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ABSTRACT 

Effect of Lactoferrin to increase drug permeability of primary pulmonary mycobacterial 

granulomas  

Thao Khanh Thanh Nguyen, B.A. 

Advisory Professor: Jeffrey K. Actor, Ph.D. 

 

Despite extensive research and worldwide eradication efforts, Mycobacterium 

tuberculosis (Mtb) remains a major infectious pathogen to the human population with 

about 10 million cases of infection per year globally. The host-pathogen interaction, 

pulmonary granuloma formation, and Mtb adaptions result in increased complexity of the 

disease. Granulomas are formed by active immune responses generated during Mtb 

infection, and serve to contain and limit bacterial dissemination. The major mycobacterial 

surface mycolic acid, trehalose 6,6'-dimycolate (TDM), functions in multiple ways to 

enhance immune cell recruitment of sites of infection, to induce inflammation and 

granulomatous responses, and to initiate survival strategies for the organism inside 

macrophages. Mtb also benefits from establishment of a tightly formed granuloma, which 

both protects it from immune reactivity and serves as a physical boundary to limit  

penetration of drugs during therapeutic treatment. In order to demystify the complicated 

relationship between the host and pathogen, many studies have been performed around 

the primary Mtb-induced granuloma to combat the challenges that come with this specific 

immunopathology. We hypothesized that by altering the immunopathology of granulomas 

using lactoferrin, an immunomodulating agent, it will allow greater penetration of 
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therapeutics into the site of focal inflammation. Our lab has reported that oral bovine 

lactoferrin treatments during the innate immune response leads to significant modulation 

of the primary Mtb granuloma response and lessen Mtb burden in mouse lungs. Here, we 

show that such modulation during granuloma development can also be achieved by using 

recombinant human lactoferrin oral treatments to increase granuloma permeability and 

promotes drug penetration in both TDM-induced granulomatous inflammation as well as 

during active Mtb-infection. Findings from this work show lactoferrin’s potential as a host-

directed therapeutic that can be combined with current TB standard treatment to reduce 

pathological damage in the lungs post mycobacterial infection. 
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CHAPTER 1:  INTRODUCTION 

 

Tuberculosis disease as an epidemic 

 

It has been over a century since Robert Koch identified the etiological agent of 

human tuberculosis (TB) [2, 3]. However, to date, this pathogen continues to be a problem 

for human health. As a single infectious pathogen, Mycobacterium tuberculosis (Mtb) is one 

of the top 10 causes of death in middle to low-income countries [4]. In 2020, the Centers for 

Disease Control and Prevention estimated a fourth of the world’s population is infected 

with TB, with more than 500,000 cases of multidrug-resistant TB reported each year. In the 

United States alone, about 13 million people currently have latent TB. They show no 

symptoms of the disease,  but have the risk of reactivated infection later in life [5].  

 

Mtb is transmitted between individuals in close proximity by inhalation of Mtb-

containing droplets from a Mtb infected person following coughing, sneezing, or forced 

respiratory activities [6]. Though most people with latent TB will not develop TB disease in 

their lifetime, immune compromised individuals, such as HIV-positive people, are at the 

highest risk to develop active TB infection from the latent TB state [7]. According to the 

American Lung Association [8], active TB symptoms include, but are not limited to, a 

persistent coughs that lasts more than three weeks, weight loss, fever, chills, and night 

sweats. More severe symptoms are fatigue, hemoptysis (coughing up blood), bone pain, 

and shortness of breath. There are four first-line antimicrobials drugs used in standard TB 
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treatment regimen: isoniazid, rifampicin, pyrazinamide and ethambutol [9]. Treatment for 

TB lasts much more than other bacterial infections and takes 180 days of medication in 

average [5]. However, some Mtb strains can display three different types of phenotypic 

resistance to antibiotics. The first and most familiar is genetic resistance – some Mtb strains 

now possess mutations that produce resistance phenotypes to particular drugs, which is 

now the biggest threat to human as they continue to evolve while we exhaust our 

treatment options. The second is when resistance occurs as Mtb become dormant, resulting 

in their refractory to agents that inhibit active metabolic processes. Finally, there is also 

natural resistance consists of physical barriers and efflux pumps that reject the penetration 

of antibiotics into these bacteria [6, 10].  

 

Despite extensive research and available low-cost treatments for most Mtb strains, 

Mtb remains a major public health threat. Recent forward progress in slowing spread of 

disease was heavily reversed due to the current Covid-19 pandemic. Currently, 

approximately 10.0 million active cases and 1.5 million deaths due to Mtb were reported in 

2020 globally [11]. As SARS-CoV-2 became a more urgent threat to global health, essential 

resources such as diagnostic equipment, staff, relocation of social care budgets, and even 

hospital beds were allocated to Covid-19 treatment and inpatient care. Pandemic related 

lockdowns prevented early diagnostic identification of Mtb infection spread, and social 

distancing guidelines disturbed on-time treatment schedules for Mtb patients. Therefore, 

eradicating efforts are significantly delayed due to the drastic effect on health and society 

of Covid-19 since early 2020, with world-wide Mtb detection efforts have been obstructed 
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heavily, with WHO’s predictions of a 0.2–0.4 million decrease in number of infected 

individuals receiving treatment by the end of 2020 [11].  

 

Tuberculosis Disease 

 

Mtb was identified in the 1880’s through a series of experimental works by Robert 

Koch as the source for cavitary disease that can lead to chronic lung disorder in human [2]. 

Tuberculosis manifests disease in two clinical stages [12-14]. The initial stage (primary 

infection) is readily controlled by individuals with competent immune function. In fact, the 

majority of individuals exposed to Mtb are able to contain and control infection in a matter 

of weeks without extreme clinical pathology. The primary infection is relatively contained, 

with a loosely structured granulomatous nodule comprised of central macrophages and 

surrounding adaptive cells. Most clinical disease is that which is seen during post-primary 

stages of infection. In this case, re-infection (or reactivation of latent organisms) by Mtb 

induces a pneumonia exudative reaction that can progress to a necrotic lesion [15]. This 

lesion is hypothesized to be controlled by strong and directed adaptive immune reactivity 

[16]. The other type of pathology is a relatively contained walled-off nodular tubercle, or 

caseating granuloma, where organisms may reside and induce continued immune 

responsiveness [16, 17]. What sets Mtb away from other bacterial infections is its silent 

attack on the human body resulting in granuloma contained organisms in the majority of 

post-primary infected people, in which they do not display clinical symptoms but still carry 

either persistent bacteria or strong immune reactivity that reflects on the positive TB skin 
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test [18-20]. It is easy to imagine a state of latency in which the risk of reactivation, of post-

primary Mtb infection, later in life due to weakened immune system that fails to continue 

inhibiting the growth of latent bacilli. Such latent (post-primary) infection causes the 

majority of TB cases and most of the bacilli transmission [21]. Histologically, post-primary TB 

is characterized as a lipid pneumonia with foamy macrophages and mostly CD4+ 

lymphocytes present in the alveoli. A pathological effect is seen when lung tissue ruptures, 

hypothesized as due to immune reactivity towards an accumulation of mycobacterial 

mycolic acid antigens [22].  Clinically, this coincides with observed caseating granulomas. 

Such pulmonary cavitary lesions causes shortness of breath, fatigue, and permanent tissue 

damages. Immune responses, likely originating from pneumonia, lead to destruction of 

bronchial passages; subsequent and coughing produces infectious aerosols that can infect a 

new host [17, 21, 23, 24].  

 

Tuberculosis model – The TDM Granuloma 

 

Much of our observation of disease pathology in humans comes from autopsy of 

lung disease where pneumonia and caseating granulomas both occur.  While the true 

establishment of mechanisms involved in post-primary infection are still under 

investigation, it is clear that the granuloma plays a major role in containment of organisms.  

Our laboratory understood the need to investigate early innate responses that control initial 

processes during infection.   Hence, the study of primary infection relied on the 
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establishment of animal experimental models which permitted direct investigation into 

early events that induce the containment response during initial infection.  

 

It is essential to study the disease in an animal model that can mimic the primary 

signature granulomatous response to Mtb. Early experiments identified a cell wall 

associated component that was a major factor responsible for the interaction between 

organisms forming the serpentine cords [24, 25].  This “factor” was later identified as 

Trehalose 6,6’-dimycolate (TDM), which has been confirmed as the most abundant 

component of the lipid-rich mycobacterial cell wall.  Experimentally, TDM was found to be a 

useful molecular tool to mimic the primary granulomatous response seen in Mtb infection 

[26]. Now known as the main mycolic acid of the outer layer of the organism, TDM has been 

studied for many decades and further identified as the most prevalent virulence factor of 

Mtb that induces immune pathogenesis. The mouse is an accepted and appropriate animal 

model system to study how cord factor/TDM initiates the primary granulomatous pathology 

induce in lung tissue.  

 

Another major property of TDM is that it is known to alter the local 

microenvironment within macrophages to assist in organism survival [25, 27]. TDM plays a 

crucial role in Mtb survival; when removed from the organisms, their ability to survive in 

macrophages is significantly decreased and can be restored when purified TDM is 

reintroduced [28-30]. Furthermore, TDM has been shown to contribute significantly to the 

virulence of Mtb by reducing phagosome acidification and fusion with lysosomes. TDM can 
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also alter the expression of antigen presenting and T-cell activating markers of macrophages 

such as MHC II, CD40, CD80, and CD86 [30, 31].  

 

TDM’s virulent and toxic properties lie within its unique structure. The molecule 

consists of two trehalose molecules with a long mycolic acid chain of 50-60 carbons, with an 

extended alpha-carbon branch, that binds to each trehalose molecule. The unique “kinks” in 

the carbon chains are hypothesized to be responsible for its rigidity and biological activities 

in a way that allows TDM to be toxic or non-toxic, depending on its presentation [32, 33]. 

Elimination of this “kink” affects organism virulence [34, 35].  TDM is non-toxic when it is in 

the form of micelles due to its hydrophobic tails in an aqueous solution, but becomes toxic 

when forms a monolayer on hydrophobic surfaces. When it is given as an oil-based 

emulsion that produces roughly 1.0 m droplets, purified TDM alone can induce innate 

immune response within the lung tissues where pro-inflammatory cytokines and chemokine 

productions are increased and immune cells are recruited to establish primary granulomas 

that mimics primary Mtb infection [36]. Hence, its application in producing primary-

infection like pathology in murine lungs has been utilized in studies of primary Mtb infection 

and granulomas formation [37].   

 

Innate Immune Response to Mtb in Mouse Model 

 

Development of Mtb animal models have allowed generations of scientists to 

investigate Mtb primary infection despite the lack of untreated human specimens. Multiple 
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animal species have been instrumental to investigate Mtb pathology [25-30].  For simplicity, 

this introduction will specifically focus on infections within the mouse model which was 

used for all parts of this study. Overall, Mtb primary infects the lungs and causes major 

disruption to lung pathology by inducing inflammation structures called granulomas [31, 

32]. Granuloma development is the hallmark of Mtb infection and plays an essential role in 

both bacterial containment and symptom development [33]. During primary Mtb infection 

in the mouse, Mtb associated factors are involved in the recognition and activation of host 

cells within the bronchial regions and alveolar sacs, leading to uptake by alveolar 

macrophages [32, 34]. This interaction triggers a series of immune responses initiated via 

the production and release of cytokines by infected and responding macrophages [35-38]. 

For example, TDM, an abundant mycobacterial mycolic acid as introduced earlier, is 

recognized by Mincle (macrophage-inducible C-type lectin) on the macrophage surface 

driving M. tuberculosis -host recognition [39], which significantly initiates the 

granulomatous response [21]. Activated macrophages subsequently release pro-

inflammatory mediators, such as TNF-α and IL-1β [37], along with additional chemotactic 

factors to further recruit immune cells to areas of infection [36, 40, 41]. Over time, 

additional recruited immune cells, such as foamy macrophages, epithelioid cells, and 

Langhan’s giant cells, participate in formation of organized, sphere-shaped primary 

inflammatory structures at the infected site called granulomas [31, 42]. Disease 

development can happen even during robust immune response so that, although 

successfully limit the infection within the granuloma [33], allows bacteria to survive and 

grow within the infected macrophages [43]. This happens because of various reasons: Mtb 
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have adopted mechanisms to survive within macrophages by persisting without causing 

inflammation [44], preventing phagolysosome fusion [45, 46], recruited naive macrophages 

during the immune response can become new potential sites for Mtb to shelter and 

replicate [47], and the dense physical nature of the granuloma limits the penetration of 

anti-mycobacterial chemotherapy [48, 49]. These factors can lead to the bacterial survival, 

challenges in treatment efforts, and increase the risk of latent Mtb infection. It is believed 

that mature granulomas is the balance between the arrest of organisms to proliferate due 

to sufficient adaptive immunity [50] and the survival of intracellular Mtb despite killing 

mechanisms [43, 51]. 

 

Macrophages 

 

As a major factor of the innate immunity, macrophages possess mechanisms that 

allow it to control Mtb proliferation. Once activated, macrophages exercise cytotoxic effects 

that produces nitric oxide (NO) and reactive nitrogen intermediates, which have been 

shown both in vitro and in vivo to be important for protection against Mtb [52-54]. As an 

antigen-presenting cell, macrophages also play a key role in presenting digested Mtb 

antigens and produce IL-12 for the initiation of adaptive immune response by lymphocytes 

[55, 56]. 

 

Despite its ability to eliminate Mtb, macrophages also contribute to the persistent 

nature of Mtb. Alveolar macrophages play the crucial role of recognizing and phagocytosing 
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Mtb when first encounter them in the alveoli using mannose receptors, complement 

receptors, and scavenger receptors [57-59]. Typically, the phagosome then undergoes 

maturation processes and fuses with lysosome to kill and break down bacteria with 

organelle acidification and activated lytic enzymes. However, Mtb has adapted to survive 

within the phagosome by using TDM to prevent the phagolysosomal fusion, which allows it 

to hide within macrophages from other immune factors and even chemotherapies [45, 46, 

52]. 

 

It has been recently discovered that macrophages can polarize towards the 

classically activated (M1) or the alternatively activated macrophages (M2). Macrophage 

polarization is stimulated by the microenvironment surrounding naïve macrophages [60]. 

M1 macrophages are induced by cytokines such as IFN- and TNF-α, and bacterial antigens 

such as lipopolysaccharide (LPS). Once committing to the M1 phenotype, macrophages 

produce more pro-inflammatory cytokines such as IFN-, TNF-α, and IL-1β, and other 

molecules important for cytotoxic effects such as reactive oxygen species (ROS) and 

inducible nitric oxide synthase (iNOS). On the other hand, cytokines such as IL-4, IL-10, and 

IL-13 can induce M2 polarization in macrophages, resulting in production of anti-

inflammatory cytokines such as IL-10 and TGF-β responsible for immune-regulatory and 

tissue-remodeling [61-63]. In mice, markers for murine M1 macrophages are identified as 

high expression of CD38 (T-cell receptor) and CD86 (transmembrane protein that both 

activates and inhibits T-cells), and M2 macrophages have high levels of CD206 (mannose 

receptor) and EGR2 (transcription factor) [64, 65]. Macrophage populations from Mtb 
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infected mouse lungs show plasticity of response over time [60, 66]. Though it has only 

been investigated recently, evidence shows that the macrophage polarization is closely 

related to the pathogenesis of Mtb infection and chronic obstructive pulmonary disease. In 

TB mouse models, the early stages of infection and granuloma establishment are marked 

with high level of M1 macrophages detected up to 30 days post-infection, while M2 

macrophages levels are increased towards the middle and later phases when inflammation 

is resolved [67-69]. 

 

Host-directed therapy in Mtb treatment 

 

As mentioned above, it has been established that Mtb can manipulate the immune 

system to favor its survival at the molecular level [70]. Its adaptation to survive within 

macrophages after phagocytosis [44-46], an immune cell population that was meant to 

engulf and digest foreign organisms, was only one piece of the puzzle. Studies have shown 

that Mtb virulence factor alone, TDM, can increase macrophage recruitment to the infected 

sites for new “hiding” opportunities [47] and induces host cell apoptosis [71]. Mtb can also 

delay the adaptive immune response by limiting stimulated dendritic cells’ migration from 

alveolar spaces in the lungs to lymph nodes, which slows down the initial T-cell activation 

[72-74]. Therefore, adjunctive treatments aimed at redirecting the immune system are 

critical alternative approaches to counteract Mtb manipulative strategies [75]. 
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Due to the pathological damage and therapeutic challenges caused by Mtb 

adaptation to its survival within granulomas, researchers have been investigating 

immunotherapy approaches that can improve lung pathology and increase drug penetration 

to fight hiding bacteria inside granulomas. Novel approaches to Mtb treatment include 

host-directed therapy [75, 76] which focuses on two major fronts; the first sharpens 

immune response, such as immune-based treatments [77], while the second alters the 

resultant immunopathology [78]. An example of immune-based treatments includes agents 

that target the macroautophagic compartment, such as vitamin D and retinoic acid which 

increase phagocytosis and augment the lysosomal degradative process to increase Mtb 

removal inside macrophages [79]. Ibuprofen, an anti-inflammatory drug, also showed its 

potential as an adjunct treatment for Mtb infection by enhancing mycobactericidal effect of 

pyrazinamide and alleviate pathological damage in the lungs [77, 80, 81]. These immune-

based approaches have significant potential, demonstrating superior disease outcomes in 

mouse models. However, these approaches face many challenges such as conflicting clinical 

trial results [82, 83] and drug delivery to macrophages inside established granulomas [84].  

 

On the other hand, therapies that target pathologies are also valid as potential 

clinical candidates. A well-known example of the immunopathological alteration approach is 

blocking excess TNF-α, a key pro-inflammatory cytokine required for granuloma formation 

and proper recruitment of immune cells to form granulomas, to reduce lung pathological 

damage. TNF-α inhibitors have been used to treat other inflammatory diseases effectively 

[85-87]. However, its major disadvantage is the increased risk of bacterial dissemination; 
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abolishing the granuloma containment modality runs the risk of Mtb reactivation [88-91]. 

Another example of the second approach is granuloma modulation by lactoferrin [92]. 

Lactoferrin, a glycoprotein known for its ability to bind iron, has been extensively studied 

for its role as an immune modulator in host defense in infected patients and disease 

models; lactoferrin has been shown to boost immune memory response in vaccine models, 

while reducing pro-inflammatory response in LPS-exposed mouse models [93-97]. In recent 

years, research has shown significant modulation of the Mtb primary granuloma response 

using lactoferrin treatments. Bovine lactoferrin significantlly reduced inflammatory 

pathology in TB-infected mice [98]. Human lactoferrin was also shown effective to limit 

inflammation in the non-infectious TDM-induce granuloma mouse model [78, 99]. 

 

Lactoferrin as a therapeutic approach to TB treatment 

 

Lactoferrin is a single polypeptide chain glycoprotein that consists of about 690 

amino acid residues and folds into two globular structures consisting of iron binding sites 

[100, 101]. It was found primarily as a glycoprotein produced by epithelial cells in mucosal 

secretions but is also made and stored in neutrophilic granules functioning as an innate 

immune response component [102]. Overall, lactoferrin has been shown to involve in 

protection during multiple microbial infections and prevention of systemic inflammation 

[97, 103-107]. Lactoferrin’s biological functions during infections are known as three main 

effects: first is the bacteriostatic effect by removing the iron supply from environment to 

slow down bacterial growth, second is the bactericidal effect due to lactoferrin’s affinity to 
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bacterial lipopolysaccharides (LPS) in Gram-negative organisms, and third is the immune 

modulating effect where it can either boost or downregulate the immune response 

depending on the current immune status [108-116]. As  preventive measures, lactoferrin 

can also prevent infection by inhibiting binding of pathogens with receptors used for entry 

on host cells [117-119] and boost immune memory response in vaccine models [94, 95]. 

 

Known as an immune modulator, lactoferrin can affect the immune response by 

modulating several immune cells’ functions. During innate immune response, lactoferrin 

can reduce the production of proinflammatory cytokines produced by activated or infected 

macrophages such as TNF-α, IL-6, and IL-1β [78, 115, 120] and enhance phagocytic activity 

of macrophages [120, 121]. Similarly, lactoferrin has been shown to reduce production of 

stimulation-induced cytokines such as TNF-α, IL-12, and IL-1β in dendritic cells – another key 

antigen presenting cell population during innate immune response [122, 123]. As infection 

progresses and leads to the adaptive immune response, lactoferrin has been shown to 

increase surface expression of CD40 and IL-12 production of macrophages, which are key 

co-stimulatory factors responsible for activating T-cells and increasing secretion of IFN-γ 

from T-cells respectively, at the sites of infection [124-126]. In different infectious disease 

models, lactoferrin can either favored a T-helper 2 response [127, 128] or increase the T-

helper 1 response [129]. In murine B-cells, lactoferrin can also promote maturation of B-

cells and increase their ability to promote antigen-specific T-cell proliferation [130]. These 

immune modulating effects are the results of lactoferrin binding to different receptors on 

immune cells; other than binding to lactoferrin receptor (LfR), which are found on the 
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surface of monocytes, T-cells, and B-cells [131-134], lactoferrin can also interact with a 

variety of cell surface receptors such as Toll-like receptor 4 (TLR4) and CD14 on 

macrophages, and CD22 on mature B-cells [135]. 

 

In the case of host anti-Mtb response, previous studies have shown its modulating 

effect during primary infection by reducing proinflammatory response that is responsible 

for pathological damage in the lung tissues. Latest primary granuloma models show that 

bovine lactoferrin significantlly reduced inflammatory pathology in TB-infected mice [98] 

and human lactoferrin can similarly limit inflammation and granuloma size in the non-

infectious TDM-induce granuloma mouse model [78, 99]. Such anti-inflammatory response 

in the lactoferrin-treated mice, along with other data showing lactoferrin reduced pro-

inflammatory phenotypes in macrophages [136, 137], suggests that lactoferrin had a 

modulating pro-inflammatory response on granulomas. This thesis extended theses 

observations to examine if recombinant-human lactoferrin can modulate granulomatous 

pathology and its permeability, and if we can utilize such effect to increase drug distribution 

during innate immune response or granuloma formation. The effect of lactoferrin on the 

permeability of granulomas to fluoroquinolones is examined in both TDM-challenged and 

Mtb-infected mouse model, while administered as a prophylactic (prior to granuloma 

formation) or therapeutic (after granuloma establishment) intervention during primary Mtb 

infection. In addition, effects of lactoferrin treatment on the expression of M1/M2 

phenotypes as well as endothelial-lined vessel structures are examined within the 
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granuloma, shedding more light into the potential mechanisms behind the pathological and 

drug distribution changes. 

 

Summary of Thesis 

 

This thesis explores how macrophages polarize during primary granuloma 

development and how lactoferrin, as an immune modulator, alters pathogenesis of primary 

infection in a way that makes increased drug distribution within granulomatous structures a 

possibility. The first study verified macrophage polarization into M1 phenotype during the 

innate immune response in the TDM-induced model of primary Mtb granulomatous 

response (Chapter 2). Once the model is validated, the second study investigated the effect 

of lactoferrin to alter drug permeability of primary pulmonary mycobacterial-like 

granulomas (Chapter 3). Mtb infection is a very complex disease that progresses due to 

both bacterial growth and persistent immune response. Therefore, the effect of lactoferrin 

to alter drug permeability of primary granulomas was evaluated in the last study by giving 

Mtb-infected mice lactoferrin prophylactically and therapeutically, as a proof of concept to 

explore potential differences in effectiveness of each intervention timing (Chapter 4). 

Finally, the effects of lactoferrin and its immune-modulating mechanisms, as well as future 

directions, are discussed in Chapter 5.    
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CHAPTER 2:  MYCOBACTERIAL TREHALOSE 6,6’-DIMYCOLATE INDUCED M1-TYPE 

INFLAMMATION 

 

This work is reprinted from The American Journal of Pathology, Volume 190, Issue 2,Thao K T 

Nguyen, John d'Aigle, Luis Chinea, Zainab Niaz, Robert L Hunter, Shen-An Hwang, Jeffrey K 

Actor, Mycobacterial Trehalose 6,6'-Dimycolate-Induced M1-Type Inflammation, Page 286-

394, Copyright (2019), with permission from Elsevier. 

(https://doi.org/10.1016/j.ajpath.2019.10.006) 

 

Introduction 

 

Dogma in tuberculosis pathology is the notion that induction of a strong T-helper 1 

lymphocyte (Th1) phenotype is critical in maintaining protective health during primary 

mycobacterial infection [138, 139].  Development of this phenotypic outcome is based on 

critical aspects of the macrophage and its initial interactions with the infectious organism 

[140-142]. Multiple organism-induced mechanisms have been identified that function to 

evade host responses [143, 144], essentially limiting effectiveness of this avenue of Th1 

lymphocyte response. Many of these evasive properties directly affect macrophage 

functions [145]. The relatively recent realization that macrophage populations can be 

subdivided into pro- and anti-inflammatory subsets has sparked a revolution in 

understanding the complexities of innate responding cells to subsequent immune 
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outcomes; this has important consequences on ensuing granuloma pathologies post 

infection [146-148]. 

 

The primary stages of mycobacterial infection manifest with a robust pro-

inflammatory response in order to effectively mitigate organism dissemination. Indeed, 

these host responses induce hemorrhagic inflammation and vascular occlusion [149, 150], 

that coincide with changes to fibrinolytic activity and thrombosis [151], which are in many 

ways beneficial for limiting spread of microorganisms. Certainly, the establishment of a 

granuloma is considered protective [43, 152], even though it provides a specialized niche 

within the lung for organisms to replicate. 

 

A major molecule influencing acute reactivity upon entry of Mtb into the host is the 

mycobacterial cord factor component trehalose-6,6’-dimycolate (TDM). Multiple models of 

the TDM-induced pulmonary granulomatous response have been studied in mice, all of 

which have common features to those identified in early acute primary immunopathology 

of the human host. Initially, Block and Noll (1955) utilized cord factor to mimic pathologies 

seen in early primary human disease [153], including changes to fibrinolytic activity [149, 

150] and thrombosis [151]. Perez, et al., successfully repeated these experiments using 

purified TDM [154]; Donnachie, et al. [155], and Hwang, et al. [156], built on this using 

molecular tools to further examine early events in extravascular coagulation. Alternate 

models of the primary TB response were developed using administered TDM to initiate a 

synchronized transient granulomatous response [157-159]; these models are extremely 
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effective to assess monocyte-macrophage factors involved in primary granuloma 

pathogenesis. Indeed, modifications to this model have allowed further insights into how 

macrophages utilize required receptors to initiate the cytokine cascades [160], and how 

these events  can push the macrophages to elicit hypersensitive responses [161, 162].  

 

The common link between the different models is the relatively rapid initiated pro-

inflammatory macrophage responses elicited in vivo by TDM. Here, we desired to further 

examine the nature of the macrophage phenotype response to TDM, and determine the 

histopathological evidence to support a hypothesis linking TDM to the presence of recruited 

macrophage polarization to an M1-like phenotype. Evidence presented in this report uses 

histologic markers and flow cytometry, immunostaining, and ELISA methods to link TDM as 

a driver for the M1-like macrophage phenotype during recruited induction of the primary 

granulomatous pathology. 

 

Materials and Methods  

 

Mice. Female C57BL/6 mice (Envigo, Houston, TX) were five to six weeks of age, and 

approximately 20g weight, at study initiation. Animal work was performed at the University 

of Texas Health Science Center (UTHSC) animal welfare committee, according to protocols 

detailed in approved documents HSC-AWC-16-0140 and HSC-AWC-17-0089. 
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TDM Induced Lung Pathology. Mycobacterial-derived TDM (cord factor) (Enzo Life 

Sciences, Farmingdale, NY) was solubilized in hexane:ethanol, at a ratio of 9:1. Material was 

evaporated by a stream of air. The TDM oil/water emulsion was prepared as previously 

described [159]. Briefly, evaporated TDM (25 g/mouse) was homogenized in Drakeol (2 

l/mouse) (Penreco, Indianapolis, IN). Then 48 l/mouse of DPBS 1x (Dulbeccos’ Phosphate 

Buffered Solution, Cellgro) with 0.2% Tween-80 (Mallinckrodt, Hazelwood, MO) was added; 

the mixture was homongenized in a glass tube and Teflon pestle for 1 minute to produce an 

oil/water emulsion. The TDM was intravenously (IV) given at a volume of 100 l per animal. 

Control mice received material formulated with no addition of TDM in oil. Emulsion only 

controls did not exhibit inflammation, nor did they exhibit cytokines production, at the 

times described here, as was previously reported and detailed [158, 163]. All mice were 

sacrificed at times indicated (7 days after injection of formulated material.  

 

Histological Assessment. Mice were sacrificed, and lungs were immediately perfused 

with a solution of 1mM EDTA in DPBS. Lungs were weighed, sectioned, and evaluated for 

pathology and histological results. Tissues were fixed in 10% buffered formalin for histology 

(Fisher Scientific, Pittsburg, PA). Specimens were processed by the Histology Laboratory at 

the UTHSC McGovern Medical School (Houston, TX); tissues were embedded in paraffin 

blocks and then 5 μm thick sections were subsequently stained with hematoxylin 

(Surgipath, Richmond, IL) and eosin (Richard-Allen Scientific, Kalamazoo, MI).  
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Lung weight index (LWI). Our laboratory utilizes an accepted lung weight index (LWI) 

which  calculates as an approximation of lung inflammation intensity. The following 

equation was used for calculation of the gross tissue inflammation due to TDM induced 

pathology, as used in prior studies [158, 164, 165]: 

 

 

 

Computerized analysis. High resolution scanned images of H&E-stained slides were 

scanned for computerized analysis of lung inflammation using Motic DSAssistant software 

(Kowloon Bay, Kowloon, HK). Quantitation of inflammation was performed in two steps 

using ImageJ (Version 1.52o 23 April 2019, National Institutes of Health, Bethesda, MD). 

Lung area was initially quantified by separation of the image’s scale from background. 

Minimum and maximum values for hue, saturation, and brightness of the image were set as 

follows: 120, 255; 0, 255; and 0, 255, respectively. Total cell area measurement was 

calculated using a modified version of the procedure detailed in the online ImageJ stained-

sections example directory (https://imagej.nih.gov/ij/docs/examples/stained-

sections/index.html; version 1.52a), where peak threshold was set at 164 for all digitized 

slides analyzed. Methods were similar to published materials [166]. Lung inflammation was 

calculated as a percentage of total area occupied by cell area; values were averaged within 

treatment groups and normalized to that of group non-treated controls. 

Lung weight (g) x 1000

Mouse weight (g) / 10

10

LWI = 

Lung weight (g) x 1000

Mouse weight (g) / 10

10

LWI = 

https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
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Lung cytokine production.  A weighed section of lung was excised, then 

homogenized, then incubated at 37oC and 5% CO2  for 4 hours in Dulbecco’s Modified 

Eagle’s medium (DMEM) containing 50 μg/ml L-Arginine, 50 μg/ml HEPES, 100 μg/ml 

penicillin, and 50 μg/ml gentamycin, and 10% fetal bovine serum. Collected supernatants 

were spun to remove debris, then assessed by enzyme-linked immunoassay (ELISA).  

Production of TNF-α, IL-1β, IL-12p40, IL-6, TGF-β and IL-10 was determined by 

manufacturer’s instructions (DuoSet kits, R&D Systems, Minneapolis, MN). Supernatants to 

detect TGF-β were pretreated with 1:5 ratio of 1N HCl, then neutralized with same volume 

1.2N NaOH/0.5M HEPES. The average of duplicate wells was determined using a standard 

curve produced by reactivity to manufacturer’s supplied recombinant molecules. Detection 

sensitivity limit was at least 32 pg/ml, according to manufacturer product details. 

 

Immunohistochemical analysis. The large right lobe of each lung was collected and 

fixed in 10% buffered formalin. The fixed lung tissue was stained with hematoxylin and 

eosin (H & E) using standard procedures. Assessment was performed using 

immunohistochemistry for integrin family member CD11b (Absolute Antibody, Cat# 

Ab01114-23.0; Wilton, UK) [167], diluted at 1:2000, was performed according to 

modification of manufacturer’s instructions (20 minutes at low pH), and subsequently 

visualized using standard HRP techniques and DAB chromogen using Dako reagents (Dako, 

Agilent, Santa Clara, CA). In a similar manner, M1-like marker CD38 (Invitrogen, 

ThermoFisher, Cat# 14-0381-02), diluted at 1:1000, was used for visualization on serial slide 
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sections. Henatoxylin counterstained slides were viewed by a trained pathologist, with 

descriptive results obtained in an experimentally blinded manner.  

 

Flow Cytometry Analysis. Lungs were extracted from WT and TDM treat, 

homogenized by hand, and underwent a 30-minute Collagenase/Hyaluronidase (StemCell 

Technologies) and DNAse I (Sigma) incubation in sterile filtered RPMI-1640  with 1% 100X 

pen/strep and 2.5% HEPES (Thermo Fisher Scientific), and 5% HI FBS 9Corning). Enzymatic 

digestion was quenched with addition of RPMI mixture before lung tissue was plunged 

through a 70-micron cell strainer. Cells were pelleted at 4C for 5 minutes at 450rcf (g). Cell 

pellets were re-suspended in a 70% GE Healthcare Percoll (Cat# 17-0891-01) gradient and 

underlaid in 40% Percoll followed by a 20-minute 22C 500rcf centrifugation with no break 

and slow acceleration. Cells were collected at the 70-40 Percoll interface before being re-

suspended in sterile filtered PBS mixture containing 2% HI FBS and 1mL of 0.5M EDTA 

(Thermo Fisher Scientific). Surface markers chosen to delineate murine M1-like and M2-like 

macrophages were based on published data from Jablonski, et al., [65], later detailed by 

Orecchioni, et al. [168]. Similar findings were identified in human monocyte-derived 

macrophages [169].Cells were stained in accordance with manufacture recommendation, 

using Live Dead Aqua (eBioscience, L34966) for 15 minutes, then FC (antibody receptor) 

blocked with Anti-Mo CD16/CD32 (eBioscience, 14-0161-86) for 15 minutes. Staining used 

the following antibodies against specific receptors: CD38 (Biolegend, Cat# 102728) APC/Cy7, 

CD86 (Biolegend, Cat# 105014) PE/Cy7, CD206 (Biolegend, Cat # 141704) FITC, EGR2 

(eBioscience, 17-6691-82) APC, CD11b (Biolegend, Cat# 101208) PE, and CD45 (eBioscience, 
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48-0451-82) eFluor 450 for 20 minutes. Cells were fixed with 2% paraformaldehyde, and 

evaluated on a Beckmen Coulter Cytoflex S flow cytometer (Model No. B75442). Data was 

then analyzed using FlowJo V10 (Becton Dickinson). 

 

Statistical Analysis. Collected data was compared across groups, and against naive 

mice or mice challenged with vehicle formulated without TDM. Analysis used an unpaired t-

test, or used one-way ANOVA. The differences between means were considered significant 

at a level of p≤0.05. Generated data points were compiled using GraphPad Prism (San 

Diego, CA) and are presented as a representative value obtained from multiple 

experimental repeats (sets of 2 or 3). Experiments had an N of 4 to 6 mice.  

 

Results 

 

TDM Induced Pathology: Acute Granulomatous Response. 

C57BL/6 mice injected with Mtb derived TDM (25 g/mouse) in oil/water given 

intravenously developed inflammation in lung tissue of (Figure 1). Broad lung inflammation 

was assessed as lung weight index (LWI) at 7 days after IV TDM challenge; This time point 

reflects peak granulomatous response induced by TDM [158]. Acute treatment increased 

LWI significantly. TDM treated mice had an average LWI of 1.60 +/- 0.49 units, compared to 

naïve controls (0.97 +/- 0.03 units; p≤0.05). The LWI was similar to computerized 

assessments of lung inflammation. Analysis of digitized lung histograms post TDM 
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administration confirmed significant parenchymal inflammation and presence of 

granulomas throughout pulmonary tissue.  
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Figure 1. Comparative Gross Pulmonary Inflammation during TDM Induced Pathology. 

Lungs from mice given TDM (25 g; IV) were assessed after 7 days and compared to control 

naïve mice. The lung weight index (A) was calculated to quantify gross pulmonary 

inflammation. Digital analysis of area occupied due to cellularity (B) confirms induction of 

inflammatory response. Results represent mean ± standard error of the mean (SEM). Similar 

data was obtained in 3 repeated experiments; 4-6 mice were included per group, per 

experiment. *; p≤0.05. Histologic examination of lungs at day 7 post TDM administration 

revealed acute granulomatous response culminating in high levels of monocytic infiltration, 

with increased presence of focal macrophages (D), versus non-TDM treated control mouse 

lungs (C). Higher magnification reveals “foamy” vesiculated macrophages aggregating 

between regions of relatively normal parenchyma. Formalin fixed lung sections were 

hematoxylin and eosin stained (H&E); histopathology shown at 10x magnification; inset at 

40x, scale bar = 300m. Sections represent data obtained from repeated experiments. 4-6 

mice were in each group, per experiment. 
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Histological Assessment of TDM Induced Pathology. 

Mice administered TDM IV showed a focal accumulation of macrophages at day 7 

post injection (Figure 1). The pathological reactivity demonstrated widespread 

inflammation and severely reduced open alveolar space. Small focal hemorrhagic petechiae 

were present as part of the inflammatory response. Lymphocytic infiltration to lung tissue 

occurred around regions where granulomas coincided with vasculature. Slight hemorrhage 

was present throughout the tissue. There was visual evidence of occlusion of intermediate 

or small sized blood vessels. Activated macrophages with intracellular vesicles were 

predominant in regions of reactivity; limited to negligible accumulation of lymphocytes 

occurred within the focal response. General edema was not a major component of the 

response.  Naïve (no TDM) mice did not demonstrate changes to lung architecture. Lungs 

from control mice exhibited normal pulmonary parenchyma; there were no noticeable 

cellular infiltrates, and limited presence of monocytic or leukocytic foci. 

 

Pro-inflammatory Response in Pulmonary Tissue of TDM Treated Mice. 

It was previously reported that administration of TDM results in a strong pro-

inflammatory response [159]. Cytokine assessment was assessed by ELISA to confirm these 

findings. Lungs were examined at 7 days post administration of TDM. Significant production 

of pro-inflammatory mediators TNF-α, IL-1β, and IL-12p40 were observed relative to control 

mice; IL-6 was also elevated in the TDM treated group (Figure 2).  Anti-inflammatory 

mediating cytokines were also evaluated; while there was minor increase in production of 
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TGF-β, it was not a significant change. There was no change, relative to controls, in IL-10 

production (Figure 2).  
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Figure 2. Pro- and Anti-inflammatory Cytokine Mediators in Lung Tissue during TDM-

Induced Response. ELISA assessment of inflammatory cytokines revealed increase in 

production of TNF-α, IL-1β, IL-12p40 and IL-6 at day 7 post administration of TDM, 

compared to non-TDM treated control mice. Lungs of mice receiving TDM did not reveal 

significant changes in production of TGF-β and IL-10. Results represent mean ± SEM, 

representative data was collected from 3 independent experiments in which 4-6 mice were 

in each group per experiment. *; p≤0.05. 
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Identification of the M1-like Macrophage Phenotype within Regions of TDM Granulomas. 

The extent of macrophage phenotypic polarization was investigated using flow 

cytometry. Lungs treated with TDM were dissociated, and individual cells were further 

examined for presence of M1-like and M2-like surface markers. Populations were initially 

gated on infiltrating monocytic macrophages (CD11bhiCD45hi) [170, 171]. Figure 3 depicts 

data collected for M1-like markers CD38 and CD86, along with assessment for expression of 

the M2-like markers CD206 and the early growth response gene-2 (EGR-2). Treatment with 

TDM resulted in an overall accumulation of CD11bhiCD45hi cells that expressed higher M1-

like markers, but not the M2-like surface proteins. Specifically, CD38 was present on 39.50% 

+/- 3.33% on infiltrating macrophages, which was significantly elevated when compared to 

the non-treated WT group controls (7.76% +/- 2.24%; p≤0.001). Additionally, CD86 was 

present on 19.34% +/- 1.48% macrophages, compared to non-treated controls (5.31% +/- 

0.61%; p≤0.001). Figure 3 also lists the values for markers examined. CD14 was also highly 

elevated in this population (57.74% +/- 4.06%; data not shown). 
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Figure 3. Flow Cytometry Assessment of M1/M2-like Markers on Infiltrating Monocyte-

Macrophages. Isolated cells obtained from lungs at 7 days post administration of TDM were 

examined by flow cytometry for expression of M1-like markers CD38 and CD86 (top), and 

for M2-like markers CD206 and EGR-2 (bottom). Isolated cells were first gated to identify 

CD11bhiCD45hi macrophages, then further analyzed for surface expression; Representative 

histographic plots of data accompany dot plots, side scatter (SSC) shown vs. signal intensity, 

for TDM treated (blue) or wild type (WT) controls (orange). Analysis on right indicates 

average (Avg) percent values with standard deviation (STDev) for each marker indicated 

from 4-6 mice. One Way ANOVA, p≤0.05, Tukey Post Hoc test for multiple comparisons: 

**p≤0.001 for CD86 TDM vs wild type. 
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Immunohistochemical staining allowed localization of the CD11b+ macrophage 

population to regions of granulomatous response (Figure 4A), and specifically to areas of 

inflammation.  Furthermore, staining for the CD38 surface glycoprotein marker on serial 

sections demonstrated presence of the M1-like population in a pattern overlapping that for 

CD11b, coinciding with regions of high macrophage activation within the granuloma’s 

architecture (Figure 4B). The CD11b marker is present throughout the inflammatory foci, 

with diffuse staining in most of the monocytic cells. There is also a number of CD11b+ cells 

that are heavily stained; the presence of the CD38 marker appears to coincide with cells 

also expressing the higher levels of CD11b. Of note, not all macrophages within the 

granuloma exhibit CD38. Cells were also stained with anti-CD206 and anti-EGR-2, however 

presence of these M2-markers were not detected (data not shown). Taken together with 

the flow analysis, this suggests that the macrophages recruited to the focal inflammation 

during the pulmonary granulomatous response induced by the TDM are of the M1-like 

phenotype. 
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Figure 4. Localization of CD11b+ and CD38+ Cells to Pulmonary Regions of Focal TDM-

Induced Inflammation. Serial sections of formalin fixed lung tissue were reacted with 

antibody to CD11b (A) or CD38 (B), and subsequently visualized by way of standard HRP 

staining techniques. The acute regions of inflammation demonstrate the overlapping 

presence of both populations of cells within focal granulomatous regions. Representative 

section, 100x magnification. 
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Discussion 

 

The establishment of the Mtb induced granuloma is a complex interaction of 

multiple cell phenotypes responding to a myriad of antigenic stimuli [172]. A multitude of 

studies have focused on mechanisms underlying development of the induced inflammatory 

response leading to development of this pathology. Clearly, the influence of any one 

specific molecule may not form an essential pathological bias in vivo during infection. 

However, a deficiency in production of purified cord factor, trehalose 6,6’-dimycolate [173], 

or manipulation of its structure [174], has certainly been shown to affect development and 

morphology of the early granulomatous pathology.  

 

TDM has been identified as an immune mediator of both innate and adaptive 

inflammatory responses, and has been detailed as a virulence factor in reports focused on 

animal models [175]. Others have examined its link and relevance to human disease by 

descriptive comparisons to human pathological manifestations [21]. The nature of the 

induced pathology is clearly defined by physical parameters [176, 177]. Experiments using 

deficient mice allowed delineation of events that lead to establishment of the TDM-induced 

inflammatory granulomatous response [159]. Furthermore, investigators identified innate 

receptors that trigger distinct immune events [178]. This is the first report to our knowledge 

that examines the influence of TDM on accumulated M1-like or M2-like phenotype 

macrophages to the induced pulmonary foci. The results indicate that the presence of the 
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M1-like surface marker expression was significantly upregulated in TDM treated animals, as 

opposed to the WT control animals, following the TDM induced granulomatous response. 

 

Our in vivo studies show a significant increase of CD86 expression on CD11b+CD45+ 

cells within pulmonary foci. This population may have been recruited from alveolar spaces, 

as shown to occur by Cohen, et. al, during Mtb infection [179]. At this time, it is unclear if 

the identified macrophages arrive as a committed M1-like population, or if the environment 

induces relative M1/M2-like pathology progression once cells arrive to the focus of 

inflammation. Other groups have identified cellular plasticity in immune cell phenotypes 

post arrival to pulmonary tissue post infection [180]. This may explain conflicting data from 

Kan-Sutton, et al., where they found that TDM produced nearly identical strong pro-

inflammatory effects in purified BMMs without inducing changes in surface expression of 

CD86 [46]. Although difficult to compare in vivo and in vitro effect, it may be that the 

discrepancy between these studies was due to the nature of the presented TDM. Kan-

Sutton used TDM adhered to the surface of beads; this format of exposure to TDM likely 

measured internalized effects on intracellular mechanisms associated with mycobacterial 

mycolic acid function, rather than those triggered via extracellular receptors. Our laboratory 

has also previously shown that TDM impacts intracellular trafficking events [181, 182].  

Indeed, the nature of the engagement of macrophage can influence phenotypic and 

functional outcome [183]. 
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A brief discussion on the evidence for specific cellular receptors for TDM 

engagement is warranted. Our data, along with previous findings on host macrophage 

receptors MARCO [160] and Mincle [39, 184, 185], and Mincle-related Clec4d [186], suggest 

a potential link between the existence of M1-like phenotype and engagement of those 

putative TDM receptors. An intriguing finding by Bowdish et al., indicated that TDM 

engagement with MARCO activates the TLR2 signaling pathway, with the end result of 

production of similar pro-inflammatory cytokines to those identified in our study; 

macrophages from mice lacking MARCO also produced a significantly reduced amount of 

TNF-α, IL-6, and IL-1β in response to virulent Mtb. In our model of TDM “infection”, we 

observed a similarly strong pro-inflammatory response in lung tissue. However, 

engagement of the Mincle receptor could just as likely predict an M2-like outcome; 

Schoenen, et al. elegantly linked Cebpβ and Hif1α nuclear signaling pathways to TDM 

responsiveness in macrophages, with the end result of EGR (M2-like marker) synthesis 

[187]. Likely, phenotypic outcome is regulated through multiple receptors. A related Mincle 

ligand, the shorter chain TDM analog trehalose dibehenate (TDB), was also shown to 

differentially modulate M1-like (and M2-like) macrophage phenotypes, through Syk 

signaling processes [188]. Both Syk- and CARD9 pathway interactions have shown to then 

further engage development of directed hypersensitive responses [189, 190], as well as 

inflammatory signaling pathways [191]. Perhaps additional experiments comparing 

trehalose 6-monomycolate (TMM) or galactose-galactose 6,6' dimycolate (GDM) may shed 

light on the inflammatory response leading to presence of the M1-like phenotype found in 

this study. However, these molecules have previously shown limits, as they do not induce 
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MTB-like primary granulomas in oil-in-water emulsions. Nor do they engage macrophages in 

the same manner as TDM [181, 192]. Therefore, although we might expect little change in 

M1 markers on recruited cells due to TMM or GDM because of the lack of inflammation, 

those molecules may provide a handle on pathways related to development of the M1-like 

phenotype following TDM administration. 

 

The rationale for induction of a strong macrophage pro-inflammatory response has 

been suggested to promote signals resulting in induction of differentiated hypersensitive 

populations [193]. Mtb has been shown to regulate internal pathways that may dictate 

polarity of macrophages [194]. Multiple antigens from tuberculosis spp, in addition to the 

mycolic acids, have been shown to trigger strong pro-inflammatory responses, which, again, 

are likely dependent upon receptor engagement. For example, specific engagement of CD38 

affects polarization of Th1 immune responses to M. avium [195]. Other molecules, such as 

ESAT-6, demonstrated a mixed reported transitional function. Refai, et al., demonstrated 

that ESAT-6 drives macrophages to the M1-like phenotype, although in the presence of TLR-

2 engagement it may exert anti-inflammatory M2-like polarization activity [196]. Huang, et 

al. reported that ESAT-6 contributes to primary innate granuloma formation by inducing an 

M1-type differentiation, occurring in the presence of strong IFN- activity. However, they 

also indicated that this was likely dependent on the stage of infection in which this molecule 

was examined (as well as presence of external mediators); ESAT-6 was shown to drive 

macrophages toward an M2-like phenotype at the later stages of the infection. Regarding 

Mtb antigens “in total”, they have been shown to induce a robust M2-like phenotype of 
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human macrophages over time [197], with a shift away from CD86 towards CD206 surface 

expression in in vitro models. Those findings were consistent with presence of M2-like 

antigens seen on cells in various stages of post-primary granulomas from infected patients. 

However, it should be noted that these represent stages of infection occurring well after 

granuloma formation and Th1 infiltration, which is not seen in our results. Indeed, in our 

hands, we did not see reactivity to M2-like markers CD206 or EGR-2 in our histological 

sections. Therefore, the findings discussed do not preclude the results here. 

 

Overall, the results presented support the hypothesis that purified TDM by itself can 

be a strong inducer of a M1-like polarization of macrophages. As such, it continues to be an 

effective tool to experimentally define the cross-regulation of inflammatory molecules and 

cellular recruitment cascades which culminate in pathological changes in models of lung 

granulomatous disease caused by Mycobacterium tuberculosis infection. 
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CHAPTER 3:  LACTOFERRIN REDUCES MYCOBACTERIAL TREHALOSE 6,6’-DIMYCOLATE 

INDUCED M1-TYPE INFLAMMATION AND PERMITS FLUOROQUINOLONE ENTRY TO 

GRANULOMAS 

 

This chapter is reprinted from The Biochemistry and Cell Biology Journal, Volume 99, Issue 1, 

Thao K T Nguyen , Zainab Niaz , John d'Aigle, Shen-An Hwang, Marian L Kruzel, Jeffrey K 

Actor, “Lactoferrin reduces mycobacterial M1-type inflammation induced with trehalose 

6,6'-dimycolate and facilitates the entry of fluoroquinolone into granulomas”, Page 73-80, 

Copyright (2020), with permission from Elsevier. (https://doi.org/10.1139/bcb-2020-0057) 

 

Introduction 

 

The Mycobacterium tuberculosis (Mtb) cell wall cording factor, trehalose 6,6’-

dimycolate (TDM), is a physiologically-relevant and useful molecule for modeling early 

macrophage mediated events during establishment of the tuberculosis-induced granuloma 

pathogenesis. Recent findings support the hypothesis that this mycobacterial mycolic acid 

can specifically recruit M1-like polarized macrophages [198], occurring in the absence of a 

significant M2-like phenotypic response. Many observers hypothesize that the initial strong 

M1-like biology contributes to creation of a microenvironment essential to limit 

dissemination of the bacilli [146].  On one hand, this leads to containment of the Mtb in 

infected macrophages within circumscribed granulomas [43]; this is advantageous to the 

host. However, this containment has the negative effect of  also protecting sequestered 
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organisms from immune-mediated killing by immune effector cells which are unable to 

effectively penetrate the granulomatous structure [70]. 

No current therapeutic modalities focus to modulate host immune responses to 

ameliorate tuberculosis disease [199, 200]. The molecule lactoferrin (LF), a natural iron-

binding protein found within neutrophils, is a proven modulator of inflammation [93, 201] 

which is active in immune functions [202] as well as in host defense [203, 204]. In our 

hands, bovine-derived LF was able to ameliorate TDM-induced granuloma cohesiveness 

[205]. This could be clinically advantageous, with potential function for LF to permit 

recruited cells entry into a densely populated pathological area. Relating this to models of 

mycobacterial infection, LF was shown to modulate the pulmonary granulomatous response 

induced during Mtb challenge, with no loss of adaptive response or increased dissemination 

of organisms to tissues peripheral to lungs [206].  

Furthermore, organisms within granulomas are isolated from efficiently delivered 

anti-mycobacterial due to the compact nature of the pathological structure [31, 43, 207]. 

Thus, an increase in current therapeutic efficacy may be achieved through incorporation of 

adjunct components that curtail development of aggressive destructive pulmonary 

pathology. LF was able to mediate a change in cohesiveness of the granulomatous response 

during model systems of granulomatous response. Therefore, LF may ultimately function as 

an adjunct therapeutic, serving as a novel strategy for TB disease treatment.  

We therefore investigated a recombinant human version of lactoferrin (rhLF) 

expressed in a CHO cells [208] to modulate the TDM-induced granulomatous pathology. 
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Experiments were designed to address if LF would serve as an adjunct molecule for 

increased penetration of anti-mycobacterial agents to regions of granulomatous pathology 

induced in mice. Furthermore, as an initial investigation into a possible mechanism of 

action, specific markers of M1- and M2-like macrophages [65] were evaluated to determine 

if rHLF alters the phenotypic profile of recruited macrophages post induction of the TDM 

response.  

 

Materials and Methods 

 

Mice. Female C57BL/6 mice (Envigo, Houston, TX) of five to six weeks of age, and 

approximately 20g weight, were incorporated into the studies. All in vivo work was 

completed at the University of Texas Health Science Center (UTHSC), according to approved 

protocols (animal welfare ethics committee document HSC-AWC-17-0089). The work was 

completed under animal welfare ethical guidelines established at the UTHSC, with 

conditions detailed in the approved animal welfare document. 

TDM-Induced Pathology. Mycobacterial-derived trehalose 6,5’-dimycolate (TDM; 

cord factor) (Enzo Life Sciences, Farmingdale, NY) was given as an oil/water emulsion 

prepared as described [159, 198], intravenous (IV), at a volume of 100 μl per animal. Control 

mice received material formulated with no addition of TDM; controls did not exhibit 

inflammation, as previously reported [158, 163]. All mice were sacrificed at times indicated 

post injection of formulated material.  
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Lactoferrin and Ofloxacin. Recombinant human lactoferrin (rHLF; LFH-101; endotoxin 

<10 EU·mg−1) was kindly provided as lyophilized powder by PharmaReview Corporation 

(Houston, TX.). Mice were given 1 mg rHLF in a 100 μL volume by oral gavage [209, 210] at 

day 3 and 6 after TDM injection. The two dose administration schedule was chosen to 

match the initiation phase and establishment of granuloma development in this model, and 

levels previously seen effective using bovine derived lactoferrin [209].100 μL volume of 30 

mg/ml ofloxacin (Sigma Life Science; O8757-1G), solubilized in DMSO and diluted 1:10 with 

PBS, was intraperitoneal administered 30 minutes prior to sacrifice.  

Pulmonary Cytokines.  Lungs were excised, homogenized, and incubated at 37oC and 

5% CO2  for at least 2 hours in Dulbecco’s Modified Eagle’s medium (DMEM) that contained 

50 μg/ml L-Arginine, 100 μg/ml penicillin, 50 μg/ml gentamycin, 50 μg/ml HEPES, and 10% 

fetal bovine serum. Collected supernatants were examined by enzyme-linked immunoassay 

(ELISA), as previously detailed [198], for the presence of TNF-α, IL-1β, IL-10 and TGF-β 

following manufacturer’s instructions (DuoSet kits, R&D Systems, Minneapolis, MN). TGF-β 

samples were pretreated with 1:5 ratio of 1N HCl, then neutralized. Results were calculated 

by a standard curve produced to manufacturer’s recombinant molecules. 

Histological Assessment. The mouse lung large right lobe was perfused with 1mM EDTA in 

phosphate buffered saline, fixed in 10% buffered formalin (Fisher Scientific, Pittsburg, PA), 

embedded in parafin, sectioned (5 μm thick), and stained with with hematoxylin (Surgipath, 

Richmond, IL) and eosin (Richard-Allen Scientific, Kalamazoo, MI) as per standard 

procedures at the Histology Laboratory at the UTHSC McGovern Medical School (Houston, 

TX). H&E stained slides were then used to capture photos of granulomas under the Olympus 
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BX51 microscope using the Nuance Cri Multispectral Imaging System FX (PerkinElmer). The 

granuloma section was first identified and captured under H&E brightfield staining, then 

Ofloxacin’s fluorenscent signals were captured under 40x lens with FITC filter (emmission 

restriction set between 540nm to 560nm) after 120ms of exposure. All microscopic settings 

and factors were maintained throughout the photo taking process. All image files have the 

same dimensions of 1392 x 1040 with 72 dpi resolution.  

Computerized Analysis. High resolution scanned images of H&E stained slides were 

assessed for lung inflammation using Motic DSAssistant software (Kowloon Bay, Kowloon, 

HK), in a two step process using Fiji ImageJ (Version 1.52o 23 April 2019, National Institutes 

of Health, Bethesda, MD) with plugin MorphoLibJ [211], described in part in [198]. 

Minimum and maximum values for hue, saturation, and brightness were set at: 120, 255; 0, 

255; and 0, 255, respectively. Total cell area measurement used a modified version detailed 

elsewhere [212] where peak threshold was set at 164, similar to published examples [166]. 

Values were averaged within treatment groups and normalized to non-treated controls. For 

each granuloma, the total fluorescent area (ofloxacin absorption) and the total granuloma 

area were measured in pixel units using CellProfiler (software version 3.1.5) pipeline 

algorithm [211], with described modifications [213]. Background was eliminated by the 

measured average fluorescence signal from control mouse lung H&E-stained histological 

slides using CellProfiler. 

Flow Cytometry Analysis. Flow cytometric assessment was performed as previously 

done by Nguyen, et al. [198]. Briefly, lungs were extracted from WT, TDM and TDM/LF 
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treated mice. Homogenized tissue was treated for 30 minutes with 

Collagenase/Hyaluronidase (StemCell Technologies) and DNAse I (Sigma) in RPMI-1640  with 

1% 100X pen/strep and 2.5% HEPES (Thermo Fisher Scientific), and 5% HI FBS (Corning). 

Cells were purified prior to staining using a 70% GE Healthcare Percoll (Cat# 17-0891-01) 

gradient Surface markers chosen to delineate murine M1-like and M2-like macrophages 

were based on published data from Jablonski, et al., [65], later detailed by Orecchioni, et al. 

[168]. Similar findings were identified in human monocyte-derived macrophages [169]. Cells 

were stained in accordance with manufacture recommendation, using Live Dead Aqua 

(eBioscience, L34966) for 15 minutes, then FC (antibody receptor) blocked with Anti-Mo 

CD16/CD32 (eBioscience, 14-0161-86) for 15 minutes. Staining used the following 

antibodies against specific receptors: CD38 (Biolegend, Cat# 102728) APC/Cy7, CD86 

(Biolegend, Cat# 105014) PE/Cy7, CD206 (Biolegend, Cat # 141704) FITC, EGR2 (eBioscience, 

17-6691-82) APC, CD11b (Biolegend, Cat# 101208) PE, and CD45 (eBioscience, 48-0451-82) 

eFluor 450 for 20 minutes. Cells were fixed with 2% paraformaldehyde, and evaluated on a 

Beckmen Coulter Cytoflex S flow cytometer (Model No. B75442). Data was then analyzed 

using FlowJo V10 (Becton Dickinson). 

 

Statistical Analysis. Data presented are a combination of 2-4 experimental repeats. 

Each experiment incorporated 3-6 mice per group. Data was reported as percent area and 

compared between groups using a two-tailed t-test in GraphPad Prism, version 5.03. 

Differences between means were considered statistically significant at a value of p≤0.05, or 

otherwise indicated.  
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Results 

 

Lactoferrin Reduces TDM-Induced Lung Pathology. 

Intravenous administration of the mycobacterial mycolic acid TDM, results in 

development of defined inflammation in C57Bl/6 mice, which mimic many aspects of the 

granulomatous reactions seen during infectious challenge with virulent Mycobacterium 

tuberculosis. Using the well-defined TDM-induced granuloma model, the histologic 

accumulation of monocytic cells within the lung readily occurs post TDM administration 

(Figure 5). The number of focal accumulates grow in number, size and complexity through 

day 7, resulting in occlusion of vascular regions and limitation of open alveolar 

compartments (Table 1).  Results are due to treatment with TDM; emulsion vehicle alone 

was not able to induce morphological change [209]. Oral treatment with 1 mg of 

recombinant human lactoferrin (rHLF) on days 2 and 4 post TDM administration markedly 

reduced, but did not completely eliminate, the TDM-induced focal responses. Granulomas 

were diminished by day 4, with significant reduction in both size and number (p<0.05) of 

inflammatory accumulates at both days 4 and 7 post induction of the response. 
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Figure 5. Lactoferrin Induced Reduction of Gross Pulmonary Granulomatous Inflammation 

caused by TDM. Lungs from mice given TDM (B, E) were assessed after 7 days and 

compared to control (A, D) or rHLF treated (C, F) animals. Histologic examination revealed 

acute granulomas with monocytic cell infiltration and presence of focal, “foamy” 

vesiculated macrophages, and occluded vascular regions. rHLF treatment markedly reduced 

inflammatory response, with limited pathological damage to lung tissue. Formalin fixed lung 

sections were hematoxylin and eosin stained; histopathology shown at 10x or 300x 

magnification. Histographs represent sections obtained from repeated studies with 4 to 6 

mice in each group.  
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Granulomas/mm2   Granuloma Size (m2) 

  Day 4 Day 7   Day 4 Day 7 

TDM           

Avg (%) 3.88 7.79   16.73 40.52 

STDev 1.15 1.38   2.23 4.97 

            

TDM + LF           

Avg (%) 2.6 2.04*   12.47 17.74* 

STDev 0.47 0.33   2.66 4.39 

 

 

Table 1. Lactoferrin reduction in TDM-induced inflammatory response. Histological 

assessment of granulomatous inflammation was assessed at 4 and 7 days post 

administration of TDM, with or without rHLF treatment. Average number and size of 

inflammatory foci were measured, with standard deviation shown. N = 4 to 6 mice per 

group; experiments were repeated at least twice. *p≤0.05.  
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Decreased Pro-inflammatory Response in Lungs after Treatment with Lactoferrin. 

Administration of TDM results in a strong pro-inflammatory response [214, 215]. The 

cytokines TNF-α and IL-1β were assessed in lungs by ELISA to examine if the histological 

changes due to the rHLF administration would also affect responses.  Lungs were examined 

following TDM administration, with or without rHLF treatment. There was significant 

production of pro-inflammatory mediators TNF-α and IL-1β, which was significantly reduced 

by the rHLF. (Figure 6).  The anti-inflammatory cytokines were also examined; there was no 

change, relative to TDM, in IL-10 production after additional treatment with the rHLF 

(Figure 6). Similarly, there was no production of TGF-β, which was also not altered by 

addition of rHLF (not shown).  
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Figure 6. Lactoferrin reduced pro-inflammatory cytokines during TDM-induced pathology. 

Assessment of inflammatory cytokines post treatment with rHLF revealed decreases in 

production of TNF-α (left panel, A) and IL-1β (middle panel, B) within lungs at day 7 post 

administration of TDM, compared to TDM alone treated mice. Mice receiving TDM did not 

reveal significant changes in production of IL-10 (right panel, C); no alteration of this was 

apparent in the rHLF treated group. Results represent mean ± standard deviation, data was 

collected from 2 independent experiments with 4-6 mice in each group per experiment. 

One Way ANOVA, p≤0.01, Tukey Post Hoc test for multiple comparisons: **p≤0.01 for IL-1β  

TDM+rHLF vs TDM and ***p≤0.001 for TNF-α TDM+rHLF vs TDM.  

 

 

  



 50 

Lactoferrin Treatment Increases Ofloxacin Penetration to Inflammatory Foci. 

The histological complexity of the TDM-induced pathology has been previously 

reported [214, 215]. Treatment with rHLF markedly altered the inflammatory response, 

resulting in monocytic foci that were less dense. It was hypothesized that the physical 

nature of the granulomas were altered in a manner to allow greater permeability of small 

molecules, such as those useful in treatment of mycobacterial infection. To test this 

hypothesis, mice were intraperitoneal administered the fluoroquinolone ofloxacin on day 7, 

just prior to sacrifice. Visualization of lung histological sections prepared from the non-

treated mice demonstrated presence of the naturally fluorescent ofloxacin therapeutic 

agent evenly distributed throughout pulmonary vascular regions (not shown). In contrast, 

the TDM alone treated mice demonstrated a relative exclusion of fluorescence penetration 

into regions of inflammatory response (Figure 7, top left panel). This was expected, as the 

compact nature of the granulomatous response results in small blood vessel occlusion 

[215]; indeed, pockets of fluorescence can be readily visualized in occluded vessels.  Of 

interest, treatment with the rHLF was able to restore ability of the ofloxacin to penetrate 

evenly throughout regions of granulomatous inflammation (Figure 7, top right panel). The 

relative fluorescence was quantitated via software analysis; the rHLF treatment significantly 

(p<0.001) increased the ability of ofloxacin to penetrate regions of focal inflammation 

(Figure 7, bottom panel).  
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Figure 7. Increased penetration of ofloxacin to granulomas post lactoferrin treatment. 

Lungs from mice given TDM alone (top, left), or TDM plus rHLF treatment (top, right), were 

assessed for presence of the fluoroquinolone ofloxacin. Ofloxacin penetration was limited in 

the TDM alone group, except for regions of high vascular occlusion (red star). The rHLF 

treated mice permitted entry of ofloxacin via penetrating vasculature (red arrows), and 

entry within monocytic cells within the pathological foci. Histographs are shown at 40x 

magnification. Quantitative assessment of relative fluorescence for individual inflammatory 

foci are represented (bottom), with average and standard deviation included. One Way 

ANOVA, p≤0.05, Tukey Post Hoc test for multiple comparisons: ***p≤0.001 for TDM+LF vs 

TDM. 
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Lactoferrin Reduces Accumulation of Recruited M1-like Macrophages. 

It was recently shown that the TDM-induced granulomatous inflammation was 

comprised of recruited monocytic macrophages primarily of the M1-like phenotype [198]. 

Cells were isolated from TDM-induced lungs at 7 days post treatment, and CD11bhiCD45hi 

macrophages [170, 171] were examined by flow cytometry for presence of M1-like and M2-

like surface markers.  Table 2 depicts data collected for M1-like markers CD38 and CD86, 

and for the M2-like markers CD206 and the early growth response gene-2 (EGR-2). 

Treatment with TDM resulted in an overall accumulation of CD11bhiCD45hi cells that was 

approximately 1.77-fold (+/- 0.19-fold) compared to the rHLF treated group. The TDM alone 

cells expressed higher M1-like markers, but not the M2-like surface proteins. The M1-like 

marker CD38 was present on 24.70% +/- 11.18% of recruited macrophages. CD86 was 

present on 12.34% +/- 3.37.48% macrophages. Overall, there were fewer recruited 

macrophages to the lungs in the rHLF treated mice. In addition, the M1-like markers on 

these cells were markedly reduced in the rHLF treated group. Specifically, there was a 

significant reduction in both CD38 (10.19% +/- 1.16%; p<0.05) and CD86 (3.98% +/- 0.73%; 

p<0.001). There was a modest (non-significant increase) in M2-like makers in the rHLF 

treated group compared to TDM alone, however, this was comparable to the non-treated 

control animals.  
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M1-Like Markers M2-Like Markers 

  CD38 CD86 CD206 EGR2 

Control N=3       

Avg (%) 7.76 5.31 1.24 0.11 

STDev 2.24 0.61 0.16 0.05 

          

TDM N=6       

Avg (%) 24.72 12.34 0.53 0.15 

STDev 11.18 3.37 0.35 0.07 

          

TDM + LF N=4       

Avg (%) 10.19* 3.98** 1.13 0.11 

STDev 1.16 0.73 0.71 0.04 

 

 

Table 2. Assessment of M1/M2-like Markers on Infiltrating Monocyte-Macrophages. 

Isolated CD11bhiCD45hi macrophages from lungs at 7 days after administration of TDM were 

examined for the M1-like markers CD38 and CD86, and for the M2-like markers CD206 and 

EGR-2.  Comparisons are made to rHLF treated mice. Average percent values with standard 

deviations are given for each marker; control values shown were previously reported [198]. 

One Way ANOVA, p≤0.05, Tukey Post Hoc test for multiple comparisons: *p≤0.05 for C38 

TDM+LF vs CD38 TDM and **p≤0.001 for CD86 TDM+LF vs TDM.  
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Discussion 

 
The results presented in this study confirm the utility of LF to ameliorate primary 

granulomatous inflammation [205, 206] and permit entry of therapeutic molecules to sites 

of macrophage mediated pathology.  LF has been extensively examined as a mediator of 

inflammatory responses (reviewed in [201, 216]), interacting directly with pathogens [217] 

and controlling host immune homeostasis [218, 219]. Indeed, recombinant human LF is 

adept at regulating induced macrophage inflammatory responses [220], functioning well as 

an immune-therapeutic in models of animal sepsis and SIRS [221] and oxidative stress [222]. 

The experiments outlined here extend our previous findings to show that rHLF can alter 

MTB-like primary pathology, and specifically modulate TDM-induced inflammation [210] to 

further allow penetration of therapeutic molecules to sites of immune reactivity. 

The TDM-induced granulomatous response is a well-accepted model, if not a 

simplified model, of the primary pathology seen during mycobacterial infection [21]. 

Primary tuberculosis infection is defined as a mixed macrophage and adaptive cellular 

response. Marino, et al., hypothesized that macrophage phenotypes drive the 

granulomatous response during MTB infection [147], where the initial response is mediated 

by an M1-like macrophage phenotypic recruitment with balanced contribution from M2-like 

responders as disease progresses [146]. This fits into known processes for granuloma 

regulation, where an initial M1-like proinflammatory response characterized by production 

of TNF- is required for development of pathology [223, 224]. Marakala, et al., further 

hypothesized that polarized M1 macrophages are recruited, altering the natural M2-like 
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anti-inflammatory environment of the alveolar macrophages which first encounter inhaled 

organisms. This series of events thereby initiates a protective environment to encapsulate 

bugs into a defined spatial region [142].  

The first antigens encountered during mycobacterial infection are likely to be 

surface mycolic acids [21]. Khan, et al., suggested that these molecules alter the plasticity of 

macrophages during initiation of the granulomatous response [60]. Although it remains to 

be determined if macrophages undergo true polarization events during first encounter with 

mycobacterial antigens, Nguyen, et al., reported that the phenotype of recruited 

macrophages during the TDM-induced response is of the M1-like phenotype [198]. This 

phenomenon was reconfirmed in the results presented here. Our results show that the 

addition of LF during inflammation induced by the TDM mycolic acid led to a decrease in 

presence of M1-like macrophages. An object of further study would include LF’s direct 

effect on macrophage polarization. Of interest, Gao, et al. used an immunocomplex 

containing LF to polarize towards M1-like activity [225]. However, that observation was 

likely due to the construct used, which contained a linked immunoglobulin Fc region that 

likely interacted with macrophage receptors to alter cellular responsiveness. The results in 

this report use a purified LF that was not complexed to other molecules. 

Host-directed therapies to combat tuberculosis pathology are a promising approach 

for new treatment modalities [226, 227]. The concept to regulate TNF- as a method to 

control mycobacterial infection has been explored in the literature [228]. This is a double-

edged sword; too much TNF- results in tightly packed mycobacterial granulomas, while its 
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complete absence is detrimental to initiation and development of a protective pathology 

[214, 224]. LF, as an adjunct host-directed therapeutic, has demonstrated effects on 

macrophages to limit, but not eliminate, TNF- [220, 221]. In the studies presented here, LF 

was useful to decrease the magnitude of the M1-like phenotype, in essence functioning as a 

host-directed adjunct therapeutic in a non-infectious model of tuberculosis primary 

infection.  

Interest is high in LF as a therapeutic agent to control inflammation and prevent 

sepsis in neonates, with several clinical trials completed or still in progress [229-233]. 

Mechanistically, administration of LF may exert anti-inflammatory effects in newborns 

through modulation of myeloid suppressor cells which are present in high numbers early in 

life [234].  In vitro, LF was able to convert newborn monocytes to MDSCs, with subsequent 

activity to control inflammatory pathology [235]. The utility of LF to convert cell phenotypes 

may be similar to alteration of the monocyte phenotypes noticed in this report, however, 

the concept requires further investigation. At this time, it is not known if the change in 

recruited macrophage phenotypes is directly due to changes in polarization or in selective 

recruitment in our model system.  

The fact that LF was successful as an oral administered agent is a bonus to future 

clinical use. At this time, it is unclear how LF functions systemically, since it is known to 

undergo proteolytic degradation in the gastrointestinal tract by digestive enzymes [236, 

237].  It was recently reported that inflammatory pathways identified in transcriptome 

profiles of oral delivered rHLF significantly overlapped with those of intravenous 
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administration (M.L. Kruzel, unpublished communication, [238]). While this study was done 

in rats, it appears that LF-induced effects are systemically transduced, even if the protein is 

degraded in transit. 

Formation of a densely packed granuloma essentially limits efficacy of immune 

effector cells. Modulation of the magnitude of the granulomatous response could 

potentially overcome the ability of the organism to escape immune-mediated killing, 

limiting the compact physical nature of the sequestration of infected cells and allowing 

effector cell access to the infected nidus. Indeed, oral delivered bovine LF was shown to 

control pulmonary granulomas in models of MTB infection, without loss of adaptive 

response or subsequent increase in organism dissemination to other tissues [206, 210]. 

There are numerous advantages for limited disruption of the primary granuloma during 

mycobacterial infection, especially if organisms remain contained. Of major interest relative 

to the findings presented here would be increased drug penetration to sites of compact 

pathology which harbor infectious agents. The advantages of increased drug penetration to 

areas where organisms reside include a greater ability to overcome drug resistance 

development in slowly replicating pathogens, and limitation of toxicity complications with 

potentially shorter duration of therapeutic treatment times. Ofloxacin, a naturally 

fluorescent anti-mycobacterial analog of the effective fluoroquinolone therapeutic 

ciprofloxacin [239, 240], was used in these studies because it permitted detection using a 

multispectral fluorescent imaging system without addition of modifying tags for detection. 

LF treatment correlated highly and significantly with the ability of ofloxacin to penetrate 

into granulomas. It was our subjective impression that while the penetration of ofloxacin 
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occurred more readily in smaller granulomas, there was increased fluorescence in nearly all 

inflammatory foci in the LF treated groups, irrespective of granuloma size. 

Overall, the recombinant human LF served as an adjunct molecule for increased 

penetration of anti-mycobacterial agents to regions of induced granulomatous pathology. 

Mechanistically, this correlated with a shift away from the presence of M1-phenotypic 

macrophages at the site of pathology. Future studies will investigate the role of LF to alter 

polarization of inflammatory macrophage phenotypes responding to pathogenic signals. 

Furthermore, it will be critical to examine LF as an adjunct therapeutic to enhance 

penetration of antimycobacterial agents during tuberculosis disease, as a way to augment 

therapeutic treatment to control infectious-related pathology. In addition, the mechanisms 

of oral delivered lactoferrin must be further investigated. 
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CHAPTER 4: RECOMBINANT HUMAN LACTOFERRIN REDUCES INFLAMMATION AND 

INCREASES FLUOROQUINOLONE PENETRATION TO GRANULOMAS DURING 

MYCOBACTERIAL INFECTION 

 

Introduction 

 

Despite world-wide extensive research and eradicating efforts, Mycobacterium 

tuberculosis (Mtb) remains a major infectious pathogen to the human population with 

approximately 10.0 million infected cases and 1.5 million deaths reported in 2020 globally 

[241]. The initial host-pathogen interaction, and complex immunological responses, 

culminate in an inflammatory pathology within pulmonary tissue which is characterized as a 

primary granulomatous disease [21, 242]. These granulomas and associated lesions obstruct 

normal pulmonary functions. Active research investigates how Mtb directly induces the 

granulomatous response, focusing on areas of pathological damage and bacterial burden 

that are most severe during primary infection. 

 

Mtb associated factors are involved in the recognition and activation of host cells 

within the bronchial regions, leading to uptake by alveolar macrophages [34]. This 

interaction triggers a series of immune responses via the production and release of 

cytokines by infected and responding macrophages [243]. For example, trehalose 6'6-

dimycolate (TDM), an abundant mycobacterial mycolic acid, directly triggers a 

granulomatous response [21, 198]. TDM-activated macrophages release pro-inflammatory 
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mediators, such as TNF- and IL-1-β, along with additional chemotactic factors, to further 

recruit immune cells to areas of infection [36, 40, 244]. Over time, additional recruited 

immune cells participate in formation of organized, sphere-shaped primary inflammatory 

structures at the infected site [42]. There exists a balance between host and organism; the 

granulomas formed during active Mtb infection contain and limit bacterial dissemination 

[43], yet organisms have adopted mechanisms to survive and grow inside macrophage host 

cells. Indeed, recruited naive macrophages can become new potential sites for Mtb to 

shelter and replicate [47].  

 

Clinically, the physical nature of the granuloma also limits penetration of anti-

mycobacterial therapeutics; as granulomas mature, reduction in vascularization limits drug 

delivery to within granulomas where large populations of Mtb may reside [48, 49, 70]. The 

physical nature of the host immune response therefore represents a challenge in treating 

Mtb-infected patients – it contributes to prolongation of treatment while permitting a small 

population of Mtb to escape elimination. The lack of complete penetration of 

antimycobacterial agents also indirectly increases risk of developing antibiotic-resistance 

[245-247]. Therefore, multiple lines of investigation currently are aimed at improving drug 

delivery through focused targeting to either the manipulate the granuloma structure, or to 

augment immune responses to Mtb that lead to granuloma development [248]. 

 

Novel approaches to Mtb treatment include host-directed therapies [76] which are 

focused in two major fronts; the first augments immune response using immune-based 
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treatments [77], while the second alters the resultant immunopathology [78]. Examples of 

immune-based treatment methods include agents that target the macro-autophagic 

compartment, such as vitamin D and retinoic acid, which increase phagocytosis to augment 

the lysosomal degradative processes inside macrophages [79]. Ibuprofen, an anti-

inflammatory drug, functions as an adjunct treatment by facilitating pyrazinamide to 

alleviate pathological damage in the lungs [77, 80, 81]. These immune-based approaches 

have significant potential, demonstrating superior disease outcomes in clinical trial results 

[249, 250].  While promising, the obstacle in drug delivery to macrophages inside 

established granulomas persists [84]. Therefore, therapies that target pathologies, in 

addition to antimycobacterial function, may subsequently be more useful as clinical tools. A 

well-known example of the immunopathological alteration approach is blocking excess TNF-

α, a key pro-inflammatory cytokine required for granuloma formation [224, 251]. TNF-α 

inhibitors have been used to treat other inflammatory diseases effectively [85-87]. 

However, its current downside is that TNF-α inhibitors can lead to increased bacterial 

dissemination; abolishing the granuloma containment modality runs the risk of Mtb 

reactivation [88-91]. 

 

Lactoferrin, a glycoprotein known for its ability to bind iron, has been extensively 

studied for its role as an immune modulator in host defense in disease models [219, 252]. It 

falls into the category of “immune modulators”, and has been identified to reduce 

pathology of the tuberculoid granuloma [92]. In addition, lactoferrin has been shown to 

boost immune memory response in vaccine models, while reducing pro-inflammatory 
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response in lipopolysaccharide (LPS) exposed mouse models [93, 94, 96, 97, 253]. Relative 

to the study described in this report, bovine lactoferrin significantlly reduced inflammatory 

pathology in TB-infected mice [98]. Both human and bovine lactoferrins were also shown 

effective to limit inflammation in the non-infectious TDM-induce granuloma mouse model 

[78, 99]. 

 

Lactoferrin treatment reduced the M1 phenotypic response to TDM, and limited 

pathological damage in murine lungs [78, 198]. The lactoferrin treatment also significantly 

increased penetration of the second-line anti-mycobacterial agent Fluoroquinolone into 

TDM-induced granulomas [78]. Such anti-inflammatory response in the lactoferrin-treated 

mice, along with other data showing lactoferrin reduces pro-inflammatory phenotypes in 

macrophages [136, 137], suggests that lactoferrin had a modulating pro-inflammatory 

response on granulomas. The studies presented here extend theses observations to 

examine if lactoferrin can modulate granuloma permeability and drug distribution during 

active Mtb infection. Here, the effect of lactoferrin on the permeability of granulomas to 

fluoroquinolones is examined in the Mtb-infected mouse model, when administered as a 

prophylactic (prior to granuloma formation) or therapeutic (after granuloma establishment) 

intervention. These experiments shed light on mechanisms underlying changes to the Mtb 

pathological events due to lactoferrin adjunct treatment. 
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Materials and Methods 

 

Mice. Five-week-old female C57BL/6 mice were purchased from Envigo (Houston, 

TX) with 18-20 grams initial body mass. Eight to ten mice were used per group, per time 

each point indicated. All Mtb infections occurred in biosafety level 3 facilities under the 

University of Texas Health Science Center at Houston institutional guidelines (IBC-18-014), 

with approval from the animal ethics committee (AWC-17-0089). 

 

Recombinant human lactoferrin and ofloxacin, and delivery to mice. CHO-expressed 

recombinant human lactoferrin (rHLF; >98% purity; <10% iron saturated; <0.5 EU·mg−1; Cat# 

LFH-101) was kindly provided as lyophilized powder by PharmaReview Corporation 

(Houston, TX) [254, 255]. The rHLF was reconstituted in dH2O to a concentration of 1 0 

mg·mL-1. From day 14 to day 28 after Mtb infection, mice were given 1 mg·(100 

μL)−1·mouse−1 of rHLF by oral gavage every other day as prophylatic treatment, similar to 

reported use in models of mycobacterial granulomatous responses [92, 209, 210]. 1 mg/ml 

was found to be more productive than a 100 μg/ml dose (Figure 8). From day 21 to day 28 

after Mtb infection, another group of mice were given 1 mg·(100 μL)−1·mouse−1 of 

recombinant human lactoferrin by oral gavage every other day as therapeutic treatment. 

Ofloxacin (Sigma Life Science; O8757-1G) was given at 100 μL of 30 mg·mL-1·mouse-1, 

solubilized in DMSO and diluted 1:10 with PBS, was intraperitoneal administered 30 

minutes prior to sacrifice [256]. 
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Figure 8. Lactoferrin treatment reduces pulmonary inflammation post infectious challenge 

with Mtb in a dose dependent response. Lungs from Mtb infected mice were assessed at 

day 28 post aerosol infection (A) and compared to animals given bovine LF in the 

prophylactic group (B,C) or therapeutic group (D,E). Histologic assessment revealed primary 

granulomatous response with monocytic cell infiltration, dense cellular foci, and occluded 

vascular regions in control infected mice. Both prophylactic and therapeutic rHLF treatment 

reduced inflammatory response resulting in modest inflammatory foci and reduced 

pathological damage to lung tissue. While both doses (100 g and 1 mg levels) were 

productive in limiting focal inflammation, the higher dose was more consistent between 

treatment groups. Hematoxylin and eosin stained histographs represent formalin fixed lung 

sections at 10x magnification obtained with 8 to 10 mice in each group; study 

representative of repeat experiments.  
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Mtb infection. Aerosol infections were done as previously reported [253, 257], using 

Mycobacterium tuberculosis, strain Erdman (TMC 107, American Type Cell Culture). 

Organisms were cultured in Middlebrook 7H9 broth with 10% supplement (5% bovine 

serum albumin, 2% dextrose, and 0.5% Tween 20 in distilled water) to log phase. Pelleted 

bacteria were resuspended in phosphate buffered saline (PBS) and diluted to 3 × 108 colony 

forming units (CFU) per ml using McFarland standards. Bacteria were sonicated to disperse 

aggregates. The bacterial CFUs for each time point, including day 1 post infection, were 

confirmed by plating serial dilutions on Middlebrook 7H11 agar plates (Hardy Diagnostics, 

Santa Maria, CA) using the large right lobe of the mouse lung that was weighed and 

homogenized into 2 mL PBS, which were incubated at 37 °C for 3 – 4 weeks. Mice were 

infected for 4 weeks, with treatments described above, using the protocol shown in Figure 

9. Bovine lactoferrin, shown to have biological equivalency to the rHLF [92] was used for 

analysis of CFU dissemination to other organs and to reconfirm bioequivalence in dose 

response treatments (Figure 10). 
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Figure 9. Mtb infection and lactoferrin treatment scheme. C57Bl/6 mice were aerosol 

challenged with Mtb and treated with rHLF administered every other day orally beginning 

on day 14 (prophylactic; 6 total doses), or beginning on day 21 post infection (therapeutic; 3 

total doses). Mice were intravenous injected with ofloxacin 30 minutes prior to sacrifice, at 

28 days post initial infectious challenge. 

 

  



 69 

 

 

Figure 10. Mycobacterial burden in lactoferrin treated mice. C57Bl/6 mice were aerosol 

challenged with Mtb, strain Erdman, and treated with bovine lactoferrin (bLF) given as 100 

µg or as 1 mg dose administered every other day orally beginning on day 14 (prophylactic 

treatment), or beginning on day 21 (therapeutic treatment) post infection. Lung (A), spleen 

(B) and liver (C) were removed on day 28 post infection; tissues were assessed for bacterial 

CFUs confirmed by plating serial dilutions on Middlebrook 7H11 agar plates using the large 

right lobe of the mouse lung that was weighed and homogenized into 2 mL PBS, which were 

subsequently incubated at 37 °C for 3 to 4 weeks and represented as CFU burden per organ. 

Data are presented as individual mice with the mean and SEM indicated, n  6 mice per 

group. One Way ANOVA, p0.05, Tukey Post Hoc test for multiple comparisons. 
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Histological assessment. The small left lobe of the mouse lung was collected and 

fixed in 10% buffered formalin. For histologic analysis, the lung was sectioned (5 μm thick) 

and stained with hematoxylin and eosin (H&E) and acid-fast staining as per standard 

procedures [253]. The histological assessment of the lung tissue following aerosol infection 

was done as previously reported [257]. Multiple sections from at least 6 mice per group 

were analyzed using Motic DSAssistant digital software (version 1.0.7.44; Kowloon Bay, 

Kowloon, HK) [78]. H&E stained and acid-fast stained slides were viewed by a trained 

pathologist, with descriptive results obtained in an experimentally blinded manner. 

 

Immunohistochemistry. Fixed lung was embedded in paraffin, sectioned, and stained 

for immunohistochemical examination, similar to methods described [258], diluted at 

1:2000, was performed according to manufacturer’s instructions with a modification of 20 

minutes at low pH for antigen retrival, and visualized using standard HRP techniques and 

DAB chromogen using Dako reagents (Dako, Agilent, Santa Clara, CA). In a similar manner, 

M1-like marker CD38 (Invitrogen, ThermoFisher, Cat# 14-0381-02), diluted at 1:1000, M2-

like marker CD 206 (Bioss, Cat# bs-4727R), diluted at 1:1000, and endothelial cell marker 

CD31/PECAM-1 (Cell Signaling, Cat# 77699T) diluted at 1:200 was used for visualization on 

serial slide sections. Hematoxylin counterstained slides were viewed by a trained 

pathologist, with descriptive results obtained in an experimentally blinded manner. 

 

Quantitative assessment of pulmonary inflammation. High resolution scanned 

images of H&E-stained slides were assessed for lung inflammation and granulomas using 
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Motic DSAssistant software (Kowloon Bay, Kowloon, HK), in a two-step process using Fiji 

ImageJ (version 1.52o 23 April 2019, National Institutes of Health, Bethesda, MD) with 

plugin MorphoLibJ (McQuin et al. 2018), described in part in [78]. Minimum and maximum 

values for hue, saturation, and brightness were set at: 120, 255; 0, 255; and 0, 255, 

respectively. Total cell area measurement used a modified equation detailed elsewhere 

where peak threshold was set at 164 [166]. Values were averaged within treatment groups 

and normalized to non-treated controls. H&E-stained slides were also used to capture 

photos of granulomas under the Olympus BX51 microscope using the Nuance Cri 

Multispectral Imaging System FX (PerkinElmer). The granuloma section was first identified 

and captured under H&E brightfield scope, then ofloxacin’s fluorescent signals were 

captured under 40x lens with FITC filter (emission restriction set between 540nm to 560nm) 

after 120ms of exposure. All microscopic settings and factors were maintained throughout 

the photo taking process with image files having the same dimensions of 1392 x 1040 with 

72 dpi resolution. For each granuloma, the total fluorescent area or ofloxacin absorption 

area and the total granuloma area were measured in pixel units using CellProfiler (software 

version 3.1.5) pipeline algorithm [211], with described modifications [213]. Background was 

eliminated by the measured average fluorescence signal from control mouse lung H&E-

stained histological slides using CellProfiler. The measurement on the selected lung section 

is reported as percent area that represents the ratio of ofloxacin absorption over the total 

granuloma area. All data was graphed and statistical analyzed in GraphPad Prism (version 

5.03). 
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Statistical analysis. Data obtained was compared across groups then analyzed using 

a paired Student t-test or one-way ANOVA with a Tukey post-hoc test; differences between 

means were considered statistically significant at a value of p ≤ 0.05. Data are presented are 

a combination of 2-3 experimental repeats. Each experiment incorporated 8-10 mice per 

group.  
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Results 

 

Oral administration of recombinant human lactoferrin alleviates pulmonary inflammation 

post Mtb infection. 

Previous studies using bovine derived lactoferrin given in drinking water 

demonstrated that continuous-access oral delivery during Mycobacterium tuberculosis 

infection could reduce inflammation-related primary granulomatous pathology in mice [98]. 

A defined protocol was adopted to determine if recombinant human lactoferrin (rHLF) 

would initiate a similar protective response (Figure 9). Mice were aerosol infected with Mtb, 

strain Erdman, and rHLF was given by oral gavage beginning either prior to (prophylactic), or 

post (therapeutic) expected initiation of granulomatous responses.  Histological assessment 

(Figure 8 and Figure 11) revealed marked reduction of pulmonary inflammation in both the 

prophylactic and therapeutic rHLF treated groups, in a similar manner to that previously 

reported with the bovine LF treatment.  Specifically, the rHLF treatments demonstrated 

reduced complexity of granulomatous responses, smaller foci of inflammation, with less 

cellular accumulation and density in areas of inflammation. Quantitative measurement of 

inflammation confirmed histological reduction in pathology due to the rHLF treatments.  
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Figure 11. Lactoferrin treatment reduces pulmonary inflammation post infectious 

challenge with Mtb. Figure contains identical histographs from Figure 8 for text discussion. 

Lungs from Mtb infected mice were assessed at day 28 post aerosol infection (A) and 

compared to animals given rHLF in the prophylactic group (B) or therapeutic group (C). 

Histologic assessment revealed primary granulomatous response with monocytic cell 

infiltration, dense cellular foci, and occluded vascular regions in control infected mice. Both 

prophylactic and therapeutic rHLF treatment reduced inflammatory response resulting in 

modest inflammatory foci and reduced pathological damage to lung tissue. Hematoxylin 

and eosin stained histographs represent formalin fixed lung sections at 10x magnification 

obtained from repeated studies with 8 to 10 mice in each group; study representative of 

repeat experiments.  
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Whole right lobes of mouse lung were collected at 4 weeks post infections and 

processed for quantitative assessment of primary granulomatous response. Serial sections 

of H&E-stained tissue sections were high resolution scanned to assess area occupied by 

inflammation (Figure 12).  The Mtb infected group had the largest occluded regions, with 

24.79% ± 4.2% relative area occupied by inflammatory response. Both lactoferrin treatment 

modalities resulted in reduction of pathology. The prophylactic treatment resulted in 

reduction of granuloma area to 21.42% ± 4.1% of lung sections observed, while the 

therapeutic treatment significantly reduced occupied space to 17.36% ± 4.9% (p<0.001). Of 

interest, there was no change in CFU in the treated group in lung, liver or spleen tissue at 4 

weeks post infection (Figure 10 and Figure 12), suggesting that (1) the short-term 

administration of lactoferrin did not alter pathogenic burden, and (2) the alteration due to 

treatments did not result in significant net dissemination to other tissues.  
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Figure 12. Decreased inflammatory response in lactoferrin treated mice. Mtb infected 

mice were assessed by digital analysis for cellularity and inflammation. Area occupied of 

pulmonary scanned sections is shown for individual mice, with and without recombinant 

HLF treatments. Results represent mean ± standard deviation of the mean. Similar data was 

obtained in repeated experiments; 6-10 mice were included per group, per experiment. 

Prophylactic treatment, P; therapeutic treatment, T. One Way ANOVA, p≤0.05, Tukey Post 

Hoc test for multiple comparisons: p≤0.05 for MTB vs MTB+HLF(T). 
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Increased penetration of fluoroquinolone to inflammatory foci after treatment with rHLF. 

The altered pathology of less dense granulomatous structures raised the hypothesis 

that vascular structure would be maintained in the rHLF treated groups, which could 

subsequently result in enhanced penetration of mycobacterial therapeutic agents to within 

regions of inflammation. To test this, the naturally fluorescent fluoroquinolone, ofloxacin, 

was intravenous administered to mice 30 minutes prior to sacrifice at the 28 days post 

infection time point. Figure 13 reveals the penetration patterns of ofloxacin to within 

regions of pulmonary granulomatous response. The histologically dense inflammatory 

response in the Mtb alone group did not permit penetration of the fluoroquinolone, with 

little to no signal entering granulomatous foci. In contrast, both the prophylactic and the 

therapeutic rHLF treatment protocols resulted in granulomas that were permissible to 

ofloxacin penetration. Assessment of serial sections by high resolution scanning revealed 

significant differences between groups (Figure 14). The Mtb alone infected group had a 

relative fluorescent distribution of signal 13.76% ± 7.5%, confirming the relative difficulty in 

penetration of ofloxacin to within inflammatory regions. For comparison, the relative 

fluorescence of normal mouse lung had an average of 90.25% ± 3.5% penetration, reflecting 

antibiotic distribution to the lung at 30 minutes post delivery. Of interest, in alignment with 

visual observations described above, both rHLF treated groups demonstrated elevated 

ofloxacin penetration within granulomas. The prophylactic treatment permitted relative 

increases to 21.68% ± 14.1%, and the therapeutic treatment showed significant increase at 

47.15% ± 14.9% presence of fluorescent signal. Furthermore, high power observation of 
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signal revealed accumulation of ofloxacin correlating with presence of activated foamy 

macrophages (Figure 15). 

 

 

 

Figure 13. Increased fluoroquinolone penetration to primary granulomas after treatment 

with lactoferrin. Lungs from Mtb infected mice alone (left), or rHLF treated prophylactically 

(P; middle) or therapeutically (T; right) were assessed for presence of ofloxacin within 

granulomatous inflammation. Ofloxacin penetration was primarily excluded from 

inflammatory foci in the Mtb infected alone group, while both rHLF treated mice permitted 

entry of ofloxacin into regions of pathology. Top panels represent hematoxylin & eosin 

(H&E) brightfield stained histographs (40x magnification) with matching fluorescence 

captured using multispectral imaging (bottom).  
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Figure 14. Relative fluorescence for individual inflammatory foci post lactoferrin 

treatment. Quantitative assessment of ofloxacin penetration into granulomas in lactoferrin 

treated mice are compared to non-treated infected animals. Individual scans are 

represented from at least 8 mice per group; average values and standard deviation 

included. Prophylactic treatment, P; therapeutic treatment, T. One Way ANOVA, p≤0.05, 

Tukey Post Hoc test for multiple comparisons: *p≤0.001 for MTB vs MTB+(T)HLF and 

p≤0.001 for MTB vs Normal. 
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Figure 15. Accumulation of ofloxacin signal in activated macrophages in lactoferrin 

treated Mtb infected mice. H&E staining of inflammatory foci within rHLF therapeutically 

treated mouse lung revealed acute regions of highly activated “foamy” macrophage-

phenotypic cells. Mutispectral imaging correlates the presence of fluorescence which 

overlaps presence of activated cells, located within the focal granulomatous regions. 

Representative section, 100x magnification. 
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rHLF treatment correlates with retention of endothelial integrity in regions of pulmonary 

inflammation. 

The Mtb alone infected group demonstrated responses consistent with pulmonary 

disruption to alveolar structure and associated vascular tissue. To further examine the 

effect of the rHLF treatment on vascular structure, histological sections were stained with 

PECAM-1. Granulomas in the Mtb alone group demonstrated collapsed alveoli with central 

accumulation of immune cells in regions that disrupt blood distribution (Figure 16). Central 

foci in these mice were devoid of staining, representing reduced vascularization to regions 

where organisms are expected to reside. In contrast, the rHLF treated mice demonstrated 

retention of vascularized structures within areas of inflammation, which also corresponded 

in matched sections to regions demonstrating ofloxacin penetration.  
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Figure 16. Retention of vascularized structures within regions of inflammation in 

lactoferrin treated Mtb-infected mice. Serial sections compared presence of maintained 

vascular structure within inflammatory foci in Mtb infected mice (left side) or in Mtb 

infected mice treated therapeutically with rHLF (right side). Fluorescence patterns obtained 

using multispectral imaging (top panels) were compared with serial lung sections that were 

immunohistochemically stained for PECAM-1 to identify vascular endothelial populations 

within inflammatory foci (bottom panels). VE, vascular endothelium; AE, alveolar capillary 

endothelium; A, alveolus.  
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Altered localization of M1/M2-like macrophages in primary granulomas following rHLF 

treatment. 

Recent reports demonstrated altered distribution of macrophage populations within 

primary granulomas, which may dictate pathological outcomes [259]. Therefore, sections 

were also immunohistochemically stained for general M1-like and M2-like antigens. Figure 

17 depicts immunohistochemical staining for the M1-like marker CD38 and for the M2-like 

marker CD206. The non-treated Mtb infected lungs revealed a concentrated pattern of 

staining demonstrating high presence of both M1-like and M2-like macrophages, primarily 

cuffing  vascular regions surrounding regions of inflammation. Limited numbers of M2-like 

cells were visible (diffuse staining) within the granuloma itself. In contrast, the rHLF treated 

mice exhibited primarily only M2-like macrophages, which were evenly distributed 

throughout the primary granulomatous pathology; M1-like cells were not readily apparent. 
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Figure 17. Altered localization of M1-like and M2-like populations following lactoferrin 

treatment of Mtb infected mice. Serial sections of formalin fixed lung tissue were reacted 

with antibody to CD38 (top) or CD206 (bottom), for either Mtb alone (left side) or Mtb 

infected mice treated therapeutically with rHLF (right side). Mtb alone infected mice 

demonstrate accumulation of both M1- and M2-like phenotypic cells in a cuffing pattern 

surrounding blood vessels adjacent to granulomatous inflammation. A different pattern 

appears in the rHLF treated group, with minimal presence of M1-like phenotype and a 

primarily diffuse distribution of M2-like cells throughout the inflammatory foci. 
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Summary of Chapter 

 

Infection with Mtb results in the primary formation of a densely packed 

inflammatory foci that limits entry of therapeutic agents into pulmonary sites where 

organisms reside. No current therapeutic regimens exist that modulate host immune 

responses to permit increased drug penetration to regions of pathological damage during 

tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated 

to modulate inflammation and granuloma cohesiveness, while maintaining control of 

pathogenic burden. Studies were designed to continue examination of recombinant human 

lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology. The rHLF 

was oral administered prophylactically, at times corresponding to initiation of primary 

granulomatous response, or as a therapeutic intervention during granuloma maintenance. 

Treatment with rHLF demonstrated significant reduction in size of primary inflammatory 

foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone 

therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. 

Increased drug penetration was accompanied by retention of endothelial cell integrity 

within pulmonary parenchyma. Finally, preliminary examination by immunohistochemistry 

revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious 

challenge, with increased presence of M2-like markers found evenly distributed throughout 

regions of pulmonary inflammatory foci in rHLF treated mice.  
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CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS 

 

Discussion 

 

The research for host-directed therapeutics is intended to increase the success of 

Tuberculosis treatment by affecting the immune response to modulate its function towards 

a protective response. Immune-based therapeutics is an intervention to orchestrate the 

reduction of non-productive inflammation in a way that redirects the immune response 

during infection in a manner that benefits the host. In contrast, immunomodulation is 

intended to lie within the framework of harmonizing with anti-TB treatment regimens 

against drug susceptible- and drug resistant-TB to improve the entire recovery process and 

promote absolute cure. Host-directed therapeutics are, therefore, considered necessary to 

reach the goals set by the World Health Organization (WHO) to end TB by 2035. Repurposed 

compounds and molecules are increasingly being used in human clinical trials investigating 

new host-directed therapeutics [260]. In this regard, lactoferrin, a well-known immune 

modulator that has been investigated in many clinical trials for protection and prevention of 

infections, came to be a promising candidate. In this thesis, lactoferrin is used as an 

immunomodulating therapeutic, given orally during the innate immune response, to both 

lessen the development of disease pathology and to improve drug distribution in 

granulomas. Overall, this strategy would benefit host pathology resulting in limiting the 

growth and spread of Mtb.  
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This thesis represents the first report that recombinant human lactoferrin can 

modulate the granulomatous response during primary Mtb infection in mice, in a manner 

nearly identical to that reported for bovine lactoferrin [98]. The results presented indicate 

utility for human lactoferrin administered orally as a therapeutic approach to limit 

pathological damage during primary granuloma development. The intervention led to 

increased penetration of ofloxacin to regions where Mtb typically reside. The observations 

in these thesis studies verified effects in both non-infectious, examining induced 

granulomas using purified mycobacterial mycolic acid TDM [78], and primary TB model, 

delivered via aerosol infection, where administration of rHLF achieved inflammation 

reduction in the lungs and greater ofloxacin distribution throughout granulomatous 

structures after treatment.  

 

Lactoferrin-induced modulation in inflammatory response within mycobacterial-

induced granulomas is likely the result of two concurrent events; that of significantly less 

proinflammatory cytokine production and reduction in recruited M1-like macrophages [78]. 

Alveolar macrophages uptake Mtb during primary infection and become essentially the key 

cell phenotype to recruit and activate additional naïve macrophages to  the sites of 

infection [34, 140]. Classically activated macrophages polarize to the M1-like phenotype and 

exhibit functional phagocytosis and killing of bacteria. As a pathological by-product, they 

initiate immune cell recruitment via secreted proinflammatory cytokines which aid in the 

establishment of granulomatous tissue structures. Temporally, the subsequent recruitment 

and introduction of M2-like macrophages allows immune modification of the aggressive 
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inflammatory response, permitting an immunological “brake” to an overwhelming 

pathological response [21, 147, 197, 198, 261].  While further investigation is required, it is 

theorized that a balance in the presence of macrophage phenotypes within the 

granulomatous structures is essential to control pathological mediators by innate immune 

cells [66], which is critical to regulation of  IL-1β (T cell activation and migration) [262] and 

TNF- (vasodilatation and leukocyte adhesion to epithelium) [263] necessary as a response 

to control bacterial growth.  

 

A major observation of this study was that the second-line mycobacterial 

therapeutic fluoroquinolone was able to penetrate within inflammatory foci. Similar to 

results using the TDM non-infectious model of pathology, significant amount of ofloxacin 

was found within granulomas following treatment with human lactoferrin, especially, but 

not limited to, regions of reduced inflammation. Concurrently, the lactoferrin-treated mice 

exhibited granulomatous responses with maintained vascular structures and open alveolar 

spaces. Acute inflammation and reactivity during Mtb infection occurs primarily peripheral 

to vascular regions, coinciding with destruction in continuity of endothelial lined blood 

vessels [258, 264]. In the experiments presented in this thesis, lactoferrin treatment 

allowed greater regions of lung tissue, and alveolar spaces, to remain unobstructed, as 

evident using the PECAM-1 endothelial surface marker. This coincided with observational 

retention of blood vessels within regions of pathology. The lessened pathological damage in 

the lactoferrin treated animals, along with significant maintenance of vascular architecture, 

likely permitted ofloxacin transport inside of granulomas, as evident by the drug’s 
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fluorescent signal observed within and around the endothelial-lined vessels. This raises the 

hypothesis for use of lactoferrin as a safe adjuvant molecule to increase delivery of standard 

Mtb therapeutics. This may also have the potential to reduce overall treatment times, limit 

drug sensitivity development, and reduce antibiotic side effects in patients undergoing 

treatment. 

 

A major concern with current host-directed therapy is the increase of bacterial 

dissemination during treatment, such as seen when TNF-αblockers are used [88-91]. It is 

crucial that the role of established granulomas is maintained throughout the anti-

mycobacterial treatment; specifically, the activation of recruited immune cells must be 

maintained to limit organism spread to other tissues. The observations in this thesis 

demonstrated no increase in lung CFUs in the treated group and no change in levels of 

detected organisms in liver and spleen. Such observations align with previous studies using 

bovine lactoferrin in a similar Mtb infectious model [98]. This shows potential therapeutic 

application of recombinant human lactoferrin to reduce pathological damage due to 

infection. And it does so without the major side effect of other host-directed therapies, 

including the compromising of Mtb confinement at the site of initial inflammation.  

 

Lactoferrin immune-modulating effects in the Mtb infectious model are consistent 

with other infectious models reported [115, 265, 266]. And its utility as a host-directed 

therapeutic has been demonstrated in other diseases where host inflammation plays a key 

role in pathology development [115, 267]. Lactoferrin was used successfully in clinical trials 
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a prophylactic to prevent development of enterocolitis and sepsis [107, 268, 269]. In a 

similar manner, the prophylactic administration presented here was done prior to the 

establishment of granulomatous pathology. However, significant results were surprisingly 

identified when lactoferrin was given as a therapeutic at day 21 post infection at a time 

after granulomas have initiated in the lungs. Of clinical importance, when lactoferrin was 

used therapeutically it both decreased overall lung inflammation and increased ofloxacin 

distribution in granulomas.  

 

The results in this thesis also brought to light the underlying functional activity  of a 

relatively novel recombinant human lactoferrin. Most previous studies investigating the 

immune-modulating effects of lactoferrin used bovine lactoferrin due to its considerable 

availability and affordable pricing as a byproduct of cow milk. Though experiment and 

clinical trials on bovine lactoferrin immunomodulating effects show great potential as a 

therapeutic component, there is roughly a 30% difference in sequence identity between 

bovine and human lactoferrin [270]. In terms of amino acid composition, there are 696 

amino acids in bovine lactoferrin compared with 691 amino acids in the human molecule 

[271, 272]. Since there are differences in their structure, though not major, there remains a 

gap where species compatibility might affect optimalization of modulating properties 

against human diseases, which is rarely observed and explored. In these sets of 

experiments, the consistent immunomodulating effects in the treated groups, in both TDM 

and Mtb models, shed light into this unexplored area. This was achievable due to the novel 

production of recombinant human lactoferrin using a stable Chinese hamster ovary cell line 
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(CHO) that is widely accepted as a leading mammalian platform in pharmaceutical 

production [273], thus allowing the use of recombinant human lactoferrin to be much more 

affordable and accessible in research. The recombinant human lactoferrin that was used in 

these studies possesses human-like glycosylation patterns, sequence identity, and 

antibacterial functions that are similar  to that found in breast milk derived human 

lactoferrin [273]. 

 

Mechanistically, lactoferrin can induce dendritic cell activation and maturation, 

specifically supporting functions of antigen presenting cell (APC) populations that act as to 

bridge innate and adaptive immunity [274-278]. Lactoferrin can directly enhance the 

antigen presenting activity and T-cell stimulation function in mycobacterial-infected 

macrophages [279]. Lactoferrin can also modulate T-cell activities in multiple ways [115]. In 

vitro, T-cell maturation and expression of T-cell ζ-chain, a component of T-cell receptor 

(TCR) complex involved in receptor signaling pathways, can be increased upon treatment 

with lactoferrin [280-282];  T-cell adhesive molecules involved in cell-to-cell contact are also 

increased in the presence of lactoferrin [283]. Bovine lactoferrin administered orally 

increased IFN- Th1 T-cell responses [284] and NK cell activity in mice [285] likely by 

increasing IL-12 and related cytokines [285, 286]. Together, these suggest possible 

modulations of T cell activities, combined with enhanced antigen-presenting cell maturation 

and macrophage recruitment effects, which theoretically shift the overall outcome of 

granulomas to successful containment of pathogens  
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The  observations using the TDM-induced granuloma model demonstrated that 

lactoferrin could lessen the presence of inflammatory mediators post initiation of pathology 

[78], as well as preferentially recruit M2-like cells to granulomas [78]. It is reasonable to 

infer that similar reductions using human lactoferrin at 4 weeks post Mtb infection would 

occur, since TDM is significantly released from mycobacteria [21, 287]. This also suggests an 

important mechanistic link between macrophage recruitment and lactoferrin treatment 

during Mtb infection, perhaps via the alteration of surface adhesion markers on monocytes 

that would permit increased interaction with endothelial cells [288, 289]. However, it 

remains unknown if lactoferrin can differentially affect M1-like versus M2-like activities; 

such experiments have only been explored on classical M1-like activated monocytes [198, 

279]. This suggests a premise that macrophage polarization could occur in the presence of 

lactoferrin, perhaps via the reduction of locally produced proinflammatory cytokines [78, 

97, 261, 290, 291]. 

 

Future Directions 

 

The studies presented here set a foundation to further investigate usage of human 

lactoferrin in combination with standard treatments for Mtb infection. Bacterial 

dissemination in later time points after infection, and prolonged treatments, should be 

studied to understand the full potential of its use as a host-directed therapeutic. It remains 

unknown if lactoferrin treatment, when limited to the duration of early innate immune 

responses (such as was done in our models), is enough to significantly amplify the 



 95 

bactericidal effect of Ofloxacin when given as a standard TB treatment regimen. In reality, it 

is not clinically feasible to identify individuals prior to development of pathology and 

granuloma formation. Therefore, more experiments are needed to determine the extent of 

human lactoferrin on the adaptive immune response when treatments begin after exposure 

at the primary granuloma establishment and maintenance stages.  

 

The understanding of how Lactoferrin exerts its immunomodulating effect to the 

granulomatous response remains to be explored. The molecule is known to interact with 

“danger signal” receptors in addition to the lactoferrin receptor [252], therefore, it is 

remains unclear where such interactions happen physically during the granulomatous 

response. Future studies are needed to determine if lactoferrin works from within the 

granuloma structure as it penetrates the dense inflammatory tissues or indirectly by 

interacting with recruited immune cells in blood vessels and normal lung tissue (with 

secondary effects culminating in altered granuloma structure). In the non-infectious model 

where macrophages are responsible for the majority of inflammatory response, it is unclear 

how lactoferrin modulated the macrophage immune response. It has been established that 

bovine lactoferrin improved antigen-presentation in BCG infected bone marrow-derived 

macrophages by increasing surface expression of Class II (I-Ab) [120]. Therefore, more 

investigation is needed to confirm such effect, as well as other unknown changes in 

phenotype and intercellular signaling, in macrophages caused by lactoferrin during the 

primary immune response to Mtb infection.  
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Though a significant modulation of granulomatous response was achieved by giving 

lactoferrin orally, further investigation is needed for a thorough analysis of how much 

recombinant human lactoferrin was absorbed through the gut, and whether its intact 

structure and glycosylation presence within the circulating blood and lung tissue survives  

degradation in the digestive system.It is expected that bioavailability is affected by protein 

degradation and absorption. Recent studies by Kruzel, et al [292] suggest that up-regulation 

of specific genes involved in oxidative stress and inflammation occur after oral delivery. 

Future in-depth studies can extend comparisons of efficiency  of different delivery methods 

when lactoferrin is given as a therapeutic for TB, such as when given orally, deposited on 

mucosal surfaces, or injected intravenously. In this study, the modulating effect of 

lactoferrin during the establishment of granulomas was investigated, which was not 

maintained after 4 weeks of ending lactoferrin treatment (8 weeks post Mtb infection). 

Therefore, future studies using lactoferrin in a longer term and more persistent manner is 

needed to discover the extent of its effect, long-term consequences, and the appropriate 

exposure to lactoferrin for optimized treatments.  

 

Overall, a role for clinical utility of human lactoferrin to modify the aggressive 

immune function during primary Mtb infection may exist, which would allow greater 

efficacy of treatments. In turn, this would potentially reduce standard treatment duration, 

antibiotic side effects, and overall pathological damage in patients.  
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