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MICRORNAS ASSOCIATED WITH MELANOMA INFLAMMATION  

AND RESPONSE TO PD-1 INHIBITION 

Robert Szczepaniak Sloane, BSc  

Advisory Professor: Jennifer Wargo, M.D., M.M.Sc.  

Melanoma is an aggressive malignancy of melanocytes with historically poor 

outcomes. Melanoma therapy has improved markedly over the past decade with 

advances in molecularly targeted agents and immunotherapies. Immune checkpoint 

inhibitors achieve T-cell mediated anti-tumor efficacy by blocking engagement of 

inhibitory checkpoints on T-cells to overcome immunosuppressive signals from tumor 

cells and the broader microenvironment. Despite these advances, there are a significant 

proportion of patients who do not benefit from existing immunotherapy strategies 

making it a priority to identify and target the mechanisms that confer resistance to 

therapy. We demonstrate that microRNAs are accurate markers of microenvironment 

composition with prognostic value for overall survival in melanoma. We also identified 

networks of microRNA and mRNA expression in melanoma tissue and melanoma cell 

lines that are associated with previously identified melanoma transcriptomic subsets. 

These microRNA networks encompass several key oncogenic processes including 

epithelial to mesenchymal transition and expression of melanoma specific transcription 

factors including MITF. Furthermore, investigation of these microRNAs in a cohort of 

PD-1 inhibitor treated melanoma patients identified a survival benefit in patients whose 

melanomas had high expression of miR-100-5p and miR-125b-5p. These findings 

indicate that microRNA regulation of gene expression in melanoma is relevant to 

melanoma biology, composition of the immune microenvironment and outcomes to 

PD-1 checkpoint blockade.  
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CHAPTER ONE 

INTRODUCTION 

This chapter is based upon the following work: 

- Szczepaniak Sloane RA, Gopalakrishnan V, Reddy SM, Zhang X, Reuben A, 

Wargo JA. Interaction of molecular alterations with immune response in 

melanoma. Cancer. 2017 Jun 1;123(S11):2130-2142. doi: 10.1002/cncr.30681. 

PMID: 28543700; PMCID: PMC6105277. 

TARGETED AND IMMUNE THERAPY FOR MELANOMA 

Recent Advances in Clinical Care 

Significant advances in the treatment of metastatic melanoma have been made over the last 

decade, translating into meaningful survival benefit for patients. Therapeutic strategies 

may be broadly characterized into targeted therapy versus immunotherapy approaches—

with several agents now approved by the US Food and Drug Administration (FDA) in each 

category. These agents are also being used to treat patients with earlier stage disease; 

however, resistance to therapy remains an issue across treatment types. 

One of the most frequent mutations in melanoma involves the B‐Raf proto‐oncogene 

serine/threonine kinase (BRAF) gene, with BRAF mutations present in approximately 50% 

of melanomas, leading to constitutive signaling of the mitogen‐activated protein kinase 

(MAPK) pathway in affected cells [1, 2]. Pharmacologic targeting of this oncogenic 

mutation has been a qualified success, leading to the approval of several different BRAF 

inhibitors (vemurafenib in 2011, dabrafenib in 2013)[3, 4]. However, despite a high 
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response rate, the durability of responses has been limited (<6 months), and a deep query 

into resistance has ensued, uncovering numerous mechanisms of therapeutic resistance to 

BRAF‐inhibitor monotherapy, many of which contribute to MAPK reactivation [5-14]. On 

the basis of these findings, investigators developed combinatorial strategies incorporating 

mitogen‐activated protein kinase kinase (MEK) inhibition and BRAF‐inhibitor 

monotherapy with some success and a near doubling of progression‐free survival [15, 16]. 

Therapeutic resistance remains an issue even with combined BRAF and MEK inhibition, 

and the majority of patients experience relapse of disease within 1 year of initiating therapy 

[17-19]. Nonetheless, durable responses may be observed in a subset of patients, and from 

20% to 30% of patients remain progression free 4 years into therapy [17]. 

Concurrent with the clinical development of BRAF‐targeted therapy was the clinical 

development of immune‐checkpoint inhibitors. This class of agents blocks 

immunomodulatory molecules on the surface of T cells (or their ligands), resulting in 

reactivation of potentially anergic T cells [20, 21]. Ipilimumab and tremelimumab are 

monoclonal antibodies that block the cytotoxic T‐lymphocyte antigen 4 (CTLA‐4) receptor 

on the surface of T lymphocytes. CTLA‐4 functions to down‐regulate the priming phase of 

an immune response, and blocking this interaction results in T‐cell activation through the 

engagement of antigen‐presenting cells. CTLA‐4 blockade may also function through 

depletion of immune‐suppressive regulatory T cells by antibody‐dependent cellular 

cytotoxicity, increased mobilization of CD8 T cells to the tumor, and prevention of trans‐

endocytosis of costimulatory molecules on antigen‐presenting cells, thereby enhancing 

their capacity to prime T‐cell responses [22-24]. Two large phase 3 clinical trials 

investigating treatment with ipilimumab in patients with metastatic melanoma 
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demonstrated a survival benefit over then standard‐of‐care chemotherapy, substantiating 

its FDA approval in 2011 [25, 26]. Although overall objective response rates are modest 

(range, 10%‐15%), treatment with CTLA‐4 blockade is associated with long‐term disease 

control in a subset of patients, with approximately 20% of treated patients achieving 

durable disease control (>10 years after initiating therapy) [25, 27]. 

Other immune‐checkpoint inhibitors were also developed during this time, including those 

targeting the programmed death‐1 (PD‐1) pathway and its ligands (PD‐L1, PD‐L2). PD‐1 

ligation leads to inactivation of T cells, although this mainly affects the effector phase of a 

T‐cell response in peripheral tissues (such as in the tumor microenvironment) [28, 29]. 

Treatment with monoclonal antibodies that block PD‐1 is associated with response rates of 

approximately 40% in patients with metastatic melanoma, and 2 such agents were approved 

by the FDA in 2014 (pembrolizumab and nivolumab) [30, 31]. It is noteworthy that 

treatment with these agents is associated with a lower incidence of toxicity compared with 

CTLA‐4 blockade [30, 32-35]. More recently, combination regimens with CTLA‐4 and 

PD‐1 blockade were tested in clinical trials and demonstrated a high response rate (>60%) 

and improvement in overall survival, although treatment with this regimen is also 

associated with a very high rate of toxicity [36, 37]. 

Additional forms of immunotherapy have been investigated and have demonstrated 

efficacy with the FDA approval of talimogene laherparepvec (TVEC) in 2015. TVEC is an 

oncolytic herpesvirus that was engineered to express human granulocyte‐monocyte 

colony–stimulating factor and is used as an intratumoral injection [38]. TVEC selectively 

replicates within tumor cells, causing tumor lysis and is also believed to elicit antitumor 

immune responses through enhanced antigen presentation by dendritic cells (DCs) [39-41]. 
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This agent was FDA approved for the treatment of unresectable stage IIIB, IIIC, and IV 

melanoma based on an improved durable response rate compared with granulocyte‐

monocyte colony–stimulating factor alone [42]. More recently, TVEC was tested in 

combination with immune‐checkpoint inhibitors (ipilimumab and pembrolizumab) and 

demonstrated greater efficacy than expected with either drug alone; however, these agents 

were not compared in a randomized prospective design [43, 44]. 

Despite these advances, there are still significant proportions of patients who do not 

respond to therapy, and therapeutic decision making remains difficult based on different 

treatment choices and a paucity of reliable biomarkers for response. However, tremendous 

insights into molecular and immune mechanisms of response and resistance to these 

therapies have been gained and ultimately may help guide rational approaches to 

optimizing treatment. 

Insights into the Effects of Mutations on Antitumor Immunity 

Over the past decade, we have made significant progress in understanding the effects of 

mutations on antitumor immunity. With the advent of next‐generation sequencing and the 

use of targeted sequencing panels at the time of melanoma diagnosis, we now have more 

information on which to base therapeutic decisions, although the approach to date has been 

somewhat rudimentary. 

Detailed genomic analyses of large melanoma cohorts have provided understanding of the 

key molecular features that contribute to the development of melanoma, including 

widespread dysregulation of the MAPK signaling pathway driven predominantly by BRAF 

and RAS (neuroblastoma rat sarcoma viral oncogene homolog [NRAS], Harvey rat 
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sarcoma viral oncogene homolog [HRAS], Kirsten rat sarcoma viral oncogene homolog 

[KRAS]) mutations. Additional significant alterations include phosphatase and tensin 

homolog (PTEN) inactivation either by mutation or deletion, and neurofibromatosis type 

1 (NF‐1) mutations [45, 46]. It is also known that cutaneous melanoma has the highest 

mutational burden among all cancers, likely related to damage by ultraviolet (UV) radiation 

[47]. Over the last decade, it has become apparent that the different molecular alterations 

can have distinct effects on the tumor microenvironment, which, in turn, influence the 

response to targeted therapies and immunotherapies [48, 49]. Thus, a deeper understanding 

of the immune effects of genomic mutations (and consequences of targeting these 

mutations) may facilitate the design of effective treatment strategies. Specific aspects of 

selected mutations and/or genomic alterations are discussed below. It is worth noting that 

several additional mutations may influence immune responses, but here we are highlighting 

the high‐frequency mutations with strong evidence for an impact on antitumor immunity. 

BRAF Valine‐to‐Glutamic Acid Mutations at Codon 600 

Activating mutations in the BRAF gene (most commonly the valine‐to‐glutamic acid 

mutation at codon 600 [V600E]), lead to 10‐fold greater kinase activity than that observed 

in normal cells, resulting in aberrant MAPK pathway activation, which protects 

melanocytes from apoptosis while driving tumorigenesis, invasiveness, and metastatic 

behavior [50]. It is noteworthy that this mutation also reportedly plays a role in immune 

evasion [51-53]. The first mechanistic report of the immunosuppressive effects of BRAF 

in melanoma came from Sumimoto et al in 2006 [51]. In their study, interleukin 6 (IL‐6), 

IL‐10, and vascular endothelial growth factor (VEGF) were identified and validated as 

immunosuppressive factors from the supernatant of cultured BRAFV600E melanoma cells, 
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and these factors and their immunosuppressive function were reduced with pharmacologic 

MEK inhibition or BRAFV600E RNA interference treatment [48, 51]. At the same time, 

Kono et al demonstrated that BRAFV600E can suppress the expression of the melanoma 

antigens melanoma antigen recognized by T cells 1 (MART‐1) and glycoprotein 100 

(gp100), whereas MEK inhibition reverses this effect, also leading to increased recognition 

and killing by MART‐1–specific cytotoxic T cells [52]. Khalili and colleagues also 

observed that BRAFV600E mutations caused immunosuppression by inducing IL‐1 

transcription in both melanocytes and melanoma cell lines, resulting in enhanced ability of 

melanoma tumor‐associated fibroblasts to suppress cytotoxic T‐cell activity [54]. 

These in vitro findings are supported by preclinical models and translational work in human 

melanomas by several groups [48, 49, 53-58]. Notably, longitudinal tissue immune 

profiling of patients undergoing selective BRAF inhibition with or without MEK inhibition 

demonstrated an increase in CD8‐positive T‐cell infiltrate within 2 weeks of initiation of 

treatment, an increase in the expression of melanoma antigens on tumor cells, an increase 

in markers of T‐cell cytotoxicity, and a decrease in levels of immunosuppressive cytokines 

IL‐6 and IL‐8 (Figure 1.1) [49, 59]. It is noteworthy that immunomodulatory molecules 

PD‐1 and PD‐L1 were also increased with treatment. This is likely a mechanism of adaptive 

immune resistance, induced by tumor‐infiltrating lymphocyte (TIL)‐derived interferon 

gamma (IFN‐γ). However, it is important to note that, although PD‐1/PD‐L1 interaction is 

inhibitory, induction of these molecules as a result of BRAF therapy provides additional 

therapeutic targets in light of FDA approval of anti‐PD‐1 and anti‐PD‐L1 therapies, 

strengthening the rationale for combining targeted therapies with immune‐checkpoint 

blockade. 
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Figure 1.1 Immune Effects of Molecular Alterations in Melanoma 
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Figure 1.1 Immune Effects of Molecular Alterations in Melanoma 

Immune effects of molecular alterations within the tumor microenvironment are illustrated. 

Immune effects of the B‐Raf proto‐oncogene serine/threonine kinase (BRAF) valine‐to‐

glutamic acid mutation at codon (BRAFV600E) and phosphatase and tensin homolog 

(PTEN), β‐catenin, and passenger mutations resulting in neoantigens on the immune tumor 

microenvironment are described. It has been established that the BRAFV600E mutation 

up‐regulates the immunosuppressive cytokines vascular endothelial growth factor (VEGF), 

interleukin 1 (IL‐1), IL‐6, and IL‐10 and down‐regulates immunogenic melanoma 

antigens. It also has been demonstrated that PTEN loss increases the expression of VEGF, 

IL‐6, IL‐10, and C‐C motif chemokine ligand 2 (CCL2), leading to reduced T‐cell 

infiltration and poor response to checkpoint blockade. Aberrant β‐catenin activity leads to 

increased expression of IL‐10, reducing the ability of dendritic cells to mediate an 

antitumor T‐cell response. Increases in mutational load and neoantigens result in a potential 

increase in the antigenicity of the tumor. MHC I indicates major histocompatibility 

complex class 1. 
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Despite evidence for the immunosuppressive role of BRAF in vitro and in translational 

studies, meta‐analyses of immunotherapy trials have not demonstrated a significant 

difference in response rates for patients with versus without a BRAF mutation [60]. This 

could have been because of insufficient power to detect a difference, or it may be related 

to the presence of other molecular and microenvironment factors affecting antitumor 

immunity. Nonetheless, it suggests that BRAF mutation status as a single variable is not 

sufficient to predict response to immunotherapy. 

PTEN 

Expression of the tumor suppressor PTEN is lost in up to 30% of melanomas, and loss of 

PTEN function is associated with aberrant activation of the phosphoinositide 3‐kinase 

(PI3K) pathway, which can cooperate with mutant BRAF during tumorigenesis [61, 62]. 

In melanoma, PTEN loss is associated with both reduced T‐cell infiltration and reduced T‐

cell function in vitro and in vivo, and 2 separate studies have outlined the mechanisms of 

immune suppression that occur with PTEN loss [45, 63]. Like in BRAF‐mutant melanoma, 

IL‐6, IL‐10, and VEGF expression levels are key immunosuppressive features of PTEN 

inactivation, with PI3K signaling through signal transducer and activator of transcription 

3 (STAT3) mediating the expression of these cytokines [63]. Furthermore, the 

immunosuppressant C‐C motif chemokine ligand 2 (CCL2) is also overexpressed in 

PTEN‐inactivated tumors [45]. It is encouraging to know that the effects of PTEN loss on 

both cytokine expression and T‐cell infiltration and function are reversible with PI3K 

inhibitors, which increased the efficacy of anti–PD‐1 therapy when administered in 

combination in a murine model [45]. These studies also demonstrated that PTEN loss is 

associated with reduced T‐cell infiltration, reduced efficacy of ex vivo expansion of TILs, 
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and poor response to anti‐PD‐1 checkpoint blockade in human studies (Figure 1.1)[63]. 

This concept is now being translated to the clinic, and a trial is underway to test the safety 

and efficacy of combining a PI3K inhibitor with pembrolizumab in melanoma and other 

tumor types (clinicaltrials.gov identifier NCT02646748). One of the stated aims of this 

study is to investigate effects on the tumor microenvironment, which may help clarify the 

immune‐related role of PI3K and the clinical feasibility of this combination. Notably, 

potential nuances exist with this type of approach, because studies have indicated that 

different isoforms of PI3K inhibitors have differential effects on T lymphocytes [64]. 

NRAS 

NRAS mutations are present in approximately 20% of melanomas, representing the second 

largest molecular subtype after BRAF‐mutant melanoma [65, 66]. Activating mutations in 

NRAS, like BRAF, result in constitutive over‐activation of the MAPK pathway [67, 68]. 

However, NRAS‐mutant melanomas are also clinically distinct from BRAF‐mutant 

melanomas, with a higher incidence in chronically sun‐damaged skin, thicker lesions at 

presentation, and poorer prognosis [69]. 

The clinical response to immunotherapy is also different in the presence or absence of an 

NRAS mutation. Two independent studies have now observed a higher response rate to 

immunotherapy in NRAS‐mutated melanomas. In an analysis of 208 patients with stage 

III/IV melanomas who received treatment with high‐dose IL‐2 (HD‐IL‐2), those who had 

NRAS mutations achieved significantly higher response rates compared with those who 

had BRAF‐mutant or wild‐type (WT) melanomas [70]. These findings were recently 

corroborated in a study that included HD‐IL‐2, ipilimumab, and anti–PD‐L1/PD‐1 
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therapies. Although increased response rates were observed in all immunotherapies, the 

benefits were most pronounced with the anti–PD‐L1/PD‐1 treatments [71]. 

The mechanism of these improved responses has not yet been fully elucidated. Joseph et 

al reported a correlation between serum lactate dehydrogenase (LDH) levels and response 

to HD‐IL‐2, although LDH is a surrogate of disease burden and a prognostic biomarker in 

melanoma and this may be the basis of the association, rather than a specific association 

with an immune phenotype [70, 72]. Elevated expression of PD‐L1 in the NRAS cohort 

described by Johnson et al could explain these clinical differences, although their 

observations were in a small cohort and were not statistically significant [71]. The 

differential response to immunotherapies may also be explained in part by the specific 

immunosuppressive effects of BRAF mutation and PTEN loss in the other cohorts, 

especially because NRAS mutations are generally exclusive of both BRAF mutation and 

PTEN loss, which would clearly delineate these cohorts [69]. 

Wnt/β‐Catenin Signaling Pathway 

Although mutations in the Wnt/β‐catenin pathway occur at a relatively low rate in 

melanoma, it has been reported that dysregulation of this pathway is common, with 1 report 

of abnormal cytoplasmic/nuclear accumulation in one‐third of melanomas [73, 74]. It is 

noteworthy that defects in the Wnt/β‐catenin signaling pathway have been implicated in 

immunosuppression as an intrinsic mechanism within melanomas and also within local 

DCs [75-77]. Activation of β‐catenin signaling directly increases expression of the 

immunosuppressive cytokine IL‐10 in human melanoma, and this is linked to a reduced 

ability of DCs to stimulate a melanoma‐specific, CD8‐positive T‐cell response [78]. Two 

studies have demonstrated that DC‐mediated inhibition of CD8‐positive T‐cell cross‐
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priming itself is a process regulated by the Wnt/β‐catenin pathway within the DCs [76, 79]. 

In addition, tumor‐induced β‐catenin activity in DCs can also induce regulatory T‐cell 

differentiation [77]. Recent evidence also suggests that Wnt/β‐catenin signaling in 

melanoma cells is linked to T‐cell exclusion from the tumor microenvironment and that 

this is mediated by CCL4 transcription and a reduction in the recruitment of CD103‐

positive DCs [75]. 

When considering the potential clinical relevance of these findings, it is interesting to note 

that Wnt/β‐catenin signaling‐linked immunosuppressive effects can be reversed by 

pharmacologic targeting of the pathway [77, 79]. It may also be of therapeutic benefit that 

Wnt/β‐catenin signaling can regulate immunosuppressive processes in different cell types 

through various mechanisms. Therefore, any targeting of this pathway may be broadly 

immunosensitizing, and this may improve efficacy and limit potential mechanisms of 

resistance (Figure 1.1). 

Mutational Load/Neoantigens 

Cutaneous melanoma is the most heavily mutated of all cancers because of induction of C‐

T transitions at dipyrimidine sites through exposure to UV irradiation [47, 65, 80]. 

Accumulation of these mutations often leads to alterations in the MAPK pathway in 

melanoma and in other melanoma driver genes, although UV exposure also leads to the 

generation of large numbers of other mutations that affect genes unrelated to proliferation 

or apoptosis and thus are unlikely to directly contribute to cancer progression [65]. 

However, recent work has brought to light the role that these “passenger mutations” may 

play in altering tumor immunogenicity [80]. 
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Although high mutational load was once considered to be deleterious in cancer, it is now 

thought to have potentially beneficial immunogenic properties [80, 81]. The reasoning 

behind this is that a higher mutational load is generally associated with a higher level of 

neoantigens, which are defined as tumor‐restricted antigens derived from mutations within 

transformed cells [82]. Considering the origin and randomness of their generation, 

neoantigens may be associated with increased tumor immunogenicity, because they are 

excluded from self‐tolerance and deletion mechanisms at play during T‐cell development. 

Increased mutational load and neoantigen burden therefore potentially allow for increased 

tumor immunogenicity through presentation of unique peptides more likely to be 

recognized by T cells (Figure 1.1). 

Accordingly, neoantigen burden has been studied in the context of treatment with immune‐

checkpoint blockade as well as other forms of immunotherapy, such as adoptive T‐cell 

therapy [80, 81, 83]. In the setting of treatment with CTLA‐4 and PD‐1 blockade, a higher 

mutational burden is correlated with favorable responses [80, 81, 84]. However, this is not 

specific to melanomas and has been observed in other cancer types, including non‐small 

cell lung cancer as well as colorectal cancer, with high mismatch‐repair mutations [85]. 

Although original reports relied on whole‐exome sequencing to derive mutational load, 

algorithms have now been developed to calculate the “predicted total mutational load” 

from targeted sequencing panels of 200 genes [86]. In addition to these quantitative 

assessments, qualitative assessments of neoantigens have been used to develop 

personalized cancer therapies through the identification of neoantigens in tumors and 

validation of expression and reactivity against these antigens by autologous T cells [83]. 

Targeting of patient‐restricted neoantigens has proven successful in this context, as 
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demonstrated in a study by Tran and colleagues in which exome sequencing was 

performed, neoantigens were predicted based on patient human leukocyte antigen alleles, 

and infusion of mutated Erbb2 interacting protein (ERBB2IP)‐specific T cells mediated the 

response of multiple metastases in a patient with epithelial cancer [80, 83]. 

Molecular Alterations with Response/Resistance to Immunotherapy 

In addition to interrogating known melanoma mutations for their influence on antitumor 

immunity, tremendous progress has been made in identifying resistance‐conferring 

molecular alterations through the analysis of patient cohorts that received immunotherapy. 

Several high‐impact studies have been done over the last several years, and the insights 

gained are informing strategies to overcome therapeutic resistance. 

In addition to the influence of mutational load, as described above, several other factors 

have been associated with response or resistance to immune‐checkpoint blockade [80]. 

Genomic and transcriptomic characterization of a cohort treated with CTLA‐4 blockade 

revealed that neoantigen burden and the expression of cytolytic markers also are associated 

with long‐term clinical benefit [84]. Additional studies in the setting of CTLA‐4 blockade 

have identified other mutations associated with improved survival, such as serpin peptidase 

inhibitor, clade B, member 3 (SERPINB3) and SERPINB4 mutations, which are 

hypothesized to enhance tumor immunogenicity [87]. Defects in IFN signaling may also 

serve as a mechanism of resistance to therapy, and studies have demonstrated that 

functional IFN‐γ is necessary for a successful immune response to CTLA‐4 therapy [88, 

89]. 
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Several recent reports have also described molecular alterations associated with response 

and resistance to PD‐1 blockade. Like CTLA‐4 blockade, high mutational load is also 

associated with long‐term clinical benefit [90, 91]. In addition, it has been demonstrated 

that responding tumors have a higher burden of mutations in breast cancer 2 (BRCA2), a 

DNA repair gene [90]. Therapeutic resistance is associated with defects in the antigen 

processing and presentation machinery (such as β2‐microglobulin) and IFN‐γ signaling as 

well as up‐regulation of genes involved in angiogenesis, extracellular matrix remodeling, 

cell adhesion, and mesenchymal transition [89, 90]. In addition, a recent study 

incorporating targeted sequencing revealed that patients with NF‐1 mutations had high 

mutational load and high response rates to anti‐PD‐1, whereas patients who lacked 

BRAF/NRAS/NF‐1 mutations had low mutational load [91]. One study to date has been 

published analyzing sequential treatment with CTLA‐4 and PD‐1 blockade that performed 

immune and gene‐expression profiling in longitudinal tumor samples in the context of 

therapy [92]. In those studies, immune signatures in pretreatment samples were only 

modestly predictive of response to both CTLA‐4 blockade as well as PD‐1 blockade; 

however, the presence of a favorable immune signature in on‐treatment tumor biopsies was 

highly predictive of response, particularly to anti–PD‐1 therapy. More recently, genomic 

characterization of tumor samples has been performed in the same cohort, demonstrating 

copy number alterations as drivers of resistance to both forms of immune‐checkpoint 

blockade [93]. 

Combining Targeted Therapy and Immunotherapy 

With an understanding of the immune effects of oncogenic mutations and consequences of 

their therapeutic targeting, coupled with a growing appreciation of molecular resistance 
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mechanisms to immunotherapy—one may question if synergy will be seen when these 

agents are combined. Indeed this hypothesis has been posed, though early interest in 

combining targeted therapy and immunotherapy was largely clinically based—hoping to 

achieve high response rates (characterized by targeted therapy) and durable responses 

(characterized by immunotherapy). Since these trials were initiated, there is now also 

growing scientific rationale for combining these 2 treatment modalities, and a large number 

of trials exploring this strategy are currently underway [94-97]. 

One of the first phase 1 clinical trials testing a BRAF inhibitor with immunotherapy 

involved the combination of BRAF inhibitor monotherapy (with vemurafenib) and a 

checkpoint inhibitor (targeting CTLA‐4, ipilimumab). Although responses were observed 

and there was evidence of synergy based on assessment of T‐cell infiltrates within tumors 

from these patients, accrual to the trial was halted early, because grade 3 hepatotoxicity 

was observed in a significant proportion of these patients (6 of 12), highlighting the 

potential toxicity of these combinations [94, 98]. 

Another trial focused on the combination of BRAF and MEK inhibitors (dabrafenib and 

trametinib) with immune‐checkpoint blockade targeting CTLA‐4 (ipilimumab; 

clinicaltrials.gov identifier NCT107767454) in patients with stage IV, BRAF‐mutant 

melanoma. In that trial, hepatotoxicity was still observed, although the magnitude was far 

less, suggesting that this may be drug specific rather than target specific [96]. Notably, the 

arm of the trial that incorporated treatment with the triplet combination was closed after 

several patients (2 of 7) developed colitis, with 1 patient requiring surgery [99]. This again 

highlights the unpredictability of toxicity profiles and the need for carefully designed and 

monitored, early phase clinical trials. 
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Compared with concurrent therapy, a phase 2 trial of sequential vemurafenib and 

ipilimumab demonstrated a more tolerable and manageable toxicity profile—65% of 

patients had grade ≥3 toxicities, the majority of which were skin toxicities—suggesting 

that combining these drugs in this manner may prove more beneficial [97]. Finally, given 

the improved tolerability of anti–PD‐1/PD‐L1 axis‐targeting therapies compared with 

ipilimumab, trials are investigating combinations of these agents with targeted therapies. 

A recent report on a phase 1 trial of durvalumab/dabrafenib/trametinib for BRAF‐mutant 

melanoma, durvalumab/trametinib for BRAF‐WT melanoma, and sequential 

trametinib/durvalumab in BRAF‐WT melanoma has also demonstrated a relatively more 

manageable toxicity profile, suggesting that combination with anti–PD‐1/PDL‐1 agents 

may be preferable [100]. 

In recent years the combination of a BRAF and MEK inhibitor (Vemurafenib and 

Cobimetinib) with an anti-PDL-1 agent (Atezolizumab) has been investigated in a multi-

center, randomized, double blind, placebo-controlled phase III trial (NCT02908672). This 

trial reported increased progression free survival of melanoma patients treated with the 

triple combination compared to those treated with Vemurafenib and Cobimetinib and a 

placebo (15.1 months vs 10.6 months) [101]. There was no significant difference in 

objective response rates between the different arms of this trial and the largest differences 

in PFS were observed after 6 months. The results of this trial lead to the FDA approval of 

this combination in July 2020 for melanoma patients with BRAFV600E mutated, 

unresectable or metastatic melanoma. 

Additional trials are underway exploring combinations of immunotherapy and targeted 

therapy. However, as results emerge, it is becoming increasingly clear that complexities 



18 
 

exist with this approach; therefore, efforts must be made to use scientific evidence and 

iterative input from ongoing and completed trials to guide next‐generation combination 

studies. 

Refining Combination Strategies through Biomarker-Driven Clinical Trials 

Insights from preclinical models and translational research are paramount as we charter a 

path forward with rational combination strategies. This is important, because the numbers 

of patients required to test all possible combinations of molecular‐targeted and immune‐

targeted therapies using conventional clinical trial designs far exceed the numbers of 

available patients for such studies. Thus it may be necessary to move to more novel, 

biomarker‐heavy clinical trial designs in an effort to incorporate insights gained from 

genomic and immune analyses (Figure 1.2). 
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Figure 1.2 Adaptive Trial Design to Utilize Personalized Medicine 

 

Figure 1.2. Adaptive clinical trial design allows improved therapeutic decisions. (A) 

Current approaches investigate limited molecular biomarkers before initiation of a standard 

therapy in a heterogeneous patient population with little personalization. This results in 

modest and variable responses. (B) Increasing numbers of trials now allow for adaptive 

decision making. These trials include more extensive molecular and immune profiling 

before a personalized medicine approach. Then, after treatment initiation, an early on‐

treatment biopsy is obtained for molecular and immune profiling to evaluate the success of 

the current therapy. Because of this profiling, patients are either continued on this therapy 

or switched to an alternate treatment regimen, enhancing responses to therapy. 
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From a trial standpoint, adaptive trial design provides 1 possible means of more efficiently 

assessing combination therapies [102]. In this design, Bayesian modeling may be used to 

combine a priori hypotheses and estimation of variables along with data collected from the 

ongoing trial regarding efficacy and toxicity. On the basis of an adjusted set of parameters 

at prespecified interim analyses, the trial design can be modified regarding dose escalation, 

sample size, population or subpopulations studied, treatment allocation, randomization 

probabilities, and study endpoint (for example, changing from superiority to noninferiority 

endpoint), among other variables [102]. An example in melanoma in which an adaptive 

trial design was used is the LOGIC 2 trial, which was designed to combine initial treatment 

with BRAF and MEK inhibitors, binimetinib and encorafenib, until the time of progression, 

at which point patients received 1 of several different treatments based on the molecular 

profile of their biopsy at the time of progression. The trial also incorporated Bayesian 

modeling based on accumulating toxicity data to minimize the number of patients on doses 

with excessive toxicity and maximized exposure to doses that were both tolerable and 

efficacious. Such a flexible design approach allows for more efficient testing of 

combinations that can ascertain efficacy, minimize toxicity, and use data from biomarker 

analysis. 

Furthermore, it is prudent to take findings gained from translational research studies back 

to appropriate preclinical models, with validation and optimization of different 

combination strategies, before returning these insights to patients (Figure 1.3). An example 

of this type of an approach was recently published, describing the immunosuppressive 

effects of PTEN loss and responses to immunotherapy [45]. In those studies, tumor samples 

from patients with melanoma were interrogated and noted to have exclusion of CD8‐ 
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Figure 1.3 Translational Research to Improve Melanoma Treatment 

 

Figure 1.3. Translational studies provide an optimal approach to understanding 

mechanisms and accelerating patient benefit. Much success has come from approaches 

investigating longitudinal patient samples from clinical trials. These samples are then used 

to formulate hypotheses and develop appropriate animal models in which therapeutic 

mechanisms of response and resistance can be investigated and better understood to 

improve patient outcomes. 
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positive T cells in regions of PTEN loss within tumors. The impact of this on response to 

anti–PD‐1 therapy was assessed, and an association was demonstrated between PTEN loss 

in tumors from patients with lack of response to PD‐1–based therapy [45]. These findings 

were then translated to a murine model and indicated that treatment of mice with combined 

PI3K pathway inhibitors and PD‐1 checkpoint blockade was associated with delayed tumor 

outgrowth and enhanced survival. This research is now being translated again back to 

patients in the form of clinical trials combining PI3K inhibitors with immune‐checkpoint 

inhibitors (clinicaltrials.gov identifier NCT02646748). 

Challenges 

Despite the successes and insights gained from these studies, major obstacles inherently 

remain. First, although several molecular features, such as total mutational load, the burden 

of copy number losses, and others described in this review, are associated with responses 

to immunotherapy, there is significant overlap between responders and non-responders 

with regard to each of these variables; therefore, each on its own is not a reliable biomarker. 

Recent studies suggest that an integrated analysis of several of these variables may prove 

more useful in predicting responses, although this needs to be validated in larger cohorts 

and across cancer types [93]. 

In addition, recent studies suggest that early on‐treatment biopsies may be far superior to 

baseline biopsies in predicting therapeutic response; however, tumors are not always 

readily accessible for sampling, and limitations in the amount of tissue obtained with 

biopsies may limit the analyses that may be performed [45, 103]. In addition, despite their 

better predictive ability, these on‐treatment signatures require treatment of patients with 1 

or 2 cycles of their therapies, which is not ideal in the long term and highlights the need to 
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identify pretreatment biomarkers of response to therapy. Although it is currently limited, 

the identification of biomarkers within liquid biopsies may hold the most promise in the 

least invasive manner and make on‐treatment biopsies more pragmatic. “Liquid‐biopsy” 

approaches are in development for melanoma and other cancers. Another promising 

approach is using a quantitative methods to analyze positron emission tomography (PET) 

and computerized tomography (CT) scans to identify previously unappreciated metrics 

from diagnostic and staging images that may have prognostic or predictive value. These 

techniques are non-invasive and already routinely used clinically [104]. Another related 

technique is using deep learning tools to assess histopathological images, again to identify 

previously unappreciated features within routinely used diagnostic images that may have 

utility as biomarkers [105]; however, large studies will be needed to validate their 

prognostic and predictive role [106, 107]. 

MicroRNAs as Potential Biomarker and Therapeutic Options in Melanoma 

Targeted therapy and immunotherapy, as described above, represent major advances in the 

treatment of melanoma, offering a real and tangible opportunity to help achieve long‐term 

disease control and cures. However, resistance mechanisms to these therapies, either alone 

or in combination, continue to emerge. A more comprehensive understanding of molecular 

alterations in melanoma and of the molecular mechanisms that contribute to immune 

evasion will allow us to design better and more effective treatment strategies in this age of 

personalized cancer therapy. One area of research that offers insight into molecular 

mechanisms of melanoma biology and immune evasion, as well as a potential source of 

prognostic and predictive biomarkers are the posttranscriptional regulators of gene 

expression, microRNAs.  
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Canonical MicroRNA Biogenesis in Humans 

MicroRNA genes are transcribed by RNA Polymerase II, generating the primary 

microRNA transcript (pri-miRNA)[108]. The principal feature of the pri-miRNA is a ~80 

nucleotide hairpin structure containing what will become the functional, mature microRNA 

[109, 110]. The pri-miRNA is processed in the nucleus by a ‘microprocessor complex’ 

comprised of the RNAIII-family nuclease Drosha and the double stranded RNA binding 

protein DGCR8 [111, 112].  The microprocessor complex excises the hairpin from the 

RNA strand to form a precursor microRNA (pre-miRNA), which is then transported to the 

cytoplasm by the nuclear export protein Exportin 5 [113]. Once in the cytoplasm, the pre-

miRNA is further processed into a 22 nucleotide long, double stranded microRNA duplex. 

This is achieved by excising the loop of the pre-miRNA hairpin, a process mediated by 

another RNAIII-family nuclease, Dicer [114, 115]. The microRNA duplex contains two 

potential mature microRNAs and are named according to which end of the pre-miRNA 

hairpin they are from, either 3’ or 5’, thus each microRNA gene can potentially generate 

two mature microRNAs [116]. The second role of Dicer is to transfer one strand of the 

microRNA duplex to an Argonaute(AGO) protein to form the functional microRNA 

induced silencing complex (miRISC). Dicer and the microRNA duplex associate with a 

trans-activation-responsive-RNA-binding-protein (TRBP) and the AGO protein to form 

the miRISC loading complex [117]. One strand of the microRNA duplex is then 

preferentially loaded onto the AGO protein to create the miRISC - a functional complex 

capable of  interacting and regulating mRNA sequences complementary to the loaded 

microRNA [118]. Preferential loading of the 3’ or 5’ microRNA is normally determined 

by the strength of nucleotide interactions at the 5’ end of each strand in the microRNA 
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duplex, typically leading to one microRNA strand being overrepresented in the final 

miRISC [116]. However, post-transcriptional modifications of pre-miRNA can disrupt this 

equilibrium and skew expression of 3’ or 5’ microRNAs [116, 119]. The mature RISC 

complex resides primarily on rough endoplasmic reticulum, where mRNA:miRISC 

interactions can be concentrated [120]. 

MicroRNA Induced Silencing Complex Specificity and Function 

The mature miRISC complex presents two regions of the microRNA molecule on the 

external surface of the miRISC complex that bind complementary sequences located on 

available mRNA molecules [121].  The two regions of the microRNA that are available to 

bind are nucleotides 2-8, known as the seed region, and nucleotides 13 to 16, known as the 

supplementary region; the complementary sequence in the mRNA molecule is located in 

the 3’ UTR and is called the microRNA Response Element (MRE) [121]. The primary and 

highest affinity determinant of the miRISC-mRNA binding is 100% sequence 

complementarity between the seed sequence and the MRE as well as an Adenine in the 

MRE corresponding to microRNA nucleotide [122, 123].  Functional binding can still 

occur without the corresponding Adenine or with a mismatch between nucleotide 8 

although this is of lower affinity [122, 123]. A miRISC-mRNA complex prevents 

translation and can lead to degradation of the bound mRNA, thus the miRISC complex can 

repress gene expression with high specificity and precision. Two additional features of 

miRISC-mRNA interactions provide layered regulation of gene expression; microRNA 

multiplicity and cooperation. MicroRNA multiplicity refers to the number of MREs present 

in the transcriptome. Each microRNA will normally have complementary MRE in dozens 

of genes and each mRNA allowing a single microRNA to regulate multiple genes. 
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MicroRNA cooperation refers to the number of MREs for more than one microRNA in a 

single mRNA. This allows more than one microRNA to cooperatively regulate shared 

mRNA targets. Together, variations in the abundance of each microRNA, abundance of 

MREs specific to each microRNA and competition between multiple microRNAs for 

MREs on the same mRNA leads to a highly complex but organised regulatory system 

where cell-type specific microRNA stoichiometry can lead to distinct phenotypes [124].  

MicroRNAs in Melanoma 

MicroRNAs have an established role as tumor suppressors and oncogenes across multiple 

cancer types, with extensive mechanistic evidence related to the hallmarks of cancer [124, 

125]. MicroRNA expression has been extensively characterized in melanoma tissue, the 

most comprehensive example of this is the microRNA sequencing within the melanoma 

TCGA dataset [126, 127]. In this study three distinct transcriptomic subsets of melanoma 

were identified that were independent of their mutation status. These subsets were 

classified as ‘Keratin’, ‘MITF-low’ and ‘Immune’ based on their unique transcriptomic 

features. Of note, a distinct group of microRNAs were associated with each transcriptomic 

profile providing evidence for a unique post-transcriptional regulatory microRNA network 

associated with different molecular subtypes of melanoma. Clinical and preclinical studies 

of individual microRNAs have yielded extensive evidence for their roles in multiple 

oncogenic processes in melanoma including sustained proliferative signaling, resisting cell 

death, invasion and metastasis, tumor-promoting inflammation and avoiding immune 

destruction (Figure 1.4)[128].  

MicroRNAs in Immuno-Oncology 
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In addition to their proven role as oncogenes and tumor suppressors, there is emerging 

evidence for the role of microRNAs in tumor immune evasion [129-134]. Several notable 

examples exist from different cancer types that illustrate the potential for microRNA 

regulation of immunological molecules and pathways that may have clinical applications 

in support of immune checkpoint blockade. The first of these examples is the identification 

of the role of miR-200 in epithelial to mesenchymal transition and metastasis in non-small 

lung cancer [134]. In this study, Chen et, al demonstrated that miR-200 could 

simultaneously suppress metastasis and PD-L1 expression and when miR-200 was itself 

repressed by the pro-metastatic ZEB1, there was increased metastasis, and 

immunosuppression through expression of PD-L1 [134]. In Glioma, miR-124, was 

identified as a repressor of STAT3 signaling, which normally allows glioma cells to 

generate an immunosuppressive microenvironment through T-cell suppression and T-

regulatory cell induction [135]. By expressing miR-124 in Glioma cancer stem cells, 

STAT3 signaling was diminished and markers of immunosuppression in the tumor 

microenvironment were reversed [135]. Separately, miR-138 was identified as a regulator 

of both CTLA-4 and PD-1 checkpoint molecules and subsequent expression of miR-138 

in murine CD4 T-cells improved the immune-clearance of glioma in vivo [136]. Also in T-

cells, miR-155 has been shown to have an important role in cytotoxic activity and in-vivo 

models lacking miR-155 expression have defective T-cell activity and impaired anti-tumor 

efficacy [130, 131].  
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Figure 1.4 MicroRNAs Associated with Hallmarks of Cancer in Melanoma 

 

 

 

 

Figure 1.4 MicroRNAs in Melanoma: Extensive evidence for the role of microRNAs in 

melanoma biology exists. Presented is a summary of microRNAs with published evidence 

for regulatory roles of the hallmarks of cancer in melanoma [128]. 
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In melanoma, there is pre-clinical evidence for the role of miR-146a in immune-evasion 

[137]. In this study, Mastroianni et.al identified miR-146a as overexpressed in melanoma 

and a subsequent miR-146a-/- knockout mouse model was shown to improve immune 

control of melanoma tumors, indicating that miR-146a is a negative regulator of immune 

activation [137].  

Dissertation Overview 

Immunotherapy has dramatically improved the outcome for many melanoma patients, 

however, approximately half of patients do not receive durable responses. The mechanisms 

of resistance to immunotherapy are only partly understood and effective therapies to 

overcome them are urgently required. 

MicroRNAs are major post-transcriptional regulators of gene expression and the aberrant 

expression and activity of microRNAs is involved in multiple oncogenic processes. In 

melanoma, these processes include proliferation, resisting cell death and activation of 

invasion and metastasis. There is also evidence that microRNAs can also regulate the tumor 

microenvironment and response to immunotherapy. To date, this has not been extensively 

studied in humans and could reveal important mechanisms of immune evasion that could 

be targeted therapeutically. 

The central hypothesis that we tested is: Micro-RNAs are contributing to the differential 

responses of melanomas to checkpoint blockade through post-transcriptional 

regulation of immunomodulatory molecules and pathways.  

We tested the central hypothesis by investigating the following specific aims: 
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Aim 1: Identify microRNAs associated with immune infiltration and exclusion in 

TCGA Melanomas and elucidate mechanisms of immune regulation. RNA and 

microRNA sequencing data from TCGA melanoma tissue samples were used to 

characterize the immune landscape of melanoma and identify microRNAs that were 

enriched or depleted in samples with specific immune features. Using databases of known 

microRNA targets we were able to identify immune-associated microRNAs, miR-155-5p, 

miR-508-3p and miR-509-3p that had known roles in immune signaling pathway 

regulation, cytokine secretion and expression of other immune-regulatory molecules. 

Additionally, we validated these targets in vitro, demonstrating their role in modulating 

cytokine secretion, MHC expression and sensitivity to T-cell killing. The results from this 

aim are shown in Chapter 2. 

Aim2: Characterize the mRNA and microRNA profiles associated with response to 

PD-1 immunotherapy in melanoma. RNA and microRNA-sequencing data from pre-

treatment melanoma biopsies from PD-1 treated patients was used to identify similar 

groups of tumors based on their gene expression using an unsupervised clustering 

approach: Clusters identified by this approach largely overlapped with clinical and immune 

parameters, including RECIST response. Differential expression analysis and pathway 

analysis identified known and novel enriched genes and pathways associated with PD-1 

inhibitor response. We then identified miR-31-5p, miR-200b-3p and miR-205-5p were 

associated with response to PD-1 therapy and validated their role in melanoma sensitivity 

to T-cell killing in vitro. The results of this aim are shown in Chapter 3. 

Aim3: Construct Melanoma Tissue and Cellular MicroRNA-mRNA Networks to 

Identify Melanoma Intrinsic MicroRNA-mRNA Networks and Test Their 
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Association with PD-1 Inhibitor Outcomes. We constructed microRNA-mRNA 

networks using two large databases of melanoma tissue and melanoma cell lines with 

microRNA and mRNA sequencing data available. We identified shared as well as tissue 

specific networks comprising known ‘Immune’, ‘Keratin’ and ‘MITF-low’ transcriptomic 

profile associated microRNAs. We identified known and novel gene set enrichment 

associated with each network, indicating distinct phenotypic associations. Using Cox’s 

proportional hazard model we were able to demonstrate that the microRNAs, miR-100-5p 

and miR-125b-5p, identified as central to the ‘MITF-low’ network, were positively 

associated with overall survival in PD-1 inhibitor treated melanoma patients.  
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CHAPTER TWO 

MICRORNAs ARE ASSOCIATED WITH AND CAN REGULATE IMMUNE 

FEATURES IN MELANOMA 

INTRODUCTION 

Melanoma and Resistance to Immunotherapy 

 Melanoma is an aggressive malignancy of melanocytes with a 5-year survival rate of 20% 

for metastatic disease. Melanoma diagnoses are predicted to reach 91,270 and to cause 

9,320 deaths in the US in 2018 [138]. Melanoma therapy has improved markedly over the 

past decade with advances in molecularly targeted agents and immunotherapies. Immune 

checkpoint inhibitors achieve T-cell mediated anti-tumor efficacy by blocking engagement 

of inhibitory checkpoints on T-cells to overcome immunosuppressive signals from tumor 

cells and the broader microenvironment [21, 139]. Monoclonal antibodies that target the 

immune checkpoint molecules cytotoxic T-lymphocyte antigen 4 (CTLA-4) and 

programmed death-1 (PD-1) have achieved a response rate of 61% and 3 year overall 

survival of 58% in combination [37, 140]. Despite these advances, there are a significant 

proportion of patients who do not benefit from existing immunotherapy strategies. While 

some melanoma intrinsic mechanisms of resistance have been identified, such as impaired 

antigen presentation and defects in IFN-γ signaling, our understanding is still incomplete, 

making it a priority to identify and target the mechanisms that confer resistance to therapy 

[88, 141]. 

MicroRNAs in Melanoma  



33 
 

MicroRNAs (miRs) are 17-24 nucleotide long, non-protein-coding RNAs that bind to 

complementary sequences on messenger RNA (mRNA) molecules, inhibiting translation 

and increasing degradation of the target transcripts. One miR has multiple mRNA targets, 

allowing a single miR to regulate the expression of many genes, often converging on a 

particular pathway or biological process. Through this mechanism, it is estimated that miRs 

can directly regulate translation of approximately 60% of human genes, making them 

important post-transcriptional regulators of gene expression [142]. MiRs have been 

demonstrated to directly influence specific cellular functions including proliferation, 

survival, metastasis and resistance to targeted therapy across multiple cancer types 

including melanoma [134, 143-151]. In glioma, miR-124 and miR-138 exert immune-

mediated anti-tumor effects by inhibiting STAT3 signaling and reducing expression of 

immune checkpoint molecules, while miR-142 and miR-155 play important roles in 

macrophage and effector T cell responses against cancer [131, 135, 136, 152]. To date there 

has not been a comprehensive analysis of the role of miRs in melanoma immunity. 
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RESULTS 

Characterizing the Immune Landscape of Melanoma 

 To identify candidate immunomodulatory microRNAs, our strategy was to compare 

microRNA expression in the human skin cutaneous melanoma (SKCM) dataset from The 

Cancer Genome Atlas (TCGA) with a selection of immune correlates: a) pathological 

assessment of tumor infiltrating lymphocytes (TIL), b) cytolytic score comprising 

Granzyme A and Perforin 1 gene expression levels and c) CIBERSORT, a bioinformatics 

method using transcriptomic data to infer the composition of immune cells within a tumor 

immune infiltrate [126, 153, 154]. We hypothesized that microRNAs with strong 

associations with immune exclusion or infiltration would be compelling candidates for 

further investigation as immunomodulatory genes. For this comparison, we first estimated 

the immune infiltration status of 322 melanoma samples from the TCGA dataset using the 

tumor microenvironment deconvolution tool CIBERSORT (LM22) (Figure 2.1 a). From 

this analysis we can see the immune content of this melanoma dataset mostly consists of 

macrophage and T-cell lineages. Specifically M0, M2 and M1 macrophage populations are 

three of the five most abundant immune populations while CD8, follicular helper, CD4 

memory and T regulatory cells comprise four of the eight most abundant immune 

populations. Other less abundant components of the immune microenvironment by this 

methodology include naïve and memory B cells, plasma cells, NK cells, monocytes and 

mast cells. Other immune populations such as eosinophils, neutrophils, gamma delta T 

cells and dendritic cells are estimated to be mostly absent from these tumors although there 

are some exceptions to this. As the TCGA dataset consists of tumors from multiple disease 

sites, and knowing that there is potential for differential immune involvement at  
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Figure 2.1 Immune Profiling Reveals Significant Immune Populations in TCGA 

Melanoma Tumors.  CIBERSORT analysis of n TCGA melanoma samples from primary, 

regional skin, regional lymph and distant skin metastases quantifies the abundance of 

pertinent immune cell populations. Box and whisker plot (A) represent median, IQR and 

min/max abundance of each immune population estimated by MCP counter. Outliers are 

defined as ± 1.5 * the IQR beyond the upper and lower quartiles and represented by black 

dots. Pie charts represent the average relative abundance of each immune population in 

tumors from differing disease stage / sites. 
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different sites, notably lymph nodes, we compared the relative abundance of each immune 

population across each disease site (Figure 2.1 b). Although we did previously observe 

higher absolute immune scores in regional lymph tumors relative to other sites, the relative 

abundance of each immune cell type remained remarkably stable across disease sites. Some 

slight variation was observed, most notably when comparing the regional lymph and distant 

skin tumors, where there are generally higher proportions of B cells. In the regional lymph 

samples, this seems to be at the expense of macrophages, while in the distant skin samples 

it seems to be at the expense of T-cells. However, since relative measures of abundance are 

dependent variables and absolute abundance varies by disease site it is difficult to make 

robust comparisons between immune markers across disease sites.   

Previous analysis of TCGA melanoma samples revealed that immune markers including 

LCK protein expression and histopathological assessment of immune infiltration 

(Lymphocyte-score) were prognostic indicators for overall survival. We investigated if any 

of the immune markers we had calculated had a similar prognostic value. To this end we 

performed a survival analysis with each of the CIBERSORT immune estimates as well as 

for CD8A mRNA expression and the cytolytic score which is derived from perforin and 

granzyme mRNA expression (Figure 2.2).  We also included LCK and the Lymphocyte 

score from the original analysis. Our results replicated the previously published findings 

that LCK and Lymphocyte Score were associated with increased overall survival (Hazard 

ratio, log rank p; 0.28, 0.015 and 0.49, 0.057 respectively). In addition to this, four of our 

immune markers also demonstrated some prognostic utility. The strongest results came 

from the M1 macrophage gene signature (Hazard ratio = 0.35 (95%CI = 0.16-0.74) log  
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Figure 2.2 Melanoma Immune Markers Are Associated with Improved Overall 

Survival in TCGA Melanoma Samples. We measured survival outcomes in TCGA 

melanoma patients based on the abundance of different immune features in their tumors. 

(a) Kaplan Meier curves for each immune feature displaying curves for samples divided 

into tertiles based on expression of each immune feature, using time to death as the event 

value. Log rank p-value and hazard ratios ± 95% confidence intervals are shown for upper 

and middle tertiles compared to lower tertile in each plot. * represents P-value < 0.05 ** 

represents P-value < 0.01 compared to the lowest tertitle in each plot. 
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rank p=0.015). Interestingly, although their expression is correlated, the M2 macrophage 

signature did not show any significant prognostic value (Hazard ratio = 0.69 (95% CI = 

0.35-1.35) log rank p=0.56), highlighting the polarized biology of these differentiated 

states of macrophages. Two other intuitive results were the prognostic value of the total 

CIBERSORT score, the sum of all estimated immune populations in the tumour 

microenvironment (hazard ratio = 0.49 (95% CI = 0.25-0.96) log rank p=0.045), and the 

cytolytic score (hazard ratio = 0.47 (95% CI = 0.24-0.92) log rank p=0.023). Both of these 

markers indicate a significant cytotoxic immune infiltrate. One counterintuitive result was 

the positive prognostic indication of regulatory T cell abundance (hazard ratio = 0.4 (95% 

CI = 0.19-0.8) log rank p=0.031, since we normally associate this population with negative 

regulation of cellular immunity. This discrepancy may be due to infidelity of the 

CIBERSORT algorithm, since FOXP3 is a classic marker of regulatory T cells but may 

also be expressed during early activation of cytotoxic T cells, making it uncertain if we are 

accurately counting the regulatory T cell population using this method. 

Characterizing the microRNA landscape of melanoma:  

The next step of this project was to identify microRNAs associated with microenvironment 

features of melanoma, including the immune markers described above and also 

transcriptomic markers of tumor purity and melanoma lineage markers. For this analysis 

we correlated normalized microRNA counts from TCGA melanoma samples from all 

disease sites with the markers described above (Figure 2.3) To visualize the pattern of 

microRNA associations we plotted the correlation coefficients from each microRNA with 

each microenvironment feature with hierarchical clustering in a heatmap (Figure 2.3 a).  
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Figure 2.3 Melanoma MicroRNA Expression is Associated with Tumor 

Microenvironment Composition. We examined the relationship between TCGA 

microRNA expression and a panel of melanoma and immune markers. (a) A clustered 

heatmap representing Spearman’s correlation coefficients between expression of each 

microRNA and each melanoma or immune marker measured from transcriptomic data. 

Major microRNA clusters are denoted on the track on the right of the heatmap. (b) Box 

and whisker plot showing microRNA expression in TCGA samples (log2 median ± 

interquartile range and IQR x1.5). (c)  Box and whisker plot showing microRNA 

expression in melanoma cell lines (n=62) (log2 median ± interquartile range and IQR x1.5). 

(d) A barplot comparing microRNA expression in TCGA samples and melanoma cell lines 

to identify melanoma intrinsic microRNA expression. MicroRNAs that are expressed at 

higher levels in tumor samples are blue. MicroRNAs that are expressed at higher levels in 

cell lines are red. 
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The most striking result from this analysis was the observation of five distinct clusters of 

microRNA associations with broad categories of microenvironment markers. We named 

these clusters sequentially from the top of the heatmap to the bottom. Cluster 1 contains 

microRNAs predominantly correlated with expression of immune markers including T-

cells, monocytes, NK cells, B cells, cytolytic score and the L-score of lymphocyte 

infiltration, this cluster also had strong inverse correlations with LUMP and ESTIMATE 

markers of tumor purity indicating that these microRNAs are expressed at higher levels in 

melanoma samples where the microenvironment content is inflamed and melanoma 

markers are diluted. We defined this cluster as the ‘Immune’ cluster. Cluster 2a contains a 

mixture of relatively weak correlations of immune markers but also some stromal and 

melanoma markers and is therefore classified as the ‘Intermediate’ cluster. Cluster 2b also 

contains some weak correlations with immune markers and inverse correlations with 

melanoma markers but is defined by the highest correlations with fibroblast and endothelial 

cell signatures amongst any microRNAs in this dataset. We therefore classified this group 

as the ‘Mesenchymal’ cluster. Cluster 3a appears to have the opposite associations with 

cluster 2b, with high correlations with melanoma lineage markers, TYR, MLANA and 

MITF with moderate correlations with LUMP and ESTIMATE markers of immune purity 

and moderate inverse correlations with immune and stromal markers. Due to the strongest 

associations with melanoma markers this group was classified as the ‘Melanoma’ 

microRNA cluster. The fifth and final cluster, 3b, shared similar characteristics to the 

‘Melanoma’ cluster 3a but the strength of correlations was weaker and is therefore 

classified as the ‘Intermediate Melanoma’ cluster. Since correlative analyses are sensitive 

to biological variation we next repeated the analysis across sites of disease to understand  
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Figure 2.4 Immune:MicroRNA Relationships Maintained Across Sites of Disease We 

examined the relationship between TCGA microRNA expression and a panel of melanoma 

and immune markers across 4 different sites of disease using heatmaps with supervised 

clustering based on figure 2.3. (a) A heatmap representing Spearman’s correlation 

coefficients between expression of each microRNA and each melanoma or immune marker 

measured from transcriptomic data in primary melanoma biopsies (n=38). Major 

microRNA clusters are denoted on the track on the left of the heatmap.  (b) A heatmap 

representing Spearman’s correlation coefficients between expression of each microRNA 

and each melanoma or immune marker measured from transcriptomic data in regional skin 

/ soft tissue biopsies (n=50). (c) A heatmap representing Spearman’s correlation 

coefficients between expression of each microRNA and each melanoma or immune marker 

measured from transcriptomic data in regional lymph node biopsies (n=155). (d) A 

heatmap representing Spearman’s correlation coefficients between expression of each 

microRNA and each melanoma or immune marker measured from transcriptomic data in 

distant metastases (n=33). 
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if the variation of microenvironment compositions affected our data (Figure 2.4). In this 

analysis we supervised the clustering of our samples using the clusters obtained when 

comparing all samples (Figure 2.3). Using this approach we can compare the integrity of 

each microRNA cluster across disease sites. We observed that generally the clusters 

remained consistent despite the relatively low numbers in the primary and distant 

metastasis groups (n=38 and 33, respectively. We next investigated the individual 

microRNA membership of these clusters. In the ‘Immune’ cluster we noted exclusive 

membership of canonical immune-miRs with established roles in immune-biology such as 

miR-155-5p, miR-142-5p, miR-146b-5p, miR-342-3p and miR-29c-3p. Interestingly these 

microRNAs were also previously associated with the ‘Immune’ transcriptomic subset of 

melanoma identified in the SKCM TCGA dataset. We also identified well defined 

melanoma transcriptomic subset associated microRNAs in the ‘Melanoma’ cluster and 

‘Stromal’ cluster. Specifically we identified miR-211-5p, miR-508, miR-509, miR-514a-

3p and miR-146a-5p in the ‘Melanoma’ cluster which associates with the “Keratin’ 

transcriptomic subset of melanoma and the ‘MITF-low’ transcriptomic subset associated 

microRNAs miR-100-5p and miR-125b-5p in our ‘Stromal’ cluster. Taken together we 

surmised that this methodology could effectively identify microRNAs associated with 

immune infiltrated melanomas, melanomas with high stromal content and high purity 

melanomas.  

Identification of Immune-Associated MicroRNAs in Melanoma  

Since immune content of melanomas has prognostic value, we hypothesized that the 

microRNAs with strongest associations with immune infiltration may also have prognostic 

values. To test this hypothesis we filtered microRNAs expressed in one hundred and  
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Figure 2.5 Schematic of Immuno-MicroRNA Identification in TCGA Samples. We 

used this work flow to define ‘Immuno-MicroRNAs’ as microRNAs significantly 

associated with at least one immune feature in TCGA melanoma samples. 
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Figure 2.6. Identification of Immuno-MicroRNAs in Melanoma TCGA. We compared 

MicroRNA expression with 24 transcriptomic, protein and histopathological markers of 

immune infiltration and activation in 123 high purity regional lymph node biopsies from 

the melanoma TCGA. (a) A clustered heatmap representing 50 microRNAs with a 

significant association (Spearman correlation coefficient > 0.5, FDR adjusted P-value 

<0.1) with at least one immune marker. 
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twenty-three high purity, metastatic melanomas with the strongest positive and negative 

associations with immune markers tor additional survival analysis (Figure 2.5). Using this 

approach, we classified 50 out of 817 microRNAs (Spearman’s rho <-0.4, >0.4, FDR 

adjusted p<0.1) as ‘Immune- Associated MicroRNAs’ (Figure 2.6). We then performed 

survival analysis on the ‘immune-associated microRNAs using Cox’s proportional hazards 

and Kaplan Meier survival analysis (Figure 2.7). Five out of fifteen (10%) microRNAs had 

a statistically significant association (log-rank p<0.05) with overall survival in regional 

lymph node TCGA melanoma samples. Of these, the microRNA with the strongest 

association with overall survival was miR-146b-3p (hazard ratio = 0.22 (95% CI = 0.1-

0.46), log-rank p-value <0.0001), which is a stronger prognostic power than the best 

immune marker (LCK hazard ratio = 0.28). The other four microRNAs were miR-155-5p, 

miR-1976, miR-361-3p, miR-142-3p (Hazard ratio, log-rank p-value; 0.39, 0.0017; 0.32, 

0.0059; 0.35, 0.04; 0.44, 0.047 respectively). 

Identification of Validated Targets of Immune-MicroRNAs with Known Roles in 

Melanoma Immuno-Biology  

To identify rational and testable mechanisms that could potentially explain the association 

of our microRNAs with immune infiltration or exclusion, we first filtered microRNAs 

based on their expression in a panel of 62 melanoma cell lines followed by searching for 

previously experimentally validated targets with known roles in melanoma immune-

biology. Having identified fifty ‘immune-associated’ microRNAs we stratified them based 

on their expression in melanoma cell lines versus melanoma tissue. The rationale for this 

was the hypothesis that melanoma-specific microRNA regulation of gene expression could 

modulate immune infiltration, for example through cytokine secretion, and we wanted to  
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Figure 2.7 Immuno-MicroRNA Expression Associated with Improved Overall 

Survival in TCGA Melanoma Patients. We measured survival outcomes in TCGA 

melanoma patients based on the expression of immune-associated microRNAs in their 

tumours. (a) Kaplan Meier curves for each microRNA displaying curves for samples 

divided into tertiles based on expression of each microRNA, using time to death as the 

event value. Log rank p-value and hazard ratios ± 95% confidence intervals are shown for 

upper and middle tertiles compared to lower tertile in each plot. * represents P-value < 

0.05, ** represents P-value < 0.01, *** represents P-value <0.001, compared to the lowest 

tertitle in each plot. 
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separate these microRNAs from the microRNAs that are predominantly expressed in the 

infiltrating immune cells that arise as a consequence rather than a cause of inflammation 

(Figure 2.3 b-d).  Using this approach we identified fourteen microRNAs with 1 or more 

experimentally validated immune targets, among these there were 9 microRNAs with 1 or 

more experimentally validated immune target that had been directly implicated or had a 

rational connection to mechanisms of melanoma immune evasion (Table 2.1).  

MiR-508-3p Regulation of NF-kB and Downstream Immune Modulatory Genes  

Of the microRNAs with validated immune targets, the first that we investigated was miR-

508-3p, which was associated with lower immune infiltration and lower scores of immune 

cytotoxicity in the TCGA SKCM dataset, suggesting an immunosuppressive effect on the 

tumor microenvironment. The interaction between hsa-miR-508-3p and the NF-κB genes 

NFKB1 and RELA has been described previously in gastric carcinoma, including the 

modulation of downstream NF-κB target genes [155]. NF-κB signaling regulates a large 

number of immunomodulatory genes and is the leading candidate to explain the 

immunosuppressive phenotype associated with hsa-miR-508-3p. Our first experiment to 

test if miR-508-3p regulated NF-kB activity was an in-silico analysis of miR-508-3p 

correlation with NF-kB target genes, using the target genes of non miR-508-3p targeted 

transcription factors STAT1 and MYC as negative controls (Figure 2.8 a). In this analysis 

we observed a slight but statistically significant (p=0.0009) inverse correlation of NF-kB 

target genes compared to negative controls, indicating that melanomas with higher miR-

508-3p expression have less NF-kB activity. To test if the reported miR-508-3p repression 

of NF-kB existed in melanoma, we measured NF-kB protein expression by Western blot 

after transient transfection of a melanoma cell line (MDA 2333) with a miR-508-3p mimic  
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Table 2.1 Identification of Validated Targets of ‘Immuno-MicroRNAs’ With Known 

Roles in Melanoma Immuno-Biology. We compared the validated targets of microRNAs 

identified in Figure 2.6 in MiRTarBase. The number of validated targets with an immune 

ontology are counted and specific genes with published roles in melanoma immunity are 

listed.  
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Figure 2.8 MiR-508 is Associated with Reduced Expression of NFkB Target Genes 

and Inhibits Secretion of IL-6 in Melanoma Cell Lines. We tested the effect of miR-

508-3p expression on NFkB and NFkB target gene expression in melanoma. (a) Dotplot 

representing Spearman’s correlation coefficients of miR-508-3p with curated gene-sets 

representing the transcription targets of the NFkB, MYC and STAT1 in TCGA melanoma. 

(b) Western blot showing NFkB p50/p105 staining and GAPDH loading control. Samples 

from left to right are 1nM non-specific miR mimic, 1nM miR-508-3p mimic, 10nM non-

specific miR mimic, 10nm miR-508-3p mimic. (c) Barplot representing intensity of NFkB 

p50 staining relative to GAPDH in each sample. (d) Barplot representing copies of miR-

508-3p relative to reference miR in MDA2333 melanoma cells measured by qPCR after 

transfection with different doses of miR-508-3p mimic. (e) Barplot representing copies of 

IL-6 mRNA transcripts relative to reference gene in MDA2333 melanoma cells after 

transfection with different doses of miR-508-3p mimic. (f) Barplot representing levels of 

secreted IL-6 from conditioned media from MDA2333 cell line cultures after transfection 

with non-specific microRNA mimic and miR-508-3p mimic.  
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(Figure 2.8 b,c). When we quantified NF-kB protein levels we observed reduced NF-kB 

p50:GAPDH ratios with both 1nM and 10nM doses of miR-508-3p mimics compared to 

non-specific mimic controls (0.94 vs 1.41, 0.97 vs 1.76 respectively). Of the many NF-kB 

targets, we selected IL-6 as a strong candidate for melanoma regulation of the immune 

microenvironment. We subsequently tested our melanoma cell line for IL-6 mRNA 

expression by qPCR and found a significant reduction after transfection with 10nM miR-

508-3p mimic compared to 10nM non-specific mimic treated cells (p<0.01) (Figure 2.8 e). 

In addition we tested IL-6 protein secretion in conditioned media from melanoma cell lines 

under the same transfection conditions (Figure 2.8 f). Taken together these data suggest 

that miR-508-3p negatively regulates NF-kB expression and function in melanoma, and 

protein expression of downstream NF-kB transcription targets such as IL-6 can be 

regulated by miR-508-3p modulation.  

MiR-509-3p Modulates Expression of HLA Expression in Melanoma 

The next microRNA of interest that we investigated in vitro was miR-509-3p. Similarly to 

miR-508-3p, miR-509-3p was inversely correlated with expression of immune markers in 

melanoma, and in HLA had a feasible mechanism of action to elicit an immunosuppressive 

phenotype. For this microRNA we measured HLA-ABC expression by flow cytometry in 

a panel of four melanoma cell lines after transient transfection with miR-509-3p mimic 

(Figure 2.9). We observed significant repression of HLA expression in two out of four 

miR-509-3p mimic treated cell lines compared to non-specific mimic treated cells 

(p<0.001). 

Multiple Immune-Associated MicroRNAs Modulate Cytokine Secretion In Vitro 



58 
 

Figure 2.9 Exogenous Expression of MiR-509 Downregulates HLA Expression in 2/4 

Melanoma Cell Lines.  

 

Figure 2.9 Exogenous Expression of MiR-509 Downregulates HLA Expression in 2/4 

Melanoma Cell Lines. We transiently transfected the melanoma cell line MDA 2333 with 

miR-509-3p to test it’s effect on HLA expression, previously validated as a miR-509-3p 

target. (a) Schematic of experimental design, transfected cells allowed 72 hours for 

exogenous microRNA effects to manifest. (b) Boxplot representing median fluorescence 

intensity of HLA-ABC antibody staining in multiple melanoma cell lines after transient 

transfection with either a non-specific microRNA mimic or miR-509-3p mimic. *** 

represents p-value < 0.001 
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Figure 2.10 Exogenous Expression of Immune Associated Melanoma MicroRNAs 

Regulate Secretion of Immuno-regulatory Cytokines 
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Figure 2.10 Exogenous Expression of Immune Associated Melanoma MicroRNAs 

Regulate Secretion of Immuno-regulatory Cytokines. We transiently transfected the 

melanoma cell line MDA 2333 with immune-associated microRNAs miR-17-5p, 93-5p 

and 155-5p to test their effects on secretion of previously validated cytokine targets. (a) 

Schematic of experimental design, transfected cells allowed 72 hours for exogenous 

microRNA effects to manifest. (b) Boxplot representing duplicate immunoassay 

quantification of secreted VEGF in conditioned media from transiently transfected cells 

with either a non-specific microRNA mimic or miR-17-5p or miR-93-5p mimic. (c) 

Boxplot representing duplicate immunoassay quantification of secreted IL-1b, IL-6 and 

VEGF in conditioned media from transiently transfected cells with either a non-specific 

microRNA mimic or miR-155-5p. 
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Having demonstrated the potential for immune associated microRNAs to modulate 

immunomodulatory genes in vitro we tested three additional microRNAs with 

experimentally validated cytokine targets. We selected miR-17-5p, miR-93-5p which are 

both reported to target VEGF and miR-155-5p which is reported to target Suppressor of 

Cytokine Signaling 1 (SOCS1) and measured cytokine release by multiplex immunoassay 

(Figure 2.10) In both miR-17-5p and miR-93-5p mimic treated melanoma cell culture we 

observed reduced secretion of VEGF compared to non-specific mimic transfected cells. In 

miR-155-5p mimic treated cells we observed a dramatic increase in secretion of IL-1b, IL-

6 and VEGF. 

MiR-155 Regulates Melanoma Cell Sensitivity to T-cell Killing In Vitro 

Finally, we selected miR-155-5p, due to its dramatic in vitro effect on cytokine secretion, 

for further immune analysis. We used a chromium release assay to measure melanoma cell 

death after co-culture with MART-1 specific T-cells to measure specific T-cell killing of 

melanoma cells (Figure 2.11). We demonstrated specificity for MART-1 positive, HLA-

matched cell lines, with cell death only observed in cell lines that were MART-1 positive 

and HLA-02 positive. Cell lines that were either MART-1 negative or HLA mismatched 

were not affected. We tested four MART-1, HLA-02 positive melanoma cell lines, either 

transfected with a miR-155-5p mimic or inhibitor compared to non-specific mimics and 

inhibitors and found a significant protective effect i.e. reduced cell death when cells were 

treated with miR-155-5p mimics, in Mel526, MDA2333, MDA2400 and MDA2508 

(p=0.01, <0.0001, <0.0001, <0.0001 respectively).  
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Figure 2.11 Exogenous Expression of Immune Associated Melanoma MicroRNAs 

regulate Melanoma Cell Sensitivity to T-Cell Killing In-Vitro. We performed T-cell 

killing assays on a panel of 4 melanoma cell lines with transient transfection of miR-155-

5p mimic and inhibitor to determine the effect of miR-155-5p expression on sensitivity of 

melanoma cells to T-cell killing. (a) Dotplots representing % tumor cell death of positive 

controls, Mel256 (HLA matched and positive for T-cell cognate antigen – MART1), and 

negative controls, A375 and A2058 (MART-1 negative or HLA mismatched) (b) Dotplot 

representing % mel526 cell death under different effector : target cell ratios (c) Dotplot 

representing relative % melanoma cell death versus transfection control for each cell line 

when transfected with either miR-155-5p mimic or inhibitor. 
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SUMMARY 

We have completed a detailed description of the immune composition of metastatic 

melanoma tissue using a selection of bioinformatics tools based on mRNA sequencing 

data. We showed that the proportions of different immune populations as estimated by 

CIBERSORT were relatively stable across disease sites, although absolute immune content 

was increased in lymph node biopsies. Expression of certain transcriptomic markers 

including the cytolytic score and total CIBERSORT scores were shown to have prognostic 

value when measuring overall survival of melanoma patients, although this was not as 

powerful as LCK protein expression. 

We were able to identify 50 microRNAs whose expression were significantly correlated 

with the abundance of at least one measured immune feature of melanoma tumors. 

Amongst these 50 immune-associated microRNAs we identified 5 that had significant 

prognostic value, including miR-146b-3p which outperformed LCK protein expression 

based on a univariate Cox’s-proportional hazard model. There are limitations of this model 

including the assumption of proportional hazard over time but also making direct 

comparisons of hazard ratios determined in separate univariate models. Additional 

statistical analysis including multivariate Cox’s proportional hazard models and also 

parametric survival models would be desirable for a more robust validation of these 

markers as prognostic biomarkers.  

We then sought to elucidate any immune-modulatory mechanisms that these microRNAs 

may regulate in melanoma. We identified 14 microRNAs with previously validated 

immune targets. Of these we selected miR-508-3p (Targets NF-kB), miR-509-3p (Targets 

HLA-A), miR-17-5p (Targets VEGF), miR-93-5p (Targets VEGF), miR-155 (Targets 
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SOCS1) for further investigation. In each case we were able to show microRNA regulation 

of their respective targets. In the case of miR-155-5p we were able to dramatically increase 

secretion of IL-1b, IL-6 and VEGF in vitro through exogenous expression of miR-155-5p. 

Exogenous expression of miR-155-5p also had a profound protective effect against T-cell 

killing.  
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CHAPTER THREE 

 

MICRORNA AND mRNA PROFILING OF PRE-PD1 INHIBITOR TREATED 

MELANOMA BIOPSIES 

ABSTRACT 

Immunotherapy has dramatically improved the outcome for many melanoma patients, 

however, approximately half of patients do not receive durable responses. The mechanisms 

of resistance to immunotherapy are only partly understood and effective therapies to 

overcome them are urgently required. 

MicroRNAs are major post-transcriptional regulators of gene expression and the aberrant 

expression and activity of microRNAs is involved in multiple oncogenic processes. In 

melanoma, these processes include proliferation, resisting cell death and activation of 

invasion and metastasis. There is also evidence that microRNAs can also regulate the tumor 

microenvironment and response to immunotherapy. To date, this has not been extensively 

studied in humans and could reveal important mechanisms of immune evasion that could 

be targeted therapeutically. 

In this chapter we performed a genomic analysis of pre-PD1 treated melanoma biopsies to 

identify transcriptomic profiles associated with response. We also quantified microRNA 

expression from the same biopsies to identify microRNA profiles associated with response 

to therapy and also their relationship with transcriptomic profiles of response. 

  



67 
 

 

INTRODUCTION 

Response to anti-PD-1 immunotherapy is determined by a complex relationship between 

tumor cells, the tumor microenvironment (TME) and the host immune system. Several 

transcriptomic studies of PD-1 treated melanoma patients have already been published and 

have revealed distinct gene expression profiles associated with patients who responded to 

therapy [90, 92, 156-160].  Transcriptomic analyses of melanoma tumors prior to anti-PD-

1 treatment have identified gene expression signatures that predict responder and non-

responder patients with better accuracy than single biomarkers. Understanding the 

mechanisms that regulate response-associated transcriptomic profiles are therefore of 

significant clinical interest, as they may offer novel biomarker and therapeutic approaches 

to overcoming resistance.  

MicroRNAs are key regulators of gene expression and are associated with disease 

progression and drug resistance in multiple cancer types including melanoma. We therefore 

hypothesized that microRNAs may be associated with immune evasion via their regulation 

of gene expression and that this would be measurable in melanoma biopsies from patients 

undergoing anti-PD-1 immunotherapy.  

In this study, we performed genomic analysis of pre-treatment tumor samples from patients 

treated with anti-PD-1 immunotherapy and identified two transcriptionally distinct 

subgroups associated with clinical response. Further characterization of the two groups 

using miRNA sequencing revealed novel miRNAs associated with response. Additionally, 
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we also performed analyses mapping mRNA:microRNA interactions in the TME and their 

associations with response to PD-1 treatment. 

RESULTS 

Patient Cohort:  

Twenty-nine patients with AJCCv8 stage III or IV melanoma undergoing PD-1 immune 

checkpoint blockade at the University of Texas MD Anderson Cancer Center were 

included in this study (Table 3.1). All patients had cutaneous-type or unknown primary 

melanoma. Twenty (67%) patients were male, nine (31%) patients were female. Seventeen 

(59%) patients had progressed on prior ipilimumab treatment. Pre-treatment biopsies were 

consented and collected under institutional-review-board-approved protocols [2012-0846 

and LAB00-063] no more than 6 months prior to commencement of pembrolizumab or 

nivolumab therapy and with no intervening therapy or documented continuous progression 

during a brief period of intervening therapy. Best Overall Response (BOR) was calculated 

using RECIST 1.1 criteria. Fourteen (48%) patients were classified as receiving clinical 

benefit (BOR; stable disease >6months, complete or partial response), while Fifteen (52%) 

patients were classified as not receiving clinical benefit (BOR; progressive disease). 

Measured Median Progression-Free Survival (PFS) in the non-responder group was 83 

days (range; 20-NA), median PFS was not reached in the responder group (range; 257-

NA). Lesion specific responses were available for thirteen (45%) patients where incisional 

biopsies were performed (Figure 3.1, Table 3.1). 

Unsupervised Clustering Identifies Response-Associated Transcriptomic Profiles 
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Figure 3.1. Schema of Pre-PD1 Treatment Melanoma Cohort

 

 

 

 

Figure 3.1. Schema of Pre-PD1 Treatment Melanoma Cohort. We collected melanoma 

specimens from 30 patients before they started anti-PD-1 checkpoint blockade for 

molecular analysis. (a)  Schema showing the study design, with collections and RNA-

sequencing of pre-treatment biopsies prior to treatment with anti-PD1 checkpoint 

blockade. 
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Table 3.1 Pre-PD1-Treated Melanoma Patient Characteristics 

Characteristic PD-1i No Clinical 
Benefit 

PD-1i Clinical 
Benefit 

RNA sequencing 14 15 
Small RNA sequencing 9 13 
Sex 
Male 12 (86%) 9 (56%) 
Female 2 (14%) 7 (44%) 
Melanoma Type 
In situ - - 
Cutaneous unspecified 6 (43%) 7 (44%) 
Superficial spreading 1 (7%) 2 (13%) 
Lentigo malignant melanoma - - 
Nodular 1 (7%) 2 (13%) 
Acral lentiginous 1 (7%) 1 (6%) 
Mucosal - - 
Unknown primary 5 (36%) 2 (13%) 
Disease stage (AJCCv8) 
IIIa/b 1 (7%) - 
IIIc/d 3 (21%) 2 (13%) 
IVa - 2 (13%) 
IVb - 1 (6%) 
IVc 10 (71%) 11 (69%) 
IVd - - 
Serum LDH (U/L; Median, 
Range) 

528.5 (349-1786) 432 (78-1090) 

Prior ipilumumab 
Yes  7 (50%) 11 (69%) 
No 7 (50%) 5 (31%) 
Best Overall Response (BOR, RECIST 1.1) 
CR 6 (43%) - 
PR 6 (43%) - 
SD 2 (14%) - 
PD - 16 (100%) 
PFS (median, range; days) 1205 (257-1644) 80.5 (20-90) 
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We first sought to identify transcriptomic profiles associated with response to anti-PD-1 

treatment using RNA-sequencing (RNA-seq) on biopsies from pre-PD1-treatment 

melanoma patients. We first used consensus clustering to determine optimum unsupervised 

clustering of all samples, based on expression of the 1500 most variable genes (Figure 3.2). 

We generated consensus clustering matrices for a range of cluster solutions (k=2-6) to find 

the optimum number of mRNA clusters in the dataset (Figure 3.2 a-e). To quantify the 

accuracy of the different clustering solutions we measured cumulative distribution 

functions (CDF) of each consensus matrix (Figure 3.2 f-g). It is apparent that each increase 

in the number of clusters incrementally increases the CDF of the consensus matrix although 

there are diminishing returns with each additional cluster, there is still no obvious inflection 

point that would definitively guide our choice of an optimal clustering solution. Indeed 

with the 6 cluster solution two of the clusters only include individual samples, indicating 

the granularity that is resolved by the consensus clustering is to the level of inter sample 

variability rather than shared transcriptomic characteristics of multiple samples. This 

paradigm is highlighted in the tracking plot indicating cluster membership of each sample 

across clustering solutions (Figure 3.2 h). The two-cluster model using this method 

effectively separated responding and non-responding patients: Cluster 1 containing 12/14 

clinical benefit patients and cluster 2 containing 11/15 non-clinical benefit patients (Figure 

3.3, Notably, these samples clustered independently of melanoma subtype (p=0.825), 

gender (p=0.688) and receipt of previous immunotherapy (p=0.13) (Table 3.1) Increasing 

the number of clusters increased the Area Under the Curve (AUC) of the Cumulative 

Distribution Function (CDF) curves (K2 = ~0.5, K4 = ~0.9) but the additional clusters did 

not further separate samples by response or melanoma subtype and due to low numbers  
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Figure 3.2 Consensus clustering of RNA-sequencing data 
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Figure 3.2. Consensus Non-Negative Matrix Factorization Clustering of Pre-PD-1 

Treated Melanoma RNA-seq Samples. We used non-negative matrix factorization to 

identify unsupervised transcriptomic subsets within our RNA-seq dataset. (a-e) cNMF 

clustering of all samples using the 1500 genes with highest standard deviation for k=2 to 

k=6. (f) Plot of the cumulative distribution function (CDF) curves or each clustering 

solution k2:k6. (g) Plot representing the change in the area under the curve of each CDF 

curve in f, with each additional k. (h) Tracking plot showing the cluster membership of 

each sample (x-axis) for each k clustering solution (y-axis).  
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Figure 3.3 Characterisation of pre-PD1 Treatment Biopsies 
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Figure 3.3 Characterisation of pre-PD1 Treatment Melanoma Biopsies. We collected 

melanoma biopsies from 30 pre-PD1 treated melanoma patients. (a) A clustered heatmap 

representing the 50 genes with the most significant differential gene expression 

differences between mRNA  ‘Cluster 1’ and ‘Cluster 2’ as identified by consensus non-

negative matrix factorisation (25 highest in ‘Cluster 1’ and 25 highest in ‘Cluster 2’). 

Values displayed are gene-normalized Z-scores. Tracks above heatmap display sample 

information including the mRNA cluster memebership, clinical benefit, lesion-specific 

response and melanoma subtype. (b) A volcano plot displaying all DESEQ2 differential 

expression results from mRNA sequencing, plotting log2-foldchange against negative 

log10 p-values. Top differentially expressed genes are coloured red and labeled with gene 

names. (c) Hallmark Gene-Set Enrichment Analysis (GSEA) of differentially expressed 

genes identified by DESEQ2 with a normalized enrichment score >1.5 identifies 

enrichment of 4 genesets in mRNA cluster 1 (associated with improved clinical benefit) 

and 12 genesets in mRNA cluster 2 (associated with reduced clinical benefit).  
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would reduce the power of additional analysis. We were able to measure lesion specific-

responses for 13 incisional biopsies. Since response to immunotherapy can be 

heterogeneous and sampling from individual lesions may not be representative of the whole 

disease, we compared the lesion specific response with the overall response and plotted 

those with our heatmap of gene expression analysis (Figure 3.3 a). Of the lesion specific-

responses these only one had a mismatched classification where the lesion responded 

differently to the overall disease course. In order to further explore the biological 

significance of the two clusters we had identified we compared differential gene expression 

between the clinical benefit and non-clinical benefit clusters, identifying 641 genes with 

an FDR adjusted p-value <0.1. To explore the biological significance of the differential 

gene expression we performed Gene set enrichment analysis (GSEA) of these 641 

significantly differentially expressed genes. This identified 4 gene sets enriched in the 

Responder cluster (FDR<0.001), including Interferon Gamma Response and Interferon 

Alpha Response, indicative of a functioning host immune reponse, while the Non-

Responder cluster was enriched for 12 gene sets (FDR <0.001), including MYC and E2F 

transcription factor targets, Oxidative Phosphorylation and DNA repair genes (Figure 3.3 

c).  

Response-Associated Clusters Enriched for Immune Markers 

 As response to immunotherapy is closely related to pre-existing immune features of the 

TME, we measured the levels of immune markers in our samples and compared expression 

across our response-associated clusters. We calculated the cytolytic score, the immune-

predictive score (IMPRES), and estimates of the cellular composition of our samples from 

transcriptome data using MCP counter (Figure 3.4 a -d)[153, 160, 161]. Of these markers,  
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Figure 3.4 Immune Features of pre-PD1 Treatment Biopsies 
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Figure 3.4 Immune Characterisation of Pre-PD-1 Treated Melanoma Biopsies. We 

calculated immune scores based on transcriptomic expression data for each sample with 

MCP counter and cytolytic scores based on Perforin 1 and Granzyme A expression. (a) 

Expression of MCP counter microenvironment cell composition estimates compared 

between biopsies from patients who did or did not receive clinical benefit from anti-PD-1 

checkpoint blockade. (b) Expression of tumour cytolytic scores compared between patients 

who did and did not receive clinical benefit from anti-PD-1 checkpoint blockade. We also 

compared MCP counter scores (c) and cytolytic scores (d) between patients who had or 

had not received prior ipilimumab therapy to test the effect of a prior immunotherapy on 

the composition of the immune microenvironment. 

Data points are colour coded by individual patient response and groups are compared 

using Wilcoxon’s rank-sum test.   
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there was significant enrichment of T-cells (p=0.01), cytotoxic lymphocytes (p=0.02), B-

cells (p=0.05) and neutrophils (p=0.04), as estimated by MCP counter, in the clinical 

benefit cluster. The cytolytic, IMPRES and MCP-counter-CD8-T-cell score also trended 

higher in the clinical benefit cluster but did not reach statistical significance. A similar 

pattern of immune-marker enrichment was observed when comparing samples strictly by 

RECIST response. In this comparison T-cells (p=0.02), cytotoxic lymphocytes (p=0.04) 

and B cells (p=0.02) were again higher in responding samples, as were CD8 T-cells 

(p=0.05), NK cells (p=0.05), cytolytic score (p=0.03) and IMPRES (p=0.01). The higher 

neutrophil signature that we observed in the responder-cluster was not seen in this 

comparison (p=0.65). To test if prior immunotherapy with Ipilimumab had an effect on 

responses or to the composition of the tumour microenvironment, we repeated our response 

and immune microenvironment analysis with prior ipilimumab therapy as the predictor 

variable. We found that prior ipilimumab therapy was not associated with RECIST 

response (p=0.59) or the response associated clusters in this cohort. To test if prior 

Ipilimumab treatment had an impact on the immune microenvironment in our samples, we 

compared immune marker expression in 17 samples that had prior Ipilimumab exposure 

with the 12 samples that were immunotherapy naïve. Overall, only the NK cell signature 

was significantly differentially expressed, being lower in Ipilimumab treated samples 

compared to immunotherapy naïve samples (p=0.04) (Figure 3.4 c-d). The cytotoxic 

lymphocyte and IMPRES signatures also trended lower in Ipilimumab treated samples 

although this was not statistically significant (p=0.07 and p=0.06 respectively). It is 

difficult to determine in this study if these differences in immune markers are a direct result 

of Ipilimumab’s biological activity on the tumour-immune infiltrate or whether Ipilimumab 
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treatment has selected for tumours with a specific immune microenvironment, however we 

did not observe any significant effect on outcome to subsequent PD-1 therapy in this 

cohort. 

Transcriptomic Clusters Associated with Distinct MicroRNA Expression Profiles 

Having identified two response-associated clusters from our transcriptomic data, we 

wanted to identify microRNAs that were associated with these clusters and to describe the 

relationship between microRNA and mRNA expression in our dataset. We first used 

DEseq2 to identify individual microRNAs that were differentially expressed in the 

responder and non-responder clusters. This analysis identified 5 microRNAs enriched in 

the responder cluster and 10 microRNAs enriched in the non-responder cluster (padj<0.1) 

(Figure 3.5a,c). Of these 15 microRNAs, miR-31-5p, 203a-3p and miR-205-5p were the 

top candidates for further analysis, with a log fold change (>2) between the responder and 

non-responder clusters and experimental evidence of biological activity (miRbase). 

Second, as microRNA family members exert co-operative regulation through shared 

sequence homology, we considered microRNA family members that individually may not 

have met the inclusion criteria for the individual microRNA analysis but cumulatively may 

be of biological significance. In this analysis we identified 3 microRNA families enriched 

in the responder cluster and 2 microRNA families enriched in the non-responder cluster 

(padj<0.1) (Figure 3b). These microRNA families included miR-31, miR-203 and miR-

205 in concordance with our individual microRNA analysis. In addition, the miR-515 

family was highly enriched in the responder cluster (lfc=7.8 padj<0.001), although no 

single miR-515 family members were detected in our initial microRNA analysis due to 

their low individual expression levels. As there was not 100% concordance between our  
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Figure 3.5 MicroRNA Differential Expression Analysis 
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Figure 3.5 MicroRNA Differential Expression Analysis in Pre-PD-1 Treatment 

Melanoma Biopsies. We performed microRNA sequencing from RNA extracted from the 

biopsies of melanoma patients prior to treatment with anti-PD-1 checkpoint blockade. In 

this analysis we used DESEQ2 to compare the differential expression in microRNAs in 

samples that we had classified by their mRNA cluster membership, as above. (a) A volcano 

plot representing log2 fold changes and negative log 10 p-values for each microRNA 

compared using DESEQ2. Values on the left of the plot are enriched in samples belonging 

to mRNA cluster 2, associated with resistance to anti-PD-1 therapy, and values on the right 

are enriched in samples belonging to mRNA cluster 1, associated with sensitivity to anti-

PD-1 therapy. (b) A volcano plot representing log2 fold changes and negative log 10 p-

values for each microRNA family (sum of counts of each microRNA family member) 

compared using DESEQ2. Values on the left of the plot are enriched in samples belonging 

to mRNA cluster 2, associated with resistance to anti-PD-1 therapy, and values on the right 

are enriched in samples belonging to mRNA cluster 1, associated with sensitivity to anti-

PD-1 therapy. (c) Heatmap representing per sample expression of the top differentially 

expressed microRNAs in samples from mRNA cluster 1 vs cluster 2. Values are row 

normalized z-scores from variance stabilized log2 transformed read counts. Sample cluster 

membership and clinical benefit is shown in the tracks above the heatmap.  
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transcriptomic clusters and clinical benefit, we also repeated this analysis with a direct 

comparison of samples from patients who did receive clinical benefit vs those that did not 

receive clinical benefit (Figure 3.6). Using this approach we confirmed some microRNAs 

that we previously identified as significantly differentially expressed between 

transcriptomic clusters, including miR-205-5p and miR-31-5p. 

Experimental Validation of Response-Associated MicroRNAs  

Although none of the microRNAs that we identified in our differential expression analysis 

had previously been implicated in tumour immunology, we sought to determine if they 

played a role in melanoma cell sensitivity to T-cell killing in-vitro. For these assays we 

first measured endogenous expression of miR-31-5p, miR-200b-3p and miR-205-5p in a 

panel of four melanoma cell lines (Mel-526, MDA-2333, MDA-2400 and MDA-2580). 

We found very low or undetectable levels of our microRNAs of interest in all four cell 

lines (figure 3.7 b). Transient transfection of microRNA mimics dramatically and 

consistently increased levels of specific microRNA in each cell line allowing us to compare 

the effect of increased microRNA expression on melanoma sensitivity to T-cell killing 

(figure 3.7 c). We measured melanoma cell death by chromium release assay after a 4 hour 

co-culture with MART-1 specific T-cells in our four melanoma cell lines (Figure 3.7 d). 

We observed no differences in melanoma cell death with miR-31-5p in any of the four cell 

lines we tested. With miR-200b-3p we noted one out of the four cell lines (MDA 2333) 

had a slight but statistically significant reduction level of cell death, indicating exogenous 

miR-200b-3p conferred some resistance to T-cell killing. However the remaining three cell 

lines had unchanged sensitivity to T-cell killing suggesting a cell specific effect. With miR-

205-5p we also saw a slight but statistically significant protective effect against T-cell  
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Figure 3.6 MicroRNA Differential Expression Analysis Based on Clinical Benefit 
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Figure 3.6 MicroRNA Differential Expression Based on Clinical Benefit (a) A volcano 

plot representing log2 fold changes and negative log 10 p-values for each microRNA 

compared using DESEQ2. Values on the left of the plot are enriched in samples from 

patients who did not receive clinical benefit from anti-PD-1 immunotherapy and values on 

the right are enriched in samples from patients who did receive clinical benefit from anti-

PD-1 therapy. (b) Summary statistics from top differentially expressed microRNAs from 

a, identifying three microRNAs with significantly high expression with large 

log2foldchanges (>2) and FDR <0.1)   
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Figure 3.7 Effect of Exogenous Expression of Response-Associated MicroRNAs on 

Melanoma Cell Line Sensitivity to T-Cell Killing 
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Figure 3.7 Effect of Exogenous Expression of Response-Associated MicroRNAs on 

Melanoma Cell Line Sensitivity to T-Cell Killing. We performed T-cell killing assays 

on a panel of 4 melanoma cell lines with transient transfection of microRNAs of interest to 

measure the effect of increased microRNA expression on sensitivity of melanoma cells to 

T-cell killing. (a) Schema. (b) Barplots representing endogenous expression of each 

microRNA of interest in each cell line relative to stably expressed reference microRNAs. 

(c) Barplots representing levels of exogenous miR-205-5p 72hrs post transfection in a 

panel of melanoma cell lines relative to stably expressed reference microRNAs. (d) 

Dotplots displaying percentage cell death from each cell line under each microRNA 

condition after 4hr co-culture with T-cells. Significant differences vs control are depicted 

by a black bar. 
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killing in two of the four cell lines tested (Mel526 and MDA2333). In this case the 

remaining two cell lines also had an unchanged sensitivity to T-cell killing.  

Summary 

In this chapter we used RNA and microRNA sequencing to profile the tumors of a cohort 

of twenty-nine pre-PD1 inhibitor treated melanoma patients. Using an unsupervised 

approach to classifying tumors based on their mRNA expression we were able to identify 

two transcriptomic groups that closely aligned with responses to immunotherapy. Among 

these two groups we were able to identify enrichment of particular gene sets associated 

with response and resistance to therapy. These included an enrichment of genes involved 

in interferon gamma response in responding tumors and an enrichment of genes involved 

in oxidative phosphorylation in non-responding tumors. We also identified transcriptomic 

immune markers were also enriched in responding tumors, including a CD8 T-cell 

signature. 

Having established transcriptomic groups of samples that corresponded to response, we 

identified microRNAs differentially expressed between the two groups, identifying eight 

differentially expressed microRNAs. Of these we selected three with the highest tissue 

expression for in vitro functional validation, miR-31-5p, miR-200b-3p and miR-205-5p. 

We used a T-cell killing assay with melanoma cells transfected with these microRNAs to 

identify any effects on sensitivity to T-cell killing. Using this assay we found a modest 

protective effect of miR-205-5p in 2/4 melanoma cell lines indicating this microRNA may 

help melanomas evade immune destruction and resist PD1 immune checkpoint blockade. 
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CHAPTER FOUR 

NETWORK ANALYSIS OF MELANOMA TISSUE AND CELL LINES 

REVEALS MICRORNA NETWORKS RELEVANT TO PD1 

IMMUNOTHERAPY 

This Chapter is based on the following work 

- Robert Szczepaniak Sloane, Michael A. Davies, Scott E. Woodman, Miles C. 

Andrews, Jennifer A. Wargo. Identification of MicroRNA-mRNA Networks in 

Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes. 

Manuscript Submitted 

ABSTRACT 

 Metastatic melanoma is a deadly malignancy with historically poor outcomes to therapy. 

Immuno-Oncology (IO) agents targeting immune checkpoint molecules such as Cytotoxic 

Lymphocyte Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1) have revolutionized 

melanoma patient care, achieving significantly improved response rates and remarkable 

long-term survival. Despite the vast improvement in treatment options, roughly half of 

melanoma patients do not receive long-term clinical benefit from IO therapies and there is 

an urgent need to understand and mitigate mechanisms of resistance. MicroRNAs are key 

post-transcriptional regulators of gene expression and can regulate many aspects of cancer 

biology including immune evasion. In this study we used network analysis to define two 

core microRNA-mRNA networks in melanoma tissues and cell lines corresponding to 

‘MITF-low’ and ‘keratin’ transcriptomic subsets of melanoma. We then compared 

expression of these core microRNAs in pre-PD-1 inhibitor treated melanoma patients and 
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observed that higher expression of miR-100-5p and miR-125b-5p were associated with 

significantly longer overall survival compared to low expressing tumors. These findings 

suggest that miR-100-5p and 125b-5p are potential markers of response to PD-1 inhibitors 

and further experimental investigation of these microRNA-mRNA interactions may yield 

further insight into melanoma resistance to PD-1 inhibitors. 
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INTRODUCTION 

 Immune checkpoint inhibitors targeting Cytotoxic T-lymphocyte associated protein 4 

(CTLA-4) and Programmed cell death 1 (PD-1) have radically improved survival outcomes 

for metastatic melanoma patients. Treatment with PD-1 inhibitors result in long-term 

survival for ~40% of patients, compared to ~20% with CTLA-4 inhibition and just 5% with 

the prior standard of care, dacarbazine [26, 162-164]. However, a significant subset of 

melanoma patients do not receive clinical benefit from these treatments. Understanding the 

factors that influence response to immune checkpoint blockade is therefore necessary for 

new therapeutic strategies and to improve patient care. 

Translational studies by our lab and others have identified several key determinants of 

response to PD-1 inhibition; intuitively these include the presence of PD-1 positive T-cells 

and the expression of programmed cell death 1 ligand 1 (PD-L1) in the tumor 

microenvironment (TME) and a high tumor mutation and immunogenic neoantigen burden 

[157, 165-167]. In addition, numerous cellular and genomic parameters have been 

associated with response including distinct transcriptomic profiles, PTEN status, 

composition of the gut microbiome and the composition of the TME including levels of B-

cells, and fibroblasts [45, 156-158, 160, 168-171]. Despite these advances in our 

understanding, improvements in clinical practice are yet to be realized, and improved 

predictive biomarkers and therapeutic strategies are still required to improve patient care. 

MicroRNAs are major post-transcriptional regulators of gene expression, directly binding 

and repressing translation of approximately 60% of human mRNAs [142]. MicroRNA 

regulation of gene expression has an established role in many of the hallmarks of cancer 

biology [172]. In melanoma this includes angiogenesis, EMT, invasion and resistance to 
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targeted therapy [173-176]. Furthermore, a comprehensive study of The Cancer Genome 

Atlas (TCGA) Skin and Cutaneous Melanoma (SKCM) dataset defined three 

transcriptomic subsets of melanoma (‘Keratin’, ‘MITF-low’ and ‘Immune’) each with a 

distinct microRNA expression profile [126]. Pre-clinical studies in multiple cancer types 

including melanoma have provided evidence of microRNA-mediated immune regulation 

that can affect sensitivity to immune surveillance [134, 135, 137]. However, melanoma 

microRNA expression has not been extensively studied in the context of clinical 

immunotherapy responses. We therefore sought to map the landscape of microRNA 

expression in melanoma and identify relationships with immunotherapy outcomes.  

In this study we used a network analysis approach to identify a core set of microRNAs, in 

TCGA tumors and patient derived melanoma cell lines, with strong associations with 

melanoma gene expression [177]. Using this approach we identified two distinct 

microRNA networks, broadly similar to previously identified patterns of microRNA 

expression in melanoma. We subsequently examined the relationship of these microRNAs 

with survival outcomes in pre-PD-1-treatment melanoma biopsies and identified miR-100-

5p and miR-125b-5p, from the same microRNA network, were associated with survival 

benefit in PD-1 treated patients.  
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RESULTS 

Landscape of microRNA-mRNA associations in TCGA Melanomas  

To build a network of relationships between the miRnome and the transcriptome we first 

comparing Spearman’s correlation coefficients of all microRNAs and all mRNAs reads 

from the TCGA melanoma datasets. All microRNAs with at least one mRNA correlation 

(Spearman’s rho <-0.4, >0.4) were plotted with hierarchical clustering in a heatmap to 

explore groups of microRNAs with common patterns of gene expression (Figure 4.1a). 

Using this approach we can identify two main clusters of microRNA-mRNA correlations, 

each with two major sub-clusters. On the left, the larger cluster contains 14 microRNAs all 

of which were previously identified as associated with the ‘keratin’ melanoma 

transcriptomic subset and includes the canonical ‘keratin’ melanoma microRNA, miR-211-

5p,  On the right of the heatmap with ten microRNAs, we observed microRNAs associated 

with the ‘MITF’low’ (miR-125b-5p, miR-100-5p) and ‘Immune’ (miR-146b-3p, miR-

146b-5p, miR29b-3p, miR-223-3p) melanoma transcriptomic subsets. When comparing 

these subsets, it is easy to identify subclusters with almost perfectly opposite gene 

expression associations, most notably the ‘keratin’ microRNAs, including miR-211-5p 

which appears to mirror the ‘MITF-low’ microRNAs, miR-100-5p and miR-125b-5p. 

Similarly, the ‘Keratin’ microRNAs miR-17-3p, miR-17-5p and miR-92a-3p mirror the 

‘Immune’ microRNAs. It is interesting to note that we can identify relationships between 

the existing three-transcriptomic subset classification of melanomas that may not have been 

predicted. For example while the dichotomy between ‘keratin’ and ‘MITF-low’ microRNA 

is established, it is interesting to note that the ‘keratin’ microRNAs separate into two sub-

clusters, one of which more closely mirrors 
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Figure 4.1: Network Analysis of Global MicroRNA:mRNA Associations in TCGA 

Melanoma Samples. 
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Figure 4.1: Network Analysis of Global MicroRNA:mRNA Associations in TCGA 

Melanoma Samples. (a) Clustered heatmap representing Spearman’s rho values of all 

microRNA:mRNA correlations observed in TCGA melanoma samples where each 

microRNA has an inverse correlation (Spearman’s rho <-0.4) with expression of at least 1 

mRNA. (b) Adjacency matrix representing the number of mRNA inverse correlations 

shared by each microRNA in the TCGA microRNA:mRNA network. 
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‘MITF-low’ microRNAs while the other subset more closely mirrors the ‘Immune’ subset 

of microRNAs. It is tempting to speculate that the one subset of ‘keratin’ microRNAs 

including miR-211-5p is central to maintaining the ‘keratin’ phenotype while the other 

subset is involved in other biological processes that may associate with immune infiltration 

or exclusion. 

To further investigate the cluster relationships from the heatmap we plotted the number of 

inverse correlations shared between each microRNA identified in Figure 4.1a in an 

adjacency matrix (Figure 4.1b). In this analysis it is easy to identify the same cluster 

membership described in the heatmap, with the ‘keratin’ microRNAs forming the largest 

cluster with an apparent tiered membership, with miR-508-3p, miR-508-5p, miR-509-3p 

and miR-514a-3p sharing the most number of mRNA associations (87-111 shared 

associations) while three of the ‘keratin’ microRNAs, miR-17-5p, miR-92a-3p, miR-17-

3p, form a distinct subcluster with relatively few shared associations with any other 

‘keratin’ microRNAs (0-5 shared associations). The remaining ‘keratin’ microRNAs have 

significant overlap with the miR-508-3p cluster although with fewer overall shared mRNA 

associations with other ‘keratin’ microRNAs (0-61 shared associations). The remaining 

‘MITF-low’ and ‘Immune’ melanoma subset microRNAs again form separate and distinct 

clusters.  

We then used a network analysis approach to quantify inverse correlations of microRNA 

and mRNA expression in the TCGA melanoma dataset. We identified 1739 microRNA-

mRNA associations comprising 74 microRNAs inversely correlated with expression of at 

least 1 mRNA (Spearman’s rho <-0.4). Of these 74 microRNAs, 19 were associated with 

>20 mRNAs each, accounting for 1521/1739(87%) of the total microRNA-mRNA inverse 
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correlations.  Bipartite and unipartite network projections of the top 19 microRNAs 

identifies three distinct network hubs corresponding to the ‘Keratin’, ‘MITF-low’ and 

‘Immune’ transcriptomic-subset-associated-microRNAs previously identified in this 

TCGA cohort and, unsurprisingly due to the overlapping methodology, shares similarities 

to the data represented in Figure 4.1 (Figure 4.2). The largest of these hubs consists of the 

TCGA ‘Keratin’ associated microRNAs; miR-211-5p, 146a-5p, 181a-2-3p, 506-3p, 508-

3p, 508-5p, 509-5p, 509-3-5p, 514a-3p, 17-3p, 17-5p, 92a-3p and 185-5p (Fig 1a, b, Table 

S2). This network hub accounts for 1153/1739 (66%) of all observed microRNA-mRNA 

inverse correlations and also contains the microRNAs with the highest degree centrality 

(miR-211-5p - 293), betweenness centrality (miR-29b-3p, 17-3p, 211-5p, 185-5p - 42.5, 

25.5, 24.5, 23.5, respectively), and eigenvector centrality (miR-508-3p, 514a-3p, 508-5p, 

509-3p [1, 1, 0.93, 0.92, respectively]). The second largest network hub, by number of 

microRNA-mRNA associations (266/1739, 15%), consists of the TCGA ‘MITF-low’ 

microRNAs; miR-100-5p and 125b-5p. This hub is separate from the rest of network, with 

zero shared mRNA associations with other microRNAs and therefore scores low (<0.01) 

on eigen, betweeness and closeness network centrality. We also observed that MITF was 

among the inversely correlated mRNAs within this network, consistent with the previous 

characterization of these microRNAs in the TCGA. The third largest network hub, by 

number of microRNA-mRNA associations (102/1739, 6%) consists of the TCGA 

‘Immune’ microRNAs; miR-29b-3p, 146b-3p, 146b-5p and 223-3p. This network hub only 

shares scores low for measures of network centrality  
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Figure 4.2: Network Analysis of Global MicroRNA:mRNA Associations in TCGA 

Melanoma. Inverse correlations of microRNA and mRNA pairs were calculated to identify 

potential microRNA regulated gene networks. (a) Bipartite network projection displaying 

the 19 microRNAs (red) with highest numbers (>20) of inversely correlated (Spearman’s 

rho <-0.4) mRNAs (blue) within all TCGA melanoma samples, identifies three distinct 

microRNA:mRNA network hubs. (b) Unipartite network projection displaying the mRNA 

inverse correlations shared by each microRNA (higher number of correlations indicated by 

connecting line thickness). MicroRNAs are colour coded by their previous association with 

specific TCGA transcriptomic subsets. (c) Gene-Set Enrichment Analysis of all mRNAs 

inversely correlated with ‘Keratin’ transcriptomic subset associated microRNAs. (d)  

Gene-Set Enrichment Analysis of all mRNAs inversely correlated with ‘MITF-Low’ 

transcriptomic subset associated microRNAs. 
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(<0.1) indicating very few shared mRNA associations with other microRNAs in the 

network. To understand the biological significance of these networks we performed gene 

set enrichment analysis (GSEA) on the mRNAs that were inversely correlated with each 

network (Fig 4.2 c, d). The most significant enrichment of genes in the ‘keratin’ microRNA 

cluster was in the epithelial to mesenchymal transition (EMT) gene set (33 genes, FDR q 

= 2.36E-24), consistent with prior experimental evidence of miR-211-5p inhibition of EMT 

in melanoma. The most significant enrichment of genes in the ‘MITF-low’ microRNA 

cluster was in oxidative phosphorylation (15 genes, FDR q = 1.39E-11). In parallel with 

the findings of individual mRNA associations,  there was also no overlap of gene set 

enrichment between the ‘keratin’ and ‘MITF-low’ microRNA associated genes, indicating 

that these networks represent functionally distinct regulatory networks. Genes that were 

inversely correlated with the ‘Immune’ microRNAs were not found to be enriched in any 

gene-sets.  

Landscape of microRNA-mRNA Associations in Patient Derived Melanoma Cell Lines 

 To verify our findings from the TCGA samples, we repeated our analysis in a panel of 61 

early passage melanoma cell lines obtained from melanoma TIL harvests performed at The 

University of Texas MD Anderson Cancer Center. Our first observation from this analysis 

was the far stronger correlation of microRNA and mRNA expression in melanoma cell 

lines compared to melanoma tissue, presumably due to the reduced complexity of cell 

culture conditions allowing greater resolution of melanoma specific transcription. This 

allowed us to increase our correlation coefficient threshold to 0.6 from 0.4 in the TCGA 

melanoma analysis. We identified 4489 unique microRNA-mRNA associations 

comprising 81 microRNAs inversely correlated with expression of at least 1 mRNA 
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(Spearman’s rho <-0.6) (Figure 4.3). All microRNAs with at least one mRNA correlation 

(Spearman’s rho <-0.6, >0.6) were plotted with hierarchical clustering in a heatmap to 

explore groups of microRNAs with common patterns of gene expression (Figure 4.3a). 

Although much larger than the heatmap generated with the TCGA data, the structure is 

relatively simple, with two main clusters of mRNAs and three clusters of microRNAs. On 

the left, the larger microRNA cluster contains fifty-nine microRNAs including the ‘keratin’ 

microRNAs that we identified in the TCGA. This large microRNA cluster has strong 

inverse correlations with the largest mRNA cluster indicating involvement in repression of 

a large subset of genes. The second prominent cluster on the right of the heatmap is a much 

smaller cluster of 14 microRNAs including the ‘MITF-low’ microRNAs miR-100-5p and 

miR-125b-5p identified in the TCGA analysis. This cluster of microRNAs has strong 

inverse correlations with the smaller mRNA cluster in contrast to the first microRNA 

cluster. This is a repeat of the ‘keratin’ and ‘MITF-low’ dichotomy that we observed in the 

TCGA dataset. The third cluster of consists of 35 microRNAs that seem to have an 

intermediate association with the two mRNA clusters. In total we observed 2/2 ‘MITF-

low’, 10/13 ‘Keratin’ and 1/4 ‘Immune’ associated microRNAs that we identified in the 

TCGA dataset. We further investigated the relationships between the microRNAs 

identified in this analysis using an adjacency matrix visualizing the number of inverse 

mRNA correlations shared by each microRNA, filtered to include the top 18 microRNAs 

with the highest individual mRNA associations (Figure 4.3b). This plot again highlights 

the dichotomy of ‘keratin’ and ‘MITF-low’ microRNAs in melanoma, with many of the 

same microRNAs identified in the TCGA analysis repeated here, including miR-211-5p, 

miR-100-5p and miR-125b-5p.  
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Figure 4.3: Network Analysis of Global MicroRNA:mRNA Associations in Melanoma 

Cell Lines. (a) Clustered heatmap representing Spearman’s rho values of all 

microRNA:mRNA correlations observed in melanoma cell lines where each microRNA 

has an inverse correlation (Spearman’s rho <-0.6) with expression of at least 1 mRNA. (b) 

Adjacency matrix representing the number of shared mRNA inverse correlations shared by 

each microRNA in the melanoma cell line microRNA:mRNA network. 
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For network analysis in the cell line dataset we repeated our filter of the initial 81 

microRNAs used for the adjacency matrix. The top 18 microRNAs were associated with 

>100 mRNAs each, accounting for 2748/4489 (61%) of the total microRNA-mRNA 

inverse correlations. Bipartite and unipartite network projections of the top 18 microRNAs 

identified two distinct network hubs (4.4 a,b). These two network hubs shared common 

characteristics with the ‘Keratin’ and ‘MITF-low’ hubs identified in the TCGA dataset. 

The ‘MITF-low’ network hub comprised the same two microRNAs, miR-100-5p and miR-

125b-5p and accounted for 308/4489 (7%) of the total microRNA-mRNA inverse 

correlations in this dataset. In agreement with our TCGA analysis, we observed that MITF 

was among the inversely correlated mRNAs within this network. This hub is again 

completely separate from the rest of the network, with zero shared mRNA associations 

with other microRNAs and therefore scores low (<0.01) on eigen, betweeness and 

closeness network centrality. The larger hub accounted for 2440/4489 (50%) of the total 

microRNA-mRNA inverse correlations in this dataset and shared some similarities with 

the ‘keratin’ hub from the TCGA analysis, including the presence of miR-17-3p, 185-5p 

and 211-5p, but did not exclusively contain microRNAs from the TCGA ‘Keratin’ 

transcriptomic subset (6/16 ‘Keratin’, 2/16 ‘Immune’ and 8/16 unaffiliated to any TCGA 

transcriptomic subset).  We again performed GSEA on the mRNAs inversely correlated 

with each network. In the larger network we identified striking similarities with the 

‘keratin’ network in the TCGA analysis, sharing 6 of the top 10 enriched gene sets, 

including EMT, UV_Response_DN, Apical_Junction, TNFA_Signalling_via_NFkB, 

Hypoxia and TGF_Beta_Signalling (Table S6).  The GSEA of mRNAs inversely correlated 

with the ‘MITF-low’ microRNA  
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Figure 4.4: Network Analysis of Global MicroRNA:mRNA Associations in Melanoma 

Cell Lines. Inverse correlations of microRNA and mRNA pairs were calculated to identify 

potential microRNA regulated gene networks. (a) Bipartite network projection displaying 

the 18 microRNAs (red) with highest numbers (>100) of inversely correlated (Spearman’s 

rho <-0.6) mRNAs (blue) within all TCGA melanoma samples, identifies two distinct 

microRNA:mRNA network hubs. (b) Unipartite network projection displaying the mRNA 

inverse correlations shared by each microRNA (higher number of correlations indicated by 

connecting line thickness). MicroRNAs are colour coded by their previous association with 

specific TCGA transcriptomic subsets. (c) Gene-Set Enrichment Analysis of all mRNAs 

inversely correlated with ‘Keratin’ transcriptomic subset associated microRNAs. (d)  

Gene-Set Enrichment Analysis of all mRNAs inversely correlated with ‘MITF-Low’ 

transcriptomic subset associated microRNAs. 
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network also shared 2/10 enriched genesets with the TCGA ‘MITF-low’ network including 

Estrogen_Response_Early and Adipogenesis. 

PD-1 Treated Patient Cohort 

 Having identified prominent microRNA-mRNA networks in melanoma tumors and cell 

lines, we asked if any of the microRNAs from these networks were related to 

immunotherapy outcomes in pre-PD1 treated melanomas. We compared expression of the 

19 microRNAs with the highest degree centrality in the TCGA bipartite network analysis 

in the pre-PD-1-treatment biopsies of 22 stage III/IV melanoma patients, of whom 10 

received clinical benefit and 12 did not. We observed significantly higher expression of 

both miR-100-5p (median log2 counts: 12.48 vs 11.25, p-value = 0.036) and miR-125b-5p 

(median log2 counts: 17.35 vs 15.49, p-value = 0.025) in the tumors of patients who 

received clinical benefit compared to those who did not receive clinical benefit (p=0.025, 

p=0.36, respectively) (Figure 4.5, Table 4.1). Although no other microRNAs were 

significantly differentially expressed, we did note that miR-146a-5p, which has been 

implicated as a negative regulator of immune activation in vivo, was slightly elevated in 

the tumors of patients who did not receive clinical benefit (median log2 counts: 19.05 vs 

18.13, p-value = 0.28) [30425059]. We then performed survival analysis using Cox’s 

proportional hazard model and Kaplan Meier analysis (Figure 4.5 a, d-g). The survival 

analysis showed low hazard ratios for both miR-100-5p (HR (95%CI): 0.5 (0.3-0.85) 

p=0.01) and miR-125b-5p (HR (95%CI):0.51 (0.29-0.9) p=0.02) (Figure 4.5 a). High 

melanoma expression of miR-100-5p and miR-125b-5p were both shown to predict 

improved progression-free survival (log-rank test p=0.02, p=0.01, respectively) and overall 

survival (log-rank test p=0.05, p=0.05, respectively). 
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Table 4.1 Melanoma Pre-PD1 Treated Patient Characteristics 
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Figure 4.5: Survival Analysis of Melanoma MicroRNAs in Pre-PD-1-Treated 

Melanoma Biopsies. MicroRNA sequencing was performed on 22 Pre-PD-1-treated 

melanoma biopsies, variance-stabilised-log2-transformed counts were generated using 

DESEq2. (a) A forest plot displaying hazard ratios ± 95% confidence intervals from 

univatiate Cox’s proportional hazard analysis of each of the 19 microRNAs with the 

highest degree centrality in bipartite network analysis of TCGA microRNA:mRNA 

expression. (b-c) Boxplots comparing variance-stabilised-log2-transformed counts of miR-

100-5p and miR-125b-5p in melanoma biopsies from patients who did not receive clinical 

benefit from anti-PD-1 immunotherapy versus those who did receive clinical benefit.  

Boxplots display median, interquartile range and whiskers representing 1.5 x the 

interquartile range. (d-g) Kaplan Meier curves displaying the time to PFS or OS for patients 

with biopsies with high (above median) compared to low (below median) expression of 

miR-100-5p or miR-125b-5p. 
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Discussion 

We identified three core microRNA-mRNA networks in melanoma tumors that broadly 

corresponded with previous observations of ‘Keratin’, ‘MITF-low’ and ‘Immune’ 

transcriptomic subsets in the TCGA SKCM dataset [126]. Further investigation of these 

networks confirmed previous findings about the roles of these microRNAs, including the 

prominence of miR-211-5p within the ‘keratin’ transcriptomic subset of melanoma and a 

strong enrichment of epithelial to mesenchymal genes, including AXL and ZEB1, which 

were inversely correlated with miR-211-5p expression. This supports previous evidence 

for the regulatory role of miR-211 in EMT-like processes in melanoma [174]. Similarly we 

found miR-100-5p and miR-125b-5p formed an independent network hub and were 

inversely correlated with MITF expression, mirroring the association of these microRNAs 

with ‘MITF-low’ melanomas from previous TCGA analysis [126]. The strong depletion of 

OXPHOS genes associated with the MITF-low network is also supported by prior evidence 

for the role of miR-125b and MITF as regulators of mitochondrial metabolism [178, 179]. 

The correlation analysis within the melanoma cell line dataset resulted in a substantially 

higher number of microRNA-mRNA pairs allowing us to increase the correlation 

coefficient threshold (<-0.6) and also the number of inverse correlations (>100) required 

for inclusion in our network analysis. The increased sensitivity to microRNA-mRNA 

interactions is likely due to the sampling of high purity cell lines with consistent culture 

conditions compared to the variability inherent in whole tumors with unpredictable 

stromal, immune and metabolic variation.  

The network analysis in the melanoma cell lines shared broad similarities with the TCGA 

network with a high degree of overlap in terms of individual microRNA-mRNA 
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associations and also in GSEA of those mRNAs. The most obvious agreement between 

datasets occurred with miR-125b and miR-100-5p network, with no overlap with other 

microRNA-mRNA pairs and inverse correlation with MITF expression. One notable 

difference in this network was the absence of enrichment of OXPHOS genes inversely 

correlated with miR-100-5p and miR-125b-5p.  It is possible that this difference is due to 

the significant differences in metabolic requirements between cell culture and the TME, 

but it is also possible that these metabolic differences are attributable to other components 

of the TME such as monocytes [178, 180, 181] . The larger microRNA-mRNA network 

identified in cell lines shared many characteristics with the ‘keratin’ microRNA network 

identified in the TCGA analysis, with a core of the same ‘keratin’ melanoma-subset-

associated microRNAs including miR-211-5p. This network also shared enrichment of 

6/10 gene sets with the ‘keratin’ TCGA network including EMT genes such as AXL and 

ZEB1.  

To identify microRNAs associated with PD-1 checkpoint blockade outcomes, we 

compared microRNA expression in pre-treatment melanoma biopsies from patients who 

did or did not receive clinical benefit from therapy. We focused on those microRNAs that 

had the strongest degree centrality scores from our TCGA network analysis, hypothesizing 

that microRNAs associated with specific gene expression profiles would most likely be 

associated with differential responses. Using Cox’s univariate proportional hazard model 

we found both ‘MITF-low’ microRNAs from our network analysis, miR-100-5p and miR-

125b-5p, were associated with clinical benefit in this cohort. Interestingly previous 

research has implicated expression of these microRNAs, in a panel of others, with myeloid 

derived suppressor cell (MDSC) mediated resistance to immune checkpoint inhibitors. It 
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is unclear from their methodology and published data what the individual predictive power 

of each microRNA within the panel was. It is important to note that this microRNA data 

was obtained through peripheral plasma sampling and is therefore unclear how comparable 

it is with tumor expression data [182]. Although there is limited experimental evidence for 

the role of these microRNAs in melanoma immunity, it should be noted that OXPHOS was 

the most significantly inversely correlated gene set identified in the ‘MITF-low’ 

microRNA-mRNA. There is some recent evidence for the role of OXPHOS and melanoma 

immune evasion [183-185]. In this study, melanoma brain metastases with lower OXPHOS 

gene expression were associated with higher immune infiltration. We can therefore 

speculate that ‘MITF-low’ microRNAs and associated inverse correlation of OXPHOS 

gene expression may influence melanoma immunity, although this would require further 

investigation.  

Beyond the ‘MITF-low’ microRNAs, we found a trend towards higher miR-146a-5p 

expression in melanomas that did not receive clinical benefit, although this result did not 

reach statistical significance, possibly due to the small cohort size. This aligns with a pre-

clinical model of miR-146a-5p in melanoma association with resistance to immunotherapy 

and also highlights a potential dichotomy between ‘keratin’ and ‘MITF-low’ associated 

microRNAs and immunotherapy responses [137].   
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CHAPTER FIVE 

DISCUSSION AND FUTURE DIRECTIONS 

DISCUSSION 

Summary of all MicroRNA Analyses 

We undertook parallel and partially overlapping approaches to identification of 

microRNAs implicated in melanoma immunity and resistance to anti PD-1 

immunotherapy. We were able to identify multiple microRNAs by each method, however 

not every microRNA was included in every analysis. To summarize the data we collected 

for each microRNA, I have included a table (Table 5.1). There are few microRNAs that we 

were able to collect comprehensive experimental and clinical data from because they were 

primarily identified by different aims within this project and we did not have time to cross-

validate each microRNA, particularly experimentally with cytokine secretion and T-cell 

killing assays. Below is a discussion of our findings for each methodology used and the 

microRNAs subsequently identified. Briefly these can be classified into three categories; 

1- MicroRNAs with strong prognostic value in TCGA data and experimental evidence for 

roles in regulating immune pathways and processes but no evidence of differential 

expression in clinical specimens (miR-155-5p). I discuss below the reasons why miR-155-

5p may not be identified as predictive in anti-PD-1 treated patients due to opposite effects 

in different cell types in the tumour microenvironment and further analysis and 

experiments that could resolve this 2. MicroRNAs with evidence of differential expression 

in clinical specimens and some experimental evidence of immune modulation but little 

association with survival and no association with immune markers or prognostic value in 
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TCGA (miR-205-5p, miR-200b). 3. MicroRNAs with strong associations with survival in 

anti-PD-1 treated melanoma patients but with no association with immune markers or 

prognosis in TCGA (miR-100-5p, miR-125b-5p). These microRNAs are of great interest 

as discussed below as they may represent a subtype of melanoma with a distinct phenotype 

with as-yet undescribed sensitivity to anti-PD-1 immunotherapy and/or a potential 

predictive biomarker in this setting. I describe in the future directions section experiments 

that could be performed to elucidate this. 

Identification of Immune-Associated MicroRNAs in TCGA Melanoma Samples 

A comprehensive analysis of TCGA melanoma tissue identified 5 microRNAs with strong 

associations with immune infiltration and rational validated immune targets that may 

explain these associations. We were able to demonstrate in melanoma cell lines that these 

microRNAs can regulate their predicted immune targets in this disease and may offer 

potential mechanisms for modulating the melanoma tumor microenvironment. Of these 

microRNAs miR-155-5p had the most profound biological effects in vitro.  
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Table 5.1 Summary of MicroRNA Analyses 
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146b

-5p 

Immune Yes No Positive N/A N/A No No 

155-

5p 

Immune Yes Yes Positive Yes 

Increa

se 

Desensiti

zation 

4/4 Cell 

Lines 

No No 

(Negative 

trend) 

1976 Immune Yes No Positive N/A N/A No No 

361-

3p 

Intermedia

te Immune 

Yes 

 

No Positive N/A N/A No No 

142-

5p 

Immune Yes Yes Positive N/A N/A No No 

31-

5p 

N/A No No No N/A No Effect Yes 

Positive 

No 
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1246 Intermedia

te 

Melanoma 

Yes N/A No N/A N/A Yes 

Positive 

No 

34c-

5p 

N/A 

 

No No No N/A N/A Yes 

Negative 

No 

203a

-3p 

Intermedia

te 

Melanoma 

Yes No No N/A N/A Yes 

Positive 

No 

203b

-5p 

N/A No No N/A 

No 

N/A N/A Yes 

Positive 

No 

205-

5p 

Intermedia

te 

Melanoma 

Yes No No N/A Desensiti

sation 2/4 

Cell 

Lines 

Yes 

Negative 

No 

200b

-3p 

Intermedia

te Immune 

No No No N/A Desensiti

zation ¼ 

Cell 

Lines 

Yes 

Negative 

No 

7705 N/A No N/A N/A N/A N/A Yes 

Negative 

No 

125b

-5p 

Stromal / 

MITF low 

Yes No No N/A N/A Yes 

Positive 

Yes 

Positive 
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100-

5p 

Stromal / 

MITF low 

Yes No No N/A N/A Yes 

Positive 

Yes 

Positive 

 

MiR-155-5p 

High expression of miR-155-5p was correlated with immune markers in TCGA melanoma 

samples and was associated with improved OS in those patients. Sequencing data from 

melanoma and immune cell lines showed that miR-155 was expressed in melanoma cells 

and in activated T-cells. While there is abundant evidence for the activating role of 155-5p 

in T-cells, its immune role in melanoma cells is poorly defined.  The data from this assay 

suggests that miR-155-5p in tumor cells could contribute to immune evasion which would 

contradict the survival benefit associated with miR-155-5p expression in the TCGA. Based 

on this data I would reason that improved OS survival associated with miR-155-5p in 

TCGA patients is due to a) miR-155-5p expression and activity in immune cells and/or b) 

a tumor suppressor role in melanoma that is more significant than its effect on immune 

evasion. Further investigation of the differential effects of miR-155-5p is required to 

determine the cell-specific effects in the tumor microenvironment (see future directions)  

Identification of MicroRNAs Associated with Clinical Response to PD1 Inhibitors 

Using RNA and small RNA sequencing we were able to identify 8 microRNAs with 

significant differential expression between melanoma patients who did or did not receive 

clinical benefit from PD1 inhibitors, furthermore we were able to experimentally validate 

these microRNAs in a T-cell-melanoma co-culture assay: miR-31-5p was overexpressed 

in responding lesions and therefore hypothesized that is would sensitize melanoma cells to 
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T-cell killing. With this assay I did not observe any effect of miR-31-5p on sensitivity to 

T-cell killing in any of the 4 cell lines tested. This data suggests that miR-31-5p expression 

in melanoma cells does not affect direct interactions with cytotoxic T-cells and its 

association with response to immunotherapy may be through a separate mechanism such 

as mediating immune infiltration or through activity in other cell types such as immune 

cells. miR-200b-3p was overexpressed in non-responding lesions to PD-1 checkpoint 

blockade and therefore I hypothesized miR-200b-3p would protect melanoma cells from 

T-cell killing. This was the case in 2/4 cell lines. miR-205-5p, like miR-200b-3p, was 

overexpressed in non-responding lesions to PD-1 checkpoint blockade. Again I 

hypothesized this microRNA would protect melanoma cells from T-cell killing and this 

was the case in 3/4 cell lines. The data from miR-200b-3p and miR-205-5p suggests that 

individually they can regulate sensitivity to T-cell killing in some but not all melanomas. 

Interestingly, while miR-200b-3p shows activity in 2/4 and miR-205-5p shows activity in 

3/4 cell lines, every cell line tested was affected by at least one of these two microRNAs. 

Further investigation of the mechanism of action for both of these microRNAs may reveal 

important immunoregulatory pathways that could be exploited for melanoma 

immunotherapy.  Since only a modest effect on sensitivity to T-cell killing was observed 

it is important to identify the cell type or types within the tumor microenvironment that 

these microRNAs are expressed in and therefore biologically active in as described in the 

future directions section below. The T-cell killing assay we used was a reductive 

experiment with only a fraction of the factors present in the tumor microenvironment and 

it is therefore necessary to use a more complete model of tumor immunity. With this 

information we can design syngeneic mouse models with conditional expression of our 
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microRNAs of interest in the relevant cell types. Using this model it would be possible to 

identify how the tumor microenvironment is altered depending on expression of each 

microRNA by measuring tumor, immune and stromal cell populations in models with high 

or low target microRNA both with and without immunotherapy intervention. Furthermore, 

specific effects on gene expression could be measured with microRNA-mRNA reporter 

assays and downstream protein quantification by western blot or a multiplex method such 

as RPPA. Measuring the dependence of any phenotype on the expression of specific 

proteins targeted by our microRNAs of interest may reveal the mechanisms that these 

microRNAs can regulate immunotherapy responses.  

After extensive analysis of the microRNA sequencing data in our melanoma patient cohort, 

we recognized that using the binary clinical benefit endpoint was very sensitive to changes 

in sample classification. For example, when we included lesion specific responses we 

changed the definition of one sample between clinical benefit and non-clinical benefit. In 

a cohort of 22 patients, this had significant effects on the differential expression analysis. 

We also noted significant differences in differential expression analysis when we compared 

samples based on their membership of transcriptomic groups or strictly by RECIST 

response. We therefore determined that identifying microRNAs associated with PFS and 

OS outcomes after anti-PD-1 therapy was a more robust method than associations with 

response. This is regarded as the gold standard for immunotherapy due to the atypical 

kinetics of immunotherapy with regard to tumor responses as traditionally measured by 

RECIST. Furthermore, we reasoned that we should limit our model to microRNAs that we 

know are significantly associated with gene expression in melanoma to improve the 
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statistical power of our analysis, considering the small cohort of PD1 inhibitor treated 

patients. 

To this end I used network analysis to identify microRNA-mRNA associations in 

melanoma tumors (SKCM TCGA) and in melanoma cell lines (MD Anderson Melanoma 

Cell Line Cohort). I then used Cox’s proportional hazard model to identify associations 

with PFS and OS in our pre-PD1 treated melanoma patient samples from the top 18 

microRNAs identified in the network analysis. This approach determined that miR-100-5p 

and miR-125b-5p were significantly associated with improved OS and PFS in patients 

treated with anti-PD-1 therapy. Furthermore these two microRNAs represent a distinct 

microRNA-mRNA network that does not overlap with other microRNA-mRNA networks 

identified in our samples. 

Further clinical and experimental validation of these targets are warranted to translate these 

findings into potential clinically useful targets. 

FUTURE DIRECTIONS 

Although we have extensively studied expression of microRNA and their associations with 

immune features in melanoma and identified several specific microRNAs with statistical 

associations with response and survival outcomes to PD-1 checkpoint blockade, the 

mechanisms that underlie these associations remain poorly defined and warrant further 

investigation. Here I will discuss the research that I think is the logical continuation of this 

project to address the questions we have raised and demonstrate clinical relevance. 

Resolution of Tissue Level Sequencing 
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One of the challenges of RNA sequencing of RNA extracted from homogenized tumor is 

the inability to attribute the signal we see to specific components of the tumor 

microenvironment. We know that different cell lineages present in the tumor 

microenvironment have distinct RNA and microRNA expression profiles and the data we 

receive from whole tumor sequencing is an average of the values across multiple cell types 

including immune, stromal and tumor cells. Further complicating the data we see is the 

variation in tumor microenvironment composition between patients and even in tumors 

from the same patient and even in different locations within the same tumor. We are 

therefore unable to definitively attribute the source of differential expression of any of the 

genes we identify; do they represent a genuine biological difference within melanocytes, 

stromal cells or immune cells between responding or non-responding lesions or are they 

merely acting as biomarkers for the abundance of these different cell types which also 

governs response?  

To answer this question we need to separately sequence the different constituents of the 

tumor microenvironment. Single cell sequencing would provide the highest resolution 

although the current technical and financial constraints on this technology may prohibit a 

significant study [186, 187]. For the purposes of resolving expression between cell types, 

single cell resolution is likely not required and could be achieved by FACS enumeration 

and sorting cells by expression of lineage markers and sequencing the resulting 

populations. Other in situ gene expression methods may also be useful to study intra 

tumoral heterogeneity [188].    

As we have shown here, the activity of certain genes can lead to competing phenotypes 

within the tumour microenvironment. For example miR-155-5p is an established marker 
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of immune activation and expressed in high levels in cytotoxic T-cells. Conversely, we 

have shown that expression of miR-155-5p in melanoma tumour cells has an immune-

protective effect. Tissue level resolution of miR-155-5p is therefore unable to differentiate 

potentially beneficial expression in T-cells compared to possible detrimental expression in 

melanoma cells. Thus, the absence of miR-155-5p enrichment in either responding or non-

responding melanoma tumours is inconclusive and requires further investigation. 

Additionally, I believe this would help improve the power of the statistical analysis of other 

microRNAs including miR-100-5p and miR-125b-5p which are both known to be 

expressed in tumour and stromal cell populations such as fibroblasts, which may be 

immunosuppressive, in contrast to our dataset which shows that tissue expression of miR-

100-5p and miR-125b-5p is associated with improved overall survival, indicating 

contrasting immune effects in different components of the tumor microenvironment [182]. 

Identifying the source of each microRNA will allow us to investigate the mechanism of 

that microRNA in the appropriate cell type. 

Experimental Validation of Clinically Relevant MicroRNAs 

While we were able to identify numerous microRNAs associated with different immune 

features and with PD-1 inhibitor responses in melanoma, we have only been able to 

perform limited functional validation of these genes, particularly those that were identified 

in the clinical cohort, which took longer to identify. Future experiments using miR-100-5p 

and miR-125b-5p conditional knockout cell lines in vitro and in vivo models of tumor 

immunity will be required to elucidate the role these microRNAs have in melanoma 

immunity.  
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There are several outstanding questions concerning the role of miR-100-5o and miR-125b-

5p in melanoma immunity: Primarily, are miR-100-5p and miR-125b-5p directly 

regulating genes that are mediating resistance/sensitivity to immunotherapy or are they 

biomarkers of a differential immune phenotype i.e. are these microRNA associations with 

PD-1 response correlative or causative. We could initially test the effect of these 

microRNAs on gene expression and determine if these microRNAs are key regulators of 

this gene expression profile or a dependent covariate incidentally associated with the 

observed transcriptomic profile. Although we performed comprehensive correlation 

analysis of these microRNAs with mRNA expression in melanoma and tissue, it is not 

sufficient to conclude that these genes are directly regulated, indeed there was no 

enrichment for predicted miR-100-5p or miR-125b-5p targets within the inversely 

correlated mRNA network that we identified, suggesting any association with these 

specific genes is indirect. To test this we must show that miR-100-5p and miR-125b-5p 

expression regulates target gene expression in melanoma (either in melanoma cell lines or 

other microenvironment populations). This can be tested using reporter assays for 

microRNA-mRNA binding which can empirically measure the mRNAs that are bound in 

melanoma by these microRNAs. Measuring downstream protein expression as described 

above could provide further evidence for actual miR-100-5p / miR-125b-5p regulation of 

specific protein expression in melanoma. Further, if as suspected these microRNAs do not 

directly regulate the target genes, we can focus on their interaction with other regulators of 

gene expression such as transcription factors. Functional validation of these microRNAs 

with an immune endpoint should also be investigated. This can initially be the assays we 

have established during this project such as multiplex cytokine secretion and or T-cell 
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killing assays in vitro. Additional in vivo experimental models as described above would 

also be of use, testing the role of these microRNAs in melanoma cells and also in stromal 

cell populations in a more complete model of tumor immunity. 

Furthermore in the event that specific modulation of these microRNAs does not affect 

tumour immunity, it would be of interest to address if the phenotype they are associated 

with i.e. a mesenchymal like melanoma had experimental differences to immune therapy. 

These experiments could be wide ranging, including screening a large panel of melanoma 

cell lines with melanocytic vs mesenchymal-like properties for their immune phenotypes 

i.e. MHC expression, cytokine secretion and T-cell killing sensitivity. Experimentally 

induced epithelial to mesenchymal transition in a syngeneic mouse model of melanoma 

would also be a powerful tool to measure the contribution of this phenotype to immune 

evasion. Proliferation, migration and other metabolic features could also be tested which 

could test potential non-immune specific mechanisms of better outcomes. 

In Vitro MicroRNA Gain of Function Screening 

Lentiviral gain of function screens are powerful genetic screening tools that allow us to 

identify genes that regulate specific phenotypes. Before the laboratory shutdown and 

restrictions on on-campus movement between research buildings we were part-way 

through a gain of function pooled microRNA screen testing the effect of each human 

microRNA on the sensitivity of melanoma cell lines to T-cell killing. The aim of this 

experiment was to use an unbiased screening approach to identify microRNAs that can 

mediate melanoma sensitivity to T-cell killing. We planned to identify candidate 

microRNAs by transfecting melanoma cell lines with a pooled-gain-of-function-lentiviral-

library covering all annotated human microRNAs and measuring enrichment and depletion 
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of specific microRNAs after a T-cell killing assay described above. We would then identify 

the mechanism of immune-associated microRNA activity in melanoma by identification of 

differentially expressed proteins by RPPA in microRNA-transfected cell lines vs control. 

We can then test if the candidate microRNA directly or indirectly targets the mRNA of that 

protein and if targeting that protein using an independent method reproduces the immune 

phenotype induced by exogenous expression of the microRNA of interest. 

Completion of these experiments will identify microRNAs that could regulate melanoma 

immunity and resistance to immunotherapy, providing important new therapeutic targets.  
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CHAPTER SIX 

MATERIALS AND METHODS 

 

TCGA Melanoma (SKCM) Dataset:  

Normalized mRNA (FPKM) and microRNA (RPM) counts from 368 metastatic melanoma 

tumors were downloaded from http://gdac.broadinstitute.org/. We applied a purity filter 

removing samples with <80% tumor nuclei leaving 322 samples for further analysis. 

Melanoma Cell Line dataset:  

Normalized mRNA (FPKM) and microRNA (RPM) counts were generated from a cohort 

of metastatic melanoma patients at The University of Texas MD Anderson Cancer Center 

as previously described [189, 190]. Genomic data are available from the European 

Genome-Phenome Archive (EGA) under accession EGAS00001004536 upon valid request 

to the applicable Data Access Committee as indicated via the EGA. 

Pre-PD-1 Treated Cohort of Melanoma Patients 

Twenty-nine patients with AJCCv8 stage III or IV melanoma undergoing PD-1 immune 

checkpoint blockade at the University of Texas MD Anderson Cancer Center were 

included in this study (Table 1). All patients had cutaneous-type or unknown primary 

melanoma. \ Twenty (67%) patients were male, nine (31%) patients were female. 

Seventeen (59%) patients had prior ipilimumab treatment. Pre-treatment biopsies were 

consented and collected under institutional-review-board-approved no more than 6 months 

prior to commencement of pembrolizumab or nivolumab therapy and with no intervening 

therapy. Best Overall Response (BOR) was calculated using RECIST 1.1 criteria Fourteen 
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(48%) patients were classified as receiving clinical benefit (BOR; stable disease >6months, 

complete or partial response), while Fifteen (52%) patients were classified as not receiving 

clinical benefit (BOR; progressive disease). Survival statistics were calculated from the 

start date of PD-1 inhibitor treatment. Median Progression-Free Survival (PFS) in the non-

clinical benefit group was 83 days (range; 20-NA), median PFS was not reached in the 

responder group (range; 257-NA). Lesion specific responses were available for thirteen 

(45%) patients where incisional biopsies were performed. 

mRNA & MicroRNA Expression Analysis in clinical samples: Total RNA was extracted 

from snap-frozen macrodissected melanoma tumors using the AllPrep DNA/RNA/miRNA 

Universal Kit (Qiagen) and quality assessed using the Agilent 2100 Bioanalyzer. 40-80ng 

of total RNA was used as input for library preparation with the Illumina TruSeq RNA 

Access library prep kit following the manufacturer’s instructions. 12-plex sequencing 

pools were sequenced using one high-output run of 76bp paired-end reads on an Illumina 

NextSeq 500 system at the University of Texas MD Anderson Cancer Center Sequencing 

and Microarray Facility (SMF). Fastq files underwent quality control using FastQC 

(v0.11.5) and removal of reads containing 15 contiguous low-quality bases (phred score 

<20) prior to STAR 2-pass alignment (v2.5.2b) to Gencode v19 with default parameters 

followed by post-alignment quality assessment using RNASeQC (v1.1.8). After sample-

level merging of BAM files removing one pool having poor Spearman correlation to a 

duplicate pool from the same sample, reads were quantified using htseq-count (v0.6.1) and 

normalized into fragments per kilobase of transcript per million mapped reads (FPKM). 

For microRNA sequencing, total RNA samples was used as input for small RNA 

sequencing library preparation using the unique molecular identifier enabled QIAseq 
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miRNA Library Kit (Qiagen). Samples were sequenced using 76bp single end reads on an 

Illumina NextSeq 500 and raw UMI count data generated using the QIAseq miRNA 

analysis pipeline available at geneglobe.qiagen.com. Secondary analysis was performed in 

R using the DESeq2 package for differential expression analysis and count normalisation 

using the variance stabilizing transformation (vst) method.  

MCP Counter 

We used MCP counter to estimate relative and absolute abundance of the component cell 

types of the tumour microenvironment, including various immune and stromal cell 

populations from RNA sequencing data. We used the ‘MCPCounter’ R package 

(https://github.com/ebecht/MCPcounter) as previously described [161].  

Cox Proportional Hazard Model 

Samples were stratified either into two groups, either above or below the median 

expression of the predictor variable, or into tertiles. The survival variable of each group, 

either time to a progression event (Progression free survival analysis) or a death event 

(Overall survival analysis), was then tested using Cox’s proportional hazard model using 

the R function ‘coxph’ from the R package ‘survival’ (https://cran.r-

project.org/web/packages/survival/index.html) Hazard ratios are reported ±95% 

Confidence Intervals. R functions were used with default settings as described in the user 

guide. 

Kaplan Meier Curves 

Samples were stratified into two or three groups based on expression of the predictor 

variable as described for the cox-proportional hazard model. Kaplan Meier curves and log-
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rank p-values comparing overall survival or progression free survival for each variable 

were generated using the R functions ‘survfit’ and ‘ggsurvplot’ from the R package 

‘Survminer’ (https://cran.r-project.org/web/packages/survminer/index.html) R functions 

were used with default settings as described in the user guide. 

Correlation Analysis 

Correlation analysis of microRNA expression with other molecular features of melanoma 

samples was performed using Spearman correlation analysis using the R function ‘rcorr()’  

in the ‘Hmisc’ package (https://cran.r-project.org/web/packages/Hmisc/index.html). 

Bipartite Network Analysis 

Input data for bipartite network analysis was Spearman’s correlation coefficients from 

global correlation analysis of microRNA and mRNA expression, as described above, in 

TCGA melanoma samples and separately in the melanoma cell line cohort. Correlation 

data was formatted in three column dataframes for bipartite network analysis, with column 

1 containing the microRNA name, column 2 containing the mRNA name and column 3 

containing the correlation coefficient for each pair. MicroRNA-mRNA correlations were 

filtered to exclude all microRNA-mRNA pairs that did not show strong negative 

associations indicative of microRNA suppression of gene expression (Spearman’s rho <-

0.4, <-0.6 in TCGA and cell lines respectively). Igraph network objects were created from 

dataframes containing filtered correlation data using the R function 

‘graph_from_data_frame’ in the ‘igraph’ package (https://cran.r-

project.org/web/packages/igraph/index.html). Igraph objects were assigned bipartite 

mapping using the R function ‘bipartite_mapping’ in the ‘igraph’ package. The network 
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statistic ‘degree centrality’ was then called for each microRNA in the igraph object which 

was then used to filter the microRNAs with the fewest mRNA associations (<15, <100 in 

TCGA and cell line datasets respectively). Incidence matrices of all remaining 

microRNA:mRNA correlations were generated using the R function ‘as_incidence_matrix’ 

in the  ‘igraph’ R package. Bipartite networks were then projected from the igraph objects 

using the R function ‘visIgraph’ with the ‘layout_nicely’ layout from the ‘visNetwork’ 

package (https://cran.r-project.org/web/packages/visNetwork/index.html). 

Unipartite Network Analysis 

Unipartite (one-mode network) igraph objects were generated from the igraph objects from 

bipartite network analysis described above using the R function ‘bipartite.projection’ from 

the ‘igraph’ package. Adjacency matrices for each dataset were generated using the R 

function ‘as_adjacency_matrix’ from the ‘igraph’ package. The following network 

statistics were calculated for each microRNA; Degree centrality, betweenness centrality, 

closeness centrality and eigen centrality. Unipartite networks were generated using the base 

R function ‘plot’ with the igraph layout ‘graphopt’. The thickness of edges between 

microRNA vertices were based on the edge weight.  

Gene Set Enrichment Analysis  

GSEA was performed through the Broad Institutes Molecular Signature Database website 

(https://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp). Gene set overlaps were 

compared with the ‘H: Hallmark gene sets’. The top 10 gene sets with an FDR q-value 

<0.05 are reported. 

Predicted and Validated MicroRNA Target Databases 
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The database of experimentally validated microRNA targets, miRTarBase v8, was 

downloaded (http://mirtarbase.cuhk.edu.cn/php/download.php). MicroRNA targets were 

filtered based on the strongest evidence of regulation (Reporter assays, Western blot and 

qPCR) 

A database of predicted microRNA targets, TargetScan v7.2, was also downloaded 

(http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi). 

Cell Culture 

For microRNA studies, human melanoma cell lines, from the adoptive T-cell therapy 

program described above, were cultured in complete media at 37ºC and 5% CO2 for a 

maximum of 5 passages before experiments were performed. Cell lines were maintained 

in the logarithmic growth phase and were passaged when they reached 70-80% confluence 

at ratios optimised for each cell line used. For each passage, cells were washed x2 with ice 

cold PBS before incubation with 0.25% trypsin [GIBCO] until cells detached. Trypsin was 

immediately neutralized using complete media. Cells were then spun @180RCF for 5 

minutes to pellet. Media was aspirated before cells were resuspended in 1ml ice cold PBS 

to wash. A 10ul aliquot was taken at this stage for cell counting by haemocytometer or 

cellometer using manufacturer’s instructions. The washed cells were spun again at 180RCF 

for 5 minutes to pellet and PBS aspirated. Cells were then resuspended in complete media 

at 1*10^6 cells per ml for downstream applications. Cell lines were STR fingerprinted and 

regularly confirmed as mycoplasma negative as described above. 

Transient MicroRNA Transfections 
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For Transient microRNA transfections cells were seeded in complete media at normal 

densities to maintain logarithmic growth in either 96 well, 12 well, 6 well or t25 flasks 

depending on the number of cells required per experiment. After 8 hours of culture for firm 

attachment to take place, complete media was aspirated and cells were gently washed in 

ice cold PBS x2.  

Transient transfections were achieved by culturing target melanoma cell lines with the 

desired miRIDIAN microRNA mimics or inhibitors (Dharmacon) at a concentration of 

10nm in serum-free OptiMEM media for 16 hours. We used a cationic lipid transfection 

reagent, Dharmafect (Dharmacon), at a concentration of 2µl/ml according to 

manufacturer’s instructions to facilitate transfection. Concentration of transfection reagent 

was optimized per cell line by measuring transfection efficiency of a fluorescently labelled 

microRNA mimic control (Dharmacon) by fluorescent microscopy). After transfection, 

transfection media was aspirated and cells washed 1x with ice cold PBS before cells were 

returned to standard culture conditions for 72hrs for microRNA phenotypes to manifest 

before downstream applications. 

RNA Extractions, cDNA & Mature microRNA preparations.  

RNA Extractions from cell lines for downstream applications was performed using Norgen 

Total RNA Purification Kit (Norgen Biotek) using manufacturer’s instructions. In short, 

cell lines were harvested from 6-well plate cultures at 80% confluency (0.5-1 x 106 cells). 

Culture media was then aspirated and cells were gently washed twice with ice cold PBS. 

PBS was aspirated and 350µl lysis buffer was added to each well of the plate for 5 minutes 

with gentle agitation. Lysate was transferred to a microfuge tube and mixed with 200µl 

100% ethanol and samples were vortexed for 10 seconds. All lysate was then bound to 
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columns and centrifuged at 3500 RCF for 1 minute and flow through discarded. Columns 

were then washed x3 with 400µl and spun at 3500 RCF for 1 minute. Column was then 

dried by spinning for 2 minutes at 14,000 RCF. RNA was then eluted from the column 

using elution buffer supplied with the kit. 50µl elution buffer was added to each column 

and then spun for 2 minutes at 200 RCF and then 1 minute at 14,000 RCF. RNA quantity 

and quality was then assessed using Nano Drop One (ThermoFisher Scientific), using 

Norgen Biotek elution buffer as blank calibration samples. RNA samples with 260/280 

ratios <1.9 were rejected and extraction repeated. Samples were stored at -20ºC for short-

term storage (<1 week) prior to downstream applications or stored for up to 12 months at 

-80ºC if required. 

cDNA was generated from total RNA using High-Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems) using the manufacturer’s instructions. In brief, 500ng total RNA 

was added to cDNA master mix including reverse-transcription buffer, dNTP mix, reverse-

transcription random primers, MultiScribe reverse transcriptase and RNase inhibitor 

supplied with kit at recommended concentrations. Thermal cycling conditions were as 

follows: Step 1 at 25ºC for 10 minutes, step 2 at 37ºC for 120 minutes, step 3 at 85ºC for 5 

minutes before sample returned to 4ºC for downstream use or freeze at -20ºC or -80ºC for 

short or long term storage respectively. 

Mature microRNA cDNA was generated from total RNA using Taqman Advanced miRNA 

cDNA Synthesis Kit (ThermoFisher Scientific) and using manufacturers instructions. In 

brief, 10ng of total RNA was used per reaction. RNA was polyadenylated using polyA 

buffer, PolyA enzyme and ATP supplied with kit at recommended concentrations for 45 

minutes at 37ºC before the reaction was stopped at 65ºC for 10 minutes and then returned 
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to 4ºC before ligation. The ligation was performed using RNA ligase, ligation adaptor, 

ligase buffer and PEG 8000 supplied with kit at recommended concentrations for 60 

minutes at 16ºC and then returned to 4ºC before reverse transcription. Reverse transcription 

was performed using universal reverse transcription primer, reverse transcription enzyme, 

dNTP mix and reverse transcription buffer provided with the kit at recommended 

concentrations at 42ºC for 15 minutes before the reaction was stopped at 85ºC for 5 minutes 

and then returned to 4ºC before the miR-amplification reaction. The miR-amplification 

reaction was then performed using miR-amplification master mix and primer mix supplied 

with the kit at the recommended concentrations using the following cycling conditions: 

Enzyme activation at 95ºC for 5 minutes x1, denature at 95ºC for 3 seconds and 

anneal/extension at 60ºC for 30 seconds x14, stop reaction at 99ºC for 10 minutes, then 

return sample to 4ºC for downstream use or freeze at -20ºC or -80ºC for short or long term 

storage respectively. 

All reactions were performed using a Mastercycler Nexus thermocycler (Eppendorf) 

qPCR  

qPCR reactions were performed in MicroAmp EnduraPlate Optical 96-Well Fast Celar 

Reaction plates (Applied Biosystems) on QuantStudio Flex analyser (Applied Biosystems). 

Data was analysed using QuantStudio 6 & 7 Flex Real Time PCR System Software v1.0 

(Applied Biosystems). 

MicroRNA PCR reactions were performed using 5 µl of 1:10 diluted template from 

advanced microRNA synthesis reaction described above. Assays were repeated with 

undiluted template if sample was below detection threshold. 1 µl Taqman advanced 
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miRNA assay (Applied Biosystems) corresponding to the desired target microRNA, 10 µl 

Taqman Fast Advanced Master Mix x2 (Applied Biosystems) and 4 µl PCR-grade water 

were added to each template for a 20 µl reaction. Thermal cycling conditions were set as 

follows: 

Enzyme activation – 20 seconds @ 95 ºC x1.  

Denature – 1 second @ 95 ºC, Anneal/Extend 20 seconds @ 60 ºC x40. 

Number of target copies per reference gene was calculated by comparing CT values from 

duplicate reactions of target microRNAs compared to CT values from duplicate reactions 

of stably expressed microRNAs – miR-103a-3p, 423-3p, 26a-5p. Comparisons were made 

independently for each cell line used in the experiment. 

For qPCR of cDNA synthesized from total RNA we used SYBR green reactions per 

manufacturer’s instructions. Briefly, 0.3 µl of each forward and reverse primer (Sigma) for 

each target were added to 3.75 µl SensiMix SYBR No-Rox (meridian Bioscience) and 1.15 

µl PCR-grade H2O. 2.5 µl of 1:10 diluted template from cDNA reaction described above 

was added to each reaction for a total volume of 8 µl. Thermal cycling conditions were as 

follows:  

Denature template – 1 minute @ 94 ºC, anneal primers – 2 minutes @ 55 ºC, Extension – 

3 minutes @ 72 ºC x40. 

The number of target copies per reference gene was calculated as described above but using 

GAPDH as the reference gene. 

Legendplex Cytokine Panel 
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To measure cytokine secretion from melanoma cell lines we quantified expression of a 

customized panel of melanoma and immune specific cytokines using a custom, 

multiplexed, flow cytrometry, bead-based, immuno-assay, LEGENDplex (Biolegend). The 

custom panel contained the following target cytokines: IL-1a, IL-1b, IL-2, IL-6, CCL2 

(MCP1), IL-10, TNF-a, TNF-b, IFN-g and VEGF. All assays were performed according to 

manufacturer’s instructions. In brief, cell lines were cultured until 70% confluent in normal 

culture conditions. Growth medium was replaced 24 hours before assay with fresh media 

with additional 10nM TNFa to stimulate cytokine secretion. Cell culture media was 

collected and centrifuged to remove cell debris and was assayed immediately without 

dilution. For cell lines that had undergone transient microRNA transfections (described 

above), cell culture supernatant was assayed 96hrs after transfection in the same manner 

i.e. fresh media was applied for the purpose of cytokine collection 72 hours post-

transfection.  

Standard curves for each analyte were generated by serially diluting each standard 

(supplied with kit) 1:4 with assay buffer (supplied with kit) six times to generate a 7 point 

dilution from undiluted to 1:4096 dilution and a blank standard consisting of only assay 

buffer.  

Samples were assayed in duplicate on a 96-well v-bottomed plate. 25µl of standard or cell 

culture supernatant was added to 25µl assay buffer. Mixed assay beads were vortexed 

before adding 25µl to each sample and incubated for 2hrs with moderate shaking at room 

temperature protected from light. Plates were centrifuged at 250 RCF for 5 minutes to pellet 

beads. Supernatant was discarded and plate was washed with 200µl of wash buffer per well 

before pelleting beads and discarding wash buffer. 25µl of detection antibodies were then 
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added to each well before incubating for 1 hour at room temperature while shaking at 

800rpm protected from light. 25µl of SA-PE was then added directly to each well and plate 

was returned to the plate shaker for an additional 30 minutes. Beads were then pelleted and 

washed as above before each sample was resuspended in 150µl of wash buffer ready for 

FACS acquisition. 

For data collection plates were loaded onto a BD Accuri C6 cytometer (BD Biosciences). 

Samples were gated on size to count only LEGENDplex beads A&B. 20,000 beads per 

sample were acquired and data saved as FCS files. FCS files were analysed using 

LEGENDplex data analysis software which quantified cytokine levels per sample by 

comparing mean fluorescence intensity values from each bead population against standard 

curves from known cytokine concentrations.  

HLA & PDL1 Flow Cytometry 

To quantify surface HLA-ABC and PD-L1 expression on melanoma cell lines we harvested 

cells at 70% confluence by trypsinisation then washed in ice cold PBS twice. One million 

cells were resuspended in 1ml ice cold FACS buffer (PBS, 10% FBS, 1% sodium azide). 

50µl of each sample (5*104 cells) was added to a round bottom 96-well plate in duplicate 

for staining. Samples were stained using directly conjugated anti PD-L1 (APC anti-human 

CD274/ B7-H1/ PD-L1, clone:29E.2A3, Biolegend) or anti HLA-ABC (HLA-ABC 

Monoclonal Antibody, W6/32, FITC, eBioscience) antibodies at a concentration of 1:100 

in 50µl FACS buffer for 1 hour at room temperature in the dark. Samples were centrifuged 

at 400 RCF for 5 minutes and washed with 100µl FACS buffer twice. Live/Dead staining 

for cell viability was achieved by adding 5µl of propidium iodide (PI) staining solution 

(10µg/ml in PBS) to each sample immediately prior to acquisition.  
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Sample acquisition was performed using a BD Accuri C6 cytometer (BD Biosciences) and 

samples were gated based on cell size and negative PI staining. Mean Fluorescence 

intensity for PD-L1 and HLA was measured from 10,000 live cells. 

T-Cell Co-Culture Experiments and Chromium Release Assay 

Melanoma sensitivity to T-cell killing was quantified using a chromium (Cr-51) release 

assay performed on melanoma cells that had been co-cultured with MART-1-specific 

human cytotoxic T-cells.  

MART-1-specific T-cells were generated and prepared for the killing assay as previously 

described [191, 192]. Melanoma cell lines were tested for MART-1 expression by flow 

cytometry and HLA matched prior to assay. Melanoma negative controls included MART-

1 + / HLA mismatched cells, MART-1 - / HLA matched cells, MART-1 - / HLA 

mismatched cells cell line. For co-culture assay, melanoma cell lines were cultured until 

70-80% confluency under normal cell culture conditions. Cell lines that had undergone 

transient microRNA transfections (as described above) were harvested 72hrs post-

transfection. Cells were detached by trypsinisation, washed, counted and resuspended at 

2*106 cells/ml in complete media. For Cr-51 pulsing, enough cells for 2000 per co-culture 

condition were transferred to a 15 ml conical and diluted to the nearest whole ml with 

complete media. In a radioactive material designated lab, 100µl of 0.1 mCi Cr-51 was 

added per ml of cells and incubated for 1 hour. Cells were thoroughly washed by 

centrifugation and resuspension in fresh complete media twice before resuspending cells 

at a concentration of 2*104 cells per ml in complete media. 100 µl of this cell suspension 

was then added to the appropriate wells of a u-bottomed 96-well plate for co-culture. 100 

µl of T-cells were then added to each well at concentrations to achieve effector to target 
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(E:T) ratios between 5:1 to 20:1 as optimized per cell line. Negative controls consisted of 

wells containing only target cells with no effector cells to measure baseline Cr-51 release. 

Positive controls consisted of wells containing target cells and trypan lysis buffer to 

measure complete Cr-51 release. After a 4 hour incubation 30µl of supernatant from each 

condition was transferred to a LumaPlate-96 (PerkinElmer) and allowed to dry overnight. 

The LumaPlates were read the following day and Cr-51 release was calculated as a 

percentage of total Cr-51 (positive control) minus baseline Cr-51(negative control) release. 
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