
Journal of Cybersecurity Education, Research and Practice Journal of Cybersecurity Education, Research and Practice

Volume 2021 Number 1 Article 5

July 2021

Secure Coding in Five Steps Secure Coding in Five Steps

Mini Zeng
Jacksonville University, mzeng@ju.edu

Feng Zhu
University of Alabama in Huntsville, fz0001@uah.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/jcerp

 Part of the Information Security Commons, Management Information Systems Commons, and the

Technology and Innovation Commons

Recommended Citation Recommended Citation
Zeng, Mini and Zhu, Feng (2021) "Secure Coding in Five Steps," Journal of Cybersecurity Education,
Research and Practice: Vol. 2021 : No. 1 , Article 5.
Available at: https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been
accepted for inclusion in Journal of Cybersecurity Education, Research and Practice by an authorized editor of
DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/jcerp
https://digitalcommons.kennesaw.edu/jcerp/vol2021
https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1
https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5
https://digitalcommons.kennesaw.edu/jcerp?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2021%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2021%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2021%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2021%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2021%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Secure Coding in Five Steps Secure Coding in Five Steps

Abstract Abstract
Software vulnerabilities have become a severe cybersecurity issue. There are numerous resources of
industry best practices available, but it is still challenging to effectively teach secure coding practices. The
resources are not designed for classroom usage because the amount of information is overwhelming for
students. There are efforts in academia to introduce secure coding components into computer science
curriculum, but a big gap between industry best practices and workforce skills still exists. Unlike many
existing efforts, we focus on both the big picture of secure coding and hands-on projects. To achieve
these two goals, we present five learning steps that we have been revising over the last four years. Our
evaluation shows that the approach reduces complexity and encourages students to use secure coding
practice in their future projects.

Keywords Keywords
SECURE CODING, CYBERSECURITY, SECURE SOFTWARE DEVELOPMENT

This article is available in Journal of Cybersecurity Education, Research and Practice:
https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

INTRODUCTION

Software vulnerabilities pose a severe cybersecurity challenge. According to the

National Vulnerability Database (NVD), the number of new software

vulnerabilities dramatically increased to more than 16,000 every year (CVSS,

2020). Among the vulnerabilities, over 25% of them are of high severity. The

exploitation of the vulnerabilities cost $60 Billion every year in the U.S. alone.

Companies and organizations have created numerous industry best practices

resources, code review methods (Conklin et al., 2017; Leblanc et al., 2003; Rothke,

2006; Taylor et al., 2011), testing guides (Meucci et al., 2013), secure coding

standards (Long et al., 2011; Seacord, 2005, 2008), vulnerability databases (CWE

Common Weakness Enumeration, 2014; MITRE, 2020b), dictionaries of attacks

(MITRE, 2020a), the framework for prioritizing weaknesses (Coley, 2014;

National Institute of Standards & Technology, 2019) and software tools (Microsoft,

2016; OWASP ZAP, 2020; Shostack, 2014; Veracode, 2020b). However, these

resources are not designed for classroom usage. When first introduced students to

these materials, they found an overwhelming amount of information.

There are academia's efforts to introduce secure coding components into the

computer science curriculum (Software Engineering Institute (SEI) at Carnegie

Mellon University, 2021; Towson University, 2020; Whitney et al., 2018). Secure

software development courses are now offered in several universities, including

ours. Organizations and universities made their teaching material available online

(Software Engineering Institute (SEI) at Carnegie Mellon University, 2020;

Wenliang Du, 2020). For example, Yuan et al. developed secure coding learning

modules that focus on manual code review and static analysis on C/C++ and Java

code(Dukes et al., 2013; Xiaohong Yuan, 2019). At CMU, SEI provides lecture

materials and artifacts (Software Engineering Institute (SEI) at Carnegie Mellon

University, 2020). The Security Injection Project at Towson University developed

security injection modules integrated with CS0, CS1, CS2, and other courses (Kaza

et al., 2010; Towson University, 2020). The SEED lab also provides software

security labs online (Du et al., 2007). Instead of focusing on a specific component,

we emphasize the big picture of secure coding and provide sample projects to

practice the main components. The long-term goal is to educate students on the

right mindset, necessary knowledge, and skills to develop secure software.

1

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Our first step started with introducing the big picture of secure coding to students

based on the Microsoft Security Development Lifecycle (SDL) (Microsoft, 2012),

including seven phases, training, requirement, design, implementation, verification,

release, and response. The approach proposed in this paper focuses on five learning

steps: 1) gain knowledge of common vulnerabilities, 2) identify vulnerabilities, 3)

prioritize vulnerabilities, 4) mitigate coding errors, and 5) document decisions and

fixes. This approach guides students to take small steps and go through the process.

This approach's specific objectives include introducing industry best practices and

hands-on practices of locating resources, manual code review, static analysis tool,

and prioritizing vulnerabilities. We also evaluate whether this approach reduces

complexity and encourages students to use secure coding practice in their future

projects.

The proposed approach has four main contributions. First, students learn a broad

set of secure coding skills. Second, students gain knowledge of secure coding

resources, including guides, books, vulnerability databases, mitigation methods,

detection, validation approaches, and software tools. Third, these steps are easy to

follow. Last, the hands-on case studies and videos facilitate other institutes to adopt,

especially the manual code review and the free static analysis tool.

The rest of the paper is organized as follows. Section 2 discusses the background

and related work. Then, Section 3 describes the five learning steps. Section 4

illustrates the evaluation and students’ feedbacks. Section 5 concludes the

contributions and presents future works.

BACKGROUND AND RELATED WORK

This section covers background information about secure software development,

secure coding practices, and academic efforts to teach secure coding. We discuss

secure coding resources (CWE, OWASP, and SAFEcode) and tools that developers

use to detect coding errors. Also, we discuss the web application which is used for

hands-on practices.

Secure Software Development

Microsoft published a Security Development Lifecycle (SDL), which includes

seven phases: training, requirement, design, implementation, verification, release,

and response in 2012 (Microsoft, 2012). Recently, the seven phases were revised

into twelve practice areas (Microsoft, 2020a). The twelve practice areas are 1)

provide training, 2) define security requirements, 3) define metrics and compliance

reporting, 4) perform threat modeling, 5) establish design requirements, 6) define

and use cryptography standards, 7) manage the security risk of using third-party

components, 8) use approved tools, 9) perform static analysis security testing

2

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

(SAST), 10) perform dynamic analysis security testing (DAST), 11) perform

penetration testing, and 12) establish a standard incident response process.

Microsoft also suggests that organizations should adapt rather than adopt the SDL

process.

Other than Microsoft Security Development Lifecycle, the National Institute of

Standard and Technology published a Secure Software Development Framework

(SSDF) (Dodson et al., 2019). The SSDF covered industry practices related to

secure coding and other secure software development phases (e.g., security

requirement and configuration). SSDF promotes critical secure coding practices

such as creating source code adhering to secure coding practices, assessment,

prioritization, and vulnerability remediation.

Secure Coding Education

Colleges and universities designated their undergraduate and graduate programs

and courses related to software security. Hands-on labs are also designed to

integrate into software security-related courses (Xie et al., 2015). The computer

science department at Purdue University, for example, offers a “Software Security”

course. The course focused on software security fundamentals, secure coding

guidelines and principles, and advanced software security concepts. Students learn

to assess and understand threats, design and implement secure software systems,

and mitigate common security pitfalls (Purdue University, 2018). Yuan at North

Carolina A&T State University developed a “Secure Software Engineering” course.

The course discusses how to incorporate security throughout the software

development lifecycle (Yuan et al., 2012). Her course, “Software Security Testing,”

focused on software security testing techniques and tools (Yuan et al., 2012). The

Laboratory of Information Integration Security and Privacy at the University of

North Carolina at Charlotte offered a course named “Software Vulnerability

Assessment” (Chu et al., 2009). The course emphasized vulnerabilities and

mitigations through secure software design and implementation. Walden and Frank

in Northern Kentucky University offered a seminar course - “Secure Software

Engineering.” The course included a set of secure software engineering teaching

modules such as software security, threats and vulnerabilities, and risk management

(Walden et al., 2006).

3

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Lecture materials and teaching modules are also developed and shared. The

Software Engineering Institute (SEI) at CMU provides lecture materials and

artifacts online that faculty can utilize to integrate into their curricula (Software

Engineering Institute (SEI) at Carnegie Mellon University, 2020). The SWEET

(Secure Web Development Teaching) project developed portable teaching modules

for secure web development (Chen et al., 2010). The SEED project included lab

exercises for computer security education (Wenliang Du, 2020). The labs include

the demonstration of common vulnerabilities, attacks, and applications of security

principles and techniques. The Security Injection Project at Towson University

developed security injection modules integrated into existing computer science

programming courses (Towson University, 2020). CLARK, which Towson

University developed, hosts a diverse collection of cybersecurity learning objects

and repositories (Towson University, n.d.), including ours.

Educators may reference guidelines for their software security curriculum,

courses, or seminars. National Initiative for Cybersecurity Education (NICE)

published a Cybersecurity Workforce Framework, which describes the specific

knowledge, skills, and abilities. It is required for the work roles related to

cybersecurity (National Initiative for Cybersecurity Careers and Studies, 2020).

National Center of Academic Excellence Cyberdefense education program

published knowledge units to guide cybersecurity educators. It includes a Secure

Programming Practices Knowledge Unit and a Software Security Analysis

Knowledge Unit with guidance on learning outcomes and topics (NIETP, 2020).

Secure Coding Best Practices

The most effective way is to follow the industry best practices. OWASP offers

multiple solutions. The OWASP Software Assurance Maturity Model Project

specifies a framework for designing and implementing secure software (Arciniegas

et al., 2019). The OWASP Development Guide provides practical instructions and

J2EE, ASP. NET and PHP code samples (OWASP Development Guide, 2005).

OWASP Secure Coding Practices Quick Reference Guide provides a checklist to

help developers decrease the vulnerabilities before the software package has been

completed (The Owasp Foundation, 2010).

Software Assurance Forum for Excellence in Code (SAFEcode) publishes

secure development practices emphasizing real-world actions (SAFECode, 2018).

SAFEcode best practices provide more robust controls and integrity for commercial

applications during the design, programming, and testing phases. SAFECode

includes methods and tools to verify each practice, mitigation, and CWE references

for each practice listed. SAFEcode and Cloud Security Alliance released a guide to

help readers better understand and implement best practices for secure cloud

applications' development (Sullivan et al., 2013).

4

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

CERT publishes C, C++, Java coding standards (Long et al., 2011; Seacord,

2014; Software Engineering Institute (SEI) at Carnegie Mellon University, 2016).

Companies such as Cisco, Oracle, and Microsoft widely adopt secure coding

standards and suggestions (Cisco, 2016; Long et al., 2011; Microsoft, 2020b). In

this paper, we introduce students to secure coding standards and teach them how to

apply them when developing software.

Vulnerabilities Databases

We introduce multiple vulnerability repositories to the students: Common

Vulnerabilities and Exposures (CVE), U.S. National Vulnerability Database

(NVD), and Common Weakness Enumeration (CWE). CWE includes a list of

software Weakness types that can occur in various stages of software development.

The CWE system provides a standard measuring technique for software security

tools and a common baseline for weakness identification and mitigation

techniques(CWE List, 2020). The latest CWE software vulnerability list, CWE list

Version 4.0, includes a thousand errors and error categories (CWE List, 2020). The

CVE system is a categorization of software weaknesses (MITRE, 2020b). Both

CWE and CVE are included in the U.S. National Vulnerability Database (NVD). It

provides a data repository of known vulnerabilities that can be used for

vulnerability management and security compliance requirements.

In 2020, CWE update the 2020 CWE/SANS Top 25 Most Dangerous Software

Errors. It lists the most severe and common software errors(CWE Top 25 Most

Dangerous Software Weaknesses, 2020). These errors are based on more than 800

programming errors, design errors, and architecture errors, leading to various

vulnerabilities. The 2020 CWE Top 25 is formed based on real-world

vulnerabilities found in the NVD. According to NVD Count and the average CVSS

score, the highest score is given to Improper Neutralization of Input During Web

Page Generation ('Cross-site Scripting'). In 2020, there are 3788 entries related to

this kind of vulnerability in the NVD data set. The average CVSS score is 5.80. The

overall score calculated by the CWE scoring formula is 46.82(CWE Top 25 Most

Dangerous Software Weaknesses, 2020). Once attackers use this vulnerability to

inject malicious scripts, they could transfer private information, such as cookies

that may include session information, from the victim's machine to the attacker

(CWE, 2020).

Static and Dynamic Analysis

Static and dynamic analysis are the most popular types of security test tools.

Static analysis tools discover security errors without running the program, while

dynamic analysis tools examine software by executing the program.

5

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Static analysis tools are much more scalable than manual code review. They can

scan a large amount of code and can also be used repeatedly. They automatically

find errors such as buffer overflows and SQL Injection and provide mitigation

suggestions. Some of the static analysis tools support multiple languages. Agnitio

provides static analyses for ASP.NET, C#, Java, Javascript, Perl, PHP, Python, etc.

(Agnitio - Static analysis, 2015).

Some tools are programming languages specific. For example, OWASP

LAPSE+ Static Code Analysis Tool is designed for Java (OWASP LAPSE+ Static

Code Analysis Tool for Java, 2017; Pérez et al., 2011), FlawFinder for C/C++

(Wheeler, 2017), Pylint for Python (Pylint - python code analysis tool, 2020) and

RIPS for PHP (RIPS - A static source code analyzer for vulnerabilities in PHP

scripts, 2017). Some static analysis tools could be integrated into IDEs. For

example, .NET analyzers could be installed in Visual Studio using the Nuget

package (Microsoft, 2018). In academia, James Walden and Maureen Doyle

developed an indicator named SAVI (Static-Analysis Vulnerability indicator) that

combines several static-analysis metrics and ranks web applications’ vulnerability

(Walden et al., 2012).

We educated students on the static analysis tools and the dynamic vulnerability

scanning tools critical for overall program security. The systematic and random

approaches often catch the security errors missed by manual analysis and testing

approaches. Dynamic analysis tools such as Abbey Scan, WebInspect, HCL

AppScan, and Adobe Ride provide security solutions targeting different

development life stages (OWASP, 2020). Veracode provides both static code

analysis and dynamic web application analysis (Veracode, 2020b, 2020a). Similar

to the static analysis tools, these dynamic analysis tools may not be perfect. There

are many false-positive cases and may have false-negative problems.

Manual Code Review

Automated tools/scanners can help to find flaws. However, they cannot discover

all vulnerabilities, and often they report many false-positive cases. Hence, manual

code reviews are essential. Industry best practices indicate no substitution for

manual code reviews because developers understand the environment, context, and

users best. Industry and organizations publish guidelines and standards to support

manual code review. For instance, the OWASP Code Review Guide focuses on

manual code review (Conklin et al., 2017). It suggests a code review checklist

covering most critical security controls and vulnerability areas such as data

validation, authentication, session management, etc. SEI CERT’s coding standards

support the development of coding standards for commonly used programming

languages such as C, C++, Java, and Perl, and the Android platform (Long et al.,

2011; Seacord, 2008, 2014; Software Engineering Institute (SEI) at Carnegie

6

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Mellon University, 2016). Books such as Writing Secure Code (Leblanc et al.,

2003) and 24 Deadly Sins of Software Security (LeBlanc et al., 2010) provide best

practices on critical items to be review.

Case Study - ShareAlbum

To present the approach in a realistic setting, we provided students a simple and

fully functional application named ShareAlbum. It was developed by students who

won multiple coding awards (America's Datafest, 2013). The project is available

on our website and the CLARK website1. The reason we choose ShareAlbum was

that the code is simple and thus minimizes the learning curve. We often update the

source code to keep up with the new software versions.

ShareAlbum is used to share albums, photos, and videos among users. This

application developed using PHP, HTML, and MySQL. The ShareAlbum database

stores and keeps track of images, videos, photo-tags, and users’ information. In

ShareAlbum, the photos and videos could be uploaded and tagged. The albums and

videos are categorized as private or public when they are created. Users set

privileges to review, make comments, and tag on public photos and videos. Users

could send messages to each other, be notified of new messages (Figure 1a). Figure

1b and Figure 1c illustrate the registration page and album view page of

ShareAlbum. In the lecture, we demonstrated the components of ShareAlbum to

students. A document explaining the design and coding details of ShareAlbum was

also shared with students.

Figure 1 ShareAlbum Received Messages.

1 URL will be added after the blind peer review.

(a) (b) (c)

7

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

METHODOLOGY

The proposed approach aims to teach students the big picture of secure coding

and offer them hands-on opportunities to apply secure coding best practices when

developing software. The five steps of secure coding were taught in a computer and

software security course. The course was offered for both undergraduate and

graduate students. To offer students a big picture of secure coding, the Microsoft

Security Development Lifecycle (Microsoft SDL) phases were taught in the first

section of the semester before the five steps of secure coding were applied. The five

steps of secure coding practices aim to let students practice secure coding phases,

not just knowing them on a conceptual level. The five steps and assessments were

completed as five milestones. Hands-on projects were assigned as homework.

Tutorials, project description, case study source code, video tutorials, demos

(videos), all related materials are accessible online (Zeng et al., 2020).

The learning steps adapt from Microsoft SDL phases. The secure software

development framework and the Microsoft SDL practices are integrated into the

steps. The proposed five learning steps are: 1) gain knowledge of common

vulnerabilities, 2) identify vulnerabilities, 3) prioritize vulnerabilities, 4) mitigate

coding errors, and 5) document decisions and errors. Figure 2 illustrates the details

of the five learning steps.

Gain Knowledge of
Common

Vulnerabilities

• CWE/SANS Top 25
Most Dangerous
Software Errors

• OWASP Top 10 most
critical web
application security
risks

Identify Vulnerbilities
Prioritize

Vulnerabilities
Mitigate Coding

Errors
Document Decisions

and Errors

• Manual code review
checklist

• Static analysis tools
• OWASP Code Review

Guide

• Students assigned in
groups to apply
manual code review
and static analysis
using RIPS on
ShareAlbum source
code files.

• CVSS score
calculator

• OWASP secure
coding report
items

• MITRE secure
code review
sample

• Secure coding
report template

• Students find and fix
three vulnerabilities
in source code files.

• Students evaluate
CVSS metrics.

• Apply CVSS score
calculator.

• Choose top 3 with
the highest CVSS
scores.

• Prevention and
mitigation
strategies on CWE
website and
OWASP guide

• Mitigation
strategy provided
by static analysis
tools

• Students choose
the mitigation
strategies they
prefer.

• Remediate the top
three
vulnerabilities.

• Students submit
secure coding
report.

Best
Industry
Practices

Hands-on
Practices

Figure 2 Five secure coding learning steps.

8

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Step 1: Gain Knowledge of Common Vulnerabilities

This step teaches students the most common vulnerabilities. CWE's top 25 most

dangerous software errors and OWASP's top 10 most critical web application

security risks were introduced in this step. We chose these two lists because they

include the current and most widespread and critical errors.

In the lecture, we chose three common vulnerabilities from the lists. The

descriptions of each vulnerability, the consequences of each vulnerability, detection

method, attack mechanisms, and mitigations were explained at a high level. Then,

we demonstrated and explained the vulnerable code, the attack actions,

consequences, and detailed mitigation suggestions using ShareAlbum as an

example.

Simultaneously, students were given reading assignments to go through the

other vulnerabilities in the lists. Students were required to read through the

description, common consequences, likelihood of exploit, demonstrative examples,

and potential mitigations sections for each vulnerability on the CWE website. They

were also required to study the ten most critical web application security risks,

especially the latest OWASP Top 10 (OWASP, 2017). Students picked two

vulnerabilities from the lists (not include the three presented) and did a 10 minutes

presentation to explain them.

The three common vulnerabilities we picked were cross-site scripting (CWE-

79), SQL injection (CWE-89), and Unrestricted Upload of File with Dangerous

Type (CWE-434).

For example, the Unrestricted Upload of File with Dangerous Type (CWE-434)

was taught. After we introduced this vulnerability description, they used

ShareAlbum to explain the detail of this vulnerability in practice. The vulnerable

code example is shown in Figure 3. When users uploaded their pictures or videos,

the code does not set restrictions on the file types, as shown in Figure 3, line 7. It

created a vulnerability categorized as “Unrestricted upload of file with dangerous

type.” We then demonstrated to students an attack scenario that, without restrictions

on the upload file type, attackers may use this vulnerability to upload or transfer

malicious executable files, which could be automatically processed within the

product's environment.

Figure 3 CWE-434 vulnerable code in ShareAlbum.

9

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

For this vulnerability, we provided students two suggested mitigation solutions.

1) Creating an array to set the acceptable extensions. When the upload operation is

processed, the restriction will be checked. If the restriction is not met, user

operation is rejected. As shown in Figure 4, line 20, in ShareAlbum, developers set

allowed extensions (jpg, jpeg, png, and gif). If the uploading file’s extension is not

in the allowed extensions, an error message “File type not allowed” will be

displayed (Figure 4 line 30-31). 2) Set a limitation for the upload file size, as shown

in Figure 4, line 33-34.

Figure 4 Mitigation code of CWE-434 in ShareAlbum.

For students to practice, we provided them three source code snippets from

ShareAlbum. Students were assigned an assignment to find and fix vulnerabilities

in the three categories in the given source code files.

This step delivered three learning outcomes. Students were able to 1) search for

vulnerabilities and mitigation techniques to identify common vulnerabilities that

frequently occur in the full life cycle development of software code, 2) understand

how malicious users could make use of the three picked vulnerabilities to attack

web applications, and 3) find and fix errors by examining source code for cross-site

scripting errors, SQL injection errors, and missing restrictions of upload files.

10

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Step 2: Identify Vulnerabilities

The goal of this step is to teach students secure testing skills. In this step,

students were assigned two projects: to manually find errors in sample files based

on the code review checklist provided by us; and to use a static analysis tool to scan

software and detect vulnerabilities.

This step delivers three learning outcomes: 1) apply the manual code review

using the review checklist; 2) understand how static analysis tools work; and 3)

apply static analysis tools to scan software, detect errors, and recognize false-

positive errors detected using the RIPS tool.

Identify Vulnerabilities via Manual Code Review

Although the manual code review is time-consuming, it is essential. The manual

secure code review provides insight into the risk associated with insecure code.

Besides, manual code review can effectively decrease an application’s security

verification cost when used together with automated testing tools (Conklin et al.,

2017). By learning and practicing the manual code review, students can improve

the understanding of a vulnerability's relevance and the context of what is being

assessed. This procedure helps students to understand and evaluate the overall risk

of vulnerabilities.

In this step, the focus is to teach manual code review using OWASP Code

Review Guide (Conklin et al., 2017), SEI CERT’s coding standards (Long et al.,

2011; Seacord, 2008, 2014; Software Engineering Institute (SEI) at Carnegie

Mellon University, 2016), and books such as Writing Secure Code (Leblanc et al.,

2003), and 24 Deadly Sins of Software Security (LeBlanc et al., 2010). Students

were formed into groups of three and required to go through the code together. A

code review checklist adapted from the OWASP Code Review Guide was provided

to students to guide them through the code review process. We demonstrated the

procedure to use the vulnerable code examples from the CWE website.

Based on the code review checklist, descriptions, and vulnerable code examples

of the top 25 most dangerous software errors, students generated a preliminary error

list with eight errors in ShareAlbum. The eight errors should be 1) CWE-22:

Improper Limitation of a Pathname to a Restricted Directory, 2) CWE-79: Improper

neutralization of input during web page generation, 3) CWE-89: Improper

neutralization of special elements used in an SQL command, 4) CWE-200:

Information exposure 5) CWE-20: Improper input validation, 6) CWE-434:

Unrestricted Upload of File with Dangerous Type, 7) CWE-798: Use of Hard-

coded Credentials and 8) CWE-287: Improper Authorization.

11

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Identify Vulnerabilities using Static Analysis Tools

Using static analysis tools is a common practice in the industry. Static analysis

tools provide a convenient and scalable way to find vulnerabilities. However, they

produce many false-positive cases and may miss security errors (false-negatives).

We taught students to recognize the false-positives generated by the static analysis

tools in this step.

To facilitate learning material adoption, a free, open-source static analysis tool,

RIPS, was selected. RIPS could detect vulnerabilities by tokenizing and parsing all

source code files, then detecting potentially vulnerable functions tainted by

malicious users (RIPS - A static source code analyzer for vulnerabilities in PHP

scripts, 2017). In the lectures, the tool usage and its pros and cons were discussed.

Students used RIPS to scan the code and generate the raw error list. They were

required to submit a report about false-positives, false-negatives, and actual

vulnerabilities. We provided instructions and a recorded video to guide students to

prepare their environment for this project. Students were required to install their

environment- PHP (WAMP or XAMPP) and RIPS. A manual and a video showing

the steps to launch a static analysis scan and explain the information of RIPS

discovered vulnerabilities were provided to students. They were guided to 1)

download the ShareAlbum source code from the course website; 2) run RIPS from

localhost using WAMP or XAMPP to conduct the first code scan; 3) input the local

PHP source code location in the path/file textbox in RIPS, as shown in Figure 5; 4)

choose “untainted” in verbosity level and “All” in vulnerability type, and 5) scan

the code.

For the ShareAlbum program, students discovered 350 vulnerabilities using

RIPS. Seven categories of errors were founded, as shown in Figure 6. The seven

categories that matched the vulnerabilities categorized by CWE were 1) CWE-583

File Disclosure, 2) CWE-829 File Inclusion, 3) CWE-73 File Manipulation, 4)

CWE-89 SQL Injection, 5) CWE-79 Cross-Site Scripting, 6) CWE-443 HTTP-

response Splitting, and 7) CWE-470 Reflection Injection.

Figure 5 Scan setting in RIPS.

12

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Figure 6 RIPS scan result.

We picked two false-positive errors and one false-negative vulnerability to

demonstrate as examples. Students learned how to recognize false positives and

remove the false positive errors from the scanned result before moving into the next

step.

One example was File inclusion (CWE-829). The definition of file inclusion is

“Inclusion of Functionality from Untrusted Control Sphere.” File inclusion error

happens when tainted user data is used to create a file name. This file name is used

in an include statement. Usually, this error is detected in the HTTP GET function.

It is used in “include” statement (e.g. include ("includes/" . $_GET["file"]);). The

code section detected by RIPS shown in figure 7. The “include” statement does not

use user-submitted data from $_GET. Thus this error is false-positive.

Figure 7 File inclusion error discovered by RIPS.

We demonstrated to students this false positive alarm of file inclusion detected

by RIPS. To complete this step, students went through the errors discovered by

RIPS and report three false positives.

13

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Step 3: Prioritizing Vulnerabilities

Mitigation of all vulnerabilities requires too much resource, human labor, and

time in commercial software development. Due to the resource limitations and

deadlines, it is not practical to fix all the vulnerabilities. In this step, we taught

students to focus on the most severe and high-priority issues. Other vulnerabilities

with lower prioritizing scores were suggested to be documented for the next

iteration.

We introduced the Common Vulnerability Scoring System (CVSS) to students.

CVSS, developed by the National Infrastructure Advisory Council (NIAC), is a

standard and easy-to-use system. It calculates the severity of a vulnerability

(National Institute of Standards & Technology, 2019). CVSS is widely adopted to

rank security errors. A CVSS score is included in almost all known vulnerabilities

in the U.S. National Vulnerability Database (NVD) (National Institute of Standards

& Technology, 2019). The 2020 version of the CWE Top 25 coding errors is based

on the average CVSS scores and NVD counts to calculate the overall score. A vital

strength of the CVSS scoring system is its simplicity. CVSS scores are computed

using the CVSS score calculator. Besides, NVD provides a free online CVSS score

calculator(National Institute of Standards & Technology, 2019).

In this learning step, we introduced various known vulnerabilities and their

CVSS score calculation. We demonstrated how to rank security errors and

manually calculated CVSS scores based on the formula's metrics. To further help

students understand the CVSS metrics, we explained how to use the CVSS user

guide and apply the CVSS metrics on cross-site scripting (CWE-79), SQL injection

(CWE-89), and Unrestricted Upload of File with Dangerous Type (CWE-434)

errors in ShareAlbum.

In the group meetings, students discuss various metrics using the CVSS score

calculator and label the discovered vulnerabilities as "low," "medium," "high," and

"critical" severity based upon the CVSS score. They discussed the exploitability

metrics, impact metrics, temporal score metrics, environmental score metrics for

each error. By manually refining the metrics, students ran the CVSS calculator to

calculate the base scores, temporal scores, environmental scores, and overall scores

for the vulnerabilities they discovered. Based on the CVSS overall score, students

prioritized the errors and decided the top three errors to fix in the next step. They

were required to submit a report about the metrics, scores of vulnerabilities, and

their top three errors.

14

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

This step delivered four learning outcomes. Students should be able to 1)

understand the need for the CVSS and CVSS calculation to prioritize weaknesses

and vulnerabilities, 2) be familiar with the CVSS and can perform a step-by-step

calculation of multiple vulnerabilities, 3) calculate a CVSS score for a newly

discovered vulnerability, and 4) prioritize multiple vulnerabilities and create their

own top N list.

Step 4: Mitigation

Procedures

In this step, we taught students how to fix the vulnerabilities using the existing

resources. We started by asking students to find mitigation suggestions from the

CWE and OWASP websites. The CWE website specifies potential mitigations for

each categorized vulnerability. The OWASP top 10 list describes mitigation

suggestions for each categorized vulnerability. Besides, we demonstrated

remediation suggestions provided by static analysis tools (e.g., RIPS). We advised

students to check the mitigation suggestions provided by static analysis tools first.

Then, students went through the details of the mitigation strategies.

We taught students how to perform remediation via a step-by-step

demonstration using the three vulnerabilities as examples. The three vulnerabilities

we picked to demonstrate mitigation strategies in the lecture were cross-site

scripting (CWE-79), SQL injection (CWE-89), and Unrestricted Upload of File

with Dangerous Type (CWE-434). After students generated their own top three list

in the previous learning step, they practiced mitigation approaches by making

appropriate changes. They discussed the strategies in their group meeting. Then,

they applied changes to the original code. Students who used a static analysis tool

were suggested to scan the source code package again, seeing if they missed some

vulnerabilities or made other vulnerable codes after applying the remediation code.

They could go back to step two if they found vulnerabilities.

This step delivered three learning outcomes: 1) the procedure to find remediation

code examples and mitigation strategy suggestions on the CWE website and

OWASP top 10 list; 2) fix the errors using the CWE website's strategies; and 3) use

a static analysis tool (RIPS).

Remediation Example

One of the vulnerabilities we picked to demonstrate was SQL injection (CWE-

89). We introduced the description of SQL injection as following.

15

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

“SQL injection vulnerability means improper neutralization of special elements

used in an SQL command. If an application developed incorrectly neutralizes

special elements in SQL command, attackers could modify the intended SQL

command when sent to a downstream component. It may lead to a data breach, data

loss, even data modified by a malicious user.”

We illustrated a piece of code to students, as shown in Figure 8. It uses echo

back notifications to a user with the “user_id.” The expected execution result

should look like Figure 1a. We also explained the attack mechanism - an attacker

may inject a malicious script, as shown in Figure 9. This attack produces a SQL

query, as shown in Figure 10. Then we demonstrated the execution with the

malicious SQL command injected. Students observed that an attacker could get all

notifications with no privileges required.

Figure 8 CWE-89 vulnerable code example in ShareAlbum.

Figure 9 SQL injection attack on ShareAlbum.

Figure 10 SQL injection result query.

16

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

For the remediation of vulnerabilities using the static analysis tool, we pointed

out that students could get the remediation suggestion of a vulnerability by just

clicking the error name in the scan results. RIPS listed out the files with the

vulnerabilities, as shown in Figure 11. We demonstrated that students could check

the error's technical details by clicking the question mark on the left-hand side. We

also explained each technique details as shown in Figure 12, which includes a

simple vulnerable code example, an explanation of the possible attack, and a patch

section introducing suggestions to remediate the vulnerability. Then they guide

students to the CWE website for more details about prevention and mitigation

strategies on architecture, design, operation, and implementation.

Figure 11 A vulnerability that is susceptible to the SQL injection attack.

Figure 12 Technique Details of SQL injection.

17

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

We also introduced a popular remediation strategy for this kind of vulnerability

- parameterization and explained the remediation code for the SQL injection error,

as shown in figure 13. We introduced parameterization functions and database

programming functions in PHP. For example, “mysqli_prepare” helps prepare SQL

queries with question marks, and “bind_param” binds variables. We introduced

another choice for this kind of error - an “accept known good” input validation

strategy. Using the vulnerable code in ShareAlbum as example, we demonstrated

the remediation code to modify $_SESSION['user_id'] to intval ($_SESSION

['user_id']) and thus convert the session value stored in user_id to an integer. The

new code rejects any input that does not strictly conform to specifications.

Figure 13 Mitigation code of CWE-89 in ShareAlbum.

Step 5: Documentation

To integrate secure coding into the security software development cycle,

companies often use standard report templates. Standard templates allow the

management and security experts to direct employees to follow. We created a

template by adapting the OWASP secure coding report items and the MITRE

secure code review sample.

18

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

First, we introduced the OWASP secure coding report items and the sample

secure code review reports published by MITRE. The OWASP standard report

template classifies and prioritizes the software vulnerabilities(Conklin et al., 2017).

Reports usually include the statistics data that a review team may evaluate by

categories and risk levels. The MITRE secure code review samples suggest that the

CWE category, source file, line number, description, and qualitative risk rating

should be reported for each discovered vulnerability (MITRE, 2014).

Students were required to submit their final project report using the template, as

shown in Figure 14. The template included nine items: 1) date of review, 2)

application name, 3) code modules reviewed, 4) developers and code reviewer

names, 5) code review checklist used, 6) static analysis tool used, 7) discovered

vulnerabilities (error list without false-negative errors), 8) the top N list, and 9)

discovered vulnerabilities (top three). For each vulnerability in their top three,

students were asked to report, a) name of the vulnerabilities, b) description of the

vulnerabilities, c) related code module and functionalities, d) source code file and

line numbers, e) CVSS score, f) resolved or not, and g) remediation strategy. Table

1 provides an example of how students report a discovered vulnerability.

Figure 14 Secure coding report template.

SECURE CODE REVIEW REPORT

• Date of review

• Application name

• Code modules reviewed

• Developers and code reviewer names

• Code review checklist used

• Static analysis tools used

• Discovered vulnerabilities (Raw error list without false negative errors)

• Top N list

• Discovered vulnerabilities (Top three)
o Name of the vulnerabilities
o Description of the vulnerabilities.
o Related code module and functionalities
o Source code file and line numbers
o CVSS score
o Resolved or not
o Remediation strategy

19

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Table 1 Example of a Discovered vulnerability.

Name of the vulnerabilities Cross-site Scripting (CWE-79)

Description of the vulnerabilities. The cross-site scripting vulnerability
means the improper neutralization of
input during web page generation.

Related code module and functionalities View Album, display the album ID

Source code file and line numbers View_album.php, line 14~17

CVSS score 8.8

Solved YES

Remediation Strategy Check the pattern of album_id. Album_id
should have been numerical, and the
length of album_id should not be more
than ten digits.

STUDENT FEEDBACK

About 25-35 students participated in the survey each year. We handed out a pre-

survey before the training. After they submitted their reports, we asked them to

complete a post-survey. We wanted to evaluate whether the five-step procedure

would encourage students to apply secure coding techniques and motivate them to

consider security issues in their implementation. We also wanted to study students’

attitudes on this step-by-step training procedure. The study was approved by the

university’s Institutional Review Board (IRB).

In the first year, we taught students the secure coding process and told them the

industry best practices. We had not developed the step-by-step guide by then.

Students were asked to fix coding errors. Only a few students did very well.

We developed a step-by-step guide of manual code review and fixed coding

errors in the second year. We obtained responses from 29 participants, with ages

ranging from 19 years to 45 years, with a median age of 27 years. There were 21

male and 8 female students. About 18 (62%) of them had more than two years’

coding experiences. Participants said that they were familiar with the following

programming languages, C++ (25 students), C (24 students), Java (20 students),

SQL (20 students), Python (13 students), JavaScript (13 students), PHP (6

students), and Ruby (4 students).

20

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

The study results showed that students understood coding errors very well

(average 4.42 out of 5), and the step-by-step guide helped them prioritize and fix

errors (average 4.11). Students liked how CWE/SANS Top 25 most dangerous

software errors were introduced (average 4.34).

In the third year, we developed a guide using a static analysis tool (RIPS) to find

and fix coding errors. Thirty students who participated in the study were between

19 and 55 years, with a median age of 29. There were 21 males and 6 females (2

students preferred not to disclosure gender information). As shown in Table 2, most

participants had similar software development experiences as the previous year. For

programming languages, they were familiar with C (17 students), C++ (20

students), Java (17 students), SQL (15 students), Python (15 students), JavaScript

(5 students), PHP (4 students), and Ruby (1 student).

Table 2 Students’ Software Development Experience.

Software development
experience

Students performed the
five steps on manual code
review

Students performed
the five steps using
the static analysis tool

No experience 7 5

Half-year 2 6

One year 2 4

Two years 7 4

Three years 5 1

More than four years 6 9

Figure 15 shows the differences in students’ attitudes before and after the hands-

on projects. The result is encouraging- after training 51 students (more than 86% of

participants) would get a list of software errors in their source code in future

development vs. 33 students (about 57%) before training. In addition, after the

training, more students would fix security errors in their source code than before

the training (48 students, 82% after training vs. 33 students, 56% before training).

Also, after training more students would document the security errors and the

migration method (50 students, 86% vs. 38 students before training, 65%).

21

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Figure 15 Comparison of the students' attitudes before and after the training.

In the post-survey, participants were asked to rate the learning material. The

survey results are shown in Figure 16. It is encouraging that 20 out of 29

participants liked how we introduced secure coding projects and introduced the

static analysis tool. About 40 out of 57 students like how we taught the CWE/SANS

top 25 most dangerous software errors. About 44 participants were satisfied with

the five steps learning procedure. Fifty of them preferred the case study using

ShareAlbum. About 54 participants believed that they were satisfied with the

vulnerability examples in the learning modules.

22

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Figure 16 Participants ratings on our learning steps and materials

The learning module motivated participants to fix security vulnerabilities in their

source code. Before training, only 9 participants thought that they would fix

security errors in their source code. After training, 17 participants expressed they

would remediate security errors in their code. As shown in Table 3, the training

also significantly enhanced participants’ frequencies on checking research

resources about security vulnerabilities, targeting security errors, and prioritizing

their secure coding vulnerabilities.

23

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Table 3 Students' feedback before and after training.

 Before training After training

Find vulnerabilities in
source code

10 19

Check secure coding
resources for security
vulnerabilities

9 20

Fix security vulnerabilities
in source code

9 17

Prioritize security
vulnerabilities in source
code

8 17

In summary, the training increased participants’ motivation to perform secure

software developing steps and use static tools to detect security errors. After

training, participants were aware of secure coding and willing to fix security issues.

Also, students liked the step-by-step guide and case studies.

CONCLUSION AND FUTURE WORK

In this paper, we proposed a five-step secure coding training approach. This

approach guided students in learning common vulnerabilities, identifying

vulnerabilities, prioritizing fixes, mitigating errors, and documenting the results.

We provided a web application as a secure coding playground to help students

practice the learning steps. In the learning steps, we presented examples of

vulnerable code for common vulnerabilities. We also explained attack scenarios

and mitigation suggestions.

We introduced both manual code review and static analysis using RIPS to

students. By practicing the step-by-step approach in the case study, students learned

the big picture and industry best practices of secure coding. They understood the

common vulnerabilities and steps to discover vulnerabilities and remediation

methods.

24

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

The step-by-step approach converts the complicated security errors targeting and

mitigation process into small and easy-to-follow steps. This approach facilities the

adoption of industry best practices and secure coding skills. The students’

feedbacks show that they were more motivated to fix security vulnerabilities and

interested in secure software development. Furthermore, students like to use secure

coding resources and automatic tools to solve security-related issues. Students

learned and practiced secure skills in the learning steps when mitigating the most

common vulnerabilities. We taught secure software development using the best

industry practices and relative resources. Students’ feedbacks indicated that the

five-learning steps are efficient ways to educate secure software development.

Future research is needed to address the following questions. First, why students

frequently conduct manual code reviews versus static analysis tools (20 vs. 16).

Second, what are the fundamental reasons students perform differently; some can

fix errors quickly, while others take a long time and fail. Our ongoing research uses

eye-tracking devices to study students’ behavior during the secure coding exercises.

Third, we are further improving and investigating learning procedures by

developing more learning activities and investigating hands-on projects using

dynamic analysis tools. In addition, to improve this step-by-step approach, we are

in the process of updating the learning modules, hands-on projects, and designing

new case studies in different programming languages.

References

Agnitio - Static analysis. (2015). Retrieved from
https://sourceforge.net/projects/agnitiotool/

Arciniegas, F., Bartoldus, M., Carter, J., Challey, D., Chess, B., Clarke, J., Cornell, D.,
Craigue, M., Cruz, D., Deleersnyder, S., Derry, J., De Win, B., Dickson, J., Fakos, A.,
Fern, D., Glas, B., Hinojosa, K., Hoff, J., Huth, C., … Wierckx, S. (2019). Software
Assurance Maturity Model A guide to building security into software development
OWASP The Open Web Application Security Project. Owasp, 1–72.

Chen, L., Tao, L., Li, X., & Lin, C. (2010). A tool for teaching web application security.
Proceedings of the 14th Colloquium for Information Systems Security Education,
17–24.

Chu, B., Stranathan, W., Cody, J., Peterson, J., Wenner, A., & Yu, H. (2009). Teaching
secure software development with vulnerability assessment. Proceedings of the 13
Colloquium for Information Systems Security Education (CISSE 2009). Seattle,
Washington.

Cisco. (2016). Secure Development Lifecycle. Retrieved from
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-

25

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

center/docs/cisco-secure-development-lifecycle.pdf

Coley, S. C. (2014). Common Weakness Scoring System. Retrieved from
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

Conklin, L., & Robinson, G. (2017). OWASP Code Review Guide, V2.0. Owasp. Retrieved
from https://owasp.org/www-project-code-review-guide/

CVSS. (2020). CVSS Severity Distribution Over Time. Retrieved from
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-
severity-distribution-over-time

CWE. (2020). CWE-79 Cross-site Scripting. Retrieved from
https://cwe.mitre.org/data/definitions/79.html

CWE Common Weakness Enumeration. (2014). Retrieved from http://cwe.mitre.org/

CWE List. (2020). Retrieved from https://cwe.mitre.org/data/index.html

CWE Top 25 Most Dangerous Software Weaknesses. (2020). Retrieved from
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

Dodson, D., Souppaya, M., & Scarfone, K. (2019). Mitigating the Risk of Software
Vulnerabilities by Adopting a Secure Software Development Framework (SSDF). In
NIST.

Du, W., Teng, Z., & Wang, R. (2007). SEED: a suite of instructional laboratories for
computer security education. ACM SIGCSE Bulletin, 39(1), 486–490.

Dukes, L., Yuan, X., & Akowuah, F. (2013). A case study on web application security
testing with tools and manual testing. Southeastcon, 2013 Proceedings of IEEE, 1–
6.

Kaza, S., Taylor, B., Hochheiser, H., Azadegan, S., O’Leary, M., & Turner, C. F. (2010).
Injecting security in the curriculum--experiences in effective dissemination and
assessment design. The Colloquium for Information Systems Security Education
(CISSE), Volume 8.

Leblanc, D., & Howard, M. (2003). Writing Secure Code. Pearson Education.

LeBlanc, D., & Viega, J. (2010). 24 deadly sins of software security: programming flaws
and how to fix them. McGraw-Hill.

Long, F., Mohindra, D., Seacord, R. C., Sutherland, D. F., & Svoboda, D. (2011). The CERT
Oracle Secure Coding Standard for Java. Addison-Wesley Professional.

Meucci, M., & Muller, A. (2013). OWASP Testing Guide 4.0. Retrieved from
https://owasp.org/www-pdf-archive/OTGv4.pdf

Microsoft. (2012). Microsoft Security Development Lifecyle Version 5.2. Retrieved from
https://docs.microsoft.com/en-us/previous-

26

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

versions/windows/desktop/cc307748(v=msdn.10)

Microsoft. (2016). Microsoft Threat Modeling Tool. Microsoft. Retrieved from
https://www.microsoft.com/en-us/download/details.aspx?id=49168

Microsoft. (2018). Enable or install first-party .NET analyzers. Retrieved from
https://docs.microsoft.com/en-us/visualstudio/code-quality/install-fxcop-
analyzers?view=vs-2019#nuget-package

Microsoft. (2020a). Microsoft SDL practices. Retrieved from
https://www.microsoft.com/en-us/securityengineering/sdl/practices

Microsoft. (2020b). Secure coding guidelines in .NET. Retrieved from
https://docs.microsoft.com/en-us/dotnet/standard/security/secure-coding-
guidelines

MITRE. (2014). Sample Secure Code Review Report. Retrieved from
http://www.mitre.org/sites/default/files/publications/secure-code-review-report-
sample.pdf

MITRE. (2020a). Common Attack Pattern Enumeration and Classification. MITRE.
Retrieved from http://capec.mitre.org/data/

MITRE. (2020b). Common Vulnerabilities and Exposures. Retrieved from
https://cve.mitre.org/

National Initiative for Cybersecurity Careers and Studies. (2020). NICE Cybersecurity
Workforce Framework. Retrieved from https://niccs.cisa.gov/workforce-
development/cyber-security-workforce-framework

National Institute of Standards & Technology. (2019). Common Vulnerability Scoring
System Version 3.1. Retrieved from https://nvd.nist.gov/vuln-metrics/cvss/v3-
calculator

NIETP. (2020). National Center of Academic Excellence Cyber Defense Education
Knowledge Units. Retrieved from
https://www.iad.gov/NIETP/documents/Requirements/CAE-
CD_2020_Knowledge_Units.pdf

OWASP. (2020). Vulnerability Scanning Tools. Retrieved from https://owasp.org/www-
community/Vulnerability_Scanning_Tools

OWASP Development Guide. (2005). Retrieved from
https://www.owasp.org/index.php/Projects/OWASP_Development_Guide

OWASP LAPSE+ Static Code Analysis Tool for Java. (2017). Retrieved from
https://wiki.owasp.org/index.php/OWASP_LAPSE_Project

OWASP ZAP. (2020). OWASP. Retrieved from https://www.zaproxy.org/

Pérez, P. M., Filipiak, J., & Sierra, J. M. (2011). LAPSE+ static analysis security software:

27

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

Vulnerabilities detection in java EE applications. In Future Information Technology
(pp. 148–156). Springer.

Purdue University. (2018). CS 52700 - Software Security. Retrieved from
https://catalog.purdue.edu/preview_course_nopop.php?catoid=8&coid=82319

Pylint - python code analysis tool. (2020). Retrieved from https://www.pylint.org/

RIPS - A static source code analyzer for vulnerabilities in PHP scripts. (2017). Retrieved
from http://rips-scanner.sourceforge.net/#screenshots

Rothke, B. (2006). 24 Deadly Sins of Software Security. In Security Management (Vol. 50,
Issue 2).

SAFECode. (2018). Fundamental Practices for Secure Software Development. March, 38.

Seacord, R. C. (2005). Secure Coding in C and C++. Pearson Education.

Seacord, R. C. (2008). The CERT C secure coding standard. Pearson Education.

Seacord, R. C. (2014). The CERT C coding standard: 98 rules for developing safe, reliable,
and secure systems. Pearson Education.

Shostack, A. (2014). Threat modeling: Designing for security. John Wiley & Sons.

Software Engineering Institute (SEI) at Carnegie Mellon University. (2016). SEI CERT C++
Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems.
Retrieved from https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=494932

Software Engineering Institute (SEI) at Carnegie Mellon University. (2020). Curricula:
Software assurance Materials and Artifacts. Retrieved from
https://www.sei.cmu.edu/education-outreach/curricula/

Software Engineering Institute (SEI) at Carnegie Mellon University. (2021). Curricula:
Software assurance Materials and Artifacts. Software Engineering Institute (SEI) at
Carnegie Mellon University. Retrieved from https://www.sei.cmu.edu/education-
outreach/curricula/

Sullivan, B., Bonver, E., Furlong, J., & Orrin, S. (2013). Practices for Secure Development
of Cloud Applications. SAFECode & Cloud Security Alliance. Retrieved from
https://safecode.org/publication/SAFECode_CSA_Cloud_Final1213.pdf

Taylor, B., & Kaza, S. (2011). Security injections: modules to help students remember,
understand, and apply secure coding techniques. Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education, 3–
7.

The Owasp Foundation. (2010). OWASP Secure Coding Practices Quick Reference Guide.
OWASP. Retrieved from https://owasp.org/www-pdf-
archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf

28

Journal of Cybersecurity Education, Research and Practice, Vol. 2021, No. 1 [2021], Art. 5

https://digitalcommons.kennesaw.edu/jcerp/vol2021/iss1/5

Towson University. (n.d.). CLARK. Retrieved from https://clark.center/home

Towson University. (2020). Security Injections. Towson University. Retrieved from
http://cis1.towson.edu/~cyber4all/index.php/security-injections_home/

Veracode. (2020a). Veracode Dynamic Analysis. Veracode. Retrieved from
https://www.veracode.com/products/dynamic-analysis-dast

Veracode. (2020b). Veracode Static Analysis. Veracode. Retrieved from
https://www.veracode.com/products/binary-static-analysis-sast

Walden, J., & Doyle, M. (2012). SAVI: Static-Analysis vulnerability indicator. IEEE Security
and Privacy, 10, 32–39. doi: 10.1109/MSP.2012.1

Walden, J., & Frank, C. E. (2006). Secure software engineering teaching modules.
Proceedings of the 3rd Annual Conference on Information Security Curriculum
Development, 19–23.

Wenliang Du. (2020). SEED lab. Retrieved from https://seedsecuritylabs.org/

Wheeler, D. A. (2017). Flawfinder. Retrieved from https://dwheeler.com/flawfinder/

Whitney, M., Lipford, H. R., Chu, B., & Thomas, T. (2018). Embedding secure coding
instruction into the ide: complementing early and intermediate CS courses with
ESIDE. Journal of Educational Computing Research, 56(3), 415–438.

Xiaohong Yuan. (2019). Secure Coding. Retrieved from
https://clark.center/details/xhyuan/7bd8a138-4f36-45f7-acd7-dfae0a6691cf

Xie, T., Bishop, J., Tillmann, N., & De Halleux, J. (2015). Gamifying software security
education and training via secure coding duels in code hunt. Proceedings of the
2015 Symposium and Bootcamp on the Science of Security, 1–2.

Yuan, X., Yu, H., Hernandez, J., & Wadell, I. (2012). Integrating software security
education into computer science curriculum. Proc. of the 11th IASTED International
Conference on Software Engineering.

Zeng, M., & Zhu, F. (2020). Secure software development. Retrieved from
https://sites.google.com/a/uah.edu/pervasive-security-privacy/secure-software-
development

29

Zeng and Zhu: Secure Coding in Five Steps

Published by DigitalCommons@Kennesaw State University, 2021

	Secure Coding in Five Steps
	Recommended Citation

	Secure Coding in Five Steps
	Abstract
	Keywords

	tmp.1615513263.pdf.WfshN

