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ABSTRACT 

This study aimed to apply the meta-analysis methodology to systematically synthesize results of primary 

studies to discover the main significant factors influencing student acceptance of massive open online 

courses (MOOCs) for open distance learning (ODL). An abundance of studies on MOOCs exists, but 

there is a lack of meta-analysis research on student acceptance of MOOCs, which is a novel contribution 

of the current study. The meta-analysis methodology was applied to investigate effect sizes, statistical 

heterogeneity, and publication bias across 36 primary studies involving 14233 participating students. 

The study findings show satisfaction to be the main significant factor influencing student acceptance of 

MOOCs. The findings can enlighten stakeholders in the decision-making process of implementing 

MOOCs for ODL and advance technology acceptance models. Moreover, this study has the potential to 

theoretically contribute to technology acceptance research by situating the widely known technology 

acceptance models in the context of education. 

Keywords 

Distance learning, influencing factor, meta-analysis study, MOOC acceptance, online courses, 

technology acceptance. 

INTRODUCTION 

The discovery of factors influencing student acceptance of teaching and learning technologies is 

generally important for educational institutions and educational software companies to surmount the 

intrinsic challenges of open distance learning (ODL). Surmounting ODL challenges is promising for 
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achieving the global sustainable development goal of accessibility to inclusive, equitable, and quality 

education. ODL is a flexible technology platform for fostering activities associated with teaching and 

learning that focus on increased access to quality education without the hindrances of time and space 

(Dea Lerra, 2014). It has grown globally to contribute to the transformation of the higher education 

system by delivering quality education at the doorsteps of students, encouraging them to share 

innovative ideas, knowledge, and skills through collaboration (Bordoloi, 2018). It is a holistic strategy 

that is rapidly becoming an important integrator of the mainstream educational system worldwide. It 

removes the need for students and a teacher to be confined to the same physical classroom for learning 

to seamlessly occur (Musingafi et al., 2015). Its impact on the heterogeneity of educational conveyance 

systems for fostering distance learning has received huge support globally (Ghosh et al., 2012). It 

improves the quality of education, creates a unified educational environment, reduces training cost, and 

travel time to seamlessly access education (Beketova et al., 2020). However, despite the increasing 

growth of ODL and its benefits, it is fraught with challenges (Simpson, 2013; Sánchez-Elvira & 

Simpson, 2018), unconfirmed judgments, and clichés that some authors have disproved (Beketova et al., 

2020).  

The challenges of ODL can be appositely classified as institutional, individual, and instructional. The 

institutional challenges are related to the unavailability of suitable resources and lack of physical 

interactions (Arasaratnam-Smith & Northcote, 2017; Kara et al., 2019; Li & Wong, 2019; Sadeghi, 

2019). In addition, they are related to the attitude of students and instructors toward distance learning 

interventions (Malangu, 2018). The individual challenges originate from the characteristics of students 

and socio-economic exigencies. They include financial constraints (Musingafi et al., 2015; Budiman, 

2018; Kara et al., 2019), lack of technological skill (Ferreira et al., 2011), lack of time to study (Ferreira 

et al., 2011; Dea Lerra, 2014; Kebritchi et al., 2017; Kara et al., 2019), and inability to create a balance 

between education and social life (Budiman, 2018; Kara et al., 2019). Moreover, there is a lack of 

interest in a course (Kara et al., 2019), low concentration (Kara et al., 2019), low self-confidence 

(Sánchez-Elvira & Simpson, 2018; Kara et al., 2019), work overload (Dea Lerra, 2014; Kara et al., 

2019), unconducive study conditions (Kara et al., 2019), lack of family support (Kara et al., 2019), lack 

of motivation (Kebritchi et al., 2017; Au et al., 2018; Budiman, 2018; Sánchez-Elvira & Simpson, 

2018), and lack of satisfaction (Au et al., 2018; Sánchez-Elvira & Simpson, 2018). The instructional 

challenges are related to instructors and content development (Au et al., 2018). The issues related to 

instructors include passive resistance (Mahlangu, 2018), inability to facilitate interaction with students, 

and time management (Kebritchi et al., 2017). In most cases, instructors lack the basic skills to fully 

participate in distance education (Ferreira et al., 2011); they are unable to reflect on their works, adjust 

to enhance the learning experiences of students, and provide timely feedback (Ferreira et al., 2011; 

Brown et al., 2015; Kebritchi et al., 2017; Makhaya & Ogange, 2019; Sadeghi, 2019). The issues related 

to content development include the quality of the course content (Au et al., 2018) and course assessment 

(Makhaya & Ogange, 2019). 

Literature has suggested that innovation through the application of technology is an appropriate 

intervention for curtailing the intrinsic challenges of ODL (Albelbisi, 2019). Technology offers intrinsic 

benefits of affordability of quality education, accessibility to learning resources, and supports the 

development of digitally resilient youths in marginalized communities (Ochieng et al., 2017). Different 

technology initiatives were recently employed by ODL institutions to mitigate the challenges of distance 

education (Musingafi et al., 2015; Mtebe & Raphael, 2017; Budiman, 2018). They include applications 

of virtual reality, augmented reality, smart classrooms, artificial intelligence, learning analytics, 

language immersion technology, Labster virtual laboratories, synchronous teaching platforms, and 

asynchronous video tutoring systems. The open educational resources (OERs) such as the massive open 
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online courses (MOOCs) are interactive web courses for making the education system more vivacious 

and sustainable (McAndrew & Scanlon, 2013; Bordoloi, 2018). MOOCs are a modern evolution of 

distance education that promises to support unrestricted participation in flexible learning in a free or 

low-cost modality (Liu et al., 2021). It promises to improve the quality of education, boost the 

effectiveness of classroom activities, facilitate collaborative learning, foster collaborative creation of 

knowledge, ensure social cohesion, and promote sustainable development goals of quality education 

(Nisha & Senthil, 2015). It is attracting a great deal of curiosity in contemporary education and 

providing a long string of learning opportunities (Emanuel, 2013; Parkinson, 2014; Kononowicz et 

al., 2015; Liyanagunawardena et al., 2015; Preston et al., 2020).  

MOOCs can expand a learning gamut for students. For instance, MOOCs are effective for remedial 

courses in terms of student achievement within a formal education context (Agasisti et al., 2021). 

Moreover, the functionality of video-clickstream data was used to analyze and visualize the watching 

behavior of students in a MOOC environment (Mubarak et al., 2021). However, the universal 

acceptance of MOOCs by students has remained low (Altalhi, 2021).- Furthermore, there is a lack of 

studies on meta-analysis to understand the significant factors that can help to improve the universal 

acceptance of MOOCs for ODL. A narrative type of literature review of papers published in the Web of 

Science database from 2014 to 2020 on the challenges of students and instructors for student 

engagement in MOOCs was performed by Alemayehu & Chen (2021). In addition, a systematic type of 

literature review of a nationwide initiative based on MOOCs in the Malaysian higher education system 

was performed by Albelbisi & Yusop (2020). This current study is unique in its focus and 

methodological approach because it uses meta-analysis (Crocetti, 2016) to unveil the significant factors 

influencing student acceptance of MOOCs. It is desirable to uncover the significant factors influencing 

student acceptance of MOOCs using a gold standard methodology of meta-analysis to understand what 

is required for universal acceptance of the technology for ODL. The necessity for meta-analysis is to 

enable a reliable synthesis of the available literature findings to discover novel insights. Moreover, meta-

analysis will generally increase precision and provide confidence about the previous research findings. 

The distinctive contributions of this paper to theory and practice are the following: 

1. The discovery of the significant factors influencing student acceptance of MOOCs to assist 

practitioners and stakeholders in the decision process of implementing MOOCs for open distance 

learning. 

2. The determination of the sources of variation among studies on significant factors influencing 

student acceptance of MOOCs to support an improved decision-making process. 

3. The investigation of publication bias in determining the validity of core findings of studies on 

significant factors influencing student acceptance of MOOCs. 

The remainder of this paper is succinctly summarized as follows. The next section describes the study 

methodology. The section is followed by the presentation of the study findings. The discussion of 

findings is presented thereafter, followed by a concluding remark.  

METHODOLOGY 

The methodology of this study is rigidly based on the guideline of preferred reporting items for 

systematic reviews and meta-analyses (PRISMA) (Crocetti, 2016; Moher et al., 2009; Moher et al., 

2015). Meta-analysis is an assemblage of statistical procedures for agglutinating and comparing results 

from multiple independent studies in a systematic way. The PRISMA protocol presents the essential 

steps of defining the research questions, specifying inclusion and exclusion criteria, searching the 
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literature, selecting primary studies, coding primary studies, computing effect size of each primary study 

and pooled effect size of all primary studies, detecting statistical heterogeneity, conducting moderator 

analysis, examining publication bias, and publishing a meta-analysis (Crocetti, 2016). These steps have 

been compactly applied in this section of the paper. 

Defining the Research Questions 

Factors influencing student acceptance of MOOCs can be discovered based on technology acceptance 

models. In the past decades, several theoretical models have been developed in the discipline of 

information systems for explaining or predicting factors of technology acceptance by users. These 

factors have been explored in diverse application domains, for instance, to understand changes in belief 

and attitude toward the use of information systems (Bhattacherjee & Premkumar, 2004), explore factors 

influencing student readiness for online learning (Yu & Richardson, 2015), examine factors predicting 

e-learning integration by preservice teachers (Olugbara & Letseka, 2020) and investigate factors that 

moderate the relationship between intention and integration of e-learning (Olugbara et al., 2020). The 

current study aimed to apply the meta-analysis methodology to systematically synthesize results of 

primary studies to discover the main significant factors influencing student acceptance of MOOCs for 

ODL. The following research questions were posed to achieve this aim: 

1. What are the main significant factors influencing student acceptance of MOOCs based on 

technology acceptance models?  

2. What are the sources of variations, if any, among studies on the main significant factors influencing 

student acceptance of MOOCs based on technology acceptance models?  

3. Are there significant biases in studies on the main significant factors influencing student acceptance 

of MOOCs based on technology acceptance models? 

Specifying Inclusion and Exclusion Criteria 

The specification of inclusion and exclusion criteria often defines the primary studies that will be 

eligible for selection in a systematic review with meta-analysis. In this study, we have established the 

following set of inclusion and exclusion criteria to address the defined research questions. 

1. Duplicate records that signify the same primary studies retrieved by multiple search strategies were 

excluded to avoid biases and strengthen the validity of the meta-analysis. 

2. Primary studies must be published in English language peer-reviewed journals from 2010 to 2020 

after the invention of MOOCs in 2008. Grey literature, conference papers, and journal articles 

outside the study regime were excluded to strengthen the replicability of the meta-analysis. 

Moreover, it is a common practice to exclude such articles for studies with statistically significant 

results and to enhance the methodological rigor of a study (Crocetti, 2016). 

3. Duplicate results published by the same authors in different articles were excluded to avoid biases 

and strengthen the validity of the meta-analysis. 

4. Primary studies must focus on the overall broader connotation of technology acceptance models to 

expound significant factors influencing student acceptance of MOOCs. Published articles that did 

not apply a technology acceptance model to explain factors influencing student acceptance of 

MOOCs were excluded to conform to the study aim.  

5. Primary studies that did not report on a complete set of data were excluded to strengthen the study 

findings. The articles with incomplete data are those that did not report on all the following 
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parameters: Factor reliability, factor validity, path coefficient, and coefficient of determination. 

Factor reliability was based on composite reliability or Cronbach alpha while factor validity was 

based on average variance expected or convergent validity (Joseph & Olugbara, 2018; Olugbara et 

al., 2020; Olugbara & Letseka, 2020). The authors have attempted to solicit for the missing data 

from certain previous authors through email correspondences without success. There was one 

primary author who responded to us that the software tool they used for data analysis did not report 

on the requested missing data.  

6. Primary studies must apply the structural equation modeling technique (Hoyle, 1995) to analyze 

structural relationships amongst model factors. Published articles that did not apply the structural 

equation modeling technique for data analysis were excluded from the meta-analysis to ensure 

methodological rigor, reliability, and validity of research findings. 

7. Primary studies must be conducted with student populations of varying education levels, including 

primary, secondary, or university education to inject population diversity into the research. 

Published articles with study populations other than students were excluded to fully take advantage 

of diversity in the meta-analysis. 

Searching the Literature 

The relevant primary studies for this meta-analysis were retrieved through a series of search efforts to 

comprehensively identify the articles that meet our inclusion and exclusion criteria. First, a literature 

search was conducted with the widely used scholastic databases of Sage Journal, Scopus, Springer Link, 

Taylor & Francis, Web of Science Core Collection, and Wiley Online Library to expand the throng of 

related articles. Simple keywords of the form “MOOC acceptance” and “Factors of MOOC acceptance” 

were used as search parameters to focus the searching within each database. Second, a Google Scholar 

search was conducted to retrieve the specific articles discovered from the reference lists of other articles 

that were not necessarily included in the meta-analysis. This search strategy has increased the pool of 

the included studies by delivering further related articles. 

The study duration spans about three years starting with the fourth author in January 2018. This was 

before the launching of ODL at the Durban University of Technology in partnership with higher 

education partners South Africa (HEPSA). The first author is an expert in e-learning technology 

acceptance, and the third author is a statistician. The second author is the ODL chair of the United 

Nations educational, scientific, and cultural organization (UNESCO) at the University of South Africa. 

The harvesting of research articles started in May 2019 and was completed in October 2020 when data 

became saturated. The detailed information regarding the search results is reported in this paper 

following the PRISMA protocol shown in Figure 1. 
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Figure 1 

A PRISMA Protocol for Factors Influencing Student Acceptance of MOOCs  

 

Note. Adapted from Crocetti, 2016; PRISMA = preferred reporting items for 

systematic reviews and meta-analyses; MOOCs = massive open online courses; 

n = number of articles. 

Selecting Primary Studies 

The inclusion and exclusion criteria were applied to a large chunk of the identified primary studies to 

select those eligible for meta-analysis. The study selection process was implemented independently by 

two authors in an unblinded standardized way. The purpose was to exclude duplicate records and 

primary studies that completely failed the test of eligibility criteria. The remaining references after 

removing duplicate records were taken through the screening exercise, during which titles, abstracts, and 

contents of articles were screened. During title screening, we searched for articles that contained 

important concepts such as “MOOC”, “massive open online course”, and at least one of the words, 

“acceptance”,” adoption”,” intention”,” readiness”,” continuance”,” use”, and” usage”. During the 

abstract screening, abstracts of articles that passed the title screening test were perused looking for 

important information such as sample size, country of study, factors of acceptance, and structural 
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equation modeling. During the content screening, retained articles that partially passed the abstract 

screening test were assessed in full text looking for the missing information not contained in the 

abstracts. If an article matched the eligibility criteria, it was included in the qualitative synthesis, 

otherwise it was excluded with the appropriate reasons given. The articles included in the qualitative 

synthesis were further included in the meta-analysis provided they fully passed the eligibility test. In 

total, 50 primary studies out of 194 studies investigated for eligibility criteria were included in the 

qualitative synthesis, and 36 of them that fully satisfied the eligibility requirements were included in the 

meta-analysis. The number of articles that were finally included in the meta-analysis translates to 

18.56% of those investigated for eligibility. The study selection process conformed rigidly to the 

PRISMA protocol shown in Figure 1. 

The selection process was focused on research articles that applied technology acceptance models to 

explore significant factors influencing student acceptance of MOOCs. The models reported as theories 

include uses and gratification theory (UGT) (Katz et al., 1973), self-efficacy theory (SET) (Bandura, 

1977), social cognitive theory (SCT) (Bandura, 1986), theory of planned behavior (TPB) (Ajzen, 1991), 

social support theory (SST) (Wills, 1991), task-technology fit (TTF) theory (Goodhue & Thompson, 

1995), self-regulation theory (SRT) (Zimmerman, 1995), innovation diffusion theory (IDT) (Dillon & 

Morris, 1996), self-determination theory (SDT) (Deci et al., 1999; Ryan & Deci, 2000), unified theory 

of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003), and distance learning theory 

(DLT) (Anderson & Dron, 2011). In addition, the models include stimulus organism response model 

(SORM) (Mehrabian & Russell, 1974), Triandis model (TMO) (Triandis & Values, 1979), technology 

acceptance model (TAM) (Davis et al., 1989), expectation-confirmation model (ECM) (Bhattacherjee, 

2001), information systems success (ISS) model (DeLone & McLean, 2003), student online learning 

readiness (SOLR) model (Yu & Richardson, 2015) and technology user environment (TUE) model (Ma 

& Lee, 2019).  

Researchers have recently agglutinated or extended the existing models by integrating additional factors 

to realize novel models. Several researchers have extended the TAM by incorporating the factors of 

perceived quality, perceived enjoyment, and usability (Tao et al., 2019); perception of time (Teo & Dai, 

2019); computer self-efficacy, perceived convenience, learning tradition, and self-regulated learning 

(Al-Adwan, 2020); knowledge access, knowledge storage, knowledge application, and knowledge 

sharing (Arpaci et al., 2020); social influence, course quality, collaboration, and perceived enjoyment 

(Razami & Ibrahim, 2020); perceived learner control, e-learning self-efficacy, and personal 

innovativeness in information technology (Zhang et al., 2017). The UTAUT as a progeny of TAM was 

extended by factors of perceived value (Mulik, et al., 2018); attitude and computer self-efficacy (Altalhi, 

2020); instructional quality, computer self-efficacy and service quality (Fianu et al., 2020); motivation, 

course design, interest, course delivery, assessment, media, and interactivity (Haron, et al., 2020). The 

ECM was extended by factors of perceived reputation, perceived openness, and perceived enjoyment 

(Alraimi et al., 2015); knowledge outcome, performance proficiency, and social influence (Zhou, 2017). 

The amalgam of ECM and TAM was extended to incorporate factors of MOOC performance, and 

student habit (Dai et al., 2020) while the blend of TTF with SDT was extended by introducing the factor 

of social motivation (Khan et al., 2018). 

Coding Primary Studies 

Coding is a procedure used to extract relevant data from the included studies for the computation of 

effect sizes. In this study, we developed a codebook to extract relevant data from the included studies. 

The first author extracted the coded data, the second author guided the first author, the fourth author 
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checked the extracted data, and the third author performed the statistical analysis using the Strata 

software data analytics tool. The only disagreement among authors who managed the coded data 

pertained to the articles that did not report on the coefficient of determination (R2) of a structural model 

employed in an included study. The disagreement was resolved by a consensus that such articles be 

included in the meta-analysis because the contentious parameter did not constitute an eligibility 

criterion. The coded data are the name of an author (author), the year an article was published (year), the 

sample size of participating students (size), path coefficient (path), country of study (country), the 

theoretical model applied for factor identification (model), the most significant factor of student 

acceptance of MOOCs (factor), and type of technology acceptance behavior (type). The type of 

acceptance behavior could be an intention to use (intention), readiness to use (ready), continuous 

intention to use (continual), or the actual usage of MOOCs (usage). The influencing factors are the 

exogenous variables while the type of technology acceptance behavior is the endogenous variable in a 

structural model. Previous authors have reported numerous influencing factors based on technology 

acceptance models earlier explicated, but the most significant one with the highest path coefficient 

statistic was selected per the included article. The inherent limitation of a technology acceptance model 

to give a low R2 provides the impetus to select an acceptance factor with the strongest path coefficient 

per article.  

Computing Effect Sizes 

The data extracted during the coding phase were used to compute the effect size of each included 

primary study and the pooled effect size of all primary studies. The fundamental assumption of our 

analysis is based on the random-effects model. The randomization assumption is plausible because data 

were extracted from published articles written by numerous authors who operated independently on 

different factors, theories, models, and students from diverse countries of the world. A random-effects 

model assumes different underlying effect sizes of the included studies (Kavvoura & Ioannidis, 2008). 

The forest plot (Moher et al., 2009) was used to compute effect sizes as a prelude for examining 

heterogeneity and biases in the outcomes of included studies. Forest plot is an orthodox device for 

visualizing how the estimates of effect sizes of primary studies are distributed around zero or pooled 

effect size. The effect size of a study is represented in a forest plot as a square box with the square 

location indicating the effect size (Crocetti, 2016). The area of the box represents the weight of a study 

contributing to the pooled effect size estimate while the center of a diamond equals the pooled effect 

size. The ends of the diamond indicate the limits of 95% confidence interval and the global estimate is 

the diamond whose width is the associated 95% confidence interval. The studies with significant results 

are those for which the confidence intervals do not include the vertical dotted line corresponding to the 

zero lines (Crocetti, 2016). The effect size, confidence interval, standard error, and weight were 

calculated for each primary study. The standard error of an effect size reflects the amount of statistical 

information available in a primary study and the percentage weight indicates the amount that each 

primary study has contributed.  

Detecting Statistical Heterogeneity 

The random-effects model was applied to estimate and detect the sources of statistical heterogeneity that 

may arise for different reasons (Borenstein et al., 2010; Melsen et al., 2014). The test for statistical 

heterogeneity, which is a measure of variations in true effect sizes was conducted to establish whether 

all the included studies are consistent. The Cochran’s Q statistic, between-study variance τ2, and I2 

statistic are among the widely used metrics for estimating statistical heterogeneity (Kavvoura & 

Ioannidis, 2008). The Cochran's Q statistic reflects the weighted sum of squared deviations of the study-
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specific effect sizes and pooled effect size. However, this metric is weedy in detecting true statistical 

heterogeneity because it is affected by the number of the included studies. The τ2 reflects how much the 

estimates of true effect sizes in the included studies differ. It depends on the respective effect size metric 

and is not comparable among meta-analyses using different effect size metrics. The I2 statistic quantifies 

the degree of inconsistency as a percentage of variation attributed to statistical heterogeneity rather than 

chance (Higgins & Thompson, 2002). It is independent of the number of studies, and it provides the 

advantage of determining consistency over the other heterogeneity metrics. 

Conducting Moderator Analysis 

The main void of statistical heterogeneity metrics is that they only provide global measures of variations 

without supplementary information about the sources of variations. The inherent void demands that 

moderator analysis be performed to unveil the sources of heterogeneity. Moderator analysis is often used 

to test the factors that can explain the statistical heterogeneity of study findings and to clarify 

inconsistent results in the literature (Crocetti, 2016). Moderators are variables that have been assumed to 

affect the magnitude of effect sizes across the primary studies that contain those variables. Subgroup 

analysis and meta-regression are widely used for conducting moderator analysis in a systematic review 

with meta-analysis (Borenstein et al., 2010). Subgroup analysis is the splitting of participant data into 

subgroups to establish comparisons among a subset of data. The interpretation of subgroup meta-

analysis can lead to informative insights into the proper implication that is not obtainable from the non-

subgroup analysis. Meta-regression is conceptually synonymous with regression analysis (Crocetti, 

2016). In this study, subgroup and meta-regression analyses were used to test whether there are subsets 

of the included studies that capture the pooled effect size (Borenstein et al., 2010; Melsen et al., 2014). 

Meta-regression was performed for each level of a moderator to regress the observed effect sizes on one 

or multiple study characteristics. The results of the analyses were tested for statistically significant 

differences. The year of publication, acceptance model applied, type of technology acceptance, country 

of study, and the sample size was examined as moderators in the meta-regression model. 

Examining Publication Bias 

Literature has recommended the examination of publication bias in meta-analysis research to draw a 

reasonable conclusion about the generalizability of the cumulative findings that can be affected by biases 

(Borenstein et al., 2010; Nakagawa et al., 2017). The purpose of the examination was to identify the 

degree to which publication bias influences a study outcome in determining the validity of core findings. 

The funnel plot is a standard visual method for identifying publication bias (Light & Pillemer, 1984). It 

is a scatterplot of standard errors of log odd ratio against the effect size computed by log odd ratio. The 

central idea is that studies should be symmetrically spread to the left and right of a vertical line marking 

the pooled effect size if no relevant findings are missing. The vertical and diagonal dashed lines 

represent the pooled effect size estimate and 95% confidence interval respectively with each point in the 

plot representing a separate study. The vertical axis represents the standard error, the horizontal axis 

represents the logit transformed of the effect size estimate and asymmetry of the plot signals the 

presence of publication bias (Nakagawa et al., 2017). The funnel plot and Egger statistical test were used 

in this study to examine publication bias that may occur for different reasons (Borenstein et al., 2010; 

Lin & Chu, 2018). The visual examination of publication bias was conducted using the funnel plot while 

the statistical examination was done with the aid of the Egger test to complement the funnel plot with a 

more objective assessment. The asymmetry of a funnel plot is an indicator of publication bias and p < 

.05 was used to declare the statistical significance of publication bias. 



Olugbara et al.  Student Acceptance of Massive Open Online Courses 

The African Journal of Information Systems, Volume 13, Issue 3, Article 5 379 

FINDINGS  

The findings of this study will be presented in three specimens of factors influencing student acceptance 

of MOOCs, sources of variations in studies on student acceptance of MOOCs, and significant biases in 

studies on student acceptance of MOOCs in providing responses to the research questions of this study. 

Factors Influencing Student Acceptance of MOOCs 

Table 1 presents the list of the most significant factors influencing student acceptance of MOOCs by 

their codes (code), generic names (factor), and definitions (definition). According to the table, 18 unique 

factors were discovered from the included studies to be the strongest influential forces of student 

acceptance of MOOCs for ODL.  

Table 1  

Definitions of the Most Significant Factors Influencing Student Acceptance of MOOCs 

Code Factor Definition 

Bint Behavioral 

intention 

The subjective probability of an individual to perform a certain behavior (Yang & 

Su, 2017). 

Csef Computer self-

efficacy 

A subjective assessment of the skill level of a person to effectively use MOOCs to 

perform learning tasks (Fianu et al., 2020). 

Cqua Course quality Knowledgeability, the authority of course content, and attitude of lecturers toward 

teaching with MOOCs (Yang et al., 2017). 

Enjo Perceived 

enjoyment 

Positive affection for interactive functions is provided within a MOOC 

environment (Mohamad & Abdul Rahim, 2018). 

Eotp Engagement on 

platform 

The affective involvement of an individual with the learning process that results 

from his/her interactions with other learners and professors in a MOOC 

environment (Shao & Chen, 2020). 

Fcon Facilitating 

conditions 

The degree to which an individual believes that an institution's technical and non-

technical infrastructure exists to support the use of MOOCs (Altalhi, 2020). 

Flow Flow 

experience 

The state of deep absorption in an intrinsically enjoyable activity while engaging 

within a MOOC environment (Zhao et al., 2020). 

Icap Intellectual 

capital 

The degree to which an individual perceived he/she can know about knowledge 

from resources shared by MOOC teachers through exchanging and 

combining the knowledge (Lu & Dzikria, 2020). 

Imot Intrinsic 

motivation 

The performance of an activity is for the good of an individual without receiving 

any reward, but mainly for the satisfaction and enjoyment of MOOCs 

(Pozón-López et al., 2020).  

Kout Knowledge 

outcome 

Perception of students on the subject matter that will be provided to make them 

feel satisfied with learning using MOOCs (Zhou, 2017). 

Pexp Performance 

expectancy 

The perception of students that using MOOCs will improve their learning 

performance (Mulik et al., 2018).  

Prep Perceived 

reputation 

MOOC platforms are associated with highly regarded, influential, and trustworthy 

institutions of higher education (Alraimi et al., 2015). 

Puse Perceived 

usefulness 

The degree to which students consider that MOOCs can be an effective device for 

enhancing academic performance (Al-Adwan, 2020).  

Satt Student attitude The degree to which a student perceives a positive or negative feeling related to 

the use of MOOCs (Wu & Chen, 2017). 
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Code Factor Definition 

Scom Social 

competence 

Represent skills, capacities, and a sense of control that is necessary for managing 

social situations, developing, and sustaining relationships through MOOCs 

(Al-Adwan & Khdour, 2020). 

Shab Student habit The habitual use of MOOCs to lessen cognitive effort in activating the preceding 

actions in performing a complicated behavior and continuing participation in 

a MOOC environment (Dai et al., 2020). 

Ssat Student 

satisfaction 

Perception of students about enjoyment and accomplishment in learning in a 

MOOC environment (Yu & Richardson, 2015). 

Tskn Teacher subject 

knowledge 

MOOC courses can be evaluated with higher quality that can lead to further 

revisit intention of students (Huang et al. 2017). 

Note. MOOC = massive open online course; Bint = behavioral intention; Csef = computer self-efficacy; 

Cqua = course quality; Enjo = perceived enjoyment; Eotp = engagement on platform; Fcon = facilitating 

conditions; Flow = flow experience; Icap = intellectual capital; Imot = intrinsic motivation; Kout = 

knowledge outcome; Pexp = performance expectancy; Prep = perceived reputation; Puse = perceived 

usefulness; Satt = student attitude; Scom = social competence; Shab = student habit; Ssat = student 

satisfaction; Tskn = teacher subject knowledge. 

 

Table 2 shows the data characterizing a total sample size of 14233 students who participated in the 

studies included in the meta-analysis. The set of the most significant factors influencing student 

acceptance of MOOCs was constituted from the factor with the highest path coefficient per included 

study as shown in Table 2. It can be observed from the table that all the included articles were published 

within six years from 2015 to 2020. Most of the included articles were published in 2020 (44.44%), 

followed by 2018 (19.44%), both 2019 and 2017 experienced the same article publication rate of 

16.67%, one article was published in 2015 (2.78%), while no article was published in 2016 and before 

2015 (0.00%). This result signals the recency, interest, relevance, and trend in technology acceptance 

research in the education domain. In addition, this result delineates the novelty of the current study in 

the discipline of information systems. Student attitude recorded the minimum validity score of 0.518 and 

it was rated by 111 students, which is the minimum number of students across studies. Student 

satisfaction recorded the maximum reliability score of 0.964 and maximum validity score of 0.901. 

Student habit was rated by 1344 students, which is the maximum number of students across studies. 

Behavioral intention recorded the lowest path coefficient of 0.222, and the highest path coefficient of 

0.823, and facilitating conditions recorded the lowest reliability score of 0.642. Most of the previous 

researchers (33.33%) applied the extended models of TAM, UTAUT, or ECM, 30.56% of them applied 

a blend of two existing models, 30.56% of them applied a solo model and 5.56% of them applied an 

extended combination of two existing models to discover significant factors influencing student 

acceptance of MOOCs. 

Table 2 

Characteristics of the Included Primary Studies 

SID Author Year Size Rel Val Path a Country Model Factor Type 

S01 Abdulatif & 

Velazyuez-

Iturbide 

2020 212 0.900 0.700 0.435 Spain (SDT, SRT) b Imot Continual 

S02 Al-Adwan 2020 403 0.940 0.810 0.394 Jordan (TAM) b Puse Intention 
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SID Author Year Size Rel Val Path a Country Model Factor Type 

S03 Al-Adwan & 

Khdour 

2020 468 0.950 0.820 0.340 Jordan SOLR Scom Ready 

S04 Al-Rahmi et al. 2019 1148 0.930 0.605 0.709 Malaysia (IDT, TAM) b Satt Intention 

S05 Alraimi et al.  2015 316 0.949 0.862 0.239 Korea (ECM) c Prep Continual 

S06 Altalhi 2020 169 0.642 0.877 0.334 Saudi 

Arabia 

(UTAUT) c Fcon Usage 

S07 Arpaci et al.  2020 540 0.875 0.701 0.823 Turkey (TAM) c Bint Usage 

S08 Chen et al.  2018 854 0.964 0.901 0.561 Taiwan UGT Ssat Continual 

S09 Dai et al.  2020 1344 0.865 0.563 0.571 Australia (ECM, TAM) 

c 

Shab Continual 

S10 Daneji et al.  2019 368 0.897 0.688 0.600 Malaysia ECM Ssat Continual 

S11 Fianu et al.  2020 204 0.903 0.757 0.378 Ghana (UTAUT) c Fcon Usage 

S12 Gupta  2020 798 0.914 0.780 0.582 India (TUE, SDT) b Imot Intention 

S13 Haron, et al. 2020 400 0.940 0.850 0.543 Malaysia (UTAUT) c Bint Usage  

S14 Hsu et al.  2018 357 0.898 0.746 0.498 Taiwan (TAM, SST) b Satt Intention 

S15 Huang et al.  2017 246 0.912 0.727 0.323 China TTF Tskn Intention  

S16 Jo  2018 237 0.949 0.608 0.311 Korea (ECM, TTF) b Puse Continual 

S17 Khan et al.  2018 414 0.918 0.780 0.222 Pakistan (TTF, SDT) c Bint Usage 

S18 Lu & Dzikria 2020 203 0.935 0.828 0.531 Taiwan DLT Icap Intention 

S19 Lu et al.  2019 300 0.941 0.842 0.662 China ECM Ssat Continual 

S20 Mohamad & 

AbdulRahim  

2018 251 0.940  

 

0.797  

 
0.465 Malaysia SET Enjo Continual 

S21 Mulik et al.  2018 310 0.814 0.523 0.273 India (UTAUT) c Pexp Intention 

S22 Pozón-López et al.  2020 210 0.940 0.770 0.540 Spain (TAM, SDT) b Ssat Intention 

S23 Razami & Ibrahim  2020 111 0.842 0.518 0.576 Malaysia (TAM) c Satt Intention 

S24 Shao  2018 247 0.940 0.840 0.739 China (SCT, TAM) b Puse Continual 

S25 Shao & Chen  2020 294 0.901 0.752 0.662 China SORM Eotp Continual 

S26 Subramaniam et 

al. 

2019 413 0.925 0.713 0.314 Malaysia SOLR Csef Ready 

S27 Tamjidyamcholo 

et al.  

2020 234 0.863 0.677 0.309 Iran TMO Fcon Usage 

S28 Tao et al.  2019 668 0.870 0.640 0.290 China (TAM) c Puse Usage 

S29 Teo & Dai  2019 209 0.916 0.687 0.363 Australia (TAM) c Satt Intention 

S30 Wan et al.  2020 464 0.909 0.666 0.481 China (UTAUT, 

TTF) b 

Ssat Continual 

S31 Wu & Chen  2017 252 0.916 0.730 0.509 China (TAM, TTF) b Satt Continual 

S32 Yang & Su  2017 272 0.890 0.680 0.455 Taiwan (TAM, TPB) b Bint Usage 

S33 Yang et al.  2017 294 0.866 0.619 0.392 China (ISS, TAM) b Cqua Continual 
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SID Author Year Size Rel Val Path a Country Model Factor Type 

S34 Zhang et al.  2017 214 0.940  0.839 0.440 China (TAM) c Puse Intention 

S35 Zhao et al.  2020 374 0.930 0.820 0.610 China SORM Flow Continual 

S36 Zhou  2017 435 0.925 0.806 0.495 China (ECM) c Kout Continual 

Note. SID = study identity; Rel = factor reliability; Val = factor validity; DLT = distance learning theory; ECM = 

expectation-confirmation model; IDT = innovation diffusion theory; ISS = information systems success; SCT = social 

cognitive theory; SDT = self-determination theory; SET = self-efficacy theory; SOLR = student online learning 

readiness; SORM = stimulus organism response model; SRT = self-regulation theory; SST = social support theory; TAM 

= technology acceptance model; TMO = Triandis model; TPB = theory of planned behavior; TTF = task-technology fit; 

TUE = technology user environment; UGT = uses and gratification theory; UTAUT = unified theory of acceptance and 

use of technology; Bint = behavioral intention; Csef = computer self-efficacy; Cqua = course quality; Enjo = perceived 

enjoyment; Eotp = engagement on platform; Fcon = facilitating conditions; Flow = flow experience; Icap = intellectual 

capital; Imot = intrinsic motivation; Kout = knowledge outcome; Pexp = performance expectancy; Prep = perceived 

reputation; Puse = perceived usefulness; Satt = student attitude; Scom = social competence; Shab = student habit; Ssat = 

student satisfaction; Tskn = teacher subject knowledge.  

a All path coefficients were significant at p <= .05. b A blend of models. c An extension of one or more models. 

 

Most of the included studies (41.67%) investigated factors influencing the continuous intention of 

students to use MOOCs, 30.56% investigated their usage intention, 22.22% investigated the actual usage 

and 5.56% investigated their readiness to use MOOCs. Figure 2 shows the distribution of the included 

studies across 13 different countries worldwide. Most of the studies came from Asia with 30.56% of the 

articles from China, 16.67% from Malaysia, 11.11% from Taiwan, and 2.78% from Africa represented 

by Ghana.  

Figure 2 

Distribution of the Included Studies per Study Country 
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Figure 3 shows the distribution of 18 technology acceptance models that have been applied by the 

previous researchers for factor exploration. The famous TAM, ECM, UTAUT, and TTF models are 

most favored with application probabilities of 28.57%, 12.24%, 10.20%, and 10.20% respectively. It is 

not surprising that TAM recorded the highest probability of application because of its popularity in the 

field of information systems to predict decisions associated with technology adoption of users. 

Figure 3 

Distribution of Technology Acceptance Models Applied in the Included Primary Studies 

 

Note. DLT = distance learning theory; ECM = expectation-confirmation model; IDT 

= innovation diffusion theory; ISS = information systems success; SCT = social 

cognitive theory; SDT = self-determination theory; SET = self-efficacy theory; 

SOLR = student online learning readiness; SORM = stimulus organism response 

model; SRT = self-regulation theory; SST = social support theory; TAM = 

technology acceptance model; TMO = Triandis model; TPB = theory of planned 

behavior; TTF = task-technology fit; TUE = technology user environment; UGT = 

uses and gratification theory; UTAUT = unified theory of acceptance and use of 

technology. 

 

The distribution of data extracted from the 36 included studies has revealed 18 unique most significant 

factors influencing student acceptance of MOOCs. Most of the past authors found perceived usefulness 

(13.89%), student attitude (13.89%), and student satisfaction (13.89%) to be the strongest factors 

influencing student acceptance of MOOCs. These factors were followed by behavioral intention 

(11.11%), facilitating conditions (8.33%), intrinsic motivation (5.56%), and the remaining factors were 

found by fewer authors (2.78%) to be the strongest influencing factors as shown in Figure 4.  
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Figure 4 

Distribution of the Most Significant Factors Influencing Student Acceptance of MOOCs 

 

Note. MOOCs = massive open online courses; Bint = behavioral intention; Csef = 

computer self-efficacy; Cqua = Course quality; Enjo = perceived enjoyment; Eotp = 

engagement on platform; Fcon = facilitating conditions; Flow = flow experience; 

Icap = intellectual capital; Imot = intrinsic motivation; Kout = knowledge outcome; 

Pexp = performance expectancy; Prep = perceived reputation; Puse = perceived 

usefulness; Satt = student attitude; Scom = social competence; Shab = student habit; 

Ssat = student satisfaction; Tskn = teacher subject knowledge. 

 

Table 3 shows the result of descriptive analysis of the included studies based on study identity (SID), 

name of the journal where an article was published (journal), database where an article was retrieved 

(database), name of the publisher (publisher), region of publication (region), and R-squared statistic in 

percentage unit (R2). There are 13.88% of the included studies that did not report on R-squared statistics 

(Huang et al., 2017; Hsu et al., 2018; Jo, 2018; Al-Rahmi et al., 2019; Daneji et al., 2019). The article by 

Wu & Chen (2017) recorded the highest R-squared of 95.7% while the lowest R-squared of 28.0% was 

recorded by Tao et al. (2019) among those studies that specified R-squared statistics. The study by Tao 

et al. (2019) was conducted in China where they applied an extended TAM to discover perceived 

usefulness to be the most significant factor that predicted the usage of 668 MOOC students. The results 

of their study were published in the Journal of Interactive Learning Environment in 2019 by Taylor & 

Francis in the United Kingdom as indexed by Web of Science, Scopus, and Taylor & Francis. Similarly, 

the study by Wu & Chen (2017) was conducted in China where they used the amalgam of TAM and 

TTF to discover student attitude to be the most significant factor that predicted the continuous intention 

of 252 students to use MOOCs. The results of their study were published in the Journal of Computers in 

Human Behavior in 2017 by Pergamon-Elsevier Science in the United Kingdom and the United States 

as indexed by Web of Science and Scopus. Most of the articles were published in United Kingdom 

(50.00%), while the publication rates for other regions are United States (28.95%), Canada (5.26%), 
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Australia (5.26%), Hong Kong (2.63%), India (2.63%), South Korea (2.63%), and Malaysia (2.63%). 

All the included articles (48.00%) were retrieved from the Scopus database, while the rates for other 

databases are Web of Science Core Collection (37.33%), Springer Link (6.67%), Taylor & Francis 

(6.67%), Sage Journal (1.33%) and none of the included articles were retrieved from Wiley Online 

Library database. 

Table 3 

Descriptive Analysis of the Included Studies 

SID Journal Database Publisher Region R2 

S01 Education and Information 

Technologies 

Web of Science, 

Scopus, Springer Link 

Springer New York LLC United States 34.7 

 

S02 Education and Information 

Technologies 

Web of Science, 

Scopus, Springer Link 

Springer New York LLC United States 50.7 

S03 Journal of Information 

Technology Education: Research 

Web of Science, 

Scopus 

Informing Science 

Institute 

United States 65.4 

S04 Interactive Learning 

Environments 

Web of Science, 

Scopus, Taylor & 

Francis 

Taylor & Francis Ltd. United 

Kingdom 

 ** 

S05 Computers and Education Scopus Elsevier Ltd United 

Kingdom 

64.4 

S06 Education and Information 

Technologies 

Web of Science, 

Scopus, Springer Link 

Springer New York LLC United States 66.1 

S07 Telematics and Informatics Web of Science, 

Scopus 

Elsevier Ltd United 

Kingdom 

68.0 

S08 Library Hi-Tech Scopus Emerald Group 

Publishing Ltd. 

United 

Kingdom 

77.4 

S09 Computers in Human Behavior Web of Science, 

Scopus 

Pergamon-Elsevier 

Science Ltd. 

United States, 

United 

Kingdom 

53.0 

S10 Knowledge Management & E-

Learning 

Scopus The University of Hong 

Kong 

Hong Kong ** 

S11 Education and Training Web of Science, 

Scopus 

Emerald Group 

Publishing Ltd 

United 

Kingdom 

75.8 

S12 Interactive Technology and Smart 

Education 

Scopus Emerald Group 

Publishing Ltd 

United 

Kingdom 

72.6 

S13 International Journal of 

Psychosocial Rehabilitation 

Scopus Hampstead 

Psychological 

Associates 

United 

Kingdom 

77.4 

S14 Interactive Learning Environment Web of Science, 

Scopus, Taylor & 

Francis 

Taylor & Francis Ltd  United 

Kingdom 

** 

S15 International Journal of 

Information Management 

Web of Science, 

Scopus 

Elsevier Ltd United 

Kingdom 

** 

S16 KSII Transactions on Internet and 

Information Systems 

Web of Science, 

Scopus 

Korea Society of 

Internet Information 

South Korea ** 
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SID Journal Database Publisher Region R2 

S17 Telematics and Informatics Web of Science, 

Scopus 

Elsevier Ltd United 

Kingdom 

64.3 

S18 Knowledge Management 

Research & Practice 

Web of Science, 

Scopus, Taylor & 

Francis 

Taylor & Francis Ltd United 

Kingdom 

50.4 

S19 Journal of Electronic Commerce 

Research 

Web of Science, 

Scopus 

California State 

University Press 

United States 43.8 

S20 International Journal of Supply 

Chain Management 

Scopus Excelling Tech 

Publishers 

United 

Kingdom 

71.0 

S21 NMIMS Management Review Web of Science, 

Scopus, 

Narsee Monjee Institute 

of Management Studies 

Mumbai 49.2 

S22 Journal of Computing in Higher 

Education 

Web of Science, 

Scopus, Springer Link 

Springer Nature, New 

York LLC 

United States 71.0 

S23 Journal of Advanced Research in 

Dynamical & Control Systems 

Scopus Institute of Advanced 

Scientific Research 

United States 55.0 

S24 Internet Research Web of Science, 

Scopus 

Emerald Group 

Publishing Ltd 

United 

Kingdom 

63.2 

S25 Internet Research Web of Science, 

Scopus 

Emerald Group 

Publishing Ltd 

United 

Kingdom 

49.1 

S26 International Review of Research 

in Open and Distributed Learning 

Web of Science, 

Scopus 

Athabasca University 

Press 

Canada 36.0 

S27 Iranian Journal of Management 

Studies (IJMS) 

Web of Science, 

Scopus 

University of Tehran Malaysia 17.4 

S28 Interactive Learning Environment Web of Science, 

Scopus, Taylor & 

Francis 

Taylor & Francis Ltd United 

Kingdom 

28.0 

S29 Interactive Learning 

Environments 

Web of Science, 

Scopus, Taylor & 

Francis 

Taylor & Francis Ltd  United 

Kingdom 

45.0 

S30 Sage Open Web of Science, 

Scopus, Sage Journal 

Sage Publications Inc. United States 64.4 

S31 Computers in Human Behavior Web of Science, 

Scopus 

Pergamon-Elsevier 

Science Ltd 

United States, 

United 

Kingdom 

95.7 

S32 International Review of Research 

in Open and Distributed Learning 

Web of Science, 

Scopus 

Athabasca University 

Press 

Canada 53.8 

S33 Education Technology Research 

and Development 

Web of Science, 

Scopus, Springer Link 

Springer New York LLC United States  47.2 

S34 Australasian Journal of 

Educational Technology 

Web of Science, 

Scopus 

Australasian Society for 

Computers in Learning 

in Tertiary Education  

Australia 62.2 

S35 Computers and Education Scopus Elsevier Ltd United 

Kingdom 

37.0 

S36 Australasian Journal of Web of Science, Australasian Society for Australia 79.4 
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SID Journal Database Publisher Region R2 

Educational Technology Scopus Computers in Learning 

in Tertiary Education 

 

Note. SID = study identity. 

** means the R-squared statistic was not specified in a study. 

 

Sources of Variations in Studies on Student Acceptance of MOOCs 

The statistical heterogeneity of effect sizes has been used to examine the sources of variations in the 

included studies. The result given in Figure 5 indicates that the proportion of student acceptance of 

factors influencing MOOCs was approximately 46 to 58 times the proportion of the increase in the 

acceptance. The high pooled effect size given by I2=93.70% shows a very large statistical heterogeneity 

(Kavvoura & Ioannidis, 2008) across the included studies. Since the 95% confidence interval for the 

overall effect size estimate did not include zero, the decrement of about 6% in student acceptance of 

MOOCs was statistically significant at a 5% level of significance. The model fit gave a pooled effect 

size estimate of 0.52 within a 95% CI [.46, .58] with standard error fluctuating from 0.026 to 0.062 

inclusive. 

Figure 5 

Forest Plot for Distribution of Effect Sizes of Acceptance Studies on MOOCs 

 

Note. ES = Effect size. 
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Table 4 shows the heterogeneity results obtained using different statistical metrics to compensate for the 

weakness of a single metric. The result of Cochran’s Q test obtained has affirmed the significance of 

heterogeneity in effect sizes. The test gave a value of Q = 555.68, p < .05 with 35 degrees of freedom to 

indicate strong evidence of statistical homogeneity of effect sizes. The homogeneity value of τ2 = 0.03 

indicates the extent of variability across studies as compared to the effect sizes. The percentage of total 

variation across the included studies is large for I2 = 93.00% (Kavvoura & Ioannidis, 2008; Rücker et al., 

2008). These findings generally imply that the proportion of total variance in the included studies can be 

attributed to the heterogeneity of true effect sizes. 

Table 4 

Heterogeneity Results  

Metric Value df p 

Cochran’s Q 555.68 35 .00 

τ2 0.03 - - 

I2  0.93 - - 

 

Table 5 presents the result of subgroup analysis with significant intra-group heterogeneity observed at p 

< .001 with I2 = 98.50% and effect size of 61% within a 95% CI [.55, .68] for student satisfaction. This 

result was followed by intra-group heterogeneity of behavioral intention with I2= 94.53% and effect size 

of 47% within a 95% CI [.23, .90]. Then student attitude with I2 = 88.66% and effect size of 57% within 

95% CI [.46, .72]. The intra-group heterogeneity of perceived usefulness was recorded with I2 = 51.91% 

and effect size of 47% within a 95% CI [.29, .65]. However, its Cochran value of 8.32 is low with 

moderate I2 and insignificant heterogeneity value at p = 0.08 > 0.05. The remaining factors reported no 

statistical heterogeneity for the subgroup analysis with I2 = 0.00% and p < .001. This result is not 

surprising because the meta-analysis parameters of this study show that student satisfaction had the 

highest path coefficient with six different studies proving that it is the strongest significance factor 

(Chen et al., 2018; Joo et al., 2018; Daneji et al., 2019; Lu et al., 2019; Pozón-López et al., 2020; Wan et 

al., 2020). Moreover, considering the path coefficients of the included studies, we have discovered that 

the average path coefficient (0.542) of studies on student satisfaction is higher than the average path 

coefficient (0.460) of non-student satisfaction studies and higher than the average path coefficient 

(0.471) of the entire studies. The high overall statistical heterogeneity of this study can be attributed to 

multiple sources, including study population, sample size, study design, number of included studies, and 

data analysis method applied (Borenstein et al., 2010; Melsen et al., 2014). The test for subgroup 

differences has suggested a statistically significant subgroup effect with p < .05 to imply that factors 

influencing student acceptance of MOOCs significantly modify the acceptance effect. However, there is 

substantial unexplained statistical heterogeneity within the four subgroups of factors. The validity of the 

pooled effect size estimate for each subgroup is uncertain because the results of the included studies are 

inconsistent.  

Table 5  

Subgroup Analysis of Factors Influencing Student Acceptance of MOOCs 

Factor Cochran’s Q df p I2 Effect Size 95% CI 

Bint 73.13 3 0.00* 94.53 0.57 [0.23, 0.90] 

Csef 0.00 0 0.00 0.00 0.33 [0.25, 0.43] 
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Factor Cochran’s Q df p I2 Effect Size 95% CI 

Cqua 0.00 0 0.00 0.00 0.45 [0.35, 0.55] 

Enjo 0.00 0 0.00 0.00 0.50 [0.40, 0.60] 

Eotp 0.00 0 0.00 0.00 0.73 [0.63, 0.81] 

Fcon 0.00 2 0.00 0.00 0.43 [0.34, 0.51] 

Flow 0.00 0 0.00 0.00 0.66 [0.55, 0.74] 

Icap 0.00 0 0.00 0.00 0.56 [0.46, 0.66] 

Imot 0.00 1 0.00 0.00 0.57 [0.50, 0.64] 

Kout 0.00 0 0.00 0.00 0.54 [0.44, 0.64] 

Pexp 0.00 0 0.00 0.00 0.33 [0.24, 0.44] 

Prep 0.00 0 0.00 0.00 0.25 [0.18, 0.35] 

Puse 8.32 4 0.08 51.91 0.47 [0.29, 0.65] 

Satt 35.28 4 0.00* 88.66 0.59 [0.46, 0.72] 

Scom 0.00 0 0.00 0.00 0.36 [0.27, 0.46] 

Shab 0.00 0 0.00 0.00 0.66 [0.55, 0.75] 

Ssat 199.60 4 0.00* 98.50 0.61 [0.55, 0.68] 

Tskn 0.00 0 0.00 0.00 0.35 [0.26, 0.45] 

Overall  555.68 35 0.00 93.70   

Note. MOOCs = massive open online courses; CI = confidence interval; Bint = 

behavioral intention; Csef = computer self-efficacy; Cqua = course quality; 

Enjo = perceived enjoyment; Eotp = engagement on platform; Fcon = 

facilitating conditions; Flow = flow experience; Icap = intellectual capital; Imot 

= intrinsic motivation; Kout = knowledge outcome; Pexp = performance 

expectancy; Prep = perceived reputation; Puse = perceived usefulness; Satt = 

student attitude; Scom = social competence; Shab = student habit; Ssat = 

student satisfaction; Tskn = teacher subject knowledge. 

* p < .05.  

 

The result of meta-regression analysis in Table 6 shows that both “model applied” and “sample size” 

came up to be statistically significant sources of heterogeneity of effects. The regression coefficients are 

the estimated increase in log risk ratio per unit increase in covariate. The log risk ratio was estimated to 

increase by 0.023 per unit increase in the models applied to identify factors influencing student 

acceptance of MOOCs. This finding is expected because the importance of theoretical models in any 

research cannot be overemphasized. The application of a wrong model to solve a given problem can lead 

to an erroneous interpretation, judgment, and conclusion. Previous studies have affirmed that sample 

size is an imperative consideration for research. The larger the sample size, the more robust is the study 

result. Moreover, the effect of within-study estimation error variance under the random-effects model 

will diminish with large sample size, it can precisely vary the effect sizes in few studies and identify 

outliers that could skew the findings of a smaller data sample (Borenstein et al., 2010).  
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Table 6  

Examination of Sources of Heterogeneity in Effect Sizes of the Included Studies 

Source Estimate SE 95% CI p 

Year 0.063 0.085 [-0.104, 0.229] 0.459 

Model 0.023 0.015 [0.055, 0.144] 0.026 

Type  -0.089 0.048 [-0.368, 0.037] 0.076 

Country  0.0005 0.018 [-0.037, 0.040] 0.978 

Size 0.105 0.038 [0.027, 0.184] 0.010 

Note. CI = confidence interval. 

 

Figure 6 shows the scatter plot reporting the result of the meta-regression analysis of this study. It can be 

seen from the plot that the magnitude of the differences in the included studies slightly increases with 

the year of publication. 

 

Figure 6 

A Scatter Plot Reporting the Result of the Meta-Regression 

 

 

Significant Biases in Studies on Student Acceptance of MOOCs 

Figure 7 shows the funnel plot revealing an asymmetrical distribution of the included studies, which is 

an indication of potential publication bias (Crocetti, 2016; Lin & Chu, 2018). Studies 33-36 had the 

largest log odds ratio on the right, studies 1-8 had the smallest log odds ratio on the left and the 

remaining studies were quite symmetric in distribution.  

The visual examination of a funnel plot can be generally subject to interpretation for which the Egger 

asymmetry method has been suggested as a complementary statistical test for publication bias 
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(Borenstein et al., 2010; Nakagawa et al., 2017). The purpose of the Egger test was to perform a simple 

linear regression to determine whether the intercept of the relationship between standardized effect sizes 

and standard error differs significantly from zero at p < .05. The result reported in Table 7 confirms the 

presence of insignificant publication bias at p = .433 to show the effectiveness of our inclusion and 

exclusion criteria in eliminating publication bias.  

 

Figure 7 

Funnel Plot with Pseudo 95% Confidence Limits Indicating Publication Bias Across the Included 

Studies 

 

 

Table 7  

Egger Test for Examining Publication Bias 

Parameter Estimate SE t p 95% CI 

Slope (coefficient) 1.990 0.149 13.37 0.000 [1.688, 2.293] 

Bias (intercept) -14.552 0.820 -17.75 0.433 a [-16.218, 11.885] 

Note. CI = confidence interval. 

a indicates the presence of insignificant publication bias. 

 

DISCUSSION 

Three research questions on the main significant factors, sources of variations, and publication bias were 

comprehensively formulated to achieve the study aim of discovering the main significant factors 

influencing student acceptance of MOOCs for ODL. Several research articles published from 2010 to 

2020 were meticulously scrutinized, but 36 of them that met our inclusion criteria were eventually 

selected for meta-analysis. This research has affirmed the increasing curiosity on MOOC studies, and it 
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is the first to attempt a meta-analysis of the existing studies on student acceptance of MOOCs. The 

findings from the included studies with precisely 14233 participating students show satisfaction, 

intention, and attitude to be the most significant factors influencing student acceptance of MOOCs. The 

results of this study have affirmed the recent studies that satisfaction has a strong direct influence on 

student acceptance of MOOCs (Chen et al., 2018; Joo et al., 2018; Daneji et al., 2019; Lu et al., 2019; 

Pozón-López et al., 2020; Wan et al., 2020). The study by Joo et al. (2018), although not included in the 

meta-analysis because of the missing parameter of factor validity, recorded an impressive factor 

reliability score of 0.930 and a path coefficient of 0.861 for the relationship between student satisfaction 

and continual intention to use MOOCs. In addition, the results of the current study have affirmed that 

intention (Yang & Su, 2017; Khan et al., 2018; Arpaci et al., 2020; Haron et al., 2020) and attitude (Wu 

& Chen, 2017; Hsu et al., 2018; Al-Rahmi et al., 2019; Teo & Dai, 2019; Razami & Ibrahim, 2020) have 

strong direct influences on student acceptance of MOOCs. 

The random-effects model assumption of this current study has revealed the presence of statistical 

heterogeneity in effect sizes of the included studies, which was caused by models applied and sample 

sizes. Besides, there were recognizable differences in statistical heterogeneity of effects. The subgroup 

analysis of the included studies has found an effect size of 61% within the 95% CI [.55, .68] in student 

satisfaction. The pooled effect size of 54% within the 95% CI [.48, .60] was found in this study. The 

possible explanation for the variations is based on sample sizes and the theoretical model applied by an 

individual author for exploring factors influencing student acceptance of MOOCs.  

This study has examined the possibility of publication bias in the included studies, considering the 

diverse reasons that can inject biases. The finding using the funnel plot has avowed a possible indication 

of publication bias, but further statistical test based on the Egger regression has shown that publication 

bias is insignificant. This finding is not shocking because previous authors have argued that funnel 

asymmetry detection may be an artifact of too few effect sizes that can emerge from statistical 

heterogeneity (Nakagawa et al., 2017). In the subgroup analysis, effect sizes were zero for 14 factors, 

but greater than zero for factors of student satisfaction, behavioral intention, student attitude, and 

perceived usefulness. This result is an indication of statistical homogeneity for those 14 factors to justify 

the absence of biases in the included studies. 

The findings of this study generally show the dearth of quality research works on MOOC technology 

acceptance in the context of Africa when compared to the numerous studies from Asia. Moreover, there 

is a lack of sufficient African-based publishers on the theme of technology acceptance theories, models, 

and applications when compared to Europe and America. In this paper, we are making a clarion call for 

more distinctive research contributions in this area of the Africa continent to resolve our precarious 

situation and significantly contribute to the African education system through the application of MOOC 

for distance learning. 

Implication 

This study has theoretical and practical implications. Theoretically, it is the first meta-analysis of the 

existing studies on factors influencing student acceptance of MOOCs for ODL. This study has found 

satisfaction, intention, and attitude to be strong significant factors influencing student acceptance of 

MOOCs. The impact of student satisfaction is not surprising because previous authors have judged it to 

be an influential factor contributing to the successful completion of distance learning (Au et al., 2018), 

and for predicting student acceptance of MOOCs (Chen et al., 2018; Joo et al., 2018; Daneji et al., 2019; 

Lu et al., 2019; Pozón-López et al., 2020; Wan et al., 2020). It can be affirmed that the greater the 

satisfaction of students with MOOCs, the greater their acceptance of the system (Wan et al., 2020). 
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Moreover, student attitude towards distance learning intervention has been identified as one of the 

challenges of ODL (Malangu, 2018). Previous results have confirmed that attitude has a strong direct 

influence on student acceptance of MOOCs (Wu & Chen, 2017; Hsu et al., 2018; Al-Rahmi et al., 2019; 

Teo & Dai, 2019; Razami & Ibrahim, 2020). This meta-analysis study has confirmed the importance of 

the influence of behavioral intention on the use of MOOCs (Yang & Su, 2017; Khan et al., 2018; Arpaci 

et al., 2020; Haron et al., 2020). These previous authors relied on the technology acceptance model, 

theory of planned behavior, technology task fit model, self-determination theory, and unified theory of 

acceptance and use of technology to infer their results. However, the authors did not investigate the 

influence of student satisfaction in their research models. The other authors have confirmed a direct 

linkage between student satisfaction and behavioral intention to use MOOCs (Pozón-López et al., 2020), 

and the link between student satisfaction and the continuous intention was found to be positively 

significant (Chen et al., 2018; Joo et al., 2018; Daneji et al., 2019; Lu et al., 2019; Wan et al., 2020). 

This finding implies that the more students are satisfied with MOOCs, the more they are likely to use the 

system.  

The current study has confirmed the suitability of technology acceptance models with satisfaction, 

intention, and attitude as important precursors for predicting or explaining student acceptance of 

MOOCs for ODL. However, since intention and attitude are behavioral patterns to use MOOCs, 

satisfaction comes out to be the main significant factor of student acceptance of the system. Satisfaction 

was previously found to be a precursor of attitude (Dai et al., 2020) and intention (Pozón-López et al., 

2020). In addition, student satisfaction with MOOCs was found recently to mediate the direct 

relationship between flow experience and behavioral intention to use the system (Mulik et al., 2020). 

The satisfaction to attitude sequence found in the general information technology usage (Bhattacherjee 

& Premkumar, 2004) was further confirmed recently in the context of MOOCs (Dai, et al., 2020). The 

satisfaction of students with the usage of MOOCs can lead to changes in their attitudes and behaviors 

toward learning using the system. The positive attitude and behavioral change may influence student 

retention in MOOCs through appropriate intervention. Such an intervention may include espousing a 

problem-solving instructional strategy, changing instructional methods, evolving novel pedagogy for 

learning assessment, transforming student management strategies, promoting cooperative learning 

among students, a grouping of diverse students in discussion fora for building rapport and collaborative 

creation of knowledge (Dai, et al., 2020).  

The detection of statistical heterogeneity in study effect sizes can provide valuable information for 

further research. This is because it might allow us to redesign MOOCs to provide relevant interventions 

for surmounting ODL challenges in the context of students. The direct implication of the findings from 

the meta-regression analysis is that models applied, and sample sizes can be used to explain the possible 

sources of statistical heterogeneity. It might relate to issues of methodological design, and sample size of 

the study participants. This present study has affirmed a communal result of six previous studies that 

satisfaction is the most significant factor influencing student acceptance of MOOCs (Chen et al., 2018; 

Joo et al., 2018; Daneji et al., 2019; Lu et al., 2019; Pozón-López et al., 2020; Wan et al., 2020). 

However, we found one study contradicting this result that satisfaction does not influence the continuous 

intention of students to use MOOCs according to an extended ECM (Alraimi et al., 2015). Moreover, 

Zhou (2017) relying on an extended ECM, found satisfaction to be a significant factor influencing 

student acceptance of MOOCs with a path coefficient of 0.406, but it was not the strongest significant 

factor. The factor of knowledge outcome with a higher path coefficient of 0.495 was found to be the 

strongest predictor of student acceptance of MOOCs (Zhou, 2017). The contradicting results of previous 

studies on student satisfaction with MOOCs may be the consequence of using an extended ECM 

(Alraimi et al., 2015; Zhou, 2017) instead of the orthodox ECM (Bhattacherjee, 2001).  
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This study can pragmatically provide policymakers and software companies specializing in the 

development of educational information systems with an impetus to overcome the intrinsic challenges of 

ODL. It will provide useful insights to those planning to implement MOOCs to understand how teaching 

and learning should be delivered to promote student satisfaction with ODL activities. The outcome of 

this study can provide useful guidelines when making decisions on the implementation of MOOCs for 

ODL. It suggests that attention be given to the factor of satisfaction to surmount student challenges of 

ODL. It is important to raise an awareness among ODL practitioners and policymakers on what is 

required to improve student acceptance of MOOCs. Practitioners and policymakers should formulate 

comprehensive student satisfaction policies, guidelines, and the specification of requirements that would 

help surmount the challenges of ODL. The MOOC platform designers would be able to transform the 

specification of requirements into component systems to improve student satisfaction with the system.  

Student satisfaction with MOOCs can be hypothesized as an important driver for surmounting the 

intrinsic challenges of ODL. Previous studies have highlighted the precursors of student satisfaction to 

be course quality (Pozón-López et al., 2020), interaction (Chen et al., 2018), and motivation (Chen et al., 

2018). The factor of satisfaction with its precursors was judged to be among the prime challenges of 

ODL for individual students. They include course quality (Au et al., 2018), a lack of interaction 

(Arasaratnam-Smith & Northcote, 2017; Kara et al., 2019; Li & Wong, 2019; Sadeghi, 2019), a lack of 

motivation (Kebritchi et al., 2017; Au et al., 2018; Budiman, 2018; Sánchez-Elvira & Simpson, 2018) 

and a lack of satisfaction (Au et al., 2018; Sánchez-Elvira & Simpson, 2018). It is possible to mitigate 

these challenges through an effective MOOC intervention, provided the issue of student satisfaction and 

its immediate precursors can be satisfactorily resolved in the system. MOOCs can allow students to 

exchange innovative ideas, support the collaborative design of novel solutions to challenging issues, and 

promote the collaborative creation of new knowledge using the available engagement functions in the 

system. Hence, student satisfaction can be enhanced by increasing the degree of interactivity and 

providing inspirational teaching through MOOCs (Chen et al., 2018). The perspective of motivation as 

explicated by previous findings has indicated that students are motivated to register for MOOCs to 

improve work efficiency, satisfy their curiosity, and acquire knowledge. Moreover, an adequate degree 

of functionalities of MOOCs and specific learning tasks will enable students to perceive a higher level of 

satisfaction. Students are more satisfied with course content and course quality if they can derive real 

benefits (Wan et al., 2020).  

Limitation 

The one apparent limitation of meta-analysis as observed in this study is the exclusion of articles that do 

not satisfy all the inclusion criteria. Such excluded articles may contain useful information. In addition, 

only the perspective of students was considered, but extending the study to capture the perspectives of 

teachers and administrators could have yielded more insightful findings. However, this is a general 

limitation of the included studies because they mainly focused on student acceptance of MOOCs. Some 

excluded studies delved on factors influencing teacher acceptance of MOOCs, but student opinion 

counts in the education system. 

Nevertheless, this meta-analysis study has provided valuable information regarding the main significant 

factors influencing student acceptance of MOOCs. The intrinsic limitations of this study could be 

addressed in future research because we might have missed a few relevant studies in the process of 

article selection. Further research is needed to explore the interdependencies among factors 

influencing student acceptance of MOOCs for ODL. In the future, we plan to explore ways to analyze 

missing data in primary articles to cover the important information that may have been lost. Moreover, 
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we wish to extend this study to a general episode of e-learning acceptance by different populations of 

participants across varying technology platforms. It would also be interesting to investigate the effects of 

gray literature on meta-analysis results. In addition, it is prudent to investigate data analytic methods that 

could help to conduct a more detailed analysis of the quantitative aspect of this study. Moreover, it is 

interesting for future research to correlate the voices of students with instructors on their acceptance of 

MOOCs for ODL. 

 CONCLUSION 

The methodology of meta-analysis has been applied in this study to discover and analyze significant 

factors influencing student acceptance of MOOCs for ODL. Effect sizes, statistical heterogeneity, 

subgroup analysis, meta-regression analysis, and publication bias were examined for the included 

studies. This was because of varying sample sizes and theoretical models that were previously applied to 

identify factors influencing student acceptance of MOOCs. The results obtained in this study show that 

the pooled effect size estimate of factors influencing student acceptance of MOOCs was highly 

prevalent. Moreover, they have revealed that satisfaction is the main significant factor influencing 

student acceptance of MOOCs. Resolving the germane issue of satisfaction with MOOCs can have a 

significant transformation effect on the behavioral intention and attitude of students to effectively use 

the technology for ODL. The outcome of this paper can significantly contribute to a better understanding 

and advancement of technology acceptance models in information systems and related disciplines.  
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