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Abstract

One important aspect of algebraic geometry is the study of affine varieties. 

Affine varieties are curves, surfaces, and higher dimensional objects that are defined by 

polynomial equations. It is this connection between geometry and algebra that can be 

used to prove geometric theorems algebraically. In particular, an algebraic method known 

as the Groebner Basis Algorithm can confirm or reject a conjecture in Euclidean geometry. 

The purpose of this project is to study ideals in polynomial rings and affine varieties in 

order to establish a connection between these two different concepts. Doing so will lead 

to an in depth examination of Groebner bases. Once this has been defined, steps will be 

outlined that will enable the application of the Groebner Basis Algorithm to geometric 

problems.
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Chapter 1

Introduction

Algebraic geometry makes a connection to topics discussed in abstract algebra to 

problems studied in geometry. Concepts of algebraic geometry have been applied to fields 

in computer science such as robotics and artificial intelligence. The main focus of study 

in algebraic geometry is affine varieties. Affine varieties are the solutions to systems 

of polynomial equations. These affine varieties represent curves, surfaces, and higher 

dimensional objects that are defined by polynomial equations. The polynomial equations 

that are studied are not restricted to one variable. The terms of these polynomials can be 

composed of a finite number of variables. One of the important applications of algebraic 

geometry that this project will focus on is to prove geometric theorems algebraically. The 

hypothesis and conclusion of the theorem will be translated into a system of equations 

and it will be shown that if the system for the hypothesis has a solution, then the system 

for the conclusion has a solution. The algebraic method that will be discussed in this 

project is the Groebner Bases algorithm.

In order to successfully complete this project we need to be able to properly 

define and understand Groebner bases. A Groebner basis is a generating set of an ideal 

of polynomials with some nice and useful properties. These properties will be discussed 

in the project in more detail. Ideals and affine varieties are critical to the understanding 

of the Groebner Bases Algorithm that we wish to use to prove theorems in Euclidean 

geometry. Affine varieties are determined by ideals generated by polynomials, so in order 

to understand affine varieties we will need concepts from algebra. We have to study 

ideals in polynomial rings over a field k. Ideals are important because they will provide 
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us with a way to compute an affine variety. For instance, if we can change the basis of 

the ideal of polynomials we are working with to a Groebner basis, then it will be easier 

to determine the variety. This is important because we would like to be able to solve 

systems of polynomial equations of any degree with any number of variables.

The goal of this project will be to present several theorems proven in Euclidean 

geometry using the Groebner Bases Algorithm. The first example we will examine is 

the proof showing that the diagonals of a parallelogram intersect at a point that bisects 

both of the diagonals. In addition, we will look at a proof for the Circle Theorem of 

Apollonius. The Circle Theorem of Apollonius is named after the Greek mathematician 

Apollonius. Apollonius wrote extensively on conic sections and he is credited with naming 

some of the conic sections. He also came up with an alternative way to define a circle. 

Usually, we think of a circle as the set of all points that are the same distance from a 

given point. Apollonius proved that a circle is the set of all points in the plane that 

have a specified ratio of distances to two fixed points. [Sma98] These two examples will 

illustrate how theorems proven in Euclidean geometry can be represented and verified by 

solving a system of polynomial equations.
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Chapter 2

Geometry and Algebra

2.1 Polynomials and Affine Space

To use the Groebner Basis Algorithm, we will need to solve systems of polyno

mial equations of any degree with any number of variables. In order to do so, we need 

to define the polynomials we will be working with. The polynomials we will encounter 

throughout the course of this project contain more than one or two variables. These 

polynomials will have coefficients from a field k and n variables. We begin by defining a 

monomial because each term in any polynomial is a monomial.

Definition 2.1. A monomial in ... ,rcn is a product of the form

where all of the exponents «i,..., an are nonnegative integers. The total degree of this 

monomial is the sum a± -f- • • ■ + an.

Now that we have discussed monomials, we can now define a polynomial in 

fc[xi, ^2, icn]- We can simplify the notation for a monomial in the following manner. We 

can rewrite as"1 -x^2 • ■ • 33 "where a = (ai, a2; ann-tuple of positive integers.

The second question we need to ask ourselves is how will we determine the degree of a 

monomial? The degree of the monomial will be denoted |a| where |a| = 01 + 02 +... + an.

Definition 2.2. A polynomial f in a?i,... ,xn with coefficients in & is a finite linear 

combination (with coefficients in k) of monomials. We will write a polynomial f in the 

form
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f — 53 a

where the sum is over a finite number of n-tuples a = (ai,...,an). The set of all 

polynomials in 3Ji,...,xn with coefficients in k is denoted , acn].

The definition that follows will introduce the basic terminology that will be used 

when working with polynomials with multivariable terms.

Definition 2.3. Let f = aaxa be a polynomial in , ffn].

(i) We call aa the coefficient of the monomial xa.

(ii) If aa 0, then we call aaxa a term of f.

(iii) The total degree of f, denoted deg(/), is the maximum |a| such that the coefficient 

aa is nonzero.

We will apply the definitions and terminology previously discussed to an exam

ple. Consider, the polynomial f = 7xiyz2 — |rc2y5 + xyz3 — IO#4 + 2xyz. Notice that 

f G R[z,y, z]. The polynomial f has 5 terms. The coefficients of f are 7, —1, -10, 

and 2. The total degree of f is 7. Unlike polynomials of only one variable, this example 

illustrates a problem present in multivariable polynomials. There are two terms 7x4yz2 
and —|z22/5 in f that have a total degree of 7. Ordering the terms of these polynomials 

will be examined further in Chapter 3.

It is extremely important to note that /c[xi, X2, £n] is not a polynomial field, 

but a polynomial ring. By taking two arbitrary polynomials f and g from k[xi, X2>a;n], 

we have f + g G &[ei,:e2>a?n] and f ■ g G 22, »«]. Furthermore, it can be shown

that the associative, commutative, distributive, multiplicative and additive identities, and 

additive inverse conditions for a field are satisfied. However, it is not always possible to 

find a multiplicative inverse when working in &[#!, X2,..., zn]- For example, let f = x + y 

and g = Although f ■ g = 1, only the polynomial f is an element of R[a?,y].

Unfortunately, g is not an element of IR[a;, y] because it is not a polynomial (as stated in 

Definition 2.2), Consequently, &[zi, #2, ••■>£«] is a commutative ring and not a field.

Next, we will look at affine space.

Definition 2.4. Given a field k and a positive integer n, we define the n-dimensional 

affine space over k to be the set
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kn = {(ab..., On) I fli, ■. ■ an e k}.

When k = R, we get one of the most common examples of an affine space, Rn. 

This space is used throughout many courses in the study of mathematics.

2.2 Affine Varieties

Affine varieties are the most important focus of algebraic geometry. We will 

start this section by defining an affine variety.

Definition 2.5. Let A: be a field, and let fi,..., fs be polynomials in ..., a;n]. Then 

we set

V(/i, = {(ax,..., an) G kn | /f(ai,..., an) = 0 for all 1 < i < s }.

We call V(/i,..., /s) the affine variety defined by /i,..., fs.

An affine variety V(/i,...,/s) is a collection of 7i-tuples that are solutions 

to a system of equations. More specifically, we are interested in solving the system 

fl(xltX2i. ■ .,Xn) = 0, f2(xi,X2, . . . ,Xn) = 0, . . . , /n(^b^2,- • •iXn) = 0.

Next, we will look at some examples of affine varieties in R2 to become more 

comfortable with this topic. By working in R2 it will be easier to understand affine va

rieties because we will be able to visualize them when they are drawn in the Cartesian 

plane.

Example 1. Take for instance, V(2x + y — 1,3a; — y + 2). We would like to find the 

set of points (x,y) G R2 such that 2x + y — 1 = 0 and 3# — y + 2 = 0. The equations 

fi(x,y) = 2x + y — 1 and f2(x,y) = 3x — y 4- 2 are linear. Therefore, there are three 

possible outcomes when we graph this system in the plane R2. If the two lines are the 

same, then there are an infinite amount of solutions to the system. On the other hand, 

if the two lines are parallel, the lines will never intersect so there would be no solutions. 

Thus, the variety would be empty. Lastly, the two lines drawn in the plane can intersect 

at a single point. This is exactly what happens with the given variety above. One can 

quickly solve this system by using substitution or the elimination method to determine 

that V(2x + y - l,3z-y + 2) = Z)}.

Example 2. Another example of an affine variety from R2 is V(a;2 + y2 — 1). To
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find the set of (x,y) G R2, we need to solve the equation z2 4- y2 — 1 = 0. Adding 1 to 

both sides of the equation results in the equation x2 + y2 = 1. This is the equation of a 

circle centered at the origin with a radius of one. Therefore, the variety N(x2 4- y2 — 1) 
has an infinite number of solutions including (1,0), , |), (^, ^), (^), and (0,1).

Example 3. The last example of an affine variety that we will study from R2 is the 

four leaf rose. The four leaf rose is defined by the polar equation r = sin(20). We would 

like to show that this polar equation gives an affine variety.

The affine variety is V((rr2 4- y2)3 — 4rc2y2) = {(a, b) G R2 | (a2 4- b2)3 — 4a2b2 = 0}.

The rose is R = {(x,y) | re = rcos#, y = rsin0, r2 = a?2 + y2, r = sin(20)}-

We will first show that the rose is. contained in the affine variety V((rr2 4- y2)3 — 4z2y2). 

Show RCV.

Let (z, y) 6 R. We would like to show that (x,y) G V. We have

(x2 4- y2)3 — 4x2y2 — (r2)3 — 4(r cos 0)2(rsin0)2

= r6 — 4(rcos0)2(rsin0)2

= r6 — 4(r2 cos2 0) (r2 sin2 0)

= rG — 4r4 cos2 0 sin2 0

= r6 — r4(2cos0sin0)(2cos 0sin0)

= re — r4(sin(20))(sin(20))

= r6—r4(r)(r)

= r6—r6

= 0.

Thus, (x, y) G V and r = sin(20) is contained in V((ie2 4-y2)3 — 4x2y2). The second part 

of this problem is to show that V is contained in the four leaf rose r = sin(20).

Show VCR.

Let (a, b) G V. We want to show that (a, b) G R. Since (a, b) G V, we know (a2 4- b2)3 —



7

4u2&2 = 0. So we get

(a2 + Z>2)3 - 4a2b2 = 0

(a2 + t>2)3 = 4a2 &2

(r2)3 = 4(r cos0)2(r sin0)2

r6 = 4r4 cos2 G sin2 G

r2 = 4 cos2 6 sin2 0
i

r — ± 2 cos 6 sin 0

r = ± sin(20).

Therefore, since R C V and V C R, we have shown that the four leaf rose is the affine 

variety V((a;2 + J/2)3 — 4rr2y2).

After examining several examples of affine varieties in R2, we want to look at 

some properties of affine varieties.
I

Lemma 2.6. If V, W C kn are affine varieties, then so are V U W and V fl W.

Proof. For both of these proofs we will let V — V(fi, f2> ■ ■ ■, fs) and W = V(^i, <72, • ■ •, 9t)- 
We want to show that V U W — ^(fi9j | 1 < i < s, 1 < j < t).

(=>) ShowFUWcVfe)-

Let (ai, u2,..., o>n) 6 V U W. This implies that (ai, a2}..., an) G V or (ai, fl2> • ■ ■: an) G 

W. If (ai,a2,...,an) G V, then A(ai, a2i ■. -, On) = 0, f2(ai,a2,... ,an) = 0, ...» 

fsfai, ^2? • • • > ®n) = 0- So fi(a^ a2,..,, cin)$i(®i) ; ®n) = 0 for all 1 < i < s,
fi(ai,a2,..., an)g2(aiya2, ■ . ■, an) = 0 for all 1 < i < s, ..., and finally

/i(ai>a2>. • ■ ,an)fft(a1,a2,... ,an) = 0 for all 1 < i < s. So, V c V(figj).
Similarly, if (ax, a2,..., an) G W, then ^i(ai,a2,... ,an) = 0, #2(ai, 02, ■ ■ ■, an) = 0, 

..., gt(ai,a2,...,an) = 0. So /i(ai,a2)..., an)^-(ai, a2,... ,an) = 0 for all 1 < j < t, 
/2(ai, fl2> • • •) fl2> • ■ • >©n) = 0 for all 1 < j < t, ..., and finally

/s(ai,a2)... ian)gj(ai,a2i... ,an) = 0 for all 1 < j < t. Now, W C Conse

quently, it has been shown that V U W C V(/,0j).

(<=) ShowV(/^)c VUW.

Let (ai, a2,..., an) G 'Vffigj)- We want to show (ai, a2,..., an) G V U W. Since 

(ai, a2)..., on) € V(fi9j) this implies that A(ai, a2,..., a2)..., an) = 0 for

all i and j. In order for the product of these two polynomials to equal zero then either 
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fi(ai} 0,2) - ■ ■, dn) = 0 or 9j(a\, a^,..., an) = 0. Listing some of the products of V(fi9j) 
we get,

fl > ^2 j • • • j ®n) ' 9j (®11 ^2) ■ • ■ j 0j 1 — j < t

^2, • • • j ®n) ' 9j(^l, ®2;» • » » 0; 1 < J < t

Js(ai, a2) ■ • • j ®n) ’ 9j(91, ®2> * ■ • j d, 1 < j < t.

By examining each of the products listed we notice that there are two things that can

happen. One, if fjai, 02, ■ • ■ , on) = 0 for all i, then gj(ai, O2» • • •, an) does not have to 

equal zero. Since (ai, a2,..., an) makes all the polynomials /i, /21 ■ • • > /s in V equal 0, 

then we have shown that (ai, a2,..., an) eV. On the other hand, if /i0(ai, 02,..., Qu) 0 

for some io, then pj(ai, 02, • ■ •, On) must equal zero for all j. So, (ai, 02,..., an) makes 

all of the polynomials gj in W zero, and then (ai,p2) • • •rOn) G W. Due to the fact that 

(ai, d2,..., an) e V or (ai, 02,..., on) G W. we can conclude that (ai, a2, • ■ • 5 an) € VUW. 

Therefore, we have proved that V UW = V (Jigj | 1 < i < s, 1 < j < t).
I

I

We will next show that Vn W = V(/i, /2)., fs, 91,92, • • ■ ,&).

(=>) Show that VA W C V(/i,/2>-- - ,fs,9i,92,-; -,9t)-
Let (ai, a2,..., an) G Vn W. This implies that (ai, o2, ■ • ■ > On) € V and (ai, a^,..., an) £ 

W. So, (ai, a2,..., an) 6 V means that fi(a±, a2, ■ ■ ■, on) = 0 for all 1 < i < s. Likewise, 

(ai, a^y -.., an) G W means that gj (ai, a®,..., an) = 0 for all 1 < j < t. Thus, the n-tuple 

(ai,a2, • • •, &n) G V(/i,/2; • ■ • >Zs> <7i>52> • ■ • >5t) since it makes all of the equations in V 

equal to zero.

(4=) Show that V(/i, /2l . ■ ■, fs, 91, g2, • • ■, 9t) C V n W.

Assume (ai,a2). . .,an) eV(fi,f2,--- ,fs,9i,92, . • • ,9tJ This now implies that

/i(ai, a2 ..., an) = 0 for all 1 < i < s and pt(ai,a2)• ■ • = 0 for all 1 < j < t. So

(ai, 02, • • •; an) makes all the polynomials ft in V zero and gj in W zero as well. Now, we 

can say that (oi, o2) • • • > G V and (ai, o2,..., on) e W. Thus, (ai, 02,..., an) G VflW. 

We have verified that V n W = V(/i,/21 ■ ■ ■, fs, 91,92,-,9t)- □

In the previous lemma if V and W are affine varieties, then the union of V and 

W and the intersection of V and W are both affine varieties. Furthermore, it will be 
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shown that Lemina 2.6 can also be extended to the unions and intersections of a finite 

number of affine varieties.

Proof. Let Vfi, V2, ..., Vn be affine varieties. We want to show that Vi Cl V2 Pi... Pl Vn 
is also an affine variety. We will show a proof by induction on n, the number of affine 

varieties. This is clearly true for n = 1 since Vi is a variety. In the case when n = 2, we 

have Vi Pl V2 and it was proven in Lemma 2.6 that the intersection of two affine varieties 

is an affine variety. Next, we will assume that Vi Pl V2 Pl... Pl V& is an affine variety for 

k varieties. Now we must show that Vi Pl V2 0 ... Pl V^ Pl H-i-i is an affine variety. From 

our previous assumption, the intersection of V] Pl V2 Pl... P14 is an affine variety. We will 

call this variety V. Now,

ViPiv2Pi--.n VfcDVfc+i = (ViPiV2n...PiVfc)n Vfc+i

= vnvfe+b
Notice that V and V^+i are affine varieties. Applying Lemma 2.6, the intersection of two 

affine varieties is an affine variety. Therefore, Vi P V2 PI... Pi Vn is an affine variety.
I

Secondly, in order to show that the finite union of affine varieties is an affine 

variety, we will again do a proof by induction on n, the number of affine varieties. The 

above statement is true when n = 1 because Vi is an affine variety. When n = 2, 

Vi U V2 is an affine variety because we have the union of two affine varieties. We will next 

assume that Vi U V2 U... U Vfc is an affine variety for k varieties. Now we must show that 

Vi U V2 U ... U Vk U Vfc+i is an affine variety. By our previous assumption, the union of 

Vi U V2 U ... U Vk is an affine variety. We will call this variety W. So,

ViUV2U...UVfcUVfc+i = (ViuV2U...UVfe)uVfc+i

Note that W and Vk+i are two affine varieties. Once again using Lemma 2.6, the union 

of two affine varieties is an affine variety. Consequently, Vi U V2 U ... U Vn is an affine 

variety. □

2.3 Ideals

One of the most important concepts from algebra that will used throughout this 

project are ideals. Ideals will be the key to help us find the elements from kn that are in 
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an affine variety.

Definition 2.7. A subset I G fc[xi,..., £n] is an ideal if it satisfies:

(i) 0 € I.

(ii) If f,g G I, then f + gel.

(iii) If f G Z and h G A;[ki, . . . ,Kn]> then hf G I.

Definition 2.8. Let /i,..., fs be polynomials in &[ki,..., kJ. Then we set

f S
(fa j • • ■ 5 fa) — > j hi fa | hi}..., hs G , . . . , Kn] * ■U=1

We will call (/i,..., fa) the ideal generated by /i,..., fa. In particular,

(/) = {hf \h G k[xi,x2,... , kJ}

is called the principal ideal generated by f.

The above definition states that if a polynomial can be written as a linear 

combination of /i, f2}..., fa, then that polynomial is an element of (fa, f2,..., fa)-

Lemma 2.9. If fa,..., fa G fc[a;i,.. ., Kn], then (fa,... ,fa) is an ideal of A?[rci,..., kJ. 

( s ., kJ}. We want to

u=i
Proof. Let (fa, f2,..., fa) = < ^hjfa | hi,h2,...,hs G k[x!,x2,..< 2=1
show that (fa, f2}..., fa) is an ideal. The first condition we need to show is that 0 G 

(fa,fz>-- ■ >fs)- We can write 0 = O-/1 + OJ2 + . . .4-0-/s, where each 0 G &[ki,k2,. .. ,kJ. 

Since 0 can be written as a linear combination of the polynomials fa, f2,..., fa belonging 

to fc[Ki,K2, ■ ■kJ, then 0 G (fa,f2,- ■ -,fa)-
Next, we must show that adding two arbitrary polynomials a and b from (fa, f2, 

..., fa) results in a polynomial that also belongs to (fa, f2,..., fa). Since a G (fa, f2,..., fa) 

then a = mi/i+ rn2f2 4-... 4- Tnsfs where mi,m2,... ,ms 6 fc[Ki,K2, • • • j^J. Similarly,

b G (fa,f2, ■■•,fa) implies that b = mfa + n2f2 4- ... 4- n3fa where ni,n2,...,ns G 

/c[ki,K2, - - - ,Kn). Hence,

a 4- b = frni/1 4- m2f2 4-... 4- msfa) 4- (ni/i 4- n2f2 4-... 4- nsfa)

= mih + ni/i 4- m2f2 4- n2f2 4-... 4- msfa 4- nsfa

= (mi 4- nfafa 4- (m2 + n2)f2 4-... 4- (ms 4- ns)fa.
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The sum a + b is a linear combination of the polynomials fi, f2, • • •, fs and + ni, 

m2A-n2, ...tm3 + nse x2,... ,o?n]. Thus, a J- b e {flt f2,. ■ •, fs)-

Finally, if h G k[xi,x2,... ,zn] and a G (fi,f2, ■ ,f8), then we must show that ha G 

(fl, f2, • ■ -, fs)- Since a G (fi, f2,..., fs), then a = m-ifa + m2f2 + ... + m5fs. Now,

ha = /i(mifi + m2f2 + ... + msf8)

- hmifr + hm2f2 + ... + hmsfs

= + (hm2)f2 + ... d- (hma)f8.

The product ha is a linear combination of the polynomials fi, f2,..., fs and hmit hm2, 

..., hms are in fc[zi, x2,..., En], So, ha G (fi,f2)• • ■, fs)- By satisfying these three 

conditions, it has been shown that (fi, f2}..., fs) is an ideal. □

Proposition 2.10. Iffi,...,fs andgi,... ,gt are bases of the same ideal in fc[a?ij..., zn], 

so that (fi>... ,fs) = {gi,"' idt), thenV(fat...,fs) = V(px,... ,pt).
i

Proof. Assume that (fi, f2,..., f8) = (pi, g2,..., gt} - We want to show that V(fi, f2,... > fs) 
= V(pi,p2)... }gt). Let (ai,a2)...,an) G V(fi, f2,..., f8). Since (ai,a2,.. . ,an) G 

V(fi, f2,..., f5) we know that fi(ai, a2,...,an) = 0, f2(ai, a2,... ,an) = 0, ..., 
fs(ai, n2,..., an) = 0. In order for (ai,a2,..., an) to be an element of V(pi, g2,... ,pj), we 

have to show that pi(ai, a2,..., an) = 0, p2(ai, <*2,  • • • »«n) = 0, ..., pt(ai, a2,..., an) = 0.I
The polynomials gi^gi^ ■ > >gt are elements in the ideal (pi,p2,... ,gt}- Consequently, 

pi,p2, ...,gt are also elements in the ideal (fi, f2,..., fs) because from our initial as

sumption (fi, f2,..., fs) = <51,52, ■ ■ -,Pt)- Now that pbp2,...,gt G (fx, f2,..., fs) we 

can write each gi for 1 < i < t as a linear combination of fi, f2,..., fs. Hence, gi — 

biJi + bi2f2 + ... + bisfs, where bi^b^,. ..,bis G k[xi,.x2i... ,a?n]. If we evaluate each pi 

by (ai,a2,...,an) we get,

Pi(^l, ^2, ■ ■ • , ®n) — (^1, ^2, • • • , ^n)fl(^1, G2, • • • , ®n) d-• • .

d" (®11 a2,. . . , On)fs(Q'l> &2,■•■, &n)

= &ij (ai, a2) • • •, tin) ■ 0 d- ■ • ■ d*  bis (&i, d2,..., czn) • 0

= 0.

So, pi(ai,a2,.. .On) = 0 for all 1 < i < t. As a result, (ai,a2, • ■ ■ ,an) G V(pi,p2,..-,pt). 

It has been shown that if (fi,... ,fs) = (gi,...,gt), thenV(fi,..., fs) = V(px,... ,gt). □
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With the help of the division algorithm, it will be possible to determine the form 

of every ideal in the polynomial ring A: [a;].

Corollary 2.11. If k is a field, then every ideal of A:[a;] can be written in the form (/) 
for some f € A; [a?]. Furthermore, f is unique up to multiplication by a nonzero constant 

in k. In other words, A; [as] is a principal ideal domain (PID).

Proof. Let the ideal I C fc[a?]. If I = {0}, then I = (0). Since the only element in I is 

zero, zero is clearly an element of (0). Looking at the converse, (0) = g • 0 where g G A; [a;]. 

Regardless of the polynomial chosen from the ring, the product will always be zero. Thus, 

I = (0). Suppose I is a nonzero ideal. Assume f is a nonzero polynomial of minimal 

degree such that f G I. Let g € (f). We want the polynomial g G I. If g G (/), then 

g = h • f where h G A?[as]. Now the product hf G I because h G A; [a;], f G I and I is 

an ideal. So g G I and C I. We continue by proving that I c (/). Let g G I. We 

would like to show that g G (/). By the Division Algorithm g = qf + r where r = 0 or 

deg(r) < deg(/). If the remainder r # 0, then deg(r) < deg(/). Now, r = g — qf. In 

this equation, g G I and the product qf G I because q G ft [a;], f G I, and I is an ideal. 

Consequently, this would make r G I. This is a contradiction because r is an element of 

I that has lesser degree than f. By our assumption, f is supposed to be a polynomial of 

smallest degree in I. Therefore, r = 0 which makes g = qf G (/) and I c (f). So, for 

some f G fc[z] an ideal I in A; [a?] has the form I = (f).

We next turn our attention to prove that f is unique. Assume {f) = {g). 

Because f G. (g) then f = hg for h G A; [a;]. Examining the degrees of the polynomials f, 
g, and h we see that deg(/) = deg (A) 4- deg(p). So deg(/) > deg(p). Similarly, g G (f) 
means that g — hf for h G A;[a:]. In this case, deg((/) = deg(h-) + deg(/) so that deg(/) < 

deg((j). Hence, deg(/) = deg(t?). If the deg(/) = deg(p), then the equation deg(/) = 

deg(h) + deg(#) implies that the deg(7i) is zero. Then h must be a nonzero constant. □

An ideal generated by one element from the ring is called a principal ideal. As 

a result of Corollary 2.11, the polynomial ring A;[a:] is a principal ideal domain or PID for 

short.

Definition 2.12. Let V C kn be an affine variety. Then we set

I(V) = {/ € fcfci,... ,a?n] | /(ab.. .,an) = o for all (a1}... ,an) G V}.
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The ideal of a variety consists of the polynomials in the ring fc[rci,..., a?n] such 

that all of the n-tuples belonging to V makes the polynomial zero.

Lemma 2.13. IfV Ckn is an affine variety, then I(V) C . ,xn] is an ideal. We

will call I(V) the ideal of V.

Proof. In order to prove that I(V) is an ideal, we will begin by showing that 0 G I(V). 
Let (ai, «2,..., on) be an arbitrary element from the variety V. If we take a polynomial 

f G I(V), then /(ai, 02,..., an) = 0 by Definition 2.12. So it has been shown that 

0 G I(V). Now let the polynomials f and g G I(Vj. Then /(01,02, ■ ■., o„) — 0 and 

y(ai, o2, ■ -an) G I(V). Thus,

(/" 4~ y)(oi, 02, ■ • • , On) — Z(oi, O2, • ■ • , On) 4~ </(oi, 02, • • ■ , On),

= 0 4-0,

= 0.

Since f 4- g = 0 and 0 G I(V), then f 4- g E I(V). Finally, let f G I(V) and h G 

X2,..., zj. The product

(M (“1^2,..-, On) ~ ^(Ol, 02, On)y(oj, 02, •••, On),

— hfai, 02, ■ ■ • , On) ‘ 0,

= 0.

So, hf G I(V). Therefore, we have shown that I(V) is an ideal. □

Lemma 2.14. If fi,...,fs G ... jnL then (A,..., fs) C I(V(A,..., f3)), although 
equality need not occur.

Proof Assume f G (A, A,---,A)- If it can be shown that f G I(V(A, A, • ■ • > A)), 

then (A,A,---?A) C I(V(A,A,■ ■ • >A))- Since the polynomial f is an element of 

(A, A, • • ■ > A) this implies that f = hifi 4- ^2/2 4- ... 4- h8fs where Al, h2) ■ ■ •, hs G 

fc[^i>^2, • ■ • ,®n]« In addition, let (01,02,• , on) be an arbitrary element of V'(A, A, • ■ •, A)- 

If we take this n-tuple and plug it into f we get

^(oi, O2, ■ ■ • , On) — A. (oj, O2, • • • , On)A(al> ®2, • ■ • , an) 4" fr2(Ol, 02, • • • , On) A(oi, ■ ■ • , On)

4- . . . 4" /ls(01,02,. .. , On) A(01,02, ■ • • , On)

— frl(oi, 02, . . . , On) • 0 4- /l2(oi, 02, ... , On) • 0 4" ... 4“ /ls(oi, . . . , On) ■ 0

= 0.



14

Due to the fact that (ui, a2,... On) € V(A> /2,..., A), then A(ai, a2,..., an) = 0 for 

1 < i < s. As a result, the polynomial f G I(V(A, f2,..., A))- Thus, {j\, C

i(V(A,-..,A)).

Although it has been proven that (A, • • •, A) C I(V(A,..., fs))t we need to 

examine the reasons why I(V(A>..., A)) need not be contained in {fi,..., fs). In order 

to do so, we will take a look at an example from R2. Let A = x + 3y + 1 and /2 ~ 

2x — y — 5 be polynomials from the ring R[rr, y]. To find the ordered pairs that belong to 

the V(A> A) = V(z + 3y + 1,2x — y — 5) we must solve the system of linear equations 

x + 3y + 1 = 0 and 2x — y — 5 = 0. The intersection of these two lines in the plane 

is only at the point (2, -1). Hence, V(rc + 3y + 1,2x — y — 5) = {(2, —1)}. On the 

other hand, if f G I(V(x + 3y + 1, 2x — y — 5)) it is not guaranteed to be an element of 

(a:+3y+l, 2x~y-5). The ideal I(V(rr+3y+l, 2x-y-5f) = {f G R[z, y] | /(2, -1) = 0}. 

For example, let f be the parabola f(x,y) = x2 — 4x —y+3. The parabola is an element of 

I(V(a;-{-3y + l, 2x-y — 5)) because /(2>—1) = 22 —4(2) — (-l) + 3 = 0. In order for this 

parabola to be an element of (x + 3y + 1, 2x — y — 5), it must be a linear combination of 

the polynomials A and f2. Unfortunately, / cannot be written as a linear combination of 

x + 3y +1 and 2x-y-5 so f £ (z + 3y + l, 2x-y-5). This implies that I(V(A> • • ■, A)) 

is not contained in (A: • ■ • > A)- □



15

Chapter 3

Groebner Bases

The ultimate goal of this project is to be able to prove geometric theorems 
i

algebraically. The algebraic method that will be illustrated later is the called the Groeb

ner Bases Algorithm. However, in order to use this algorithm we must first define and 

understand Groebner bases. There are two major questions that will be encountered 

by working with polynomials and the ideals generated by these polynomials. First, by 

taking an arbitrary polynomial f from ,...,can we determine if f is an el

ement of the ideal I = {fi,f2> - • ■, /nV? In addition, is it possible to find the solutions 

to a system of polynomial equations, fi(xi, X2,..., xn) = 0, -7;2, • ■ • > M = 0, ...,

= 0? Using a concept introduced in Section 2.2, we can rephrase the 

previous question in the following manner. Can we find the points that belong to the 

affine variety V(Ji, f2> • ■ ■ ■> Groebner bases are the tool that will allow us to answer 

these questions in order to prove theorems from Euclidean geometry algebraically.

3.1 Orderings on the Monomials in ^2,.. •, x^\

Since we will be working with polynomials with coefficients from a field k and 

whose terms are composed of n variables, we had to spend time defining these polynomials. 

Chapter 2 began by discussing monomials because they are the building blocks of any 

polynomial. We were able to define a coefficient, term, monomial and total degree for a 

multivariable polynomial / in fc[rci, X2,.. -, a?n]- Unfortunately, one of the topics that we 

did not discuss at that time was how to order the terms of a multivariable polynomial. 

To understand why it is important to discuss ordering a multivariable polynomial we will 
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reexamine an example from Section 2.1. The polynomial f(x,y,z) = 7x4yz2 — jz2t/5 + 

xyz?J — lOrr4 4-2a:yz illustrates a problem that is not present in single variable polynomials. 

There are two terms 7x^yz2 and — |a;2y5 in / that have the same total degree 7. We 

have discovered that it is possible for a multivariable polynomial to have more than one 

term with the same total degree. Consequently, if we wanted to order the polynomial 

/ in either descending or ascending order we will have a major problem. In order to 

use the Groebner Basis Algorithm effectively, we need to use the division algorithm for 

multivariable polynomials. Before using the division algorithm it is common practice to 

order the terms of the polynomial in descending order.

In order to arrange the terms in a polynomial from k[xi }x2,..., a?n]> we will now 

define three possible orderings. Although there are many lexicographic orderings, in this 

project we will be using lex order, graded lex order, or graded reverse lex order.
i

Definition 3.1 (Lex Order). Let a = (cq, • • •, an) and /? = (/3i,..., 0n) G Z£o. We say 

a >iex fl if? in the vector difference a — G Zn, the left-most nonzero entry is positive. 

We will write xa >iex x& if ct >iex /?■

Definition 3.2 (Graded Lex Order). Let a,/? G Z>0. We say a >griex fl if

H = EK=i ai > 1^1 = S7=i or |a| = |y0| and a >iex fl.

Definition 3.3 (Graded Reverse Lex Order). Let a,/? G Z>0. We say a >greviex fl 
if

h| = E7=iai> hl = or |a| = hl

and the rightmost nonzero entry of a — fl G Zn is negative.

To illustrate the difference between the three lex orderings defined above, we 

will rearrange the terms of the polynomial f(x, y, z) = 2.t2t/8 — 3a;52/^4 + xyzfl — xy^ 

in lex order, grlex order, and grevlex order. The variables x} y, and z will have the 

order x > y > z unless stated otherwise. We shall begin by writing the exponents 

of x, y, and z in each term of the polynomial above as ordered n-tuples. The terms 

2<e2j/8, —3a?5?/.?4, xyz\ and —xy^ will be represented by the ordered triplets a = (2,8,0), 

fl = (5,1,4), 7 = (1,1,3) and 5 = (1,4,0). To place the terms in lex order we need to 

compare the difference between the triplets a, fl, 7, and 5, The terms will be placed 
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in descending lex order when the leftmost nonzero entry in the difference is positive. 

The largest term in the polynomial for this example is — 3x5yz4 followed by 2x2y8. To 

order the final 2 terms we need to compare the difference of 7 — 5 — (0, —3,3) and 

5 — 7 = (0,3, —3). Since the leftmost nonzero entry is positive for 8 — 7, then — xy4 is 

bigger than xyz3. So the polynomial f(x, y, z). = 2x2y8 — 3x5yz4 4- xyz3 — xy4 written in 

lex order is f(x, y, z) = —3x5yz4 4- 2a;2y8 — xy4 + xyz3.

Next, we will write the given polynomial in graded lex order. When using 

grlex order, however, the monomials are initially ordered by the total degree of each 

term. In case the total degrees of the terms are the same, lex order is then used to 

arrange the terms. Determining the total degree for each term |a| = |(2,8,0)| = 10, 

|/3| = |(5,1,4)| = 10, |7| = |(1,1,3)| = 5, and |5| = |(1,4,0)| = 5. It is clear that a and 

are bigger terms than 7 and 8. But now we use lex order to find out if a > /? or /? > a and 

if 7 > 8 or 8 > 7. Comparing the difference between the ordered triples we can conclude 

that > a > 8 > 7. Thus, the polynomial f(x,y, z) = 2x2y8 — 3x5yz4 + xyz3 — xy4
I

written in graded lex order is /(rr,y, z) = —3x5yz4'4- 2x2y8 — xy4 4- xyz3.

Finally, we will conclude this example by writing the polynomial in graded 

reverse lex order. Similar to graded lex order the monomials will first be ordered by 

the total degree of each term. If the total degree between the terms happens to be 

equal we do not use lex order to order the terms. Instead, comparing the differences 

between the ordered n-tuples the larger term will have the rightmost nonzero entry be 

negative. As in the graded lex order, a and fl are bigger than 7 and 8. Comparing 

the rightmost entries in the differences, we find that a > (3 > 8 > 7. Therefore, the 

polynomial f(x, y> z) — 2x2y8 — 3a;5yz4 4- xyz3 — xy4 written in graded reverse lex order 

is f(xy y, z) = 2x2y8 — 3x5yz4 — xy4 4- xyz3.

Before we continue any further, it is necessary to introduce some additional 

terminology that will be used with polynomials from fc[rri, X2, . • •, En]-

Definition 3.4. Let f = aaxa be a nonzero polynomial in ,..., En] and let > 

be a monomial order.

(i) The multidegree of f is

multideg (/) = max(a e Z>0 : aa / 0)

(the maximum is taken with respect to >).
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(ii) The leading coefficient of f is

IJC(/)

(iii) The leading monomial of f is

LM(f) = xmultide9(f)

(with coefficient 1).

(iv) The leading term of f is

LT(/) = LC(/)-LM(/)

To illustrate the use of Definition 3.4, we will give the LC(/), LM(/)> LT(jf), 

and multideg(f) for the lex order, the grlex order, and grevlex order of the polynomial 

/(k, y, z) — 2z2y8 — 3K5yz4 -4- xyz^ — xy^. Since it turns out that the lex order and the 

graded lex order of the polynomial f are the same, then
I

multideg(f) = (5,1,4),

LC(/) = -3, 

LM(/) = ®5yz4, 

LT(/) = -3x3yz4.

On the other hand, with respect to graded reverse lex order, we see that

multideg(J) = (2,8,0),

LC(/) - 2, 

LM(/) = x2ys,

LT(/) = 2x2ys.

3.2 A Division Algorithm in k[xi,xj,..., xn]

We will now turn our focus to determine if an arbitrary polynomial f belongs to 

an ideal I. If we are working in the polynomial ring fc[x], finding out if f G I would be a
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simple task to accomplish by using the division algorithm since this involves polynomials 

of a single variable. Unfortunately, when trying to prove Euclidean geometry proofs by 

using algebra we will be working with polynomials from the ring k[xi,x2,..., a;n]. In order 

to determine whether f 6 , x2,..., zn] is an element of the ideal I = (A? /2> • • ■ ? A)>

can we modify the division algorithm used for single variable polynomials? This means 

that f will be divided by the polynomials A> A; • • ■ > A from aj2,..., xn]. In other 

words, f = ui/i + a2f2 + ■ ■ • + asfs + r, where ai,a2,...,as are the quotients, Aj A; 

..., A are the divisors and r is the remainder. All of the polynomials a-i, fa, and r are 

elements of fcjzi, x2i..., a;n]. The division algorithm for multivariable polynomials will 

essentially work in the same manner as for single variable polynomials. Before starting 

the division, we must first decide the momonial ordering that will be used on the poly

nomial f. Next, we want to divide the leading term of f by one of the ffs to find the 

corresponding quotients ofs and then subtracting. This process will be illustrated with 

the following examples.

Example 1. We will be dividing the polynomial f = x2y3 + 9 by A = xy +1 and 

f2 = y + 1. We will use lex order with x > y. To set up the division, we will write the 

divisors and the quotients vertically:

:

a2 :
xy + 1 7 9

y +1

Both of the leading terms LT(A) — XV and LT(A) = V divide the leading term of f 
evenly. However, since there is more than one divisor we will use the first A that divides 

LT(/) = x2y3 evenly. So the divisor A will be used first. Now xy2 ■ fi = x2y3 — y and 

subtracting this from f is —xy2 + 9.

ai :

a2 :

xy + 1

2/ + 1

x2y2 + 9 

~(s22/3 + xy2)

—xy1 + 9
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We continue the same procedure on — xy2 -F 9. Again the LT(fi) = xy divides the 

LT(—xy2 + 9) = —xy2 evenly. So -y-f1 = —xy2 — y and subtracting this from —xy2 4- 9 

is y + 9.

ai : xy2 - y

02 :
xy 4- 1 a/ x2y3 + 9 

y + 1 ~(x2y3 + xy2)

—xy2 + 9

-(-xy2 -y)

y + 9

Now notice that LT(/i) = xy does not divide LT(y 4- 9) = y so we must use TA Thus, 

l*2/4-l  = 2/4-l and subtracting this from y 4- 9 results in 8.

I

ai : xy2 - y

&2 : 1

xy 4-1 \/ x2y3 + 9

2/4-1 —(x2y3 4- xy2)

—xy2 4- 9

-(-xy2 -y)

y 4-9

~(y + 1)

8

0 —>8

The algorithm has terminated at this point because the LT(/i) and.LT(/2) cannot divide

8. Therefore, 8 is the remainder. The division completed above has shown that

x2y3 + 9 = (xy2 - y) • (xy + 1) + (1) • (y + 1) + 8.

Example 2. In this next example we will come across a situation that does not occur 

when using the division algorithm for single variable polynomials. The polynomial f will 

be ordered using lex order where x > y. The polynomial f = x^y2 4- x2y3 4- y2 will be 

divided by /i = xy — 1 and /2 = y2 — 1- As in Example 1, we notice that both the 



21

LT(A) = xy and LT(A) = y2 divide the LT(/) = x4y2. So x3y • A = x4y2 — x3y and 

subtracting this from f results in x3y 4- x2y3 + y2.

ai : x3y

02 :

xy -1 y/ x4y2 + x2y3 + y2

y2 - 1 ~(x4y2 - x3y)

x3y + x2y3 4- y2

Next, x2 ■ fi = x3y — x2 and subtracting this from x3y 4- x2y3 + y2 yields,

oi : x3y 4- x2

02 :

xy - 1 y/ x4y2 + x2y3 + y2

y2 — 1 — (x4y2 — x3y)

x3y + x2y3 4- y2

— (x3y — x2)

x2y3 + x2 4- y2

Continuing with x2y3 + x2 4- y2, the LT(A) = #y divides the LT(a;2y3 4- x2 4- y2) = x2y3 
evenly. So, xy2 ■ A = z2y3 — xy2 and the subtracting this from x2y3 4- x2 4- y2 is

01 : x3y 4- x2 4- xy2

02 :

xy - 1 \/ x4y2 4- x2y3 4- y2

y2 — 1 — (x4y2 ~ x3y)

x3y 4- x2y3 4- y2

— (x3y — x2}

x2y3 + x2 4- y2

~(x2y3 - xy2)

x2 4- xy2 + y2

At this point in the division we come across a problem. Neither LT(A) — xy or the 

LT(A) — y2 divide the LT(rr2 4- xy2 + y2) = x2 evenly. In the case of a single variable 

polynomial this would signify that the division algorithm has terminated since the leading
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term of the divisor cannot divide the polynomial left after the subtraction. With multi

variable polynomials, however, we can move the k2 term to the remainder and continue 

dividing. Hence, y • fa = xy2 — y and subtracting this from xy2 4- y2 we get

ai : x3y 4- x2 4- xy2 4- y

(22 :
xy - 1 x4y2 4- x2y3 4- y2

y2 — 1 — (x4y2 — x3y)

x3y 4- K2y3 4- y2 
—(x3y — x2)

x2y3 4- x2 4- 

-(x2y3 - xy2)

xy2 + y2 —> x2
-(xy2 - y)

' y2 + y

Since LT(/i) cannot divide y2 4- y we must use the divisor fa. So, 1 ■ fa — y2 — 1 and 

subtracting from y2 — y results in

ai : x3y 4- x2 + xy2 + y

a2 : 1

xy - 1

y2-l

V x4y2 4- x2y3 4- y2 
~(x4y2 — x3y)

x3y + x2y3 4- y2

— (x3y — x2)

xy2 4- y2 
~(xy2~y) 

y2 + y 
~(y2 -1)

y +1
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Unfortunately, the LT(j/ 4-1) — y is not divisible by the LT(/j) or the LTQfa)- 

So the term y is also added to the remainder.

ai : x3y 4- x2 4- xy2 4- y

a2 : 1

xy - 1
y2 -1

V x4y2 4- x2y3 4- y2

-(a;4y2 - x3y)

x3y 4- x2y3 4- y2

— (x3y — x2)

x2y3 4- z2 4- y2 

~(x2y3 - xy2)

x2 4- xy2 4- y2

rry2 4- y2 —> x2

-(xy2 - y)

y2 + y

-(y2 -1)

y +1

1 x2 4-y

The final term left from the division 1 is again not divisible by LT(/i) or the LT (A) so 

it becomes part of the remainder.
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ai : x3y + x2 + xy2 4- y

a2 : 1

xy - 1 V x4y2 4- x2y3 4- y2

y2 - 1 —(x4y2 - x3y)

x3y 4" x2y3 4- y2
—(x3y — x2)

x2y3 + x2 +y2

~(x2y3 - xy2) ______

x2 4- xy2 4- y2

xy2 4- y2 —► a;2

~(xy2 — y)

y2 + y
-(y2-r)

11 y + 1

1 —> x2 4- y

■ 0 —> x2 4- y 4-1

Finally, the division algorithm has terminated, so that

x4y2 4- x2y3 + y2 = (x3y 4- x2 4- xy2 4- y) ■ (xy - 1) 4-1 • (y2 - 1) 4- (x2 4- y 4-1).

Working through Example 2 shows the steps involved when using the division 

algorithm for polynomials from the ring k[xi, rr2,..., irj. We can also note something 

important regarding the remainder obtained from the division. Each of the terms in the 

remainder are not divisible by any of the leading terms of the divisors. From the two 

examples worked out above it appears that there are no problems with the division algo

rithm when it is used with multivariable polynomials. The next example will illustrate 

that using the division algorithm with polynomials from k[xi,X2,.. ■,asn] does not ensure 

that the remainder is unique. This is a property which the remainder has in the single 

variable case. It is for this reason that we need to study Groebner bases.

Example 3. In the previous example, the polynomial f = x4y2 4- x2y3 4- y2 was di

vided by /i = xy — 1 and /2 = y2 — 1, The terms in f were ordered with respect to lex 
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order with x > y. The only modification that will be made to the earlier division will 

be to change the order in which the divisors are listed. How will this affect the division 

from Example 2? Completing the division algorithm results in

: x4 4- x2y 4- 1

a2 : x
y2 - 1 %/ a:4y2 4-as2y3 4-y2

xy — 1 — (a?4y2 — rr4)

x4 4- x2y3 4- y2

x2y3 4*  y2

~(a;2y3 - x2y)
X2y + y2

~(x2y -x) >

x + y2

y2
-fa2 ~ 1)

1

0

x4 4- x

x4 4- x 4-1

x4y2 4- x2y3 + y2 = (x4 4- x2y 4-1) • (y2 “ !) + x ‘ ~ !) + to4 4- x 4-1)

Comparing the results obtained from Example 2 and Example 3 we can make the 

following observations about using the division algorithm with multivariable polynomials. 

If the order of the divisors (Jf) are changed, the quotients (ttj) and the remainders will not 

be the same. Furthermore, we notice that the number of steps required to complete the 

divison algorithm is not the same. In Example 2, it only took 5 steps to do the division 

as opposed to 4 steps in Example 3.

From the three examples that have been studied in this section we can formally 

state the division algorithm for multivariable polynomials.

Theorem 3.5 (Division Algorithm in fc[a?i, x2,..., a?n]). Fix a monomial order > on 
Z>0, an(^ let F = (fu..., fs) be an ordered s-tuple of polynomials in &[rci,..., xn]. Then 

every f € fcfiri,..., arn] can be written as

f — 0.1 fi 4------ F asfs 4- r, 
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where ai, r G A:[iEi,..., £n], and either r = 0 or r is a linear combination, with coefficients 

in k, of monomials, none of which is divisible by any o/LT(A),... , LT(A)- We will call 
r a remainder of f on division by F. Furthermore, if aifi 0, then we have

multideg(y) > multideg(aiA)-

For a complete proof of the division algorithm in fc[zi, x2,..., rrn] refer to pages 62 - 63 

of [CLO97],

3.3 The Hilbert Basis Theorem and Groebner Bases

In the previous section, we saw that the leading terms of a polynomial are 

important when using the division algorithm. This is significant because in this section 

we will be looking at an ideal I and the ideal generated by the leading coefficients of the 

polynomials contained in I.

Definition 3.6. Let I C fcfiTi,...,2Jn] be an ideal other than {0}.

(i) We denote by LT (7) the set of leading terms of elements of I. Thus,

LT(7) = {cxa | there exists f G I with LT(/) — ca?Q}.

(ii) We denote by (LT (7)) the ideal generated by the elements of LT (I).

If the ideal I is generated by a finite set of polynomials A,A»--->A> then 

(LT(A), LT(A), • ■ • ,LT(A)) does not necessarily equal to (LT(7)). In the following ex

ample it will be shown that (LT(7)) can contain more elements. It can be bigger than 

(lt(A),lt(A),...,lt(a))-
Example. Suppose 7 = (yi, 52,^3) C IR[sc,y, z] where pi = xy2 - xz + y, g2 = xy - z2, 

and #3 = x — yz4. Using lex order with x > y > z, we want to find a polynomial g G I 

but LT(y) i (LT^LTtoXLTQys)). Let

g = 1 • (xy2 — xz + y) — y • (xy — z2) + z • (x — yz4),

— xy2 - xz + y-xy2+ yz2+ xz-yz\

= -yz5 4- yz2 4- y.
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Notice that g 6 I because it can be written as a linear combination of pi, g2, and g^. So 

LT(p) = —yz5 G (LT(7)). Unfortunately, LT(p) = —yz5 is not divisible by LT(pi) = rry2, 

LT(p2) = xy, or LT(p3) = x. So the polynomial g $ (LT(pi), LT(p2), LT(p3)).

Next, monomial ideals in fc[zi, x2,..., zn] will be defined.

Definition 3.7. An ideal I C Aj[a?i, x2,..., a;n] is a monomial ideal if there is a subset 

A C Z>0 (possibly infinite) such that I consists of all polynomials which are finite sums 

of the form hQxa, where ha G fc[zi, x2,..., a?n]. In this case, we write I = {xa | a G

ACZ^O).

One of the most important facts about monomial ideals from fc[zi, x2, ■ ■ ., a;n] is 

that they are finitely generated.

Theorem 3.8 (Dickson’s Lemma). A monomial ideal I = (xa | a G A) C k[x±, x2}..., 
a?n] can be written down in the form I = (xai,... ,xas), where ai,...,as G A. In 
particular, I has a finite basis. ,

For a complete proof of Dickson’s Lemma look at pages 69 - 70 of [CLO97].

Proposition 3.9. Let I C ... ,a;n] be an ideal

(i) (LT(7)) is a monomial ideal.

(ii) There are pi,... ,pf G I such that (LT (7)) = (LT(pi),... ,LT(pe)).

Proof, (i) From Definition 3.6, (LT(7)) = (cxa | f G I withLT(/) = cxa). If LT(/) = cxa, 

then c G k C k[xi, x2,..., rrn]. This implies that c is a nonzero constant from the field k. 
Consequently, the ideal (cxa | f G I with LT(/) = cxa) = (xa | f G I with LT(/) = cxa). 
The polynomials generated by both of these ideals are linear combinations of the same 

monomial xa. It has been shown that (LT(7)) = (xa | f G I with LT(/) = cxa) is a 

monomial ideal as stated in Definition 3.7.

(ii) In part (i) of this proof, we showed that (LT(7)) is a monomial ideal. Combining 

this fact with Dickson’s Lemma then (LT(7)) will be generated by a finite number of 

monomials from polynomials in I. Hence, for pi,p2,... ,gt G I,

(LT(A) = (LM(pi),LM(p2),... ,LM(pt)),

_ ~at\5 , ■ • • , U/ /)

= {cixai,C2Xa2,...,ctxat) where ci,C2,...,ct e k,

= (LT(31),LT(ff2)........LT(ff()).
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□
The previous example showed that (LT(/i), LT(/2),..., LT(/5)) does not equal 

(LT(Ij) since (LT(I)) can contain more elements. However, it will be shown that there 

are polynomials belonging to ideal I for which (LT(/i), LT(/2), ■ • • ,LT(/S)) = (LT(Ij).

Theorem 3.10. (Hilbert Basis Theorem). Every ideal I C ., xn] has a finite

generating set. That is, I = (pi,...,gt) for some g\,..., gt G I.

Proof. By part (ii) of Proposition 3.9, there are gi,g2, - - - i9t G I such that (LT(7)) = 

(LT(pi), LT(p2), ■ • •,LT(pt)). We must prove that I = (px, g2,... ,gt}- We will begin by 

showing that (gi,92, • • • >9t} C I. Since each gi,g2, • ■ • ,gt € I the polynomials that are 

linear combinations of elements in I also belong to I by closure. For the second part of 

this proof it will be shown that I C {gi, g2,..., gt}- Let f be a polynomial in I, then show 

that f is an element of (gi,g2,... ,gt}- Due to the fact that f G 7, the polynomial can be 

divided by gi, g2,..., gt using the division algorithm. Hence, f — a\gi+a2g2d-■. -+<ztpt+r 

where no term of r is divisible by the LT(pi), LT(p2), . . . ,LT(pt). In order for f to be an 

element of (gi, g2,..., gt}, the remainder r must be equal zero. Assume that the remainder 

is not zero. Solving the above equation for r, we get r = f — aigi — a2g2 —... — atgt- The 

equation for r now shows that r G I because f G I and each of the products a^gt for 1 < 

i <t are also in I. Since r Gl, this implies that LT(r) G (LT(7)). Consequently, LT(r) G 

(LT (pi), LT(p2), ■ • • > LT(p<)) because (LT(7)) = (LT(pi), LT(p2), ■■■, LT(pz)). This means 

that LT(r) is divisible by some LT(pi). This is clearly a contradiction because in order to 

be a remainder r cannot be divided by any LT(pi), LT(p2), • • ■, LT(p*).  So the remainder 

must be zero. As a result, f = aigi + a2g2 + - - -+dt9t which means that f G (gi,g2> - ■ ■ >9t}- 

So 7 C {gi,92,---,gt}- Therefore, I = (pi, p2, •.. >9t}- □

We will now define what it means to be a Groebner basis. The properties of 

Groebner bases will be discussed in more detail in the next section. Furthermore, we will 

also learn how to find a Groebner basis for an ideal I.

Definition 3.11. Fix a monomial order. A finite subset G = {pi,... ,gt} of an ideal I is 

said to be a Groebner basis (or standard basis) if

<LT(ffi),...,LT(5t)) = (LT(Z)).
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Corollary 3.12. Fix a monomial order. Then every ideal I C A;[ki, ... , kJ other than 
{0} has a Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis of I.

As a result of the Hilbert Basis Theorem it is possible to find the variety of an 

ideal I C &[ki,K2>..., kJ.

Definition 3.13. Let I C &[ki, ... ,kJ be an ideal. We will denote by V(Z) the set

V(Z) — {(ai, • • • ,an) 6 | /(ai,... ,On) = 0 for all f G I}.

Proposition 3.14. V(7) is an affine variety. In particular, if I = (fa,..., fa), then

Proof. By the Hilbert Basis Theorem, I = (fa, fa,..., fa). We shall start by showing that 

V(I) C V(/i, fa,.-., fa)- As defined by Definition 3.13, V(Z) is the set of all n-tuples 

that make all of the polynomials in I equal to zero. Let (ai,a2> ■ • ■ ,an) be one of the 

elements from V(Z). Since I = (fa, fa, - ■ -, fa), then fa, fa, ■. -, fa are also polynomials 

in I. Now fa(a1,a2}- - - ,an) = 0, fa(ai,a2, - ■ ■ ,an) = 0, .... /s(ai, a2,..., an) - 0. So, 

V(Z) QV(fa,fa,- - - ,fa)- Next, we will show that V(fa, fa, - - -, fa) C V(I). Suppose that 

(ai, a2,..., an) G V(/i, fa,..., fa) and f G I. We want to show that (ai, a2,..., an) G 

V(Z). Since f is in I it can be written as a linear combination of the polynomials 

fa,fa,-- -,fa, i-e. f = hi/i + h2fa + .. . + hsfa where hi G k[x-L,x2,... ,kJ. So

~ hi(ai,... ,an)fa(ai,... ,an)hs(ai,... an)fsffii,... an)

= hfaa-L, ■ • •, an) • 0 4“... 4*  hg(ai,... an) ■ 0

= 0.

Thus, (a1,a2,...,an) G V (I) and V(fa, fa, - - ■, fa) C V(Z). Therefore, V(I) = V (fa, fa, 

--•,fa)- □

3.4 Properties of Groebner Bases

In the previous section it was shown that every ideal I C k[xi,x2,... ,kJ has 

a Groebner basis as long as I is a nonzero ideal. We will now take a closer look at the 

properties of a Groebner basis. We shall begin by examining the problem encountered 

by using the division algorithm with polynomials from A;[ki, x2,... ,kJ. In Section 3.2, 
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the division algorithm was illustrated by dividing x4y2 4- x2y3 + y2 by xy — 1 and y2 — 1. 

The first time the division was performed,, fi = xy — 1 and f2 — y2 — 1 so that

x4y2 + x2y3 + y2 = (x3y 4- x2 4- xy2 4- y) • (xy - 1) 4-1 ■ (y2 - 1) 4- (x2 + y 4-1).

On the other hand, the second time the division algorithm was used, we let f\ = y2 — 1 

and f2 = xy — 1. In other words, the order of the divisors was switched which led to the 

following

x4y2 4- x2y3 + y2 = x ■ (xy ~ 1) + (x4 + x2y 4-1) • (y2 - 1) 4- (a;4 4- x + 1).

By comparing the two results we notice that both the quotients and the remainders are 

not the same. Using the division algorithm with multivariable polynomials illustrates 

a problem not present with single variable polynomials: the remainder is not unique. 

However, we will prove that a polynomial from ■ • • ■> ®n] that is divided by a

Groebner basis will have a unique remainder no> matter how the divisors are ordered.
]

Proposition 3.15. Let G = {pi,..., gt] be a Groebner basis for an ideal I C &[a?i,..., a?n] 

and let f E fcfrci,..., zn]. Then there is a unique r G A:[iei ,..., with the following two 
properties:

(i) No term ofr is divisible by any of LT(pi),... , LT(y*).

(ii) There is g G I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G 
are listed when using the division algorithm.

Proof. According to the division algorithm, we can write the polynomial f G

..., En] in the following manner f = aipi 4-a2y2 + ■ • .4-Otpt4-r. One possibility is that the 

remainder r is zero. However, if r is not zero, then it is a linear combination of monomials 

that are not divisible by any of LT(yi), LT(y2)> ■ • • > LT(y*).  Hence, condition (i) has been 

satisfied by the division algorithm in x2,..., zn]. By letting g = aigi+a2g2+- ■ -+atgt 
in the equation for /, we get f = g 4- r as stated in condition (ii). Notice that g G I 
because g is a linear combination of the polynomials pi, g2, ..., gt. Finally, we must 

prove that the remainder is unique regardless of the order of the divisors used. Suppose 

that f=.g-\-r = g> + rf where g, r, g1, and r' each satisfy conditions (i) and (ii)
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above. By rearranging the equation, r — r' = gr — gel. If the remainders r and r' 
are not the same, then LT(r — r') 6 (LT (J)) since r — r' e I. However, this implies 

that LT(r — r') G (LT(yi),LT(y2), • • • ,LT(yt)). Since G is a Groebner basis (LT(/)) = 

(LT(yi),LT(y2)> • • ■ >LT(yt)). Consequently, LT(r — r') will be divisible by some LT(yJ. 

This cannot happen because none of the monomials of r and rf are divisible by any LT(yJ 

as stated by condition (i). As a result, r—rr = 0 which means that r must equal rf. Thus, 

when f is divided by the polynomials gi,g2, • ■ ■ ,gt from a Groebner basis the remainder 

is unique. □

Despite the fact that it has been shown that using the division algorithm with a 

Groebner basis results in a unique remainder, the same cannot be said for the quotients 

or ajs in f = aiyi +a2ff2 + -.. &tgt- If the order of the polynomials in the basis is changed, 

this will result in different quotients. Let G = {x + z,y — z} be a Groebner basis using 

lex order with x > y > z. It will be shown later in this section why the set of polynomials 

G = {x + z,y — z} is a Groebner basis. We will now observe what happens when the 

polynomial xy is divided by G. For the first division let fi = x + z and /2 = y — z. 
Dividing the polynomial xy by /i and /2 we get,

ai : y

a2 : —z
x z \] xy 

y~z —(xy + yz)

- yz
I

-(-yz + z2) 

xy = y • (x +z) - z ■ (y - z) - z2.

If the arrangement of the divisors is changed, Proposition 3.15 states that the 

remainder of the next division will be the same as the remainder from the previous 

division. The polynomial xy will be divided by /i = y — z and /2 = x + z.
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ax : x

a2 : z

y -z
x + z —xy 4- xz

xz

— xz — z2

—z2

0 —> -z2

xy = x - (y — z) + z • (x 4- z) — z2

Comparing the results from each division the remainders are both —z2 as pre

dicted. On the other hand, the quotients are different. In the first division ai = y and 

a2 = —z, but oi = x and a2 = z in the second.

Corollary 3.16. Let G = {yi,...,gt} be a Groebner basis for an ideal I a , rrn]

and let f G , a?n]. Then f G I if and only if the remainder on division of f by G

is zero.

Proof. If the remainder when we divide the polynomial f by G is zero, then

f = Q191 + 0292 4- ■.. 4- atgt 4- r,

= &191 4- a2g2 4-... 4- atgt.

This implies that the polynomial f is a linear combination of yi, g2, • • ■, gt, so f G I. If 

it is given that f G I, then f = f 4-0. Thus, the remainder is zero when f is divided by 

the Groebner basis G. □

With the help of Corollary 3.16, there is now an algorithm available that will 

help with the ideal membership problem. It will be possible to determine if a polynomial 

f G x2,.. •, acn] is an element of the ideal I = (/i, f2}..., fs) if we have a Groebner 

basis for I. When we have a Groebner basis, finding the remainder when f is divided by 

G will tell us whether f G I. We shall next introduce some notation for this remainder.
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”FDefinition 3.17. We will write f for the remainder on division of f by the ordered 

s-tuple F = (A, • ■ •, A)- If F is a Groebner basis for (A, • • •, A), then we can regard F 
as a set (without any particular order) by Proposition 3.15.

In the example worked at the beginning of this section with F = (x+z, y — z) C R[rr, y, z], 

the remainder or xyF = —z2.

At the beginning of Section 3.3, we looked at the given ideal I — (yi, £2, <73) = 

(xy2 —xz+y,xy — z2,x —yz4). The polynomial g = —yz5 4-yz2 4-y is an element of I since 

it is a linear combination of gi,g2j and g$. Consequently, the LT(y) = —yz5 G (LT(7)). 

But —yz5 0 (LT(yi),LT(y2),LT(y3)) since it is not divisible by any of the LT(yi). As 

a result, the set {xy2 — xz + y,xy — z2,x — yz4} is not a Groebner basis. So how does 

something like this occur? By taking a closer look at the linear combination used to find 

the polynomial g we can make an interesting observation. In the computation, the largest 

terms of the polynomial xy2 and xz are cancelled. The smaller terms that are left over 

—yz5, yz2 and y are not divisible by LT(yj), LTfe), or the LT(y3). Thus, if the linear 

combination of the elements in a basis generates polynomials that have had the largest 

terms cancelled, then that polynomial will never belong to the ideal generated by the 

LT(yJ. So, the basis cannot be called a Groebner basis. To better examine the effect of 

this cancellation, we will define S-polynomials.

Definition 3.18. Let f,gGk[xi,...,xn] be nonzero polynomials.

(i) If multideg(/) = a and multideg(y) = fl, then let 7 = (71,...,7n), where 7< = 

max(cni,/%) for each i. We call x^ the least common multiple of LM(/) and 

LM(y), written x*  = LCM(LM(/),LM(y)).

(ii) The S — polynomial of / and g is the combination

S(f< s) =

(Note that we are inverting the leading coefficients here as well.)

For instance, let us compute S(f, g) using lex order for f = 4x2z — 7y2 and 

g = xyz2 + 3xz4 in R[a;,y, z]. The multideg(/) = a and multideg(y) = fl. So, a = (2,0,1) 

and fl = (1,1,2). Using a and fl, we can now find 7 = (71,72,73). By comparing the 
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corresponding elements in the ordered triplets a and fl we get,

7x = max(ai,0i)

= max(2,1)

= 2

72 = max(a2,A>)

— max(0,1)

= 1

73 = max(a3j/?3)

= max(l, 2)

= 2.

Since 7 = (2,1,2), the least common multiple x1 = x2yz2. To compute the S-polynomial,

X * X J
= LT^ ■ f - LT^ '

From our computations above, it is important to note that the S-polynomial 

results in the cancellation of leading terms.

Theorem 3.19. Let I be a polynomial ideal. Then a basis G — {51,... ,gt} for I is 
a Groebner basis for I if and only if for all pairs i j} the remainder on division of 

S(gi, gj) by G (listed in some order) is zero.

For a complete proof of Theorem 3.19 please refer to pages 82 - 84 of [CLO97].

The theorem above is referred to as Buchberger’s S-pair criterion. With this 

theorem it will now be possible and much easier to determine if a given basis really is a 

Groebner basis. This criterion will enable us to generate an algorithm in order to find 

a Groebner basis. Earlier it was stated that the set G = {re + 2, y — z} is a Groebner 

basis. Using Buchberger’s S-pair criterion it will be shown that G is a Groebner basis 

for lex order where x > y > z. We shall start by computing the S-polynomial 5(51,52).
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Let ct = multideg(yi) = (1,0,0) and fl = multideg(y2) = (0,1,0). Comparing the 

corresponding elements in the ordered triplets a and fl then 7 = (71,72:73) is

7! = max(cq,/?i)

— max(l,0)

= 1

72 = max(ct2, fl2)

— max(0,1)

= 1

73 = max(a3,/33)

— max(0,0)

= 0. (

So the least common multiple x7 = xy. To compute the S-polynomial,

= xy 4- yz — xy 4- xz

xz + yz.

If we can verify that xz 4- yz is zero, then G is a Groebner basis for I — 

(x 4- z,y — z). By the division algorithm,

z

z

x 4- z

y-z

y xz + yz

-(xz + z2)

yz — z2 
-(yz - z2) 

0

xz + yz = z(x 4- z) 4- z(y — z) 4- 0.

Therefore, G is a Groebner basis for the ideal I.
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3.5 Buchberger’s Algorithm

In the previous sections of Chapter 3 a lot of time was spent defining a Groebner 

basis and studying the properties of a Groebner basis. It was also shown that every 

nonzero ideal has a Groebner basis. The only question that has yet to be answered is 

how do we construct a Groebner basis? If the ideal I is a subset of the polynomial 

ring x2i... ,a;n], how can we make a Groebner basis for 1? To help answer this 

question we will take a look at the following example. Suppose the ideal I = (51,52) 

where 51 = x2y — 1 and 52 = xy2 — x. In order for {51,52} to be a Groebner basis we 

must add more polynomials to the given set. To help determine the polynomials that 

should be added to the basis we will make use of S-polynomials. To compute £(51,52), 

a = (2,1), /3 = (1,2), 7 = (2,2) making the least common multiple x7 = x2y2. So

S(gi,g2) = -JJ(zy-:T)-JJ(Xy -z)

= y(x2y - 1) - x(xy2 - x)

= x2y2 - y - x2y2 + re2

= x2 - y.

Dividing £(51,52) by the set G — {x2y — fxy2 — m}

ai : 0

a2 : 

x2y - 1 

xy2 — x

0
\] %2-y

0
x2 — y

The division shows that £(51,52) =x2 — y. Since the remainder is not zero we will call 

this polynomial 53 = x2 — y and add it to the the set G, Now we will check to see if 
______ Q

G — {ir2y — 1, xy2 — x, x2 — y} is a Groebner basis. Using Theorem 3.19, if S(gi,gj) = 0
_______ G

for all i 0 then G is a Groebner basis. Since £(51,52) = 53 then £(51,52) = 0- To 
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compute 5(pi,p3), a — (2,1), 0 = (2,0), 7 = (2,1) making the LCM a;7 = x2y. So

^3) = g-^y-i)-^^)

= l(x2y — 1) -y(x2 -y)

= x2y - 1 - x2y + y2

= y2-l.

Dividing S(yi, y3) by the set G = {x2y - 1, xy2 -x,x2 - y}

ai : 0

a2 : 0

u3 : 0
x2y - 1 y/ y2 -1

xy2 — x 0

x2 ~ y y2 — 1

The division shows that S (51,53) = y2 — 1. Since the remainder is not zero we will call
I

this polynomial 54 = y2 — 1 and add it to the the set G. Now we will repeat the same 

process to determine if G = {a;2y — l,rcy2 — x,x2 — y,y2 — 1} is a Groebner basis. Notice 
that S(pi,52)G = S(glt53)° = 0. To compute a = (2,1), 0 = (0,2), 7 = (2,2)

making the LCM rr7 = x2y2. So
™2„.2 ™2„,2

SM) = (^-1)

= y{x2y - 1) - x2(y2 - 1)

= x2y2 -y- x2y2 + a;2

= x2 - y.

Unfortunately, S(gi,gf) = x2 -y but this remainder equals y3, so there is nothing new 

to add to the basis G. To compute S(g2)gf), a = (1,2), 0 = (2,0), 7 = (2,2) making the 

LCM a?7 = x2y2. So

ste,S3) =

= x(xy2 - x) - y2(x2 - y)

= x2y2 - x2 - x2y2 + y3

= -x2 + y3.
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Dividing £(52,53) by the set G = {x2y - l,xy2 -x,x2 - y, y2 - 1}

ax : 0

a2 : 0

03 : —1

04 : y
x2y - 1 y -x2 + y3

xy2 — x —(—x2 + y) 

x2 -y y3 -y

y2 “ i ~(y3~y)

o
________

The division shows that S(g2,g3) = 0 so the set G remains unchanged. To

compute S(g2}gi), a — (1,2), 3 = (0,2), 7 = (1,2) making the LCM x1 = xy2. So 

ste,fl4) = ^W-*)-^-(y 2-i)

= l(#y2 - x) ~x(y2 - 1)

= xy2 — x — xy2 + x

= 0.

Dividing S(g2,g^) by G is still zero therefore G will not change. To compute S(g3,gi), 
a — (2,0), fl — (0,2), 7 = (2,2) making the LCM x^ — x2y2. So

^<2n,2 q>2„,2
S{g3,gt) = ■ (®2 - y) - • (y-1)

= 2/2(a=2 — y) — x2(y2 — 1)

= x2y2 — y3 — x2y2 + x2

Dividing £(53,54) by the set G = {x2y - l,xp2 - x,x2 - y,y2 - 1}
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ai : 0
a2 : 0

03 : 1

04 : -y
x2y - 1 y/ x2 - y3

xy2 — x — (x2 — y)

x2 — y -y3 + y

y2 -1 - (~y3 + y)

0
____Q

The division shows that S(p3,y4) = 0 so the set G stays the same. It has

been shown that for the set G — {x2y — I,xy2 — x,x2 — y,y2 — 1}, S(gi,gj) = 0 for 

all combinations in which i J j. Therefore, we may call G a Groebner basis. A formal 

definition of the algorithm used above to compute a Groebner basis is detailed below.
'I

Theorem 3.20. Let I = (/i,..., f5) {0} be a polynomial ideal. Then a Groebner basis

for I can be constructed in a finite number of steps by the following algorithm:

Let Fn = {fiy... ,/s}.
Step 1: For each pair {A, fj} in Fn where i J j compute the S-polynomial S(fi, fj).

Step 2: Take the S-polynomial previously computed and let S = S(fi,fj) .

Step 3: If S 7^ 0, then S must be added to the set so that Fn+i = Fn U {S'}. Whenever 
S = 0 there is nothing new to add to the basis.

Now steps 1-3 are repeated until the set Fn^i = Fn for some n.

One important note needs to be made regarding the use of the algorithm above 

to find a Groebner basis. Computing a Groebner basis with Theorem 3.20 often leads 

to a set of polynomials that is bigger than it needs to be. These extra generators can 

be removed from the computed basis and the remaining set of polynomials will still be a 

Groebner basis.

Lemma 3.21. Let G be a Groebner basis for the polynomial ideal I. Let p G G be a 
polynomial such that LT(p) G (LT(G — {p})). Then G — {p} is also a Groebner basis for 

I.
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Proof. Let G = {51,521 • ■ • ,9s,p} be a Groebner basis for I. Then (LT(G)) = (LT(1)). 

We would like to prove that G—{p} is also a Groebner basis for I, (LT(G—{p})) = (LT(/)). 

In other words, (LT(G — {p})) = (LT(G)). First, it will be shown that (LT(G — {p})) C 

(LT(G)). Suppose that 5 G (LT(G — {p})). Then the polynomial 5 can be written in the 

following manner

5 = hiLT(pi) + /i2LT(p2) 4-... 4- hsLT(g3)}

= hiLTfpi) 4- h2LT(52) 4-... 4- hsLT(ps) 4- 0 • LT(p).

Since 5 is a linear combination of the elements in (LT(G)) then 5 G (LT(G)). Next, we 

must show that (LT(G)) C (LT(G—{p})). Assume that 5 G (LT(G)). Consequently, 5 can 

be written as the linear combination 5 = hi LT (51) 4- h2 LT (52) 4-... 4- LT (ps) 4- hLT(p). 

Notice that every LT (pi) is an element of LT(G — {p}). Furthermore, from our hypothesis 

LT(p) G (LT(G — {p}))- As a result, each product listed in the linear combination is anI
element of (LT(G — {p})) and by closure 5 G (LT(G — {p})). Thus, (LT(G — {p})) = 

(LT(G)), so G — {p} is also a Groebner basis for the ideal I. □

So how do we determine which generators are extra and should be removed 

from the Groebner basis? A generator that is a linear combination of the remaining 

polynomials in the basis is hot needed. This new basis will be called a reduced Groebner 

basis.

Definition 3.22. A reduced Groebner basis for a polynomial ideal I is a Groebner 

basis G for I such that:

(i) LC(p) = 1 for all p G G.

(ii) For all p G G, no monomial of p lies in (LT(G — {p})).

Now we.shall reexamine the Groebner basis G = {x2y — 1, xy2 — x, x2 — y,y2 — 1} 

that was computed earlier. Let 51 = x2y - 1, 52 = xy2 - x, 53 = x2 — y, and 54 = y2 - 1. 

Taking a closer look at the generator 52 = xy2 — x = x(y2 — 1) = x • 54. Since it was shown 

52 is a multiple of 54 it can be removed from the set so that G = {x2y — 1, x2 — y, y2 — 1}. 

In addition, we can make an interesting observation about the polynomial 51 and the set 
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G using the division algorithm. Dividing gi by x2 — y and y2 - 1 we see that

ai : y
a2 : 1

x2 -y

52 - 1
y 3;25- l
-(x2y - y2)

52 “ 1

0

gi = x2y - 1,

= y(z2-y) + l(j/2-l) + 0,

= y • 53 + 1- 54-

So 51 must also be eliminated from the set G. Finally, the reduced Groebner basis that 

has been computed for the set is G = {x2 ~ y,y2 — 1}.
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Chapter 4

The Algebra-Geometry

Connection

The goal of this project is to be able to prove geometric theorems algebraically. 

To accomplish this, time was spent discussing and defining concepts from geometry and 

algebra that would be needed. We have discussed affine varieties, ideals, and Groebner 

bases. However, we have not yet established a connection between each of these concepts. 

This chapter will be devoted to explaining the relationship between the algebraic and 

geometric concepts previously mentioned. We shall be able to bridge the gap between 

these ideas by proving Hilbert’s Nullstellensatz Theorem.

4.1 Hilbert’s Nullstellensatz

The most important connection that we want to establish is between varieties 

and ideals of polynomials. Basically, if we have a variety can it be converted to an ideal? 

Likewise, if we have an ideal can it be changed to an affine variety? It turns out that there 

exist two maps that will show that this is possible. Earlier we learned about the ideal of 

a variety, IfV) = {/ G &[zi, x2, ■ ■ ■, xn] | f(x) = 0 for all x G V}. The only polynomials 

that will belong to I are the those that vanish for each n-tuple that is an element of 

V. So there is a map from an affine variety to an ideal. On the other hand, when we 

are given an ideal from the polynomial ring A;[a7i, x2, ..., rrj, the variety of an ideal is 

V(I) — {(ai, a2,..., an) G kn | f(ai, a2,..., an) = 0 for all f G I}. So is V(I) an affine 
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variety? The answer to this question is yes. By combining the Hilbert Basis Theorem 

(Theorem 3.10) which states that I = (A, Ab, • • •, fs) and Proposition 3.14, V(7) is an 

affine variety. Thus, there is also a map from ideals to affine varieties.

It is important to note that there is the possibility that different ideals will result 

in the same variety. Let us look at the polynomials x — 1 and x2 — 2x + 1 from the ring 

R[x], Suppose Ii = (x — 1) and I2 = {x2 — 2x + 1). The ideal (x2 — 2x 4- 1) c (x — 1). If 

p G {x2 — 2x + 1) it can be written as follows p = f(x2 — 2a; 4- 1) where f G R[ac]. Now, 

p = f(x — l)(a; — 1) and f(x — 1) G R[®]. Thus, p G (x — 1) and (a;2 — 2a; +1) C (x — 1). 

On the other hand, the element x — 1 from (x — 1) is not contained in (a;2 — 2a; 4-1) so 

(x — 1) (a;2 — 2x 4-1) . We have confirmed that {x — 1) / (a;2 ~ 2a; 4-1) so we can be sure

that we are working with two different ideals. The variety V(A) = {a G R | f(a) = 0 

for all f G Ji}. The only value that makes the polynomial x — 1 = 0 is 1. For the next 

variety V(A) = {& G R ] y(b) = 0 for all g G I2}. The only element from R that makes 

x2 — 2a; 4-1 = 0 is also 1. Consequently, since Ii / I2 resulted in V(7i) = V(A) = {1}, 

the map V is not one-to-one. This creates a problem that needs to be eliminated. If we 

have an ideal that generates the entire polynomial ring and a variety is computed on this 

ideal, then the variety should produce the empty set. We do not want other varieties of 

ideals from the ring a;2,..., ®n] to also generate the empty set. To illustrate this 

problem let us look at the polynomials H-z2+y2 and 14-a?24-y4 from the ring R[a;,y]. Let 

A — (l+a;24-y2) and A = (14-z2+y4). The variety V(A) = {(01,02) 6 H&2 | 7(01,02) = 0 

for all f G A}- The only ordered pairs that make the polynomial 1 4- x2 4- y2 = 0 are 

(?, 0), (—z,0), (0,i), and (0, — i). Unfortunately, these four ordered pairs are not elements 

from R2, so V(A) = 0*  The next variety V(J2) = {(&i,b2) G R2 | g(bi,b2) = 0 for all 

g G I2}. The ordered pairs that make 1 4- x2 4- y4 = 0 are (% 0) and (—i, 0). But again 

we encounter the same problem when we computed V(A) : (b 0) 0 R2 and (—i, 0) R2.

Thus, V(A) = 0- Note that the field R is not algebraically closed because the roots found 

came from C and not from R. If there are different ideals that generate the empty variety 

can we resolve this issue by working with a field that is algebraically closed? Let us first 

take a look at the single variable case.

Theorem 4.1. Let k be an algebraically closed field and let I c k[re] be an ideal. Then 
V(/) = 0 if and only if I =

Proof. Every ideal I = (f) for some f G A; [a;] since A; [a;] is a PID by Corollary 2.11.
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Suppose f G Jk] is a nonconstant polynomial, then V(Z) = {a G k | g(a) = 0 for all 

g G Z}. We will be able to find the roots of f from the field k since it is algebraically 

closed. So V(Z) 0. However, if f G A?[k] is a constant, then the V(Z) = 0. An element 

from the ideal Z = (J) is g • f where g G &[k] . Because f is a constant element from the 

polynomial ring &[k], there exists an element g — the multiplicative inverse of /, that 

also belongs to /c[k]. Hence, g ■ f — j • f = 1. This means that 1 is an element of the 

ideal Z so g G I for all g G /c[k). This makes I — &[k], which is the entire polynomial 

ring. If Z = fc[x], then it will not be possible to find a common solution to the system of 

equations fi(x) = 0, f2(x) = 0, ..., for all fa's in /c[k]. Therefore, taking the variety of 

the entire polynomial ring V(Z) is empty. □

By studying the single variable case, we were able to determine that when k is 

an algebraically closed field, computing the variety of the whole polynomial ring A;[k] will 

be the empty set. This finding can also be applied to a ring &[ki, k2, • ■ • > ®n] that is made 

up of multivariable polynomials.

Theorem 4.2 (The Weak Nullstellensatz). Let k be an algebraically closed field and 

let I C k[xi, k2, ...,kJ be an ideal. Then V(7) — 0 <if and only if I — k[xi, x2, ■.., kJ .

For a detailed proof of The Weak Nullstellensatz refer to pages 168 - 169 of [CLO97].
i

The Weak Nullstellensatz is an important (tool that will be used to determine 

whether a system of polynomials will have any common solutions. In order to determine 

if the variety V(/i,/2}- ■ ■ ,/s) = 0 for fi,f2, ■ • ■ ,fs € k[x1}x2,... ,kJ we must satisfy two 

conditions. First, the field k must be algebraically closed. Second, we must determine if 

1 is an element of the ideal generated by fa, f2,..., fs. This can be done by induction on 

n noting that the case n = 1 was proved above. So the Weak Nullstellensatz allows us 

to generate the following consistency algorithm. If we have polynomials /i, f2,..., fs G 

C[ki,k2, ■ ■. ,kJ, we compute a reduced Groebner basis of the ideal they generate with 

respect to .any ordering. If this basis is {1}, the polynomials have no common zero in Cn; 

if the basis is not {!}, they must have a common zero. Note that the algorithm works 

over any algebraically closed field. [CLO97]

Despite the fact that the Weak Nullstellensatz tells us whether a system of 

equations has a solution, there is still a flaw present between the maps of ideals and 

varieties. Adding the restriction that k must be an algebraically closed field does not make 
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the correspondence between ideals and varieties one-to-one. Earlier we computed the 

varieties of the ideals A = (s —1) and I2 — (x2 —2z4-l) where z —1 and x2~ 2a? 4-1 G R[x]. 

Let us compute the varieties of A and I2 once again where x — 1 and x2 — 2x + 1 are 

polynomials from an algebraically closed field C[a?]. The ideals A / I2 both generate 

the variety V(A) — V(I2) = {1}. Note that x2 — 2a? 4*  1 = (x — l)2. The Hilbert 

Nullstellensatz states that, over an algebraically closed field, this is the only reason that 

different ideals can give the same variety: if a polynomial f vanishes at all points of some 

variety V(7), then some power of f must belong to I. [CLO97]

Theorem 4.3 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If 

A A>«*->A  k[xi,..., a?n] are such that f 6 I(V(A,« • ■ > A))> then there exists an 
integer m > 1 such that

(and conversely).

Proof. Since the polynomial f G I(V(A, A, • ■ • > A))» then for all (ai, a2,..., an) G V, 

/(ai, a2,..., an) = 0. We would like to show that fm G (A, A, • ■ •, A) for some m > 1. 

In other words that fm = Ai A + A2A + • • ■ + ASA for m > 1 and the polynomials 

Ai, A2,..., As are from the ring Zc[a?i, x2,... ,.a?n]. To begin, we will use a trick to help 

us complete the proof for this theorem. Let the ideal I = (A, A> • • •»A3 “ yf} C

, x2,..., xn, y]. The polynomials A, A, • • •, A are still from k[xi, x2,..., xn]- Our 

goal is to show that I = k[xi,x2,... ,xn,y]- In order to do this we must show that 

V(7) = 0. Let (ai,a2,... , an,an+i) G kn+1. There are now two possible scenarios, the 

n-tuple is a common zero or it is not. First, suppose the n-tuple (ai,a2,... ,an) is a 

common zero of the polynomials A, A> ■ ■ ■ > A- this occurs, then f(ai,a2,...,an) = 0 

since f G I(V(A, A, ■ ■ • > A)) and so f will also disappear at the n-tuples that make 

A>A, — >A vanish.

Assume that (ai, a2,...,an, an+i) E V(Z) and also let g G I. This means that 

y(ai, a2, ..., an, an+i) must equal zero. The polynomial g can be written as follows, 

9 = 91(^1, x2,... ,xn,y)fi(xi,x2,... ,xn) 4- y2(zi, x2l..., xn,y)f2(xi, x2,... ,xn) 4- .. .4- 

ys(3Ci,3?2, ■ •. ,xn,y)fs(xi,x2,.. .,xn) 4- ys+i(zi,a?2, . . •, xn, y)(l - yf(xi,x2,... ,xn)).
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Evaluating g at the n-tuple (ai, a2,..., an, «n+i) we get,

5(01, 02, ■ • ■ , On, On-j-i) = 51(01, 02, ■ • ■ , On, Gn+l)/l(oi, 02, . . . ■ On)

+ 52(01, a2, •.., on, an+i) J2 (01, a2,..., an) 4-...

4" gS(Ol, 02, . . . , On, On-{-l) f s(oi, O2, • ■ • , On)

4“ 5s+l (Ol, 02, . . . , On, On+l)(l an+lf(ali O2, • • • , On)).

Continuing the computation,

5(01, • • • , On+l) — 51 (al, 02,. .. , On, On+1) * 0 4~ • • ■ 4*  5s (®1, O2, . . . , On, On-j-1) ' 0

"1“ 5s+l(oi, 02, . . . , On, On-|-l)(l On^-i • 0)

= 0 4-0 + ... + 0 + 5s+i(ai, a2,..., an, On+i)

= 5s+i(oi, o2,..., an, On+i)-
I 
I

This is clearly a contradiction because the final result of 5^+1 (01, o2,..., on, an+i) is not 

zero as we expected. So, (ai, a2,..., an, an+i) V(7j.

On the other hand, there is the possibility that (aj, a2,. ■., an) is not a common 

zero of the polynomials A, /2, ..., /s. This means that /i(oi, a2,. .., an) 0 for some 

i from 1 < i < s. When one more coordinate, On+i, is added to the original n-tuple 

a2,..., an, on+i) 0. We have again showed that (ai, o2, • • •, on, on+i) V(I). 

Therefore, the variety V(7) is the empty set.

It is extremely important that we have a variety that is empty because using the 

Weak Nullstellensatz we can conclude that 1 is an element of the ideal I. Since 1 6 I then 

1 = .Pl(zi,Z2,. . ■ , ^n, y)/l (^1, 3C2, • • • , 2*n)  + P2(®1, Z2, • ■ ■ iXn,y)f2(x1,X2, . . . ,Xn) + . . . 4" 

^(^1,^2) • • ■ • ■ ,®n) + p(%i>x2,... ,xn,y)(l - yf (x1}x2,... ,a?n)) where

pi,...,pa,p are elements from fc[a?i, x2,... >zn,y], Letting y = results in

1 = Pi(si,e2,... ,a?n>7)/i(®i»®2J ■ • ■ ,xn)+p2(x1,x2,...,xn> yJAOi, a?2, - - -,zn) 4- ...4- 

?s(zi,z2,- • ■ j)fs(x1,x2,... ,xn) 4-p(zi,z2,... >:rn, |)(1 - 7 ■ /). The final product

in the previous equation is now zero so that 1 = pi(zi,a;2, • • • >xn-, j)fi(xi, x2,..., xn) 4- 

p2(xi,x2,.. .,xn, j)f2(x1,x2,... ,rrn) 4- - 4- ps(a;i, x2i . • -,xn, j)fs(xi,x2,... ,xn). We

can multiply both sides of this equation by fm making sure to use a value for m that will 

clear all of the denominators present. This will result in fm = Ai/i 4- A2f2 4*  . ■ -Asfs 

where Ai, A2,..., G k[xi,x2) □
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4.2 Radical Ideals and the Ideal-Variety Correspondence

We have yet to find a suitable correspondence between ideals and varieties be

cause we discovered a problem with the mappings that exist. In order to successfully 

make a connection between algebra and geometry we have to find a way to eliminate this 

issue. In this section, we will take Hilbert’s Nullstellensatz and make improvements that 

will ultimately allow us to reach our goal.

Lemma 4.4. Let V be a variety. If fm G I(V), then f G I(V).

Proof. Let x be an arbitrary element of V. We are given that fm G I(V). Then (/(a;))171 = 

0. However, the only way that this equation can equal zero is when f(x) = 0. If f(x) = 0, 

this implies that f G I(V) since the polynomial f disappears for x G V. □

This lemma is useful to establish an important property of ideals of varieties. 

If a power of a polynomial belongs to the ideal of a variety, then the polynomial itself is 

also an element of that ideal. This property will be formally defined next.

Definition 4.5. An ideal I is radical if fm G I for some integer m > 1 implies that 

/el.

Using Definition 4.5, Lemma 4.4 can now be restated as follows: The ideal I(V) 

is a radical ideal.

Throughout Section 4.1, time was spent examining in detail the maps between 

affine varieties and ideals. It was observed that two different ideals can generate the same 

variety. Consequently, the map V is not one-to-one. Hilbert’s Nullstellensatz Theorem 

was able to pinpoint the reason why different ideals can result in the same variety. When 

an ideal contains some power of a polynomial fm, but the original polynomial f is not 

in the ideal, the map V will never be one-to-one. Stating this conclusion differently, 

this problem will occur when the ideal I is not a radical ideal. This is exactly what 

happened with the example in the previous section with the two ideals Ii = (x — 1) and 

I2 = (x2 — 2rc4-l). Let f = x—1. Notice that a power of f, f2 = (x—l)2 = x2 — 2rr-|-l is in 

the ideal (x2 — 2x +1). Unfortunately, the original polynomial f — x — 1 is not an element 

of (ru2 — 2x + 1), i.e. (x2 — 2x + 1) is not a radical ideal. Consequently, computing the 

variety of these two different ideals led to the same result V(7i) = V(l2) = {!}■ Perhaps 

it will be possible to have a map from ideals to an affine variety that is one-to-one with 
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the help of radical ideals. In order to accomplish this, we must be able to find the radical 

of a given ideal.

Definition 4.6. Let I C Z2,... ,a?n] be an ideal. The radical of I, denoted y/l, is 

the set {/ | fm G I for some integer m > 1}.

Lemma 4.7. If I is an ideal in , x2,..., 3jn], then is an ideal in k[xi,x2,..., xn] 

containing I. Furthermore, y/l is a radical ideal.

Proof. We will begin by showing that the ideal I is contained in x/7. It will be shown 

that when / G I, then f G x/Z. If we assume that f G I this implies that Z1 G I. Since 

a power (greater than or equal to 1) of f is in the ideal Z, f is also an element of i/Z. 

Thus, I C Vi.

Next, we will prove that x/Z is an ideal in k[xi,x2,..., zn]. In order to show that 

this set is an ideal, zero must be an element of \fl. Due to the fact that I is an ideal, 0 G Z 

by definition. This automatically makes 0 an element of y/1 since I C x/Z. Assume that f 
and g are both elements of y/I. The second condition that must be satisfied is that f+g G 

x/Z. The only way that f + g can be in x/Z is if (/ + g)p G I for some p > 1. Expanding 

this product results in (/ + g)p = axfp + aif^g1 + azfp~2g2 4*  ... + aq_i/yp_1 + aqgp. 
From our assumption, f G Vi and g G x/Z implies that fm 6 I and gn G I for some 

m,n> 1. We must find the appropriate value for p that will ensure that (/ + g)p is also 

an element of I. Let p = m + n — 1. Rewriting the previous expansion of (/ + g)p,

(/ + 3)m+n_l = a1fm^-1 + a2fm+n-2g + aifm+n~392 + --- + aqrgn~1

+ + a,+2/"-25n+1 + ... + agm+n-\

= aif*  p-1+a^rr^g+nrr1?+■■■+^rg"-1
„ rm—1 r.,n i „ tm-^nnn , > n „n nm—1+ Uq+lJ 9 + Og+2J 9 9 + ■ • ■ + 9

The first group of the terms in the expansion ai/rn+n_1, a2fm+n~2g, a$fm+n~3g2 up 

to o.qfmgn~1 all contain a factor of fm in their products. In the second part of the 

polynomial, the terms ag+i/m~1yTi, ag+2/m'2yn+1 through aym+n“1 do not contain fm. 

Instead, these products contain a factor of gn. So by individually looking at all of the 

terms in the expansion of (/ + g)p it has been shown that each one is an element of I 
because they all contain fm or gn. Thus, by closure, a±fp + a2fp~1g1 + a$fp~2g2 +... + 

an-i/5p~1 + an9p G I. Now, we can conclude that f + g G \/Z. The third criteria that 
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remains to be shown is that the product hf G VI for h G &[rri, X2, ■ ■ -, ®n] and f G Vi. 

To show that hf G \/7, a power of this product must be an element of I. From our 

assumption / G x/7 implies that fm el for some m > 1. Now, (hf)m = hmfm where 

fmel and hm G k[xi,X2,- .. ,JCn]- Therefore, (hf)m G I and hf G VI- We have now 

proven that VI is an ideal in &[□?!, X2,..., a?n].

Finally, we will prove that V7 is a radical ideal. In order to call \/7 a radical 

ideal it must be shown than when fm G yCT, then f e VI- If fm G VI, then (/m)n G I 

for some n > 1. Now, fmn G I implies that f G VI since mn > 1. Therefore, VI is a 

radical ideal. □

Lemma 4.8. If I is radical, then VI = I-

Proof. Assume I is radical. This implies that if fm' e I for some m > 1, then f e I. In 

order to show that VI = I when I is radical we must show that I C VI and VI C I. 

It is clear from the proof for Lemma 4.7 that I C VI- To finish we will now show that 

VI C I. Let f e VI- Show that f G I. Since f G VI this means that fmel for some 

m > 1. Therefore, f G I because we are given that I is radical. □

With the introduction of radical ideals we can improve upon Hilbert’s Null- 

stellensatz Theorem. This will allow us to transition between geometric and algebraic 

concepts more easily. 1

Theorem 4.9 (The Strong Nullstellensatz). Let k be an algebraically closed field. If
I

I is an ideal in , X2, ■ ■ -, xn], then

I(V«) = VI.

Proof. First, we will show that VI C I(V(7)). Let f e VI- Show that f G I(V(7)). If 

the polynomial f G VI, then fm G I for some m > 1. Since fmel this implies that 

fm vanishes on V(Z). Now let (ai, a2,..., an) be an arbitrary element of V(Z). Taking 

fmel and evaluating it at (ai, a2,..., an),

fm(ai,a2, ,an) = 0 for all (ai,a2) ■ • ■ ,an) G V,

(/(ai, 02,. -., an))m = 0 since fm(ai,a2, ...,an) = (/(ab a2,..., an))m.

However, (/(ai, a2) •••, can only equal zero when /(ai, a2,..., an) = 0. In other

words, the polynomial f will disappear when it is evaluated by any n-tuple from V. 
Consequently, this makes f G I(V(L)) and VI C I(V(J)).
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We will finish this proof by showing that I(V(1)) C a/7. Let f 6 I(V(Z)). This 

implies that f(ai,a2,... ,an) = 0 for (ai,a,2,..., an) G V(I). From Hilbert’s Nullstellen

satz since k is an algebraically closed field and f G I(V(/)), then there exists an integer 

m > 1 such that /m G I. Hence, / G a/Z and I(V(Z)) C a/Z. □

Theorem 4.10 (The Ideal-Variety Correspondence). Let k be an arbitrary field.

(i) The maps

affine varieties ——► ideals

and

ideals affine varieties

are inclusion-reversing, i.e., if Ii C I2 are ideals, then V (If) D V(I2) simi

larly, ifViCV2 are varieties, then I(Vi) D 1(1^)- Furthermore, for any variety V, 

we have

V(I(V)) = V,

so that I is always one-to-one. Note that I(V(1)) J-1.

(ii) If k is algebraically closed, and if we restrict to radical ideals, then the maps

affine varieties ——> radical ideals

and

radical ideals affine varieties

are inclusion-reversing bijections which are inverses of each other. In other words, 

I(V(Z)) = I and V(I(V)) = V.

Proof, (i) It will be shown that both of the maps V and I are inclusion-reversing. We 

will start by looking at the map V. If Zl C I2 are ideals, then V(Z2) C V(Zi). Let 

(ai, a2> ■ ■ •, On) G V(Z2). If f G I2, then f(a±, a2,..., an) = 0. We would like to show 

that (ai,a2,... , an) G V(Zi). Let the polynomial f G Ii. Then f G I2 since the ideal 
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Zi C I2. Now that the polynomial f is also an element of Z2, then evaluating f by the 

n-tuple (ai,a2,... ,On) results in f(ai,a2,... ,an) = 0. Thus, (ai,a2,... ,an) G V(Zi) 

and V(Z2)cV(Zi).

Next, we turn our attention to the mapping I. If Vi G V2 are varieties, then 

I(vy c I(V1). Let f G I(V2)- Then f(a1,a2,...,an) = 0 for all (ai,a2i... ,an) G V2. 
In order to show that f G 1(H) then /(ai, a2i..., an) = 0 for all (ai, a2i..., an) G Vi. 

Assume that the n-tuple (ai, a2,..., an) G Vi. Now (ai, a2, • ■., an) G V2 because from 

our given Vi C V2. Consequently, f(ai,a2,..., an) = 0 and I(V2) C I(Vl).

To finalize the proof of part (i), it will be shown that V(I(V)) = V when 

V = V(fi,f2,..., fs). Show that V G V(I(V). Let (ai, a2,..., an) G V. Then for a 

polynomial f G I(V), f(di,a2,...,an) = 0. Thus, (ai,a2i... ,an) G V(I(V)) because 

it is an n-tuple which makes a polynomial from I(V) zero. So the set V is contained 

in V(I(V)). To finish we will illustrate that V(I(V)) G V. Each of the polynomials 

fi,f2,... ,fs G I(V) since V contains the n-tuples that make those polynomials vanish. 

As a result, (/i, f2,..., f$) G I(V). Furthermore, (fi,f2, ..-,fs} G I(V) are two ideals 

so applying the map V we get V(I(V)) G V({fi,f2,---,fs}) — V. The map V was 

shown to be inclusion-reversing. We have successfully proved that V(I(V)) = V and Z is 

one-to-one.

(ii) The ideal I(V) is a radical ideal. The map I takes an affine variety to a radical 

ideal. In part (i) of this proof it was shown that V(I(V)) = V. We must prove that 

I(V(Z)) = I when Z is a radical ideal. Since A: is an algebraically closed field, the strong 

Nullstellensatzs states that I(V(Z)) = i/7. When the ideal I is radical, then from Lemma 

4.8 we know that i/Z = Z. Combining this with the strong Nullstellensatz yields what 

we wanted to prove that I(V(Z)) = I. It has clearly been shown that the maps I and V 

are inverses of one another. Consequently, both of the maps between radical ideals and 

varieties are one-to-one and onto. □

We will now turn our attention to the radical membership problem. If we are 

given that the polynomial f G fc[Ki,x2,..., zn], is there an algorithm that will determine 

whether f G VZ? In order for f to be an element of the radical of Z, fm must be in the 

ideal I for some m > 1. At this point we would have to check if fm G I for each m > 0 

and stop when we find such an m. Unfortunately, this method is inefficient because the 

power of m that will make fm G I may be ridiculously large. Furthermore, there is 
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also the chance that f y/l which is information that this algorithm would not provide. 

However, it is possible to find an algorithm to see if f G x/Z by using the proof of Hilbert’s 

Nullstellensatz (Theorem 4.3).

Proposition 4.11 (Radical Membership). Let k be an arbitrary field and let I = 
(fi,..., fs) C Aj[o7i,..., a;n] be an ideal. Then f G x/7 if and only if the constant poly

nomial 1 belongs to the ideal I = (fi,..., fs, 1 — yf) C As[a?i, . . ., xn, y] (in which case, 
I = k[x1,...,xniy\.)

Proof Suppose 1 G Z. Referring back to the proof of Theorem 4.3 it was shown that 

when 1 G Z, then fm G I for some integer m > 1. So now the polynomial f G x/Z. For 

the second part of this proof assume that f G x/Z. This assumption implies that fm G Z 

for some m > 1. Thus, fm G Z since I C Z. Furthermore, 1 — yf is also an element of the 

ideal I. We can write the element 1 in the following manner, 1 = ymfm + (1 — ymfm)- 
The term ymfm G Z since ym G k[xi,... ,xn,y] and fm G Z. We must show that the 

expression 1 — ymfm is also an element from I so that 1 G I by closure. This expression 

can be factored into 1 — ymfm = (1 — yf)(l+yf+ y2f2 + . • • + ym~2fm~2 + ym~i 

Notice that 1-yf G I and 1+ yf+ y2f2 +...+ym"2fm-2 +ym_1fm_1 G fc[iri,...,xn,y] 

and so 1 — ymfm G I since I is an ideal. As a result, 1 G Z = (fi,..., fs, 1 — yf) and the 

proof is complete. □

4.3 Products of Ideals

In this section we turn our attention to operations on ideals. Since ideals are 

algebraic objects there exist algebraic operations that can be defined on them. There are 

three operations that can be performed on ideals: sum, product, and intersection. The 

operations on ideals are binary. In other words, if we take two given ideals and we find 

the sum, product, or intersection the result will be another ideal. However, for what we 

hope to achieve in this project the focus will mainly be on the product of ideals.

Definition 4.12. If I and J are two ideals in Zc[o7i,cc2» ■ • ■ a], then their product, 
denoted Z • J, is defined to be the ideal generated by all polynomials f • g where f G I 

and g G J. Thus, the product Z • J of Z and J is the set

z • J = {figi + ... + frgr | fi, ■ • ■, fr e Z, yb ...,gr G J, r is a positive integer}.
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Lemma 4.13. If I and J are two ideals in &[rci, X2, ■ ■ ■, then I • J = {figi 4-... 4- 

fr9r \ fi,-• ■ >fr € 1,91,-■ ■ ,9r € J} is an ideal in k[xi,x2, ... ,zn].

Proof. We would like to show that the set I ■ J is an ideal. First, it must be shown that 

0 G I ■ J. Both I and J are ideals so 0 G 1 and also 0 G J. Thus, 0 = 0 • 0 G I • J because 

zero is a product of an element from I and an element from J. If hi G I -J and h2C I -J. 

then the sum hi + h2 G I ■ J. If hi G I -J, then hi = figi 4- f2g2 + ■ ■ ■ + frgr where ft G I 
and gi G J for 1 < i < r. In addition, h2 G I ■ J means that h2 = X/i + 7^2 + • • ■ + fs9s 

where f^ G I and g^ G J for 1 < j < s. Looking at the sum of hi and h2,

hi + h2 = (figi 4- f292 + • ■ • + fT9r) + (7151 + f292 + - ■ • + fs9s),

= fl91 + f292 + ■ • ■ + fr9r + fl91 + h92 + • • • + fsgs.

The sum hi 4- /z2 is clearly an element of I ■ J because it satisfies Definition 4.12. Every 

term in the equation above is a product of an element from I and an element from the 

ideal J. Finally, if p G 7c[a;i,xc2> ■ ■ ■ >-xn] and f G I • J, then pf G I • J. The polynomial

f G I • J implies that f = figi + f292 + ■ • • + fr9r where fi G I and gi G J. The product

of f and p would now be

P‘f = p(fl91 + /2S2 + -- . + /rPr)>

= Pfl91 + pf292 4- ... 4- pfrpr >

= (pfl)9l + (pf2)92 4- ... 4- (pfr)9r-

Notice that the product of pfi for 1 < i < r in each term is an element of the ideal I 

because p G fc[xi, x2,..., xn] and fi € I. Now the product of pf satisfies the conditions 

of Definition 4.12 because pfi G I and & G J for 1 <i <r. Consequently, pf G I • J and 

the set I • J is an ideal. □

When the specific generators for two ideals I and J are not known, Definition 

4.12 can be used to help us see how an element from the set I • J is written. However, 

the proposition that follows illustrates how to write polynomials from I ■ J when the 

generators for I and the generators for J are known.

Proposition 4.14. Let I = {fi}f2,---,fr} and J = (gi,g2,...,gs)■ Then I ■ J is gener

ated by the set of all products of generators of I and J:

I • J = (fi9j | 1 < i < r, l<j<s).
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Proof. We shall begin by showing that I - J C (figj | 1 < i < r, 1 < j < s). From the 

previous definition an element from I • J has the form mini 4- m2n2 + ... + mrnr where 

mi G I and nt G J for 1 < i < r. Since each mi G I then mt = a^fi + a2f2 4- • • • + arfr 

with ai G fc[a?i,iE2, • • ■ ,®n] and fi, f2,..., fr G I. Similarly, every n$ G J so each of 

these polynomials can be rewritten as follows n; = b^gi + b2g2 4- ... 4- brgr where bi G 

k [a?i, x2,..., ojn] and yi, g2,..., gr E J. Taking a closer look at each product of mini,

mini = (aifi + a2f2 4-... 4- ar/r)(&15i + b2g2 4- ■. ■ brgr),

— ai/i5iyi 4- aifib2g2 4-... 4- ai/ibryr 4- a2f2bigi 4- a2f2b2g2 4-... 4- a2f2brgr 

4- ... 4- arfrbrgr,

— (aibi)fi9i + (o,ib2)fig2 4-... 4- (aibr)figr 4- (a2bi)f2gi 4- (a2b2)f2g2 4-...
I

+ (o,2^r)f29r + ... 4- (nrbr)frgr. ,

For every term in the equation above ofy G k[xi,x2, • ■ ■, £n] by closure and fi G I and 

gj G J. Thus, I ■ J C (fi9j | 1 < i < rt 1 < j < s). This proof will be concluded 

by showing that {ftgj | 1 < i < r, l<j<s)Cl-J. Let w be an element from 

the ideal {ftgj | 1 < i < r, 1 < j < s). Now, w = ^pijfipj with the polynomials 

Pij G k[xi,x2,..., a?nJ. The terms in the summation are all products of elements from I 

and J since pijfi G I and g$ G J. As a result, (figj | 1 < i < r, 1 < j < s) Cl -J. We 

have successfully proven that I • J = (Ayj | 1 < i < r, 1 < j < s). □

The next theorem will show that there exists a connection with the products of 

ideals and taking the union of varieties.

Theorem 4.15. If I and J are ideals in fc[a;i,3;2,... ,a?n], then V(Z ■ J) — V(7j UV(J).

Proof, This proof will start by showing that V(J- J) C V(/)uV(J). Suppose x G V(Z- J). 
We must show that x G V(Z) UV(J). Since x G V(Z • J), p(x) = 0 for all p G I ■ J. In 

particular, suppose p = fg where f G I and g G J. Evaluating the polynomial p by the 

n-tuple x we get = (fg)(x) = f(x)g(x) = 0. At this point we now come across two 

possible cases. First, in order for p(x) = 0, the equation above implies that g(x) = 0 for 

all g G J and f(x) does not necessarily have to equal zero. This now means that x G V(J) 

because it made all of the polynomials from the ideal J disappear. The second possibility 

is that y(rr) 0 for some g G J. Examining the product of p(x) — f(x)g(x) = 0 once 

more, then f(x) must equal zero for all f G I to maintain a zero result. Thus, x G V(J). 
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It has been shown that x G V(I) or x G V(J) which is exactly what it means to be in 

V(J)UV(J).

Next, we will illustrate that V(Z) U V(J) C V(I ■ J). Let x G V(I)UV(J). 

Then we must show that x 6 V(1 • J). In other words that p(x) = 0 for all p G I - J. If 

x G V(I)UV(J), then x G V(I) or x G V(J). By Definition 4.12, the polynomial p G I- J 

can be written as follows p = fagi + /2P2 + • ■ • + fr9r where fa G I and gi G J. When 

x G V(Z) any polynomial from I evaluated at x will vanish. Therefore, substituting x 

into p,

p(x) = (figi)(x) + (f292)(x) + . . . + (fr9r)(x),

= h(x)9i(x) + f2(x)g2(x) + ... + fa(x)gT(x),

= 0-yi(z) + 0-y2(s) + -.- + 0-prCr)1

= 0.

Likewise, x G V(J) makes all of the polynomials belonging to J disappear. In the 

equations above all the polynomials gj G J evaluated at x would all equal zero. Once 

again this makes p(x) = 0. Thus, evaluating any polynomial p from I • J by x yields 

a product of zero. As a result, x G V(I • J), V(Z) U V(J) C V(Z • J), and finally 

v(i-j)=v(i)uv(j). □

4.4 Irreducible Varieties and Prime Ideals

When affine varieties were introduced in Section 2.2, it was shown that the union 

of two varieties is a variety. Furthermore, this finding was extended to the union of a 

finite number of varieties. We proved by induction on n, the number of finite varieties, 

that the union of Vi U V2 U ... U Vn is also a variety. In abstract algebra the topic of 

irreducible elements was studied by looking at polynomials. Let A; [re] represent the ring 

of polynomials whose coefficients are from the field k. A polynomial p G A: [re] is called 

irreducible over k if it is non-constant and cannot be factored into the product of two or 

more non-constant polynomials from the ring Aj[cb]. For this project we need to apply this 

algebraic concept to affine varieties which are geometric objects. Irreducible varieties will 

be defined below.

Definition 4.16. An affine variety V C kn is irreducible if whenever V is written in 
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the form V = Vi U V2, where Vi and V2 are affine varieties, then either Vi = V or V2 = V.

We will also reexamine and define algebraic concepts that have been studied in 

polynomial rings of a single variable to rings involving multivariable polynomials.

Definition 4.17. An ideal I C k[xi, x2,..., zn] is prime if whenever f.g e 

..., xn] and fgtl then either f € I or g 6 I.

The following theorem will prove that there exists a connection between irre

ducible varieties and prime ideals.

Proposition 4.18. Let V C kn be an affine variety. Then V is irreducible if and only if 

I(Vj is a prime ideal.

Proof. Assume V is irreducible and fg G I(Vr). We want to show that I(V) is a prime 

ideal. In other words that f G If/) or g G I(V). Suppose that Vi = V D V(f) and 

V2 = V P V(y). The sets Vfi and V2 are varieties because we know from Lemma 2.6 that 

the intersection of two varieties is a variety. Now, V = Vi U V2. Since V is irreducible by 

definition V = Vi or V = V2. If V = Vi, then V = Vi = VPl V(/). This now implies that 

f(x) = 0 for all x G V. Since f disappears when it is evaluated by all of the elements in 

V then / G 1(7). Similarly, if V = V2, then V = V2 = V H V(g). This now implies that 

g(x) = 0 for all x G V\ Thus, in this case the polynomial g is an element of I(V). Since 

it has been shown that f G I(V') or g G I(V), we can conclude that I(V”) is a prime ideal 

when V is irreducible.

To conclude, we will now prove that when I(V) is a prime ideal the variety V 
is irreducible. Let V = Vi U V2 and V Vi. In order to show that V = V2 we must have 

I(V) = I(V2). From our assumption, V = V1UV2 implies that V2 C V. Since V2 C V then 

I(V) C I(V2) by the Ideal-Variety Correspondence. We now turn our attention to the 

other inclusion I(V2) c I(V). We assumed that V Vi hence V? C V and I(V) C I(Vi). 

So there exists a polynomial f G I (Vi) such that f I(V). Pick f G I(Vi) — I(V). Let 

g G I(V2). To demonstrate that g G 1(1^) we want fg G I(V). In other words, (/y)(u) = 0 

for all a G V. If the element a G V, then a G Vi U V2 because V = Vfi U V2. Due to 

the fact that a G Vfi U V2 there are two possibilities, either a G Vi or a G V2. When 

a G Vi, then /(a) = 0 since f G I(Vfi). Consequently, (/y)(a) = /(a)y(a) — 0 • y(a) = 0. 

On the other hand, when a G V2 then y(a) = 0 since g G I(V2). So the product of
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(fg)(a) = f(a)g(a) — f(a) -0 = 0. Notice that evaluating fg by all of the elements 

from the variety V results in a product of zero. Thus, fg E 1(7). By combining our 

initial assumption that the ideal 1(7) is prime and fg G 1(7) then f G 1(7) or g G 1(7). 

However, f 1(7) implies that g G 1(7). Since g G 1(1^) and g G 1(7) then I(V^) C 1(7). 

It has successfully been shown that I(T^) c 1(7) and 1(7) C I(72) so we can conclude 

that I(72) = 1(7). It was previously established that the map I is one-to-one so 7 = 72 

and finally 7 is an irreducible variety. □

Proposition 4.19. Every prime ideal is radical.

Proof. Given that I C &[zi, a;2,..., ac„] is a prime ideal we want to prove that I is radical. 

In other words, we must show that if fm G I for some m > 1, then f G I. This 

will be proven by induction on finite products. In the case when m = 2, suppose we 

have f2 = f ■ f G I. Since I is prime, by Definition 4.17 this makes f G I. Next, 

we will assume that when fm G I for some m > 1, then f G I. If fm+1 g Z, then 

ym+1 _ fm . y p Again, because Z is prime this implies that fm G I or f G I. From 

the previous assumption, when fm G I, then f G Z. If fm 0 Z, this implies that f G I. 

In either case, f G I. As a result, Z is a radical ideal. □

Now that we know that every prime ideal is a radical ideal we can combine this 

fact with the ideal variety correspondence to get the following corollary.

Corollary 4.20. When k is algebraically closed, the functions V and I induce a one-to- 

one correspondence between irreducible varieties in kn and prime ideals ink[xi,x2,..., o;n] ■

Some other concepts covered in abstract algebra will be defined next.

Definition 4.21. An ideal Z c z2,... ,zn] is said to be maximal if I =4 x2,

..., rrn] and any ideal J containing Z is such that either J = Z or J = fc[rri, x2,..., £n].

Definition 4.22. An ideal I C ..., is called proper if Z is not equal to

k[xi,X2>. • .,xn].

Therefore, an ideal that is maximal is also proper. We will now show that an 

ideal of the form (xi — a^,... ,xn — is maximal.

Proposition 4.23. If k is any field, an ideal I C [ici,a;2,... ,rcn] of the form Z = (sq — 

al) • • ■, xn — aj. where fli,... ,an G k, is maximal.
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Proof. In order to show that I = (ki — di,K2 ~ a2,... ,xn — an) is a maximal ideal we 

must show that I k[xi,x2:... ,kJ and any ideal J containing I is such that J = I 
or J = fc[a;i,x2,... ,xn\. Let I C J. Then we can find a polynomial f such that f G J 
but f £ I. Using the division algorithm f can be written in the following form f = 

Ai(ki - ai) + /12(k2 — a2) + .. • + An(xn — an) + b where b G k. Notice that in the 

previous equation Ai(ki — ai) + A2(x2 — a2) + ... + An(xn — an) G I. However, we 

know that since f $ I the remainder b cannot equal zero. If the remainder is zero, this 

would make f G I which contradicts our original assumption about f. Furthermore, 

Ai(ki — ax) + A2(x2 - a2) + ... + An(xn — an) G I implies that Ai(ki - ai) + A2(x2 — 
a2) + ... 4- An(xn — an) G J because I C J. Since f G J rewriting the equation for f 

above yields b = f — (Ai(ki - ai) 4- A2(x2 - a2) 4- ... + An(Kn - an)). Now b G J by 

closure since J is an ideal. The element b G J has a multiplicative inverse since b 0 

and b G k where A; is a field. Thus, b • | = 1 G J. Now that 1 is in the ideal J this implies 

that J = &[ki, k2, ..., kJ. Therefore, I = (ki — Oi,k2 — a2,... ,xn — an) is a maximal 

ideal. < □

Proposition 4.24. If k is any field, a maximal ideal in k[xi,x2,..., kJ is prime.

Proof. Suppose I is a maximal ideal which is not prime. Let fgGl where f I and
J

g I. Since I is maximal, then the ideal {f)+I = Z or (f)+I — A:[ki, k2, ..., kJ. Assume 

{f)+I= A;[ki,k2, ... , kJ. If {f)+I = fc[Ki,K2,... ,kJ, then 1 G (/)4-Z. Now, 1 = cf+h 
where c G k[xi, k2, ..., kJ and h G I. Multiplying 1 = cf + h through by g we get the 

equation g = cfg+hg. Notice that the term cfg 6 I because c G A?[ki, k2, . . ■, kJ, fg G I, 
and Z is an ideal. In addition, hg G I because h G I and g G k[x±,x2,... ,kJ. Thus, 

by closure g G I. However, this is a contradiction to our assumption g 0 I. Therefore, 

1 (f) + I so (/) 4-Z fc[zi,K2,.. •, kJ. Also, if (f) 4-Z = I, then f G Z, a contradiction.

As a result, I must be prime. □

Theorem 4.25. Ifk is an algebraically closed field, then every maximal ideal ofk[xi,x2j 

., kJ is of the form (ki — ai,... ,xn — an) for some ai,... ,an G k.

Proof. Suppose I C k[xi,x2,... ,kJ is a maximal ideal. Since I is maximal we know 

that I 7^ fc[Ki,K2,..., kJ. From the Weak Nullstellensatz when k is an algebraically 

closed field and V(Z) = 0, then I — A;[ki, k2, ..., kJ. So because I is not the entire 

polynomial ring V(Z) 0 0. The variety of I is not empty so there exists an n-tuple 
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(©i, a2, • ■ ■ , On) € V(7). Thus, every f G I evaluated at (01,02, • ■ •, on) will be zero. This 

will make all of these polynomials elements of I({(ai, a2,..., an)}). It has been shown 

that when f G I, then / G I({(oi,o2,... ,on)}). S° the ideal I C I({(oi>a2,...,an)}). 

We will show that I({(ai, a2,..., an)}) — (®i — 01,2:2 — o2,... }xn — an). First, we will 

look at (a?i - ai,x2 - a2i... ,xn - a’n) C I({(ai,a2,... ,an)}). Let f G (ei - 01,2:2 - 

a2,... ,xn — an). Then f(x1,x2,...,xn) = pi(xi - ©i) + p2(x2 - a2) + • ■ • + Pn(?n - on) 

where pi G k[xi,x2,..., rrn] for 1 < i < n. Evaluating the polynomial f by the n-tuple 

(ai, a2,..., an) results in

/(oi,o2,... ,an) ~ pife - ai) +p2(a2 - a2) 4-... +pn(on - on),

= Pi • 0 + p2 • 0 + . . . + pn ■ 0,

= 0.

Thus, f vanishes on (01,02,,an). So f G I({(ai,a2,..., an)}). Next, it will be shown 

that I({(ai, a2,,..., On).}) c (xy-ai, z2-a2,..., xn-an). Suppose f G I({(ai, a2,..., an)}) 

This implies that /(ai, a2,..., an) — 0. Now using the division algorithm, /(x^,..., xn) = 

(xi — 01)51 4- (a?2 — 02)52 4-... 4- (xn — an)gn 4- r where r G k. We would like to show that 

r = 0. Using the fact that /(©i, a2, - - ■, an) = 0 then

0 = f(oi, O2, . . . , On),

0 = (ai - 01)51 4- (o2 - a2)g2 4-... 4- (an - an)gn + r,

0 — 0 • 51 4- 0 ■ 52 4- • • - 4- 0 • 5n 4- r,

0 = r.

Therefore, / G (xj — 01,2:2 — a2,... ,xn — an) so I({(ai,o2,... ,on)}) C (rri — 01,2:2 — 

02, • ■ • ,xn-an}. We have proven that I({(oi, o2,... ,an)}) = (xi—ai,x2~a2,... ,xn-an). 
The statement I c I({(ai,a2,... ,on)}) can be rewritten as follows I C {xi — —

a2,...,xn — an). Furthermore, by Proposition 4.23, an ideal of the form (2:1 — ©i,x2 — 

a2,... ,xn — an} is maximal. In other words, (2:1 — ai, x2 — a2,..., xn — an) is proper. So 

I C (2:1 — ©i, x2 — a2, ■ • •, xn — an) 7^ Ar[a?i, 2;2,..., 2;n]. The ideal I is also maximal so this 

implies that I — (2:1 — ©i, x2 — a2,... ,xn — an). □
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Chapter 5

Application of The Groebner 

Basis Algorithm

Throughout the first four chapters of this project much time was spent covering 

a variety of concepts that are critical to our understanding of the Groebner Basis Algo

rithm. We first looked at defining polynomials from the ring k[xi,x2,..., En]. Next, affine 

varieties were introduced. Once the definition of an affine variety was presented, two op

erations that can be applied to them were examined. It is possible to take the union and 

the intersection of a finite number of varieties. From algebra the concept of ideals (prime, 

maximal, and radical) is thoroughly studied as well.1 When the necessary concepts from 

geometry and algebra were properly discussed, the focus turned to establish a connection 

between affine varieties and ideals that is one-to-one and onto. Without this mapping it 

would not be possible to prove geometric theorems using the Groebner Basis Algorithm 

which is an algebraic approach. In this chapter, two applications of the Groebner Basis 

Algorithm will be presented. The following proposition will be an important step in the 

Groebner Basis Algorithm.

Proposition 5.1. Suppose hi, h2,... ,hn,g G k[xi, x2,..., rcj. If g e , hn),

then g e I(V) i.e. if hi(ai}a2)... ,at) = 0 for 1 < i <n, then y(ai,a2,... ,at) = 0.

Proof. Let g G V (hi, h2,..., hn) and hjai, a2}... ,at) = 0 for 1 < i < n. When g e 

; hn), then g3 G (hi,h2,... ,hn) for some s > 1. So g3 G (hi, h2,...,hn) 
implies that gs — (pihi 4-p2h2+ ...+prahn)s where pi,p2,... ,pn G k[xi,x2,... ,xt].
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Substituting (ai,a2> • ■ •,at) into gs,

g (gi,..., of) — (pi(g<i, • • • > Q'tjhi(qi,..., of) + p2(ai, ..., art)h2(ai, • • •, at)

+... + PnC^i) • • ■ j a>t)hn(a,i,..., G^)) ,

= (pi(<X1,...,at) • o + p2(ai, ■ • • ,at) -0 + ... 4-pn(ai,... ,at) • 0)s, 

= 0.

In other words, a power of g vanishes when it is evaluated by (aj, a2, ■ . ■, af). However, gs 
can only disappear at (aj, a2,..., af) when <z(ai, a2>•■•> a*)  = 0. Since the polynomial g 

is a linear combination of the hfs, then g will vanish at the same values as the hi. Hence, 

g follows from hi, h2,. •., hn- □

5.1 Problem 1: Diagonals of a Parallelogram

In this section, we shall begin by proving the following theorem using the Groebner basis 

technique.

Theorem 5.2. Two diagonals of any parallelogram intersect at a point which bisects both 

of the diagonals.

In this problem, we will show that the hypothesis and the conclusion of the theorem above 

can be written as polynomials by using Cartesian coordinates. The parallelogram can be 

placed anywhere in the plane or we can choose to place the parallelogram at coordinates 

that will make it easier to work with. To begin this problem, we will place the vertex A 

of the parallelogram at the origin (0,0). The second vertex of the parallelogram B will 

be placed randomly on the rr-axis and it will have coordinates (ui, 0). The third vertex 

of the parallelogram C can be placed anywhere in the plane and it will have coordinates 

(^2,113). However, U3 0 because there would be no parallelogram if the third vertex 

was on the side AB. The coordinates for the final vertex D (sijX2) are determined by 

the placement of vertices A, B, and C. The intersection of the diagonals AD and BC 

will be labeled N and have coordinates (23, £4). The parallelogram we have constructed 

is pictured below.

The hypothesis of Theorem 5.1 is that ABCD is a parallelogram with diagonals 

AD and BC. We will next convert this hypothesis into polynomials (labeled hf) using
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Figure 5.1: Parallelogram ABCD in the Cartesian plane.

the above picture. The figure ABCD is a parallelogram implies that AB || CD and 

AC || BD. Also, AB = CD and AC = BD.

AB || CD means that the slope of AB = the slope of CD, so

0 — 0 _ ^2 — ^3
221 — 0 a?i — U2

Q = ^2-^3
Xi - U2

X2-U3 = 0.

Now let Tii = x2 — U3.

AC || BD means that the slope of AC = the slope of BD, so

«3 — 0 _ x2 — 0
U2 — 0 a?i — ui

U3 _ x2

u2 Xi - ui
us _ x2 = 0

u2 Z1 - U1 

u3(zi - ^1) - X2U2 = 0.

Therefore, let h2 = u^(xi — iti) — x2U2.

If N is the intersection of the diagonals, then N lies on AD and BC. We can conclude 
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that the points A, D, and N are collinear so the slope of AN = the slope of AD, so

X4 - 0 _
^3 - 0

X4 _
X3

X4 _ U3 _
X3 Xl

X1X4 - X3U3 =

163 - 0
xi — 0
U3
Xi
0

0.

Then let /13 = £12:4 — X3U3.

Similarly, the points B, C, and TV are also collinear so the slope of BN = the slope of

BG, so

0 — Z4 _ 0 — U3
ui — X3 , ui~ u2 

-X4 _ -U3
Ul — X3 U1~ u2

X4______ u3 _ 0
ui — X3 tti — u2 

x4(ui - u2) - Uz(ui - a?3) = 0.

Hence, let I14 = £4(161 — u2) —163(161 — X3).

From the computations above we get four algebraic hypotheses: hi = 0, h2 = 0, 

Z3 = 0, and /14 = 0. The conclusion of this problem is that the point N bisects the 

diagonals of the parallelogram ABCD. In other words, AN = ND and BN = NG. 
Both of these statements can be converted into polynomials (labeled gi) by using the 

distance formula as follows

AN = ND

y/(X4 ~ 0)2 + (X3 - 0)2 =

y/X42 + Z32 =

Z42 4- Z32 —

X42 + Z32 =

-7(163 - £4)2 4- (®1 - Z3)2

\/(u3^-^4)2~+7^r^-^3)2

(u3 - X4)2 + (a?i - x3)2

x22 - 2x2X4 4- Z42 + ad2 - 2aji£3 4*  ®32

x22 — 26C2IE4 4- aq2 — 2rciz3 = 0
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and

BN = ~NC

- X4)2 + (m - X3)2 = y/(X4 - U3)2 + (23 - U2)2

y/x^2 + (ui - Z3)2 = 7/(^4 - U3)2 + (23 - U2)2

X42 + (ui - 23)2 = (24 - U3)2 + (23 - U2)2

X42 + ui2 - 2ui23 + a?32 = Z42 - 2U3X4 + U32 + 232 - 2®3«2 + u22

—U12 + 2u^X3 — 2U3X4 + U32 — 2X3U2-t U22 = 0.

We get the following two polynomials pi = x22 — 2x2X4 + Xi2 — 2x1x3 and g2 = —Ui2 + 

2uirc3 — 2u324 + U32 — 223122 + u22. Our next step is to show that the conclusions gi = 0 

hold when the hypotheses hi — 0 holds. We have a variety V = V(hi, h2, h3, /14). We 

want to show that g2 vanishes for the same values as hi, h2, /13, and 7m -

Let I = {hi,h2, h>3, h,4}. According to the Groebner basis technique, we can use 

the radical membership test to determine whether gi e y/(hi,h2, h>3, hf). The conclusion 

will follow from hi, h2i h3, and /14 if 1 G I = (hi, h2,h3,h4,1 — ygi). Unfortunately, 

computing a Groebner basis with Maple for (hi,h2,/13,/14,1 — ygi) did not result in a 

basis of {1}. This is a major problem because using Euclidean geometry it can be easily 

shown that this theorem is true. Since figure ABCD is a parallelogram AB || CD. 
Also, AB — CD because the parallel sides in a parallelogram have equal length. Now, 

ZB AN = ZNDC because when parallel lines are cut by a transversal alternate interior 

angles are congruent. Likewise, ZNBA = ZNCD because they are also alternate interior 

angles. Consequently, AANB = NDNC by ASA. As a result, this makes AN = ND 
and BN = NC since corresponding parts of congruent figures are congruent. To see 

why the radical membership test failed, a Groebner basis will be computed for I in 

R[ui> u21 ^3: X1 s x2> %3, £4] using lex order where 21 > x2 > 23 > 24 > ui > u2 > u3. With 

the help of Maple, the polynomials computed for the Groebner basis of (hi, h2, h3, Tli) 

are listed below
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fl = X1X4 + Z4U1 - £4U2 - U1U3,

f2 = X1U3 - U1U3 - U2U3,

/j = X2 - U3,

fl = X3U3 + XlUi - X1U2 - U1U3,
f 2 I 2 , Ifa = XlUi - X1U!U2 ~ -U1U3 -J- -U1U2U3,

, 1 2
fe = - 2^1^3.

Since (hi, h2, h3, h4) = (fi, fa, fa, A, fs, fs} by Proposition 2.10 then F(hi, h2, h3, h4) = 

V(/1, /2, /3t /4>/5>/e)- However, the variety V(fi, fa, f3, f4, fs, fs) can be decomposed 

further because the polynomial fa = X1U3 — U1U3 ~ u2u3 = (x\ — ui — u2)u3 is factorable. 

So the variety

V = V^yh.yhs,^),

= V(fl,(cci -u-i ~ U2)u3, fa, fa, fa, fa),

— V(fl,Xl - Ul - U2,fa, A, fs, /fi) U V(fl,U3, f3, f4, fs, fe)-

Now computing the Groebner Basis for V(fi, ici — u4 — u2,fa, fa, fs, fg) results in

Pi = xi-ui-u2,

P2 == x2- IZ3,

P3 == 2z31Z3 - 2a?4ti2 - ^1U3 = X3U3 - X4U2 — ^UiU3,

p4 =
= 2^ - «1U3 = - ^1«3.

Computing the Groebner Basis for V(fi, u3, fa, fa, fa, fa) yields

01 = X1X4,

O2 = x2,

03 = X4U1-X4U2,

04 = U3.
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So,

V = V(fl,X! -Ui-U2,f3,f4,f5,f6)UV(f1,U3,f3,f4,f5,f6),
. 1 1 * * * V X

1
V(ki - 111 — U2,X2 - U3,X3U3 — X4U2 - -U1U3,U1) U

V(K1,K2,K4U1 - X4U2, U3) U V(x4iX2,X4Ui - X4U2,U3).

Notice also that for the last two varieties above K4W1 — K4U2 = (^1 — u2)x4 is factorable 

so that,

1 1
V = V(X1 - Ui -u2,x2 -u3,x3u3 - x4u2 - -uiu3, x4 - -u3) U 

V(z! - U1 - U2, x2 - U3, X3U3 - X4U2 - ^1^3) «1) U

V(ki, X2, U1 u2, u3) U V(a?i, x2, x4, u3) U

V(k2,K4,«i - u2i u3) UV(x2,x4,u3).

= V(ki - «i - u2,x2 - u3,x3u3 - x4u2 — -u4u3,x4ui - -uiu3J U

V(X1X4,X2,X4U1 - X4U2,U3).

The variety V(ki —ui — u2,x2—u3,x3u3 — x4u2 — ^u4u3,x4ui-^u4u3) is reducible since 

^4^1 — ^1^3 = (#4 — ^u3)ui. Continuing from before,

V = y(xi-ui -u2,x2 -u3,x3u3 - x4u2 - |uiu3)K4tti - i«iu3) U 

V\xiX4, X2, X4Ui -x4u2,u3),
, 1 1 X

= V(K1 - U1 - U2,X2 - U3,X3U3 - K4U2 - 2^1^3,24 - -U3) U
1

V(ki - U1 - u2,x2 - u3,x3u3 - X4U2 - -U1U3,U1) U

V(xiX4,X2,X4Ul — X4U2,U3). ,

Furthermore, in V(xix4, x2, x4ui~x4u2,u3) the product of K1K4 can be split into V(ki, x2, 

x4ui — x4u2,u3) U V(x4,x2,x4ui - x4u2,u3). So,

' 1 1
V = V(x1 -ui - u2,x2 - u3,x3u3 - x4u2 - ~u1u3,x4 - -U3) U

, 1 X
V(ki - til - u2,x2 - u3)x3u3 - X4U2 — -UiU3,Ui) U

V(xiX4,X2,X4Ui —x4u2,u3),
, 1 1 X

= V(K1 - Ui - u2,x2 - u3,x3u3 — X4U2 - -W'23,^4 - 2^3) u
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Also-, we can make an important observation about the ideals (rci, x2, X4, u3), (x2, X4,ui — 
u2, U3) and (x2i X4, U3}. In particular, (x2, x 4,11,3) C (x 1, x2, X4, U3) so by the Ideal-Variety 

Correspondence V(xi,x2,X4,U3) C V(^2,^4,'a3)- In addition, (x2, X4,U3) C (z2j ^4,^1 — 

u2,U3), then V(x2,X4,ui — u2,U3) C V(a?2,^4>'a3)- The variety V can be rewritten as 

follows,

V

Computing the Groebner basis for V (a?i — ui — u2, x2 — U3, X3U3 — X4 u2 — ^uiU3,X4~ ^3) 

leads to the following polynomials

Ql = X1 -U! -u2>

72 r2 - U3,

73
n 1 12a?3l£3 - U!U3 - U2U3 = X3U3 - -U1U3 ~ -U2U3,

74 12X4 - U3 =X4- -U3.

Now,

V = V(xi - U1 - U2,X2 - U3,X3U3 - -U4U3 ~ -U2U3,X4 — ~U3) U

1
V(iCl -U1 - U2,X2 - U3,X3U3 - X4U2 - -Uyll^Ui) U

V(xux2,ui - U2,U3) U V(a?2,^4!^3)-

The variety V(a?i — ui — u2,x2 — u3, X3U3 — |uiu3 — ^u2U3, 2:4 — |u3) can be further split 

into V(a?i—Ki-u2,a?2-U3,®3“|^i-1^2,®4“|u3)uV(iei-ui-u2,a;2-u3,143,2:4-|u3). 

Then,

11 1
V = V(Z1 - Ui - U2,X2 - U3,X3 - -Ui - -^2,^4 - -U3) U

1
V(a?i - U1 - U2,X2 -U3,X4 - -U3,U3) U

1
V(£l - U1 - U2,X2 - U3, X3U3 - X4U2 - -ulu3,Ui) U

V(x1,x2,ui - U2,U3) U V(x2,X4,U3).
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The Groebner basis for V(a?i - ui — u2,x2 — u3,x3u3 — X4U2 — ^uiu3, uf) is made up of 

the following polynomials,

H = X!~U2,

r2 - x2-u3,

r3 = x3u3-X4U2,

V4 = U1.

So,

11 1
V = V(X!-U1- U2,X2 - U3,x3 - -U1 - -U2,X4 ~ ~U3) U

V(xi - ux - u2,x2 - u3,x4 - ±u3,u3) U 

v(a?i - u2,x2 - U3,x3u3 - X4U2,U1) U

V(Z1,Z2,U1 - U2,U3) U V(a72,®4!^3)-

The Groebner basis for V(xi — ux — u2, x2 — u3, X41— ^u3,u3) is

fi = X1-U1- u2,

t2 = x2,

is = X4,

t4 = U3.

As a result,

, 11 lxV = V(rri - Ui - u2,x2 - u3,x3 - -ui - “U2,z4 - 7^3) U

V(X1 -Ul- U2,X2,X4,U3') U

V(a;i - U2)T2 - U3,X3U3 - X4U2, Ul) U 

V(xi,x2,ui - u2,u3) U V(x2,X4,u3).

In the union of the varieties listed above V(ai — ui — u2,x2,X4,u3) C V(x2,X4,u3) since 

(x2, X4,u3) C (a:i - ui - u2, x2, X4, u3). And finally the variety

T7 tz/ ui +u2 u3V = V(xi-ui- u2,x2 ~u3,x3------------,X4 - y) U

V(zi - u2,x2 - U3,X3U3 - 3?4U2,U1) U 

V(iCi,Z2,ui - u2,u3) U V(x2,X4,u3).
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The varieties that are left are all irreducible components of V. The varieties 

V(xi~u2. x2 — U3, X3U3 — x^u2, ui), 7(ah, x2, ui -u2)U3), and V(x2, X4,U3) represent the 

degenerate cases for the parallelogram problem. In the varieties 7(£i,£2, «i — u2,u3) and 

V(x2,X4,U3), the arbitrary variable U3 = 0. This would make vertex C a point on AB. 
Similarly, u-[ = 0 in 7(£i —u2, x2~U3.X3U3—X4U2, uf) makes vertex B at the same location 

as vertex A. Consequently, in these cases the figure ABCD would not be a parallelogram. 

This is why the first attempt at using the radical membership test failed. As a result, these 

varieties must be removed and it will be shown that the polynomials 51 and g2 disappear 

for the same values as V(xi~ui—u2, a?2~^3)^3~U12U2; 34—3^). To conclude this problem 

we need to show that gi and g2 E foi — ui— u2,x2 — U3, £3 — Ul~^\x4 — By using 

the radical membership test if 1 E {xi — ui — u2,x2 — U3,X3 — U^2U2, z4 — 1 — ygi), then
gi E yj(xi — ui~ u2, x2 — U3, X3 — , X4 — Computing a Groebner basis for £1 —

ui—u2, x2—U3,X3 — X4 — > 1—ygi with Maple resulted in a basis of {!}. Therefore,

<71 vanishes on 7(a?i—?zi—U2)22“'U3)#3—3£1y!£a,24—£?)■ Similarly, ifl G (a?i—ui~u2, x2— 
U3, £3 - , £4 - , 1 - yy2), then 52 € (xi - rii ~ u2, x2 - 113, £3 - £4 -

Computing a Groebner basis for xi — u\ — u2,x2 — U3,X3 — U1^U2, £4 — 1 — yg2 with

Maple again resulted in a basis of {1}. So the conclusion 52 also vanishes on 7(£1 — ui — 

u2, x2 - U3, £3 - £4 - ^). Hence, AN = ND and BN = NO so the diagonals of

any parallelogram intersect at a point that bisects one another.

Although we successfully proved that the diagonals of a parallelogram bisect 

each other, we need to take a moment to make some important observations about using 

the Groebner basis technique. Notice that we began to use the Groebner basis technique 

without taking into account that there are several degenerate cases that can occur. If 

the figure ABCD is not a parallelogram, then it would not be possible to prove the 

stated theorem. When the variety 7 contained polynomials that were factorable it be

came necessary to split the variety into a union Vr U U. In this union V' represents 

the irreducible nondegenerate portion of 7 and U represents the degenerate cases. To 

do this, we computed a Groebner basis. Along the way there were varieties that were 

absorbed into others and eventually we determined that 7 = V(xi—ui—u2,x2 — U3,X3 — 
2^r^)X4-^-)UV(xi-U2,X2-U3,X3U3-X4U2,Ui)UV(xliX2,Ui-U2,U3')OV(x2,X4,U3). 

So for this example, 7' = 7(£i — ui — u2,x2 — U3,X3 — U1 ,X4 — and U = 

V(xi - u2,x2 — U3,X3U3 — X4U2, uj U 7(£i,£2,ni — u2, U3) U V(x2,X4,U3). Despite the 
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fact that we never mentioned degenerate cases in the beginning of the problem, com

puting a finite union of irreducible varieties led to the identification and exclusion of 

these problem cases represented by the varieties V(2i — 222,^2 — 2/3,232/3 — 24222,2/1), 

V(2i,22,221 — 212,2/3), and F(22,24,2/3). It is for this reason that we only check to see if 

51 and 52 G I(V') = I(V(2i - 221 - 222,22-2/3,23 - ^+^,24 - ^)).

Finally, we can outline the steps involved in using the Groebner Basis Algorithm 

(GBA) below:

• Sketch a picture of the problem. Depending on the construction label all vertices, 

intersections, or any other necessary points. We would like to make a distinction 

between independent and dependent 2 and y-coordinates for the points in the figure. 

Any coordinate labeled m is an arbitrary variable. However, coordinates labeled Xi 
are dependent on the location of other points in the figure.

• Determine the polynomials that represent the hypotheses and the conclusion(s) by 

using the labeled figure.

• To show whether the conclusion follows from the hypotheses using Proposition 5.1,

determine if g G /12,..., hn) using the following radical membership test:

g G y/(hi,h2, ■ • -, hn) if and only if {1} is the reduced Groebner basis of the ideal 

{hi,h2,. ..,hn,l — yg) C k[xi,x2,.. .,xn,y].

• If the basis of {hi, h2,..., hn, 1 — yg) is not {1} (due to possible degenerate cases), 

compute a reduced Groebner basis for the ideal generated by all of the hypotheses 

to get a finite union of irreducible varieties V' U 17 as described earlier. Then show 

that y vanishes on the resulting variety V7 that does not represent a degenerate 

case.

5.2 Problem 2: The Circle Theorem of Apollonius

We will now illustrate a second example of using the Groebner Basis Algorithm 

by proving the Circle Theorem of Apollonius.

Theorem 5.3 (The Circle Theorem of Apollonius). Let A ABC be a right triangle 
in the plane, with right angle at A. The foot of the altitude drawn from A to BC and the 

three noncollinear midpoints of AABC all lie on the same circle.
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Figure 5.2: Circle centered a O containing points M-\, M2, M3, and H.

We will begin by placing AABC on the Cartesian plane as illustrated above. As defined 

by the theorem, the right angle will be at vertex A. We will place vertex A at the origin 

(0,0). The second vertex B of AABC will be placed randomly on the a?-axis and it will 

have coordinates (iti, 0). The final vertex C will also be placed randomly on the y-axis 

and it will have coordinates (0, u2). The coordinates for the three noncollinear midpoints 

of sides AB, BC, and AC will all be determined by the placement of vertices B and 

C. The midpoint of AB will have coordinates (a?!, 0) and be labeled Mi. The midpoint 

of AC will have coordinates (0, x2) and be labeled M2. The midpoint of BC will have 

coordinates (^3, ^4) and will be labeled M3. The altitude AH will be drawn from vertex 

A to BC. The foot of this altitude, point H, will have coordinates (reg, Eg)- The objective 

of this theorem is to prove that points Mi, M2, M3, and H all lie on the same circle. 

Thus, the final point that needs to be defined for this example is the center of this circle. 

The center will be labeled point O and have coordinates (2:7, zs).

Note that the circle also passes through the vertex A, the foot of the other two 

altitudes. It turns out that the circle in Figure 5.2 is a special case of the 9-point circle 

theorem often studied in an advanced Euclidean geometry course. Since AABC is a 

right triangle we instead have a 5-point circle. It is important to point out that there are 
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degenerate cases that are possible in attempting to prove this theorem. The first case 

occurs when both m = 0 and u2 = 0. When iti = 0 then vertex B is at the same location 

as vertex A. Similarly, if u2 = 0, then vertex C is also at the same location as vertex

A. Now, with A = B — C there is no longer a right triangle. Consequently, this makes 

the location of Mi, M2, M3, and H also at vertex A. Since A — B — C = Mi = M2 = 

M$ = H, there is only a single point in the plane. Thus, we can find an infinite number 

of circles that pass through this single point. On the other hand, suppose m 0 and 

u2 — 0. If u2 = 0, then vertex C is at the same location as vertex A. Furthermore, this 

will make M2 = A = C. Once again there is no right triangle but we have a line segment 

from A to B. In addition, M3 = Mi and H = A. Just like in the previous scenario, we 

can find an infinite number of circles passing through the points Mi, M2, M3, and H. 

However, in order to prove this geometric theorem, we will assume that the points A,

B, and C are three distinct vertices that form a right triangle in the plane to avoid the 

previously described degenerate cases.

Using the picture above we will convert the hypothesis of the theorem into 

polynomial equations. We will use the midpoint formula to write the first four hypotheses 

of this theorem. Computing the midpoint of AB, we get:

Mi I 2 ’ 2

(zi,0) =

Z1
- U1

ui
Xi~ —

2
= 0.

So, with hi = 2xi ~ Ui the first hypothesis translates algebraically as hi = 0.

Similarly, computing the midpoint of AC, we get:

M2 =

(0,z2) =

x2 =
u2

0 + 0 u2 + 0 \
2 )

U2

2
0.

The second hypothesis is h2 = 2x2 — u2 = 0.
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Finally, computing the midpoint of BC, we get:

0 + ui 0 + u2\ 
~2~ ’ 2 J

(3:3,314)
_ fU!

\ 2 ’
u2
T

2:3
_ U1

2
U1 = 0

3:4
2

u2
= 0.

The computation above generates the third and fourth hypotheses: h3 = 2x3 — ui = 0 

and = 2^4 — u2 — 0.

The construction of point H with coordinates (x3,x3) at the foot of the intersection of 

AH and BC results in two more hypotheses. Since AH is an altitude of A ABC, AH 

is perpendicular to side BC. Since AH _L BC, the product of the slope of AH and the 

slope of BC is -1. This translates into the following:

3?g — 0 0 — U2
X5 — 0 ui — 0 -1,

Z6 ~U2— . ■ — -1,
3:5 U1

—XqU21 = -1,X5U1
-x6u2 = -3:5^1

The fifth hypotheses is then h3 = x$ui — x3u2 = 0.

Now, points B, H, and C are also collinear so the slope of BH — BC. Thus, we have the

following:

0-3:6 _ 0 ~ u2
Ui — 3:5 ui — 0

—%6 _ — u2

—XqUi = — u2(ui — 3:5)

-ZfiUl — ~ U1U2 + 2:5^2

The sixth hypotheses is h$ = 3?6Ui — uiu2 + 3:51^2 = 0.

The points Mi, M2 and M3 are three noncollinear points in our figure. So we know that

three noncollinear points lie on the circumscribed circle of the triangle they form. The 
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center of this circle is point O(x7,xg). Using the distance formula, we can derive two 

additional hypotheses. Since M^O and M2O are both radii, then

%/(zi - 2;7)2 4- (0 - xg)2 = \/(x7 — 0)2 4- (x8 - x2)2

(xi - x?)2 4- Xg = x2-h (xs - x2)2.

The seventh hypotheses then becomes h7 = (a?i — x7)2 4- Xg — x2 — (zg — x2)2 = 0. 

Similarly, since M^O = MgO, we have

(zi - Z7)2 4- xl = (z4 - Zs)2 + (^3 ~ Z7)2-

The eighth and final hypotheses is hg = (o?i — 2?7)2 4- Xg — (2:3 — #7)2 — (24 — 2?s)2 = 0. 

In this example, we would like to show that point H also lies on the circle centered at O 

containing points Mi, M2r and M3. Thus, our conclusion is that HO = M\O, or

(rri - x7)2 4- Xg = (x5 - x7)2 4- (x$ - xg)2

So, the conclusion, expressed algebraically, is g = (a?l — £7)24-Zs — (^5 — x7)2 — (x§ —a^)2 — 

0.

Now, g G \/(/ii, /12, ^3, ^4, ^5> ^6> h7, hg) if and only if 1 G (hi, h2, hg, /14, /15, hg, 
h7, hg, 1 — yg) in the ring R[ui,«2, X4,2:5,216,2:7, es]- Computing the basis did

not result in a basis of {1} like we had hoped. Since the radical membership test failed, 

we can begin to compute the Groebner basis for the ideal (hi,h2, hg, h^, /15, hg, h7, hg) in 

the ring IR[ui, 7225^1,^2,^3, ^4, ^5, ^6, ^7, ^s] using lex order with 2?i > x2 > 2:3 > 2:4 >
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25 > 26 > 27 > 28 > U] > u2. Using Maple the Groebner basis is the following:

Pi

P2

P3

P4

= 221 - ui = 2 (y 1 ~ yj ,= 222 - 212 = 2 (^2 - y) ,
= 223 ~U1 = 2 (23 - y) ,

= 224 - 212 = 2 (j4 “ y ) ,

P5 = 25211 — 26212,

Pq = 25712 + 26211 — 211112)

p7 = 426^7112 - 3?6^1^2 = 426112 “ y) >

P8 — 426218111 - 26?1i?12 = 420111 (^8 - y ) , 

P9 = 26111 + 2J6212 - U2U2,

= 26(u2 + 212) - U1112,

= („?+u2)(x6-^|), ,

P10 = 427111 -U%= 411! (27 - y) ,

Pll = 428112 - U2 = 4112 - y) •

Unfortunately, this is not a reduced Groebner basis. Notice that some of the 

listed polynomials are multiples or linear combinations of one another. Take for instance, 

a linear combination of the polynomials ps and p$

nips + U2P6 = 1/1(25111 — 26U2) + u2(x5U2 + reet/i - 1/1112),

= X5U2 — 261/1212 + SSI/2 + x6UiU2 — 2/12/2,

= 252/1+252/2—2/11/2,

Thus, we can eliminate them from the basis. Once this has been accomplished it will
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result in the reduced Groebner basis shown below

fl = «1

f2 = u2

f3 = «i
X3

f4 =

fs = 1*1^2
®5 2 1 2Ui + U2

fs =
ulu2

^6 a . 2
+ «2

f7 = «1
*7-T,

fs =
u2 xs -
4

Notice that by computing the Groebner basis in the ring R[ui, u2, , x2, x3,x4,

3'5, a?e, X7, org] it took longer to produce the desired basis. In the computations above, 

we see that trying to generate a finite union of irreducible varieties can be a quite a 

challenge. The reason why this task is so difficult, is because of the degenerate cases. 

Fortunately, there is a way to modify the Groebner Basis Algorithm so that we can 

prove any geometric theorem excluding all degenerate cases that occur. Throughout the 

parallelogram example all of the computations for the Groebner basis were done in the 

ring R[ui, u2,u3,xi,x2, £3,24]. Recall that the Ui represent elements that are independent 

or arbitrarily chosen, and these elements should be nonzero if we want to avoid degenerate 

cases. So, will computing a basis in the ring R('Ui,'U2,ri3)[a<L, x2, x3, rr4] (or making the 

independent variables part of the coefficients) make things simpler? Yes, we can modify 

Proposition 5.1 because it is too strict since it does not take into account that there are 

degenerate cases.

Proposition 5.4. If g G V{hi, h2,..., hn) in k(ui,u2,..., Ui)[ici, x2,... ,Xj], then g G 
I(V') and g follows from hi,h2,... ,hn.

To illustrate what will happen with this modification, we will redo the parallelo

gram example by working in the ring R(izi, u2, ^3) [asi, x2, x3, a?4]. So, gi G V{hi,h2, h3, h4) 

if and only if 1 G {hi, h2, h3, hi, 1 - ygi) in the ring R(tii,tt2, u3)[a;i, In

addition, g2 G V{hi,h2, h3, hi) if and only if 1 G {hi, h2) h3, hi, 1 — yg2) in the ring 



77

R(ui,U2,U3)[a;i,2;2J®3j 2:4,2/]. Using Maple once again to compute a Groebner basis, we 

find that in both cases the basis is {1}. Thus, by the radical membership test and Propo

sition 5.4 the conclusions gi and g2 follow from the hypotheses hi, h2, h3 and h^. Using 

this approach to verify a geometric theorem is much easier due to the fact that we do not 

have to know the decomposition of the variety V. It eliminates the time consuming task 

of having to find and exclude any degenerate cases.

Returning to the circle theorem, if we had made the initial computation in 

the ring R(ui,u2) [3:1,272,2:3,3:4,375,3:6,377,3:8], Maple would have generated the reduced 

Groebner basis containing the polynomials fi, f2, f3, fi, fa, f&, fi, and f3. It would not 

have been necessary to factor and reduce the polynomials pi for 1 < i < 11 generated by 

computing the basis in R[ui,U2,2:1,372,3:3,374, x$,xq,xi, 27s] as shown earlier. By working 

in the ring R(iti,'U2)[2:i3372)3:3,3:4,3;5,3;6,3:7,2:8] in the all of the ffs listed above each of 

the terms that come after the minus sign are coefficients from the field R. Consequently, 

the ideal (71,72,73,7b 7s, 76, Tz, 7s) is of the form (a?i - 01,0:2 - a2,...,xn - an) with 

ai, a2,... , an G k (k is & field) is maximal. When an ideal is maximal in fc[oq, 372,..., o:n], 

then the ideal is prime which now implies that V(7i, fi, f3, fi, f5, f8, f7, fs) is irreducible 

so it cannot be decomposed any further. As a result, we can use Proposition 5.1 and 

the radical membership test to determine whether g G J(fi, f2, f3, fi, f$, f&, fi, fs)- In 

order for this to occur, we must show that 1 G (71 > fi, f3, fi, fs, fe, fi, fs, 1 - yg}- Using 

Maple one more time to compute the Groebner basis of (7i, h,f3,fi,f5, fe, f7,f8,I — yg\ 
resulted in a basis of {1}. Therefore, the conclusion g G y/(71, fi, f3, fi, fs, fe, fi, fsfi 
Hence, g follows from the hypotheses hi for 1 < i < 8. Consequently, this makes the 

point H lie on the same circle passing through the three noncollinear points Mi, M2, and 

M3.

However, it is interesting to note that for this problem there is an alternative to 

using the radical membership test. The reason why we have consistently used the radical 

membership test is because it is time consuming to determine if the conclusion g is an 

element of a particular ideal. By using the division algorithm for multivariable polyno

mials, we can easily determine whether the polynomial g G (fi, f2, $3, fi, fafe, 7z, fs)- It 

turns out that our conclusion g = (371 — xi)2 + Xg — (375 — Xi)2 — (x6 — g^)2 has a remainder 

of 0 when it is divided by the Groebner basis fi, f2, f3, fi, fs, fs, fi, f$. In other words, 

the conclusion can be written as a linear combination of the polynomials in our Groebner 
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basis as follows,

9
xi 4- 2a?7 —• /1 4" 0 ■ A 4- 0 • A 4*  0 • A 4- ^2:5 — 22:7 4- -

+ (*s  -^7 + ^7^) ( r< - ,7J + ( + 77TT

9 Hi 9 21Z1U?
—x, 4- 2x1x7 — 4412:7 + -r 4- 0:5 - 22:52:7 4- -9—^2:7 -

4 u{ 4- U2
2u2u2 uiu2 u3 — U1U% u4 — u2u2

^u^ + u2^8 (u2 4- ti2)2 ui + u2 X7 4(u^4-u2) ui 4" u2

Collecting like terms in the equation above,

—U2U2 u1u2 _ —U2U2—U4U2 _ —U2U2(U2 + u2) __ ulu2
u2 4-

U?Un 0

Z~2~, 2\2 + X6 ~~ 2x6x8(u2+«i)2
2u2U2 U2U2

2 x8 + 2(u2 4- u2)

(uf 4- u2)2 (u2 + ul)2 (v% 4- u%)2
Continuing to combine like terms, 1

u2 u4 — U2U2 uiu2 __ ui 4- u2u2 — u4 4- u2U2 4- 2u2u2 _ 4u2U2 _ U2ll2
4 4(u2 4-u2) ^2(u2 4-4(u2 + u2) 4(u24-u2) 142+4z2"

Furthermore,

2uiu2 „ ( 'll3 — ^1^2„ _ U1 4- nlu2 „ _ ul(ui + u2)
9 i 9*̂7  d- 9 ; 9 X7 — n ■ 5 X7 — 9 ; 9

Ui 4-^2 ul + u2 U1 + u2 U1 + U2

As a result, the equation for g becomes,

M + «i)2

4(u? 4- u%)

X7 = 'U1Z7.

2 2'Ltf'Lln
2 i 2 2 i 2 "b ^1 ^7 >

4-142 ai +

9 9 2 r> n-]Uog ■= —xf 4- 22:12:7 — U1X7 + x£ — 2x5X7 + x6 — 2x^X8 — —

—x2 + 2Z1Z7 4- x2 — 2375377 4- Xq — 2a?6Z8-

This is exactly what the polynomial g equals when (2:1 — Z7)2 4- ®g — (x5 ~ 

Z7)2 - (®6 ~ z8)2 is multiplied out. Consequently, g e (A, A, A, A, A, A, A, A)- Since 

{hi,h2, h3,h4,h5,h6, h7,h8) = (A, A, A, A, A, A, A, A), this will also make g G (hi, h2, 
hs, /14, /15, he, h>7, he). Hence, g will vanish for the same values that make all of the hi for 

1 < i < 8 zero. Therefore, g follows from the hypotheses. The point H is once again on 

the circle containing the three noncollinear points Mi, M2, and M3.

From our experiences with the previous two theorems, we can now modify and 

make improvements to the Groebner Basis Algorithm as follows:
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• Sketch a picture of the problem. Depending on the construction label all vertices, 

intersections, or any other necessary points. We would like to make a distinction 

between independent and dependent x and ^-coordinates for the points in the figure. 

Any coordinate labeled Ui is an arbitrary variable. However, coordinates labeled Xj 
are dependent on the location of other points in the figure.

• Determine the polynomials that represent the hypotheses and the conclusion(s) by 

using the labeled figure.

• To show whether the conclusion follows from the hypotheses using Proposition 5.1, 

determine if g G x/{hi, h2,..., hn) using the following radical membership test: 

g G y/{hi, h2,..., hn) if and only if {1} is the reduced Groebner basis of the ideal 

{hi,h2,... ,hn,l -yg) C fc[Ki,K2>. . -, xn, y].

• If {1} is not a reduced Groebner basis of {hi,h2, ■.. ,hn, 1 — yg), compute a re

duced Groebner basis for the ideal generated by all of the hypotheses in the ring 

k(ui,... ,tij)[Ki, • ■ • ,Xj]. Apply the radical membership test to determine if 1 is an 

element of the ideal generated by {fa, f2, ■.., ft, 1 — yg) where the /’s are polyno

mials from the Groebner basis (in the ring k(ui,..., , Xj,y]).
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Chapter 6

Conclusion

From both of the examples presented in Chapter 5, we learned how to apply the 

Groebner Basis Algorithm to geometric theorems. In order to begin using the GBA, it is 

important to write the hypotheses and the conclusion(s) in polynomial form. Since the 

polynomials that represent the hypotheses and conclusion^ are multivariable polynomials 

from the ring fcfxi, x2, ■ ■ ■, 2n], it is extremely difficult to directly solve the system of 

equations generated by these polynomials. Instead, the GBA shifts the focus to the 

ideals that generate the polynomials and the varieties of these ideals. This approach will 

make it easier to reach the final goal. This process will ultimately show that the values 

which make the hypotheses zero also make the conclusion(s) vanish. As a result, we will 

have successfully proven the geometric theorem we happen to be studying.

Furthermore, there were some important concerns that were raised by using 

the Groebner Basis Algorithm to prove geometric theorems. First, would the GBA be 

able to take into account the degenerate cases that can occur in these theorems? The 

answer to this question is yes! Recall for a moment what happened in the diagonals 

of a parallelogram problem. In order for the figure drawn in the plane to be called a 

parallelogram, the location of the four vertices is critical. For example, the figure would 

not be a parallelogram if two distinct vertices shared the same location. The variety 

V was split into the union of a finite number of irreducible varieties. Once this was 

achieved, the varieties that represented the degenerate cases were quickly identified and 

excluded. The final step of the algorithm was to then apply the radical membership test 

to show that the conclusion followed from the hypotheses. However, the parallelogram
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problem highlighted one drawback when using the GBA. The process to end up with 

a union of irreducible varieties can be long and time consuming. Fortunately, we later 

discovered that by working in the ring ^(2/1,242,..., 22)..., 2j] eliminated the need

to know the decomposition for a given variety in order to remove any degenerate cases. 

Consequently, we were able to adjust and improve the steps used to apply the Groebner 

Basis Algorithm.

When a Groebner basis is computed for the hypotheses, it is sometimes possible 

to show that the conclusion is an element of the ideal generated by the Groebner basis. At 

this point, we can use the division algorithm for multivariable polynomials to determine 

the remainder. If the remainder is zero, then the conclusion can be written as a linear 

combination of all of the polynomials in the Groebner basis. Hence, the conclusion would 

be an element of the ideal generated by the Groebner basis and there would be no need 

to resort to the radical membership test. This scenario was illustrated with the Circle 

Theorem of Apollonius.

One of the more interesting aspects of this project is that concepts studied 

in algebraic geometry have been applied to computer science. The first application to 

computer science is in the field of robotics. It is possible to describe the movement 

of a robot arm using varieties. The goal is take a robot arm and enable the robot 

to perform a task by writing a program that can control and plan the movements of 

the robot. For instance, the robot might be provided with mechanisms for grasping 

objects or with tools to carry out a given task. The second application is to researchers 

working in artificial intelligence and geometric modeling. This project shows that we are 

able to use an algorithmic method to prove statements in Euclidean geometry. This is 

important because programs have been written that have successfully proven or disproven 

conjectured relationships between, or theorems about, plane geometric objects. [CLO97]



82

Bibliography

[CLO97] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. 
Undergraduate Texts in Mathematics. Springer-Ver lag, New York, second edi

tion, 1997. An introduction to computational algebraic geometry and commu

tative algebra.

[Hun80] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. 
Springer-Verlag, New York, 1980. Reprint of the 1974 original.

[Sma98] James R. Smart. Modem Geometries. Brooks/Cole Publishing, California, fifth 

edition, 1998.


	Geometric theorem proving using the Groebner basis algorithm
	Recommended Citation


