stated that BDH problems are intractable provided

that any polynomial-time algorithm has a negligible advantage in computing BDH problems

 (Pr[(𝑎𝑃, 𝑏𝑃, 𝑐𝑃) = ℯ (𝑃, 𝑃) 𝑎𝑏𝑐]) ≤ 𝜀. (1)

4.System model

Next, we describe the system model of our proposed certificate-less searchable encryption with a

refreshing keyword search scheme, which has four entities, namely: a cloud server, a data sender, a data

receiver, and a key generation center (KGC).

Figure 1 The CL-SERKS model

5

KGC is responsible for generating system keys.

Data sender uses the receiver’s and server's public keys to encrypt the data and the index of keywords

contained in the data. Once this has been performed, the data owner can store the encrypted data and

encrypted keyword indexes in the cloud service provider.

Data receiver obtains his/her partial private key from the KGC and generates the trapdoor of keywords

that he/she wants to search and sends it to the cloud server.

The cloud service provider is responsible for processing data, such as storing and searching data for a

user.

5.Proposed scheme

In this section, we present the proposed CL-SERKS scheme, security model and security proof of the

proposed scheme

5.1 Proposed CL-SERKS scheme

The CL-SERKS scheme consists of the following polynomial-time probabilistic algorithms:

Setup (k): suppose q is a large prime number, G is a group with order q. Let P denote a generator of G,

and choose four different cryptographic hash functions 𝐻1, 𝐻2, 𝐻3: {0, 1}∗ → 𝐺1 and 𝐻4: 𝐺𝑇 → {0, 1}
n

∈ 𝑍𝑞∗ where n is a fixed-length binary string, KGC performs the following steps

1. Select two cyclic groups 𝐺1, 𝐺𝑇 with the same order 𝑞 and choose a bilinear pairing 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇

2. Choose a generator 𝑃 ∈ 𝐺1 and select a number 𝑠 ∈ 𝑍𝑞∗
 randomly

3. Compute 𝑃𝑝𝑢𝑏= 𝑠𝑃 ∈ 𝐺1. Let 𝑠 be the master key,

4. Publishes public parameter 𝑝𝑟𝑚𝑠 = (𝑘, 𝐺1, 𝐺𝑇, 𝑞, 𝑃, 𝑃𝑝𝑢𝑏, 𝐻1, 𝐻2, 𝐻3, 𝐻4) and keep master key 𝑠 as

secret. And moreover, the refresh keyword space 𝑤 = {0, 1}∗ ∈ 𝐺1 and refreshed encrypted keyword

space is 𝐶𝑤 = {0, 1} 𝑛 ∈ 𝐺T.

Extract partial private key (DID): KGC receives data user’s digital identifier 𝐼𝐷 ∈ {0, 1}∗ as an input and

computes 𝑄I𝐷 = 𝐻1(𝐼𝐷). Then compute data user’s partial private key 𝐷𝐼𝐷 = 𝑠𝑄ID

Set secret value (X𝐼𝐷): The data sender and data receiver input their identities 𝐼𝐷 ∈ {0, 1}∗
, then the data

user chooses X𝐼𝐷 ∈ 𝑍𝑞∗ randomly as its secret value.

Set private key (𝑆𝐾𝐼𝐷): The data user input X𝐼𝐷 and DID. Then compute 𝑆𝐾𝐼𝐷 = (X𝐼𝐷, DID)

Set public key (P𝐾𝐼𝐷): Input public parameter and secret value X𝐼𝐷, compute 𝑃𝐾𝐼𝐷 = X𝐼𝐷 P

Encryption: Let w = {𝑤𝑖 |1 ≤ 𝑖 ≤ 𝑛} represent a set of refreshing keywords. In our case, a keyword is

refreshed by the frequently used keyword by attaching date information to the encrypted document, for

example, a keyword 𝑤 = 𝑤||24/02/2021 represents a refreshing keyword where 24/02/2021 denotes “24

February 2021” and, owner of a data sends this refreshed keyword to the public cloud server. A data

sender executes as follows to encrypt refresh keyword 𝑤𝑖 ∈ 𝑊 after obtaining public parameter 𝑝𝑟𝑚𝑠,

data user’s public key 𝑃𝐾𝐼𝐷 and data user’s or receiver’s identity 𝐼𝐷 as an input:

1. Compute Q𝐼𝐷 = 𝐻1(𝐼𝐷)

2. Choose a random number 𝑟𝑖 ∈ 𝑍𝑞∗. Then perform 𝑈𝑖 = 𝑟𝑖𝑃.

3. Compute 𝑇𝑖 =ℯ(𝑟𝑖(𝐻2(𝑤||24/02/2021)),𝑃𝐾𝐼𝐷)ℯ(𝑟𝑖𝑄𝐼𝐷,𝑃𝑃𝑢𝑏)ℯ(𝑟𝑖(𝐻3 (𝑤||24/02/2021)), 𝑃)

4. Perform: 𝑉𝑖 = 𝐻4 (𝑇i) (2)

Final encrypted document or cipher-text is the output and given by: 𝐶 = {𝐶1, 𝐶2 …}

Where 𝐶𝑖 = (𝑈𝑖, 𝑉𝑖) (3)

Trapdoor: In this step, the algorithm receives public parameter 𝑝𝑟𝑚𝑠, a refreshing keyword and, the data

user’s Secret Key 𝑆𝐾𝐼𝐷 as an input. The trapdoor is performed by the data user as:

Tw = 𝑋𝐼𝐷 (𝐻2 (𝑤||24/02/2021)) + 𝐷𝐼𝐷 (4)

Test: At the test stage, the public cloud server receives public parameter 𝑝𝑚𝑟𝑠, refreshed keyword 𝑤’s

trapdoor 𝑇𝑤′𝑠 and refreshed keyword encrypted document 𝐶𝑤 as input and Performs:

 𝑉𝑖 = 𝐻4 (ℯ(Tw + (𝐻3 (24/02/2021)), 𝑈𝑖)) (5)

If the equation (5) is correct, the output is “1”; else outputs “0”. Assume that 𝑤 = 𝑤𝑖, wherein 𝑖 ∈ {1,

2 … 𝑛}, we show that the CL-SERKS scheme fulfills the computational consistency as given below:

𝐻4 (ℯ(Tw + (𝐻3 (𝑤𝑖 ||24/02/2021)),𝑈𝑖))

6

 =𝐻4 (ℯ(𝑋𝐼𝐷(𝐻2 (𝑤||24/02/2021)) + 𝐷𝐼𝐷 + (𝐻3 (𝑤||24/02/2021)), 𝑟𝑖𝑃)).

 = 𝐻4 (ℯ(𝑋𝐼𝐷(𝐻2 (𝑤||24/02/2021)), 𝑟𝑖𝑃) ℯ(𝐷𝐼𝐷, 𝑟𝑖𝑃) ℯ(𝐻3 (𝑤||24/02/2021), 𝑟𝑖𝑃))

 = 𝐻4 (ℯ(𝑟𝑖(𝐻2 (𝑤||24/02/2021)), 𝑋𝐼𝐷𝑃) ℯ(𝑠𝑄𝐼𝐷, 𝑟𝑖𝑃) ℯ(𝐻3 (𝑤||24/02/2021), 𝑟𝑖𝑃))

 =𝐻4 (ℯ (𝑟𝑖 (𝐻2 (𝑤𝑖 ||24/02/2021)), 𝑃𝐾𝐼𝐷) (𝑟𝑖𝑄𝐼𝐷, 𝑃𝑝𝑢𝑏) (𝑟𝑖 (𝐻3 (𝑤𝑖 ||24/02/2021)), 𝑃))

 =𝑉𝑖 (6)

 5.2 Security model

In the certificate-less cryptosystem, there are two types of adversaries. Type I adversary one, is denoted as

A1 and has no master key but can replace anyone’s public key, and type II adversary two, is denoted as

A2 and holds the master key but cannot replace anyone’s public key. The security model is defined

through two games played between adversaries and a challenger ch. The challenger is an honest data user

in the cryptosystem which implies that it works following a predefined cryptographic framework. An

adversary is in charge of communicating to the system by placing a query to the oracle, that orders a

challenger to answer the queries to either of the adversary type 𝐴1 or adversary type 𝐴2 and its main goal

is to break the proposed system. The CL-SERKS scheme mainly considered ciphertext

indistinguishability and trapdoor indistinguishability.

5.2.1 Ciphertext indistinguishability

Ciphertext indistinguishability (IND-CKA) ensures that the ciphertext reveals no information about the

underlying keyword to the cloud server. The CL-SERKS is said IND-CKA secure if the advantage of

winning in the following Game 1 and Game 2 are negligible

Game 1: In this game, we set the semi-trusted cloud service provider as the adversary A1.

Setup: The challenger performs the setup algorithm so that it obtains public parameter 𝑝𝑟𝑚𝑠 and master

key 𝑠. Then it sends public parameter 𝑝𝑟𝑚𝑠 to the 𝐴1 and keeps master key 𝑠 privately.

Phase 1: 𝐴1 performs the oracle query as follows:

Hash query: 𝐴1 can query all hash algorithms and get corresponding answers.

Partial private key extract query: Given identity 𝐼𝐷i, Ch executes partial private key extract algorithm to

acquire 𝐷𝐼𝐷 send to 𝐴1.

Request public key query: Given identity 𝐼𝐷i, Ch produces 𝑃𝐾𝐼𝐷 and sends it to the 𝐴1.

Substitute public key query: 𝐴1 can select a random value in place of the data user’s or receiver’s PK.

Private key extract query: Given identity 𝐼𝐷i, ch calculates the corresponding private SKID to 𝐴1.

Trapdoor query: Given the keyword wi with identity IDi, ch calculates the corresponding trapdoor TWi to

the 𝐴1.

Challenge: 𝐴1 chooses keyword (𝑤0, 𝑤1) and identity IDi, which is expected to challenge, ch randomly

chooses a ∈ {0,1} and runs encryption algorithm to produce a target keyword cipher-text 𝐶a to 𝐴1.

Phase 2: 𝐴1 can issue the polynomial query like phase 1, but cannot make a trapdoor query with 𝑤𝑖 ≠

(w0,w1).

Guess: Finally, the 𝐴1 yields 𝑏 ′ ∈ {0, 1}. We say adversary 𝐴1 wins this game if b′= 𝑏.

Game 2: In this game, we set the semi-trusted KGC as the adversary A2.

Setup: ch run the setup algorithm is executed to get public parameter 𝑝𝑟𝑚𝑠 and master keys 𝑠 of the

system. Then adversary 𝐴2 receives public parameter 𝑝𝑟𝑚𝑠 and master key 𝑠 from Ch.

Phase 1: 𝐴2 can adaptively issue public key queries, extract private key queries, perform hash queries,

and trapdoor queries.

Challenges: 𝐴2 chooses keywords (𝑤0 𝑤1) and identity IDi to challenge, Ch selects a ∈ {0,1} uniformly

and runs an encryption algorithm to produce 𝐶a to A2.

Phase 2: 𝐴2 can issue the polynomial query like phase 1, but cannot make a trapdoor query with 𝑤𝑖 ≠

(w0,w1).

Guess: The 𝐴2 yields 𝑏′ ∈ {0, 1}. We say adversary 𝐴2 win this game if 𝑏 ′= b.

5.2.2 Trapdoor Indistinguishability

Trapdoor indistinguishability guarantees that the cloud service provider cannot obtain any information

about the keyword from a given trapdoor.

7

If A1 and 𝐴2 advantage of winning in the following games Game 3 and Game 4 are negligible

respectively, we can say that the scheme is satisfied with the trapdoor indistinguishable under the adaptive

chosen keyword attack.

Game 3: The interaction between A1 and the Ch is as follows:

Similar to Game 1, we set the semi-trusted cloud server as the adversary A1.

Setup: The ch outputs the system parameters by running the setup algorithm, where ch does not know the

master key s.

Phase 1: 𝐴1 can adaptively issue query as follow:

Hash query: 𝐴1 can query the hash algorithm and get the corresponding answer.

Extract partial private key query: Given the identity ID𝑖, the ch calculates the corresponding partial

private key to the 𝐴1.

Public-Key query: Given the identity ID𝑖, the ch calculates the corresponding public key to the 𝐴1.

Replace public key query: 𝐴1 can replace the public using his choice.

Encryption query: Given the keyword w𝑖 with identity ID𝑖, ch calculates the corresponding ciphertext C𝑖
= (T𝑖, V𝑖) to 𝐴1.

Challenges: 𝐴1 chooses keywords (w0, w1) and challenges identity IDi to challenge. The ch randomly

selects 𝑏 ∈ {0,1} and returns trapdoor search Tw to 𝐴1 by running the trapdoor algorithm.

Phase 2: 𝐴1 can issue the polynomial query like phase 1, but cannot make CL-SERKS query with 𝑤𝑖 ≠

(𝑤0, 𝑤1).

Guess: 𝐴1 outputs 𝑏 ′ ∈ {0, 1}.

Game 4: The interaction between 𝐴2 and ch is as follows.

Setup: The ch outputs the public parameters and the master keys by running the setup algorithm.

Phase 1: 𝐴2 can adaptively issue a hash query, public key query, private key query and encryption query.

Challenges: 𝐴2 chooses keywords (w0, w1) and identity IDi to challenge. Then challenge randomly selects

𝑏 ∈ {0,1} and returns trapdoor search TW by running trapdoor algorithm to 𝐴2.

Phase 2: 𝐴2 can issue the polynomial query like phase 1, but cannot make encryption query with 𝑤𝑖 ≠

(𝑤0, 𝑤1).

Guess: 𝐴2 outputs 𝑏 ′ ∈ {0, 1}.

 5.3 Security proof

Theorem 1: The CL-SERKS scheme proposed in this research is secure semantically in random oracles

against adaptive chosen keyword attacks if the problem of BDH is not breakable to resolve in

probabilistic polynomial time.

Lemma 1: Supposing the existence of probabilistic polynomial-time adversary 𝐴1 in Game 1, which can

attack the proposed CL-SERKS scheme with 𝜺 i.e. a very minimum chance of breaking the proposed

scheme. We can build ch (i.e. challenger algorithm) to compute the problem BDH with the advantage 𝜀.

Suppose 𝑞H1, 𝑞𝐻4, qTrap, qEpart and qEpriv represent the numbers of 𝐻1 query, 𝐻4 query, trapdoor

query, partial private key extract query and private key extract query respectively. The challenger

algorithm will be built to compute the problem of BDH with the advantage:

𝜀 ′ ≥
ε

𝑞𝐻1𝑞𝐻4
 (1 −

1

𝑞𝐻1
)

qEpart + qEpriv + qTrap
(7)

Ch simulates challenger and replies to all the queries from adversary 𝐴1 in such a way that it uses the 𝐴1

to compute the problem.

Proof: Following Lemma 1, it is necessary to show that our framework is secure. Hence, a BDH problem

difficult to solve chosen, and it is reduced to the security of our system. Ch inputs a BDH problem be the

instance of (𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃), the goal is to challenge A1 to compute ℯ (𝑃, 𝑃) 𝑎𝑏𝑐.

Setup: The Ch algorithm is provided with two groups 𝐺1 and 𝐺T of equal order 𝑞, the generator 𝑃 of 𝐺1

and a bilinear map ℯ: 𝐺1 × 𝐺1 → 𝐺𝑇, an algorithm Ch additional select four hash functions: 𝐻1, 𝐻2, 𝐻3

:{0, 1}∗ → 𝐺1 and 𝐻4: 𝐺𝑇 → {0,1}
n
 ∈ 𝑍𝑞∗, 𝑛 denotes a binary string of fixed length. For instance,

challenger set 𝑃𝑝𝑢𝑏= 𝑎𝑃 ∈ 𝐺1 for unknown value 𝑎 ∈ 𝑍𝑞∗
and picks IDi ∈ {0, 1}∗

randomly as a digital

identifier challenge. Then the Ch packages the parameters as prms (𝑘, 𝐺1, 𝐺𝑇, 𝑞, 𝑃, 𝑃𝑝𝑢𝑏, 𝐻1, 𝐻2, 𝐻3, 𝐻4)

8

and returns public parameter prms to the adversary 𝐴1 where 𝐻1, 𝐻2, 𝐻3, 𝐻4 are random oracles

organized by the challenger algorithm. Then, the ch algorithm is required to provide the responses

because of an 𝐴1 queries without understanding a master secret key s and execute the following queries in

phase one.

H1 Query: A ch maintains a hash list called H1-List containing tuples (IDi, 𝛿𝑖, QIDi) that is empty

initially. When the identity 𝐼𝐷𝑖 is submitted for query, the challenger checks whether IDi is already in the

hash list H1-List. If the algorithm challenger ch does find 𝐼𝐷𝒊 already in the tuple (IDi, 𝛿𝑖, QIDi) in H1-

List then the challenger algorithm produces 𝑄𝐼𝐷𝑖 and sends to 𝐴1. If 𝐼𝐷𝑖 = 𝐼𝐷𝐼, the challenger chooses an

arbitrary number 𝜎𝑖 ∈ 𝑍𝑞∗
and calculates QIDi = 𝜎𝑖𝑏𝑃. Otherwise, chooses an arbitrary number 𝜎𝑖 ∈ 𝑍𝑞∗

and calculates 𝑄I𝐷𝑖 =𝜎𝑖𝑃. Finally, the ch adds (𝐼𝐷𝑖, 𝜎𝑖, QIDi) to H1-List and output QIDi to 𝐴1.

H2 Query: A ch maintains a list H2-List with tuples (𝑤𝑖, 𝛿𝑖, 𝐻2 (𝑤𝑖)) that are empty initially. When

adversary 𝐴1 asks a 𝐻2 query for sets of keywords wi, a ch replies as follows and tests to check whether

wi, is already reserved in the H2-List. If 𝐻2 (𝑤𝑖) is already in a tuple (𝑤𝑖, 𝛿𝑖, 𝐻2 (wi)) in H2-List, then

the ch returns the corresponding 𝐻2(𝑤𝑖) to adversary 𝐴1. Otherwise, the ch chooses an arbitrary number

𝛿𝑖 ∈ 𝑍𝑞∗
and calculates 𝐻2 (𝑤𝑖) =𝛿𝑖𝑃. Later, outputs 𝐻2 (𝑤𝑖) and ch update (𝑤𝑖, 𝛿𝑖, 𝐻2 (𝑤𝑖)) to H2-List

and send 𝐻2 (𝑤𝑖) to 𝐴1.

H3 Query: The ch maintains a hash list H3-List with the tuples (𝑤𝑖, 𝛼𝑖, 𝐻3 (𝑤𝑖)) that is empty initially.

When 𝐴1 asks a 𝐻2 query for sets of keywords 𝑤𝑖, a ch checks whether it is already in the H3-List. If this

query has been asked challenger yields the record 𝐻3 (𝑤i) and submits to 𝐴1. Otherwise, ch chooses an

arbitrary number 𝛼𝑖 ∈ 𝑍𝑞∗
and calculates or computes 𝐻3(𝑤𝑖) = 𝛼𝑖𝑃. Finally, the ch returns 𝐻3 (𝑤𝑖) to 𝐴1

and adds (𝑤𝑖, 𝛼𝑖, 𝐻3 (𝑤𝑖)) to the H3-List.

H4 Query: The ch maintains the hash list H4-List containing tuples (𝑇𝑖, 𝑉𝑖) that is empty initially. When

𝐴1 makes hash a 𝐻4 query with 𝑇𝑖 ∈ 𝐺T, ch answers and tests if 𝑇𝑖 is already stored in the H4-List. If 𝑇𝑖
is in the tuple (𝑇𝑖, 𝑉𝑖) then yields 𝑉𝑖 and returns to 𝐴1. Otherwise, ch chooses an arbitrary number 𝑉𝑖 =

{0, 1}. Finally, the challenger (𝑇𝑖, 𝑉𝑖) is added to the H4-List and sends 𝑉𝑖 to 𝐴1.

Partial private key extract query: The ch maintains a list of partial private keys referred to as 𝑃𝑃𝐾-𝐿𝑖𝑠𝑡

containing tuples (𝐼𝐷𝑖, 𝑄𝐼𝐷𝑖, 𝑖). When 𝐴1 queries for extraction of the private partial key query of 𝐼𝐷𝑖 from

𝐴1, the Ch performs or replies as follows: A partial private key list, returns to 𝐷𝐼𝐷𝑖 as a response to 𝐴1, if

there exists is a tuple containing the form of (𝐼𝐷𝑖, 𝑄𝐼𝐷𝑖, 𝐼𝐷𝑖). Otherwise, if 𝐼𝐷𝑖 ≠ 𝐼D𝐼 query the 𝐻1 hash

𝐿𝑖𝑠𝑡 for a tuple form (𝐼𝐷𝑖, 𝜎𝑖, 𝐷𝐼𝐷𝑖). The ch calculates 𝐷𝐼D𝑖 = 𝜎𝑖𝑃𝑃𝑢𝑏 =𝜎𝑖a𝑃, adds (𝐼𝐷𝑖, 𝑄𝐼𝐷𝑖, 𝐷𝐼𝐷𝑖) into the

private partial key list (𝑃𝑃𝐾𝐿𝑖𝑠𝑡) and returns to the back 𝐷𝐼𝐷𝑖 as a response to 𝐴1. If 𝐼𝐷𝑖 = 𝐼𝐷𝐼, challenger

aborts.

Request public key query: The ch maintains a public key list 𝑃𝐾-𝐿𝑖𝑠𝑡 containing tuples (𝐼𝐷𝑖, 𝑋𝑖, 𝑃𝐾𝐼𝐷𝑖).

When 𝐴1 asks for the public key query of identity 𝐼𝐷𝑖, a ch answers as follows: If public key identity

𝑃𝐾𝐼𝐷𝑖 exits in the tuple form (𝐼𝐷 , 𝑥𝑖 , 𝑃𝐾𝐼𝐷𝑖) in the public key list, the ch sends 𝑃𝐾𝐼𝐷𝑖 as a response to 𝐴1.

Else, select a random number 𝑥𝑖 ∈ 𝑍𝑞∗, calculate 𝑃𝐾𝐼𝐷𝑖 = X𝑖P, adds (𝐼𝐷𝑖, 𝑥i, 𝑃𝐾𝐼𝐷𝑖) into the 𝑃𝐾-𝐿𝑖𝑠𝑡 and

returns 𝑃𝐾𝑰𝑫𝒊 to 𝐴1.

Replace public key query: 𝐴1 can substitute a data user’s public keys with new random values.
Extract private key query: In this phase, it takes identity 𝐼𝐷𝑖 as an input and the ch maintains tuples of a

private key list form (𝐼𝐷𝑖, 𝑥𝑖, 𝐷𝐼𝐷𝑖) that exists in private key extraction query list S𝐾-𝐿𝑖𝑠𝑡. After getting a

private key extraction query (𝐼𝐷𝑖), ch answers as follows:

If a tuple exists (𝐼𝐷𝑖, 𝑥𝑖, 𝐷𝐼𝐷𝑖) on the private key list, returns to back (𝑥𝑖, 𝐷𝐼𝐷𝑖) to 𝐴1.

 Else, 𝐼𝐷𝑖 ≠ 𝐼𝐷𝐼 executes public key request algorithm 𝑆 to obtain a tuple (𝐼𝐷𝑖, 𝑥𝑖, 𝑃𝐾𝐼𝐷𝑖) and also run

partial private key extraction algorithm to obtain a tuple(𝐼𝐷i, 𝑄𝐼𝐷𝑖, 𝐷I𝐷𝑖), modify to the private key list

(𝐼𝐷𝑖, 𝑥𝑖, 𝐷𝐼𝐷𝑖) and returns (𝑥𝑖, 𝐷𝐼𝐷𝑖) as a response to 𝐴1.

 If 𝐼𝐷𝑖 = 𝐼𝐷𝐼, the ch aborts.

Trapdoor query: When 𝐴1 requests trapdoor query on refresh sets of keywords 𝑤𝑖 for an identity 𝐼𝐷𝑖, the

Ch replies as follows: If 𝐼𝐷𝑖 = 𝐼𝐷𝐼, the ch aborts. Else, recovers (𝐼𝐷𝑖, 𝑥𝑖, 𝑃𝐾𝐼𝐷𝑖) from public key list 𝑃𝐾-

𝐿𝑖𝑠𝑡, retrieves (𝐼𝐷𝑖, 𝑄𝐼𝐷𝑖, 𝐷𝐼𝐷𝑖) from PPK-List and recovers refreshed keyword (𝑤𝑖 , δ𝑖 , 𝐻2 (𝑤𝑖)) from

9

hash list 𝐻2 𝐿𝑖s𝑡 and calculates Twi = 𝑋𝐼𝐷𝐻2 (𝑤𝑖) + 𝐷𝐼𝐷i. Finally, the ch returns the trapdoor Twi of the

keyword wi to 𝐴1.

Challenge: If 𝐴1 issues a challenge that phase one is over, select 𝐼𝐷∗, ∈ {0,1} with public key 𝑃𝐾𝑰𝑫∗ and

two different keyword sets 𝑤0, 𝑤1, where 𝑤0 ≠ 𝑤1, |𝑤0 | = |𝑤1 | and not requested by 𝐴1 in phase one,

then ch executes as below: If 𝐼𝐷𝑖∗ ≠ 𝐼𝐷𝐼 then Ch aborts. If 𝐼𝐷𝑖 = 𝐼𝐷𝐼, ch selects a ∈ {0, 1} randomly, and

picks two arbitrary numbers that include 𝒓 ∈ 𝑍𝑞∗ and 𝑉= {0, 1}n.

Finally ch submits 𝐶∗
= (𝑟𝑐𝑃, 𝑉) to adversary 𝐴1. If 𝐶a = (𝑟𝑐𝑃, 𝑉) is a meaningful cipher-text, then it is

calculated as follows:

 𝑉 = 𝐻4 ((𝛿𝑃, 𝑥𝑖𝑃)
 𝑟𝑐 (𝜎𝑖𝑏𝑃, 𝑎𝑃)

 𝑟𝑐 (𝑎𝑃, 𝑃) 𝑟𝑐)

= 𝐻4 ((𝑃, 𝑃)
 𝛿𝑥𝑖 𝑟𝑐 (𝑃, 𝑃) 𝜎𝑖𝑎b𝑟𝑐 (P, 𝑃) 𝑎𝑟𝑐)

= 𝐻4 ((𝑃, 𝑃) 𝑟𝑐 (𝛿𝑥𝑖+𝜎) (𝑃, 𝑃) 𝜎𝑖𝑎b 𝑟𝑐) (8)

More queries: 𝐴1 can execute or perform additional trapdoor queries on keyword sets 𝑤𝑖 where 𝑤0 ≠ 𝑤1

and 𝑤𝑖 ≠ 𝑤1, challenge responds as above. Additionally, an algorithm ch answers to 𝐴1 in a similar way

as phase one under the restrictions defined below:

𝐴1 is not able to query private key queries set of keywords on the challenge identity 𝐼𝐷𝑖∗.

𝐴1 is not able to place a partial private key extraction query on the challenge identity 𝐼𝐷𝑖∗ if the public

key of the challenge identity 𝐼𝐷𝑖∗ was substituted before the challenge phase.

𝐴1 is not able to put a trapdoor query on (𝑇𝑤0, 𝐼𝐷𝑖∗) or trapdoor query on (𝑇𝑤1, 𝐼𝐷𝑖∗) without the

challenge phase.

Guess: Lastly, 𝐴1 yields 𝑏 ′ ∈ {0, 1} as its guess. In this case, ch can select a pair (𝑇w, 𝑉𝑖) arbitrarily

from the hash list 𝐻4 𝐿𝑖𝑠𝑡 and ℯ(𝑃, 𝑃)𝑎𝑏𝑐 can be calculated as follows:

Lastly, 𝐴1 yields 𝑏 ′ ∈ {0, 1} as its guess. In this case, ch can select a pair (Ti, Vi) arbitrarily from the H4-

List and 𝑒 (𝑃, 𝑃) can be calculated as follows:

𝑒 (𝑃, 𝑃) 𝑎𝑏𝑐
= (𝑇 /𝑒(𝑃,𝑃) 𝑟𝑐(𝛿𝑥𝑖+𝛼)) 1

rσi

= (𝑒(𝑃,𝑃) 𝑟𝑐(𝛿𝑥𝑖+𝛼) 𝑒(𝑃,𝑃) 𝛼𝑏𝑟𝑐𝜎𝑖 /𝑒(𝑃,𝑃) 𝑟𝑐𝛿𝑥𝑖+𝜎𝑖))
1

rσi

= 𝑒 (𝑃, 𝑃) 𝑎𝑏𝑐
 (9)

6.Performance evaluation

We provide performance evaluations of our proposed certificate-less searchable encryption with a

refreshing keyword search system with some existing research works such as Peng et al. (Yanguo,

Jiangtao, Changgen, & Zuobin, 2014) and Mima et al. (Ma, He, Kumar, Choo, & Chen, 2017) in terms

of computational time and security property.

6.1 Computation cost

The notations and the executing times used in the evaluation are defined in Table 1. The evaluation was

performed on a personal computer (Dell with an i5-4460S 2.90GHz processor,4G bytes memory and

Windows 8 operating system) using the MIRACL library (ltd., 2016).

Table 1 Notations and execution times (ms)

10

Notations Description Times(ms)

Tsm a scalar multiplication execution time 2.165

Tbp a bilinear pairing execution time 5.427

TH a Hash-to-point execution time 5.493

Th a general hash function execution time 0.007

Tpa a point addition execution time 0.013

Table 2 shows the computational cost for Peng et al’s. (Yanguo, Jiangtao, Changgen, & Zuobin, 2014) ,

Mima et al’s. (Ma, He, Kumar, Choo, & Chen, 2017) scheme, and our proposed scheme.

Table 2 Comparison of computational costs

Comparison criteria Peng et al. (Yanguo,

Jiangtao, Changgen, &

Zuobin, 2014)

Mima et al. (Ma, He,

Kumar, Choo, &

Chen, 2017)

Our proposed scheme

keyGen 2TH + 8Tsm

=28.306

2TH + 4Tsm

=19.646
𝑇𝐻+3𝑇𝑠𝑚=11.988

Encryption 3TH + 2Th + 5Tsm+

3Tbp=43.599

3TH + Th + 4Tsm+

3Tbp + Tpa=41.433
2𝑇𝐻+𝑇h+4𝑇𝑠𝑚+3 𝑇𝑝𝑏

=35.927

Trapdoor TH + Th + 3Tsm

=11.995

TH + Tsm + Tpa

=7.671
TH+𝑇𝑠𝑚+𝑇𝑝a=7.7

Test Th + Tsm + 2Tpa+

Tbp=7.625

2TH + Th + Tsm+2Tpa +

Tbp=18.611
𝑇𝐻+ +𝑇h+𝑇𝑠𝑚 +Tpa +

𝑇𝑝𝑏=13.105

The computational cost of our proposed CL-SERKS scheme is lower than the Peng et al. (Yanguo,

Jiangtao, Changgen, & Zuobin, 2014) and Mima et al. (Ma, He, Kumar, Choo, & Chen, 2017) scheme’s

as shown in table 2 and figure 2 except in test phase execution time is higher than Peng et al. (Yanguo,

Jiangtao, Changgen, & Zuobin, 2014) scheme despite our proposed scheme provides refreshing keyword

search.

6.2 Communication cost

We let |G1| denote the bit-size of a point in Group G

|ℤ𝑞| denote the bit-size of a number in ℤq

|PK| denote the bit-size of PK

|C| denote the bit-size of cipher-text

|T| denote the bit size of the trapdoor respectively. Table 3 shows the comparison of communication cost

schemes in Peng et al. (Yanguo, Jiangtao, Changgen, & Zuobin, 2014), Mima et al. (Ma, He, Kumar,

Choo, & Chen, 2017) and the proposed scheme.

Table 3 Comparison of communication cost

Comparison criteria Peng et al. (Yanguo,

Jiangtao, Changgen, &

Zuobin, 2014)

Mima et al. (Ma, He,

Kumar, Choo, &

Chen, 2017)

Our proposed scheme

11

Size of PK 4|G1| 2|G1| |G1|

Size of CT |G1| + |ℤ𝑞| |G1 | + |ℤ𝑞| |G1 | + |ℤ𝑞|

Size of TD 3|G1| |G1| |G1|

It is also observed that the overall communication cost of the proposed system is less than both schemes

in Peng et al. (Yanguo, Jiangtao, Changgen, & Zuobin, 2014) and Mima et al. (Ma, He, Kumar, Choo, &

Chen, 2017) .

6.3 Security property

 Table 4 Comparison of security properties

Yes: denotes that the system meets the security requirements.

No: denotes that the system does not meets the security requirements

 7. Conclusion

In this research, we proposed the CL-SERKS scheme. The proposed CL-SERKS scheme overcomes the

issue of the server storing trapdoor for keywords in the system when the user performs a keyword search

by his trapdoor on the cloud server that occurs in existing PEKS. This is achieved by attaching time date

information to the encrypted data and keyword. It primarily improves the security of the outsourced data

by reducing the chance for the cloud to guess the full keyword information that enables to access the

ciphertext. We also prove that the designed scheme is secure against adaptive chosen keyword attacks in

the random oracle model under bilinear Diffie-Hellman (BDH) problem assumption. The performance of

the proposed CL-SERKS method is also provided and the results are compared with some of the existing

schemes in terms of the computational and communication cost. An interesting open problem is to design

CL-SERKS considering advanced search functions such as conjunctive, disjunctive, boolean and fuzzy

keywords search over a real-world e-mail dataset.

References
Al-Riyami. (2003). Certificateless public key cryptography. In Proceedings of the 2003 International

Conference on the Theory and Application of Cryptology and Information Security.

Berlin/Heidelber Germany.

Baek, J., Safavi-Naini, R., & Susilo, W. (2008). Public key encryption with keyword search revisited. In

Proceedings of the International conference on Computational Science and Its Applications.

Perugia, Italy.

Bosch, C. H. (2014). A survey of provably secure searchable encryption. ACM Computing Surveys

(CSUR), 26.

D. Boneh, G. D. (2004). Public Key Encryption with Keyword Search. Advances in Cryptology

(EUROCRYPT 2004).

Comparison

criteria

Peng et al.

(Yanguo, Jiangtao,

Changgen, &

Zuobin,

2014)scheme

Mima et al. (Ma,

He, Kumar, Choo,

& Chen, 2017)

scheme

Our proposed

scheme

Certificate

management

problem

Yes Yes Yes

Key escrow

problem

Yes Yes Yes

Refreshing

keyword

No No Yes

Trapdoor security No No Yes

12

J. Li, X. L. (2017). KSF-OABE: Outsourced attribute-based encryption with keyword search function for

cloud storage. IEEE Transactions on Services Computing.

Kamara S, P. C. (2012). Dynamic searchable symmetric encryption[C]. Proceedings of the 2012 ACM

conference on Compute rand communications security.

Kamara, S., & Lauter, K. (2010). Cryptographic cloud storage. In Proceedings of the 2010 International

Conference on Financial Cryptography and Data Security. Tenerife, Canary Islands, Spain,.

ltd., S. s. (2016). miracl library,” http://www.shamus.ie/. Shamus software ltd.

Ma, M., He, D., Kumar, N., Choo, K., & Chen, J. (2017). Certificateless searchable public key encryption

scheme for industrial internet of things. IEEE Trans. Ind. Inform.

Song D X, W. D. (2000). Practical techniques for searches on encrypted data. Proceedings on Security

and Privacy.

Wang, G. L. (2017). IDCrypt: A multi-user searchable symmetric encryption scheme for cloud

applications.

Wu, T. M. (2017). Comments on Islam et al.’s certificateless designated server based public key

encryption with keyword search scheme. In International Conference on Genetic and

Evolutionary Computing. Springer, Singapore.

Wu, T., Meng, F., Chen, C., Liu, S., & Pan, J. (2016). On the security of a certificateless searchable

public key. International Conference on Genetic and Evolutionary Computing.

Berlin/Heidelberg, Germany.

Yanguo, P., Jiangtao, C., Changgen, P., & Zuobin, Y. (2014). Certificateless public key encryption with

keyword. China Commun.

Zheng, Q., Li, X., & Azgin, A. (2015). Certificateless keyword search on encrypted data. In Proceedings

of the International Conference on Network and System Security. Berlin/Heidelberg, Germany.

Zhou, Y. L. (2020). Public Key Encryption with Keyword Search in Cloud. A Survey. Entropy.

	Certificate-Less Searchable Encryption with a Refreshing Keyword Search
	

	Certificate-Less Searchable Encryption with a Refreshing Keyword Search

