
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2008

Offline searchable database Offline searchable database

James Howard Klein

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Klein, James Howard, "Offline searchable database" (2008). Theses Digitization Project. 3582.
https://scholarworks.lib.csusb.edu/etd-project/3582

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3582?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

OFFLINE SEARCHABLE DATABASE

A Project

Presented to the

Faculty of
California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree
Master of Business Administration

by
James Howard Klein, Jr.

June 2008

OFFLINE SEARCHABLE DATABASE

A Project

Presented to the
Faculty of

California State University,

San Bernardino

by
James Howard Klein, Jr.

June 2008
Approved by:

6/2/$^
Date

Information and Decision Sciences

Dr Walt Stewart, Department Chair,
Information and Decision Sciences

© 2008 James Howard Klein, Jr.

ABSTRACT
Using XML, Javascript, Visual Basic .NET, and HTML,

an attempt is made to create a database that can operate

regardless of operating system being used. Development of

the database itself will be done in several phases. The

first phase, and the purpose of this project, is to show a

database can work regardless of operating system. The

second phase involves developing a SQL query interpreter

and the third phase involves creating a Management capable

of running queries and managing multiple databases. To

prove the database is possible for the first phase, data

must be normalized and stored using basic table components
such as data type, primary and foreign keys, auto

increment, and null and not null, and default values. A
search showing custom search results and a basic

management program to manage data will be created to show
the database functions.

iii

ACKNOWLEDGMENTS

I would like to thank my loving wife Luisa her

complete support and my son Ethan for continually retyping

completed material. A very special thank you goes to Mom
and Dad for their encouragement and incredible support

during hard times. Without Paul and Linda Lucido, this
project would have never become a reality. A thank you

goes out to Dr Tapie Rohm, the fourth reader. Your

assistance with this project is much appreciated. Finally,

but not least, a thank you to Dr. Jake Zhu for the initial
idea that got this whole project started.

iv

DEDICATION

I would like to dedicate this project to my son

Ethan. May your curiosity and interest for computers never

die. But, please don't fry another motherboard of mine.

TABLE OF CONTENTS

ABSTRACT ... iii
ACKNOWLEDGMENTS iv
LIST OF TABLES....................................... ix
LIST OF FIGURES...................................... X
CHAPTER ONE: BACKGROUND

Introduction 1
Purpose of the Project.......................... 1

<*

Context of the Problem.......................... 5
Significance of the Project 6
Assumptions 6
Limitations 8
Definition of Terms...... 9
Organization of the Thesis................. 9

CHAPTER TWO: OTHER EXTENSIBLE MARKUP LANGUAGE
DATABASES

Introduction ■.................................... 11
Two Types of Extensible Markup Language
Databases....................................... 11
Extensible Markup Language: Database
Initiative...................................... 12

Extensible Markup Language Database
Application Programming Interface 13

XPath... . 13
Summary........... ■............. 14

v

CHAPTER THREE: THE EXTENSIBLE MARKUP LANGUAGE
DATABASE

Introduction 15
The Extensible Markup Language Declaration 15
Storing Data Using Extensible Markup
Language.. 16
Data Integrity.................................. 18

Primary Keys............................... 19
Foreign Keys............................... 19
Column Definitions 21

An Example Table................................ 22
Testing the Extensible Markup Language
Tables................. 23

CHAPTER FOUR: JAVASCRIPT
Introduction 27
Opening an Extensible Markup Language Table 28
Accessing the Loaded Data....................... 35
Returning Results 40
Why Not Use XPath?.............................. 41

CHAPTER FIVE: HYPERTEXT MARKUP LANGUAGE INTERFACE
Introduction 43
Referencing the1 Javascript.....;................ 43
Initial Startup 43
Making a Static Page Dynamic...... 44
Linking to Javascript Functions 45
Automatically Changing the Search. Page 46

vi

CHAPTER SIX: VISUAL BASIC .NET ADMINISTRATION
PROGRAM

Introduction................... 48
Required Imports 49
Opening an Extensible Markup Language
Document.. 50
Displaying Table Data.......................... . 52
Enforcing Table Structures 53

Auto Increment............................. 54
Varchar Data............................... 54
Integers................................... 55
Primary Keys............................... 56
Foreign Keys............................... 56
Notnull........... 57
Default.................................... 57

Adding and Saving Data.......................... 58
Searching Tables 62

CHAPTER SEVEN: CONCLUSIONS AND RECOMMENDATIONS
Introduction 64
Conclusions..................................... 64
Recommendations 65
Lessons Learned 67
Summary... 68

APPENDIX A: EXTENSIBLE MARKUP LANGUAGE DATABASE 70
APPENDIX B: JAVASCRIPT CODE.......................... 75
APPENDIX C: HYPERTEXT MARKUP LANGUAGE CODE 86

vii

APPENDIX D: VISUAL BASIC .NET CODE
REFERENCES

89
100

viii

LIST OF TABLES
Table 1. Sample Data................................. 3
Table 2. Normalized Articles Table............ 4

Table 3. Normalized Authors Table 4
Table 4. ArtAuth Link Table......................... 5
Table 5. Journal Table............................... 5

ix

LIST OF FIGURES

Figure 1. Entity Relationship Diagram 3
Figure 2. First Row of the Author Table in

Extensible Markup Language 18
Figure 3. Authors Table Definition 22
Figure 4. The Complete Authors Extensible Markup

Language Document 23
Figure 5. Error in an Extensible Markup Language

Document.................................. 25
Figure 6. Error Free Extensible Markup Language

Document.................................. 26
Figure 7. Javascript Testing the Browser Type 30
Figure 8. Preparing to Open an Extensible Markup

Language Document with ActiveX 33
Figure 9. Preparing to Open an Extensible Markup

Language Document using Document
Implementation Method 34

Figure 10. Loading the Journal.xml Document 35
Figure 11. Function Journalinfo 39
Figure 12. Datagrid Control Example 49
Figure 13. Extensible Markup Language Loading

Function.................................. 52
Figure 14. DataGridView Control Displaying Authors

Table Content............................. 53
Figure 15. Getting the Length of a Varchar.......... 55
Figure 16. Preventing Duplicate Information in

Primary Key Columns....................... 56
Figure 17. Testing For Null Values.................. 58
Figure 18. WriteXML Function 60

x

Figure 19. Saving Changes to the Authors Table 61
Figure 20. Authors Table Search Sub 63

xi

CHAPTER ONE

BACKGROUND

Introduction
The contents of Chapter One presents an overview of

the project. The contexts of the problem are discussed
followed by the purpose, significance of the project, and

assumptions. Next, the limitations and delimitations that

apply to the project are reviewed. Finally, definitions of

terms are. presented.

Purpose of the Project
The purpose of the project was to develop a database

that can be accessed on any platform regardless of

operating system with or without an internet connection.

In November 2005, Dr Jake Zhu from California State

University, San Bernardino approached me with an idea he
wanted to implement for the Journal of American Society of
Business and Behavioral Sciences' (ASBBS) web site. Dr.
Zhu wanted to search through each volume's articles based

on article title and author name. Under normal

circumstances a server side language such as PHP and data

storage with MySQL would be used. However, server
capabilities are unknown and future maintenance needs to
be considered. Those who are maintaining the ASBBS web

1

site do not have experience in server side languages.

Since server side languages cannot be used, web pages have

to be coded solely using HTML.

After looking at the ASBBS web site, some sort of

database definitely needs to be used to store article
information. Storage has to be compatible and accessible
with client side scripting. Some way for the end user to

interface with the database also has to be created.

During the initial development of the ASBBS database

and interface, a couple of local companies have expressed
interest in using the resulting database for marketing and
possibly their own web sites. The marketing materials can

possibly be mailed out to customers. Given the amount of

different operating systems in use, the marketing

materials have to compatible with all operating systems.

Also, there is no way to determine if user of the
marketing materials has an internet connection. A single
web site database turned into a database that can operate

on any platform.

For this project, a sample database will be created

that is modeled after the real ASBBS database using

fictitious data. Table 1 shows the sample data, figure 1

shows the database entity relationship diagram, and tables

2-4 show the sample data in third normal form. Tables 1

2

- 4. and figure 1 will be used to test the different

aspects of the database.

Table 1. Sample Data

Article Title Author Name
Number

of
Pages HTML Page PDF Page

Follow The Leader James Klein 4 follow.html follow.pdf
Follow The Leader Jake Zhu 4 follow.html follow.pdf
Info-648 Jake Zhu 2 648.html 648.pdf
Computers Kevin Howard 7 computers.html computers.pdf
Computers James Howard 7 computers.html computers.pdf

Figure 1. Entity Relationship Diagram

3

Table 2. Normalized Articles Table

Articles
articleid title pdf html pages

0 Follow The Leader follow.html follow.pdf 4
1 Info0648 info.html info.pdf 2
2 Computers computer.html computer.pdf 7

Table 3. Normalized Authors Table

Authors
authorid firstname lastname

0 James Klein
1 Jake Zhu
2 Kevin Howard
3 James Howard

4

Table 4. ArtAuth Link Table

artuatuh
arcileid authorid

0 0
0 1
1 1
2 2
2 3

Table 5. Journal Table

journal
journalid 0
title ASBBS E-Journal
volume 1
number 1
Year 2005
Issn 1557-5004
description An Official Online Journal of

American Society of Business and
Behavioral Sciences

Html html\
Pdf pdf\

Context of the Problem
The context of the problem was to address the need

for searching the articles of the ASBBS journals over the

5

internet without using server side scripting. However,
interest in the database has lead to a need for a database
that will work regardless of operating system and

availability of the internet. Due to time constraints and

the complexity of database software in general, the goal

of this project is to show such a database can exist.

Significance of the Project
The significance of the project shows complex

software that runs on any platform can be developed. The

database and accompanying interface could potentially

spawn a way to create software that can run on all

platforms. When looking at system requirements for

software, there is almost always an operating system

requirement. Programs may require a version of Microsoft
Windows, a flavor of Linux, or a version of Mac OS. Not
being tethered to a specific operating system could
potentially vastly increase a software company's earnings.

Assumptions
The following assumptions were made regarding the

project:
1. The database itself will be developed through

several phases. The current phase, this project,

is to develop a working example in order to see

6

if a database can operate regardless of

platform.
2. Given the repetition in commands seen in

testing, only the commands will be shown

demonstrated in a way that leads to a complete
sample function. The complete code for the

entire project is in the Appendices.

3. The demonstration database must be in and

maintain third normal form to be considered as a

proper database.
4. To be successful, the database must work

regardless of the relationships that exist
between the various tables: many to many, one to

one, and one to many.
5. This project does not cover' how to program. The

reader should know the basics of programming
with Javascript, HTML, XML, and Visual Basic
. NET.

6. The intentions of this project are to show if a

database can function regardless of the platform

the end user has. The reader is assumed to know

about databases and their administration.

7

Limitations
During the development of the project, a number of

limitations were noted. These limitations are presented in

the next section.
The following limitations apply to the project:

1. Every database uses some sort of querying

language. MySQL, Microsoft Access, Microsoft SQL

Server, for example, all use the SQL query

language to interact with a database. Due to
time constraints, a query language will not be
developed. The point of this project is not to

develop the query language or interpreter, but

to show a database can work in the requirements

discussed earlier.
2. Interaction with the database will be hard

coded.
3. A program to administrate any type of database

using the methods within this project will not

be created. That is considered the next phase of

the software itself. Instead, a piece of

software will be created to administrate the
sample database which will be discussed in

chapter 5.

8

Definition of Terms
The following terms are defined as they apply to the

proj ect.

ASBBS: Journal of American Society of Business and

Behavioral Sciences
MySQL: Open source database storage and serving software.
PHP: Hypertext Preprocessor. A server side scripting

language originally designed for producing dynamic

web pages.
XML: Extensible Markup Language. A general purpose markup

language that allows programmers to define their own
tags.

Organization of the Thesis
The thesis portion of the project was divided into

five chapters. Chapter One provides an introduction to the
context of the problem, purpose of the project,
significance of the project, limitations and delimitations
and definitions of terms. Chapter Two consists of a review
of relevant literature. Chapter Three show how a sample

database is created using XML. Chapter Four details how to

interface with the XML database using Javascript. Chapter

Five contains the methods used to create HTML based search

page. Chapter Six presents the Visual Basic .NET

9

management program. Chapter Seven presents conclusions and

recommendations drawn from the development of the project.

Project references follow Chapter Seven. The Appendices
for the project consists of: Appendix A XML DATABASE;

Appendix B JAVASCRIPT CODE; Appendix C HTML CODE; Appendix

D VISUAL BASIC .NET CODE. Finally, the Project references.

10

CHAPTER TWO
OTHER EXTENSIBLE MARKUP LANGUAGE DATABASES

Introduction
Before attempting to create a database, research can

tell if there have been attempts to create a database

using XML to store the data, Javascript to

programmatically interface with the database, and HTML to

accomplish the same goals. Research has turned up

interesting facts concerning XML databases.

Two Types of Extensible Markup
Language Databases

Two types of XML databases exist: XML-enabled
databases and Native XML Databases (NXD). XML-enabled

databases maps XML to a traditional database using XML as
input and output for data. NXDs use xml as a method to
define data storage in a database. NXDs are not actually
standalone databases and do not store data in text form.

Several well known database management systems
implement native XML. Oracle, Access, MySQL, and DB2 all

implement native XML. Examples of typical XML data are

similar to the XML tables appearing in the Appendices. If

data can be represented and stored in XML format, there is

11

a possibility of using XML itself to store data.

(Wikipedia, 2008)

Extensible Markup Language: Database Initiative
The XML: DB Initiative was a group dedicated to

developing and creating standards for XML Databases. Te

keyword "was" is used because the latest information on

the Initiative's web site is 5 years old. After extensive

searching, the Initiative disappeared leaving projects and

specifications behind. However, current implementations of

XML databases are built on the work of the Initiative.
Goals of the initiative included developing technology

specifications for managing data in XML databases,

community contribution to the specifications under Open

Source licensing, formation of a community where venders
and users can ask questions and exchange information
regarding XML databases, and promoting the use of XML
database products throughout the marketplace. In support
of their goals, the Initiative had three projects: XML
Database API, XUpdate, and SiXDML. Goal support is

programmed in Java and documented using Javadoc. The only

project that is widely used is XML Database API. (XML:DB,

2003) .

12

Extensible Markup Language Database Application
Programming Interface

The XML Database API is a common set of access
mechanisms to XML databases allowing the creation of

applications to store, retrieve, modify, and query data

stored in a XML. database. Core specifications specify how

XML databases are to be created in order to be compatible

with the API. Two core levels exist: Core Level 0 and Core

Level 1.

Core level 0 is the minimum requirements to be
considered compliant with the API consisting of the API

Base and XMLResource. API Base consists of the core

methods used to interface with a XML document. All other

API modules are built off the Al Base. XML Resource is a
representation of XML data providing access to the data in
XML textual, W3C DOM, or SAC ContextHandler forms. Core
Level 1 consists of all Core Level 0 requirements as well

as XPathQueryService. XPathQueryService is simply querying

functions for XML Databases. (XML:DB, 3003).

XPath 1
XML is implemented in a lot of databases management

systems such as Oracle, DB2, and MySQL. The
implementations are only Native XML Databases were the XML

is stored in a database. Even though XML is stored in a

13

database, the querying of the XML data is the same that

will be required by this project: XPath. XPath is a
querying language for XML documents that return arrays of

XML data, strings, and integers (Clark).

Summary
The literature important to the project was presented

in Chapter Two. Based on the research done no one has

created a database whose data is solely stored in XML, or
at least gone public with the database. Native XML

implementations show such a database can exist.

14

CHAPTER THREE

THE EXTENSIBLE MARKUP LANGUAGE DATABASE

Introduction
Dynamic web pages are typically programmed using a

server side scripting language such as ASP, PHP, or JSP

with a database server holding data. Since the database

being developed will not reside on a server, using server

side scripts is not possible. The chosen method for
storing the database is using XML. XML allows programmers
to create custom tags. Custom tags allows for an easy way
to define tables, rows, and cells. To make sure proper XML

is created, the World Wide Web Consortium's (W3C) web site

was consulted.

The Extensible Markup Language Declaration
The first line of code for each XML document contains

the XML declaration. A declaration line is part of a well
formed XML document. The typical declaration line contains

up to three elements: the XML version and encoding. The

version is used to tell the XML parser the conforming

version of the XML document and is stated as
version~"l.0". Currently there is only one version of XML,

version 1.0. The version portion of the declaration is in

place in the event there will be future versions of XML.

15

•Encoding, the second portion of the declaration,

tells the parser how the XML document is encoded. Typical

encoding is UTF-8 and is the default encoding if the

encoding portion of the declaration is not specified.
Other encoding types can be found at the Internet Assigned
number Authority (IANA) at http://www.iana.org. The final

part of the declaration tells the parser whether the xml

document has an internet document type definition (DTD) or

an external DTD by using standalone="yes" or "no". Using

"yes" tells the parser that the document has an internal
DTD whereas "no" tells the parser there is another file
that acts as a DTD. For purposes of storing data for a

database, each document will have an internal DTD. The

default standalone in the declaration is "yes" if
standalone is not included within the declaration.

The declaration for each document making up the
database will include all three portions of the
declaration. The declaration for each document is <?xml

version="l.0" encoding="UTF-8"?>.

Storing Data Using Extensible Markup Language
After the document declaration comes the opening root

element. The root element could be simply "database" with
each child element being the name of each table. In terms

■16

http://www.iana.org

of large amounts of data, the resulting XML document would

be very large and memory intensive to load. Keeping the
XM1 documents as simple as possible, each table in the

tables should a separate XML document. The file name and

root element for the XML document will be the table name.

Using the articles table as an example, the root element

for the articles table is <articles> and the file name is

"articles.xml". The flexibility given by this method will
become apparent when creating the articles administration

program and in future phases when implementing a SQL
interpreter.

Within the root element are the elements defining

each row of data. The tag name of the defining elements

will be simply "row". Each of the "row" element's children
will be named after each of the column names. Using the
authors table as an example, the author's first name tag
will be <firstname>, last name will be <lastname>, and the
author's unique id number will be in the <authorid> tag.

Figure 2 shows the first row of data in the author table.

17

<row>
<authorid>0</authorid>
<firstname>James</firstname>
<lastname>Klein</lastname>

</row>___
?igure 2. First Row of the Author Table in Extensible

Markup Language

Data Integrity
Data integrity is a huge concern for database

administrators. Tools such as primary and foreign keys to

help maintain referential integrity is a must. Imagine a

database that has one table, such as Table 1. The database

administrator wants to delete the author "Jake Zhu" or the
article "Follow the Leader". Each delete would have to be

done more than once. The possibilities of deleting a co
author of "Follow the Leader" increase with every delete

of the article. Even making sue the correct type of data
entered into a cell is important. If a column contains
numbers representing 4 digit years, a database

administrator wouldn't want some type of text to appear in
the column. Defining primary keys and other table

attributes becomes a must for administration.

Before any rows of information, the table definitions

tag defines all properties for the table including primary

and foreign keys, data types for columns, default data,

18

and whether a column can be null. The next three sections

build the table definition portion of a table.

Primary Keys
All properly formed tables in databases such as

Access, MySQL, and Oracle use primary keys to determine a

unique trait for each row of data. In each of the tables
in the sample database the column with "id" in the name

signifies the primary key. Database administrators may not
always use "id" within the primary key column name. There

needs to be a way to determine which field is the primary

key and specify the field once within the XML document.
When determining how to specify the primary key, multiple
occurrences of the "pk" property within the same document
can lead to different primary keys being used at different
times that can lead to data corruption and program bugs

accessing the database. The solution is placing the "pk"
tag within the "tabledef" element of each XML document.
For the authors fable, the "pk" element would look like
"<pk>authored</pk>". Tables, such as link tables, can have
multiple primary keys. Each key is encased within their

own "pk" tag.

Foreign Keys
In many table relationships, one table may have a

column that refers to one or more rows in another table.

19

The columns are foreign keys. Foreign keys typically point

to the primary key of another table. Good database

administrators use the same column name for both keys in
both tables. There are cases when the foreign key is named

differently from the primary key. There needs to be a way
to tell what column of what table the foreign key is

pointing to.
Defining a foreign key occurs within the "tabledef"

element by creating a "fk" tag. In between the fk tag us

the name of the cell that is to be foreign key. Inside the

fk tag declaration are two properties: the column the
foreign key points to and the table the column resides in.
The foreign key for the artauth's authorid column looks
like '<fk tables"authors"
column="authorid">authorid</fk>'. The foreign key column

is "authorid" within the artauth table, the table being

referenced is "authors" and the column being referenced in
authors is "authored". The reasoning behind having the XML
file named after the table is starting to become apparent.
When enforcing foreign keys, the administration program

can see the table name "authors" telling the program to

open "authors.xml" to look up author information based on

the foreign key.

20

Column Definitions
Other column properties besides primary and foreign

keys also need to be defined. Typical properties for
columns include whether the column can have empty cells
through the "notnull" parameter, the default data to put

in a cell if notnull is enabled, and the data type for the

column. Specifying the different attributes for each
column is done within the "tabledef" element by creating a

tag named after the column being defined. Contained within
the column tag are properties for each of the column
properties being used: datatype, notnull, and default.

Datatype specifies what kind of data being stored within

the column such as integer, varchar, datetime, date, char,

text, and autoincrement. Notnull determines whether the
column can have empty cells. Setting notnull to "yes" will
not allow empty cells when data is being entered into the

table, whereas "no" allows empty cells. The "default"

property contains the default value for the column if no

information is entered when a new row is added to the

table.

All properties are required when defining a row in
order to prevent errors while running the administration

program, Javascript interface, and the HTML search page.

Even when using auto increment for primary keys, all

21

properties are required. The following column definition

example defines a column with auto increment as the data
type: '<authorid datatype="autoincrement" notnull="yes"

default=""/>' Figure 3 shows the complete table definition

for the authors table.

<tabledef>
<pk>authorid</pk>
<authorid datatype-'autoincrement" notnull-‘yes” default=‘“7>
<firstname datatype-‘varchar(15)” notnull-‘yes” default-1" />
clastname datatype=“varchar(15)” notnull-‘yes” default-"1 />

</tabledef>__
Figure 3. Authors Table Definition

An Example Table
The complete authors table is shown below. Refer to

Appendix A for the rest of the database.

22

<?xml version-*1.0 ” encoding=‘‘utf-8”?>
<authors>

<tabledef>
<pk>authorid</pk>
<authorid datatype-'autoincrement" notnull=“yes” default=‘‘7>
<firstname datatype-'varchar(15)” notnull=“yes” default-/>
<lastname datatype-‘varchar(15)’’ notnull=“yes” default-"' />

</tabledef>
<row>

<authorid>0</authorid>
<firstname>James</firstname>
<lastname>Klein</Iastname>

</row>
<row>

<authorid>1 </authorid>
<firstname>Jake</firstname>
<lastname>Zhu</lastname>

</row>
<row>

<authorid>2</authorid>
<firstname>Kevin</firstname>
<lastname>Howard</lastname>

</row>
<row>

<authorid>3</authorid>
<firstname>James</firstname>
<lastname>Howard</lastname>

</row>
</authors>___
Figure 4. The Complete Authors Extensible Markup Language
Document

Testing the Extensible Markup Language Tables
So far the XML document representing each table of

the database have been hand coded. Hand coding can lead to

mistakes. The easiest and fastest way to test each
document's completeness and error checking is to open the
XML document in a web browser. Web browsers can quickly
determine errors in the xml and display the potential

23

cause of the errors. Knowing that a XML document works
properly when having troubles coding the interface or user

search page makes debugging code much easier, removing the

burden of checking the XML documents has been removed.

Figure x shows an example of an error and Figure x shows

an error free XML document displayed in Microsoft's

Internet Explorer..

24

r-------------- • ----- - ---- =—-L-—“—rr------ - «~ rzn
M:\mba proiecfVamesKJein-SearchXartrdesjrml - Windows Internet Explorer

.^[1*5; MAmba projectVamesKtein-Search\artides.xml | x ||| Google

[V] Go J> & Bookmarks * ^17 blocked) Check ?

~ 1 Ri y ® /
Goo^leiG?
t? | $ M:\mba projectXJamesKlein-SearchXarticles.xml

© Settings',»

To help protect your security, Internet Explorer has restricted this webpage from running scripts or ActiveX controls that could access your X
computer. Click here for options...

The XML page cannot be displayed

Cannot view XML input using XSL style sheet. Please correct the error
and then dick the Refresh button, or try again later.

End tag 'articles* does not match the start tag 'tabledef*.
Error processing resource ’fiIe:///M:/mba
proJect/JamesKlein-Se...

i

i

</articles>

@ Error on page. jBi Computer | Protected Mode: Off ^100%

Figure 5. Error in an Extensible Markup Language Document

25

M:\mba prDject\JamesKlein-Search\articlesjcmJ - Windows Internet Explorer

Qj) ' |i'^ M:\mba proiectMamesKlein-SearchXattidesjtml * j | X |J Gc^fe

Google ^Gp" ~ ~~ [t| Go j> | & Bookmarks-r ^17 blocked jCheck » ^J SettingsT

IU? <£? t@M:\mbaproject'd a mesKlein-SearchXartides.xm Ij | fli v S T ® ^ £age ▼ (CjlTaols r

0 To help protect your security, Internet Explorer has restricted this webpage from running scripts or ActiveX controls that could access your X
computer. Click here for options...

<?xml version =’ l.O* encoding=’utf-8D ?>
- <articles>

- <tabledef>
<pk>artideld</pk>
orticleid datatype=°autoincrement" notnulls"yes‘ defaults1’" />
ctitle datatype="varchar(2D)" notnulte'yes* defaults’" />
<html datatype=“varchar(30)" notnull=’no" defaults’” />
<pdf data type =^varchar(30)n notnu!l=,’no" defaults"" />
<pages datatypes’integer" notnu!l='yes' default=“l" />
■qournalid data type ="in teg er" notnu!l="yes" defaults’"/>
<fk tables’journal" column=°journalidn>joumalid</fk>

</tabledef>
- <row>

orticleid >0<y a rtlcleid>
<title>Follow The Leader</tit!e>
<html>follow.html </html >
<pdf>follow.pdf</pdf>
<pages>4</pages>
<goumalid>O<yjoumalid>

<yrow>
- <row>

orticleid >l</articleid>
<title >Info-64S-V ti tie >

® Done jBa Computer | Protected Mode: Off ^100% ’ ..
■--;

Figure 6. Error Free Extensible Markup Language Document

26

CHAPTER FOUR

JAVASCRIPT

Introduction
Creating a method to interface with the XML database

is not hard. The issue lies in which programming language

to use. The code must be able to run on all systems
regardless of being compiled or in source code form. Java

can interface with the database and run on any platform;

however a custom database interface created by a user is
not as easily created. Building a custom interface can

easily help with acceptance of the database being created.
Another problem1 with Java is the requirement for a Java
Virtual Machine. The Java VM is easily obtainable, however

not everyone has a Java VM installed. Having to install
Java VM deters from ease of use.

The best solution that lends to being able to create
custom end user interfaces is Javascript. Being compiled
at run time allows Javascript to easily run on all
platforms. As long as the user's computer has a web

browser installed, Javascript can run. Since the mid 1990s

operating systems come standard with a web browser capable

of running Javascript scripts.

27

In this phase of the database development, the

Javascript being developed is purpose coded for the sample

database. However, the code should be able to operate
effectively regardless of whether there are 3 records or

300 records in each table. The Javascript code must also

be able to join the author and article tables using the

ArtAuth link table.
Covering the entire Javascript code is pointless

since most of the Javascript uses the same methods, only

the methods will be discussed in a manner that builds up
to the database startup portion of the Javascript code.

For the complete Javascript refer to Appendix B.

Opening an Extensible Markup Language Table
Considered to be the most important part of the

Javascript code, failure to open a XML table will prevent

the project from working all together. Javascript does
have methods for opening XML documents and feeding the
opened documents through a XML parser. For security

reasons that simple logic can justify Javascript cannot

write XML documents. The security risks involved in

letting web sites write to a client's system can dwarf

current problems with malware. For that reason alone,

28

managing the database will be done with Visual Basic .NET,

and is discussed in Chapter 5.

Opening an XML document in Javascript requires two

different methods depending on the web browser the user

has. Microsoft's Internet Explorer uses ActiveX controls
to work with XML documents while other browsers such as

Mozilla's Firefox, Netscape Communicator, Safari, and

Opera use the document implementation method. The first

step to open an XML document is to determine the browser

being used. The easiest test is determining if ActiveX or

document implementation exists. Javascript's typeof
command test if something exists. The result "undefined"

means the object being tested for doesn't exist. Any other

result means the object being tested for does exist
(typeof 2008). Testing for the browser being used becomes
as simple as two if statements. The document
implementation test consists of two typeof tests rather

than one. The first test determines if

"documnent.implementation" exists and the second
determines if "document.implementation.createDocument"

exists. The if statement is then "if ((typeof
document.implementation != 'undefined') && (typeof

document.implementation.createDocument != 'undefined'))".

Testing for Internet Explorer requires one typeof test:

29

the existence of ActiveX objects. The test is simply "if

(typeof window.ActiveXObject != 'undefined')".

Once the browser has been determined, the browser

type needs to be stored in a variable to use later on in

the script. The variable "browser" is set to "netscape" or

"ie" depending on the outcome of the browser tests. Note

"browser" is not a global variable. Once the XML document

is open, Javascript doesn't need to know which browser is
being used. Figure 7 shows the complete browser testing

code.

var browser = “none”;

if ((typeof document.implementation != 'undefined’) && (typeof
document.implementation.createDocument != ‘undefined’))
{ browser = “netscape”; }
else if (typeof window.ActiveXObject != ‘undefined’)
{ browser = “ie”; }___
Figure 7. Javascript Testing the Browser Type

Now the XML document can be opened. Both opening
methods require an object to store the reference to the
XML document being opened'. For the startup portion of the
Javascript code, the XML document object is called

"xmlDoc". Tests show there has to1 be a unigue object for

each XML document being opened, regardless of whether or

not the currently opened XML document being stored in the

30

"xmlDoc" object is going to be used again. Even if the

"xmlDoc" object is cleared and then set to another XML

document, the "xmlDoc" object becomes empty. The "xmlDoc"
object has to be a global object. The reasoning for being

global will be clear later.

After determining the browser type, the "xmlDoc"

object must be prepared to open a XML document. For

Internet Explorer, the first task is to create a new
ActiveX object by using "xmlDoc = new ActiveXObject
('Microsoft.XMLDOM'. Next comes the first problem with

accessing a XML document, or any document, is whether to

synchronously or asynchronously access the document.

Asynchronous access allows retrieved information from a

file to be worked with before the entire file has been
read. During testing working with the retrieved XML data
was faster than retrieving the data creating
synchronization errors. Synchronous access waits for the

data to finish retrieving from the file before allowing
the Javascript to work with the retrieved data. When using

synchronous access, no errors occurred and any extra

execution time searching through the retrieved data was
not noticeable. To achieve synchronous access us

"xmlDoc.async = false;".

31

The next step is telling the "xmlDoc" object what to
do once the XML document has been loaded. Using the state

change function of the "xmlDoc" object determines the next
step after loading the XML document. The statement

"xmlDoc.onreadystatechange = function () {if

(xmlDoc.readyState == 4) Journalinfo() tells the

"xmlDoc" object to run a new function when the state of
the object changes. The object can have four states. State
4 occurs when the object has loaded the XML document and

the data is ready to be worked with. The new function

tests for the object state of 4 then runs another function

to work with the data. A separate function is used for two

reasons. The first reason being each method of opening the
XML document needs to access the same code, the second
reason is keeping the source code as clean as possible.

Earlier the "xmlDoc" is required to be global. The

function that works with the retrieved data contained in

"xmlDoc" needs to have access to the object. If the
function can't access the object, no data can be returned.
Figure 8 shows the complete Internet Explorer ActiveX

Method.

32

xmlDoc = new ActiveXObject('Microsoft.XMLDOM’);
xmlDoc.async = false;
xmlDoc.onreadystatechange = function ()
{ if (xmlDoc.readyState == 4) JournallnfoQ };_____________________________________
figure 8. Preparing to Open an Extensible Markup Language

Document with ActiveX

Preparing to open an XML document using the document

implementation method is slightly different than ActiveX;
however the principles are the same. A new object is

created using "xmlDoc =

document.implementation.createDocument "doc",

null);". Telling the document implementation what to do
with the retrieved data is done by using "xmlDoc.onload =
Journalinfo;". "Journalinfo" is the same function that the

ActiveX method was told to load once the XML document has
been fully read. Remember, once the XML document has been

fully loaded, both methods can use the same code to
interact with the loaded data. Figure 9 shows the complete
document implementation method for preparing to open a XML
document.

33

xmlDoc = documentjmplementation.createDocumentC'', “doc”, null);
xmlDoc.onload = Journalinfo;___
Figure 9. Preparing to Open an Extensible Markup Language

Document using Document Implementation Method

Once the "xmlDoc" object has been prepared, the XML

document can be loaded. The load command is the same

regardless of browser. A switch command is used to

determine the correct preparation method based on the
contents of the "browser" variable. After the switch
statement, 'xmlDoc.load ("journal.xml");' is ran to load a
XML file. The startup Javascript pulls information from

the "Journal" table. In the preceding example, journal.xml

is loaded. Any other XML file name can be used. When

considering the location of the XML database in relation
to the Javascript code, the file location always starts at
the same location the search page is opened from. If the
search page is opened from "e:\", the starting location of

the Javascript code is also "e:\". For example, if the XML

database resides in a folder called "data" that is located
in "e:\" giving the complete folder path of "e:\data\",

loading journal.xml would be 'xmlDoc.load
("data\journal.xml");' . The complete switch statement with

loading the XML document is shown in figure 10.

34

switch (browser)
{

case “ie”:
{
xmlDoc = new ActiveXObject(‘Microsoft.XMLDOM’);
xmlDoc.async = false;
xmlDoc.onreadystatechange = function ()
{if (xmlDoc.readyState == 4) Journallnfo() };
break
}
case “netscape”:
{

xmlDoc = document.implementation.createDocument(““, “doc”, null);
xmlDoc.onload = Journalinfo;
break
}

}
xmlDoc.load(“journal.xml’j;______________________________________
ligure 10. Loading the Journal.xml Document

Note from the figure above that preparation requires
using the name of the object that will be used to store
the XML data. Each different XML document being loaded
must have its own unique object variable as discussed

earlier. Each object must be prepared separately.

Generally, all objects are prepared before any data is
worked with effectively creating cleaner code and making
debugging changes to the Javascript code much easier.

Accessing the Loaded Data
Once a XML document is loaded, the XML data needs to

be accessed. Javascript uses the same methods to access

XML data regardless of the browser being used. XML tags
within a XML document are organized in arrays. Accessing

35

the tags is as simple as accessing information stored in

an array. The first step is to expose the XML data.

Creating an array and then setting the array to a
collection of XML data is the only way to expose the data.

The very first object in the array is the XML document's

root element. Using the Journal table that is needed

during startup as an example, the initial object in the

data array is root element "journal". The command that
exposes everything with the "journal" tag is 'var journal
= xmlDoc.getElementsByTagName("journal")[0].

getElementsByTagName("row");'. A new variable called

"journal" is created storing all of the information within

the "journal" tag in a multidimensional array.
Accessing the child tags is just as easy, only the

data does not have to be saved to a variable. The
"journal" variable already stores the information in a
manner that is easily accessible. To access all of the

elements within the root "journal" tag the first object in

the "journal" variable needs to be accessed by using

"journal[0]The next part of accessing the child
elements should look familiar. Using 'getElementsByTagName

("title");' retrieves all of the information stored in

every element that had a tag name of "title" in the format

of an array. To get the only "title" element for each row

36

'journal[nJ. getElementsByTagName("title")[0]' is used
where "n" is the n + 1 row to get the title information

from. Since there is only one row in the journal table, n

will always be 0. In cases such as the authors table, n

can be between 0 and 3 since the table has 4 rows of data.

All that has been done so far is to expose the

methods for accessing the information within the first
"title" element, "journal" is not just a multidimensional

array, but is also a reference to the "xmlDoc" object that

can call the methods associated with the object to
retrieve data. Looking at the journal.xml in Appendix A,

there is only one "title" child element within the XML
document. In order to actually see the information between

the title element "firstChild.nodeValue" must be used.
"nodeValue" returns the information contained with the

element being accessed. The full line of code needed to

access the title of the journal is ' journal [0] .
getElementsByTagName("title")[0]. firstChild.nodeValue',
all on one line. Accessing other elements with names other
than "title" is as simple as replacing "title" in the line

above with the name of the element, such as "year" or

"number". In the case of the XML table, "title" would be

replaced with the name of the desired row being retrieved.

In future phases of the database development, SQL

37

statement parsing will be implemented. Within SQL

statements are column names. Just as "title" is a column
name, the column names that appear in the SQL statements

can be inserted in place of "title". Figure x shows the

complete code to retrieve all of the journal information

using the function "Journalinfo". Recall "Journalinfo" is

called as soon as journal.xml has loaded.

38

function Journallnfo()
{

var journal = xmlDoc.getElementsByTagName(“journar);

if (journal.length > 0)
{

document.getElementByld('jtitle’).innerHTML =
journal[0].getElementsByTagName(“title”)[0].firstChild.nodeValue +
“ * ’;

jjtitle = journal[0].getElementsByTagName(“title’’)[0].firstChild.nodeValue;
jvolume = journal[0].getElemenfsByTagName(“volume”)[0].firstChild.nodeValue;
jnumber = journal[0].getElementsByT agName(“number’’)[0].firstChild.nodeValue;
jyear = journal[OJ.g etElementsByTag Name(“year") [OJ.fi rstChild.nodeValue;
document.getElementByld('vo!ume’).innerHTML = “Volume “ + jvolume + No. “

+ jnumber + “ + jyear + “ ”;
document.getElementByld('issn’).innerHTML = “ISSN: “ +

journal[0].getElementsByTagName(“issn")[0].firstChild.nodeValue +
“ ”;

document.getElementByld(‘description’).innerHTML =
journal[0].getElementsByTagName(udescription”)[0].firstChild.nodeValue +
“ ”;

htmllocation = journal[0].getElementsByT agName(“html”)[0].firstChild.nodeValue;
pdflocation = journal[0].getElementsByTagName(“pdf)[0].firsfChild.nodeValue;
}
else
{
document.getElementByld(‘jtitle’).innerHTML = “Error: journal has no

infol“
}

_}__
Figure 11. Function Journalinfo

After looking at figure 11, some of the retrieved
information is manipulated. Generally the information

retrieved is in the form of a string or integer. Both can

be appended to strings and appended to by strings, but

only integers can be manipulated with mathematical

operations. As seen in most of the Javascript code the
string data that is being added to the retrieved data is

39

HTML code. The reasoning behind this will be apparent
later on in the next chapter. There is also an "if"

statement. The "if" statement tests to make sure there are

child elements to retrieve data from. The result of no

child elements returns an error message preventing
confusing errors being shown to users.

Looping through the rows of a table is necessary and

not hard to do. The number of rows to loop through is

found by using 'journal.length'. Not only does the journal

variable have access to XML commands, but also array
commands as well. The "length" command returns the number
of elements within the journal array which is also the

number of rows within the table. The rest of the loop is
standard Javascript loop: 'for ($i=0; $i<journal.length,
$i++) { Each run' through the loop is moving down one

row through the table.

Returning Results
Have an interface that can retrieve data becomes

fairly useless if the data can't be seen by the user.

Throughout the Javacsript code
"document.getElementByld('divid').innerHTML" is seen.
Javascript is using divider tags within the HTML search

page to dynamically change the page's contents. Setting up

40

the divider tags within the HTML page is discussed in the

next chapter. Of course, "divid" needs to be changed to

the appropriate divider tag id.

Why Not Use XPath?
No one can deny the usefulness of XPath or XQuery.

Consider for a moment not all browsers are created equal.

Microsoft Internet Explorer tends to be the exception.
Being the only browser to support ActiveX, special cases

have to be made when programming Javascript. Even with

Internet Explorer 8 being released soon which is supposed
to be compatible with the document namespace, quick

internet searches show Microsoft to not follow web
standards set forth by the W3C. Not everyone will be quick

to switch to the new version of Internet Explorer. Tons of
internet users are still using version 6 of the browser
while version 7 has been around for over two years now.

Even though XPath works in all browsers, Internet
Explorer is different enough to make XPath implementation
more difficult that directly accessing the XML data. Take
for instance a simple XPath query to retrieve the first

journal in the journals table. The query would look like

"/journals/row[1]" for most browsers, however Microsoft

saw fit to not follow the W3C standards for querying.

41

Microsoft's query would look like "/journals/row[0]". The

W3C states an array of retrieved XML records starts with

"1", not "0".
Not just the query statements are different, even the

querying command is different. Document implementation's

command is "document.evaluate(xpath, xmldoc, nameset, result

type, result)" where xpath is the query, xmldoc is the

document object holding the actual xml file, namespace is
used in case namespaces occur in the XML document (generally

null is specified instead), result type is the type of
result desired (integer, string, etc), and result is the

result set to append to (generally set to null). Internet

Explorer uses "xmlDoc.selectNodes(xpath)" where xmldoc is

the ActiveX object containing the XML document and xpath is
the query.

The differences in XPath implementation can easily
double the amount of Javascript required to make the

database functional. Instead of having to worry about which

browser is being used just for opening an XML document, the

entire Javascript code would have to worry about the browser

being used. Complexity of code will also increase. Trouble
areas that may normally require- one area to fix would
require two areas to fix. During the SQL interpreter phase

of the database itself, XPath may be re-evaluated.

42

CHAPTER FIVE

HYPERTEXT MARKUP LANGUAGE INTERFACE

Introduction
The Javascript interface is designed to run only when

required. To get the Javascript running HTML is used to
call functions such as "initialize" in startup.js. HTML

will also be used to search the database and display

search results.

Referencing the Javascript
In interest of keeping source code simple, Javascript

is kept separate from the HTML search page. So the search

page can execute functions referenced within the page, a

link to the Javascript source files needs to add to the
search page's head. The link line is simple: '<script
language="javascript" SRC="startup.js"></script>'. Each
Javascript source file is referenced in the same manner,
except replace "startup.js" with the other file names
needing to be referenced.

Initial Startup
The demo search page contains elements that come from

the database, such as journal information and author's
first names, which require retrieving from the database
upon opening the search page. Getting all of the

43

information from the database when the search page is

opened is a simple modification to the body tag. In

startup.js there is a function called "initialize".

Initialize does everything required to show the initial
search page. Starting initialize when the page loads is
done by adding 'OnLoad="initialize()"' within the opening

body tag. Instead of the opening body tag being "<body>",

the opening body tag becomes '<body

OnLoad="initialize ()"> '. If a different function needs to

be referenced, change "initialize()" to the required

startup function.

Making a Static Page Dynamic
HTML pages by nature are static. Once written,

information within the page does not change. To have
dynamic pages, a server side script is generally used.
Since server side scripts can't be used, another way needs
to be found to make a static page change based on user
input. The HTML tag that allows static pages to become

dynamic is "<div>". The divider tag breaks HTML pages up

into sections. When given an id, Javascript can reference

the tags while the page is being viewed and change the
contents within the tag using HTML content. Content within
the division can be blank or already have information.

44

Chapter 4 shows the command used to change the divider's
content. The typical divider tag used in the search page

look like '<div id="jtitle">', replacing "jtitle" with the
desired tag id. Divider tags can so much more than just

separate portions of HTML code. For purposes of a search

page, the basic function shown gets the job done.

What can be considered a good side effect of using a

divider tag is the inability of a browser to show the
source code of a divider tag once the information within
the tag has been changed. All viewing source will do is

show the original source code of the HTML file.

Linking to Javascript Functions
The search page has a link "Reset Search" to clear

search results. The link references the Javascript
function "initialize", which puts the search back into the
condition the page was in when the search page was first

loaded. In effect the function "initialize" has two

functions: the first is to show the initial information

for the search page and the second is to clear search
results. Referencing a function in a link is done by
putting "javascript: initialize()" within the href portion

of a link tag in html. Replace, "initialize()" with any

other desired function. The complete reset link in the

45

search page is 'Reset

Search'.

Automatically Changing the Search Page
As the user starts searching for articles by

selecting and author's first name, a drop down box for the

author's last name automatically shows up. Once a last

name is selected, a list of articles written by the author

is shown. The search page automatically changes to user
input without having to click on a button. Each of the two
dropdown controls contains a piece of code that tells the
search page what to do once the control have been changed.

The code is simply

'onChange="createLastNameSelect(this.form)"1. This line of
code and is one of the properties in the opening select
tag in the HTML code. Without "onChange", drop down box
would do nothing when a firs tname is selected.
"createLastNameSelect" is a javascript function that
creates a another drop down box with a list of last names

once a first name is selected, "this.form" passes into the

"createLastName" function the entire form that the first
name dropdown box belongs to, allowing Javascript to
access the selected first name. The complete opening tag

for the first name drop down box is '<select

46

name="firstname"

onChange="createLastNameSelect(this.form)"

id="firstname">', all on one line.
There are two other properties of the select tag that

makes changing the search page possible: "id" and "name".
Both "id" and "name" are set to the same string

"firstname". This is done for both dropdown boxes. Both

properties are required for Javascript to function
properly, and are used for compatibility of different

browsers. Javascript uses the name property to be able to

interact with the control through the form and the id
property is used to identify the control when a reference
to the control is not available, such as through

"this.form". Some browsers, such as Internet Explorer,
reference the control through the name property within the
document namespace. For example using "document.firstname"
allows javascript to access the properties for the first
name dropdown in Internet Explorer. Browsers such as
Firefox and Opera use the property "getElementBylD"

discussed earlier.

47

CHAPTER SIX

VISUAL BASIC .NET ADMINISTRATION PROGRAM

Introduction
In one way or another, the database needs to be

administrated. The search page developed earlier can't

administrate data, just display search results. Creating a

program using Javascript and HTML isn't possible.

Javascript cannot write to files, just read them. As
discussed in the background, the security risks involved

in allowing Javascript can be worse than damage caused by

malware. In keeping with the requirement to operate

regardless of operating system would lead to using Java.

Since Java source is compiled at run time, source code can
run as long as a Java Virtual Machine is installed. The
problem with Java is the lack of one of the required
controls: a datagrid. Datagrids are required to view the
contents of each table. An example of a datagrid control
is what's used when looking at the contents of a table

within Microsoft Access, or the grid information and

formulas are type into in Microsoft Excel. Datagrids are

available for JAVA, but for a fee. The only freely

available datagrid for JAVA would require special
licensing for this project, which would take longer than

48

the time available to receive proper licensing. Given the

issues with a datagrid control for JAVA, Microsoft Visual

Basic .NET (VB) will be used. Figure 12 shows an example

of a datagrid displaying the authors table.

authorid ftrstname lastname i

0. - James Klein

1 Jake Zhu

2 Kevin Howard

3 James Howard

Figure 12. Datagrid Control Example

The organization of this chapter is in sections, each
detailing the steps required to complete specific tasks.

Required Imports
Visual Basic .NET uses the "imports" command to

expose namespaces to a form's root namespace. One of the
imports used to make working with XML files easier is
"System.Data". Without the import, any command and object
within the Systme.Data requires System.Data to preceed the

command. For instance the dataset object would have to be

accessed through System.Data.dataaset rather than just

plain dataset. Any other object and command that works

with datasets such as datarow and datatable would also

49

require the full namespace to be accessed. Importing the

namespace makes coding projects much easier and allows the

source code to be much cleaner. The imports used in this

project are System, System.Data, and
System.Data.SqlClient.

Opening an Extensible Markup Language Document
The method to opening a XML document is done through

a function. The function requires the name of the xml file

and returns a dataset containing the contents of the xml
file. The first part of the function is setting up the
appropriate variables for the dataset and filestream.
Creating a dataset is as simple as creating a new variable
set to be a datatest. A new filestream is slightly more

complex. Not only does a new variable, have to be created,
the XML file has to be opened in read only mode. Read only
mode is used to prevent accidental changes to the data.
The command to create the filestream is "Dim fsReadXml As
New System.10.Filestream(xmlfile, 10.FileMode.Open,
10.FileAccess.Read)". "xmlfile" is string containing the

location of the file. If "xmlfile" only contains the name

of the XML document being - opened then the assumed folder

the document resides in is the folder as the management

program itself. If "xmlfile" contains a folder as well,

50

the exact folder name is used. For instance, if
"c:\file.xml" is used the XML document needs to be located

in the root folder of the "c" drive. "10.FileMode.Open"

tells the filestream that the file "xmlfile" is to be
opened. "10.FileAccess.Read" tells the filestream to only

read from "xmlfile", but not write to the file.

At this point "xmlfile" is not opened, let alone been

read. One command takes care of both tasks at the same

time. "DataSet.readXML(xmlfile)" opens xmlfile and reads
the entire contents of the XML document. Once the xml file
has been fully read, the dataset contains several tables

representing the XML data. One table represents the

primary keys, another representing all the rows, and
several tables representing the properties of each column.
Methods for accessing the data and adding data are
discussed throughout this chapter. Te final task is to
close the XML file using "FileStream.Close()"
(Walkthrough, 2008). Figure 13 shows the complete XML File

loading function.

51

Private Function OpenXML(ByVa) xmlfile As String)
Dim ds As New DataSet()
Dim fsReadXml As New System.lO.FileStream(xmlfile, IO.FileMode.Open,

IO.FileAccess.Read)
Try

ds.ReadXml(fsReadXml)
Catch ex As Exception

MessageBox.Show(ex.ToStringO)
Return Nothing

Exit Function
Finally

fsReadXml.Close()
End Try
Return ds

End Function___
Figure 13. Extensible Markup Language Loading Function

Displaying Table Data
At this point all XML documents are opened and

available in various datasets. Now the data needs to be

displayed visually. Visual Basic can easily link a dataset

to a DataGridView control. Using "DataGridView.DataSource
= DataSet" tells the DataGridView control to use a dataset
for a source of data to display. Setting a data source is

not enough; the DataGridView control needs to know which
portion of the XML data to display. Each XML document
contains two main sections of XML: the table definition

and the table data. Using 'DataGirdView.DataMember =

"row"', "row" is the name of the group of XML tags being
displayed in the DataGridView. The column header of the

DataGridView control will show the column names that occur
between each "row" tag. Using the authors table as an

52

example, the column header would contain "authorid",

"firstname", and "lastname". Below the header, all data in
each of the rows is shown. Figure 14 shows a DataGridView

control displaying the Authors table.

Figure 14. DataGridView Control Displaying Authors Table

authorid firstname lastname !

► P ; James Klein

1 Jake Zhu

2 Kevin Howard

3 James Howard

*

Content

Enforcing Table Structures
Table structures need to be enforced as part of

maintaining data integrity. Each column's settings are
stored in the DataSet in a table named after each column.
To retrieve the data type for the Authors table firstname
column, 'DataSet.Tables
("firstname").rows(0).item("datatype") ' is used. The row

that each property is stored in is row 0. No other row

number is used since each property table contains only one

row. This section shows how each of a table's properties

are maintained and used within the management program.

53

Auto Increment
Auto Increment allows a column of data to increase in

number by one for each row of data added. Maintaining the
increment is simply done by adding one to the largest

number found in the auto increment column.

Programmatically the largest number is in the last row of

data in the dataset. Getting the last number used is done

by using 'dataset.tables("row").rows.count -1'. One is
subtracted from the total number of rows to get the

correct programmatic row number. Accessing rows in a

dataset table starts with 0 and ends with n - 1 rows,
similar to accessing data in an array. Creating the next

number to be used in the auto increment is thus
' (dataset.tables("row").rows.count - 1) +1'.
Varchar Data

Varchar data is simply text with a certain length.

DataGridView controls do not have a way to set the maximum
length of characters that can be typed in for each cell.
However data entry contains TextBox controls that can have
maximum character lengths set. First the varchar data type
needs to be retrieved before getting the length of the

varchar string. Retrieving the data type was shown above.

The next step is to get the length of the varchar. The

best method for determining the length of the data is

54

testing for an open parenthesis starting from the end of
the string "varchar(x)". Once the number is has been
found, the maximum length of the TexBox control being used

is set to the found number. Figure 15 shows the function

used to get the varchar length.

Private Function GetVarcharLength(ByVal varchar As String)
Dim startat As Integer = Len(varchar) -1
Dim foundnumber As String = varchar. Substring(startat, 1)
Dim teststring As String
startat -= 1
Dim found = False
While Not found

teststring = varchar.Substring(startat, 1)
If teststring = “(“ Then

found = True
Else

foundnumber = teststring + foundnumber
End If

End While
Return Convert.Tolnt 16(foundnumbers

End Function__
Figure 15. Getting the Length of a Varchar

Integers
Integers are simply numbers. Enforcing only numbers

in a column or textbox cannot be easily done without
creating custom controls. With little knowledge in

creating custom controls, another way has to be found to

enforce integers. Visual Basic has a convert namespace

that has commands to convert strings to integers. If

'Convert.tolntl6' causes an error, the information that

55

was entered is not a number. An error message can be

displayed letting the user know to enter numbers only.

Primary Keys
Primary keys denote that each piece data in a

particular column is unique. This project makes use of
auto increment for primary keys except for the ArtAuth

link table. To make sure each row in the ArtAuth table is

unique, a loop is used to cycle through all rows in the

table. Each row is compared to the data being entered into

the table. If a row matches the data being entered, the
new row I will not be add to the table. Figure 16 shows
the loop to prevent duplicate primary keys.

For Each pkrow As DataRow In dsAuthors.Tables(“row").Rows
If pkrow. Item(°authorid”) = dgvAuthors.ltem(0, nextrow).Value _
And pkrow.ltem(“articleid”) = Me.lsbArticles.Selectedlndices(counter) Then

inpk = True
Exit For

End If
Next___

Figure 16. Preventing Duplicate Information in Primary Key
Columns

Foreign Keys
Foreign keys denote a column whose values reference

the primary key column of another table. Data input forms
uses combo boxes listing the information in the order the

56

information appears in the tables. Since the tables in the

sample database use auto increment to create primary keys,

the combo box indices match the primary key numbers in the

combo box's supporting table. When storing a foreign key,

simply store the selected index of the combo box
containing the referenced table<s information.

Notnull
Notnull determines if a column can contain null

values. The management program makes use of this setting .

when a textbox control is changed or a row is added to one
of the DataGridView controls. Testing for a column's
notnull attribute is done by using
'DataSet.Tables("firstname").rows(0).item("notnull") =

"yes"'. Changing "yes" to "no" will determine if notnull

is turned off.

Default
The default table property determines what is

inserted into each cell of a particular column is nothing
is specified. In the management program the default data

is shown in the data entry forms and when new rows are

added to one of the DataSets. Getting the default settings

is done by using
'DataSet.Tables("firstname").rows(0).item("default")'. A
blank default means no default data is required. The

57

opposite is also true. A non-empty result means there is

default data specified and the default data should be

present in any forms used to enter data into the database.

Adding and Saving Data
Saving changes to data is an absolute must when

managing a database. The first step to adding data is to

make sure all values that are not null contain

information. Figure 17 shows how to test for a null value.

If dsAuthors.Tables(“firstname”).Rows(0).ltem(“notnull”) = “no” Then
If Me.txtFirstName.Text = ““ Then

MsgBox("A first name is required”)
Exit Sub

End If
End If__
Figure 17. Testing For Null Values

Once all not null conditions are met, a method needs
to be used to add the data to the XML document and to the
DataGridView. Adding a row to the DataGridView

programmatically is not allowed since the DataGridView
control is bound to a data source. The next option is to

change the data source. Changing the data source requires

adding a new row to the "row" table in the associated
DataSet. Creating a new row is done by using 'dim dsrow as
new DataRow'. Populating the new row is as simple as

58

mapping the values of each control in the entry form to

the heading of each column in the DataGridView control.
■Adding a first name to the new row for the authors table
is done by using the following line of code:

'dsrow("firstname") = Me.txtFirstName.Text'. Once the

DataRow has been filled with data, the row needs to be

added to the corresponding Dataset using

'dsAuthors.Tables("row").Rows.Add(dsrow)'.
A new row of data has been added and the appropriate

Dataset has been updated. At this point there is only two

more tasks left: save the data to the XML file and update

the datagridview. Saving to the XML file is done by a

function called "WriteXML". WriteXML takes in a filename
and a DataSet and writes the Dataset to the XML file. A
function is used to prevent having to maintain three
portions of identicle code. The first step to writing to a

XML file is to create a Filestream that holds the

information necessary to access the desired XML file. Next

a XMLTextWriter is created as an interface between the

Filestream and DataSet. Finally write the XML data using

the DataSet's "WriteXML" method and then close the XML

file (DataSet.WriteXML, 2008). Figure 18 shows the

complete WriteXML function.

59

Private Sub WriteXML(ByVal xmlfile As String, ByVai ds As DataSet)
Dim myFileStream As New System.lO.FileStream(xmlfile,

System. lO.FileMode.Create)
Dim myXMLWriter As New System.Xml.XmlTextWriter(myFileStream,

System.Text. Encoding. Unicode)
ds.WriteXml(myXMLWriter)
myXmlWriter.Close()

End Sub__
Figure 18. WriteXML Function

The final task is to update the DataGridView. Two

simple lines of code borrowed from opening an XML document
will finish this task off. 'Me.dgvArtAuth.DataSource =
dsArtAuth' and 'Me.dgvArtAuth.DataMember = "row"' refresh

the DataGridView and complete adding and saving changes to

XML files. Figure 19 shows the typical adding and saving

data routine.

60

If dsAuthors.Tables(“firstnamen).Rows(0).ltem(“notnuH”) = “no” Then
If Me.txtFirstName.Text = ““ Then

MsgBoxf'A first name is required”)
Exit Sub

End If
End If
If dsAuthors.Tables(“!astname”).Rows(0).ltem(“notnuirj = “no” Then

If Me.txtLastName.Text = ““ Then
MsgBox(“A last name is required")
Exit Sub

End If
End If
Dim dsrow As DataRow
dsrow = dsAuthors.Tablesf'row’j.NewRow
Dim counter = 0
Dim nextrow As Integer = Me.dgvAuthors.Rows.Count -1
dsrow(“authorid’j = dgvAuthors.ltem(0, nextrow - 1).Value + 1
dsrow(“firstname’j = Me.txtFirstName.Text
dsrow(“lastname’j = Me.txtLastName.Text
dsAuthors.Tables(“row”).Rows.Add(dsrow)
WriteXMLC'authors.xmr', Me.dsAuthors)
Me.dgvAuthors.DataSource = dsAuthors
Me.dgvAuthors.DataMember = “row"
While counter < Me.lsbArticles.Selectedltems.Count

dsrow = dsArtAuth.Tables(“row’j.NewRow
Dim inpk As Boolean = False
For Each pkrow As DataRow In dsAuthors.Tables(“row’j.Rows

If pkrow.Item(“authorid’j = dgvAuthors.ltem(0, nextrow).Value _
And pkrow.ltemf'articleid'j = Me.lsbArticles.Selectedlndices(counter) Then

inpk = True
Exit For

End If
Next
If Not inpk Then

dsrowf'articleid’j = Me.lsbArticles.Selectedlndices(counter)
dsrow(“authorid”) = dgvAuthors.ltem(0, nextrow).Value
dsArtAuth.Tables(‘Tow'j.Rows.Add(dsrow)

End If
counter += 1

End While
WriteXMLf'artauth.xml”, Me.dsArtAuth)
Me.dgvArtAuth.DataSource = dsArtAuth
Me.dgvArtAuth.DataMember = “row”___
Figure 19. Saving Changes to the Authors Table

61

Searching Tables
One "minor" but useful function of database

management programs is the feature to be able to search
data. Since the purpose of searching through data is to
show search results, search will be done against the

DataGridView controls. Once the search criteria are met,

the row containing the data can be highlighted. To get

started with the search, the column being search against
is stored in a variable. The order the column header names
appear in the ComboBox controls used to select which
column is being searched corresponds to order the column
headers appear in the DataGridView control. A selected

index of 2 in a ComboBox is the same as the column number

in the associated DataGridView. The variable containing
the ComboBox selected index becomes the column numbers

when retrieving the contents of a cell in the
DataGridView.

The next to searching is looping through each cell in

the selected column. Since two search criteria appear in

the database management program, there are two conditions

to be met. The first condition is if the first search

criteria is found. The second condition is if the second

search criteria is met as long as there is a second search
criteria. If all of the search criteria are met, the

62

current row is selected. Once a row is selected, there is

no reason to continue searching. The sub doing the search

can be exited, or the loop exited, to allow continued use

of the program. Figure 20 shows the sub used to search the
authors table.

Private Sub cmdAuthorsFind_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdAuthorsFind.Click

Cursor = Cursors.WaitCursor
Dim columntouse As Integer = Me.cboAuthorsColumn.SelectedIndex
Dim columnandtouse As Integer = Me.cboAuthorsColumnAnd.Selectedlndex
For Me.authorscounter - 0 To Me.dgvAuthors.RowCount -1

If dgvAuthors.ltem(columntouse, authorscounter).Value =
Me.txtAuthorsLookFor.Text Then

If Me.txtArticlesLookForAnd.Text = ““ Or M e. txtArtAuth Loo kForAnd. Text =
dgvAuthors.ltem(columnandtouse, authorscounter).Value Then

dgvAuthors.ClearSelection()
dgvAuthors.Rows(authorscounter).Selected = True
Me.cmdAuthorsFindNext.Enabled = True
Cursor = Cursors.Arrow
Exit Sub

End If
End If

Next
Cursor = Cursors.Arrow
MsgBox(“Can’t find anything that matches the search criteria.")

End Sub___
Figure 20. Authors Table Search Sub

63

CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

Introduction
Included in Chapter Seven was a presentation of the

conclusions gleamed as a result of completing the project.

Further, the recommendations extracted from the project

are presented. Next lessons learned from the project.

Lastly, the Chapter concludes with a summary.

Conclusions
The conclusions extracted from the project follows.

1. A database that can work regardless of platform
is very possible. With further development the

database might be able to operate without
requiring a web browser.

2. The database has shown usefulness in other areas
other than an academic journal's web site.
During the development of this project, another
XML database modeled after the database
developed in this project was created for a

local mortgage broker. After 2 months of use,

the database is working excellently. The

database doesn't store valuable information, but

64

does provide information regarding file storage

and who interacts with the storage.

3. Even though the database works as required, the

management program is considered a partial

failure. Even though the Visual Basic .NET

program works well with the database, the

program does not work on any platform. Java can

run regardless of platform as long as a Java

virtual machine is installed. During future
development, working out the datagrid control

problem with Java is a must.

Recommendations
The recommendations resulting from the project

follows.
1. The success of this project reflects the success

of only one phase of the database. Even though

this phase of the database is completed,
development should not stop.

2. The project's readers and campus advisors
preached working on the project a little at a

time rather than all at once in a rush. There

are two sides to every argument. Those giving
the advice are correct in some aspects. Rushing

65

is stressful and can produce shoddy work.

However, the best work done on this project was
done during the last minute rush. Mistakes made

throughout developing the project were caught

during the rush before the project committee

could voice concerns. Out of respect for the

committee, the last minute rush is truly unfair

to the committee being able to give sound

criticism and advice concerning the project.

3. SQL, XQuery, and XPath compatibility should also
be a top priority for future development. Even
though the management program does allow for

limited searches, being able to run custom

queries using SQL, XQuery, and XPath will allow

for development of more feature filled programs

built on top of the database and more user
friendly data management software.

4. The data contained within the database is not
encrypted for security; hence the

acknowledgement that the data stored in the

database can be viewed by anyone and doesn't

contain any company sensitive data. Creating an

encryption algorithm will help create more

66

utility for the database, adding to the
database's potential success.

Lessons Learned
The project itself is a lessoned learned. Using XML

to store data, Javascript to retrieve data, and HTML to

display search results to effectively create a database
that works on any platform was never considered. After a

little command search on the W3C web site and some

testing, a simple search page turned into a database

system.
While testing the operation of the Javascript

interface, a problem came up that kept the search page

from operating correctly. When the search page initially

loaded, the journal table information displayed just fine.
The drop down box containing a list of author's first
names was empty. After two days of trying to figure out
the cause of the problem, the program seemed to have a
problem that is impossible to solve. All attempts to find

the culprit failed. Message boxes showed all variables

contained the correct information. With all the searching

and code rewriting, the problem wasn't being solved. Out

of everything tried, using separate XML objects for each
XML file being opened was never tried. Once authors.xml

67

was opened in a separate XML object from that of

journal.xml, the search page behaved correctly.

Originally the same XML object was being used for

both files. Once journal.xml was finished being used, the

XML object was recreated to work with authors.xml. This

was done to save on memory requirements. Javascript

doesn't like recycling these types of objects. Once the

XML object is set to a XML file, there is no changing the

file the object works with. Why Javascript behaves in this
fashion is unclear. Searching turned up no answers. Being
required to use multiple XML objects is actually the
better way to go. When linking multiple tables together,

multiple XML objects are required. Even if a single object

was planned to be reused for each file, linking tables
together would prevent reuse of the obj ect.

Summary
Chapter Five reviewed the conclusions extracted from

the project. Next, the recommendations derived from the

project were presented. Lastly, the lessons learned from

the project.

A successful attempt was made to create a database
that could work without the requirement of a specific
platform. Data is stored in a normalized format and is

68

capable of being retrieved in any order and format.

Utilizing functions from the Javascript interface, the

user interface is easily created using HTML. Since
Javascript cannot write files to a client's system, and

Java does not contain a standard datagrid control, Visual

Basic .NET was used to create the management program. The

management program provides an easy way to manage the XML

database without having to directly edit the XML files.
This phase of the database development is done, paving the
way to the next phase of the database: a SQL interpreter.

69

APPENDIX A

EXTENSIBLE MARKUP LANGUAGE DATABASE

70

joumal.xml

<?xml version="1.0" encoding=“utf-8"?>
<journal>

<tabledef>
<pk>journalid</pk>
<journalid datatype=uautoincrement" notnull-'yes" default »"“/>
<title datatype-'varchar(20)” notnull-'yes" default="title" />
<volume datatype-'integer* notnull-'yes” default-T />
dumber datatype-'integer” notnull-'yes” default-T />
<year datatype-‘integer” notnull=“yes” default="2005” />
<issn datatype=“varchar(10)" notnull-'yes" default="0000-0000” />
description datatype-'text” notnull-'yes" default-'description" />
<html datatype="varchar(30)n notnull-'no” default-'" />
<pdf datatype=“varchar(30)” notnull=“no” default-'" />

</tabledef>
<row>

<journalid>0</journalid>
<title>ASBBS E-Journal</title>
<volume>1 </volume>
<number>1 </number>
<year>2005</year>
<issn>1557-5004</issn>
<description>An Official Online Journal of American Society of Business and

Behavioral Sciences</description>
<html>html\</html>
<pdf>pdf\</pdf>

</row>
</journal>

71

articles.xml

<?xml version=“1.0n encoding="utf-8”?>
<articles>

<tabledef>
<pk>articleid</pk>
<articleid datatype-'autoincrement” notnull-'yes” default-'7>
<title datatype=“varchar(20)” notnull=uyes” default-1" f>

<html datatype-‘varchar(30)” notnull=uno” default-"1 />
<pdf datatype-'varch a r(30)” notnull=uno” default-"' />
<pages datatype-'integer” notnull-'yes” default-'!" />
cjournalid datatype=“integer” notnull-’yes" default=“" />
<fk table-‘journal” column-‘journalid’’>journalid</fk>

</tabledef>
<row>

<articleid>O</articleid>
<title>Follow The Leader</title>
<html>follow.html</html>
<pdf>follow.pdf</pdf>
<pages>4</pages>
<journalid>0</journalid>

</row>
<row>

<articleid>1 </articleid>
< titl e> I nfo-648</tit!e>
<html>648.html</html>
<pdf>648.pdf</pdf>
<pages>2</pages>
<journalid>0</journalid>

</row>
<row>

<articleid>2</articleid>
<title>Computers</title>
<html>computers.html</html>
<pdf>computers.pdf</pdf>
<pages>7</pages>
<journalid>0</journalid>

</row>
</articles>

72

authors.xml

<?xml version-*1.0" encoding=“utf-8"?>

<authors>
<tabledef>

<pk>authorid</pk>
<authorid datatype=uautoincrement” notnull=“yes” default="7>
<firstname datatype-‘varch a r(15)" notnull=uyes” default-"1 />
<lastname datatype-‘varchar(15)” notnull="yes” default-"1 />

</tabledef>
<row>

<authorid>0</authorid>
<firstname>James</firstname>
<lastname>Klein</Iastname>

</row>
<row>

<authorid>1 </authorid>
<firstname>Jake</firstname>
<lastname>Zhu</lastname>

</row>
<row>

<authorid>2</authorid>
<firstname>Kevin</firstname>
<lastname>Howard</lastname>

</row>
<row>

<authorid>3</authorid>
<firstname>James</firstname>
<lastname>Howard</lastname>

</row>
</authors>

73

artauth.xml

<?xml version=“1.0” encoding=“utf-8”?>
<artauth>

<tabledef>
<pk>articleid</pk>
<pk>authorid</pk>
<articleid datatype=uinteger" notnull-‘yes" default-'“/>
<authorid datatype-'integer” notnull-lyes” default-'" />
<fk table-'authors” column=“authorid">authorid</fk>
<fk table-'articles” column=“articleid">articleid</fk>

</tabledef>
<row>

<articleid>O</articleid>
<authorid>0</authorid>

</row>
<row>

<articleid>O</articleid>
<authorid>1 </authorid>

</row>
<row>

<articleid>1 </articleid>
<authorid>1 </authorid>

</row>
<row>

<articleid>2</articleid>
<authorid>2</authorid>

</row>
<row>

<articleid>2</articleid>
<authorid>3</authorid>

</row>
</artauth>

74

APPENDIX B
JAVASCRIPT CODE

75

start up.js

var firstnames = new Array();
var authartXML;
var jvolume =
varjyear = ““;
var jnumber =
var jjtitle =
var htmllocation =
var pdflocation =
var xmlDoc;
varfnameXML;
var fname;
var Iname;
varauthldXML;
var authlD;
var articlesXML;
var articles = new ArrayQ;
varlnameXML;
var fnameForm;

function initialize()
{

document.getElementByld(‘lastNameSearch’).innerHTML =

var browser = “none";

if ((typeof document implementation != ‘undefined’) && (typeof
documentimplementation.createDocument != ‘undefined’))

{ browser = “netscape”;}
else if (typeof window.ActiveXObject != ‘undefined’)
{ browser = “ie”;}

switch (browser)
{

case “ie":
{

xmlDoc = new ActiveXObject('MicrosoftXMLDOM’);
xmlDoc.async = false;
xmlDoc.onreadystatechange = function ()

{if (xmlDoc.readyState == 4) Journallnfo()};
fnameXML = new ActiveXObjectfMicrosoft.XMLDOM j;
fnameXML.async = false;
fnameXML. on readystatechange = function ()

{if (fnameXML. readyState == 4) LoadFirstName() };
authartXML = new ActiveXObject('Microsoft.XMLDOM’);
authartXML.async = false;
articlesXML = new ActiveXObject('MicrosoftXMLDOM’);
articlesXML.async = false;
articIesXML.onreadystatechange = function ()

{if (articlesXML.readyState == 4) listArticlesf)};
break

}

76

case “netscape":
{

xmlDoc - document.implementation.createDocumentf"1, “doc”, null);
xmlDoc.onload = Journalinfo;
fnameXML = document.implementation.createDocumentf"1, “doc”, null)
fnameXML.onload = LoadFirstName;
authartXML = document.implementation.createDocument('l“, “doc”, null)
articlesXML = document.implementation.createDocument(““, “doc”, null)
articlesXML.onload = listArticles;
break

}
}
xmlDoc.loadf'journal.xmrj;
fnameXML. load (“authors.xml’j;
authartXML. Ioad(“artauth.xml'j;
articlesXML.load (“articles.xml”);

}

function islnArray(testArray, lookFor)
{

var returns = false;
for (var j = 0; j < testArray.length; j++)
{

if (testArrayfj] == lookFor) returns - true;
}
return returns;

} •

function Journallnfof)
{

var journal =
xmlDoc.getElementsByTagName(“journarj[0].getElementsByTagName(“row”);

if Gournal.length > 0)
{

document.getElementByld(‘jtitle’).innerHTML =
journal[0].getElementsByTagName(“title’j[OJ.firstChild.nodeValue + ll ";

jjtitle = journal[0].getElementsByTagName("title,j[0].firstChild.nodeValue;
jvolume = journaI[0].getElementsByTagName(‘lvolume'j[0].firstChild.nodeValue;
jnumber = journal[0].getElementsByTagName('lnumber”)[0].firstChild.nodeValue;
jyear = journal[0],getElementsByTagName{“year’j[0].firstChild.nodeValue;
document.getElementByld('volumej.innerHTML = “Volume “ + jvolume +", No. “ +

jnumber + “, “ + jyear + " ”;
document.getElementByld('issn j.innerHTML = “ISSN: “ +

journal(0].getElementsByTagName(“issn’j[0].firstChild.nodeValue + “ ";
documentgetElementByld('description j.innerHTML =

journal[Oj.getElementsByTagName(“description")[0].firstChild.nodeValue + “ ";
htmllocation = journal[0].getElementsByTagName("htmrj[0].firstChild.nodeValue;
pdflocation = journal[0].getElementsByTagName("pdfj[0].firstChild.nodeValue;

}
else
{

77

document.getE!ementByld(‘jtitlej.innerHTML = “Error: journal has no
info!"

}
}

function LoadFirstName()
{

var fnames =
fnameXML.getElementsByTagName(“authors")[0].getElementsByTagName(,‘row1j;

for (var i = 0; i < fnames.length; i++)
{

var testfor = fnames[i].getElementsByTagName{“firstname”)[0].firstChild.nodeVaIue;
if (isInArrayffirstnames, testfor) == false)

firstnames.push(fnames[i].getElementsByTagName(“firstname'j[0].firstChild.nodeValue);
}
firstnames.sort();
var searcher = ‘'<form n am e=\”search Articles? method=\"get\” action=\’'\”>“;
searcher += “First Name: <select name=\"firstnameV’

onChange=\”createLastNameSelect(this.form)\” id=\”firstnameV’>";
searcher += “<option></option>";
for (var i = 0; i < firstnames.length; i++) searcher += “<option value=\”“ + firstnames[i] +
+ firstnamesfi] + "</option>“;

searcher += “</select>“;
searcher += “</form>u;
document.getElementByldf'firstNameSearchj.innerHTML = searcher;

}

function listArticles()
{

var color = 0;
var articles =

articlesXML.getElementsByTagName(“articles”)[0].getElementsByTagName(“row”);
var combotable =

authartXML.getElementsByTagName(uartauth'j[0].getElementsByTagName(“row");
var names =

fnameXML.getElementsByTagNameCauthors ’jlOj.getElementsByTagNameCrow’j;

var searcher = “<table borderColor=\”#cOcOcOV’ cellSpacing=\”1V width=V’100%\”
border=\”2V’><tr><td align=\”left\”>“;

for (var i = 0; i < articles.length; i++)
{

searcher += “<tr><td align=\"left\'lu;
if (color == 0)
{

searcher += “>“;
color++;

} else {
searcher +=u bgcolor=\”#ffffcc\”>11;
color--;

}

searcher += “\”<a href=\"u + htmllocation;

78

searcher +~ articles[i].getElementsByTagName(l‘htmr)[0].flrstChild.nodeValue;
searcher += UV’>“;
searcher += articies[i].getElementsByTagName(“title”)[0].firstChild.nodeValue;
searcher += “V. Author(s):

var articleid = articles[i].getElementsByTagName(“articleid”)[0].firstChild.nodeValue;
var authids = new Arrayf);

for G = 0; j < combotable.length; j++)
{

var testid =
combotable[j].getElementsByTagName(,,articleid”)[0].firstChiId.node\/alue;

if (testid == articleid)
{

authids.push(combotable(j].getElementsByTagName(“authorid")[0].firstChild.nodeValue);}
}

for 0 = 0; j < names.length; j++)
{

var testid = names|j].getElementsByTagName(,'authorid,,)[0].firstChild.nodeValue;

for (k = 0; k<authids.length; k++)
{

if (testid == authidsfk])
{

searcher +=
names[j].getElementsByTagName(“firstname”)[0].firstChild.nodeValue;

searcher +=" “;
searcher +=

names[j].getElementsByTagName(‘'lastname',)[0].firstChild.nodeValue;
if (k < authids.length -1)
{

searcher += “;
} else if (k ==* authids.length -1) {

searcher += “.
}

}
}

}

searcher += "<i>“ + jjtitle + “</i>,";
searcher += jyear + Vol. “ + jvolume + “ No. “;
searcher += jnumber + u;
searcher += articles[i].getElementsByTagName("pages”)[0].firstChild.nodeValue;
searcher += ‘'p
“;
searcher += “<a href=\"" + pdflocation;
searcher += articles[i].getElementsByTagName(‘‘pdf”)[0].firstChild.nodeValue;
searcher += “\">PDF Version</td></tr>“;

}
searcher += “</tab!e>“;
document.getElementByld('articleList’).innerHTML = searcher;

}

79

lastname.js

function createLastNameSelect(nameForm)
{

fnameForm = nameForm;
var browser = “none”;

if ((typeof document.implementation != 'undefined') && (typeof
document.implementation.createDocument != ‘undefined’))

{ browser = “netscape”;}
else if (typeof window.ActiveXObject != ‘undefined’)
{ browser = “ie";}

switch (browser)
{

case “ie”:
{

InameXML = new ActiveXObject(‘Microsoft.XMLDOM’);
InameXML.async = false;

InameXML.onreadystatechange = function ()
{if (InameXML.readyState == 4) LoadLastName() };

break
}
case “netscape”:
{

InameXML = document.implementation.createDocumentf'", “doc", null)
InameXML.onload = LoadLastName;
break

}
}
InameXML.IoadC'authors.xml’1);

)

function LoadLastNamef)
{

var lastnames = new Array();
var I names -

lnameXML.getElementsByTagName(“authors")[0].getElementsByTagName(“row’’);
for (var i = 0; i < Inames.length; i++)
{

var testfor = lnames[i].getElementsByTagName(''firstname ’’)[0].firstChild.nodeValue;
if (testfor == fnameForm.firstname. value)
{

testfor = lnames[i].getElementsByTagName("lastname’')[0].firstChild.nodeValue;
if (islnArray(lastnames, testfor) == false)

lastnames.push(inames[i].getElementsByTagName(“lastname”)[0].firstChild,nodeValue);
}

}
lastnames.sort();
var searcher = “<form name=\”searchLastName\” method=\"get\” action=\"\”>";
searcher += “Last Name: <select name=\”lastname\” on Cha ng e=\”create Article List()\"

id-\”lastname\”>“;
searcher += “<option></option>“;

80

for (var i = 0; i < lastnames.length; i++)
{

searcher += “<option value=V" + lastnames[i] + “V’>“ + lastnames[i] + “</option>“;
}
searcher += ‘‘</select>“;
searcher += “</form>u;
document.getElementByld(‘lastNameSearch').innerHTML = searcher;

81

searches

function createArticleList()
{

documentgetElementByld(“articleList").innerHTML =
fname =
(name =
articles.length = 0;
fname = document.getElementByld(“firstname”).value;
Iname - documentgetElementByld(“lastname”).value;

var browser = “none”;

if ((typeof document.implementation 1= ‘undefined’) && (typeof
documentimplementation.createDocument 1= 'undefined'))

{ browser = “netscape";}
else if (typeof window.ActiveXObject != ’undefined’)
{ browser = “ie";}

switch (browser)
{

case “ie”:
{

authldXML = new ActiveXObject('Microsoft.XMLDOM');
authldXML.async = false;
authldXML. on readystatechange = function ()

{if (authldXML.readyState == 4) getAuthorlD() };
authartXML = new ActiveXObjectfMicrosoft.XMLDOM’);
authartXML.async = false;
authartXML.onreadystatechange = function ()

{if (authartXML. readyState == 4) getArticlelD() };
articlesXML = new ActiveXObjectf Microsoft. XML DOM’);
articlesXML. async = false;
articlesXML.onreadystatechange = function ()

{if (articlesXML.readyState == 4) showArticles() };
break

}
case “netscape”:
{

authldXML = document.implementation.createDocument(‘,,‘, "doc”, null)
authldXML.onload = getAuthorlD;
authartXML = documentimplementation.createDocument("“, "doc”, null)
authartXML.onload = getArticlelD;
articlesXML - document.implementation.createDocument(““, “doc”, null)
articlesXML.onload = showArticles;
break

}
}
authldXML.Ioadf'authors.xml”);
authartXML. loadC'artauth.xml”);
articlesXML.Ioad(“articles.xmr);

}

82

function getAuthorlD()
{

var authors =
authldXML.getElementsByTagName("authors”)[0],getElementsByTagName(“rown);

for (var i = 0; i < authors.length; i++)
{

var nodeFName =
authors[i].getElementsByTagName(‘tfirstnamen)[0].firstChild.nodeValue;

var nodeLName =
authors[i].getElementsByTagName(“lastname”)[0].firstChild.nodeValue;

if ((nodeFName == fname) && (nodeLName == Iname))
{

authlD = authors[i].getElementsByTagName(“authorid")[0].firstChiId.nodeValue;
break

}
}

}

function getArticlelD()
{

var authart =
authartXML.getElementsByTagName(uartauthn)[0].getElementsByTagName(“row");

for (var i = 0; i < authartlength; i++)
{

var nodeAuthlD =
authart[i].getElementsByTagName(“authorid”)[0].firstChild.nodeValue;

if (nodeAuthlD == authlD)
{

articles.push(authart[i].getElementsByTagName(,‘articleid")[0].firstChild.nodeVaIue);
}

}
articles.sort();

}

function showArticles()
{

var resultsHTML =
var color = 0;
var articleNodes =

artic[esXML.getElementsByTagName(uarticles”)[0],getElementsByTagName(Town);
var authart =

authartXML.getElementsByTagName(“artauth")[0].getElementsByTagName(“row’j;
var authorsNames -

authldXML.getElementsByTagName(uauthors,,)[0].getElementsByTagName(“row,j;

var v = “<table borderColor=\’’#cOcOcO\" cenSpacing=\”1\" width=\"100%\”
border=V2\"><tr><td align=\”leftV’>";

//loop through the articleXML
for (var i = 0; i < articleNodes.length; i++)
{

83

var nodeArtlD =
articleNodes[i].getElementsByTagName(“articleid”)[0].firstChild.nodeValue;

for (var j = 0; j < articles.length; j++)
{

var arttestid - articles]]];
if (nodeArtlD == arttestid)
{

resultsHTML += "<tr><td align=\’'leftV’“;
if (color == 0)
{

resultsHTML+= u>‘‘;
color++;

} else {
resultsHTML += “ bgcolor=V’#ffffccV,>'‘;
color-;

}
resultsHTML += “<a href=\”“;
resultsHTML +=

articleNodes[i].getElementsByTagName(“htmr)[0].firstChild,nodeValue;
resultsHTML += “V’>";
resultsHTML +=

articleNodes[i].getElementsByTagName(“title”)[0].firstChild.nodeValue;
resultsHTML += “. Author(s):

for (var k = 0; k < authart.length; k++)
{

var nodeArticles =
authart[k].getElementsByTagName(“articleid':)[0].firstChild.nodeValue;

if (nodeArticles == nodeArtlD)
{

var nodeAuthorlD =
authart[k].getElementsByTagName(‘‘authorid”)[0].firstChild.nodeValue;

for (var 1 = 0; I < authorsNames.length; I++)
{

var nodeAuthorNamelD =
authorsNames[l].getElementsByTagName(‘'authorid’j[0].firstChnd.nodeValue;

if (nodeAuthorNamelD == nodeAuthorlD)
{

resultsHTML +=
authorsNames[l].getElementsByTagName("firstname”)[0].firstChild.nodeValue;

resultsHTML +=" "
resultsHTML +=

authorsNames[l].getElementsByTagName(“lastname”)[0].firstChild.nodeValue;
resultsHTML+=

}

}
}

84

resultsHTML += u<i>“;
resultsHTML += jjtitle;
resultsHTML += ,,</i>,
resultsHTML += jyear;
resultsHTML +=", Vol.
resultsHTML += jvolume;
resultsHTML += No. “
resultsHTML += jnumber;
resultsHTML +=Pages:
resultsHTML +=

artieleNodes[i].getElementsByTagName(“pages,,)[0].firstChild.nodeValue;
resultsHTML += “.
 ”;
resultsHTML += “<a href=\”“;
resultsHTML +=

articleNodes[i].getElementsByTagName(“pdf’)[0].firstChild.nodeValue;
resultsHTML += “\”>PDF</td></tr>“
break

}
}

}
resultsHTML += “</table>“;
documentgetE!ementByld(‘‘articleList").innerHTML = resultsHTML;

}

85

APPENDIX C
HYPERTEXT MARKUP LANGUAGE CODE

86

index.html

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
'‘http://www.w3.org/TR/html4/loose.dtcl”>
<html>
<head>
<title>Projects</title>
<meta http-equiv=“Content-Type” content-'text/html; charset=iso-8859-1”>
<link href=“format.css" re ^“stylesheet" type="text/css">
</head>
<script language-javascript” SRC=“startup.js”></script>
<script language-'javascript” SRC-‘lastname.js”></script>
<script language-javascript” SRC=“search.js”></script>
<body OnLoad=“initiaiize()">
<table bordercolor=“#111111" height=“2” celIspacing=‘‘O" cellpadding=“O” width=“100%”
border="0">

<tr>
<td align-left” bgcolor=“#ffffcc" rowspan=u2" width-‘200">

</td>
<td align -‘center” bgcolor-'#ffffcc”><h1>
<div id=“jtitle" align=“center”></div>

</h1></td>
<td bgcolor=“#ffffcc” width-'200” valign=ubottom”><div id-‘volume"

align=“right”></div></td>
</tr>
<tr>

<td bgcolor-'#ffffcc” align=“center’’><h2><div align-'center”
id=Mdescription”></div></h2>

</td>
<td bgcolor="#ffffcc”><div id=“issn" align-'right”></div></td>

</tr>
<tr>

<td align=“left” valign=“top”>
<table bgcolor=#ffffcc width=“100%”>

<tr>
<td>

<p><stro ng > Article Search:</strongx/font></p>
<div id=ufirstNameSearch"x/div>
<div id=“lastNameSearch"x/div>
<pxa href='javascript: initialize()">Reset Search</p>

</td>
</tr>

</table>
</td>
<td colspan=“3" align=“center" valign="top">

<table borderColor="#3366cc” cellSpacing-T width=“100%” border=“3”>
<tr>

<td valign=utop" align-'left” bgcolor="#FFFFFF”>
<div id-‘article Li st” ><p align-'center”>LOADING<brximg

src-'loading.gif” boarder=‘‘O”></p></div>
</td>

</tr>

87

http://www.w3.org/TR/html4/loose.dtcl%25e2%2580%259d
http://asbbs.org/images/logo6.gif

</table>
</td>

</tr>
</table>

</body>
</html>

88

APPENDIX D

VISUAL BASIC .NET CODE

89

frmMain.vb

Imports System
Imports System.Data
Imports System.Data.SqlClient

Public Class frmMain
Dim dsAuthors As New DataSet()
Dim dsArticles As New DataSet()
Dim dsArtAuth As New DataSetf)
Dim ds Journal As New DataSetQ
Dim authorscounter As Integer = 0
Dim articlescounter As Integer = 0
Dim artauthcounter As Integer = 0
Dim journalcounter As Integer = 0

Private Function OpenXML(ByVal xmlfile As String)
Dim ds As New DataSet()
Dim fsReadXml As New System.lO.FileStream(xmlfile, IO.FileMode.Open,

IO. FileAccess. Read)
Try

ds. ReadXml(fsReadXml)
Catch ex As Exception

MessageBox.Show(ex.ToString())
Return Nothing
Exit Function

Finally
fsReadXml. Close()
End Try
Return ds

End Function

Private Function GetVarcharLength(ByVaI varchar As String)
Dim startat As Integer = Len(varchar) -1
Dim foundnumber As String = varchar.Substring(startat, 1)
Dim teststring As String
startat 1
Dim found ~ False
While Not found

teststring = varchar.Substring(startat, 1)
If teststring = “(“ Then

found = True
Else

foundnumber = teststring + foundnumber
End If

End While
Return Convert.Tolnt16(foundnumber)

End Function

Private Sub WriteXML(ByVal xmlfile As String, By Vai ds As DataSet)
Dim myFileStream As NewSystem.lO.FileStream(xmlfile, System.lO.FileMode.Create)
Dim myXMLWriter As New System.Xml.XmlTextWriterfmyFileStream,

System.Text. Encoding. Unicode)

90

ds.WriteXml(myXMLWriter)
myXml Writer. Close()

End Sub

Private Sub frmMain_Load(ByVal sender As System.Object, ByVai e As System.EventArgs)
Handles MyBase.Load

dsAuthors = OpenXML(uauthors.xml’j
dsArticles = OpenXML(uarticles.xmrj
dsArtAuth = OpenXML(“artauth.xmr)
dsJournal = OpenXMLCjournal.xml’j

Me.dgvArtAuth.DataSource = dsArtAuth
Me.dgvArticles.DataSource - dsArticles
Me.dgvAuthors. DataSource = dsAuthors
Me.dgvJournal.DataSource = dsJournal

Me.dgvArtAuth.DataMember = “row"
Me.dgvArticles.DataMember = “row"
Me.dgvAuthors.DataMember = “row"
Me.dgvJournal.DataMember = “row"

Me.dgvAuthors.Columns(0).ReadOnly = True
Me.dgvArticles.Columns(0).ReadOnly = True
Me.dgvJournal.Columns(O).Readonly = True

For Each column As DataGridViewColumn In dgvArticles.Columns
Me.cboArticlesColumn. Items. Add (col u mn. Head erText)
Me.cboArticlesColumnAnd.ltems.Add(column.HeaderText)

Next
For Each column As DataGridViewColumn In dgvAuthors.Columns

Me.cboAuthorsColumn.ltems.Add(column.HeaderText)
Me.cboAuthorsColumnAnd.ltems.Add(column.HeaderText)

Next
For Each column As DataGridViewColumn In dgvJournal.Columns

Me.cboJournalColumn.ltems.Add(column.HeaderText)
Me.cboJournalColumnAnd.ltems.Add(column.HeaderText)

Next
For Each column As DataGridViewColumn In dgvArtAuth.Columns

Me.cboArtAuthColumn. Items. Add(column.HeaderText)
Me.cboArtAuthColumnAnd.ltems.Add(column.HeaderText)

Next

For Each xmlrow As DataGridViewRow In dgvAuthors.Rows
If Not lsDBNull(xmlrow.Cells(1).Value) Or xmlrow.Cells(1).Value <> ““ Then

Me.lsbAuthors.ltems.Add(xmlrow.Cells(1).Value +"" + xmlrow. Cells(2).Value)
End If

Next
For counter As Integer = 0 To dgvArticles.Rows.Count -1

If dgvArticles.ltem(1, counter).Value <>Then
Me.lsbArticles.ltems.Add(dgvArticles.ltem(1, counter).Value)

End If
Next

91

For counter As Integer = 0 To dgvJoumal.Rows.Count -1
If dgvJournal.ltem(1, counter).Value <> ““ Then

Me.cboJournal. Items. AddfdgvJournal. Item(1, counter).Value)
End If

Next

Me.cmdArtAuthFindNextEnabled = False
Me.cmdArticlesFindNextEnabled = False
Me.cmdAuthorsFindNext. Enabled = False
Me.cmdJournalFindNext.Enabled = False

End Sub

Private Sub cmdAuthorsSave_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdAuthorsSave.Click

Cursor = Cursors.WaitCursor
WriteXML(“authors.xml”, Me.dgvAuthors. DataSource)
Cursor = Cursors.Arrow

End Sub

Private Sub dgvAuthors_Cel!DoubleClick(ByVal sender As Object, ByVai e As
System. Windows. Forms. DataGridViewCellEventArgs) Handles dgvAuthors.CellDoubleClick

Dim currentrow As Integer = dgvAuthors.CurrentRow.lndex
Dim numrows As Integer = dgvAuthors.RowCount -1
Dim lastnumber As Integer = dgvAuthors.ltem(0, numrows - 1).Value
If currentrow = numrows Then

dgvAuthors.ltem(0, numrows).Value = lastnumber + 1
End If

End Sub

Private Sub dgvArticIes_CenDoubleC!ick(ByVal sender As Object, ByVai e As
System.Windows.Forms.DataGridViewCellEventArgs) Handles dgvArticles.CellDoubleClick

Dim currentrow As Integer = dgvArticles.CurrentRow.Index
Dim numrows As Integer = dgvArticles.RowCount -1
Dim lastnumber As Integer = dgvArticles.ltem(O, numrows - 1).Value
If currentrow = numrows Then

dgvArticles. !tem(0, numrows).Value = lastnumber + 1
End If

End Sub

Private Sub dgvJournal_CellDoubleClick(ByVal sender As Object, ByVai e As
System.Windows.Forms.DataGridViewCellEventArgs) Handles dgvJournal.CellDoubleClick

Dim currentrow As Integer = dgvJournal.CurrentRow.lndex
Dim numrows As Integer = dgvJournal.RowCount -1
Dim lastnumber As Integer = dgvJournal.ltem(0, numrows - 1).Value
If currentrow = numrows Then

dgvJournal.Item(0, numrows).Value = lastnumber + 1
End If

End Sub

Private Sub cmdArticlesSave_Click(ByVal sender As Sy stem. Object, ByVai e As
System.EventArgs) Handles cmdArticlesSave.Click

Cursor = Cursors.WaitCursor

92

WriteXMLC'articIes.xml”, Me.dgvArticles. DataSource)
Cursor = Cursors. Arrow

End Sub

Private Sub cmdArtAuthSave_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cm dArtAuth Save. Click

Cursor = Cursors.WaitCursor
WriteXMLC'artauth.xml”, Me.dgvArtAuth. DataSource)
Cursor = Cursors.Arrow

End Sub

Private Sub cmdJournalSave_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdJournalSave.Click

Cursor = Cursors.WaitCursor
WriteXML(“journal.xmr, Me.dgvJournal.DataSource)
Cursor = Cursors.Arrow

End Sub

Private Sub cmdAuthorsFind_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdAuthorsFind.Click

Cursor = Cursors.WaitCursor
Dim columntouse As Integer = Me.cboAuthorsColumn.Selectedlndex
Dim column and to use As Integer = Me.cboAuthorsColumnAnd.Selectedlndex
For Me.authorscounter = 0 To Me.dgvAuthors.RowCount-1

If dgvAuthors.ltem(columntouse, authorscounter).Value = Me. txtAuthors Look For. Text
Then

If Me.txtArticlesLookForAnd.Text =uu Or Me.txtArtAuthLookForAnd.Text =
dgvAuthors.ltem(columnandtouse, authorscounter).Value Then

dgvAuthors.ClearSelection()
dgvAuthors.Rows(authorscounter).Selected = True
Me.cmdAuthorsFindNextEnabled = True
Cursor = Cursors.Arrow
Exit Sub

End If
End If

Next
Cursor = Cursors.Arrow
MsgBoxfCan’t find anything that matches the search criteria.”)

End Sub

Private Sub cmdArticlesFind_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdArticlesFind.Click

Cursor = Cursors.WaitCursor
Dim columntouse As Integer = Me.cboArticlesColumn.Selectedlndex
Dim columnandtouse As Integer = Me.cboArticlesColumn And. Selected Index
For Me.articlescounter = 0 To Me.dgvArticles.RowCount -1

If dgvArticles.ltem(columntouse, articlescoun ter). Value = Me.txtArticles Look For. Text
Then

If Me.txtArticlesLookForAnd.Text =Or Me.txtArticlesLookForAnd.Text =
dgvArticles.ltemfcolumnandtouse, articlescounter).Value Then

dgvArticles.ClearSelection()
dgvArticles.Rows(articlescounter).Selected = True
Me.cmdArticlesFindNext.Enabled = True

93

Cursor = Cursors.Arrow
Exit Sub

End If
End If

Next
Cursor = Cursors.Arrow
MsgBox(“Can’t find anything that matches the search criteria.")

End Sub

Private Sub cmdArtAuthFind_Click(ByVal sender As Sy stem. Object, ByVai e As
System.EventArgs) Handles cmdArtAuthFind.Click

Cursor = Cursors.WaitCursor
Dim columntouse As Integer = Me.cboArtAuthColumn.Selectedlndex
Dim columnandtouse As Integer = Me.cboArtAuthColumnAnd.Selectedlndex
For Me.artauthcounter = 0 To Me.dgvArtAuth.RowCount -1

If dgvArtAuth.ltem(columntouse, artauthcounter).Value = Me. txtArtAuth Look For. Text
Then

If Me.txtArtAuthLookForAnd.Text = “u Or Me.txtArtAuthLookForAnd.Text =
dgvArtAuth.ltem(columnandtouse, artauthcounter).Value Then

dgvArtAuth.ClearSelection()
dgvArtAuth.Rows(artauthcounter).Selected = True
Me.cmdArtAuthFindNext. Enabled = True
Cursor = Cursors.Arrow
Exit Sub

End If
End If

Next
Cursor = Cursors.Arrow
MsgBoxf'Can’t find anything that matches the search criteria.”)

End Sub

Private Sub cmdJournalFind_C!ick(ByVal sender As Sy stem. Object, ByVai e As
System.EventArgs) Handles cmdJournalFind.Click

Cursor = Cursors.WaitCursor
Dim columntouse As Integer = Me.cboJournalColumn.Selectedlndex
Dim columnandtouse As Integer = Me.cboJournalColumnAnd.Selectedlndex
For Me.journalcounter = 0 To Me.dgvJournal.RowCount- 1S

If dgvJournal.ltemfcolumntouse, joumalcounter).Value = Me.txtJournalLookFor.Text
Then

If Me.txtJournalLookForAnd.Text =Or Me. txt Journal LookForAnd. Text =
dgvJournal.ltemfcolumnandtouse, journalcounterJ.Value Then

dgvJournal.ClearSelection()
dgvJournal.Rows(artauthcounter).Selected = True
Me.cmdJournalFindNext.Enabled = True
Cursor = Cursors.Arrow
Exit Sub

End If
End If

Next
Cursor = Cursors.Arrow
MsgBoxf'Can’t find anything that matches the search criteria.”)

End Sub

94

Private Sub txt Journal Loo kFor_TextC hanged (ByVai sender As System. Object, ByVai e As
System.EventArgs) Handles txtJournalLookFor.TextChanged

Me.cmdJournalFindNextEnabled = False
End Sub

Private Sub txtArtAuthLookFor_TextChanged(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles txtArtAuthLookFor.TextChanged

Me.cmdArtAuth Find Next. Enabled = False
End Sub

Private Sub txtAuth ors Loo kForJTextC hanged (ByVai sender As System. Object, By Vai e As
System.EventArgs) Handles txtAuthorsLookFor.TextChanged

Me.cmdAuthorsFindNext. Enabled = False
End Sub

Private Sub txtArticlesLookFor_TextChanged (ByVai sender As System. Object, ByVai e As
System.EventArgs) Handles txtArticlesLookFor.TextChanged

Me.cmdArticlesFindNextEnabled = False
End Sub

Private Sub cboAuthorsColumnAnd_Selected!ndexChanged(ByVal sender As Sys tern. Object,
ByVai e As System.EventArgs) Handles cboAuthorsColumnAnd.SelectedlndexChanged

If Me.cboAuthorsColumn.Selectedlndex = Me. cboAuthorsColumn And. Selected! ndex Then
Me.cboAuthorsColumnAnd.SelectedValue = ““

End If
End Sub

Private Sub cboArticlesColumnAnd_SelectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboArticlesColumn And. Selected I ndexChanged

If Me.cboArticlesColumn.Selectedlndex = Me.cboArticlesColumnAnd.Selectedlndex Then
Me.cboArticlesColumnAnd.SelectedValue =

End If
End Sub

Private Sub cboArtAuthColumnAnd_SelectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboArtAuthColumnAnd.SelectedlndexChanged

If Me.cboArtAuthColumn.Selectedlndex = Me.cboArtAuthColumnAnd. Selectedlndex Then
Me.cboArtAuthColumnAnd.SelectedValue =

End If
End Sub

Private Sub cboJournalColumn_SeIectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboJournalColumn.SelectedlndexChanged

If Me.cboJournalColumn.Selectedlndex = Me.cboJournalColumnAnd.Selectedlndex Then
Me.cboJournalColumn.SelectedValue =

End If
End Sub

Private Sub cboAuthorsColumn_Selected!ndexChanged(ByVal sender As System.Object,
By Vai e As System.EventArgs) Handles cboAuthorsColumn. Selected! ndexChanged

If Me.cboAuthorsColumn. Selectedlndex = Me.cboAuthorsColumnAnd.Selectedlndex Then
Me.cboAuthorsColumn.SelectedValue =

End If

95

End Sub

Private Sub cboArticlesColumn_SelectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboArticlesColumn.SelectedlndexChanged

If Me.cboArticlesColumn.Selectedlndex = Me.cboArticlesColumnAnd.Selectedlndex Then
Me.cboArticlesColumn.SelectedValue =

End If
End Sub

Private Sub cboArtAuthColumn_SelectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboArtAuthColumn.SelectedlndexChanged

if Me.cboArtAuthColumn.Selectedlndex = Me.cboArtAuthColumnAnd.Selectedlndex Then
Me.cboArtAuthColumn.SelectedValue = ““

End If
End Sub

Private Sub cboJournalColumnAnd_SelectedlndexChanged(ByVal sender As System.Object,
ByVai e As System.EventArgs) Handles cboJournalColumnAnd.SelectedlndexChanged

If Me.cboJournalColumn.Selectedlndex = Me.cboJournalColumnAnd.Selectedlndex Then
Me.cboJournalColumnAnd.SelectedValue = ““

End If
End Sub

Private Sub mnuFileExit_Click(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles mnuFileExit.Click

Me.Close()
End Sub

Private Sub cmdAuthorAdd_CIick(ByVal sender As System.Object, ByVai e As
System.EventArgs) Handles cmdAuthorAdd.Click

If dsAuthors.Tables("firstname'j.Rows(0).!tem(“notnull”) = "no” Then
If Me.txtFirstName.Text =““ Then

MsgBox(‘‘A first name is required”)
Exit Sub

End If
End If
If dsAuthors.Tables(ulastname”).Rows(0).ltem(unotnuH'j = “no" Then

If Me.txtLastName.Text = ““ Then
MsgBox(“A last name is required")
Exit Sub

End If
End If

Dim dsrow As DataRow
dsrow = dsAuthors.Tables(“row'j.NewRow
Dim counter = 0
Dim nextrow As Integer = Me.dgvAuthors.Rows.Count -1

dsrowfauthorid") = dgvAuthors.ltem(0, nextrow - 1).Value + 1
dsrow(“firstname’j = Me.txtFirstName.Text
dsrow(“lastname’j = Me.txtLastName.Text
ds Authors. Tab les (“row"). Rows. Add (dsrow)
WriteXML(“authors.xmr, Me.dsAuthors)

96

Me.dgvAuthors.DataSource = dsAuthors
Me.dgvAuthors.DataMember = "row"
While counter < Me.lsbArticles.Selectedltems.Count

ds row = dsArtAuth.Tables(“row”).NewRow
Dim inpk As Boolean = False
For Each pkrow As DataRow In dsAuthors.Tables(“row").Rows

If pkrow. Item (“authorid") = dgvAuthors.ltem(0, nextrow).Value _
And pkrow.ltemf'articleid”) = Me.lsbArticles.Selectedlndices(counter) Then

inpk = True
Exit For

End If
Next
If Not inpk Then

dsrow(“articleid") = Me.lsbArticles.Selectedlndices(counter)
dsrow(“authorid") - dgvAuthors,ltem(0, nextrow).Value
dsArtAuth.Tables(“row”).Rows.Add(dsrow)

End If
counter += 1

End While

WriteXML(“artauth.xml”, Me.dsArtAuth)
Me.dgvArtAuth.DataSource = dsArtAuth
Me.dgvArtAuth.DataMember - "row"

End Sub

Private Sub cmdArticleAdd_CIick(ByVa! sender As System.Object, ByVai e As
System.EventArgs) Handles cmdArticleAdd.Click

If dsArticles.Tables(“articleid”).Rows(0).ltem("notnuH") = “no" Then
If Me.txtTile.Text = ““ Then

MsgBox(“An article title is required”)
Exit Sub

End If
End If
If dsArticles.Tables(“htmr).Rows(0).ltem(“notnuH”) = "no” Then

If Me.txtHTMLFile.Text = ““ Then
MsgBox(“A html file name is required”)
Exit Sub

End If
End If
If dsArticles.TabIes("pdf’).Rows(0).ltem("notnuir’) = "no" Then

If Me.txtPDFFile.Text = ““ Then
MsgBox("An pdf file name is required")
Exit Sub

End If
End If
If dsArticles.Tables("pages”).Rows(0).ltem(“notnuir) = “no" Then

If Me.txtHTMLFile.Text =Then
MsgBox(“The number of pages the article covers is required")
Exit Sub

End If
End If

Dim dsrow As DataRow

97

dsrow = dsArticles.Tables(“row").NewRow
Dim counter - 0
Dim nextrow As Integer = Me.dgvArticles.Rows.Count-1

dsrowfauthorid”) = dgvArticles.ltem(O, nextrow -1).Value + 1
dsrow(“title") = Me.txtTile.Text
dsrow(“htmrj = Me.txtHTMLFile.Text
dsrow(“pdf) = Me.txtPDFFile.Text
ds row(“ pages”) = Me.txtPages.Text
dsrow(“journalid’j = Me.cboJournal.Selectedlndex
ds Articles.Tables(“row”). Rows. Add (dsrow)
WriteXMLC'articles.xml”, Me.dsArticles)
Me.dgvArticles. DataSource = dsArticles
Me.dgvArticles.DataMember = Tow"
While counter < Me.lsbAuthors.Selectedltems.Count

dsrow = dsArtAuth.Tables(“row").NewRow
Dim inpk As Boolean = False
For Each pkrow As DataRow In dsArticles.Tables(Tow ’j.Rows

If pkrow.ltemf'authorid”) = dgvArticles.!tem(O, nextrow).Value _
And pkrow.Item(“articleid”) = Me.lsbAuthors.Selectedlndices(counter) Then

inpk = True
Exit For

End If
Next
If Not inpk Then

dsrow(“articleid”) = Me.lsbAuthors.Selectedlndices(counter)
dsrow(“authorid’j = dgvArticles.ltem(O, nextrow).Value
ds ArtAuth.Tablesfrow”). Rows. Add (dsrow)

End If
counter += 1

End While

WriteXML(“artauth.xml”, Me.dsArtAuth)
Me. dgvArtAuth. DataSource = dsArtAuth
Me.dgvArtAuth.DataMember = “row”

End Sub

Private Sub cmd Journal Add_Click(ByVal sender As Sy stem. Object, ByVai e As
System.EventArgs) Handles cmdJournalAdd.Click

If dsJournal.TablesC'articleid’j.RowsfOj.ltemC'notnull") = "no’’ Then
If Me.txtJournalTitle.Text = ““ Then

MsgBoxf'A jnournal title is required”)
Exit Sub

End If
End If
If dsJoumal.Tables(unumber").Rows(0).1temCnotnuir) = “no” Then

If Me.txtNumber.Text = ““ Then
MsgBox(“A hournal number is required”)
Exit Sub

End If
End If
If dsJournal.Tables(“yearn).Rows(0).ltem(unotnuirj = “no" Then

If Me.txtYear.Text = ““ Then

98

MsgBoxf'A journal publication year is required”)
Exit Sub

End If
End If
If dsJournal.Tables(“issn”).Rows(0).ltem(“notnuirj = “no" Then

If Me.txtlSSN.Text = ““ Then
MsgBox(“The journal ISSN is required”)
Exit Sub

End If
End If
If dsJournal.Tables(“html”).Rows(0).ltem(“notnuH”) = “no" Then

If Me.txtHTMLFolder.Text = ““ Then
MsgBox(“The folder containing the journal's html files is required”)
Exit Sub

End If
End If
If dsJournal.Tables(“pdr).Rows(0).ltem(‘'notnuir) = “no" Then

If Me.txtPDFFolder.Text = "“ Then
MsgBoxfThe folder containing the journal's pdf files is required”)
Exit Sub

End If
End If
If dsJournal.Tables(“description”).Rows(0).ltem(“notnuir) = "no” Then

If Me.txtDescriptions.Text =Then
MsgBoxfThe folder containing the journal’s pdf files is required”)
Exit Sub

End If
End If

Dim dsrow As DataRow
ds row = dsJournal.Tables(“row”).NewRow
Dim counter = 0
Dim nextrow As Integer = Me.dgvJournal.Rows.Count -1

dsrow(“journalid”) = dgvJoumal.ltem(0, nextrow - 1).Value + 1
dsrow(“number”) = Me.txtJournalTitle.Text
dsrow("year”) = Me.txtYear.Text
dsrow("issn") = Me.txtISSN.Text
dsrow(“description”) = Me.txtDescriptions.Text
dsrow("html") = Me.txtHTMLFolder
dsrowf'pdf”) = Me.txtPDFFolder
dsJoumal.Tables(“row").Rows.Add(dsrow)
WriteXMLC'journal.xmr, Me.dsJournal)
Me.dgvJournal. DataSource = dsJournal
Me.dgvJournal. DataMember = “row"

End Sub
End Class

99

REFERENCES

Bos, B. (July 11, 1997) XML Representation of a Relational
Database. Apri 12, 2008, from
http://www.w3.org/XML/RDB.html

Bray, T., Maier, E., Paoli, J., Sperberg-McQueen, C. M.,
Yergeau, F. (2006, August 16) Extensible Markup
Language (XML) 1.0 (Fourth Edition). W3C
Recommendation. Retrieved March 29, 2008, from
http://www.w3.org/TR/REC-xml/

Chamnerlin, D., & Saracco, C. M. (April 6, 2006) Query DB2
XML data with XQuery. April 17, 2008, from
http://www.ibm.com/developerworks/db2/library/techart
icle/dm-0604saracco/

Clark, J., DeRose, S. (November 16, 1999) XML Path
Language (XPath). April 12, 2008 from
http://www.w3.org/TR/xpath

Kristjansson, M. (September 2004) Building with Oracle XML
Database. April 12, 2008, from
http://www.oracle.com/technology/oramag/oracle/04-
sep/o54xml.html

Microsoft. (2008a) DataSet.WriteXml Method. April 19, 2008
from, http://msdn2.microsoft.com/en-
us/library/system.data.dataset.writexml(VS.71).aspx

Microsoft. (2008b) Walkthrough: Reading XML Data into a
Dataset. April 19, 2008, from
http://msdn2.microsoft.com/en-
us/library/ekw4dh3f(VS.71).aspx

Refsnes Data. (2008) XML Parser. March 15, 2008, from
http://www.w3schools.com/XML/xml_parser.asp

Sun Microsystems. (2008) XML Functions. April 17, 2008,
from http://dev.mysql.com/doc/refman/5.1/en/xml-
functions.html

typeof [JavaScript operator]. April 5, 2008 from
http://www.adp-gmbh.ch/web/j s/operators/typeof.html

Wikipedia. (April6, 2008) XML database. April 12, 2008
from http://en.wikipedia.org/wiki/XML_database

100

http://www.w3.org/XML/RDB.html
http://www.w3.org/TR/REC-xml/
http://www.ibm.com/developerworks/db2/library/techart
http://www.w3.org/TR/xpath
http://www.oracle.com/technology/oramag/oracle/04-sep/o54xml.html
http://msdn2.microsoft.com/en-us/library/system.data.dataset.writexml(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/ekw4dh3f(VS.71).aspx
http://www.w3schools.com/XML/xml_parser.asp
http://dev.mysql.com/doc/refman/5.1/en/xml-functions.html
http://www.adp-gmbh.ch/web/j
http://en.wikipedia.org/wiki/XML_database

XML:DB Initiative. (May 7, 2003) XML:DB Initiative for XML
Databases. Retrieved April 17, 2008, from
http://xmldb-org.sourceforge.net/

101

http://xmldb-org.sourceforge.net/

	Offline searchable database
	Recommended Citation

