
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2008

Implementation of reinforcement learning in game strategy Implementation of reinforcement learning in game strategy

design design

Chien-Yu Lin

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Lin, Chien-Yu, "Implementation of reinforcement learning in game strategy design" (2008). Theses
Digitization Project. 3497.
https://scholarworks.lib.csusb.edu/etd-project/3497

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3497?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

IMPLEMENTATION OF REINFORCEMENT LEARNING

IN GAME STRATEGY DESIGN

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Chien-Yu Lin ?

December 2008

IMPLEMENTATION OF REINFORCEMENT LEARNING

IN GAME STRATEGY DESIGN

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Chien-Yu Lin

December 2008

Approved by:

Dr. Haiyan Qiao, Chair, Computer Science Date

Dr. David A. Turner

ABSTRACT

Reinforcement learning is one type of machine learning.

It is concerned with learning through the use of penalties

and rewards. The main purpose of this project is to apply

reinforcement learning in the design of game strategy. Using

this approach, the computer learns the opponent's strategy,

and learning takes place during each step of play. The

reinforcement learning used in this project will be based on

the Q-learning algorithm, and the game "Blackjack" is

selected as the study model because of its simplicity and

popularity.

In order to demonstrate that the strategy implemented

with reinforcement learning performs better than pre

programmed strategies, an experimental approach is used. In

the experiments, the winning percentages of different

strategies with and without learning capabilities are

compared when playing Blackjack. The experimental results

show that the strategy with learning has a better

performance than the pre-programmed strategies.

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Dr. Haiyan Qiao

for all the efforts that she had devoted to make this

project possible. I would also like to thank her for all the

time that she put into this project and for helping me

whenever I ran into a problem. I would also like to thank Dr.

Ernesto Gomez and Dr. David Turner for serving on my

committee and giving me guidance along the way. I appreciate

the opportunity that the faculty of Computer Science

department gave me to pursue my Master of Science degree in

Computer Science at California State University, San

Bernardino.

iv

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES... vii

LIST OF FIGURES..viii

CHAPTER ONE: INTRODUCTION

1.1 Introduction .. 1

1.2 Problem... 1

1.3 Background... 2

1.4 Contribution .. 5

CHAPTER TWO: PROBLEM

2.1 Introduction .. 7

2.2 Blackjack Game Rules... 7

2.3 User Interface... 9

2.4 Functions.. 11

CHAPTER THREE: METHODOLOGY

3.1 Introduction.. 14

3.2 Reinforcement Learning Review 14

3.3 Q-learning Algorithm ... 16

CHAPTER FOUR: EXPERIMENTS

4.1 Introduction............... 20

4.2 Game Configuration.. 21

4.3 Learning Process .. 23

4.4 Experiment Results .. 28

4.4.1 Ruled-based Greedy-Play 28

4.4.2 Learning from "Smart Player" 29

v

4.4.3 Learning from "Greedy Player" 33

4.4.4 Results Comparison .. 34

CHAPTER FIVE: CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion... 3 6

5.2 Future Directions........... 37

REFERENCES... 39

vi

LIST OF TABLES

Table 1. Q-learning Algorithm..18

Table 2. Game Configuration Table...22

Table 3. Initial Data Table for So = {6, 19}.....................................24

Table 4. Data Table for S = {6, 19} in Round 1..............................25

Table 5. Data Table for S = {6, 19} in Round 2..............................25

Table 6. Initial Data Table for So - (6, 17} in Round 3 ... 26

Table 7. Data Table for S = {6, 19} in Round 3..............................27

Table 8. Data Table for S = {6, 17} in Round 3..............................27

Table 9. Result Table 1... 32

Table 10. Result Table 2...................'.. 34

vii

LIST OF FIGURES

Figure 1. Illustration of Supervised Learning 4

Figure 2. Illustration of Reinforcement Learning 5

Figure 3. User Interface ... 10

Figure 4. User Interface in Different Mode 12

Figure 5. Sample of Rules.txt ... 31

i

i

i

viii

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Reinforcement learning is one type of machine learning;

it is concerned with learning through the use of penalties

and rewards. Reinforcement learning is also considered as

one of the suitable methods for game playing due to its

capability to discover good strategies. In this project,

this technique is applied in the design of game strategy.

This chapter presents the purpose and background of

this project. The significance and contribution of the

project is also discussed briefly.

1.2 Problem

The main purpose of this project is to apply

reinforcement learning to the design of game strategy.

Although reinforcement learning is traditionally defined as

a sequence of decisions and fit in game playing well, it is

not well studied and applied in practice. In the gaming

industry, the strategy used by computers to win a game is

usually pre-programmed by game designers according to the

game patterns or a set of rules. The strategies in computer

games seldom have characteristics of learning, i.e., playing

1

based on the behavior pattern of the opponent. This type of

strategy usually makes players feel less challenged when

playing against the computer opponents. Hence, to let games

become more interesting, it is important to increase the

variation and intelligence of the game. In my project, a

computer software agent will be designed to learn the

strategy of an opponent throughout the playing history,

rather than respond to the opponent's action by following

pre-programmed instructions or rules. By applying the

reinforcement learning in game strategy design, the computer

as a competitor will no longer be a pre-programmed robot.

Through the learning process, the computer's actions will

become more flexible and unpredictable.

1.3 Background

Machine learning studies the development of algorithms

and techniques that enable a computer to "learn" through

experience and improve performance over time. It is the core
I

of artificial intelligence and also an important

characteristic of computer intelligent behavior. Based on

the developers' desired outcome of machine learning

algorithm, machine learning is divided into different areas.

For example, supervised learning generates a function that

maps inputs to desired outputs (as explained in Figure 1.)

2

Unsupervised learning models a set of outputs which are

unlabeled examples. In supervised learning, a set of inputs

is assumed to be the cause of another set of outputs, while

in unsupervised learning all inputs are assumed to be caused

by a set of latent variables. Reinforcement learning is a

sub-area of machine learning that is concerned with learning

through the use of penalties and rewards (as explained in

figure 2.) In other words, it is about how an agent ought to

take actions in an environment based on current state and

previous feedback so one can maximize the notion of long

term reward. The learning algorithm decides which action to

take depending on finding the actions that yield the highest

overall reward through trials and errors. The actions taken

will affect the immediate and subsequent rewards. Hence, the

reinforcement learning algorithm is a good method for

approximating an optimal game strategy because it allows

learning to take place during each step of play.

3

Supervised Learning

Training Info - desired (target) outputs

1
Inputs Supervised Learning.

System Outputs

Error = (target output - actual output)

Objective: Minimize error

Figure 1. Illustration of Supervised Learning

4

Reinforcement Learning (RL)

Training Info = evaluations (“rewards” / “penalties”)

Inputs

Objective: Maximize reward or minimize penalty

Figure 2. Illustration of Reinforcement Learning

1.4 Contribution

Recent games industry puts emphasis on computer

graphics and the game's fluency rather than the durability

of a game's life. The advertisement of a new game usually

uses a gorgeous 3D video to attract customers. However,

customers easily lose their interest when they feel a game

has no challenge even though its graphics is perfect.

Especially the computers with pre-programmed strategies are

easier to let players feel bored when players can predict

5

what the computer is going to do or respond on the next move.

Hence, in order to extend a game's life, it is important to

let the game become more competitive and flexible.

The contribution of the project is to combine game

strategy design with reinforcement learning. The computer

learns the player's strategy when the player is playing and

allows learning to take place during each step of the play.

The computer then has the capability to create an optimal

game strategy through the playing history of the specific

player. The computer game with learning capability will thus

generate different strategies against different players.

Therefore, it will increase variation and challenge of game

play.

6

CHAPTER TWO

PROBLEM

2.1 Introduction

Blackjack has all the basic elements of a game: players,

actions, and payoff. It is selected as the study model

because of its simplicity and popularity. In Blackjack,

there is no absolute winning strategy because of the

variation of the states and the randomness in a shuffled

deck. However, players playing with certain strategies may

have higher chances to win. It is desired that an

intelligent software agent is designed to learn from smart

and experienced human players so that the software agent can

play against the dealer and defeat the dealer with a higher

probability.

Chapter 2 introduces the basic Blackjack game rules. In

the project, the Blackjack rules are the same as those in a

casino. In this chapter, the detailed view of the user

interface and functions of the program is present.

2.2 Blackjack Game Rules

Blackjack is a widely played card game that can be

found in casinos. The rule to win Blackjack is to obtain a

total point of cards higher than the dealer's points but not

7

exceeding 21. The game works by assigning each card a point

value. Cards from 2 to 10 are worth their face value, while

Jacks, Queens, and Kings are worth 10 points. An ace is

worth either 1 or 11 points, whichever is decided by

players. According to casino's rules, each player is first

given two cards and face up and the dealer also has two

cards only one is faced up. After receiving the two cards,

the player can choose his or her own actions. "Stay" is to

stay with the current cards and take no card. "Hit" is to

add a card to the hand to make the total card value to be

closer to 21. A player may hit as many times as he wishes as

long as his card value is not over 21. "Double Down" is when

player holding two cards, the player can double his bet by

hitting with only one more card and stay after that, and
I

"Split" is having the pair of cards with the same values,

the player can split his hand into two hands, Hence, based

on player's card value and dealer's face up card's number,

players can use their own strategy to decide hit or stay.

However, for simplicity of the project, "Double down" and

"Split" will not be considered in this project.

The dealer's actions are fixed. Based on the casino's

blackjack rules, the dealer hits when his or her total

points is less than 17 and stays when it is greater than 17.

When the player has 21 points in the first two cards, that

8

means Blackjack, and the player automatically wins if the

dealer does not have 21 points. However, if the dealer has

Blackjack, this round is over and the dealer wins. Moreover,

if the card value of the dealer or player is over twenty

one, this round is also over, and this situation is called

"Bust". Lastly, after the dealer finishes his action, and

both dealer and player get the same card value, it means

this round is a tie.

2.3 User Interface

The user interface is programmed in C++, and the

graphic part is done using Graphic Device Interface (GDI)

which is a class-based Application Programming Interface

(API) for C++ programmer. The configuration of Blackjack

user interface consists of dealer's stack of cards, player's

stack of cards, mode-selection buttons, action buttons, and

status (the card values, game result, and agent's action).

In the user interface, the cards on the top are dealer's

cards, and the cards on the bottom are owned by players. The

numbers on the top of each set of cards are the total cards

points, and game result shows in the middle of table when

current round is finished. The buttons on the top left are

mode-selection buttons. Users can choose the different modes

9

to operate the program. There are four modes, which are

"Manual", "Auto", "Learner" and "Greedy". Each function will

be introduced in Section 2.4. The buttons on the right are

action buttons. Users can play Blackjack by clicking "Hit"

and "Stay" buttons or understand how the agent chooses its

actions by clicking the "Next" button.-The user interface is

shown in Figure 3.

Figure 3. User Interface

10

2.4 Functions

A main objective of the project is to explore the

feasibility and the advantages of learning in game strategy

design. Therefore, in order to reveal the performance of

reinforcement learning, we set up two pre-programmed game

strategies which are named "Smart Player" and "Greedy

Player". Interpreting "Smart Player" and "Greedy Player" in

game play, main function is to let users play Blackjack and

exhibit how different agents choose their actions. As

mentioned before, there are four mode-selection buttons in

the left of the user interface. The function of "Manual"

button is to let human player play Blackjack manually. In

this mode, players can choose their action "Hit" and "Stay"

against the dealer, and learning agent learns the strategy

of the player at the same time. The "Auto" button is to

allow users to observe how the agent uses the pre-programmed

strategy which is named "Smart player" to play Blackjack. In

this mode, users can only click the "Next" button to see

what is the next action that the agent will choose. When

clicking the "Next" button, agent's action and description

will be shown on the screen (see Figure 4).

11

Figure 4. User Interface in Different Mode

The function of "Learner" button and "Greedy" button

are similar with "Auto" Button. The difference between those

three buttons is that different buttons present different

agents. As implied by the name, the "Learner" button is to

allow the user to observe how the agent uses the

reinforcement learning algorithm to play Blackjack. From the

learning process, the learning agent creates its own playing

12

strategy and shows its capability of decision making.

However, the "Greedy" button allows the agent to use a

different pre-programmed strategy, which is named "Greedy",

to play Blackjack, and users can observe how the agent

applies the Greedy strategy to play Blackjack.

13

CHAPTER THREE

. METHODOLOGY

3.1 Introduction

The most important element of the project is to explore

learning in game play. Through learning, the computer

observes human behavior, analyzes the goodness of actions in

a state and thus plays against opponents smartly. This

chapter reviews reinforcement learning and illustrates how

reinforcement learning in game strategy design is

implemented. Specifically, Q-learning, one of the
i

reinforcement learning algorithms, is discussed as well.

3.2 Reinforcement Learning Review

Reinforcement learning is a type of machine learning

technique. This technique was discovered in late 1980s and

has been studied until now. The main idea of reinforcement

learning is to allow learning to take place while

interacting with environments; its agent learns from the

consequences of its action, rather than from being taught.

The agent selects its actions through its experience and

also by making new choices, which is practically trial and

error learning. Moreover, the reinforcement learning agent

receives a numerical reward when it makes a right choice,

14

and the agent chooses actions that maximize the accumulated

reward over time.

The widely used or standard framework of reinforcement

learning is Markov Decision Process (MDP)[7]. It provides a

mathematical framework for modeling decision-making in

situation where outcomes are partially random and partially

under the control of the decision maker. MDP is represented

with a tuple(S, A, R, P(S)), where S is the set of states ,

A is the set of agent's actions, and R is a reward function

R : S x A -» R mapping state-action pair (s, a) of the

environment to a reward. A reward function determines what

is good in an immediate sense. P(s) is the set of discrete

probability distributions over the states, i.e., the state

transition probability.

The objective of reinforcement learning is to find a

policy it that maximizes the expected sum of discounted

rewards over time. A policy it which is defined as it'.S-^A.

To achieve the objective, we need to find out the optimal

policy it. The policy 7t specifies the learning agent's

behavior at given states in an environment. In other words,

a policy is a mapping from observed states to actions which

should be taken in those states. Therefore, a policy may be

a simple function, a lookup tale, and a search process

involved extensive computation.

15

3.3 Q-learning Algorithm

Q-learning is a simple incremental algorithm developed

from the theory of dynamic programming for reinforcement

learning. To introduce the long term rewards of action a

taking in state s in Q-learning, we define a value function

V(s) as:

V” 6)=+/£ (/U* (W (5 ■»

The learning agent expects to receive R(x(s)) immediately for

performing the action a in state s, and then moves to a

state that is 'worth' with probability ps_>s,x(s) [4] .

Therefore, the value function V(s) with policy n can be

explained as the sum of immediate rewarded received plus the

reward that will received at new state s' following the same

strategy thereafter. In Q-learning, policies and the value

function are represented by a two-dimensional lookup table

indexed by state-action pairs. For a policy n, define Q

values as:

O’ (s,a) = R, (a) + rX (s ■))

In other words the Q value is the expected discounted reward

for choosing action a at state s and following policy n

thereafter. The objective of Q-learning is to maintain an

estimate of the Q* which is q* for an optimal policy n . If

16

a* is an action at which the maximum is attained, and then

an optimal policy can be formed as 7r*(s) = a*, it is

straightforward to show that V*(s)t=xnax.aQ*(s,a) [4] . In Q-

learning, the agent's experience consists of a sequence of

distinct stages or episodes. In the n/A episode, the

learning agent observes its current state sn and then

selects an action an [4]. Then it observes the subsequent

state s'n and receives an immediate payoff rn , and adjust its

Qn_} values using a learning rate an , according to:

f (1 -a„)2„_i(s,o)+a„[r„ + 7 Vn.,(5)] if s = s„ and a = an,
1 Q„-i(s,a) otherwise,

Where

Each episode is equivalent to one training session; the

agent explores the environment and gets the reward until it

reaches the goal state. allows the agent to compute

the expected reward of being in state s, taking action a,

and thereafter following policy k . Let the state at time t

be rt/ and assume that the learning agent then chooses

action at. The immediate result is that a reward rt is

received by the learner. The parameter a is referred to as

17

the learning rate that determines the size of the update

made on each time-step, t is referred to as the discount

rate, which determines the value of future rewards. < 1

controls the affection of future rewards on the optimal

decisions. If 7 is closer to zero, the agent will tend to

consider only immediate reward. On the other hand, the

closer 7 is to one the greater the weight of future

reinforcements. The Q-learning algorithm is outlined below

[8] :

Table 1. Q-learning Algorithm

Initialize Q(s, a) arbitrarily

Repeat (for each episode):

Choose a from s using policy derived from Q

Take action a, observe r, and s'

Q(s, a)<—Q(s, a) + a [r + y maxa. Q.(s' , a') -Q(s, a)]

s<— s ’

until s is terminal

The advantage of Q-learning is that one does not need a

model of the environment. In Q-leaning, the optimal policy

can be learn by interacting with the environment, and no

18

knowledge of the true transition probabilities or the reward

function is necessary. The update rule is policy free as it

is a rule that just relates Q values to other Q values. Q-

learning can calculate the Q values directly from the

elementary rewards observed.

19

CHAPTER FOUR

EXPERIMENTS

4.1 Introduction

In this project, the main idea is to generate optimal <

game strategy by using the reinforcement learning algorithm.

Through the process of learning, the playing strategy used

by the learning agent will improve over time of playing. In

other words, after the human player play Blackjack many

rounds with a dealer, the computer will learn his or her

strategy and apply the strategy which is similar but better

than the human player's to play Blackjack. Therefore, if the

player is a experienced smart player, the computer that

learns from the smart player will use an "optimal" Blackjack

strategy against dealer.

Theoretically, the learning agent will reveal a better

performance than the pre-programmed strategy. To evaluate

the performance of the reinforcement learning, the software

agent with learning ability will be compared with the

software agent that uses pre-programmed strategy. And the

comparison results are given between the learning agent and

the pre-programmed agent and reveals that the learning agent

has a better performance. Chapter four introduces how to

implement game strategy using reinforcement learning step by

20

step and what is pre-programmed game strategy for agent to

learn and all results of the experiments will be provided

and discussed.

4.2 Game Configuration

The configuration of Blackjack game consists of main

game program and reinforcement learning agent program which

are developed by C++ language. The function of the main game

program is to let players play Blackjack manually. During

the time when human player is having fun with Blackjack, the

learning agent learns human player's playing strategy.

Moreover, when selecting the mode on main game program,

program presents different action choice by different agent

in order to let users realize how the agent learns.

Reinforcement learning agent program uses Q-learning

algorithm. The Q-learning algorithm is a good method for

approximating an optimal Blackjack strategy, because it

allows learning to take place during playing. Therefore,

Blackjack can be easily formulated as an episodic task.

In this project, the state representation of Q-learning

algorithm consists the player's current total points which

are between 2 to 21, and dealer's face up card which is

21

between 1 to 10. The action sets are 1 and 0 which means

"Hit" and "Stay". In Q-learning formula:

Q(s, a) <- Q(s, a) + a [r + 7 maxa. Q(s', a1) -Q(s, a)]

a = 0.01, 7 = 0.9, and immediate reward r is 1 when this

round the player wins, -1 when player loses, and 0 when

player choose "Hit" but not bust, and game is still in

process(shows in Table 2).

Table 2. Game Configuration Table

SHS^Sg}, where S^iPlayer's current total cards number: 2,3,...,21

and S2:Dealer's face up card unmber: 1,2,... ,10

1, Player chooses "Hit".
0, Player chooses "Stay".

{
1, when player wins.
-1, when player loses.
0 , Game continues.

P(s) = l for all sgS

22

For example, in the situation when dealer's face up

card is 9 and player's total card number is 15, player

chooses to "Hit", then player gets the "King" which means 10

points. So player's total card number is 25 which means

"Bust". On the state of "dealer's card = 9 Player's card =

15", player's action is 1 and gets penalty which is -1 due

to the bad choice. However, in the same situation, player

chooses "Hit" and gets 2 points. The game is still in the

process. On the state of "dealer's card = 9 Player's card =

15", player's action is 1 and gets reward 0.

4.3 Learning Process

In the prior chapter, the concepts of reinforcement

learning and Q-learning algorithm have been discussed. The

detailed processes of how the computer uses reinforcement

learning to learn and take actions will be presented as

examples in the below:

The learning agent begins with no prior knowledge, i.e.,

every action value Q for each state is zero, and uses the Q-

learning algorithm.

Round 1: Assuming that player gets two cards, one is K and

another is 9. Dealer has a face-up card which is 6 and a
I

face-down card in hand. The total points of player's cards

23

are 19. Because learning starts with no prior knowledge

beyond the rules of the game, every action Q for each state

is initially zero. Initially, the data table is:

Table 3. Initial Data Table for So = (6, 19}

Dealer's card=6, Player's card= 19, Action=0 Q-Value=0

Dealer's card=6, Player's card= 19, Actional Q-Value=0

The number behind the Action = 0 or 1 is the action value.
I

It determines that agent will choose "Hit" or "Stay" when

the same state takes place again. Now if the player chooses

"Hit" in this state and loses in this round, the Q-Value of

this state will be updated in -0.01.

Q(s, a) «- Q(s, a) + a [r + 7 maxa, Q(s', a1) -Q(s, a)]
Q(s, a) <- 0+0.01[-1 + 0.9 * 0 - 0] = -0.01

The data table will be updated:

24

Table 4. Data Table for S = {6, 19} in Round 1

Dealer's card=6, Player's card= 19, Action=0 Q-Value=0

Dealer's card=6, Player's card= 19, Action=l Q-Value
=-0.01

Round 2: player gets the same two cards as last round, one

is K and another is 9. Dealer has a face-up card which is 6

and a face-down card in hand. According to the data table,

the Q-Value of action "Stay" is bigger than the Q-Value of

action "Hit". Hence, player chooses "Stay", assume that

player wins this round. The Q-Value of this state will be

updated in 0.01.

Q(s, a) <- Q(s, a) + a [r + 7 max,, Q(s', a1) -Q(s, a)]
Q(s, a) <- 0+0.01[l + 0.9 * 0 - 0] = 0.01

The data table will be changed to:

Table 5. Data Table for S = {6, 19} in Round 2

Dealer's card=6, Player's card= 19, Action=0 Q-Value
= 0.01

Dealer's card=6, Player's card= 19, Action=l Q-Value
=-0.01

25

Round 3: Player gets the different two cards with last round,

one is 8 and another is 9. Dealer has a face-up card which

is 6 and a face-down card in hand. The total points of

player's cards are 17. Because this state is not experienced

by the learning agent, the initial data table is:

Table 6. Initial Data Table for So = {6, 17} in Round 3

Dealer's card=6, Player's card= 17, Action=0 Q-Value=0

Dealer's card=6, Player's card= 17, Action=l Q-Value=0

In this round, player choose to "Hit" and then gets a 2

points card. The total points of player's cards are 19, and

this round is still in process. The Q-Value will be updated

with 0 reward as well.

Q(s, a) <r- Q(s, a) + a [r + 7 maxa, Q(s’> a') -Q(s, a)]
Q(s, a) <— 0 + 0.01[0 + 0.9 * maxa, Q(s', a') - 0]

maxaQ(s', a') means the maximum Q-Value in the state of

"Dealer's card =6 Player's card =19." which are:

26

Table 7. Data Table for S = {6, 19} in Round 3

Dealer's card=6, Player's card= 19, Action=0 Q-Value
=0.01

Dealer's card=6, Player's card= 19, Action=l Q-Value
=-0.01

Hence, the maxaQ(s', a1) will be 0.01 and the Q-Value of

this round will be updated by 0.00009.

Q(s, a) <- Q(s, a) + a [r + 7 max„, Q(s', a') -Q(s, a)]

Q(s, a) <- 0+0.01[0 + 0.9 * 0.01 - 0] = 0.00009

The data table will be changed to:

Table 8. Data Table for S = {6, 17} in Round 3

Dealer's card=6, Player's card= 17, Action=0 Q-Value=0

Dealer's card=6, Player's card= 17, Action=l Q-Value
=0.00009

The game continues until it is over. At each step of the

game, the Q-Value corresponding to every s and a is updated

as well.

Based on these operating rules, every state counts as

long as the computer experience it, the action value of

27

these states will be generated. Moreover, the action value

decides how much benefit will player get when choose this

action if next time in the same state. Hence, when the

computer agent chooses the action, it will choose an action

with bigger action value in this state.

4.4 Experiment Results

In order to let the computer completely learns human

player's strategy, human player needs to play the game a

great deal of rounds. So the computer can collect enough

data for learning information. However, it is unreasonable

for a human player to play thousand of rounds. Hence, the

project allows the computer playing blackjack automatically

based on pre-programmed strategy for many rounds. It records

all data and generates rules for learning agent to use. In

addition, this experiment compares the pre-programmed

strategies to the reinforcement learning agent. Different

pre-programmed game strategies will be introduced in the

below:

4.4.1 Ruled-based Greedy-Play

In chapter three, it mentioned that a comparison

strategy studied as well as a pre-set strategy to compare

with the performance of reinforcement learning strategy.

28

This pre-set strategy is named "Greedy" in this project, and

its principle is to choose the action based on the 'short

term benefit. The rule of greedy-play algorithm is that

player always hit until the total points of player's card

are bigger than or equal to 17. The reason for the

comparison group to use this game strategy is because dealer

uses the same strategy. Since dealer always chooses to hit

when his or her cards' points are less than 17, and stay

when the cards' points are bigger than or equal to 17, so as

long as dealer does not get a bust and player's card points

are not more than 17, the player will lose in this round.

For this greedy reason, this project uses this pre-set

strategy "Greedy" to compare with a software agent which has

learning ability. Experiment allows "Greedy" player to play

Blackjack automatically and calculate the winning percentage

to compare with the learning agent.

4,4.2 Learning from "Smart Player"

As mentioned before, in order to avoid too little data

collect from human players playing manually, this project

sets a simple strategy for the reinforcement learning agent

to learn automatically. The game strategy is called "Smart

player" that has a basic concept as shown below:

29

Depending on dealer's face-up card number and player's

total cards' points, player makes different decisions.

When player gets 17 - 20 in hand, player choose "Stay"

When player gets 12 - 16 in hand and dealer's face-up

card number is 2 - 6, player choose "Stay"

When player gets 12 - 16 in hand and dealer's face-up

card number is 7 - 10,J,Q,K,Ace, player choose "Hit"

When player gets 2 - 11 in hand, player choose "Hit"

Considering the different situation that might lead

dealer or player to get a bust, these rules are basic

optimal game strategies for any Blackjack situation in the

long run.

After the computer uses "Smart Player" strategy to

play Blackjack many rounds, the computer will output a .txt

file for agent to read and use. 'This learning data is named

"Rules.txt"(shows in Figure 5.) In this procedure, it can be

called rule generation which means learning agent learns

from "Smart Player". Hence, after generating these rules,

the computer can use the "Smart player" strategy to play

blackjack.

30

dealer’s
dealer’s
dealer’s
dealer s
dealer's
dealer’s
dealer’s
dealer’s

card =1
card =1
card =1
card =1
card =1
card =1
card =1
card =1

Player s card =8 Action =1 Q-Value =2.09521
Player's card “9 Action =0 Q-Value =0 -3,
Player’s card =9 Action =1 Q-Value =2.29049

dealer’s card =1
dealer’s card =1
dealer’s card =1
dealer’s card =1
dealer's
dealer s
dealer’s
dealer’s
dealer s
dealer's

card =1
card =1
card =1
card =1
card =1
card =1

Player’s card =10 Action =0
Player’s card =10 Action =1
Player’s card =11 Action =0
Player’s card =11 Action =1
Player's card =12 Action =0
Player’ s card =12 Action =1
Player’s card =13 Action =0
Player’s card =13 Action =1
Player’s card =14 Action =0
Player's card =14 Action =1
Player's card =15 Action =0
Player's card =15 Action =1
Player’s card =16 Action =0
Player s card =16 Action =1
Player's card =17 Action =0

Q-Value =0
Q-Yalue =5. 25443
Q-Value =-0. 262507
Q-Value =0
Q-Value =-0.262509
Q-Value =0
Q-Value =-0. 244958
Q-Value =0
Q-Value =-0.171284
Q-Value =0
Q-Value =-0.412772
Q-Value =0
Q-Value =-0.132432
Q-Value =0
Q-Value =-0.13091 J

WiGD

Figure 5. Sample of Rules.txt

In order to prove that the strategy implemented by

reinforcement learning reveal a better performance than pre

programmed strategy to play Blackjack, my experimental

approach is to compare the winning percentage of three

different strategies, Greedy-play strategy, Smart Player,

and reinforcement learning agent, when playing Blackjack.

The results of learning agent learning from "Smart Player"

strategy will prove that the learning agent through the

learning process gives a better performance than the pre-set

strategy "Greedy-play" in Blackjack game. To calculate the

31

winning percentage of "Smart player", "Learning agent" and

"Greedy-play" playing Blackjack, the approach is to run 10

times with different playing strategies and each time

playing Blackjack 1000 rounds. The results of the experiment

are as shown in Table 9.:

Table 9. Result Table 1

Smart Player Learner Greedy

1 42.4% 39.1% 40.0%

2 39.5% 38.1% 36.3%

3 43.2% 39.9% 36.5%

4 40.1% 40.3% 39.7%

5 39.0% 37.5% 40.2%

6 43.1% 41.3% 38.2%

7 41.7% 42.8% 35.0%

8 41.5% 42.0% 41.2%

9 39.1% 38.8% 40.1%

10 42.8% 41.2% 37.8%

32

Average 41.24% 40.1% 38.56%

Standard

Deviation
0.0159 0.0165 0.0195

4.4.3 Learning from "Greedy Player"

In order to prove the strategy through the learning

process will have a better performance than the original

strategy, the experiment sets another programmed strategy

"Greedy Player" to be another model for the reinforcement

learning agent to learn. Based on the same learning elements

and situation, learning agent learns from greedy-play

strategy. The rule for greedy-play strategy is that player

chooses stay whenever the total value of player's card is

bigger than or equal to 17. Under this circumstance, the

computer plays Blackjack with greedy-play strategy for many

rounds and then output a .txt file with greedy-play rules.

Moreover, learning agent learns this strategy and uses it to

against dealer. Since reinforcement learning agent learns

different strategies, the agent might choose different

actions with the same state. The experimental approach is to

allow learning agent which learns "Greed-play" strategy to

run 10 times and each time playing Blackjack 1000 rounds.

The results of the experiment are as shown in Table 10.:

33

Table 10. Result Table 2

Learner Greedy

1 38.3% 35.8%

2 39.1% 39.2%

3 41.2% 38.3%

4 40.7% 40.1%

5 41.1% 37.2%

6 39.6% 41.1%

7 39.1% 39.3%

8 40.2% 38.2%

9 40.1% 40.0%

10 37.0% 39.9%

Average 39.64% 38.91%

Standard
Deviation

0.0125 0.0149

4.4.4 Results Comparison

According to the results of the experiment (Table 9.),

the average of winning percentage using reinforcement

learning is bigger than the pre-programmed strategies

34

"Greedy-play." It shows that the agent is learning useful

information during training process and using a better

strategy against dealer. This result presents that the

strategy implemented by reinforcement learning reveal a

better performance than pre-programmed strategy to play

Blackjack. However, the winning percentage of "Smart player"

is the biggest. It is because the "Smart player" strategy is

based on basic optimal game strategies for any Blackjack

situation in the long run. Even learning agent learns from

"Smart player" strategy, its average of winning percentage

can just approach the winning percentage of "Smart player,"

but hard to exceed it.

In another experiment with the same elements and

conditions, the computer learns from the programmed strategy

"Greedy-play" instead of "Smart Player" strategy. According

to the results(table 10.), the agent learning form "Greedy-

play, " its average of winning percentage is bigger than the

original "Greedy-play" strategy. This result presents that

the strategy through the learning process will present a

better performance than the original strategy in Blackjack

game, under the circumstance that the original strategy is

not optimal.

35

CHAPTER FIVE

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

This project explored the methods of reinforcement

learning as a mean of determining an optimal game strategy

of Blackjack. From the above experiment, it can be concluded

that the reinforcement learning strategy does have better

performance in playing Blackjack than pre-programmed

strategy. Reinforcement learning agent is able to select the

best actions in each state. Although some selections might

be wrong due to bad experience, agent gets more learning

experience through learning process, and when learning is

finished, the game strategy will become*an "optimal"

strategy.

In the pre-programmed game strategy, the style of

playing in a game has always been pre-set, which would make

the game lack for excitement and variation. In other words,

if the reinforcement learning is implemented in game

strategy design of computers, players would not be able to

guess computer's next move, which will make the

entertainment of the game improve.

36

5.2 Future Directions

The future direction of the project is to apply

reinforcement learning to other types of games, such as

Real-Time Strategy games, Role-Playing games, Virtual Life

Games, Sports games, Shooting games and Massively

Multiplayer game etc. Nevertheless, to enable the computer

learns human player's game strategy and uses it against

players in a complex game is very challenging. The

limitation of reinforcement learning into a complex game

design is the scalability. When state space and action space

are huge, it takes longer to learn. The learning can be

conducted off-line, so the computation time is a real

problem. The problem is the opportunity to model the large

space of actions and states. The reinforcement learning's

convergence to optimal strategy is under the assumption that

every state and action has been visited infinitely often.

However, this assumption is not tenable in a large scale

game. One possible resolution would be the integration of

reinforcement learning with prior-knowledge of the game or

basic rules of the game. Even though with the limitation

that it is hard to converge to optimal strategy in a large

scale game in terms of the time and exploration of the game,

reinforcement learning still provides a promising and

37

satisfactory solution since it involves learning and updates

the strategy from the history of play.

38

REFERENCES

[1] Blackjack, http://en.wikipedia.org/wiki/Blackjack

[2] Richard S. Sutton and Andrew G. Barto, Reinforcement

Learning: an Introduction, MIT Press, Cambridge, MA,

1998.

[3] Junling H. and Michael P. Wellman, Nash Q-Learning for

General-Sum Stochastic Games, Journal Of Machine

Learning Research 4 1039-1069, 2003.

[4] Watkins, C. and Dayan, P. Technical note: Q-learning.

Machine Learning, 8 (3/4):279-292, May 1992.

[5] Kaelbling, L., Littman, M. L. and Moore, A. W.,

Reinforcement Learning: A Survey. Journal of Artificial

Intelligence Research, 4:237-285, 1996.

[6] Shoham, Y. and Powers, R., and Grenager, T., Multi-Agent

Reinforcement Learning: a Critical Survey. Computer

Science Department of University Stanford, 2003.

[7] Michael L. Littman, Markov Games as a Framework for

Multi-agent Reinforcement Learning. Eleventh

International Conference on Machine Learning, 1994.

[8] Charles D. Granville, Applying Reinforcement Learning to

Blackjack Using Q-Learning. University of Oklahoma, 2004

39

http://en.wikipedia.org/wiki/Blackjack

	Implementation of reinforcement learning in game strategy design
	Recommended Citation

