
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

8-2021

Internet of Things Security Case Studies and Internet of Things Internet of Things Security Case Studies and Internet of Things

Core Service Comparions Core Service Comparions

Jaseong Koo

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Koo, Jaseong, "Internet of Things Security Case Studies and Internet of Things Core Service Comparions"
(2021). Electronic Theses, Projects, and Dissertations. 1321.
https://scholarworks.lib.csusb.edu/etd/1321

This Thesis is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It
has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of
CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1321?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

INTERNET OF THINGS SECURITY CASE STUDIES AND

INTERNET OF THINGS CORE SERVICE COMPARISONS

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Information Systems and Technology:

Cyber Security

by

Jaseong Koo

August 2021

INTERNET OF THINGS SECURITY CASE STUDIES AND

INTERNET OF THINGS CORE SERVICE COMPARISONS

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Jaseong Koo

August 2021

Approved by:

Benjamin Joseph Becerra, PhD, Committee Member, Chair

Conrad Shayo, PhD, Committee Member, Reader

Jay Varzandeh, PhD, Chair, Information & Decision Sciences Department

© 2021 Jaseong Koo

 iii

ABSTRACT

This culminating project conducted an analysis of IoT security breach case

studies. The analysis identified numerous vulnerable points: software failure,

node tampering attack, eavesdropping, code injection, unauthorized access,

social engineering attack, hardware exploitation, and node insertion. It therefor

seems that even with the proper tests conducted on vulnerabilities to discover

solutions, regular end users are unable to apply patches or other technical

solutions to protect themselves. This project solely focuses on analyzing of

comprehensive IoT security services that come with devices connected to home

network. The devices are those provided by the big three: Amazon, Google, and

Microsoft, on the communication between platform and devices, how they are

protected, and how costs vary depending on different situations. Also,

performance differences were analyzed among different solutions based on three

different scenarios with different number of settings to give a deeper insight to

users. There are comparisons throughout the paper, but it is to help normal users

make better choices depending on their different situations and purpose of

usage.

Dedication

First, I have to give the deepest gratitude to my beloved family. This

project is dedicated to my father, mother, and brother. My father who i did not get

along with for many years but as I grew and started to understand how much

virtue you have taught me with bittersweet disciplines. I could have become who

I am now and survived here in foreign country this far because you have been

there for me my entire life. Dad, you are my one and only role model for my life

and thank you for the most supports that I could imagine.

 To mom, who carried me around for 10 months in one of the toughest

times of her life, I have to say thanks to you from my heart. She is the only

person that showed me unconditional love of mother and always supported me.

Without your support, I could have not made it this far. I love you with all my

heart. Thank you for always believing in me and giving me a discipline to become

a better person. With your nurture, I am the who I am now.

 To my brother, I cannot believe he got so big and strong. You are one of

my best friends who I can rely on and talk about anything. I wish you my best

luck that you can stay bold and always stay healthy in New York. You are the

best brother in the world.

Now, I stand at another starting line which will have a huge impact on my

life. I will never forget the love you gave and how hard it was to provide me with

spiritual, moral, emotional, and financial support. Lastly, I would like to thank my

family once more for guidance, strength, love, and so many other things.

iv

TABLE OF CONTENTS

ABSTRACT .. iii

CHAPTER ONE: INTRODUCTION .. 1

Problem Statement .. 3

CHAPTER TWO: CASE STUDIES ... 5

CHAPTER THREE: IOT SOLUTIONS .. 10

Architecture and Terms .. 10

IoT Architecture ... 10

MQTT .. 12

QoS ... 13

API .. 13

SDK ... 14

Amazon Web Service IoT Core ... 15

Microsoft Azure IoT Hub .. 17

Google IoT Core .. 19

CHAPTER FOUR: METHODS ... 21

Performance Analysis .. 21

One-to-One ... 22

Many-to-One ... 22

Broadcasting ... 22

Cost Analysis ... 23

CHAPTER FIVE: RESULTS ... 25

Performance Analysis Result ... 25

v

One-to-one .. 25

Many-to-one .. 26

Many-to-many ... 26

Cost Analysis Result .. 28

CHAPTER SIX: DISCUSSION AND AREAS FOR FUTURE PROJECTS 30

APPENDIX A: ABBREVIATIONS ... 32

REFERENCES ... 36

vi

LIST OF TABLES

Table 1. Different Scenario-Based Tests Comparison.……………………….….. 27

Table 2. Azure IoT Hub Costs on the Number of Daily Messages Per Unit 28

Table 3. Google IoT Core Pricing Model Based on Data Volume 28

Table 4. Cost Comparison Based on the Number of Devices Connected...…….29

vi

LIST OF FIGURES

Figure 1. Visual Explanation of 5-layer Cloud-IoT Architecture 11

Figure 2. MQTT Communication Concept .. 12

Figure 3. AWS IoT Core Architecture with Integration…….16

Figure 4. Microsoft Azure IoT Hub Architecture with Integration. 18

Figure 5. Google IoT Core Architecture with Integration. 20

1

CHAPTER ONE:

INTRODUCTION

With the rapid advancements on human technology, it is almost impossible

to separate human beings from information technologies. It is already prevalent in

the fields of industries where IoT devices replace human work forces and pairs up

with the cloud computing for its management and control. Not only the growth in

the industrial fields, but also dramatic increase on the personal usage of IoT

technology for the easier and more comfortable lifestyle it brings. However, IoT

devices are normally equipped with the limited computational power and other

limited functional capacities. Unlike the industries, where technical experts are

ready to supplement the integration of IoT and security, normal users who utilize

IoT at home network usually do not have enough knowledge to implement

technical controls or understand the vulnerabilities embedded in the system. There

are numerous real-world security threats awaiting.

With the rapid advancement on the field of information technology, there

are various changes that require on demand adaptations by end-users (M.

Chapple et al. 2021). Without the proper understanding of security threats, end

users may become victims of cyber-attacks. Especially, users of IoT devices

connected to regular home networks are vulnerable to the threats due to the lack

of knowledge on how to manage their home network security.

There have been numerous security breaches on IoT devices and

applications which caused severe damages to personal information. The

2

information theft happened through variety of IoT devices: (A. Tejasvi et al. 1-5),

such as, IP surveillance camera system, IoT coffee port, and even from kids’ IoT

doll. There were huge number of incidents related to web cameras which are

used video surveillance to observe their houses whether they are home or not.

Many of the cases are related to the breaches on video surveillance and people

were being spied on and recorded without noticing. As a result, ironically, the

products that are supposed to give people relief are threatening their security.

Since the fourth industrial revolution, integration of business and

technology has been booming and most of current businesses cannot separate

technology from operations. Even small or local businesses transformed their

payment and delivery system with ever-growing information technology because

without proper IT integration, younger generation customer tend to leave for

comfortable alternatives. After several years of development on the field of

business, it has been spreading throughout home appliances and networks; a

phenomenon now called IoT (Internet of Things). Since the outbreak of covid-19,

the tide of IoT has been accelerated dramatically: (J. Steward). A lot of IoT

devices are now within everyday lives of people that with a simple touch on

anyone’s smartphone can change the temperature of one’s entire house or even

huge facility. However, most of IoT users who are depending on home network

tend to have a lack of knowledge on how to protect their networks. Most users

heavily rely on the basic security features that are provided with small router or

3

modem they purchase or get serviced, even though the network connected to it

controls everything inside their houses.

Problem Statement

There are many IoT security solutions out in the market for enterprise-level

protection but not enough of resources are available for average end-users to learn

how to securely manage and protect their information and privacy. Despite the

comfort from IoT devices, it would be extremely hard for people with non-technical

background to understand complex technology paper to build a sound and secure

network themselves.

Therefore, many of the tech-giants are focusing on providing the

comprehensive platform service that people need. This project focuses on the

services of three world-famous tech-companies: Microsoft, Google, and Amazon.

The project will focus on how the security is applied, where it works the best, and

what would be the best practice for different spheres based on the study conducted:

(P. Pierleoni et al).

The major aspects of this project focus on comprehensive services provided by

three companies: AWS IoT Core, Microsoft Azure IoT Hub, and Google IoT Core.

Three different services will be analyzed on the aspect of:

1. What technologies are behind the service?

2. How are the technologies integrated with other services?

3. How well do the three platforms perform in different workloads?

4

4. Which field of business or personal need will effectively utilize the service?

5. What are proper options that users can choose based on cost variation?

5

CHAPTER TWO:

CASE STUDIES

There are numerous IoT devices and applications which support

comfortable usage of customers in every area of the life. For example, electric

vehicle charger that support Android application and Bluetooth connection:

(“Kaspersky Lab Security Services”), smart meter for home electricity usage,

Fitbit area tracking personal health information, Google Nest thermostat: (G.

Hernandez et al. 1-8), Tesla electric vehicle, chamberlain myQ for home garage

door access, drones for work and fun, IP camera system for home surveillance,

and millions of other devices are out in the market to attract customers with their

features that will let people have more comfort. However, these devices and

systems listed have been susceptible to cyber-attacks. Information theft on any

of the devices connected to home or personal network can lead to a life

destroying results.

 In the first case of Chargepoint Inc. Describes vulnerable software and

firmware where attackers can easily compromise connectivity. EV home charger

from Chargepoint Inc. was vulnerable on password authentication phase by

letting attackers bypass the process by simply changing “branch if equal” (b e q)

to “branch if not equal” (b n e) in debug mode. After successful change, attackers

could exploit a buffer overflow into the communication of android application and

BTclassic: Bluetooth executable process. It carried out the denial of service

(DOS) attack. It was tested that after gaining full access to the EV charger at

6

home, attackers could disable the user’s entire electrical system, which will lead

to a physical damage.

 The second case is about one of the well-known attacks, eavesdropping/

Man-In-The-Middle (MITM) attack which enables attackers to extract network

information they want. The attack was done on fit-bit aria, a smart scale, that

helps people log their personal health information. Fitbit aria sends users’ health

information to their server for users to keep track of their health. Not only the

health information of users, but attackers were also able to gain access to the

network by finding service set identifier (SSID) and pre-shared key (PSK) from

the log files of WireShark. The attack was done in simple steps:

a. Set up DHCP server to assign a proper IP address

b. Set up VM to forward IP packets to wlan0 interface

c. Set up “hostapd” as a wireless access point (WAP)

d. Use WireShark to sniff network traffic

e. Attackers gain full access to the network

Next case is about the device that controls and manages the thermostat

from tech-giant, google. Google nest was highly susceptible when it was on

device firmware update (DFU) status. When user press the hard-reset button for

firmware update, it allows data input with bootable USB stick. Attackers utilized

this feature and inserted customized image into the device rom. With x-loader

and u-boot included in the customized image, attackers loaded the Linux kernel

which has complete control over everything in the system. By executing kernel

7

with Linux inside the attacked nest, attackers gained root access and enabled

secure shell (SSH) server installation and Odysseus malware to bypass network

address translation (NAT). Nest, the thermostat, now worked as a botnet of home

network. It had ability to access every part of the information at home: profiling,

illegal surveillance, recording pictures, videos, and voices via connected IoT

devices.

The fourth case is about a famous product of another major company,

tesla model S. For tesla owners’ convenience, tesla service centers and charging

stations have TeslaService Wi-Fi SSID. Users’ credentials are stored in tesla’s

web browser for auto-connect feature which is extremely comfortable for users.

However, with fake SSID, attackers were able to redirect the traffic to their

domain. Tesla’s browser contained software bugs that granted attackers ability to

read/write memory and execute customized code access shell. After gaining root

access, they disabled security module, AppArmor. For the last step of attack,

they used insecure token to bypass gateway integrity verification to access

Engine Control Unit (ECU), which commands control of vehicles. Therefore,

attackers obtained full control on both standby and driving modes. With this

security flaw, not only the intellectual property could be stolen, but terrifying

results could also be made to anyone in the car.

The fifth case indicates non-technical but effective method for attackers,

social engineering attack. The case study on chamberlain MyQ: (J. Margulies 80-

83), which is a garage door opener, getting affected on confidentiality and

8

integrity of data. The study shows that this smart home appliance is susceptible

on being exploited by attackers accessing personal data and control of door

locks and sensors taken over. As chamberlain MyQ not requiring password

strength guidelines, it enabled attackers to use brute force attacks, such as,

dictionary attack, to crack the password and doors to lock and unlock.

Furthermore, this appliance used unencrypted user datagram protocol (UDP) to

communicate between server and the device. It helped attackers to easily spoof

the information during communication and steal the credentials being revealed. It

shows that with simple dictionary attack and spoofing tool, anyone’s home could

be on the line of being physically breached.

The sixth case explains how someone’s toys could be hacked and used

as criminal weapons. According to study conducted: (I. Astaburuaga et al.),

Parrot AR 2.0 quadcopter is a drone that was susceptible to open port attacks.

The case study used Linux network mapper utility (Nmap) to reveal open ports,

port 21-ftp and port 23-telnet, that are used for remote access. First, ftp was used

to upload a harmful firmware to the drone and made it inoperable. Next, with

anonymous ftp login, attacker downloaded password shadow file and removed

hash for new root password. Therefore, telnet access is granted with no

password requirements, which means that attackers have gained full access to

the system. Now the drone can be utilized by attackers on any of their illegal

activities, such as, smuggling weapons, drugs, terrorist attacks, and other

information thefts.

9

The last case is about the surveillance feature that is supposed to help

prevent overall system of the home network. However, from the case of Edimax

IP camera system is susceptible from how the basic system works among IP

camera, controller, and registration on command relay server. Attackers started

with the public IoT device infected with malware, which acts as a bot and sends

TCP syn (synchronization messages). Then it explores stateless and guesses

the mac address which gets the confirmation with acknowledgement of one of

them. This software bot now registers to the server and gets packet with

authentication information. Now the IP camera system is in the hand of attacker.

Above cases indicate how IoT devices that are currently sold in the market

are not thoroughly designed to protect consumers from security breaches. Of

course, there are ways to implement the security with additional technical

updates. However, installing technical add-ons are not an easy task for average

consumers of IoT devices. Therefore, this project focuses on IoT security

services that are provided from three tech-giants: Amazon, Microsoft and

Google.

10

CHAPTER THREE:

IOT SOLUTIONS

In this chapter, the paper will analyze different functionality and features of

three different IoT services that are provided from amazon, google, and

Microsoft: respectively AWS(amazon web service) IoT core, google IoT core, and

Microsoft Azure for IoT. The chapter will follow the order of:

1) General IoT architecture and technical terms

2) Review of performance tests on each service

3) Cost evaluation of each service based on the controlled test environment

and official documentations from service providers

4) Recommendations based on the performance review and the cost

evaluation

Architecture and Terms

IoT Architecture

 According to the study: (L. Hou et al. 32-39), The basic architecture of IoT

can be explained as a 5-layer architecture: perception layer, network layer,

middleware layer, application layer, and business layer (refer to figure1). The

perception layer works as sensors and actuators for different features to function.

The data produced from this layer is sent to network layer, RFID Wi-Fi,

Bluetooth, infrared, etc., and moves the data to middleware layer. In this layer,

the data is processed and makes decisions whether to deliver or require services

11

to application layer. Based on data sent, business layer manages and controls

overall IoT system.

Figure1. Visual Explanation of 5-layer Cloud-IoT Architecture

Business Layer
System Management

Application Layer
Smart Applications

Middleware Layer
Process Information

Network Layer
Data Transmission

Perception Layer
Data Gathering

12

MQTT

 MQTT (message queuing telemetry transport) is a lightweight and simple

messaging protocol: (D. Happ et al. 41-52). It supports multiple device

connections which are constrained with low bandwidth. It is one of the best

protocols that utilizes the communication among IoT sensor device (edge),

MQTT broker, and monitor device. Two of the main functions include:

1) Send command to control output

2) Read and publish data

The basic concept of MQTT consists of three parts: publish/subscribe, topics,

broker:

1) Publish / subscribe = a device can publish message on a topic and other

devices can receive the message from the topic they subscribed. Topic

2) Topic = it is an interest on messages that specifies where the device want

to publish. Topics have levels that are indicated with slashes:/. For

example, it is indicated as home/kitchen/lamp for specific publication.

3) Broker = MQTT broker receives every message with filter from devices

and published to all subscribed clients.

Figure 2. MQTT Communication Concept

MQTT

broker

Publisher

Devices
Subscriber

Devices

13

QoS

 MQTT supports three levels of quality of service. QoS level 0 is for

delivery of one message without the confirmation of reception. QoS level 1

ensures every message to be delivered for once at least and reception

acknowledgement message is required. QoS level 2 supports four-way

handshake communication which ensures that one message is sent to the

subscriber exactly once. QoS level 1 is used on every service provider in the

paper, therefore, performance measurements will be based on the round-trip

time of the messages from publisher. Microsoft Azure IoT Hub offers QoS level 2

service but not recommended due to increased latency and fluency of service.

API

 API is an Application Programming Interface which allows multiple

software applications or hardware-software mixed intermediaries to

communicate. This interface aggregates requested information from different

sources of databases, even from third parties, to have an extended features and

functionalities that users can utilize. API also adds security on personal data

because applications or software using API to communicate asks for permission

to access the data. One type of API is REST API, Representational State

Transfer API. It is a powerful tool that is simple and standardized for industry use.

It also allows the interactions with restful web services. REST is a patterned

14

architecture between systems using http to operate and gain data from any

possible formats, such as XML and Json.

SDK

 SDK is a Software Development Kit that has one installable package with

a collection of software development tools. It contains software framework,

complier, and debugger which are to be facilitated. SDKs are usually customized

for specifically on different hardware platforms or operating systems. It allows

developers to have easier creation of applications or software with an ability of

calling pre-made codes or frameworks from the library of programming

languages.

15

Amazon Web Service IoT Core

Amazon offers comprehensive IoT management service, AWS IoT core,

that allows users to audit configurations of connected devices and monitor map

of connected devices for abnormal activities. Whenever IoT core detects

abnormal activities, it pushes an alarm for users to take any actions it requires.

The overall process of communication with AWS IoT core starts from connected

devices reporting their states with MQTT publishing messages on certain topics.

It has a hierarchical name order system to obtain identities of devices. Then the

message is sent to MQTT broker which sends message to all subscribing clients.

Each connected device stores and retrieves their state information in Json file

with a current state and a desired state. At the last step, rules engine processes

message and integrates other AWS services.

 AWS IoT core comes with AWS IoT device management service that

allows IoT platform to organize, monitor and manage IoT devices. AWS IoT

device management has features to register devices in bulk and organize

devices in groups with access policies attached. Also, it is possible to work with

registry via AWS IoT console or AWS command line interface. Compatibility of

AWS IoT core shines with device SDKs for Android, iOS, Java, JavaScript, C++,

Python, and embedded C along with open-source libraries. Along with SDK

usage, AWS IoT cli and AWS IoT API to create applications with http/https

requests and device SDKs. Other services are provided which utilizes to collect

and process data. Amazon kinesis data stream for real-time data stream, AWS

16

lambda to perform serverless code, amazon simple notification service for

notifications and alerts, and amazon simple queue for storing data in a queue are

supported.

 As mentioned, AWS IoT core communicates in MQTT v.3.1.1 which does

not support QoS level2. AWS message broker uses MQTT QoS level 1 to publish

or subscribe, and https to publish. However, it does not allow two or more clients

to connect at the same time when they have same client id. For the use of rest

API, message broker supports http protocol. To ensure the security of

communication and process of data, AWS IoT core is integrated with transport

layer security (TLS) which ensures all traffics between devices with credentials

and message broker to be encrypted. For authentication of devices, the platform

requires x.509 certificates to reach higher level of security.

Figure 3. AWS IoT Core Architecture with Integration

Devices
Message

Broker

Device States

Registry

Rules

Engine

Dynamo

DB

Kinesis

Lambda

S3

SNS

SQS

Security and Identity

IoT apps

17

Microsoft Azure IoT Hub

 Azure IoT hub is a fully integrated service with PaaS solution and SaaS

solution, respectively, platform as a service and software as a service. PaaS

solution is provided as Azure IoT solutions accelerator and SaaS solution comes

as Azure IoT central. Azure IoT hub is utilized as cloud gateway which in AWS

uses message broker. It accepts data securely and works as a device manager.

Thus, IoT hub integrates with other Azure cloud services natively, which in turn,

offers bi-directional communication in the relationship of devices and

applications. Azure for IoT has a 3-layer cloud-IoT architecture to operate. When

message arrives at the hub, it is sent to one or more endpoints by its built-in

message routing function. Similar to AWS IoT core, devices have a virtual

representation but, in the cloud, twin device. Device identities are stored in the

twin device in Json document with reported properties presenting current state

and desired properties.

 Microsoft Azure offers Microsoft Azure IoT hub device provisioning service

that enables real-time provisioning of devices connected to hub with no human

effort required. When devices are registered with IoT hub, the desired twin device

states are populated. Also, device SDKs are provided with availability on .net, c,

java, node.js, python, and iOS for simplified connectivity. As mentioned above,

IoT hub communicates in bi-directional way between devices and applications, it

also communicates for device-level identity to and from cloud. Azure IoT hub

supports variety of communication protocols, such as, MQTT 3.1.1, native http

18

over TLS, and AMQP 1.0 with optional WebSocket support. Optional WebSocket

feature enables the persistent and bidirectional connection between a client and

server. Different from other service providers, Azure IoT hub offers QoS level 2

message delivery assurance, but it is not recommended due to the increased

latency and the impact on the availability of the system.

 In the security of Azure IoT hub, it is segmented in three areas:

1) Device: Azure Hub Identity Registry has secure storage for each device

identity and security key.

2) Connection: To initiate connection, devices should connect to the Hub not

connected from the Hub, along with TLS authentication with X.509

certificate.

3) Cloud: For user authentication and authorization, Azure Active Directory is

used for cloud access.

Figure 4. Microsoft Azure IoT Hub Architecture with Integration

Devices

IoT HUB

Azure SQL

Cosmos DB
Azure ML

Power BI

Functions

Web Apps

Web Jobs

Analytics

19

Google IoT Core

 Google’s integrated solution for IoT is Google IoT Core which comes with

comprehensive features. The architecture of Google IoT Core has two main

parts: device manager and protocol bridge. The main function of device manager

is to register devices with the service. On the other hand, protocol bridge utilizes

two protocols, HTTP and MQTT, to connect and send data from devices to the

cloud or vice versa. The whole process of data flow comes in this order:

1) Google IoT Core gets the data sent from devices and directs the data

received to Google Cloud Pub/Sub: Enterprise message-oriented

middleware that has message ingestion service.

2) Messages go into Google Cloud Data Flow, a pipe-line service, which

process and sort data for different cloud services.

Each device registered to the IoT Core is represented with ID and full resource

name is used to identify devices. Google IoT Core has a special feature that

differs from other platforms previously discussed. It allows users to define custom

metadata, a state from cloud, and a configuration.

 Like the other two IoT solution platforms, Google IoT Core supports HTTP

and MQTT for data communications and management of devices. By utilizing

MQTT, devices cannot maintain connection to the IoT Core, but they can send

requests and receive responses. With MQTT, devices can send publish requests

to specific topics and offers QoS level 0 and 1 from MQTT bridge. Like other

Cloud-IoT platforms, Google IoT Core comes with SDK, Google Cloud SDK, with

20

its own command line tool: gcloud. With the use of console or APIs client library,

operations are possible on C#, Java, NodeJS, GO, PHP, Python, and Ruby. The

already versatile IoT Core also natively integrates with Cloud ML, Data Studio

and DataLab, which are big data and machine learning analysis services from

Google.

 Different from other service providers, Google IoT Core uses Json Web

Tokens for authentication of each device with public or private key. To increase

the level of security, IoT Core integrated RSA for secure data transmission and

Elliptic Curve algorithms to verify signatures. For the security of communication,

TLS 1.2 protocol is required for MQTT connections for the use of root authorities.

To manage access, authentication, and authorization on IoT Core API, Google

Cloud Identity and Access Management (IAM) is provided.

Figure 5. Google IoT Core Architecture with Integration

Devices IoT Core Pub/Sub

Functions

Dataflow

BigTable

BigQuery

ML

DataLab

DataStudio

Analytics

21

CHAPTER FOUR:

METHODS

Performance Analysis

The analysis is referred from previously conducted test: (P. Pierleoni et

al). The test was simulated on the setting of one computation machine with

following features: Intel Xeon X5650 (x2) CPU, 12 MB cache, 2.66 GHz, 16 GB

RAM with Ubuntu 18.04.1 LTS. To obtain the concurrency of the tests, clients are

implemented in GoLang developed by Google. Test environment was controlled

with different parameters implemented: MQTT broker endpoint, scenarios based

on different number of clients, number of messages, interval between messages

in ms, size of messages, and Pub/Sub QoS. However, even in the strictly

controlled testing environment, the performance of cloud service, which is one of

the fundamental parts in IoT services, may vary in many situations. Thus, 42

different measurements for each simulation are made. For example, 2 tests per

day in different times over 3 weeks. Each simulated test computed mean value of

the cloud service time for each simulation and its standard deviation writing

results to their database. However, the limitations are applied due to the

utilization on free edition of IoT services.

22

One-to-One

The test was conducted with one client device connected up-to the value

of 100 mps and increased the number of clients from 1 to 600. Each client had

the fixed sending frequency of 10 mps. Azure IoT Hub was the only exception

due to the free-tier service option that has the limitation of accepted connections

per second.

Many-to-One

On this next scenario, the test conducted was based on a single

subscriber that subscribes to all topics and more clients publishing message on

its own topic. However, Google IoT Core and Microsoft Azure IoT Hub do not

allow direct wildcard subscription, however they allowed forwarding messages to

other additional services. On Google platform, all virtual devices are registered in

a registry which has related topic in Pub/Sub service. Each device sends

message to its MQTT topic and IoT Core forwards the message to Pub/Sub. On

the other hand, Azure IoT Hub allowed native integration with one or more

endpoints, also client was directly connected to MQTT broker subscribing all

topics.

Broadcasting

In this last scenario, single producer generated 10 mps in a single topic

and increasing number of clients were subscribed to topic. It is a broadcasting

23

scheme that one message is published on a topic that multiple subscribers listen

to.

Cost Analysis

Cost analysis will be conducted based on the official document from IoT

service providers.

Billing system of AWS IoT Core charges separately:

1) Connectivity usage

a. Metered in 1-minute increments based on the total connected time

of devices: $0.096 per million minutes

2) Messaging

a. Metered on the number of messages transmitted: $1.20 below 1

billion messages, $0.96 for next 4 billion messages, $0.84 over 5

billion messages

3) Device state storage usage (Device Shadow)

4) Device meta data storage usage (Registry)

5) Message transformation and routing usage (Rules Engine)

Rates differ based on selected regions.

 In the case of Microsoft Azure IoT Hub, costs are managed in two levels of

service: Basic edition, Standard edition. Each level has three different tiers of

service. Each tier has limits on daily message, throttling will be applied after

exceeding the daily limit. Every consumption made are measured daily and

24

charged monthly. To sum up, customers of Azure IoT Hub will be charged based

on the number of Hub units and the amount consumed in month.

 Costs on the usage of Google’s service is calculated on how much data is

used in a month. Google IoT Core has four tiers of costs calculated differently. In

case of creating, reading, updating, and deleting device connections will not be

charged. However, Google’s solution applies the minimum message volume as

1024 bytes, which means messages below 1024 bytes will be counted as 1024

bytes. The pricing is listed on the table below.

25

CHAPTER FIVE:

RESULTS

Performance Analysis Result

One-to-one

On this scenario, the basis is to conduct the cloud service times in relation

to the number of messages published per second. Basic concept of this scenario

is based on setting the number of publishers is equal to the number of

subscribers and each is assigned on a single topic. Result of the tests showed

that Google IoT Core responded faster than other IoT service platforms between

150 mps and 750 mps. AWS performed better on the range, which was out of

150 mps – 750 mps, but overall performance for daily usage is better with

Google IoT Core. Even with the less load conditions on Azure IoT Hub, average

service time took much higher than competitors. Surprisingly, all platforms

provided stable performance even with the increase in load.

Different result came out when the number of clients was fixed to 100 and

the load on message broker was increased. The test result showed even more

stable performance for all platforms, however AWS performed slightly better on

every mps difference. The most surprising part of the test results is on Azure IoT

Core which showed the most symmetrical distribution overall. However, all of

three platforms showed stable service time results.

26

Many-to-one

In the case of Amazon, it was worth noting the sharp increase on

message loss when the mps was exceeding 400 mps, 40 clients were

connected, and each client sent 10 mps. Significant message loss was depicted

on exceeding 70 clients with 5% message loss and tremendous increase at 800

mps of 20% loss. After 810 mps, AWS stabilized at 42% message loss rate.

The performance result showed similar result to the result of previous

scenario. In the environment of increasing the number of clients from 1 to 600,

Google IoT Core showed significant increase in cloud service time after reaching

4000 mps sent by clients with 10 mps/client. Compared to Google, Amazon IoT

platform showed less increase in cloud service time at the same point. However,

this result does not impose the meaning that the tested services are not

functioning normally because it was due to the limited ability of QoS 1, which

delayed the forwarding intentionally. Even in the different scenario, same result

was brought out from Azure IoT Hub. It seemed different scenario did not affect

the performance of Azure.

Many-to-many

Google’s cloud service time was lower than both Amazon and Microsoft

beyond 15 connected subscribers. For the section of below 15 subscribers, AWS

had the lowest cloud service time. Shockingly, Azure’s IoT Hub forwarded

messages 15 times slower than other two IoT service platforms. However, Azure

27

IoT Hub followed the previous results on having the lowest gap between outliers.

When the test started with one subscriber, Google, Amazon, and Microsoft

respectively showed the cloud service time of 26.479 ms, 24.991 ms, 160.567

ms. However, when the number of subscribers reached 300, the difference was

26.7%, 68.1%, and 7.1%, respectively in the same order.

Table 1. Different Scenario-Based Tests Comparison

 One to One Many to One Many to Many

Google Stable at 26ms
throughout
1000mps to
3500mps / Stable
at 27ms
throughout
4000mps to
6000mps

Stable at 26ms
throughout 1000mps
to 3000mps /
Between 4000mps
and 5000mps,
dramatic increase
from 31ms to 44ms
and stabilizes after
5000ms at 45ms

Stable at 20ms from
0 to 170 connected
subscribers / Stable
at 25ms from 200 to
250 connected
subscribers

Amazon Stable at 29ms
throughout
1000mps to
6000mps

Stable at 26ms until
3500mps / Stable at
33md between
4000mps and
6000mps

Stable at 25ms from
1 to 100 connected
subscribers /
Increase from 25ms
to 37ms at 150 to
220 connected
subscribers / Stable
at 40ms from 220 to
300 connected
subscribers

Azure Stable at 160ms
throughout 1mps
to 100mps

No difference Stable 160ms to
170ms throughout 0
to 300 number of
connected
subscribers

28

Cost Analysis Result

 Table below shows a different costs variation of tiers:

Table 2. Azure IoT Hub Costs on the Number of Daily Messages Per Unit

Tiers Monthly Cost / Unit Message/Day/Unit

Free Free 8000

Standard 1 $25 400,000

Standard 2 $250 6,000,000

Standard 3 $2,500 300,000,000

Basic 1 $10 400,000

Basic 2 $50 6,000,000

Basic 3 $500 300,000,000

Table 3. Google IoT Core Pricing Model Based on Data Volume

Price per MB Monthly Data Volume

$0 Less than 250 MB

$0.0045 From 250 MB to 250 GB

$0.0020 From 250 GB to 5 TB

$0.00045 Over 5 TB

29

Table 4. Cost Comparison Based on the Number of Devices Connected

Number of devices Azure basic Azure standard Aws Google

1 ~ 6 $10 Free Below $15 Free

7 ~ 70 $10 $25 Below $3 Below $10

70 ~ 250 $10 $25 $3 - $15 $10 – $45

250 ~ 1000 $50 $250 $15 – $56 $45 – $185

1000 ~ 4100 $50 $250 $56 – $230 $185 – $810

4100 ~ 10000 $500 $2500 $230 – $560 $810 – $1440

10000 ~ 50000 $500 $2500 $560 – $2500 $1440 – $4640

50000 ~ 100000 $500 $2500 $2500 – $4800 $4640 – $8640

100000 ~ 420000 $500/$1000 $2500/$5000 $4800 – $17700 $8640 – $16300

420000 ~ 500000 $1500 $7500 $17700 – $21058 $16300 – $17815

The price analysis is based on each device connected continuously and sends

one message per minute of 1kB. Monthly traffic volume is calculated in:

[Number of connected devices * 1440 messages/day * 30 days]

Some sections of costs are underlined to highlight with platform offers the lowest

costs. The table will help potential users who are considering to utilize one of the

Cloud-IoT solution for their own IoT devices and management.

30

CHAPTER SIX:

DISCUSSION AND AREAS FOR FUTURE PROJECTS

After conducting thorough review on different real world case studies of

current IoT device security vulnerabilities, there are numerous active threats

prevalent. Mostly, devices were susceptible on its own software or firmware that

the communication between devices and server could be intercepted by

attackers for malicious uses. Possible attack vectors varied from the software to

node itself. Also, the possibility of damage from the impact varied tremendously

due to the nature of different devices. However, the most critical point of the

studies indicates that the damages from manufacturers’ overlooked security

vulnerability should not be the burden of rightful users. Therefore, normal users

should consider utilizing Cloud IoT platform as a solution for their promising

security on personal information. Since the theft of personal information would

result in reputational, financial, physical, and many other disastrous results.

To implement the optimal solution, the paper analyzed the tests done by

Pierleoni et al. which conducted three different scenario-based tests on Cloud

based solutions, respectively: Amazon IoT Core, Google IoT Core, Microsoft

Azure IoT Hub. Even though all three platforms used the same communication

protocol, MQTT, they had different architectures using unalike processes. Tests

were conducted to compare service times with fixed message size and

incrementing number of messages and connected devices in free tiers of each

31

platform. Performance analysis showed similar result for AWS IoT Core and

Google IoT Core, but the performance of Microsoft Azure IoT Hub was

significantly lagging behind compared to the other two platforms in every aspect.

Not only the performance of different solutions was analyzed and compared, but

also the pricing model is organized in the paper for easier comparison. However,

test itself imposes the limitation of study due to the limited number of connected

devices and fixed packet size since the tests are intended to help normal users’

choice on which platform to utilize for their own best use.

As stated above, imposed limitations of scenario-based tests included free

tier limitations and only tested on the increasing number of devices and

messages, not on the decreasing number. Free tier was restricting the number of

connected devices and messages which could be a possible obstacle for users

who are facing different situations or surroundings. Future studies will be

conducted on different paid levels to conduct how each three platform behave

differently. Also, there will be a study on different behaviors based on different

packet sizes and communication protocols, such as, HTTP and AMQP. It is

important to conduct performance evaluations on different load levels but there

should be a continuous study on current vulnerabilities and threats since the

technology used in the world is ever evolving.

32

APPENDIX A: ABBREVIATIONS

33

IOT = INTERNET OF THINGS

DOS = DENIAL OF SERVICE

MITM = MAN-IN-THE-MIDDLE

VM = VIRTUAL MACHINE

SSID = SERVICE SET IDENTIFIER

PSK = PRE-SHARED KEY

DHCP = DYNAMIC HOST CONFIGURATION PROTOCOL

DFU = DEVICE FIRMWARE UPDATE

WAP = WIRELESS ACCESS POINT

SSH = SECURE SHELL PROTOCOL

NAT = NETWORK ADDRESS TRANSLATION

UDP = USER DATAGRAM PROTOCOL

NMAP = NETWORK MAPPER UTILITY

TCP = TRANSMISSION CONTROL PROTOCOL

TCP-SYN = SYNCHRONIZATION MESSAGE

34

TCP-ACK = ACKNOWLEDGEMENT MESSAGE

IP = INTERNET PROTOCOL

HTTP = HYPERTEXT TRANSFER PROTOCOL

AWS = AMAZON WEB SERVICE

RFID = RADIO-FREQUENCY IDENTIFICATION

MQTT = MESSAGE QUEUING TELEMETRY TRANSPORT

QOS = QUALITY OF SERVICE

API = APPLICATION PROGRAMMING INTERFACE

REST = REPRESENTATIONAL STATE TRANSFER

XML = EXTENSIBLE MARKUP LANGUAGE

JSON = JAVASCRIPT OBJECT NOTATION

SDK = SOFTWARE DEVELOPMENT KIT

TLS = TRANSPORT LAYER SECURITY

AMQP = ADVANCED MESSAGE QUEUING PROTOCOL

MPS = MESSAGE PER SECOND

35

MS = MILLISECOND

KB = KILOBYTE (1024 BYTE)

MB = MEGABYTE (1024 KB)

GB = GIGABYTE (1024 MB)

TB = TERABYTE (1024 GB)

36

REFERENCES

Asensio, Á., Marco, Á., Blasco, R., & Casas, R. (2014). Protocol and architecture

to bring things into internet of things. International Journal of Distributed

Sensor Networks, 10(4), 158252. https://doi.org/10.1155/2014/158252

Astaburuaga, I., Lombardi, A., La Torre, B., Hughes, C., & Sengupta, S. (2019).

Vulnerability analysis of ar.drone 2.0, an embedded linux system. 2019

IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC). https://doi.org/10.1109/ccwc.2019.8666464

Azure service Bus-Cloud messaging Service: Microsoft Azure. Azure Service

Bus-Cloud Messaging Service | Microsoft Azure. (n.d.).

https://azure.microsoft.com/services/service-bus/.

Barik, R. K., Dubey, H., Misra, C., Borthakur, D., Constant, N., Sasane, S. A.,

Lenka, R. K., Mishra, B. S., Das, H., & Mankodiya, K. (2018). Fog assisted

cloud computing in era of big data and internet-of-things: Systems,

architectures, and applications. Studies in Big Data, 367–394.

https://doi.org/10.1007/978-3-319-73676-1_14

Botta, A., de Donato, W., Persico, V., & Pescape, A. (2014). On the integration of

cloud computing and Internet of things. 2014 International Conference on

Future Internet of Things and Cloud. https://doi.org/10.1109/ficloud.2014.14

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud

computing and emerging IT platforms: VISION, hype, and reality for

37

delivering computing as the 5th utility. Future Generation Computer

Systems, 25(6), 599–616. https://doi.org/10.1016/j.future.2008.12.001

Chapple, M., & Seidl, D. (2021). Comptia security+ study guide: Exam sy0-601.

Sybex.

Free-fall: Hacking tesla from wireless to can bus. (n.d.).

https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-

Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf.

Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2018). Evaluating critical security

issues of the iot world: Present and future challenges. IEEE Internet of

Things Journal, 5(4), 2483–2495. https://doi.org/10.1109/jiot.2017.2767291

Happ, D., Karowski, N., Menzel, T., Handziski, V., & Wolisz, A. (2016). Meeting

iot platform requirements with open pub/sub solutions. Annals of

Telecommunications, 72(1-2), 41–52. https://doi.org/10.1007/s12243-016-

0537-4

Hedi, I., Speh, I., & Sarabok, A. (2017). Iot network protocols comparison for the

purpose of iot constrained networks. 2017 40th International Convention on

Information and Communication Technology, Electronics and

Microelectronics (MIPRO). https://doi.org/10.23919/mipro.2017.7973477

Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P., Hossain, M. S., &

Xiang, W. (2016). Internet of things cloud: Architecture and implementation.

IEEE Communications Magazine, 54(12), 32–39.

https://doi.org/10.1109/mcom.2016.1600398cm

38

Incipini, L., Belli, A., Palma, L., Concetti, R., & Pierleoni, P. (2019). Databases

performance evaluation for IoT systems: The Scrovegni Chapel use case.

2019 42nd International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO).

https://doi.org/10.23919/mipro.2019.8756813

Jenkins, G. (2000). Clouds project cloudwatch. Amazon.

http://aws.amazon.com/cloudwatch.

Kumar, S. K., Satheesh, N., Mahapatra, A., Sahoo, S., & Mahapatra, K. K.

(2019). Physical unclonable functions for ON-CHIP Instrumentation:

Enhancing the security of the Internal joint TEST action Group Network.

IEEE Consumer Electronics Magazine, 8(4), 62–66.

https://doi.org/10.1109/mce.2019.2905539

Liu, Y., Akram Hassan, K., Karlsson, M., Pang, Z., & Gong, S. (2019). A data-

centric Internet of Things framework based on Azure cloud. IEEE Access, 7,

53839–53858. https://doi.org/10.1109/access.2019.2913224

Lodge, D. (2015, January 6). Are your smart weighing SCALES lying to you?

Quite possibly (part 1). Pen Test Partners RSS.

https://www.pentestpartners.com/security-blog/are-your-smart-weighing-

scales-lying-to-you-quite-possibly-part-1/.

Margulies, J. (2015). Garage door openers: An internet of things case study.

IEEE Security & Privacy, 13(4), 80–83. https://doi.org/10.1109/msp.2015.80

39

Mazhelis, O., & Tyrvainen, P. (2014). A framework for evaluating internet-of-

things platforms: Application provider viewpoint. 2014 IEEE World Forum on

Internet of Things (WF-IoT). https://doi.org/10.1109/wf-iot.2014.6803137

Misic, J., Ali, M. Z., & Misic, V. B. (2018). Protocol architectures for iot domains.

IEEE Network, 32(4), 81–87. https://doi.org/10.1109/mnet.2018.1700395

Pierleoni, P., Concetti, R., Belli, A., & Palma, L. (2020). Amazon, Google and

Microsoft solutions FOR Iot: Architectures and a performance comparison.

IEEE Access, 8, 5455–5470. https://doi.org/10.1109/access.2019.2961511

Sklyar, D. (n.d.). ChargePoint Home security research.

https://media.kasperskycontenthub.com/wp-

content/uploads/sites/43/2018/12/13084354/ChargePoint-Home-security-

research_final.pdf.

Smart nest thermostat a smart spy in your home. (n.d.).

https://www.blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-

Thermostat-A-Smart-Spy-In-Your-Home.pdf.

Steward, J. (2021, July 18). 21+ internet of Things STATISTICS, facts & trends

for 2021. Findstack. https://findstack.com/internet-of-things-statistics/.

Thangavel, D., Ma, X., Valera, A., Tan, H.-X., & Tan, C. K.-Y. (2014).

Performance evaluation of MQTT and Coap via a common middleware.

2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP).

https://doi.org/10.1109/issnip.2014.6827678

40

Treichler, R., & Hardmeier, C. (2005). Schlagwortnormdatei Schweiz für

allgemeine ÖFFENTLICHE Bibliotheken: Sns. Amazon.

https://aws.amazon.com/sns.

wesmc7777. (n.d.). Azure iot hub scaling. Azure IoT Hub scaling | Microsoft

Docs. https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling.

	Internet of Things Security Case Studies and Internet of Things Core Service Comparions
	Recommended Citation

	tmp.1628029836.pdf.k9ZTv

