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ABSTRACT

Reinforcement learning is one type of machine learning. 

It is concerned with learning through the use of penalties 

and rewards. The main purpose of this project is to apply 

reinforcement learning in the design of game strategy. Using 

this approach, the computer learns the opponent's strategy, 

and learning takes place during each step of play. The 

reinforcement learning used in this project will be based on 

the Q-learning algorithm, and the game "Blackjack" is 

selected as the study model because of its simplicity and 

popularity.

In order to demonstrate that the strategy implemented 

with reinforcement learning performs better than pre

programmed strategies, an experimental approach is used. In 

the experiments, the winning percentages of different 

strategies with and without learning capabilities are 

compared when playing Blackjack. The experimental results 

show that the strategy with learning has a better 

performance than the pre-programmed strategies.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Reinforcement learning is one type of machine learning; 

it is concerned with learning through the use of penalties 

and rewards. Reinforcement learning is also considered as 

one of the suitable methods for game playing due to its 

capability to discover good strategies. In this project, 

this technique is applied in the design of game strategy.

This chapter presents the purpose and background of 

this project. The significance and contribution of the 

project is also discussed briefly.

1.2 Problem

The main purpose of this project is to apply 

reinforcement learning to the design of game strategy. 

Although reinforcement learning is traditionally defined as 

a sequence of decisions and fit in game playing well, it is 

not well studied and applied in practice. In the gaming 

industry, the strategy used by computers to win a game is 

usually pre-programmed by game designers according to the 

game patterns or a set of rules. The strategies in computer 

games seldom have characteristics of learning, i.e., playing 

1



based on the behavior pattern of the opponent. This type of 

strategy usually makes players feel less challenged when 

playing against the computer opponents. Hence, to let games 

become more interesting, it is important to increase the 

variation and intelligence of the game. In my project, a 

computer software agent will be designed to learn the 

strategy of an opponent throughout the playing history, 

rather than respond to the opponent's action by following 

pre-programmed instructions or rules. By applying the 

reinforcement learning in game strategy design, the computer 

as a competitor will no longer be a pre-programmed robot. 

Through the learning process, the computer's actions will 

become more flexible and unpredictable.

1.3 Background

Machine learning studies the development of algorithms 

and techniques that enable a computer to "learn" through 

experience and improve performance over time. It is the core
I

of artificial intelligence and also an important 

characteristic of computer intelligent behavior. Based on 

the developers' desired outcome of machine learning 

algorithm, machine learning is divided into different areas. 

For example, supervised learning generates a function that 

maps inputs to desired outputs (as explained in Figure 1.)
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Unsupervised learning models a set of outputs which are 

unlabeled examples. In supervised learning, a set of inputs 

is assumed to be the cause of another set of outputs, while 

in unsupervised learning all inputs are assumed to be caused 

by a set of latent variables. Reinforcement learning is a 

sub-area of machine learning that is concerned with learning 

through the use of penalties and rewards (as explained in 

figure 2.) In other words, it is about how an agent ought to 

take actions in an environment based on current state and 

previous feedback so one can maximize the notion of long

term reward. The learning algorithm decides which action to 

take depending on finding the actions that yield the highest 

overall reward through trials and errors. The actions taken 

will affect the immediate and subsequent rewards. Hence, the 

reinforcement learning algorithm is a good method for 

approximating an optimal game strategy because it allows 

learning to take place during each step of play.

3



Supervised Learning

Training Info - desired (target) outputs

1
Inputs Supervised Learning. 

System Outputs

Error = (target output - actual output) 

Objective: Minimize error

Figure 1. Illustration of Supervised Learning
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Reinforcement Learning (RL)

Training Info = evaluations (“rewards” / “penalties”)

Inputs

Objective: Maximize reward or minimize penalty

Figure 2. Illustration of Reinforcement Learning

1.4 Contribution

Recent games industry puts emphasis on computer 

graphics and the game's fluency rather than the durability 

of a game's life. The advertisement of a new game usually 

uses a gorgeous 3D video to attract customers. However, 

customers easily lose their interest when they feel a game 

has no challenge even though its graphics is perfect. 

Especially the computers with pre-programmed strategies are 

easier to let players feel bored when players can predict 

5



what the computer is going to do or respond on the next move. 

Hence, in order to extend a game's life, it is important to 

let the game become more competitive and flexible.

The contribution of the project is to combine game 

strategy design with reinforcement learning. The computer 

learns the player's strategy when the player is playing and 

allows learning to take place during each step of the play. 

The computer then has the capability to create an optimal 

game strategy through the playing history of the specific 

player. The computer game with learning capability will thus 

generate different strategies against different players. 

Therefore, it will increase variation and challenge of game 

play.

6



CHAPTER TWO

PROBLEM

2.1 Introduction

Blackjack has all the basic elements of a game: players, 

actions, and payoff. It is selected as the study model 

because of its simplicity and popularity. In Blackjack, 

there is no absolute winning strategy because of the 

variation of the states and the randomness in a shuffled 

deck. However, players playing with certain strategies may 

have higher chances to win. It is desired that an 

intelligent software agent is designed to learn from smart 

and experienced human players so that the software agent can 

play against the dealer and defeat the dealer with a higher 

probability.

Chapter 2 introduces the basic Blackjack game rules. In 

the project, the Blackjack rules are the same as those in a 

casino. In this chapter, the detailed view of the user 

interface and functions of the program is present.

2.2 Blackjack Game Rules

Blackjack is a widely played card game that can be 

found in casinos. The rule to win Blackjack is to obtain a 

total point of cards higher than the dealer's points but not 

7



exceeding 21. The game works by assigning each card a point 

value. Cards from 2 to 10 are worth their face value, while 

Jacks, Queens, and Kings are worth 10 points. An ace is 

worth either 1 or 11 points, whichever is decided by 

players. According to casino's rules, each player is first 

given two cards and face up and the dealer also has two 

cards only one is faced up. After receiving the two cards, 

the player can choose his or her own actions. "Stay" is to 

stay with the current cards and take no card. "Hit" is to 

add a card to the hand to make the total card value to be 

closer to 21. A player may hit as many times as he wishes as 

long as his card value is not over 21. "Double Down" is when 

player holding two cards, the player can double his bet by 

hitting with only one more card and stay after that, and
I

"Split" is having the pair of cards with the same values, 

the player can split his hand into two hands, Hence, based 

on player's card value and dealer's face up card's number, 

players can use their own strategy to decide hit or stay. 

However, for simplicity of the project, "Double down" and 

"Split" will not be considered in this project.

The dealer's actions are fixed. Based on the casino's 

blackjack rules, the dealer hits when his or her total 

points is less than 17 and stays when it is greater than 17. 

When the player has 21 points in the first two cards, that

8



means Blackjack, and the player automatically wins if the 

dealer does not have 21 points. However, if the dealer has 

Blackjack, this round is over and the dealer wins. Moreover, 

if the card value of the dealer or player is over twenty 

one, this round is also over, and this situation is called 

"Bust". Lastly, after the dealer finishes his action, and 

both dealer and player get the same card value, it means 

this round is a tie.

2.3 User Interface

The user interface is programmed in C++, and the 

graphic part is done using Graphic Device Interface (GDI) 

which is a class-based Application Programming Interface 

(API) for C++ programmer. The configuration of Blackjack 

user interface consists of dealer's stack of cards, player's 

stack of cards, mode-selection buttons, action buttons, and 

status (the card values, game result, and agent's action). 

In the user interface, the cards on the top are dealer's 

cards, and the cards on the bottom are owned by players. The 

numbers on the top of each set of cards are the total cards 

points, and game result shows in the middle of table when 

current round is finished. The buttons on the top left are 

mode-selection buttons. Users can choose the different modes 

9



to operate the program. There are four modes, which are 

"Manual", "Auto", "Learner" and "Greedy". Each function will 

be introduced in Section 2.4. The buttons on the right are 

action buttons. Users can play Blackjack by clicking "Hit" 

and "Stay" buttons or understand how the agent chooses its 

actions by clicking the "Next" button.-The user interface is 

shown in Figure 3.

Figure 3. User Interface
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2.4 Functions

A main objective of the project is to explore the 

feasibility and the advantages of learning in game strategy 

design. Therefore, in order to reveal the performance of 

reinforcement learning, we set up two pre-programmed game 

strategies which are named "Smart Player" and "Greedy 

Player". Interpreting "Smart Player" and "Greedy Player" in 

game play, main function is to let users play Blackjack and 

exhibit how different agents choose their actions. As 

mentioned before, there are four mode-selection buttons in 

the left of the user interface. The function of "Manual" 

button is to let human player play Blackjack manually. In 

this mode, players can choose their action "Hit" and "Stay" 

against the dealer, and learning agent learns the strategy 

of the player at the same time. The "Auto" button is to 

allow users to observe how the agent uses the pre-programmed 

strategy which is named "Smart player" to play Blackjack. In 

this mode, users can only click the "Next" button to see 

what is the next action that the agent will choose. When 

clicking the "Next" button, agent's action and description 

will be shown on the screen (see Figure 4).

11



Figure 4. User Interface in Different Mode

The function of "Learner" button and "Greedy" button 

are similar with "Auto" Button. The difference between those 

three buttons is that different buttons present different 

agents. As implied by the name, the "Learner" button is to 

allow the user to observe how the agent uses the 

reinforcement learning algorithm to play Blackjack. From the 

learning process, the learning agent creates its own playing 
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strategy and shows its capability of decision making.

However, the "Greedy" button allows the agent to use a 

different pre-programmed strategy, which is named "Greedy", 

to play Blackjack, and users can observe how the agent 

applies the Greedy strategy to play Blackjack.
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CHAPTER THREE 

. METHODOLOGY

3.1 Introduction

The most important element of the project is to explore 

learning in game play. Through learning, the computer 

observes human behavior, analyzes the goodness of actions in 

a state and thus plays against opponents smartly. This 

chapter reviews reinforcement learning and illustrates how 

reinforcement learning in game strategy design is 

implemented. Specifically, Q-learning, one of the
i

reinforcement learning algorithms, is discussed as well.

3.2 Reinforcement Learning Review

Reinforcement learning is a type of machine learning 

technique. This technique was discovered in late 1980s and 

has been studied until now. The main idea of reinforcement 

learning is to allow learning to take place while 

interacting with environments; its agent learns from the 

consequences of its action, rather than from being taught. 

The agent selects its actions through its experience and 

also by making new choices, which is practically trial and 

error learning. Moreover, the reinforcement learning agent 

receives a numerical reward when it makes a right choice, 

14



and the agent chooses actions that maximize the accumulated 

reward over time.

The widely used or standard framework of reinforcement 

learning is Markov Decision Process (MDP)[7]. It provides a 

mathematical framework for modeling decision-making in 

situation where outcomes are partially random and partially 

under the control of the decision maker. MDP is represented 

with a tuple(S, A, R, P(S)), where S is the set of states , 

A is the set of agent's actions, and R is a reward function 

R : S x A -» R mapping state-action pair (s, a) of the 

environment to a reward. A reward function determines what 

is good in an immediate sense. P(s) is the set of discrete 

probability distributions over the states, i.e., the state 

transition probability.

The objective of reinforcement learning is to find a 

policy it that maximizes the expected sum of discounted 

rewards over time. A policy it which is defined as it'.S-^A. 

To achieve the objective, we need to find out the optimal 

policy it. The policy 7t specifies the learning agent's 

behavior at given states in an environment. In other words, 

a policy is a mapping from observed states to actions which 

should be taken in those states. Therefore, a policy may be 

a simple function, a lookup tale, and a search process 

involved extensive computation.

15



3.3 Q-learning Algorithm

Q-learning is a simple incremental algorithm developed 

from the theory of dynamic programming for reinforcement 

learning. To introduce the long term rewards of action a 

taking in state s in Q-learning, we define a value function 

V(s) as:

V” 6)=+/£ (/U* (W (5 ■»

The learning agent expects to receive R(x(s)) immediately for 

performing the action a in state s, and then moves to a 

state that is 'worth' with probability ps_>s,x(s) [4] .

Therefore, the value function V(s) with policy n can be 

explained as the sum of immediate rewarded received plus the 

reward that will received at new state s' following the same 

strategy thereafter. In Q-learning, policies and the value 

function are represented by a two-dimensional lookup table 

indexed by state-action pairs. For a policy n, define Q 

values as:

O’ (s,a) = R, (a) + rX (s ■))

In other words the Q value is the expected discounted reward 

for choosing action a at state s and following policy n 

thereafter. The objective of Q-learning is to maintain an 

estimate of the Q* which is q* for an optimal policy n . If 

16



a* is an action at which the maximum is attained, and then 

an optimal policy can be formed as 7r*(s) = a*, it is 

straightforward to show that V*(s)t=xnax.aQ*(s,a) [4] . In Q- 

learning, the agent's experience consists of a sequence of 

distinct stages or episodes. In the n/A episode, the 

learning agent observes its current state sn and then 

selects an action an [4]. Then it observes the subsequent 

state s'n and receives an immediate payoff rn , and adjust its

Qn_} values using a learning rate an , according to:

f (1 -a„)2„_i(s,o)+a„[r„ + 7 Vn.,(5)] if s = s„ and a = an,
1 Q„-i(s,a) otherwise,

Where

Each episode is equivalent to one training session; the 

agent explores the environment and gets the reward until it 

reaches the goal state. allows the agent to compute

the expected reward of being in state s, taking action a, 

and thereafter following policy k . Let the state at time t 

be rt/ and assume that the learning agent then chooses 

action at. The immediate result is that a reward rt is 

received by the learner. The parameter a is referred to as

17



the learning rate that determines the size of the update 

made on each time-step, t is referred to as the discount 

rate, which determines the value of future rewards. < 1

controls the affection of future rewards on the optimal 

decisions. If 7 is closer to zero, the agent will tend to 

consider only immediate reward. On the other hand, the 

closer 7 is to one the greater the weight of future 

reinforcements. The Q-learning algorithm is outlined below 

[8] :

Table 1. Q-learning Algorithm

Initialize Q(s, a) arbitrarily

Repeat (for each episode):

Choose a from s using policy derived from Q

Take action a, observe r, and s'

Q(s, a)<—Q(s, a) + a [r + y maxa. Q.(s' , a') -Q(s, a) ]

s<— s ’

until s is terminal

The advantage of Q-learning is that one does not need a 

model of the environment. In Q-leaning, the optimal policy 

can be learn by interacting with the environment, and no 

18



knowledge of the true transition probabilities or the reward 

function is necessary. The update rule is policy free as it 

is a rule that just relates Q values to other Q values. Q- 

learning can calculate the Q values directly from the 

elementary rewards observed.

19



CHAPTER FOUR

EXPERIMENTS

4.1 Introduction

In this project, the main idea is to generate optimal < 

game strategy by using the reinforcement learning algorithm. 

Through the process of learning, the playing strategy used 

by the learning agent will improve over time of playing. In 

other words, after the human player play Blackjack many 

rounds with a dealer, the computer will learn his or her 

strategy and apply the strategy which is similar but better 

than the human player's to play Blackjack. Therefore, if the 

player is a experienced smart player, the computer that 

learns from the smart player will use an "optimal" Blackjack 

strategy against dealer.

Theoretically, the learning agent will reveal a better 

performance than the pre-programmed strategy. To evaluate 

the performance of the reinforcement learning, the software 

agent with learning ability will be compared with the 

software agent that uses pre-programmed strategy. And the 

comparison results are given between the learning agent and 

the pre-programmed agent and reveals that the learning agent 

has a better performance. Chapter four introduces how to 

implement game strategy using reinforcement learning step by

20



step and what is pre-programmed game strategy for agent to 

learn and all results of the experiments will be provided 

and discussed.

4.2 Game Configuration

The configuration of Blackjack game consists of main 

game program and reinforcement learning agent program which 

are developed by C++ language. The function of the main game 

program is to let players play Blackjack manually. During 

the time when human player is having fun with Blackjack, the 

learning agent learns human player's playing strategy. 

Moreover, when selecting the mode on main game program, 

program presents different action choice by different agent 

in order to let users realize how the agent learns. 

Reinforcement learning agent program uses Q-learning 

algorithm. The Q-learning algorithm is a good method for 

approximating an optimal Blackjack strategy, because it 

allows learning to take place during playing. Therefore, 

Blackjack can be easily formulated as an episodic task. 

In this project, the state representation of Q-learning 

algorithm consists the player's current total points which 

are between 2 to 21, and dealer's face up card which is

21



between 1 to 10. The action sets are 1 and 0 which means

"Hit" and "Stay". In Q-learning formula:

Q(s, a) <- Q(s, a) + a [r + 7 maxa. Q(s', a1) -Q(s, a)]

a = 0.01, 7 = 0.9, and immediate reward r is 1 when this 

round the player wins, -1 when player loses, and 0 when 

player choose "Hit" but not bust, and game is still in 

process(shows in Table 2).

Table 2. Game Configuration Table

SHS^Sg}, where S^iPlayer's current total cards number: 2,3,...,21 

and S2:Dealer's face up card unmber: 1,2,... ,10

1, Player chooses "Hit".
0, Player chooses "Stay".

{
1, when player wins. 
-1, when player loses. 
0 , Game continues.

P(s) = l for all sgS

22



For example, in the situation when dealer's face up 

card is 9 and player's total card number is 15, player 

chooses to "Hit", then player gets the "King" which means 10 

points. So player's total card number is 25 which means 

"Bust". On the state of "dealer's card = 9 Player's card = 

15", player's action is 1 and gets penalty which is -1 due 

to the bad choice. However, in the same situation, player 

chooses "Hit" and gets 2 points. The game is still in the 

process. On the state of "dealer's card = 9 Player's card = 

15", player's action is 1 and gets reward 0.

4.3 Learning Process

In the prior chapter, the concepts of reinforcement 

learning and Q-learning algorithm have been discussed. The 

detailed processes of how the computer uses reinforcement 

learning to learn and take actions will be presented as 

examples in the below:

The learning agent begins with no prior knowledge, i.e., 

every action value Q for each state is zero, and uses the Q- 

learning algorithm.

Round 1: Assuming that player gets two cards, one is K and 

another is 9. Dealer has a face-up card which is 6 and a
I

face-down card in hand. The total points of player's cards 

23



are 19. Because learning starts with no prior knowledge 

beyond the rules of the game, every action Q for each state 

is initially zero. Initially, the data table is:

Table 3. Initial Data Table for So = (6, 19}

Dealer's card=6, Player's card= 19, Action=0 Q-Value=0

Dealer's card=6, Player's card= 19, Actional Q-Value=0

The number behind the Action = 0 or 1 is the action value.
I

It determines that agent will choose "Hit" or "Stay" when 

the same state takes place again. Now if the player chooses 

"Hit" in this state and loses in this round, the Q-Value of 

this state will be updated in -0.01.

Q(s, a) «- Q(s, a) + a [r + 7 maxa, Q(s', a1) -Q(s, a)]
Q(s, a) <- 0+0.01[-1 + 0.9 * 0 - 0] = -0.01

The data table will be updated:

24



Table 4. Data Table for S = {6, 19} in Round 1

Dealer's card=6, Player's card= 19, Action=0 Q-Value=0

Dealer's card=6, Player's card= 19, Action=l Q-Value
=-0.01

Round 2: player gets the same two cards as last round, one 

is K and another is 9. Dealer has a face-up card which is 6 

and a face-down card in hand. According to the data table, 

the Q-Value of action "Stay" is bigger than the Q-Value of 

action "Hit". Hence, player chooses "Stay", assume that 

player wins this round. The Q-Value of this state will be 

updated in 0.01.

Q(s, a) <- Q(s, a) + a [r + 7 max,, Q(s', a1) -Q(s, a)]
Q(s, a) <- 0+0.01[l + 0.9 * 0 - 0] = 0.01

The data table will be changed to:

Table 5. Data Table for S = {6, 19} in Round 2

Dealer's card=6, Player's card= 19, Action=0 Q-Value 
= 0.01

Dealer's card=6, Player's card= 19, Action=l Q-Value
=-0.01

25



Round 3: Player gets the different two cards with last round, 

one is 8 and another is 9. Dealer has a face-up card which 

is 6 and a face-down card in hand. The total points of 

player's cards are 17. Because this state is not experienced 

by the learning agent, the initial data table is:

Table 6. Initial Data Table for So = {6, 17} in Round 3

Dealer's card=6, Player's card= 17, Action=0 Q-Value=0

Dealer's card=6, Player's card= 17, Action=l Q-Value=0

In this round, player choose to "Hit" and then gets a 2 

points card. The total points of player's cards are 19, and 

this round is still in process. The Q-Value will be updated 

with 0 reward as well.

Q(s, a) <r- Q(s, a) + a [r + 7 maxa, Q(s’> a') -Q(s, a)]
Q(s, a) <— 0 + 0.01[0 + 0.9 * maxa, Q(s', a') - 0]

maxaQ(s', a') means the maximum Q-Value in the state of

"Dealer's card =6 Player's card =19." which are:
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Table 7. Data Table for S = {6, 19} in Round 3

Dealer's card=6, Player's card= 19, Action=0 Q-Value
=0.01

Dealer's card=6, Player's card= 19, Action=l Q-Value 
=-0.01

Hence, the maxaQ(s', a1) will be 0.01 and the Q-Value of 

this round will be updated by 0.00009.

Q(s, a) <- Q(s, a) + a [r + 7 max„, Q(s', a') -Q(s, a)]

Q(s, a) <- 0+0.01[0 + 0.9 * 0.01 - 0] = 0.00009

The data table will be changed to:

Table 8. Data Table for S = {6, 17} in Round 3

Dealer's card=6, Player's card= 17, Action=0 Q-Value=0

Dealer's card=6, Player's card= 17, Action=l Q-Value 
=0.00009

The game continues until it is over. At each step of the 

game, the Q-Value corresponding to every s and a is updated 

as well.

Based on these operating rules, every state counts as 

long as the computer experience it, the action value of
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these states will be generated. Moreover, the action value 

decides how much benefit will player get when choose this 

action if next time in the same state. Hence, when the 

computer agent chooses the action, it will choose an action 

with bigger action value in this state.

4.4 Experiment Results

In order to let the computer completely learns human 

player's strategy, human player needs to play the game a 

great deal of rounds. So the computer can collect enough 

data for learning information. However, it is unreasonable 

for a human player to play thousand of rounds. Hence, the 

project allows the computer playing blackjack automatically 

based on pre-programmed strategy for many rounds. It records 

all data and generates rules for learning agent to use. In 

addition, this experiment compares the pre-programmed 

strategies to the reinforcement learning agent. Different 

pre-programmed game strategies will be introduced in the 

below:

4.4.1 Ruled-based Greedy-Play

In chapter three, it mentioned that a comparison 

strategy studied as well as a pre-set strategy to compare 

with the performance of reinforcement learning strategy.
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This pre-set strategy is named "Greedy" in this project, and 

its principle is to choose the action based on the 'short

term benefit. The rule of greedy-play algorithm is that 

player always hit until the total points of player's card 

are bigger than or equal to 17. The reason for the 

comparison group to use this game strategy is because dealer 

uses the same strategy. Since dealer always chooses to hit 

when his or her cards' points are less than 17, and stay 

when the cards' points are bigger than or equal to 17, so as 

long as dealer does not get a bust and player's card points 

are not more than 17, the player will lose in this round. 

For this greedy reason, this project uses this pre-set 

strategy "Greedy" to compare with a software agent which has 

learning ability. Experiment allows "Greedy" player to play 

Blackjack automatically and calculate the winning percentage 

to compare with the learning agent.

4,4.2 Learning from "Smart Player"

As mentioned before, in order to avoid too little data 

collect from human players playing manually, this project 

sets a simple strategy for the reinforcement learning agent 

to learn automatically. The game strategy is called "Smart 

player" that has a basic concept as shown below:
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Depending on dealer's face-up card number and player's 

total cards' points, player makes different decisions.

When player gets 17 - 20 in hand, player choose "Stay"

When player gets 12 - 16 in hand and dealer's face-up 

card number is 2 - 6, player choose "Stay"

When player gets 12 - 16 in hand and dealer's face-up 

card number is 7 - 10,J,Q,K,Ace, player choose "Hit"

When player gets 2 - 11 in hand, player choose "Hit"

Considering the different situation that might lead 

dealer or player to get a bust, these rules are basic 

optimal game strategies for any Blackjack situation in the 

long run.

After the computer uses "Smart Player" strategy to 

play Blackjack many rounds, the computer will output a .txt 

file for agent to read and use. 'This learning data is named 

"Rules.txt"(shows in Figure 5.) In this procedure, it can be 

called rule generation which means learning agent learns 

from "Smart Player". Hence, after generating these rules, 

the computer can use the "Smart player" strategy to play 

blackjack.
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dealer’s 
dealer’s 
dealer’s 
dealer s 
dealer's 
dealer’s 
dealer’s 
dealer’s

card =1 
card =1 
card =1 
card =1 
card =1 
card =1 
card =1 
card =1

Player s card =8 Action =1 Q-Value =2.09521
Player's card “9 Action =0 Q-Value =0 -3,
Player’s card =9 Action =1 Q-Value =2.29049

dealer’s card =1 
dealer’s card =1 
dealer’s card =1 
dealer’s card =1
dealer's 
dealer s 
dealer’s 
dealer’s 
dealer s 
dealer's

card =1 
card =1 
card =1 
card =1 
card =1 
card =1

Player’s card =10 Action =0
Player’s card =10 Action =1
Player’s card =11 Action =0
Player’s card =11 Action =1
Player's card =12 Action =0
Player’ s card =12 Action =1
Player’s card =13 Action =0
Player’s card =13 Action =1
Player’s card =14 Action =0
Player's card =14 Action =1
Player's card =15 Action =0
Player's card =15 Action =1
Player’s card =16 Action =0
Player s card =16 Action =1
Player's card =17 Action =0

Q-Value =0
Q-Yalue =5. 25443
Q-Value =-0. 262507
Q-Value =0
Q-Value =-0.262509
Q-Value =0
Q-Value =-0. 244958
Q-Value =0
Q-Value =-0.171284
Q-Value =0
Q-Value =-0.412772
Q-Value =0
Q-Value =-0.132432
Q-Value =0
Q-Value =-0.13091 J

WiGD

Figure 5. Sample of Rules.txt

In order to prove that the strategy implemented by 

reinforcement learning reveal a better performance than pre

programmed strategy to play Blackjack, my experimental 

approach is to compare the winning percentage of three 

different strategies, Greedy-play strategy, Smart Player, 

and reinforcement learning agent, when playing Blackjack.

The results of learning agent learning from "Smart Player" 

strategy will prove that the learning agent through the 

learning process gives a better performance than the pre-set 

strategy "Greedy-play" in Blackjack game. To calculate the
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winning percentage of "Smart player", "Learning agent" and 

"Greedy-play" playing Blackjack, the approach is to run 10 

times with different playing strategies and each time 

playing Blackjack 1000 rounds. The results of the experiment 

are as shown in Table 9.:

Table 9. Result Table 1

Smart Player Learner Greedy

1 42.4% 39.1% 40.0%

2 39.5% 38.1% 36.3%

3 43.2% 39.9% 36.5%

4 40.1% 40.3% 39.7%

5 39.0% 37.5% 40.2%

6 43.1% 41.3% 38.2%

7 41.7% 42.8% 35.0%

8 41.5% 42.0% 41.2%

9 39.1% 38.8% 40.1%

10 42.8% 41.2% 37.8%
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Average 41.24% 40.1% 38.56%

Standard

Deviation
0.0159 0.0165 0.0195

4.4.3 Learning from "Greedy Player"

In order to prove the strategy through the learning 

process will have a better performance than the original 

strategy, the experiment sets another programmed strategy 

"Greedy Player" to be another model for the reinforcement 

learning agent to learn. Based on the same learning elements 

and situation, learning agent learns from greedy-play 

strategy. The rule for greedy-play strategy is that player 

chooses stay whenever the total value of player's card is 

bigger than or equal to 17. Under this circumstance, the 

computer plays Blackjack with greedy-play strategy for many 

rounds and then output a .txt file with greedy-play rules. 

Moreover, learning agent learns this strategy and uses it to 

against dealer. Since reinforcement learning agent learns 

different strategies, the agent might choose different 

actions with the same state. The experimental approach is to 

allow learning agent which learns "Greed-play" strategy to 

run 10 times and each time playing Blackjack 1000 rounds. 

The results of the experiment are as shown in Table 10.:
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Table 10. Result Table 2

Learner Greedy

1 38.3% 35.8%

2 39.1% 39.2%

3 41.2% 38.3%

4 40.7% 40.1%

5 41.1% 37.2%

6 39.6% 41.1%

7 39.1% 39.3%

8 40.2% 38.2%

9 40.1% 40.0%

10 37.0% 39.9%

Average 39.64% 38.91%

Standard
Deviation

0.0125 0.0149

4.4.4 Results Comparison

According to the results of the experiment (Table 9.), 

the average of winning percentage using reinforcement 

learning is bigger than the pre-programmed strategies
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"Greedy-play." It shows that the agent is learning useful 

information during training process and using a better 

strategy against dealer. This result presents that the 

strategy implemented by reinforcement learning reveal a 

better performance than pre-programmed strategy to play 

Blackjack. However, the winning percentage of "Smart player" 

is the biggest. It is because the "Smart player" strategy is 

based on basic optimal game strategies for any Blackjack 

situation in the long run. Even learning agent learns from 

"Smart player" strategy, its average of winning percentage 

can just approach the winning percentage of "Smart player," 

but hard to exceed it.

In another experiment with the same elements and 

conditions, the computer learns from the programmed strategy 

"Greedy-play" instead of "Smart Player" strategy. According 

to the results(table 10.), the agent learning form "Greedy- 

play, " its average of winning percentage is bigger than the 

original "Greedy-play" strategy. This result presents that 

the strategy through the learning process will present a 

better performance than the original strategy in Blackjack 

game, under the circumstance that the original strategy is 

not optimal.
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CHAPTER FIVE

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

This project explored the methods of reinforcement 

learning as a mean of determining an optimal game strategy 

of Blackjack. From the above experiment, it can be concluded 

that the reinforcement learning strategy does have better 

performance in playing Blackjack than pre-programmed 

strategy. Reinforcement learning agent is able to select the 

best actions in each state. Although some selections might 

be wrong due to bad experience, agent gets more learning 

experience through learning process, and when learning is 

finished, the game strategy will become*an "optimal" 

strategy.

In the pre-programmed game strategy, the style of 

playing in a game has always been pre-set, which would make 

the game lack for excitement and variation. In other words, 

if the reinforcement learning is implemented in game 

strategy design of computers, players would not be able to 

guess computer's next move, which will make the 

entertainment of the game improve.
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5.2 Future Directions

The future direction of the project is to apply 

reinforcement learning to other types of games, such as 

Real-Time Strategy games, Role-Playing games, Virtual Life 

Games, Sports games, Shooting games and Massively 

Multiplayer game etc. Nevertheless, to enable the computer 

learns human player's game strategy and uses it against 

players in a complex game is very challenging. The 

limitation of reinforcement learning into a complex game 

design is the scalability. When state space and action space 

are huge, it takes longer to learn. The learning can be 

conducted off-line, so the computation time is a real 

problem. The problem is the opportunity to model the large 

space of actions and states. The reinforcement learning's 

convergence to optimal strategy is under the assumption that 

every state and action has been visited infinitely often. 

However, this assumption is not tenable in a large scale 

game. One possible resolution would be the integration of 

reinforcement learning with prior-knowledge of the game or 

basic rules of the game. Even though with the limitation 

that it is hard to converge to optimal strategy in a large 

scale game in terms of the time and exploration of the game, 

reinforcement learning still provides a promising and
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satisfactory solution since it involves learning and updates 

the strategy from the history of play.
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