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Abstract

Factorization, and primality testing have blossomed in recent decades. This an

cient factoring problem has a very important application in our modern society. The 

security of information transmission over the internet is dependent on the difficulty of 

factoring large numbers. Therefore this subject has become of great interest to govern

ment, business and those who are concerned with the secure transmission of information.

This paper reviews different methods of factoring. The focus will be on the 

two most efficient algorithms which are the Quadratic Sieve and Number Field Sieve. 

Background information such as definitions and theorems are given to help understand 

the concepts behind each method. Several examples are also given to help to illustrate 

the factorization process.
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Chapter 1

Introduction

The concept of prime numbers is quite old. It was first extensively studied by 

the ancient Greek mathematicians as early as 500 BC. By the time Euclid wrote the 

Elements in 300 BC, the concept of factorization of a composite number already existed. 

It is surprising that such an ancient topic has a very important application in our modern 

age. It is the USA public key crypto-system that I am talking about. The name “RSA” 

comes from the initials of the originators, R.L. Rivest, A. Shamir and L.M. Adelman. 

RSA is one of many methods of encryption used to transmit secure information. It is 

based on Euler’s Theorem. The security of this method relies on the tremendous difficulty 

of factoring very large numbers.

The RSA encryption process starts with two distinct large primes p and q and 

their product n=pq. Let e be an integer that it is relatively prime to 0(n) where 0(n) is 

the Euler phi-function. From number theory we know there exists a unique d mod ^(n) 

such that e x d = 1 mod $(n). The number e is called the encryption exponent while d is 

the decryption exponent. Only n and e are made available to the public, in particular to 

the sender. While the receiver is the one that created n from p and q. d from e through 

e x d = 1 mod The receiver will use the private key d to retrieve the message.

Before a message is sent out, it is first converted to a number. Suppose each 

letter is assigned to a number, then a string of letters will be replaced with a string 

of numbers. To make a string of numbers easy to handle, it is neccessary to keep the 

numbers in blocks. Each block is then converted to a single number. Let M < n be a 

numerical version of the message block; it should be chosen relatively prime to n. The 
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sender uses n and e to encrypt the number M. Let E be the encrypted version of the 

message, defined by:

E = AL (mod n)

To decode the message, one simply computes Ed (mod n). To see how this 

works, we first recall Euler’s theorem that says if M and n are relatively prime positive 

integers then — 1 mod n. The original message M is then recovered by:

Ed = (Me)d = Med = M1+k^ = Mx = M x l(mod n).

Notice that the private key d is needed above to reveal M . Since e x d = 1 

mod 0(n), d is just the multiplicative inverse of e modulo 0(n) provided 0(n) is known. 

Because = (p — 1) x (g — 1), ^(n) can be calculated easily if p and q are known. The 

problem of decrypting the message therefore boils down to the factorization of n. The 

numbers p and q are chosen to be so large that modern methods cannot factor n = pq 

in a reasonable amount of time. If an adversary were able to factor n, then the system 

would be broken.

In chapters 2 and 3, we look at different methods of factorization which include 

Trial Division, Fermat’s algorithm, Pollard’s Rho method, Pollard’s p—1 method, Dixon’s 

algorithm, Quadractic Sieve and General Number Field Sieve.
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Chapter 2

Different Methods of Factorization

2.1 Definitions and Theorems

We start out this chapter with some of the definitions and theorems that we are 

going to use repeatly throughout this paper. The following definitions and theorems can 

be found in the Elementary Number Theory book by James K. Strayer.

Definition 2.1. A positive integer is said to be y-smooth if it does not have any prime 

factor exceeding y.

Definition 2.2. Let n G Z with n > 0. The Euler phi-function, denoted ^(n), is the 

function defined by

=] {a; € Z : 1 < x < n; gcd(x, n) = 1} |, where | | denotes cardinality.

Definition 2.3. Let x e R with x > 0. Then ir(x) is the function defined by

ir(x) =| {p : p is prime; 1 < p < a:} | .

Definition 2.4. Let p be an odd prime number and let a G Z with p { a. The Legendre 

symbol, denoted (^), is 1 if a is a quadratic residue modulo p. That is, if x2 = a(mod p) 

for some x G Z. Otherwise, it is — 1 if a is a quadratic nonresidue modulo p.

Theorem 1. (Fermat’s Little Theorem)

If p is an odd prime then
2P 1 = l(mod p).
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Theorem 2. (General Form of Fermat’s Theorem)

If p is a prime which does not divide b, then

= l(mod p).

Theorem 3. (Euler’s Theorem)

Let a,m G Z with m> 0. If gcd(a,m)=l, then

0*™ = ^mod

Theorem 4. (Euler’s Criterion)

Let p be an odd prime number and let a & Z with p\ a. Then

(—) = a(p-1)/2 (mod p).

Theorem 5. (Prime Number Theorem)

7rfa;)lna;
lim ——------ = 1.

x

For large x, the quantity = i is close to 1. That is to say the quantity rr(x) may

be approximated by

Theorem 6. (Chinese Remainder Theorem)

Let po, • • • ,p(_i be positive, pairwise coprime moduli with product P = UtoP** Let 

I respective residues Xi also be given. Then the system comprising the I relations and 

inequality

x = Xi(mod Pi),0 < z < P

has a unique solution. Furthermore, this solution is given explicitly by the least nonneg

ative residue modulo P of
i-l

XiOiPi,

i=0

where Pi — P/pi, and the ai are inverses defined by aiPi = l(modpi).

2.2 Trial Division

Trial division is our first and simplest method for factoring an integer. Let n be 

the number to be factored. Trial division is based on the fact that if n has a factor other 
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than 1 and itself, then n must have a factor less than y/n. We start out with a list of 

primes less than or equal to y/n and try to divide them into n repeatedly. If none of the 

primes in the list divides into n evenly, then n is a prime. Otherwise, each time a prime 

divides n, we replace n by its quotient with that prime. Once we reach the point where 

the remaining unfactored portion is less than the square of the prime that we last used, 

then the unfactored portion is a prime, or else it is 1. In either case the factorization is 

complete.

For example, let n — 3948, y/n « 62. We are going to start out with 2. Since 

2 is a factor of n, we divide 2 out and the quotient is 1974. We realize that 2 still goes 

into n. We divide by 2 again and we have the quotient 987. Since 2 doesn’t go into 

the remaining unfactored portion, we try the next prime 3. We divide 987 by 3 and the 

quotient is 329. Continuing in the same manner we find the next prime factor that goes 

into the remaining portion is 7 and the quotient is 47. Realizing that 47 < 72, then 47 

must be a prime. Therefore n = 22 x 3 x 7 x 47.

In this method, all trial divisors do not have to be primes. Here is an example. 

Let n = 774 be the number to be factored. We trial divide by 2 and realize it is a divisor. 

Divide 2 into n and the quotient is 387. Since 2 does not go into the remaining unfactored 

portion, we try the next number which is 3. Divide 3 into 387 and the quotient is 129. 

The factor 3 goes into 129 one more time and the quotient is 43. This time we just divide 

4, 5, 6 • • • consecutively into n without worrying whether they are primes. We see that 

6 does not go into n evenly just simply means that prime factors of 6, which is 2 and 3 

are already factored out of n previously. So dividing by 6 is a waste of time but it saves 

us from checking whether 6 is prime or not. The next trial is 7 and 72 >43, so therefore 

43 is a prime. We have the complete factorization 774 = 2 x 32 x 43. This version may 

take longer but it does end up with the factorization of n and is easier to apply. Since all 

the primes are odd except 2, we could compromise using 2 and all the odd numbers for 

trial divisors to speed up the process.

Trial division can be used for factoring or primality testing provided the number 

n is not too large. With a modern workstation, a number from 13-19 digits base 10 can 

be factored or proven to be a prime in less than one minute. Trial division can also be 

used to recognize smooth numbers. Recall that a number is said to be B-smooth if all of 

its primes in the factorization are less than or equal to B.
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So how long does it take to factor a number n using trial division? The worst

case is when n is a prime itself since we have to trial divide all numbers up to y/n. If we 

only use prime divisors then it would take approximately Tt(y/n) « y/n 
ln(yn)

divisions, by the prime number theorem. If we only use 2 and all the odd numbers as 

trial divisors then it would take approximately y/n/2 divisions.

2.3 Fermat’s Algorithm

Let n be the number to be factored. If n can be written in the form n — x2 — y2, 

then n can be immediately factored as (x+y)(x — y). Itx — y > 1, then we have succeeded 

in factoring n into two smaller factors. We notice that if n is odd and is also a product 

of two integers, then n can always be expressed as the difference of two perfect squares. 

To see this, let n = ab, where a, b are positive odd integers. Let

x = (a+b)/2 and y = (a — b)/2.

Then x2 — y2 = (a+b^ = ab = n. Fermat’s algorithm starts with x from |\/n|,

+ 1j • • • ^d checks whether x2 — n is a square, say y2. If that is the case, then 

x2 — y2 = n or n — (x + y)(x — y\

For example, let n = 551 be the number to be factored, [v<551] = 24. We notice 

that 242 - 551 = 52 or (24 + 5) (24 - 5) = 551. Therefore 551 = 29 x 19.

If a and 6 are primes, there will be a 50-50 chance that n will be factored. To 

see how this works we notice that with the above conditions, we have x2 = y2 (mod a) 

and x2 = y2 (mod &). Therefore a | x2 — y2 and b | x2 — y2, equivalently a | (x — y) or 

a | x + y. Also b | (x — y) or b ] x 4- y. We have four cases to consider,

Case 1:

If a | x — y and b | x — y, then n | x — y. 

and gcd(n, x — y) = n. We do not have a factoring of n.

Case 2:

If a [ a; — y, a\x + y and 6 | a: + y, bjx — y, 

then gcd(n, x — y) = a. We have found a factor a of n.
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Case 3:

If a | sc -F7/, a\x — y and b \ x — y, b] x + y,

then gcd(n, x — y) = b. We have found a factor & of n.

Case 4:

If a | a; + y, a { a; — y and 6 | a: + y, bjx — y,

then gcd(n, x — y) = 1. We do not have a factoring of n.

2.4 Pollard’s Rho Method

The Pollard Rho factorization algorithm was introduced in 1975 [CP01]. It 

works well for numbers that have moderately sized prime divisors, around 105 to IO10. 

When the number to be factored has prime divisors that are too big for trial division, this 

method may be useful since it is easy to understand and does not take a lot of storage in 

the computer. Once all the prime divisors are bigger than 1012, we have to rely on other 

methods like the Quadratic Sieve Algorithm, the General Number Field Sieve, etc.

Let n be a composite integer that has a nontrivial divisor p. As an example, we 

let n = 1313. Consider a simple irreducible polynomial in x, like f(x) = x2 +1. Starting 

with a random integer xo = 1, we can create a sequence from the recursive definition:

Xi = m°d n.

We get the sequence rci = 2, X2 = 5, £3 — 26, X4 = 677, x$ — 93, a?6 = 772, Xy = 1196, =

560, xg = 1107,3Jio = 421, acn = 1300, £12 = 170, #13 = 15,0:14 = 226,0:15 = 1183, —

Since n is finite, there are only finite number of congruence classes modulo n. 

The above sequence will eventually have a repeat term and become cyclic. This behavior 

is therefore associated with the oval part of the Greek letter “p”, whereas the the precyclic 

part is associated with the tail of the “p”. According to the birthday paradox [CP01], 

we expect to have a repeat term in approximately \/n steps, which is about the same as 

trial division.

Here is a better way. Choose a factor p of n and denote yi = Xi mod p. If we 

knew p (for example, p = 13) we could create the y^s as follows, where yf+i = f (yj(mod 
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p)- yo = 1,2/1 = Tyyz = 5,2/3 = 0,p4 = l,y5 = 2,y6 = 5,y7 = 0,y8 = 1,2/9 = 2,yio = 

5,3/ii=O-«-
Since there are less congruence classes in modulo 13, we see more repeated terms 

in the y/s. It only takes 4 steps for the sequence to repeat this time. When yi = yj, then 

Xi = a?j(mod p). Therefore p divides Xi — Xj. Since p is also a factor of n, there is a good 

chance that gcd(n, Xi — xj) is a non-trivial divisor of n. However, since we do not know 

the factor p, we have no access to the yi sequence, therefore we have no idea when yi will 

equal to yj. Note that we do not need to know the values of yi and yj, we just need to 

determine two indices z, j where yi = yj.

So how do we go about searching for pairs (z,j) such that yi = yj in order 

to compute gcd(n,Xi — Xj)? The first cycle-finding method is called the Floyd cycle

finding algorithm [CP01]. Suppose i < j. We notice that if yi = yj, then for m > i, 

Vm = 2/m+G-i) = ym+2(j-iy = ym+n(jy Let m > i such that m is divisible by 

(j — z), so ym = y2m- The basic idea of the Pollard’s Rho method is that instead of 

searching for all pairs of (i,j) and computing gcd(xi~xj,n), we will compute the sequence . 

gcd(xi — X2i, n) until something other than 1 or n is found. One of the advantages of 

this method is that very little space is required. We only need to keep in memory the 

number n which is the number to be factored and the current pair x^ and %2i- Even 

though many ajs need to be calculated twice, it is much better than trying to store all 

the rr/s in an array. With this method, we are able to factor n = 1313 successfully by 

finding gcd(x8 - x4, n) = gcd(56O - 677,1313) = 13. Therefore 1313 = 13 x 101.

Another form of a cycle-finding algorithm is due to R.P. Brent [Bre89]. As in 

the Floyd method, it does not store all the xt’s but looks at the differences: aq — x8, x8 — 

a;6,xs — x?,--- ,— Xj where (2n+1 — 2n_1 < j < 2n+1 — 1).

This gives a systematic way of choosing a lot of pairs (i,j) to compute the 

gcd(%i — Xj, n) by using each difference j — i once and letting i —> oo at the same time. 

With this method, we are able to factor n = 1313 successfully by finding gcd^x^—x^, n) = 

0cd(1196 - 26,1313) = 13. Therefore 1313 = 13 x 101.

In both the Brent and the Floyd method, we have to compute gcd(xi — Xj, n) 

many times to find a non-trivial divisor of n. We can save work by doing it in blocks. For 

example, we can compute ten successive values of (xi — Xj) mod n and then take the gcd 

of n with that product. Sometimes the gcd will be n. If that is the case, we may have 
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to go back to take the gcd of each factor individually with n in order to recover p. For 

example, (xi — a;./)(mod 1313)=0 with 1 < i < 15 and 3 < j < 26. The gcd of 1313 

with the product of these ten successive values of (xi—xj) will therefore be 1313. By going 

back to take the gcd of each factor with 1313, we are able to factor 1313 by using either 

gcd(xs — X7,n) = pcd(1196 —26,1313) = 13 or gcd(xT~~xi5,n) = gcd(1196 —1183,1313) = 

13.

2.5 Pollard’s p-1 Method

This algorithm was invented by John Pollard in 1974 and based on Fermat’s 

Little Theorem which says that if p is an odd prime, then 2P_1 = l(mod p). Therefore 

if p — 1 is a factor of M, then we also have 2M = l(mod p) due to Fermat’s Theorem. 

Equivalently p | 2M — 1. Let n be the integer to be factored and let p be one of its prime 

factors. We have p divides both n and 2M — 1. There is a good chance that n does not 

divide 2^ — 1, in which case, gcd (2M — l,n) is a nontrivial factor of n. To speed up 

the computation, we can take gcd((2^ — l)mod n, n) instead of gcd(2M — l,n). Since 

exponentiation modulo n is very fast, this algorithm can find potential factors with great 

efficiency. Pollard’s idea is to choose M so that it has many factors that are 1 less than a 

prime number. The suggestion is to let M be the least common multiple of the integers 

up to B for some choice of B. Therefore M = Zcm(l, 2, • • • B)=J{(prt) | pa < B}.

For example, let n = 527 be the number to be factored, let B = 10. The least 

common multiple of the integers up to 10 is M(10) = 23 x 32 x 5 x 7. We want to 

compute gcd (223 x32 x5x 7(mod 527), 527). Unfortunately this gcd turns out to be 527. 

For many cases, we can increase the bound B. In this case it does not work because 
((223)32)5 = 1 mod 527. The gcd in this case will always end up to be n no matter how 

high we increase the bound B. Notice that there is nothing special about the number 2 

in this method. The number 2 can just be replaced with any a such that it is relatively 
prime to n. This time we want to try a = 3, gcd (323x32x5x7(mod 527), 527) = 31. 

Therefore 527 = 31 x 17.

We notice from the above axample that this method sometimes fails to give 

nontrivial factor of n. The pcd(a^ — l(mod n),n) sometimes yields 1 or n. In practice, 

the situation that happens more often is that the gcd ( aM — l(mod n),n) — 1 and we 

usually deal with it by expanding the bound B and applying an extension called the
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second stage. Let B' be the second bound, bigger than B. Let all the primes in (B, B'] 

be Qi < Q2 < •••. Previously we use the exponents M(B). We now continue with 

all the exponents of the form QM(B) with Q G (B,B']. Notice that QM(B) | M(Bf). 

Therefore what we are doing here is not the same as raising bound B to B' and trying to 

compute gcd ( - l(mod n), n) as above. What we are doing now is trying to retrieve

more factors p of n with p — 1 of the form Qm where m is a factor of M(B). Notice that 

2^^ (mod n) is fairly easy to find by recursion. For example, after we find the initial value 

2(2iM(jB)(mod n), 2<2aM^(mod n) can be found simply by multiplying 2<21JWIB) (mod n) 

with (mod n). Basicly it is inexpensive to do this additional stage since the

differences of the Qi are much smaller than Qi themselves and all the can

be precalculated.

The two above algorithms, Pollard Rho and Pollard p—1, are called probabilistic 

algorithms. We are no longer sure that they will succeed. However, when they don’t 

succeed, we can often change parameters. It is an art to find the right parameter for 

these algorithms. For the Pollard Rho method, we can replace the function x2 4-1 with 

any irreducible like x2 4- 2 or x2 4- 3. We can vary the parameter for the Pollard p — 1 

method by changing the base a and the smoothness bound B or apply second stage as 

described above.

2.6 Dixon’s Algorithm

In the next two topics, we are going to focus on two methods that are considered 

the best for factoring much larger numbers. These two methods are the Quadratic Sieve 

and the Number Field Sieve. Before we go on to discuss the Quadratic Sieve, we are 

going to focus on a similar yet easier method called Dixon’s algorithm. It is based on 

Fermat’s idea that if we can find two random integers x and y such that a;2 = y2 (mod 

n) then we can often factor n by finding gcd(x — y,ri).

Dixon’s Algorithm starts by letting f(x) = a;2 (mod n). If we can find x such that 

/(re) = y2 is a perfect square over the integers, then n may be factored since a;2 = y2(mod 

n). A perfect square f(x) will be achieved through the means of exponent vectors, which 

we will now describe. If f(x) is factored completely, then it has the form

/(*) =Pix XP22 x ••• xpj
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We call (ei, e2,■ ■ ■ , em) the exponent vector of f(x)- In the case that f(x) is a perfect 

square, all the e/s will be even; usually most of them will be zero in any factorization of 

f(x). The idea is to force this to happen by multiplying different f(x)'s together. For 
example, if f(xi) = p? x pf x • - - x p$p, f(x2) = pf1 x $ x • • • x p$p, then f (®ix2) = 

f (xi)f (^2) = Pi1+dl xP2a+d2 x ■ ■ • xp^+dm. Let v(x) denote the exponent vector (mod 2) 

where v(x) = (ei (mod 2), • • • em(mod 2)) if f(x) = f(x) = pf1 xp^2 x • • • x p%p. Therefore 

f(xiX2) = f(xi)f(x2) is a square if and only if Ylv(xi) has zero entries.

Our plan is to choose a suitable smoothness bound B, then find several f(x) 

that are B-smooth. We will record their exponent vectors v(x). Then we will do Gaussian 

elimination modulo 2 on these vectors to find a subset whose sum is zero. From a linear 

algebra perspective, our goal boils down to finding linear dependency of the vectors v(x). 

We know that a set of vectors must be linearly dependent when there are more of them 

than the dimension of the vector space. Therefore a sufficient condition for the existence 

of a product of f(a;)’s to be square is having at least ir(B) 4-1 entries of f(x) that are 

B-smooth.

After we find a collection of v(xi) where the sum of their entries are zero (mod 

2), the product of corresponding /(xifs will be a perfect square. Combining the f(xi) 

we have:

y2 = f(xi) x 7(2:2) x • • • x f(xk) = x2 x xz x • ■ • x xk (mod n)

or

y2 = (3:12:2 • • ■ oife)2 (mod n).

Use Fermat’s method by computing gcd(y — (xix2-- to figure out the

factor of n. For example, let n = 589 be the number to be factored and B ~ 10. We 

only want to keep the f(x) that factor into primes smaller than 10: 7(20) = 24 x 52, 

/(21) = 32 x 72, 7(24) = 26 x 32, 7(25) = 22 x 32, 7(27) = 22 x 5 x 7, 7(29) = 22 x 32 x 7, 

7(33) = 22 x 53 , 7(34) = 34 x 7.

Right away we can see that 7(24) x 7(25) = (24 x 32)2 is a perfect square. 

Therefore 19 = gcd(24 x 25 — 24 x 32,589) is a factor of n — 589. Similarly we can pair 

7(34) with 7(29) which gives us (2x33 x7)2. Therefore 19 ~ gcd(34x29 — 2 x 33 x 7,589).

The problem with this method is finding B-smooth values of f(x). For a random 

x, the chance for f(x) to be factored completely over the factor base is small if n is 
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large. That is why the next method, the Quadratic Sieve, becomes an improvement of 

Dixon’s Algorithm. Nevertheless, for large enough, values of n, Dixon’s method beats 

Trial Division as well as the two Pollard methods.

2.7 Quadractic Sieve

As mentioned earlier, the Quadractic Sieve is associated with Dixon’s Algorithm 

but a sieving procedure is incorporated in the method in order to find a collection of f(xi) 

that are B-smooth. Unlike Dixon’s Algorithm that starts with a sequence of f(x{) = x2 

(mod n), the Quadractic Sieve computes x2 — n where x starts from the value in 

order to keep x2 — n close to zero. The idea is that the smaller the value of x2 — n, the more 

likely that it will be smooth. The goal is to obtain a sequence of smooth numbers of the 

form x2 — n. Then, as in Dixon’s Algorithm, we use linear algebra to find a subsequence 

a:i2 — n, X22 — n, X32 — n, • • -x^2 — n where their product is a perfect square. Denote 

III (^i2 — ri) = a2, and xi (mod n)= b, therefore a2 = &2(mod n). If a ±6 (mod n), 

we can find a factor of n by computing gcd(a — b.n). The Quadratic Sieve has four steps: 

initialization, sieving, linear algebra, factorization.

2.7.1 Initialization

In this step, we need to set up the factor base which involves deciding on the 

bound, B. If B is chosen to be small, we don’t have to find too many B-smooth values 

of x2 — n in order to produce a subset product that is a square. In addition, the matrix 

for the linear algebra step discussed later will be small. But B-smooth values of x2 — n 

are so special that we have to search, hard for even one entry. On the other hand, if B 

is chosen to be large, we will more easily find them. Remember that our goal is to find 

a sequence of x2 — n that is B-smooth and combine them to create a square. Therefore 

finding B-smooth values of x2 — n may not be hard, but finding enough B-smooth values 

to find a dependency will be difficult. In addition, the matrix in the linear algebra step 

will be quite large. So it is a matter of balancing out these two conflicting forces.

The factor base consists of primes p up to B. If p divides x2 — n then x2 = n 

(mod p). In other words, n is a quadratic residue. In this case, the Legendre symbol 

(J) — 1. There will be exactly incongruent quadratic residues and the same amout 
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for quadratic nonresidues for any prime p < B. We can use Euler’s Criterion to detect 

those primes that would make n a quadratic residue.

Theorem 7. (Euler’s Criterion) 

Let p be an odd prime number and let n E Z with p)n. Then

(—) = n^-^2 (mod p)
P

As an example, we are going to try to factor n = 18079 . Suppose we choose 

the smoothness bound B to be 40. The factor base would consist of 2,3,5,13,17,23 since 

their Legendre symbols equal to 1. For example 5 belongs to the factor base since its 

Legendre symbol (^) = 18079(5-1)/2(mod 5) = 1. Similarly, the rest of the primes smaller 

than B = 40 have (^) = —1. We also want to include —1 in the factor base since that 

allows us to choose x < y/ii and x2 — n < 0.

As preparation for the sieving step, we need to figure out for what values of x 

does p \ x2 — n. That is we need to solve the congruences x2 = n mod p for all the p in 

the factor base. Since g(x) = x2 — n may be divisible by p more than once, we will also 

solve x2 = n mod pa .

For the first prime 2 and the odd n, we realize that x2 — n is divisible by 2 when 

x is odd. When n = 3 or 7 (mod 8) then x2 — n is divisible by 2 but not divisible by any 

higher power of 2. When n = 5 (mod 8) then x2 —n is divisible by 4 but not divisible by 

8. When n = 1 (mod 8) then 8 | x2 — n. So n = 1 (mod 8) is the most general case among 

the three and there is a way to convert the first two cases to the general one. For n = 5 

(mod 8) then multiply it with 5 to get 5n = 25 (mod 8) or 5rz ~ 1 (mod 8). Similarly, if 

n = 3 (mod 8) then multiply it with 3, and if it is congruent to 7 then multiply it by 7.

For p = 3 (mod 4) or p = 5 (mod 8), we can use the following theorem to solve 

for x.

Theorem 8. Let n be a quadratic residue modulo the prime p.

1. If p = 4fc + 3, then x = nk+1 (modp).

2. If p = 8k -b 5 and n2fc+1 = 1 (modp), then x = nk+1 (mod p).

3. Ifp = 8k + 5 and n2k+1 = — 1 (mod p), then x = (4n)fc+1 x (^) (mod p).
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The following theorem is slightly slower than Theorem 7 but it can be used for 

any odd prime.

Theorem 9. Let n be a quadratic residue modulo an odd prime p and let h be chosen so 

that the Legendre symbol (" ~4TI) is — 1. Define a sequence «i,V2, • ■ ■ by the recursion

vi = h

V2 = h2 — 2n

vi — hx Vi-i - n x Vi-2-

Then we have

Wi - v2 - 2n"

and

u2i+i = Vi x Vi+1 -hxn1.

The solution to congruence x2 = n (modp) is : x = V(p±i)/2 x C2^) (modp).

As mentioned earlier, we need to solve the congruences x2 = n (mod p) for all 

p in the factor base. For example, we can use Theorem 7 to solve x2 = 18079 (mod 13). 

Since p = 13 = 8fc + 5 with k = 1 and n2fc+1 = 180792'1+1 = l(mod 13), then x = nk+1 

(mod p)=18079(1+1)(niod 13)= 3 (mod 13).

2.7.2 Sieving

The purpose of this step is to locate smooth values for x2 — n as x changes. 

It works similar to the sieve of Eratosthenes. We are first going to review this sieve. 

Suppose we want to find all prime numbers less than or equal to certain bound X. By a 

lemma in number theory we know that if X is a composite number then X has a prime 

divisor less than or equal to \fX. From a list of integers from 2 to X, we cross out all 

the multiples of all the primes up to y/X but not the primes themselves. All the numbers 

that are left unmarked are primes. For the sieving step in Quadratic Sieve algorithm, we 

are only interested in the marked numbers. What it means is the more marked a number, 

the more primes that number is divisible by.

In order to locate the values of x such that x2 — n is divisible by p, we solve 

the congruence x2 — n = 0 (mod p) as mentioned in the previous section. Once we find 
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the first values of x, x = x’i and X2 = p — o?i, for which p | g(x), we can spot the other 

values of x with p | g(x) by simply adding p to the first locations. A simple computation 

can explain why we can add p’s value to the first g(x) that is divisible by p and the new 

entries g(x +p) are still divisible by p. We have x2 — n = 0 (mod p) or x2 — n = kp. Then 

g(x + p) = (rc + p)2 — n = x2 + 2xp + p2 — n = (x2 - n) + (2xp + p2) = kp + p(2a; + p). 

So that g(x + p) is divivible by p.

From the above example we have = 3 is the first solution to the congruence 

x2 —18079 = 0 (mod 13). Since x starts from [\/18079j = 134, the first value for x2—n = 0 

(mod 13) is xi = 3+11-13 = 146, and the second value is x% = 13—146 = —133 = 140(mod 

13). We have two paths to branch off starting from the initial solutions of the congruence 

g(x) = x2 — n to find the remaining locations for the two residue classes. For xi = 146, 

we have x2 — 18079 = 0 (mod 13), and the next place that x2 — 18079 is divisible by 13 

is g(146 + 13) — p(159) = 1592 — 18079 = 0 (mod 13). Similarly, the next place that 

g(x) is divisible by 13 after the initial value a?2 = 140 is p(140 + 13) = p(153). The same 

procedure is done for all the primes in the factor base.

As mentioned earlier, we are interested only in g(x) entries that have a lot of 

marked primes, preferably small primes. The Quadratic Sieve helps to recognize smooth 

values of g(x) = x2 — n. The sieve starts with values of g(x). Every time that each g(x) 

is divisible by a prime in the factor base, we replace the current value of g(x) with its 

quotient by that prime. By the time we are done sieving values of g(x) through the factor 

base, those that are left with value of 1 are B-smooth. Instead of using division, we can 

subtract logp from log(x2 - - n) each time p divides the corresponding g(x). By the end 

of the sieving process, such smooth g(x) will have value close to zero. Continued from 

the example above, we find the following values of g(x) — x2 — n that completely factor 

over the factor base after the sieving step:

139 = 2 x 33 x 23

148 = 32 x 52 x 17

158 = 34 x 5 x 17

166 = 36 x 13

185 = 2 x 33 x 13 x 23

192 = 5 x 13 x 172

198 = 53 x 132
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2.7.3 Linear Algebra

After the last step, we should have a collection of g(x) values that factor com

pletely over factor base. The goal of this next step is to use linear algebra to find a subset 

of these values such that their product is a square. Similar to what was mentioned earlier 

in section 2.6, each g(x) if factored completely, can be expressed as:

The factorization of each value g(x) is recorded as:

Where ei will be 0 if it is even, 1 if it is odd. Therefore each g(x) is represented as 

a sequence of 0’s and 1’s. For example, if our factor base is {—1,2,3,5,13,17,23} and 

g(x) — 2 x 53 x 132 then it is represented as (0,1,0,1,0,0,0).

Finding a subset of g(x/s such that their product is a square is therefore the 

same as finding those with their corresponding exponent vectors adding up to 0 (mod 

2). The problem boils down to finding linear dependency in the set of vectors. We need 

to find more values of g(x) than the number of elements in the factor base in order to 

ensure the dependency. If the bound for the smoothness is 13. then tt(B) 4-1 B-smooth 

values of g(x) would be sufficient. The task at hand now is to set up the matrix formed 

with these vectors.

Denote the matrix we are going to form by A. The rows of the matrix will be 

binary exponent vectors corresponding to the tf(B) 4-1 values of g(x) that are B-smooth. 

Whereas the columns correspond to primes in the factor base. Notice that the first 

column of zeros that corresponds to positve signs of seven values of g(x) is omitted for 

easy computation. All we need to do now is to look for x such that Arx = 0. This 

problem can by solved by Gaussian elimination of the matrix A.

The matrices corresponding to the above smooth values of g(x) are:
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A =

G 1 0 0

0 0 0 0

0 0 10

0 0 0 1

110 1

0 1^

1 0

1 0

0 0

0 1

0 1

0 0^

0 0 11

^0010

< 1 0 0 0 1 0 0

1 0 0 0 1 0 0

0 0 1 0 0 1 1

0 0 0 1 1 1 0

0 1 1 0 0 0 0

^1000110)

Using row reduction operations, the reduced row-echelon form of AT is:

/1 0 0 0 1 0 0

0 1 1 1 0 0 0

0 0 1 0 0 1 1

0 0 0 1 1 1 0

0 0 0 0 0 1 0

\° 0 0 0 0 0

Assigning values to free variables, one of the solutions that we come up with is 

(0,1,1,0,0,0, l)r which implies that the sum of the second, third and seventh columns is 

zero. Therefore, from the solution we can tell what linear combination of the p(x)’s would 

give us the square, namely 148 x 158 x 198 = (33 x 5 x 3 x 17 x 13)2. Another solution 

that we have is (1,0,0,1,1,0,0)T, corresponding to 139 x 166 x 185 = (2 x 36 x 13 x 23)2.

2.7.4 Factorization

Up to this point, we have found a subset of g(x) = x2 — n, whose product 

(rr2 — n)(x§ — n) • • • (x^. — n) is a square. From the exponent vectors of the x2 — n, we can 
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calculate the prime factorization of the product (x2 — ri)(x2 — ri) - ■ ■ (x2 — ri) and therefore 
\/(xl ~ n)(xj- n) • • • (a;2 — n).

Denote a = y/(x2 — ri)(x2 — ri) • • • (x2 — n) (mod ri) and b = X]X2 - • -x^ (mod 

ri). We have a2 ~ b2 (mod n). Ifa^±6 (mod n), then n can be factored by gcd(a — b,ri).

From the above example, corresponding to the solution (1,0,0,1,1,0,0)Twe have: 

p(139) = 1392 - n = 2 x 33 x 23

y(166) = 1662 - n = 36 x 13

p(185) = 1852 - n = 2 x 33 x 13 x 23

a = y/(1392 — n)(1662 — n)(1852 — ri) (mod ri)

a = 2 x 36 x 13 x 23 (mod ri)

a = 2046 (mod ri)

b = 139 x 166 x 185 (mod ri)

b ~ 2046 (mod ri)

Unfortunately, a = b mod n, so we cannot find the nontrivial factor of n by comput

ing gcd(a — b,ri). Corresponding to the other solution (0,1,1,0,0,0,1)T above, we have: 

p(148) = 1482 - n = 32 x 52 x 17

g(158) = 1582 - n = 34 x 5 x 17

y(198) = 1982 - n = 53 x 132

a = ^/(1482 — n)(1582 — n)(1982 — ri) (mod ri)

a = (33 x 53 x 13 x 17)2 (mod ri)

a = 4636 (mod ri)

b = 148 x 158 x 198 (mod ri)

b = 1808 (mod ri)

Since a ±6 mod n, n will then be factored by computing yed(4636 —1808,18079) = 101. 

Therefore 18079 = 101 x 179.
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2.7.5 Large Prime Variations and Multiple Polynomials

Among many suggestions for improvement, the two refinements that have been 

proved to improve the running time are the large prime variation and the multiple poly

nomial version [Bre89].

Based on the idea that if we remove all the primes up to B in the factorization 

of a number, the remaining factor of that number is a prime provided it is less than B2. 

With that in mind, we can utilize those numbers that are almost B-smooth except they 

have one slightly larger prime than B. The easy way to get rid of that large prime factor 

is to pair it up with another number with the same large prime factor. As a result, it 

is necessary to keep track of the large prime factors. If it just appears once, we discard 

it since we cannot use it to make a square. Notice that allowing one large prime in the 

interval (B, B2] for this variation is not the same as increasing the smoothness bound to 

B2. As a result we should not view this type of number as having long exponent vectors.

Suppose we have a pair of x2 — n values that satisfy the above condition, namely 

x2 — n — [Jp^Pfmod n), x2 — n = nib^fmod n) where B < P < B2 and Pi < B, 

Then (asia^)2 = JIp®i+diP2 (mod n). Since the exponent vectors are reduced mod 2, 

the contribution of P2 to the exponent vector doesn’t matter because it is reduced to 0 

anyway. Therefore(x2 — n) — n) can be thought of as B-smooth. Since it is hard to find 

the second large prime to match up with the first one, it is wise to set the limit for the 

range of the interval where the large prime will be kept, for instance (B, 20B] or (B, 100B]. 

From the above example, we could have paired (1772 — 18079) with (1412 — 18079) to 

produce a smooth number. Since 1772 —18079 = 2 x 53 x 53 and 1412 —18079 = 2 x 17 x 53, 

their product contains all small factors smaller than B = 40 except 532. The contribution 

of the factor 532 does not affect the smoothness of the product since it will be reduced 

to 0 mod 2 in the exponent vector.

There is also double-prime variation. The single prime variation is based on the 

idea that if an integer in the inteval (1, B2] has all the prime factors larger than B, then it 

is the prime, while the double-prime version works with numbers in the interval (B2, B3]. 

Once we remove all the prime factors up to B and the remaining unfactored portion 

exceeds B2 then a test can be done to decide whether the unfactored portion is a prime. 

Denote the unfactored portion Q. We can find out whether Q is a prime by checking 

whether 2<^”1 = 1 mod Q. If it does, then there is a good chance that Q is a prime. Q 
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will be a too big to be valuable anyway; therefore it will be discarded. If Q can be shown 

to be a composite, then it will be factored using some of the previous simple methods. 

Suppose Q = qi * qz- Suppose there is some x2 — n that is almost B-smooth except for 

two prime factors larger than B, namely qi and <72 • The goal is to search for some other 

x2 — n that uses qi, (72, or both. For example, suppose the factorizations of some x2 — n 

are: qiSi, , ^192^3 where 81,82,83 are B-smooth. Notice that the product of the 

above factorizations is q^q^SiSzSz which may be considered to be B-smooth since the 

prime factors above B have even exponents.

The second improvement is due to Peter Mongomery [Bre89]. Based on the idea 

that the smaller x2 — n is , the easier it will be smooth. Therefore we want to keep x2 —n 

close to zero by starting x from But as x values move away from [*x/zTj, it is hard

to find x2 ~ n smooth since it gets big rapidly. The multiple polynomial variation takes 

care of this problem by using many polynomials instead of just x2 — n. Basicly we just 

replace x with a linear function of x. The suggestion is to look at polynomials of the form

f(x) = ax2 + 2bx 4- c

where a, b, c are integers with n = b2 — ac. Then

a x f(x) = a2x2 4- 2abx 4- ac

=■ a2x2 4- 2abx 4- — n

= (ax 4- b)2 — n

Notice that if p is a factor of f(x) then p | (ax 4- &)2 — n or n is a quadratic 

residue modulo p. Therefore the factor base consists of the same elements as in the basic 

Quadratic Sieve algorithm. It is nice that we can use various polynomials without having 

an affect on the factor base. Also since

(ax 4- b)2 — n = a x f(x),

instead of evaluating (ax 4- &)2 — n for smoothness, we can deal with a x f(x). If a is a 

square times a B-smooth number and f(x) is B-smooth, then a x f(x) can be thought of 

as B-smooth especially when its exponent vector is reduced modulo 2. Finding values of 

f(x) that axe B-smooth is a matter of keeping f(x) small. This depends on the choice of 

a, b, c and the sieving interval. We decided at the start that we only want to sieve over 
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the interval of length 2M. In order to make the interval of length 2M fall precisely on 

[—M], we choose | b |< ±a.

Note that the minimum value of f(x) is achieved at x — —b/a and the corre

sponding value of f(x) at that point is f(x) — f(—b/a) = n/a. The values of f(x) at the 

end points are:

f(-M - b/a) = f(M - b/a) = aM2 - n/a (2.1)

Setting the above values equal to each other, we have n/a = aM2 — n(a or a = y/2n/M. 

Therefore, by choosing a « y/2m/M we can force the range of f(x) to be small for values 

of x in our sieving region. Next, choose b to be the solution of the congruence 62 = n(mod 

a)with | b [< | and c = (b2 — n)/a. We now have all the coefficients a, &, and c, and we can 

form the function f(x) = ax2 + bx + c. A suggestion is to take various p « (2n)1/4Af1^2 

with (J) = 1, and choose a — p2. With that selection of a, it satisfies the requirement 

for a that it has to be a product of a square and B-smooth number and a ~ y[2m/M.

Once we found the function f(x), for each p in the factor base with (2) — 1, we 

need to solve the congruence ax2 + bx + c = 0 (mod p) since we will proceed with the 

sieving like before to look for B-smooth values of function f(x). This process of finding 

roots for the congruence is referred to as the initialization problem since it can be very 

time-consuming. Especially when we use various polynomials, this method may not turn 

out to be as advantageous as we thought.

Pomerance came up with the solution called self initialization to save the running 

time for the polynomial switching process. Let’s look at the roots for the congruence

f(x) = 0 ( mod p)

[(aa? + b)2 — n]a_1 = 0 ( mod p)

(ax + b)2 = n ( mod p).

Let t(p) be a squareroot of n (mod p). Then (a + bx) = ±t(p) or

x = (—b ± t (p))a-1(mod p).

If a has k distinct factor primes, then there are 2fc_1 choices for b based on the 

way b is chosen, namely b2 = n(mod a). If we choose a = p2 as mentioned earlier, then 

there is only one choice for b subject to the constraint that | b |< t>. Whereas if we choose 
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a to be a product of ten primes then there will be 29 choices for b. Taking advantage of 

this, we can save time finding solutions of so many polynomials by using the same value 

of a. So for each value of a which is a product of 10 primes, we only need to compute 

t(p) once but we can use it for 29 polynomials.

There is another advantage to using polynomials other than x2 — n. If a is 

approximately x/ln/M then by (2.1), f(x) = ax2 4- 2bx 4- c is bounded by 

on the interval [—Af, M]. In contrast, x2 — n is bounded by approximately 2My/n on the 

interval [-y/n — Af, y/n + A/]. The absolute value of f(x) is therefore smaller in the first 

case by a factor of 2y/2. Being able to keep the values of f(x) down is an advantage since 

it is more likely to be smooth.

Perhaps the best reason to use multiple polynomials is that the sieving can be 

done in parallel on different processors. Each machine is in charge of doing the sieving 

for its own polynomial. With this method, A.K. Lenstra and M.S. Manasse were able 

to factor 100-digit integers sucessfully using roughly 400 computers around the world for 

the sieving process.
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Chapter 3

General Number Field Sieve

3.1 General Idea

Similar to both Dixon’s method and the Quadratic Sieve, we try to factor n by 

using the plan of Fermat. That is, by finding a solution to x2 = y2 (mod n). But in the 

Quadratic Sieve we only need to work with one side of the congruence since the other side 

was already a square. In the General Number Field Sieve, we are going to find squares 

from both sides of the congruence. This results in a substantial savings in work, allowing 

us to factor even larger numbers.

Basicly we work with a homomorphism map from the ring Z[a] to Zn where a 

is the root of some monic and irrreducible f(x) of degree d > 1 in Z[x]. It will help to 

have d odd, usually d = 5 as will be explained later. We do not need to compute the 

complex number a numerically, all we need to know is a stands for one of the roots of /. 

An element in Z[a] can be written in the form Suppose that m G Z satisfies

/(m) = 0 mod n. We have a natural ring homomorphism Z[a] —► Z]nZ which is 

induced by v?(a) = m (mod n). Therefore, <p ( )= (mod n). For this

method, we only consider elements in Z[a] of the form a — ba.

The main goal is to find a non-empty set S of pairs (a, b) of relatively prime 

integers such that we have the two following equations:

TT (a — dm) = v2 is a square in Z (3.1)
(a,6)GS

JJ (a — ba) = 72 is a square in Z[a]
(q,6)£S

(3-2)
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Let u G Z and ^(7) = u(mod n). Then u2 = ^(7)^(7) = ¥>(72) = ¥>(II(a,6)es(a “ ba))= 

n(a,6)e5(a — h”1) — v2(mod n). If u and v are known, then as in Fermat’s method we 

have a 50-50 chance of factoring n by computing gcd(u — v,n). Although this is the basic 

idea, we will have to modify this plan later.

3.2 Polynomial Selection

The first thing we need to do to factor a positive integer n with the Number 

Field Sieve algorithm is to find some monic polynomial f of degree d in Z[x] and an 

integer m such that f(m) = 0(mod n). We want m, as well as the coefficient of /, to 

be as small as possible. Experimentally, the choice of d=5 is acceptable for an integer 

n of around 130 digits. One method goes as follows. Set m = and write n in base m:

n — md 4- 4------- Feo, 0 < Ci <m.

Replacing m with x, we have a monic polynomial f(x) = xd 4- c^-ix^1 4----- 4- co for

which f(m) = 0(mod n), since f(m) = n, and whose coefficients are on the order of n1^. 

This polynomial is monic but may not be irreducible. If we have nontrivial factorization 

f(x) — g(x)h(x) in Z[x] , then n can be factored by n = g(m)h(m) and we are done. If 

f(x) is irreducible, we proceed to the next step.

For example, the rn-base expansion of n = 44,831 isn = 85 + 2 - 84 + 7 * 83 + 4- 

82 + 3 • 8 + 7. This expression yields f(x) = a;5 4- 2x4 + 7x3 + 4x2 + 3a; + 7.

3.3 Sieving

The main goal of this step is to find a set T of pairs (a, 6) such that both a — bm 

and a—ba are smooth. The “smooth” concept will be defined momentarily in the context 

of Z[a]. The set T will be constructed from sets Ti and T2 which are collections of pairs 

(a, b) such that the numbers a — bm and a — ba are smooth.
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3.3.1 The Rational Sieve

The purpose of this step is to find a set T\ which is a collection of a—bm numbers 

that are y smooth where the parameter y will be chosen depending on n.

Let U = {(a, b) \ a,b G Z, gcd (a,b)=l, | a |< u, 0 <| b ]< «.}

The number u will be chosen later and will depend on n. It has to be sufficiently big 

enough so that the set U contains a set S satisfying (3.1) and (3.2) simultaneously. For 

the moment we only focus on the rational side of finding a set (a, b) such that a — bm is 

smooth. Denote this set by Ti,

Ti = {(a, b) G U : a — bm is y-smooth.}

This set will be referred to as the rational base. Recall that an integer is y~ 

smooth if all of its prime divisors are less than or equal to y. A prime p divides a — bm 

if and only if a — bm = 0(mod p), and therefore a = bm(mod p). The sieving procedure 

starts with an array of numbers a — bm for fixed integer b G (0, u] and lets a range over 

the interval [—u,«]. For each prime p < y, we identify those values of a — bm satisfying 

a = bm(mod p). As in the Quadratic Sieve, once such a pair is found, the value of a — bm 

will then be divided by the highest power of the prime that divides it, and the quotient 

will then replace the location of a — bm. Then the value of a is immediatly increased by 

p to give the next location where p | a — bm. By the end of the procedure, we scan for 

locations with 1. Such locations correspond to a number a — bm that is y smooth. As in 

the Quadratic Sieve, we can speed up the sieving process by initializing the array with 

In (a — bm) instead of a — bm, to subtract ln(p) instead of dividing by p. By the end of 

the procedure, we would look for values of 0 = ln(l) instead of 1.

3.3.2 The Algebraic Sieve

In this step, we want to find a set T2 of pairs (a, b) such that a — ba is smooth. 

An element a — ba G Z[a] is y-smooth if its norm JV(a — ba) G Z is y-smooth. Let’s 

define the norm of an element of the form a — ba. Let ai • • ■ ad be the complex roots of 

the irreducible polynomial f(x). Then (a —baq) • • • (a —bad) are the conjugates of a —ba. 

Define the norm by

N(a - ba) — (a — bai) ■ • • (a — bad) = bd(a/b — ai) - • ■ (a/b - ad) = bdf(a/b) since 

f(x) = (x - ai)(x — a2) •■•(x — ad).
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So the norm of a — ba is the same as substituting a and b for x and y in the 

homogeneneous form of /, which is : F(x, y) = xd + c^-1xd-1y H------- 1- c$yd = ydf(x/y).

Therefore, N(a — ba) = F(a, b). For products of numbers of the form a — ba, we define 

the norm by N(xy) = IV(a;)7V(y). It is easy to check that this is well-defined.

The norm N (a — ba) G Z is y-smooth if its prime divisors are less than or equal 

to y. As a result, we want to keep track of small primes p such that p | N(a — ba) or 

N(a — ba) = O(modp). Let r = ad-1. Since N(a — ba) — F(a,d) = bdf(a/b), p is a divisor 

of N(a — ba) when f(r) = 0(modp) or a = dr(modp). Denote R(p) = [r G [0,p—1] such 

that f(r) = 0 mod p}. The set R(p) is computed for each prime p in the factor base.

Similar to the rational sieve, we want to find a set T2 which is a collection of 

pairs (a, b) such that a —ba that is y-smooth. This set will be referred to as the algebraic 

base.

T2 = {(a, b) GU : a — ba is y-smooth}.

We start an array with the numbers IV(a — da) for each fixed d and let a vary in 

the interval [—u, it]. For each p < y and each r G R(p), values of N(a — da) that satisfy 

a = dr (mod p) will be identified. The value of each N(a — da) will then be divided by the 

highest power of the prime that divides it, and the quotient will then replace the entry 

for which the number was retrieved. Any location that contains the number 1 at the end 

of the procedure corresponds to a number a — ba that is y-smooth. Just like the above 

section, we can use the approximate logarithms to speed up this process. Once a pair 

(a, d) is identified, we increase a by p to get the next value of where p | N(a — ba).

Up to this point, we have found collections of T\ and T2 such that a — bm and 

a — da are smooth respectively. In reality, the sieving process is set up in a way that both 

arrays (a — bm) and N(a — bm) are working side by side. Pairs of (a, d) that are found 

by the end of the process that will make both (a — dm) and N(a — ba) smooth. Denote 

this set by T = Ti A T2. This process is harder than the Quadratic Sieve since we need 

the same (a, d) from both sieves.

3.4 Obstructions

There are many issues regarding this construction of a square in Z[aJ. First of 

all, it is possible for an element of Z[a] to be a perfect square in I but not in Z[a]. Here, 
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I is the ring of algebraic integers in the algebraic number field Q[a]. That is to say I 

consists of elements of Q[at] that are the root of some monic polynomial in Z[x]. I is also 

known as a Dedekind domain which is an integral domain in which every nonzero proper 

ideal factors into a product of prime ideals. The following lemma is important since it is 

a handy tool to get an element in Z[a] from an element in I.

Lemma 10. Let f(x) be a monic irreducible polynomial in Z[x], with roots a in the 

complex numbers. Let I be the ring of algebraic integers in Q(a), and let (3 G I. Then 

f(a)P G Z[a].[CP01]

So insteading of searching for II(a,&)es(a — a scluare in %lal> we can

get away with having that product to be square in Z, namely 72. Using Lemma 10, we 

have f(a)y is in Z[aJ. Therefore, f(a)2 II(a,&)es(a ~ a sQuare in Z[al-

Note that this changes our basic plan, as explained in 3.1. Our old plan was to 

find JJ(a — bm) to be square in Z and Jj[(a “ ba) to be a square in Z[a]. Since f and 

m are constructed by the base m algorithm, f(m) = n or 1 < /'(m) < n and also we 

can assume that gcd(f'(m),n) — 1. Therefore, multiplying (3.1) by f'(m)2 will give us 

/'(m)2 fj(a “ bm) which is a square in Z. Our new plan will be to find f(m)2 fj(a — bm) 

a square in Z and the corresponding f'(a)2 ]J(a ~ ba) a square in Z[a]. To do this, it is 

sufficient to force the product JJ(a ~ ba) to be a square of an algebraic integer.

3.5 Exponent Vectors

The main goal of this step is to find a non-empty set S of coprime integer pairs 

that satisfy both (3.1) and (3.2) simultaneously. In order to achieve this, we use linear 

algebra together with the rational and algebraic factor bases to locate S C T. For a 

number to be a square, all the primes in its factorization have to have even powers. Let 

B — ir(y) where 7r(y) denotes the number of primes up to y. Suppose there are more than 

B +1 elements in Ti with the choice of parameters u and y , we can use linear algebra to 

find a dependency over F2. If w is a y-smooth integer, then w = Jit Pii 5 0 <i < B. The 

exponent vector e(w) is defined by :

e(w) = (eo (mod 2), ei (mod 2),....eB (mod 2) )

The product of all the numbers w is a square when ^2 e(w) = 0 G With the same

idea, we can combine B + 1 values of a — bm which are y-smooth, forming e(a — bm). 
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We can then find a non-trivial linear dependence relation with coefficients 0 and 1 . The 

product n(a,b)Gs(a ~ ^m) a square in Z when we find 52(a,b)GS e(a ~ ^wn) = 0 iu F^+1.

In the same manner, we can use the idea of exponent vectors to multiply a set 

of norms N(a — bm) to find a square. Since different elements in Z[a] can have the same 

norm, it is necessary to keep track of r — at>-1 6 R(p) for each p that divides N(a — ba). 

For each pair (p, r), the exponent epiF(a — ba) is defined to be the number of factors p in 

the factorization of N(a — ba) if a = 6r(mod p). If a &r(mod p), then ep>e(a — ba) is 

defined to be 0. Therefore,we have:

N(a - ba) =
P,T

As an example, consider f(x) = x2 + 3, with B — 5. Then R(2) = {1}, R(3) — 

(0},R(5) = {0}. We consider three pairs (a, b) such that their norms F(a,b) are 5- 

smooth. These pairs are: F(l, 1) = 4 = 22, F(3,1) = 12 = 22 • 3, F(3, —1) = 12 = 22-3. If 

we only went by these prime factorizations, then we might choose (3-H)(3—i) whose norm 

122 is a perfect square. But this would not give us what we want because (3+i)(3—i) = 10 

is not a square. We can also tell that (3 + z)(3 — i) is not a square based on the sum of 

their exponent vectors.

Component vectors of 5-smooth members corresponding to the two pairs (p,r): 

(2,1), and (3,0) are:

F(l, 1) = 4 has the exponent vector (2,0)

Since first of all we want to check whether a = br mod p with (a, b) = (1,1) and 

(p,r) = (2,1). Because the answer is yes, then the exponent vector of e2,i(l — ct) is the 

exponent of 2 in the factorization of F(l, 1) = 4.

Next we do the same for e3,o(l - a). Since a br mod p with (a,b) = (1,1) 

and (p,r) = (3,0), the exponent in this case is 0. This gives F(l,l) an exponent 

vector of (2,0). Similarly, F(3,1) = 12 has the exponent vector (2,1), and F(3, —1) = 

12 has the exponent vector (2,0).

Since the sum of the exponent vectors modulo 2 of (3 + i), (3 — i) is (0,1), it 

allows us to see that their product is not a square. At the same time, even when we have 

52(a,b)eS ePtr(a—ba) = 0(mod 2), there is no guarantee that the product of corresponding 

norms will be square in Z[a], In the above example, we have the exponent vector of 
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F(l, 1)F(3, —1) is (0,0), yet (1 -I- i)(3 — i) = 4 + 2i is not a square in Z[i]. Similarly, 

the converse of the following lemma is a necessary but not sufficient condition for the 

product of (a — ba) to be a square in Z[a]. The extent to which the converse fails will be 

supplemented with the use of quadratic character base which will be discussed later.

Lemma 11. If S is a set of coprime integer pairs a, b such that each a —ba is y-smooth, 

and if 11(0,6)es(a — ba) is a square of an element in I, the ring of algebraic integers in 

Q[a], then

eP)T(a — ba) = Q(mod2).
(a,b)es

We still have obstructions, since converse of Lemma 11 does not hold. That is, 

the sum of our exponent vectors might be zero and still not have a square in I. This 

can be overcome with the use of quadratic characters. This idea is due to Adleman and 

based on the Legendre symbol. If p is an odd prime and if (|) = 1, then a is a quadratic 

residue modulo p. Similarly (J) = —1, if a is a quadratic nonresidue modulo p. Both 

occur with equal likelihood. So if a is a square, then for any odd prime p we have (J) = 1. 

Although the converse of the above statement is not true, we just want to apply the idea 

probabilistically. Suppose X is a finite set of k odd primes and a G Z. Suppose also 

that (^) = 1 for each prime in X. The probability of a not being a square is about 

2~k. Therefore, if k is large and if (-) is always equal to 1 for primes p G X, then a has 

high probability of being a square. We want to incorporate this idea with the algebraic 

integers a —ba through the following lemma.

Lemma 12. Let f(x) be a monic, irreducible polynomial in Z[x] and let a be a root of 

f in the complex numbers. Suppose q is an odd prime number and s is an integer with 

f(s) = 0(mod q) and fl(s) 0(mod q). Let S be a set of coprime integer pairs (a, b) such 

that q does not divide any a — bs for (a,b) G S and f(a)2 11(^6) es(° “ &a) 2S a s<luare 271 

Z[a] . Then n (^)=i-(a.t)GS y
Just as Lemma 11, the result of this theorem alone is a necessary but not 

sufficient condition to test for squareness in Z[a]. For those pairs (a,b) that satisfy 

Lemma 11 and Lemma 12 simultaneously, there is a good chance that the product of 

a — ba is a square of some element in the algebraic ring I. Pairs of (q, s) satisfying lemma 

12 are referred to as character base.
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3.6 Matrix and Linear Algebra
I

After section 3.3, we found T = Ti 0 T2 such that:
1

T = {(a, b) : gcd (a, b) = 1, |a| < n, 0 < b < u, (a — bm) and N(a — ba) are y-smooth } 

define

B ~ 7r(y)

B' = #{(?> r) : p is a prime number, p < y, r e R(p)}

B" = [ 3(logn)/log2]

Each column of the matrix corresponds to binary vector for each pair (a, b) 

and has entries as follows: the first entry would be the sign of a — bm where the entry 

will receive 0 if a — bm is positive and 1 if it is negative. The next B entries would be the 

exponents modulo 2 of all the primes up to y in the factorization of a — bm . The next 

B' entries would be exponents vectors as described in section 3.4. The next B" entries 

are determined by (fi2^) as (</, s) runs over the character base. The corresponding entry 

to each pair (s, q) would be 0 if = 1 and 1 if = —1

If enough (a, b) pairs are found such that they exceed 1 4- B 4- Bl + B" then 

the vectors e(a, b) for (a, b) are linearly dependent. Therefore a nonempty subset S of 
T has been found such that $2(a,b)es e(a> &) = 0 in j<^+B+B'+B" , Such S will make 

II(a,&)eS ~ to™) and /'(a)2 II(a,b)es(a ~ &“) Perfec*' squares in Z and Z[a] re

spectively.
I

3.7 Square Root in Z[a]

Up to this point we have found a set of S of coprime integer pairs (a, b) such 

that /'(a)2 ri(o,b)€s(a “ ba) = T2 for 7 G f\m)2 II(a,b)Gs(a ” M = Notice

that this 7 and v are slightly different from those in (3.1) and (3.2) because'of the reasons 

that we discussed in 3.5 above. Suppose there is an integer u such that ^(7) = u(mod 

n). Then u2 = [99(7)]2 (mod n) or u2 = (p[f(a)2 II(a,b)es(a ~ &a)](m°d n). Then u2 = 

l/>)2 II(a,b)Gs(a”^m')](n10^ n) orn2 = [//(7n)v]2(m°d n)- Therefore with a probability 
of approximately to |,gcd(u — f'(m)v,n) will be a non-trivial factor of n.| Since v e Z, 

we would not have a problem taking square root of f'(m)2 IT (a — bm) =• v2 find v 

especially when we are only concerned with the residue u(mod n). Actually we already
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have n(a - bm) expressed as a product of primes to even, powers, so we can find v by 

cutting these powers in half, then multiplying by f'(m). Unlike taking square root of v2, 

trying to take square root of 72 in the number ring Z[a] is by no means easy because 

we are dealing with a very big number and we cannot take advantage of the modulo n 

property to simplify the problem. j

There are several methods of dealing with this part of the Number Field Sieve. 

One of the approaches is suggested by Couveign.es 1993 [BLP93]. We have 72 represented 

as an element of Z[a] = Z[x]/f(x').

p (where p is an odd prime) we create a perfect square in Zp\x\/ f(x). This perfect square 

in Zp\x\/f(x) may have several square roots. One of them will have the coefficients of 

7 modulo p. That is the one we want. If we can determine the coefficients of 7(mod 

p) for enough primes p, then we can use the Chinese Remainder Theorem to recover 7. 

We start by choosing odd primes p such that f(x) is irreducible modulo p. This causes 

Zp[x]/f(x) 1° be a Unite field. Since there are at most two square roots of an element of 

a field, this limits the number of square roots that we have to distinguish.

First of all, we want to solve for 7 (mod p) (that is for the1 coefficients of 7 

modulo p). For the time being, we are going to focus on how to compute square roots in
i

a finite field. We are going to use concepts of quadratic residue and quadratic non residue 

together with an extension of Euler’s criterion, and the Sylow 2-subgroup to achieve what
1 

we want.
I

t I

Definition 3.1. Let Fpk be a finite field with pk elements where p is an odd prime. An 

element r G F*k is called a quadratic residue if there is an element 9 jn F*k such that 

02 = r. It is called quadratic non-residue otherwise.

Theorem 13. (Euler's Criterion) Let Fpk be a finite field with pk elements where p is 
an odd prime. An element r G F*k is a quadratic residue if and only ifr^-1^2 = 1 and 

is a quadratic non~redisue if and only = — 1.

Consider the finite field Fpk of size pk. Denote pk = q. Since is odd, pk —

1 = g — 1 can be expressed as 2st where t is odd. Let r be a quadratic residue and 
(r^)2 = ri+1 = Jr. We conclude that rl is a quadratic residue in If*k. Then there 

exists an element c G F^. such that c2 = r1. Notice that the square root of r can be 

Couveign.es
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expressed as t^c 1 since

(r^c-1)2 = (rt+1c-2) = Tt~^r~t = r.

Our immediate goal now is to find c from c2 = t1. We are going to show such 

an element c has order dividing 2s and belongs to Sy low 2-subgroup S2^ of F*. Since t 

is quadratic residue, (|j) = 1. Using Euler’s Criterion for the quadratic residue r:

= 1
2*£

T 2 = 1

r2’"1( = 1

(H)2”1 = 1.

Therefore t1 has order dividing 2s-1 and so does c2 since c2 = F. It follows 

that c has order dividing 2s. From abstract algebra we know that every element of the 

Sylow 2-subgroup S2« has order dividing 2s and vice versa. We also notice that if g is 

a quadratic non-residue in F^., then g i = —1 , y 2 = —1, and g£ z — —1. Then 
(t/)2’-1 = — 1 so (g1)2* — 1. Then gl has order exactly 2s. Therefore gl is a generator 

of the Sylow 2-subgroup S2a. In particular, the Sylow 2-subgroup S2b will look like 

{1, g*, g2t, • • • , yf23-1^}. Since half of elements in F*k are quadratic non-residues, a direct 

search for such g will end quickly. Once we find a quadratic non-residue and generate the 

Sylow 2-subgroup, we can search for an element c whose square is equal to F. Once c is 

found, a square root of r is just c_1.

For our purpose, the r we are interested in is the reduction of 72 e Z[x]/f(x) 

modulo p. The problem we face is that we have two square roots 7t- for each prime p{. 

We need to determine which of these two square roots gives the coefficients of 7 modulo 

Pi. Earlier, we defined the norm of an element in Z[x]/f(x). We can apply the same 

definition to get the norm of an element in Zp[x]/f(x). If we start with an element p in 

Z[x]/f(x), then reduce the coefficients of the polynomial modulo p, we get an element v 

in Zp[x}/f(x). In this case N(y) will just be the reduction of N(p) modulo p. We notice 

that, by definition, N(—1) — JV(—1 4- Oct) = (—l)rf = —1. If d is odd, as was promised 

from the start, then N(—x) — N(—l)N(x) = —N(x). Therefore the two square roots of 

t can be distinguished by their norms.
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Now the norm of 72 is known. In fact we have its prime factorization in even 

powers. By cutting these powers in half, we can determine the norm of one of its square 

roots, which we designate as 7. By reducing this norm modulo p, we can then check 

which square root of r has the correct norm. Computing the norm of the square roots of 

r is easy since we can start with a choice of d (the non-residue) whose norm is known.

At this point we have found the square root 7 in terms of 73 in different finite 

fields. Let’s remind ourselves that our goal is to search for u2 and v2 where

v2 = f'(m)2 JJ (a - bm)

and u2 = tp[f (a)2. JJ (a — da)] (mod n).
(a,b)&S

with 72 = f'(a)2 II(a,b)es(a—and ^(t) — «(mod n). Also recall that 7 is a polynomial 

in Z[x]/f(x), and that we have access to the coefficients of this polynomial modulo p for 

several values of p. To pass from 7 to u we need to replace the variable x with the integer 

m. Performing this calculation modulo p will immediately give us the value of u(mod p). 

Therefore, instead of computing 7 and then applying <p to give us iz, we can save time by 

going directly after u.

We can calculate u by using Chinese Remainder Theorem because we have access 

to the system of congruences:

u = ui(mod pi)

u = U2(mod P2)

« = «r-i(mod pr-i)

Where Ui is the image of 71 under the ip mapping such that (p(ji) = Ui mod p\ 

Therefore u = UfZo UidiPi (mod P). Denote ZZ[=o uiai?i = z-> u ~ z (mod P). There 

is one final problem to overcome. If u is large to start with and z is much bigger than a 

then using z to calculate u could be a problem. Fortunately, we have a different approach 

to calculate u. If we round z/P to an integer r = [p + then we can have u = z — vP. 

We can calculate r without having to deal with a very large z as follows:

X = IXq1 UidiPj

P P
=E

t=0 Pi
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This gives us r by computing [75 + • Once r is computed, we can determine u modulo

n by observing that u = z — rP = J2i=o ~ (modn). Then the computation of

u can be carried out modulo n.

All we have to do now is find gcd(u—v, n) and there is a 50-50 chance of factoring 

n. If the factorization fails then we don’t have to start the process all over again. Most 

of the work is in the sieving and the linear algebra steps. We can throw out one of the 

smooth exponent vectors that was used in the linear dependency found in section 3.6. 

Then, as long as we did a small amout of over-sieving there should be additional linear 

dependencies remaining. We can find them by repeating the linear algebra step. Most of 

this work can also be saved. So coming up with a fresh pairs u,v is not that difficult and 

gives us additional chances to factor n.
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