
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2006

Testing for the Solicitation Management System Testing for the Solicitation Management System

Lu-Yi Wu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Wu, Lu-Yi, "Testing for the Solicitation Management System" (2006). Theses Digitization Project. 3486.
https://scholarworks.lib.csusb.edu/etd-project/3486

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3486?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3486&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

TESTING F.OR THE SOLICITATION MANAGEMENT' SYSTEM .

A Project

Presented to the.

Faculty of

California. State University,.

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Lu-Yi Wu

June 2006

TESTING FOR THE SOLICITATION MANAGEMENT SYSTEM

A Project

Presented to the..

' Faculty of

California State University,

San Bernardino

by

Lu-Yi Wu

June 2006

Approved by:

Date

ABSTRACT

' This project is to test the Solicitation Management

System (SMS). The SMS is an online system that facilitates

processing of a solicitation at the Office of Technology

Transfer and Commercialization (OTTC). It allows potential

applicants to submit applications to OTTC for further

processing.

Testing done in this project can mainly be divided

into two distinct parts. They are manual testing and

automated testing. Each testing method has its advantages

and disadvantages. Through a combination of both testing

methods, it is hoped that faults in the system can be

discovered.

This report includes a limited review of software

testing literature.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Turner. He has

been a wonderful advisor who offers support of knowledge

and resources throughout this project. I would also like

to thank my committee members Dr. Georgiou and Dr. Gomez

for their valuable feedbacks to make this project better.

Last, but not least, I would also like to thank Dr.

Concepcion and Dr. Turner together to let me have a chance

to join the SMS project, which helps me to deeper

understand the project that I am testing on.

iv

TABLE OF CONTENTS

ABSTRACT.. iii
ACKNOWLEDGMENTS .. iv
LIST OF TABLES........................ vii
LIST OF FIGURES... viii
CHAPTER ONE: INTRODUCTION

1.1 Purpose of This Project................. 1
1.2 Scope of Project............................. 1

1.2.1 Deliverables 1

1.2.2 Function of Testing 2

1.3 Significance of the Project................. 2
1.4 Definition and Abbreviations 2
1.5 Organization of the Documentation 3

•CHAPTER TWO: LITERATURE REVIEW FOR SOFTWARE
TESTING........................... 4

2.1 Introduction 5
2.2 Testing Theories and Techniques 6

2.2.1 Testing to the Full Extent........... 6

2.2.2 Testing for All Possible Future
Usage............................... 13

2.2.3 Testing with Selection............... 13

2.3 Study Comparisons 16
CHAPTER THREE: INTRODUCTION TO THE SOLICITATION

MANAGEMENT SYSTEM
3.1 Introduction................. 19
3.2 User Roles.................................... 20
3.3 Functions..................................... 21

CHAPTER FOUR: TESTING STRATEGIES

V

.4.1 Introduction........ 27
4.2 Testing Frameworks 27

4.2.1 JUnit.................................. 27

4.2.2 HttpUnit.............. 29

4.2.3 JUnitPerf............................. 30

4.3 Testing Strategies 31
CHAPTER FIVE: MANUAL TESTING

5.1 Modification Testing 33
5.2 Progress Review Meeting Testing 33
5.3 Client Review Prototype Session Testing 34

CHAPTER SIX: AUTOMATED TESTING 35
6.1 Test Driven Design (TDD) 38
6.2 General Functional Tests 38
6.3 Security Tests................................ 42
6.4 Load Tests.................................... 44
6.5 Concurrency Tests 44
6.6 Database Population Tests........... 44

CHAPTER SEVEN: CONCLUSION AND FUTURE DIRECTIONS
7.1 Conclusion.................................... 46
7.2 Future Directions....................... 47

REFERENCES.. 48

vi

LIST OF TABLES

Table 1. Functional Tests............. 39

Table 2 . Security Tests...................................43

Table 3. Database Population Tests 45

vii

LIST OF FIGURES

Figure 1. Solicitation Management System Login Page.......20

Figure 2. Use Case Diagram - Admin's Role................. 22

Figure 3. Use Case Diagram - Applicant's Role............. 22

Figure 4. Use Case Diagram - Evaluator's Role............. 23

Figure 5. Use Case Diagram - Officer's Role............... 24

Figure 6. Use Case Diagram - Staff Member's Role......26

viii

CHAPTER ONE

INTRODUCTION

1.1 Purpose of This Project

The purpose of this project is to write a set of test

cases that can detect undesired behaviors for the

Solicitation Management System (SMS).

The SMS is a web-based application that facilitates

processing of solicitations for the Office of Technology

Transfer and Commercialization (OTTC). Potential

applicants can submit their applications to OTTC using the

SMS and officers at OTTC can process and assign evaluators

to applications.

The project uses two major types of tests. One is

manual testing, and the other is automated testing.

Details of testing strategies will be described later.

With the combination of both manual testing and

automated testing, it is the goal of this project to

discover faults for the SMS system if it exists.

1.2 Scope of Project

1.2.1 Deliverables

This project contains the following deliverables:

1. Functional test code that validates basic

functionality of SMS.

1

2. Security test code.

3. Concurrency test code.

4. Load test code.

1.2.2 Function of Testing

This project consists of a group of testing

strategies that was written to capture faults of the SMS

if it exists.

1.3 Significance of the Project

"If you didn't test it, it doesn't work" [1] might be

the best description of the significance of testing. Many

software developers concentrate on writing the program

itself and neglect the importance of testing.

It is better to test a product and capture bugs

before commercial release than to have to spend more time

and money to have it fixed after it is delivered to the

client. Fixing a product after delivery not only costs

relatively more than fixing it during development, it

would also affect customer's confidence in our product and

capabilities of quality control.

1.4 Definition and Abbreviations

SMS - Solicitation Management System.

OTTC - Office of Technology Transfer and

Commercialization'.

2

JUnit - JUnit is a framework that can be used to perform

testing. It provides a series of methods that can be

useful when writing test cases.

HttpUnit - HttpUnit is a framework that can be used to

test web applications. It emulates a web browser and

can perform related behaviors and can be used to

bypass the browser to test the web application. It

can be used in conjunction with JUnit.

JUnitPerf - JUnitPerf is an open source that can be used

with JUnit to perform timed and load testing.

1.5 Organization of the Documentation

The remaining sections of this document is organized

as follows: Chapter 2 is a literature review of software

testing. Chapter 3 introduces the Solicitation Management

System. Chapter 4 illustrates the testing strategies.

Chapter 5 presents the project implementation for manual

testing. Chapter 6 presents the project implementation for

automated testing. Chapter 7 provides conclusions and

future directions.

3

CHAPTER TWO

LITERATURE REVIEW FOR SOFTWARE TESTING

Testing is an integral part of software development.

Testing provides one means for stakeholders to verify the

quality of a component within a system as the system is

being developed, or to verify the overall quality of a

software system prior to its deployment. The purpose of

this chapter is to review different testing theories and

techniques that are currently available. The theories

reviewed can be categorized into three different types:

test the application to full extent; test the application

for all possible usage in the future; and test the

application with selected test cases. The techniques

reviewed cover a broad variety of software testing. They

include techniques for general (vanilla) software testing,

version-specific software testing, multi-version software

testing, system level software testing, unit level

software testing, and function level software testing.

Details of individual techniques will be introduced later

in this chapter. Of the studies reviewed, most of them

claimed that the technique they introduced is effective.

However, one study reports that some of the techniques

introduced in its paper are effective while others are not.

4

2.1 Introduction

Testing is an important part of the software

development cycle. Through testing, we can verify whether

the software in question delivers the functionalities

against specification and validate whether the software

has rendered its expected behavior. Bob Colwell once wrote

in Computer Magazine, "If you didn't test it, it doesn't

work" [1], might best describe how essential testing is

for software validation.

It is intuitive to understand testing is important.

However, the process of testing can use up a lot of

resources. If we take into consideration that software

testing consumes at least 50% of software development cost

and reusing test suites consumes almost 50% of software

maintenance cost [4], we would come to realize that the

problem involving testing has come down to simply how to

test economically. As a result, in order to seek out

solutions the above question, several studies had been

conducted. The purpose of this paper is to review current

theories and techniques available for software testing.

Section 2.2 will present the theories and techniques

used in the studies reviewed. Section 2.3 will be a

comparison between the studies.

5

2.2 Testing Theories and Techniques

Theories in testing can mainly be categorized into

three different types. The first testing theory is to test

the application to the full extent. The advantage of this

method is that it might uncover underlying faults of the

application since most things that are designed cannot be

tested to saturation [1].

The second testing theory is to test the application

for all possible usage in the future. However, due to the

mass possibilities and combinations, it might be time

consuming to conduct the test and it might also drive the

tester crazy [1].

The third testing theory is to be selective and

choose a number of test cases to test the application.

This is more applicable when a large system is being

tested. However, since only a portion is chosen to be

tested, we run a risk that an error might go undetected.

2.2.1 Testing to the Full Extent

Testing to the full extent has its advantages and

disadvantages. The advantage of testing to the full extent

is that it is more likely to uncover faults within the

application. However, the disadvantage of that is that it

can be very time consuming and costly.

6

To solve this problem, a method of testing to full

extent while preserving test efficiency was brought up by

Gregg Rothermel et al. This method is called

prioritization. In the studies reviewed, three [4] [5] [6]

studies mentioned use prioritization as a mean to increase

fault detection in early stages of testing.

When a test cannot fully run to the end, the rate of

fault detection prior to the stop is crucial. The faults

detected can give faster feedbacks and allow developers to

fix the problem early on. This is of great value because

in real world not all test cases can run to the end. Some

are stopped due to crashes and some are interrupted or

even canceled due to scheduling issues.

Different studies have different techniques for

prioritization. In a study conducted by Hema Srikanth et

al. [4], it proposes a system level prioritization

technique. The idea was to assign a value between 1 and 10

to the four factors they identified: the customer-assigned

priority (CP), the requirements complexity (RC), the

requirements volatility (RV), and the fault proneness

(FP). Each factor can be assigned a weight (total weight

to be 1.0) to emphasize the importance of that feature for

an individual program.

7

A Prioritization Factor Value (PFV) is then

calculated by summing the product of the value and weight.

PFV is used to calculate the Weighted Priority (WP). WP

decides the priority of test cases. Test cases with higher

values run before ones with lower values.

In another study conducted by Gregg Rothermel et al.

[5], it proposes eight techniques for general

prioritization. Prioritization techniques can mainly be

categorized into two parts: total and additional.

Techniques that do not require feedbacks are named with

"total" and techniques that require feedbacks are named

with "additional".

The first technique introduced is random

prioritization. In random prioritization, the tests are

run randomly. The second technique is optimal

prioritization. In optimal prioritization, tests are run

based on the number of faults each test case reveals.

Tests that reveal more number of faults are run first.

The third technique is total statement coverage

prioritization. Total statement coverage prioritization

bases the ordering of tests on the number of statements

that are covered by each test case. Tests that reveal more

number of faults are run first.

8

The fourth technique is additional statement coverage

prioritization. This technique first chooses a test case

that covers the greatest number of statements. Then it

selects from the remaining test cases that covers the most

statements that has not been covered yet.

The fifth technique is total branch coverage

prioritization. It chooses test cases based on the number

of branches that are covered by each test case. Tests that

cover more branches are run first.

The sixth technique is additional branch coverage

prioritization. It first chooses a test case that covers

the greatest number of branches. Then it selects from the

remaining test cases that covers the most branches that

has not been covered.

The seventh technique is total fault-exposing-

potential (FEP). In this technique, summations of all FEP

for all statements are assigned to an award value. Test

with higher award values are run first.

The last technique is additional fault-exposing-

potential (FEP) prioritization. It uses a term called

confidence. Confidence is a value similar to the FEP used

in total fault-exposing-potential prioritization. This

technique first chooses a test case that has the greatest

9

confidence. The confidence value is then updated and the

confidence values for the remaining test cases are

recalculated.

In a third study conducted by Sebastian Elbaum et al.

[6], it based its study on [5] and added several new

techniques. It proposes eighteen techniques for version

specific prioritization. The techniques it proposes can

mainly be categorized into four parts.

The first part concerns granularity. It divides the

techniques into function level and statement level. The

second part concerns feedbacks. Techniques that do not

require feedbacks are named with "total" and techniques

that require feedbacks are named with "additional".

The third part concerns information from modified

version. Techniques that do not require information from

modified version are named with "FEP". Techniques that do

require information from modified version are named "FI"

(fault index). The fourth part concerns practicality.

Techniques in this study are categorized by whether they

are practical or not. Techniques that are based on

coverage and FI are practical while techniques that are

based on FEP are exploratory.

io-

The first six techniques introduced in this study

were covered in the previous study. They are random

ordering, optimal ordering, total statement coverage

prioritization, additional statement coverage

prioritization, total FEP prioritization, and additional

FEP prioritization. Of the techniques mentioned above, the

last four techniques are statement level techniques.

The seventh technique is total function coverage

prioritization. This technique is similar to that of total

statement coverage prioritization except that it deals

with functions instead of statements.

The eighth technique is additional function coverage

prioritization. This technique is similar to that of

additional statement coverage prioritization except that

it deals with functions instead of statements.

The ninth technique is total FEP (function level)

prioritization. This technique is similar to that of total

FEP prioritization except that it processes at a function

level.

The tenth technique is additional FEP (function

level) prioritization. This technique is similar to that

of additional FEP prioritization except that it processes

at a function level.

11

The eleventh technique is total fault index (FI)

prioritization. FI is used to estimate fault proneness.

This technique is similar to total function coverage

prioritization. Summations of all FI for all functions are

calculated. It chooses test cases based on the value

calculated. Tests with a higher value are run first.

The twelfth technique is additional fault-index (FI)

prioritization. This technique is similar to additional

function coverage prioritization except that it processes

with FI.

The thirteenth technique is total FI with FEP

coverage prioritization. This technique sums the product

of FI and FEP for all functions that a test case executes.

Then the test cases are chosen based on the value

calculated. Tests with higher value are run first.

The fourteenth technique is additional FI with FEP

coverage prioritization. This technique is similar to

total FI with FEP coverage prioritization except that it

involves feedback.

The fifteenth technique is total DIFF prioritization.

In this technique, syntactic differences between two

versions of a program are being calculated. This technique

is similar to total DIFF prioritization except that it

processes with diff.

.1,2

The sixteenth technique is additional DIFF

prioritization. This technique is similar to additional FI

prioritization except that it processes with diff.

The seventeenth technique is total DIFF with FEP

prioritization. This technique is similar to total FI with

FEP prioritization except that it processes with diff.

The eighteenth technique is additional DIFF with FEP

prioritization. This technique is similar to additional FI

with FEP prioritization except that it processes with

diff.

2.2.2 Testing for All Possible Future Usage

As mentioned before, testing for all possible future

usage is both time consuming and quite irrelevant. There

can be mass numbers of possibilities and combinations that

may result in a new future usage. Spending a lot of time

and energy to tackle this kind of problem is probably not

wise.

2.2.3 Testing with Selection

Testing with a selection of test cases has its

advantages and disadvantages. The advantage of testing

with selection is the time and cost it saves to run the

tests. The disadvantage, however, is that if the test

selection was not chosen carefully, it might not detect

all faults that are present.

13

Several studies and articles [3][7][8][9] backs up

the theory that testing should be done with a selection of

test cases instead testing to the full extent despite that

their techniques of test selection differs from one and

another.

In an article written by Tim Menzies et al. [3] in

the IEEE Software Magazine, the authors mentioned a

technique called formal method. In formal methods,

essential details and logical constraints are specified

and never be violate. Thus, test cases are written to

check against violations of the rule.

In a study conducted by Yanping Chen et al. [7], it

focuses on specification-based test selection. In this

method, two kinds of regression tests are selected. One is

the targeted test that checks the new release for the

presence of current important customer feature. The other

is the safety test that checks for potential problem

areas.

In a second study conducted by Mary Jean Harrold et

al. [8], it uses coverage-based predictors to perform test

selection. There are two predictors used. They are the

DejaVu, implemented by Rothermel and Harrold and the

TestTube implemented by Rosenblum and Weyuker. This study

has a hypothsis: "Given a system under test P, a

14

regression test suite T for P, and a selective regression

testing method M, it is possible to use information about

the coverage relation coversM induced by M over T and the

entities of P to predict whether or not M will be cost-

effective for regression testing future versions of P

In a third study conducted by Todd L. Graves et al.

[9], four test selection techniques were introduced. The

first technique is the minimization technique. In this

technique, test cases that cover the modified part of the

program are selected. However, the test cases selection is

kept to a minimum.

The second technique is the dataflow technique. In

this technique, test cases that have data interaction with

the modified part of the program are selected.

The third technique is the safe technique. In this

technique, test cases that are selected include all test

cases in the original version that can detect faults in

the modified version.

The fourth technique is the ad hoc/ random technique.

This technique has been introduced early in section 2.1.

The ad hoc portion of this technique is usually based on

experience of hunches that the developer gets.

15

2.3 Study Comparisons

The studies reviewed in this paper mostly aim at the

goal of introducing a more efficient way for testing. Most

of the studies are aimed toward this goal in one way or

another. Studies [4][5][6] mainly focuses on

prioritization while [7][8][9] introduces different

methods of test selection. The researches or studies are

mainly done with the goal of raising the fault exposing

rate in early stages of testing. Regardless of what

technique it employs, the final objective is to

efficiently and effectively expose as much fault as

possible within the initial stages.

Of the six studies reviewed, two[8][9] of them had a

hypothesis. [8] hypothesized that current information can

be used to predict cost-effectiveness for future version

regression testing. [9] hypothesized that trade-offs

between the cost of test selection and execution with

fault detection sufficiency differs with different test

selection techniques. Even though the two hypotheses look

irrelevant at a glance, they provide a theory base for the

techniques that are presented in the individual studies.

All six studies are done on software testing. They

cover software testing from different aspects and

perspectives. [4] covers testing on a system level; [5]

16

covers testing as a general rule; [6] covers testing that

are version specific; and [8] covers testing over multiple

versions. Since there are different coverage of software

testing, it is essential to discuss all possible types of

testing possible for different aspects (range/ coverage).

Thus discussion of testing that provides different

coverage suffices this purpose.

All six studies use techniques and methods introduced

in their study to conduct their experiment or research.

Techniques introduced are different from study to study.

However, since [6] is a follow up research of [5], it uses

six of the techniques introduced in [5]. A wide variety of

techniques in this case is an advantage because sometimes

one technique might suffice one aspect of testing while it

might prove insufficient for another. Thus, in order to

cover all aspects of testing, different techniques are

necessary.

Four studies [4][5][6][7][8] claim effectiveness in

the techniques they introduced. One study [9] reports that

some of the techniques introduced in its paper are

effective, some are not. It is important for a paper to

stand by the idea it proposes. However, some studies only

conduct tests or report results that are favorable to

them.

17

A study that really tests all possibilities and report the

outcome regardless of how it looks might be more

convincing and thus less bias.

Since software testing can have many aspects, studies

that test different facets may come to different

conclusions. [4] states that customer satisfaction can be

increased when severe faults are corrected early. [5]

state that of the techniques they proposed, the FEP-based

are not as practical as the code-coverage-based techniques

due to cost. [6] states that adding fault proneness

measurements into prioritization is not as beneficial as

expected.

[8] states that predictive model test selection

accuracy can be affected significantly by the distribution

of modifications made to a program. Code coverage and

modification distribution must be both accounted for to

achieve a more precise accuracy. [9] states that the cost­

effectiveness of regression testing is affected by the

choice of selection algorithm.

18

CHAPTER THREE

INTRODUCTION TO THE SOLICITATION MANAGEMENT

SYSTEM

This chapter is a brief introduction to the

Solicitation Management System.

3.1 Introduction

The Solicitation Management System is an online

application written for the Office of Technology Transfer

and Commercialization (OTTC). It is a web application that

can be used to facilitate processing of a solicitation.

OTTC is an office that assists in transitioning

promising new technologies from government and academic

laboratories alike into full commercialization. When a

grant proposal is selected, an amount of founding will be

rewarded to the applicant.

A system with the purpose of supporting the goal

mentioned above via a grant proposal solicitation

management system was implemented by the Department of

Computer Science lead by Dr. Turner. The test cases in

project are aimed at testing the latest (third) release of

this system. Figure 1 shows the login page for this

release.

19

l^tXFT-C >-5oIicIlalipnji4ftnaeern^nt;Syslenj Firefox 8

0e £<tt Xjew Go Bookmarks Ipols de!p

[gj t.k«.a^.edu/t^c^tCf/bgBr..teml

Otte
Office of Technology Transfer and Commercialization
California Stale University, San Bernardino

Solicitation Management System ;

♦ Steps to Submit a New Grant Application
♦ Register as a New Evaluator •?•
♦ Steps to Modify or Complete an Existing Grant Application
♦ Recover a Forgotten Password i-
♦ Proposal Document Guidelines i

Username: [......................] £
Password: [2Z]

| SubmH J

you

Steps to Submit a New Grant Application

1. Read the solicitation Instructions.
2. If you have a username and password with this Web Site

(from the current or previous solicitation), please login.

Figure 1. Solicitation Management System Login Page

3.2 User Roles

There are five user roles for the SMS. They are the

administrator, applicant, evaluator, officer, and staff.

Their main roles are described as follows.

The administrator, officer, and staff roles are

mainly personnel from OTTC. The administrator manages the

officer and staff member's user accounts. The officer runs

the solicitation and can make changes to solicitation

related activities if necessary. The staff member can view

20

solicitation related activities but cannot make any

changes.

The applicant and evaluator roles are usually people

from outside of OTTC. An applicant is anyone who registers

himself into the SMS as an applicant. He then can view

open solicitations and submit an application if he wishes

to. An evaluator is usually a person assigned or invited

by OTTC. He also registers himself as an evaluator and can

login to view his assigned jobs.

3.3 Functions

The SMS has several functions that aid the processing

of a solicitation. They are described as follows by the

user roles.

The admin role can manage officers accounts (which

includes create, edit and delete) and manage admin's own

profile. Figure 2 is a use case diagram for the admin's

role.

21

^Manage Officers^

Administrator
^Manage Profile^

Figure 2. Use Case Diagram - Admin's Role

'The applicant role can view details of open

solicitations, manage (create, edit, and delete) his own

applications to open solicitations, and manage his own

profile. Figure 3 is a use case diagram for the

applicant's role.

Figure 3. Use Case Diagram - Applicant's Role

The evaluator role can view his assigned proposals,

write an evaluation, and manage his own profile. Figure 4

is a use case diagram for the evaluator role.

22

Figure 4. Use Case Diagram - Evaluator's Role

The officer role can manage (create, edit, delete,

and assign evaluators) solicitations, manage his own

profile, manage (create, edit, and delete) application

groups, manage (edit and delete) evaluations, manage (edit

and delete) applications, manage (delete evaluators, write

memos regarding that evaluator and edit evaluator's

profile) evaluators, manage applicants (delete applicant

and edit applicant's profile), and generate real time

reports (the applicant dump and evaluator dumps are global

reports and the evaluation reports and application reports

are solicitation specific reports). Figure 5 is a use case

diagram for the officer role.

23

24

The staff member role can view solicitations, manage

his own profile, view application groups, view evaluations,

view applications, view evaluators, and view applicants.

Figure 6 is a use case diagram for the staff member's role.

25

Figure 6. Use Case Diagram - Staff Member's Role

26

CHAPTER FOUR

TESTING STRATEGIES

4.1 Introduction

Testing is a way of ensuring the quality of a product.

With fair test cases implemented along the actual coding

of a system, erroneous scenarios can be dealt with from

early phases of development.

This is a valuable asset because if the problem shows

up after a system is in production; it might take more

effort to do massive debugging and changing the system as

a whole than what could have been done if the error was

corrected earlier.

Further more, if the bugs (or malfunctions) of a

system occur after a system is in service, it is more

likely that it will result in high maintenance and let

alone the fact that our customer might lose faith in us

due to a faulty product.

4.2 Testing Frameworks

4.2.1 JUnit

JUnit is a framework that can be used to conduct

testing. This framework comes with a junit.jar (which at

this time is junit-3.8.1.jar) and is comprised of fixtures,

27

test cases, suites, and testrunners. Tests can be carried

out by writing simple test cases or by writing a test

suite.

A simple test case can be written in four consecutive

steps. In the first step, an instance of TestCase is

created. After creating an instance of TestCase, a

constructor should be created which accepts a String as a

parameter and passes it to the super class. Next overwrite

the runTestO method. And finally, use one of the assert

functions, for example the assertTrue(), to validate

values. A Boolean true is passed for assertTrue() if the

test succeeds and a Boolean false is passed if the test

fails.

When the numbers of test start to grow, a fixture may

be used when operating on similar objects. Using a test

fixture can avoid duplicating the initialization (the

setup () method) and cleanup (the tearDownO method) of the

common objects for each test. Tests can use objects in a

test fixture. Each test runs and invokes different methods

on objects within its own fixture.

28

When running more than one test at a time is

necessary, test suites can be used. First, a new TestSuite

is declared. After the declaration of a new TestSuite,

addTest method is used to add tests to the suite. The

suite can then be accessed and executed by a TestRunner.

There are two ways of using addTest. One way is to

declare a new instance of the test case under

consideration. E.g.,

TestSuite suite = new TestSuite ();

Suite.addTest(new EditAreas());

Another is to pass the class of the TestCase under

consideration to the TestSuite constructor. E.g.,

TestSuite suite = new TestSuite(EditAres.class);

4.2.2 HttpUnit

HttpUnit can be used to test web applications. It

emulate the properties of a browser, thus it can be used

to bypass the browser to access a website for testing

purposes.

HttpUnit can emulate for submission, JavaScript,

basic http authentication, cookies, and automatic page

redirection. It also allows Java test code to examine

returned pages either as text, and XML DOM, or containers

for form, tables, and links.

29

HttpUnit can be used in conjunction with JUnit. With

a combination of both frameworks, testing for a web-based

application is made possible.

4.2.3 JUnitPerf

JUnitPerf can be used to conduct performance tests.

It is an open source that can be used with the JUnit

framework.

Performance measurements are done on existing JUnit

tests. This leads to two advantages. The first advantage

is the reusability of the existing JUnit code. It is

because of the reusability, productivity for performance

testing is higher. The second advantage is the reduction

of the learning curve. Since JUnitPerf is used with JUnit,

the coding style of JUnitPerf is very similar to that of

JUnit.

JUnitPerf provides two kinds of performance tests:

the timed test and the load test. The timed test provides

two functionalities. The first functionality is the

measurement of the time used to run a test. The second

functionality is to validate whether the test is run

within the given time limit.

The load test runs the given test with a specified

number of users and iterations. It can be carried out with

concurrent users or users with a specific time delay.

30

4.3 Testing Strategies

Testing strategies for this project can mainly be

divided into manual testing and automated testing.

Manual testing is further divided into three sub­

categories. The first category is the manual testing that

developers do from moment to moment as the code is written.

The second category is the manual testing performed by the

development team within a progress review meeting. The

third category is the manual testing performed by the

client during prototype review sessions.

Automated testing is also divided into sub-categories.

There are six areas that are defined for automated testing.

The first category is the functional tests that are

written prior to design to capture system requirements.

The second category is the general functional tests

written after implementing functionality to verify

correctness. The third category is the security tests that

are written to document and verifies security mechanisms,

including authentication and authorization constraints

defined for user roles.

The fourth category is the load tests to measure the

capacity of the system. The fifth category is the

concurrency tests to verify that the code is free from

hard-to-find bugs that occur rarely in multi-threaded code.

31

The sixth category is the database population tests that

are used to test system functionality as well as to

populate the database with realistic data for manual

testing and demonstration of the system to the client.

32

CHAPTER FIVE

MANUAL TESTING

Manual testing has the advantage of revealing flaws

that were not anticipated by the test code writer. This is

because project developers tend to test the application

within the scope of intended use while users often do not

limit themselves to this boundary. This leads the test to

other possible uses of the system[2].

5.1 Modification Testing

This type of testing is usually done by the developer

after a new functionality is written or when a requirement

has changed and the code was modified to accommodate the

change. The developer usually tries the new functionality

on the website and verifies if the application has

rendered the correct view or behaved appropriately.

5.2 Progress Review Meeting Testing

This type of testing is done by the whole development

team at a progress review meeting. Usually a demonstration

of newly implemented functionalities is done to the whole

development team. At times, a pre-run of an intended

demonstration to the client is also done. During progress

33

review meeting testings, functionalities of the

application are performed and the actual behavior of the

application is verified against the desired behavior.

5.3 Client Review- Prototype Session Testing'

This type of testing is done by the client. During a

client review prototype session, the client tries to use

the application and identifies unexpected behavior. This

is more of specification verification than a technical

specification even though at times the client might find a

faulty function.

34

■ CHAPTER SIX

AUTOMATED TESTING

The major decision of this project is what to test.

The pseudo code written by J.B. Rainsberger shown below

can depict the complication of deciding what to test.

becomeTimidAndTestEverything

while writingTheSameThingOverAndOverAgain

becomeMoreAggressive

writeFewerTests

writeTestsForMorelnterestingCases

if getBurnedByStupidDefect

feelstupid

becomeTimidAndTestEverything

end

end

There are a few method of testing. The first method

is to test the application to the full extent. The

advantage of this method is that it might uncover

underlying faults of the application since most things

that are designed cannot be tested to saturation[1].

35

One method of testing to saturation is prioritization.

Several papers [4][5][6] agree on this method. In the test

prioritization method, test cases are ordered to maximize

the effectiveness for a performance goal for fault

detection.

The second method of testing is to test the

application for all possible usage in the future. However,

due to the mass possibilities and combinations, it might

take a long time to test and it might also drive the

tester crazy[1].

The third method is to be selective and choose a

number of test cases to test the application. This is more

applicable when a large system is being tested.

Since both testing to saturation and anticipating

possible usage of the application is not quite applicable,

there should be a compromise. Just how exactly to draw

that line itself is a question.

To solve this problem, several papers were researched.

Each paper had their own theory and their conclusions are

not always coherent. So, after reading the papers, it is

necessary to process the information to understand the

drawbacks and advantages of each theory and choose the one

that works best for this project.

36

The first method of test selection is called formal

method. One paper points out that "on the average,

elaborate and expensive testing regimes will not yield

much more information than inexpensive manual or simple

automatic testing schemes" [3]. It claims that in formal

methods, essential details and logical constraints should

be specified and never be violated. Thus, test cases can

be written to check against violations.

The second method of test selection is specification­

based method. In this method, two kinds of regression

tests are selected. One is the Targeted Test that checks

the new release for the presence of current important

customer feature. The other is the Safety Test that checks

for potential problem areas [7] .

The third method of test selection is to use

coverage-based predictors. The predictors are designed to

"predict the effectiveness of regression test selection

strategies" [8]. In the paper that mentioned this method,

the authors concluded that both modification distribution

and code coverage must be considered to improve accuracy.

For details regarding different testing theories and

methods, please refer to the paper in appendix A.

37

From the testing theories provided in the papers, the

conclusion has drawn to test the SMS with essential data

and logical constraints. Using this as a guideline, the

implementation of automated testing following the testing

strategies mentioned in section 3.3 is shown below.

6.1 Test Driven Design (TDD)

In Test Driven Design, functional tests are written

prior to design to capture system requirements. This can

be implemented with new functionalities (or components)

that are added later to the Solicitation Management System.

6.2 General Functional Tests

The general functional tests examines whether the web

application is behaving as expected. There is much

functionality in the SMS system. To test all functions is

tedious and inefficient. Thus only the essential functions

that will affect the operation or behavior of the SMS are

tested using automated testing. Other functionalities,

such as the correctness of links and etc., will be tested

randomly or through manual testing. The tests are

categorized by their user role. Table 1 lists the tests

that were done for function testing.

38

Table 1. Functional Tests

Role Test

Admin Create Officer Test. Test creating an
officer and uses the newly created account
to log in.

Create Staff Test. Test creating a staff
member and uses the newly created account
to log in.

Change Other's Password Test. Test
resetting" an officer or staff member's
password and tries to log in using the
newly changed password.

Delete Account Test. Test deleting an
officer or a staff member's account and
verifies that the account cease to exist.

Change Own Password Test. Test changing
admin's own password and tries to log in
using the newly changed password.

Applicant Application Without Proposal Test. Test the
application process without uploading a
proposal to see if the correct application
number is generated.

Application With Proposal Test. Test the
application process with an uploaded
proposal to see if the correct application
number is generated.

Change Own Password Test. Test changing
applicant's own password and tries to log
in using the newly changed password.

Deleting Own Application Test. Test
deleting the applicant's own application.

Edit Tech Area Test. Test editing the tech
area of the application.

Evaluator Evaluation Status Test. Test writing and
evaluation. The evaluation status is

39

checked to see if the correct corresponding
status is shown correctly.

Change Own Password Test. Test changing
evaluator's own password and tries to log
in using the newly changed password.

Edit Area Test. Test editing evaluator's
tech area and bus area.

Officer Submission Deadline View Test. Test
changing the submission deadline and check
to see if the applicant role has the
correct corresponding view.

Solicitation Status Test. Test changing the
solicitation status and check to see if the
applicant role and the evaluator role have
the correct corresponding view.

Evaluation Deadline Test. Test changing the
evaluation deadline and check to see if the
evaluator role has the correct
corresponding view.

Editing Awards Test. Test editing assigned
awards and verify that the selected awards
appear when the applicant applies for the
solicitation.

Reassign Application Group Test. Test
editing selected application groups and
verifies that only the selected groups
appear in the officer managed field for an
application.

Delete Solicitation Test. Test deleting a
solicitation and check for corresponding
reactions (i.e. a warning message)

Delete Application Test. Test.deleting an
application and check for corresponding
reactions (i.e. a warning message)

Application Status Change Test. Test
changing the application status from
complete to downselect 1 and check if the

40

edit-assigned evaluator function will
appear.

Reassign Evaluator Test. Test the edit-
assigned evaluator and log in as a newly-
assigned evaluator to check for jobs.

Create Solicitation Test. Test creating a
new solicitation. Check to see if the
applicant role can see the newly created
solicitation.

Change Own Password Test. Test changing
officer's own password and tries to log in
using the newly changed password.

Delete Award Test. Test deleting an award
and check for corresponding reactions (i.e.
a warning message).

Edit Evaluator Memo Test. Test changing the
evaluator memo and check the edit-assigned
evaluator page to see if the correct
corresponding behavior is shown.

Delete Evaluator Test. Test deleting an
evaluator both with and without and
evaluation.

Delete Applicant Test. Test deleting an
applicant both with and without
application.

Change Applicant's Password Test. Test
changing an applicant's password and tries
to log in using the newly changed password.

Change Evaluator Password Test. Test
changing an evaluator's password and tries
to log in using the newly changed password.

Deadline Validation Test. Test to see if
the submission deadline can be set after
the evaluation deadline.

Staff Change Own Password Test. Test changing a
staff member's own password and tries to

41

log in using the newly changed password.

6.3 Security Tests

Security tests are written to document and verify

security mechanisms, including authentication and

authorization constraints defined for user roles. Table 2

lists tests that were done for security testing.

42

Table 2. Security Tests

Admin Test that the admin role cannot access
homepages of other user roles by directly
typing in the url.

Applicant Test that the applicant role cannot access
homepages of other user roles by directly
typing in the url.

Test that an applicant cannot view another
applicant's application.

Test that an applicant cannot view another
applicant's proposal.

Test that an applicant cannot delete
another applicant's application.

Test that an applicant cannot edit another
applicant's application background.

Test that an applicant cannot edit another
applicant's application answers.

Test that an applicant cannot edit another
applicant's application awards.

Test that an applicant cannot edit another
applicant's application technology areas.

Evaluator Test that the evaluator role cannot access
homepages of other user roles by directly
typing in the url.

Test that an evaluator cannot view another
evaluator's evaluation.

Test that an evaluator cannot view
proposals that are not assigned to him.

Test that an evaluator cannot write or edit
evaluations for applications that are not
assigned to him.

Officer Test that the officer role cannot access
homepages of other user roles by directly

43

typing in the url.

Staff Test that the staff role cannot access
homepages of other user roles by directly
typing in the url.

6.4' Load Tests

Load tests measures the capacity of the system. Load

test for the Solicitation Management System uses the

JUnitPerf. The application is tested under stress to see

if the can still deliver its functions.

6.5 Concurrency Tests

Concurrency tests verify that the code is free from

hard-to-find bugs that occur rarely in a multi-threaded

code.

6.6 Database Population Tests

Database population tests are used to test system

functionality as well as to populate the database with

realistic data for manual testing and demonstration of the

system to the client. This part of testing was originally

done by Robert Chen. Modifications to the database

population tests have been done after the application

functionalities had changed. Table 3 lists tests that were

done to populate the database.

44

Table 3. Database Population Tests

Admin CreateOfficersAndStaff. This test case
creates officers and staff member accounts.

Applicant CreateApplications. This test case creates
applications for applicants.

Evaluator CreateEvaluations. This test case creates
evaluation for evaluators.

Officer AssignAbbreviatedTitle. This test case
assigns abbreviated title to applications
and at the same time changes application
status as well.

AssignEvaluatorNumber. This test case
assigns evaluator numbers to evaluators.

AssignEvaluators. This test case assigns
evaluators to applications.

ChangeDeadline. This test case changes the
submission deadline to allow evaluators to
start his evaluation.

CreateApplicationGroups. This.test case
creates application groups that can be
selected during the creation of a
solicitation.

CreateSolicitation. This test case creates
a solicitation.

Visitor CreateApplicants. This test case allows
creates applicant accounts.

CreateEvaluators. This test case creates
evaluator accounts.

45

CHAPTER SEVEN

CONCLUSION AND FUTURE DIRECTIONS

7.1 Conclusion

This project was written to test the Solicitation

Management System. Through testing, the goal is to find

faults with the system. The project is divided into manual

testing and automated testing with three and six

subcategories defined in each respectively.-

There are three tools that were used in this project:

JUnit, HttpUnit, and JUnitPerf. These tools can be used to

produce the functionalities we need in order to get the

testing done.

There are several difficulties encountered in this

project. The first difficulty is to find a way to upload a

file using an automated test case. The second difficulty

is to mean to validate the information within the pdf file.

The last difficulty is to learn the language Jython in

order to write scripts for load testing purposes.

The conclusion of this project is that relying solely

on automated testing alone will not suffice the purpose of

exposing as much defects as possible. With a combination

of automated testing and manual testing, the goal can more

likely be reached. One of the reasons that contribute to

46

more defect exposure is that during the client review

prototype session testing, the client will sometimes test

the system in ways that was not expected of use. This can

reveal unforeseen faults.

7.2 Future Directions

The Test Driven Design was part of the original plan

for testing. However, since the new component, the panel

review section, for the Office of Technology Transfer and

Commercialization was canceled; the TDD has not really

been put into practice.

Future directions for the expanding this project is

to implement Test Driven Design.

47

REFERENCES

[1] Bob Colwell. "If Your Didn't Test It, It Doesn't

Work", Computer, May 2002.

[2] M. Hertzum. "User Testing in Industry: A Case Study

of Laboratory, Workshop, and Field Tests", User
Interfaces for All: Proceedings of the 5th ERCIM

Workshop, November 1999.

[3] Tim Menzies and Bojan Cukic. "When to Test Less",

IEEE Software, September/October 2000.

[4] Hema Srikanth and Laurie Williams. "On the Economics

of Requirements-Based Test Case Prioritization",

Proceedings of the Seventh International Workshop on

Economics-Driven Software Engineering Research EDSER

'05, May 2005.

[5] Gregg Rothermel, et al. "Prioritizing Test Cases For

Regression Testing", IEEE Transactions on Software

Engineering, October 2001.

[6] Sebastian Elbaum, et al. "Test Case Prioritization: A

Family of Empirical Studies", IEEE Transactions on

Software Engineering, February 2002.

[7] Yanping Chen, et al. "Specification-Based Regression

Test Selection with Risk Analysis", Proceedings of

the 2002 Conference of the Centre for Advanced

Studies on Collaborative Research, September 2002.

48

[8] Mary Jean Harrold and Gregg Rothermel. "Empirical

Studies of a Prediction Model for Regression Test

Selection", IEEE Transactions on Software Engineering,

March 2001.

[9] Todd L. Graves, et al. "An Empirical Study of

Regression Test Selection Techniques", ACM

Transactions on Software Engineering and Methodology,

April 2001.

[10] JUnit Testing Framework; (http://junit.org/)

[11] HttpUnit Testing Framework;

(http:I/httpunit.sourceforge.net/)

[12] JUnitPerf;

(http://clarkware.com/software/JUnitPerf.html/)

49

http://junit.org/
http:I/httpunit.sourceforge.net/
http://clarkware.com/software/JUnitPerf.html/

	Testing for the Solicitation Management System
	Recommended Citation

