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ABSTRACT
Cloud-edge systems are vulnerable to thermal attacks as the in-
creased energy consumption may remain undetected, while occur-
ring alongside normal, CPU-intensive applications. The purpose of
our research is to study thermal effects on modern edge systems.
We also analyze how performance is affected from the increased
heat and identify preventative measures. We speculate that due to
the technology being a recent innovation, research on cloud-edge
devices and thermal attacks is scarce. Other research focuses on
server systems rather than edge platforms. In our paper, we use a
Raspberry Pi 4 and a CPU-intensive application to represent thermal
attacks on cloud-edge systems. We performed several experiments
with the Raspberry Pi 4 and used stress-ng, a benchmarking tool
available on Linux distributions, to simulate the attacks. The re-
sulting effects displayed drastic increases in the temperature and
power consumption. The key impact of our research is to highlight
the following risks and mitigation plans: the vulnerability of cloud-
edge systems from thermal attacks, the capability for the attacks to
go unnoticed, to further the understanding of edge devices as well
as the prevention of these attacks.

CCS CONCEPTS
• Hardware → Thermal issues; Platform power issues; • Security
and privacy → Side-channel analysis and countermeasures; •
General and reference → Performance.
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1 INTRODUCTION
High performance computing devices enable rapid data processing
in both cloud and edge-based Artificial Intelligence (AI) platforms.
Powerful CPUs and GPUs are used in cloud and edge devices to ex-
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ecute compute-intensive processes. A byproduct of these processed
data is heat, which will not only damage a physical system, but
also lessen the system’s performance. Generally, active and passive
cooling systems are used to prevent the devices from overheating.
However, if the temperature threshold is exceeded, the processor’s
maximum frequency will be throttled to reduce the amount of heat
generated, which would significantly lower the performance of
the processor and reduce the system’s memory bandwidth [30].
Prior research has demonstrated that uncontrolled heat manage-
ment can decrease both a system’s performance and its usability.
In public cloud and computing edge [31–33], where high perfor-
mance and low latency are prime factors, excessive temperatures
can dramatically undermine their availability.

In this paper, we performed several experiments on the repre-
sentative device to highlight thermal threats on edge platforms.
Thermal attacks were simulated using stress-ng [8], which is a
stress test on Linux systems. In our first experiment, we monitored
the temperatures of the edge device while the CPU was throttled
using different maximum frequencies. Our second experiment com-
pared the available cooling strategies for edge devices: no cooling,
passive cooling (using heat sinks only), and active cooling (the fan’s
speed is either dynamically or statically controlled and paired with
a heat sink). Our third experiment measured the power consump-
tion and temperatures during thermal attacks on real-world edge
AI workloads. We found that thermal effects are more pronounced
when operational power is higher and maximum CPU frequency
is higher. Various cooling strategies have significant impacts on
application performance and energy consumption. Excessively high
temperatures and long-term changes will greatly affect the quality
of service and the life of hardware. In addition, as thermal attacks
are similar to compute-intensive applications, it is difficult to ac-
curately locate the source of overheating (the attacker). Complex

Table 1: Power Consumption of Servers and Edge Devices

Components Power (Watts)
Intel Mid End CPU (Core i5) 73 ∼ 95
AMD Mid End CPU (4 cores) 65 ∼ 125
Regular Motherboard 25 ∼ 40
DDR3 RAM (1.5 Volts) 2 ∼ 3
Mid End Graphics Card 110 ∼ 164
2.5" Hard Disk Drive HDD 0.7 ∼ 3
120 mm Case Fan (2,000 RPM) 3.6 ∼ 6
Arduino Uno SoC 0.315 ∼ 0.96
Raspberry Pi 4B SoC 2.7 ∼ 6.4
NVIDIA Jetson TX2 SoC 7.5 ∼ 15
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Figure 1: Raspberry Pi 4 CPU Throttled Temperatures

cooling strategies and edge distributed power systems (such as
batteries) make it more difficult to detect thermal attacks.

The following paper is organized as follows. A background of
cooling systems is presented in Section 2 which summarizes the
different cooling configurations in clouds and edges. Section 3 de-
scribed our methodology, evaluation process, results, and analysis.
Section 4 exhibits research from related works that cover thermal at-
tacks and advances in energy saving systems. Section 5 summarize
this paper with our insights and conclusion.

2 BACKGROUND OF COOLING SYSTEMS
As shown in Table 1, every component in cloud servers consumes
lots of energy [6]. Most of the electrical power used for data center
workloads is converted into heat as a byproduct. This heat must
then be transported away from the equipment to prevent damages,
or even fires, from occurring. The process requires an efficient heat
removal method, an adequate air distribution type, and an appropri-
ately positioned air cooling unit. Currently, there exist several air
conditioning configurations for traditional data centers: rack, room,
and row-based cooling [16]. Each configuration uses a computer
room air handler (CRAH) that uses a chilled water valve to cool the
supplied air for the intake. The name of the configuration refers
to the location of the CRAH. Using a CRAH instead of a computer
room air conditioner (CRAC) is a common practice because it is
more cost-effective and easier to manage.

The amount of data, in both its existence and creation, has grown
exponentially. The data center that undertakes the calculation and
storage of these large amounts of data has also seen the increas-
ing development of high density and huge power. The traditional
air cooling system has gradually become overwhelmed under this
trend. As a result, several companies have implemented liquid cool-
ing. In the early 1960s, IBM began to explore water cooling for
its mainframe computers [13]. Recently, Microsoft’s Project Nat-
ick [5] team even deployed the Northern Isles data center under
the sea in Scotland and tested the performance and reliability of its
servers. However, due to safety concerns and high reconstruction
costs, liquid cooling technology is still mainly limited to the field
of high-performance computing (HPC).

Compared to cloud data centers, edge data centers have much
lower power capacities (50-150 kW) [4], and they may use different
cooling configurations. One of the most efficient cooling methods
uses row-based cooling alongside a hot/cold aisle configuration.
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Figure 2: Cooling Strategies Comparison

Row-based cooling houses the air cooling unit in between the server
cabinets and directly next to the hardware. The server racks are
configured so that hot air passes into a duct system and cool air
passes through the servers’ air intake. Each server would be facing
the same way on the rack, in order to maximize the effectiveness of
heat removal. Miniature-sized edge networks, consisting of one to
five devices, that are deployed in an outdoor environment do not
have air-conditioned cooling. For this reason, dynamic frequency
fans or integrated liquid cooling are more commonly used. New
architectures, software, and dynamically controlled energy saving
components are being widely adopted for edge systems.

3 THERMAL THREAT MODEL AND RESULTS
In this section, we demonstrate the thermal threat on edge de-
vices and describe our system’s configuration. We also explain
our methodology, present our preliminary results, and give our
corresponding analysis.

3.1 Evaluation and Methodology
We conducted our study on representative edge hardware devices.
In this research, we selected the Raspberry Pi 4B, which is equipped
with a quad-core CPU, 4GB of RAM, and a 32GB SD card for storage.
We also performed experiments on the Google Coral and NVIDIA
Jetson TX2 and obtained similar observations. We used several dif-
ferent workloads in our experiments. To throttle the CPU and sim-
ulate a thermal attack, we executed stress-ng [8], a stress workload,
on the Raspberry Pi. The options used in the test caused each CPU
core to run every available CPU stress test while every available
matrix stress method ran in parallel. The device’s core temperature
was measured by using the command vcgencmd [7]. The maximum
CPU frequency was set using the cpufreq interface and an available
frequency was set through the scaling_max_freq option [9]. We
also selected AI Benchmark [1], which contains 46 computer vision
tests and 14 benchmark sections such as object classification, facial
recognition, and image deblurring. AI Benchmark simulated the
machine learning (ML) and artificial intelligence (AI) workloads
widely deployed on edges.

The experiment for the CPU throttling required the heat sinks
and fan to be removed from the device. Initially, heat sinks were
installed on the CPU, USB 3.0 controller, and SDRAM chip. The
cooling system prevented the CPU from throttling. After the cooling
components were removed, the CPU’s maximum frequency was
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Figure 3: Power and Temperature Trace During Thermal Attack

reduced from 1500 MHz to lower frequencies: 1300MHz, 1100MHz,
800MHz, and 600MHz. Each iteration had a duration of 13 minutes
and the stress test executed for seven minutes. The Raspberry Pi
4’s cooling components were also removed while AI Benchmark
was running.

The experiment to measure the temperature and power con-
sumption was executed with only the fan installed on the device.
We used a USB voltage tester to record the power consumption.
This experiment executed for 10 minutes while the stress test lasted
for 4 minutes. We also compared the device’s performance with
different cooling strategies: using a heat sink, statically controlled
fans, and dynamically controlled fans.

3.2 Preliminary Results and Analysis
Figure 1 displays the throttled performance of the Raspberry Pi 4.
As shown in Figure 1, the CPU’s frequency was throttled the most at
the highest frequency of 1500MHz. The CPU’s frequency dropped
approximately 7.14% at 1500MHz. The device required 200 seconds
to return to its baseline of 64°C. In order to maximize the perfor-
mance for edge devices, measures should be in place that actively
monitor the CPU’s current temperature. A list of these measures
includes temperature sensors, limiting the maximum frequencies
of processors, and systems that actively monitor power consump-
tion. To evaluate the performance of real world applications under
various CPU thermal effects, we further execute AI Benchmark on
the Raspberry Pi 4. Since the AI Benchmark is a compute-intensive
workload, the temperature of the CPU increases quickly and main-
tains a range between 79°C to 88°C during its execution. As shown
in Figure 4, the CPU’s temperature and the application’s perfor-
mance show a negative correlation. For instance, when the time
index goes from 13000s to 16000s, the temperature rises slowly to
a peak while the CPU’s frequency slows down to about 600MHz.
Similar results can also be observed during the time index from
22000s to 24000s. On the contrary, when the CPU’s temperature
gradually decreases to a low value, such as during 24000s to 26000s,
the execution of the application will return to its maximum. When
the CPU temperature is lower than 85°C, such as during the time
index before 8000s or after 30000s, the application’s speed is stable
and maintains high performance.

Second, we measured the CPU’s temperature and power con-
sumption of edge devices. The Raspberry PI 4 consumed around

2.8W while idle and the processor’s temperature was less than 40°C.
As shown in Figure 3, during the stress test, the power consumption
increased by more than 150% and the temperature nearly doubled.
The effects from CPU throttling were still visible after our thermal
attacks terminated. The device remained overheated and required
over 240 seconds for the CPU’s temperature to normalize after the
stress test finished. A highly elevated temperature with long-lasting
changes might greatly affect edge and IoT device stability. Also,
the thermal effect and power consumption varied under different
CPU speeds. We observed that the CPU’s speed decreased the least,
and the power consumption was lower when the maximum of CPU
frequency was set to 600MHz. In addition, normal behaviors that
occur with compute-intensive workloads (e.g., Figure 4(a)), such as
machine learning and artificial intelligence applications, could con-
sume power at a rate analogous to a thermal attack (e.g., Figure 3(b)).
Malicious attackers could therefore camouflage themselves and at-
tack a system with the user being unaware of the cause. To prevent
such an occurrence, system and temperature logs should be kept,
and abnormally behaving processes should be killed.

Third, we also studied how different radiators and cooling fans
affect when thermal events happen, and compared their perfor-
mance when running AI workload on edge devices. We deployed
an image recognition application using an Inception V3 model on
the Raspberry Pi. As depicted in Figure 2, without any cooling,
the application’s performance will be affected as the temperature
of the processor reaches its maximum frequency. Passive cooling
components such as heat sinks can slightly address the problem but
cannot entirely prevent the issue. The application’s performance
will still be limited when the edge device’s temperature reaches its
threshold. Static, dynamic cooling configurations can effectively
control the temperature and keep the application executing at the
processor’s full speed. However, it will waste more energy and
increase the total power consumption. Lastly, the active and static
cooling shows great performance improvement with over 30% exe-
cution time reduction compared to no cooling and 25% less energy
cost compared to active, dynamic cooling. However, one downside
of using an actively or passively cooled edge device is that detect-
ing the location of the overheating source (e.g., attackers) may be
difficult.
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Figure 4: CPU Frequency and Temperature with AI Benchmark

4 RELATEDWORK
Current research detailing thermal effects widely exists for cloud
platforms. This section discusses these works and their limitations,
as well as current energy efficient systems. In this research, we
focus on limitations and inefficiencies that edge devices possess,
and aim to reveal the emerging threat of thermal attacks on edge
and IoT platforms.

4.1 Energy Efficient Systems
As edge systems are increasingly adopted, how to increase en-
ergy saving and efficiency in these systems captures more atten-
tion. To overcome the challenges of energy efficiency in edge
systems, many hardware solutions including new IoT chips (i.e.,
ARM Cortex-M23 [2], Cortex-M33 [3]), new architectures (i.e., 3D
chip design [25, 37]), and customized SoCs (e.g., AI-acceleration
chips [12, 15, 36]) have been proposed. However, these solutions
cannot work in the existing IoT or edge devices. Computation of-
floading (i.e., MAUI [14], ThinkAir [23]), a software solution, has
been widely studied in recent years to alleviate heavy overhead
and energy consumption at the edge. However, the efficiency of
offloading highly depends on the network channel condition, as
the implementation requires high data transmission. Recently, dy-
namic offloading [11, 20, 24, 26, 27, 29], which incorporates the
characteristics of wireless channels, transmission power, compu-
tation load distribution, and heterogeneous types of computation
tasks, with computation offloading algorithm was proposed for
multi-user mobile cloud systems. Nevertheless, these works assume
non-adjustable processing capabilities on the hardware, which is

not energy efficient since the CPU’s energy consumption at the
edge increases exponentially with the processor’s frequency [10].

Another notion of solution is dynamic voltage and frequency
scaling (DVFS). There have been recent efforts to utilize DVFS to
improve energy efficiency while enhancing scalability, manageabil-
ity, and security [19]. To reduce system power consumption, an
energy-aware scheduling algorithm, that uses DVFS, for parallel
applications in heterogeneous distributed computing systems was
developed [34], and a slacking algorithm for adjusting the CPU’s
frequency dynamically to extend a task’s execution time was pro-
posed [21]. Yet, these approaches did not perform well in handling
communication-intensive applications or highly dynamic edge sys-
tems. In addition, most existing algorithms based on DVFS focus
on shortening the scheduling time instead of optimizing the energy
cost. In this work, we focus on investigating the relationship be-
tween energy saving techniques, processor processing, and heat
control on the edge systems.

4.2 Thermal Attacks
Edge devices, as well as other computing devices, produce heat as
a side effect from computation. The resulting heat traces could be

exploited, and a user’s credentials or information about the sys-
tem could be exposed. Aside from the obvious security risks asso-
ciated with leaked credentials, malicious actors could utilize heat
traces to time thermal attacks on systems. The attacks could subse-
quently halt system operations, increase power consumption, send
covert communications, and have other varying negative conse-
quences. Kong et al. [22] found that malicious codes can exploit the
deficiency and cause fine-grained, localized hotspots in the instruc-
tion cache, which might lead to physical damages. Szefer et al. [35]



discovered thermal channels can be used to create covert channels
between users renting the same FPGA over time. Masti et al. [28]
utilized thermal side channels in a multiprocessor system to send
communications. They used PolarSSL to perform RSA decryption
on select CPU cores and uncovered lesser known vulnerabilities of
edge devices. Gao et al. [17] introduced the security concept of ther-
mal attacks inside the data center that exploits thermal-intensive
workloads to severely worsen the temperatures in the data center.
To unveil the vulnerability of a data center to thermal attacks, they
also conducted thermal measurements and proposed corresponding
effective thermal attack vectors. In their following work [18], they
further conducted tests on the thermal measurements of data cen-
ters from attacks through various scenarios. Damage assessment of
these tests concluded that the attacks compromised server reliability
and performance, increased cooling costs, caused cooling failures
that can lead to server shutdowns, and caused local hotspots. Gao
et al. proposed dynamic, thermal-aware load balancing to distribute
workloads amongst servers based on thermal measurements and
server location. This paper focuses on the emerging threat of ther-
mal attacks in the edge system and these studies are orthogonal to
our work.

5 CONCLUSION
In this paper, we presented the effects that temperature has on
edge devices. Our experiments demonstrate how edge devices per-
form during throttling and thermal attacks. When throttled, the
system required up to half of the time of the stress test’s duration to
return to its baseline temperature. This significant decrease in per-
formance could be avoided by ensuring an active cooling system is
implemented. The power consumption and temperature increased
by nearly 105% and 70% respectively during the simulated thermal
attack. A malicious actor could stealthily time such an attack to
occur simultaneously with expected heavy workloads. Proper se-
curity policies and monitoring systems would prevent this from
occurring. It is evident that edge devices have exploitable security
vulnerabilities. Thermal attacks may go undetected if launched
during CPU-intensive processes, which pose a threat to affected
systems. Our research may be used for future hardware planning
purposes, and may serve as guidance for best practices in hardware
security at edge platforms or IoT devices.
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