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Numerical simulations are used to probe Rayleigh–Darcy convection in fluid-saturated
porous media towards the ultimate regime. The present three-dimensional dataset, up
to Rayleigh–Darcy number Ra = 8 × 104, suggests that the appropriate scaling of the
Nusselt number is Nu = 0.0081Ra + 0.067Ra0.61, fitting the computed data for Ra � 103.
Extrapolation of current predictions to the ultimate linear regime yields the asymptotic
law Nu = 0.0081Ra, about 16 % less than indicated in previous studies. Upon examination
of the flow structures near the boundaries, we confirm previous indications of small flow
cells hierarchically nesting into supercells, and we show evidence that the supercells at the
boundary are the footprints of the megaplumes that dominate the interior part of the flow.
The present findings pave the way for more accurate modelling of geophysical systems,
with special reference to geological CO2 sequestration.
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1. Introduction

When a fluid-saturated porous layer undergoes bottom-up heating, it is prone to exhibit
Rayleigh–Darcy convection (Horton & Rogers 1945; Lapwood 1948; Graham & Steen
1994). The main controlling parameter is the Rayleigh–Darcy number Ra, expressing the
ratio of buoyancy to dissipative forces, and the resulting heat flux is characterized in terms
of the Nusselt number, Nu. The scaling of Nu with Ra in natural convection is traditionally
described via power-law dependency, Nu ∼ Raα , although α may change as a result of the
change in the structure of the convective flow. For instance, in Rayleigh–Bénard convection
(He et al. 2012; Lepot, Aumaître & Gallet 2018; Zhu et al. 2018; Wang, Zhou & Sun 2020),
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the general agreement is that α should gradually increase from about 1/3 at moderate Ra,
to asymptotically approach a value of 1/2, corresponding to the attainment of an ‘ultimate’
convection regime (Kraichnan 1962).

Classical theory suggests that the appropriate scaling in the ultimate regime of
Rayleigh–Darcy convection should be linear (Malkus 1954; Howard 1964). The main
argument is that at high Ra, the interior part of the flow is perfectly mixed, and temperature
gradients are confined to near-wall boundary layers whose thickness is δ ∝ Ra−1 (whereas
in Rayleigh–Bénard convection δ ∝ Ra−1/3); hence Nu ∝ δ−1 ∝ Ra. Other more rigorous
arguments have also been provided based on variational calculus, which show that linear
scaling yields maximum heat transfer among all suitably energy-constrained flows (Otero
et al. 2004; Wen et al. 2012; Hassanzadeh, Chini & Doering 2014). This prediction is
supported by existing numerical studies, mainly based on two-dimensional computations
(Otero et al. 2004; Hewitt, Neufeld & Lister 2012; Wen et al. 2012; Wen, Corson
& Chini 2015; De Paoli, Zonta & Soldati 2016) carried out in the range Ra � 105.
Three-dimensional simulations carried out in recent times up to Ra = 2 × 104 (Hewitt,
Neufeld & Lister 2014) also seem to support the establishment of a shifted linear
variation of Nu with Ra. However, given the limited range of Ra in which data are
available, uncertainties remain regarding the actual establishment of the expected ultimate
convection regime, and especially how it is reached starting from finite Ra (Hewitt 2020).

The quest for the Nu scaling in the high-Ra regime is crucial from a fundamental
and also from an applied viewpoint, as the Rayleigh–Darcy model closely mimics
flows in a number of geophysical applications, with special reference to geological CO2
sequestration in deep saline aquifers (Hidalgo et al. 2012; Huppert & Neufeld 2014;
Riaz & Cinar 2014; Emami-Meybodi et al. 2015; De Paoli 2021). Real-life instances
may exhibit Ra up to ∼O(105 ÷ 106), and small deviations from the expected ultimate
linear scaling can produce large differences in the overall predicted transfer flux and in
the corresponding cumulative time integral (Slim 2014; De Paoli et al. 2016; De Paoli,
Zonta & Soldati 2017). The goal of the present work is to investigate the high-Ra range of
Rayleigh–Darcy convection, using a database of three-dimensional numerical simulations
up to Ra = 8 × 104. Our aim is to extract reliable trends for the Nusselt number in a
wide range of Ra, and possibly to infer robust asymptotic estimates for the ultimate linear
regime.

2. Methodology

We consider a fluid-saturated porous medium in a three-dimensional domain (see figure 1)
with uniform porosity φ and uniform permeability κ . The flow, which is incompressible
and governed by the Darcy law, is characterized by an unstable density difference (�ρ∗)
induced by heating the flow from the bottom and cooling it from the top. Indicating
by x∗, z∗ the horizontal directions, by y∗ the vertical direction (along which gravity
acceleration g is directed) and by θ∗ the fluid temperature, the physical instance we
consider corresponds to a fluid-saturated cubic volume with side length h∗ heated at the
bottom, θ∗( y∗ = 0) = θ∗

max, and cooled at the top, θ∗( y∗ = h∗) = θ∗
min. The evolution of

the temperature field is controlled by the advection–diffusion equation

φ
∂θ∗

∂t∗
+ ∇ · (u∗θ∗ − φD∇θ∗) = 0, (2.1)

where t∗ is time, u∗ = (u∗, v∗, w∗) is the volume-averaged velocity field and D is the
thermal diffusivity, which is considered constant here. The superscript ∗ is used to indicate
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Figure 1. Sketch of the computational domain – a cube with side length h∗ – used to study Rayleigh–Darcy
convection. The flow is heated at the bottom, θ∗( y∗ = 0) = θ∗

max, and cooled at the top, θ∗( y∗ = h∗) = θ∗
min,

and boundaries in the x∗ and z∗ directions are assumed to be periodic. The gravity acceleration (g) points
downwards. The temperature distribution θ∗ for the case Ra = 1 × 104 is also shown for illustrative purposes
on the side boundaries and in a plane very close to the top boundary (i.e. at a distance of 50h∗/Ra from the top
boundary).

dimensional variables. We assume that fluid density, ρ∗, is a linear function of temperature,

ρ∗(θ∗) = ρ∗(θ∗
min) − �ρ∗ θ∗ − θ∗

min
θ∗

max − θ∗
min

, (2.2)

with �ρ∗ = ρ∗(θ∗
min) − ρ∗(θ∗

max). Assuming validity of the Boussinesq approximation
(Landman & Schotting 2007; Zonta & Soldati 2018), the flow field is fully described by
the continuity and Darcy equations

∇ · u∗ = 0, u∗ = − κ

μ

(∇P∗ + ρ∗gj
)
, (2.3a,b)

with μ the fluid viscosity (constant), P∗ the pressure and j the vertical unit vector. The
walls are assumed to be impermeable and isothermal, and periodicity is assumed in the
wall-parallel directions.

2.1. Dimensionless equations
Natural velocity and length scales for the system are the buoyancy velocity, V∗ =
g�ρ∗κ/μ, and the domain height, h∗, respectively. Using the set of dimensionless
variables

θ = θ∗ − θ∗
min

θ∗
max − θ∗

min
, t = t∗

φh∗/V∗ , P = P∗

�ρ∗gh∗ , (2.4a–c)

and introducing the reduced pressure p∗, we obtain the dimensionless form of the
governing equations (2.1), (2.3a,b):

∂θ

∂t
+ ∇ ·

(
uθ − 1

Ra
∇θ

)
= 0, (2.5)

∇ · u = 0, u = − (∇p − θ j) , (2.6a,b)
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where Ra = g�ρ∗κh∗/(φDμ) = V∗h∗/(φD) is the Rayleigh–Darcy number. The wall
boundary conditions for velocity and temperature then read as

v( y = 0) = 0, θ( y = 0) = 1, (2.7a)

v( y = 1) = 0, θ( y = 1) = 0. (2.7b)

As previously mentioned, for the physical system investigated here, the buoyancy
velocity V∗ is a natural reference velocity scale (Fu, Cueto-Felgueroso & Juanes 2013;
Wen et al. 2018). At the same time, a possible reference length scale is the thickness
of the porous layer, x∗

c = h∗ (convective scaling). However, an alternative choice for the
reference length scale, which is perhaps more related to the physics of the phenomena
under investigation, is x∗

d = φD/V∗ (diffusive–convective scaling). Note that x∗
d represents

the length over which advection and diffusion balance (Slim 2014), and is independent of
the physical domain thickness. When rescaled in the latter way, dimensions are bounded
within the range x∗/x∗

d ∈ [0, Ra], and comparison between simulations at different Ra is
easier. For this reason, lengths in this paper are rescaled with respect to x∗

d. Furthermore,
introduction of this length scale also yields another interpretation of the Rayleigh–Darcy
number, Ra = x∗

c/x∗
d, which may be regarded as the dimensionless height of the domain

(Slim 2014).

2.2. Computational details
The numerical simulations rely on the modified version of a second-order finite-difference
incompressible flow solver, based on staggered arrangement of the flow variables (Orlandi
2000), which has been extensively used for DNS of wall-bounded neutrally-buoyant and
unstably-stratified turbulent flows (Pirozzoli 2014; Pirozzoli et al. 2017). The temperature
transport equation is advanced in time by means of a hybrid third-order low-storage
Runge–Kutta algorithm, whereby the convective terms are handled explicitly and the
diffusive terms are handled implicitly, limited to the wall-normal direction. This approach
guarantees that the total temperature variance is discretely preserved in the limit of inviscid
flow. The pressure field in the forced Darcy equation is determined by solving the Poisson
equation resulting from the divergence-free constraint,

∇2p = ∂θ

∂y
, (2.8)

with ∂p/∂y = 0 at walls to satisfy the impermeability condition, which is then fed into
(2.6a,b). Fourier expansion along the horizontal periodic directions yields a system of
tridiagonal equations in the wall-normal direction for each Fourier mode, which is then
solved with standard highly efficient numerical techniques (Kim & Moin 1985; Orlandi
2000).

The mesh spacing in the wall-parallel directions was decided based on preliminary
grid-resolution studies at low Ra and inspection of the temperature spectra, to prevent
any energy pile-up at the smallest resolved flow scales. Regarding the resolution in
the wall-normal direction, we have followed the criterion that twenty points should be
placed within the thermal boundary layer edge, identified through the peak location of the
temperature variance, and grid points are clustered towards the walls using a hyperbolic
tangent stretching function. Given the expected linear growth of the temperature gradients,
the number of points in each coordinate direction was increased proportionally to Ra.
The time step is selected so that the CFL number is approximately unity for all the
simulations herein reported. Preliminary calculations, carried out at Ra � 5 × 103, have
shown excellent agreement with the results of Hewitt et al. (2014).
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Simulation Ra Nx × Nz × Ny Nu Ns

S1 1 × 104 768 × 768 × 256 99.84 7.5 × 107

S2 2 × 104 1536 × 1536 × 512 193.71 1.5 × 108

S3 3 × 104 2304 × 2304 × 768 281.14 8.4 × 107

S4 4 × 104 3072 × 3072 × 1024 370.17 7.5 × 107

S8 8 × 104 6144 × 6144 × 2048 709.00 1.5 × 108

Table 1. Parameters of the main three-dimensional simulations performed in the present study. For each
simulation, we report Rayleigh number Ra, grid resolution Nx × Nz × Ny, Nusselt number Nu, and number
of samples Ns over which Nu is averaged (see appendix B for further details). Additional three-dimensional
simulations (not listed here) have been performed at Ra = 2.5 × 103, 5 × 103.

3. Results

3.1. Heat transfer
We have carried out numerical simulations in the Rayleigh number range 2.5 × 103 <

Ra < 8 × 104. Note that, because of the time step restrictions, the simulation at
Ra = 8 × 104 – using 6144 × 6144 × 2048 grid points – is almost 4096 times more
computationally expensive than the simulation at Ra = 1 × 104 – using 768 × 768 × 256
grid points – hence the computational challenge is substantial. A summary of the main
computational parameters is provided in table 1. The heat flux is quantified in terms of
the Nusselt number Nu, evaluated as the mean temperature gradient at the top and bottom
boundaries,

Nu = −
〈

1
2

∫ 1

0

∫ 1

0

∂θ

∂y

∣∣∣∣
y=0

+ ∂θ

∂y

∣∣∣∣
y=1

dx dz

〉
, (3.1)

with angle brackets indicating time averaging.
In figure 2 we show the computed values of Nu as a function of Ra (filled circles),

compared with data available in the literature (open triangles, Hewitt et al. 2014). Also
shown in light grey is the high-Ra portion of the (Ra, Nu) parameter space covered
in previous three-dimensional numerical simulations. The dash-dot line in figure 2
corresponds to the prediction of Hewitt et al. (2014) based on fitting of lower-Ra data
(Ra � 2 × 104), and amounting to a shifted linear variation, Nu = 0.0096Ra + 4.6. As
seen from figure 2, this fit overestimates our data by about 9 % at the highest Ra; hence we
believe that a different expression may be appropriate to more accurately characterize the
trend towards the ultimate linear scaling.

In figure 3 we thus show the compensated Nusselt number Nu/Ra, for a collection of
current and previous numerical data obtained in three-dimensional (Hewitt et al. 2014)
and two-dimensional (Hewitt et al. 2012; Wen et al. 2015; De Paoli et al. 2016) domains.
According to the prediction of Hewitt et al. (2014), the asymptotic value Nu/Ra = 0.0096
should be reached for Ra � 105. Our data (filled circles) for Ra > 2 × 104 fall well
below that prediction, showing no clear evidence for inception of an ultimate regime.
An improved prediction for the pre-asymptotic regime can be constructed by fitting the
numerical data and relying on the compelling evidence that the asymptotic scaling should
be linear (Hewitt 2020). Data fitting then results in a functional representation of the type

Nu/Ra = 0.0081 + 0.067Ra−0.39, (3.2)

which amounts to linear dependence of Nu over Ra augmented with a sublinear corrective
term, shown as a black solid line in figure 3. Compared with previous estimates, this
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3-D case – present work
3-D case – Hewitt et al. (2014)

Nu = 0.0081 Ra + 0.067 Ra0.61

Nu = 0.0096 Ra + 4.6 Hewitt et al. (2014)

Figure 2. Nusselt number as a function of the Rayleigh–Darcy number. Results obtained from the present
numerical simulations are shown with filled circles, and the fitting curve, Nu = 0.0081Ra + 0.067Ra0.61, is
shown as a black solid line. Results obtained in previous simulations by Hewitt et al. (2014) (open triangles) and
the extrapolated shifted linear scaling (blue dash-dotted line) are shown for comparison. The high-Ra portion
of the (Ra, Nu) parameter space covered by previous investigations is rendered by the light grey rectangle.

0.012
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0.008

0.006
104 105

N
u/
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Nu/Ra = 0.0096 + 4.6/Ra

Nu/Ra = 0.0069 + 2.8/Ra
Nu/Ra = 0.0081 + 0.067 Ra–0.39

Ra

3-D – asymptote

(Hewitt et al. 2014)

2-D – asymptote

(Hewitt et al. 2012)

3-D – asymptote

(this work)

Figure 3. Compensated Nusselt number as a function of the Rayleigh–Darcy number, Ra. Results obtained
from the present numerical simulations, which we have run in three-dimensional and two-dimensional domains,
are shown by filled circles (•) and diamonds (�), respectively. For comparison purposes, a collection of
previous data obtained in both two-dimensional domains (Hewitt et al. 2012; De Paoli et al. 2016; Wen et al.
2015) (�, � and �, respectively) and three-dimensional domains (Hewitt et al. 2014) (�) is also shown, with
open symbols. The black solid line denotes the best fit of our three-dimensional data, as from (3.2), and the blue
solid line the shifted linear scaling Nu/Ra = 0.096 + 4.6/Ra predicted by Hewitt et al. (2014). The scaling law
Nu/Ra = 0.0069 + 2.75/Ra proposed by Hewitt et al. (2012) for the two-dimensional case is shown with a
solid red line. The asymptotic predictions for each scaling law are reported as dashed lines.
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Towards the ultimate regime in Rayleigh–Darcy convection

correlation yields good prediction of Nu over a much larger range of Ra, starting at Ra ∼
2.5 × 103, with error no larger than 1.5 %. Extrapolation to higher Ra than reached in the
present computational campaign would yield the asymptotic scaling

Nu = 0.0081Ra, (3.3)

in the ultimate regime. Based on our data, we expect that to have deviations of less
than 5 % from the ultimate regime, Ra in excess of 5 × 105 is needed. At those huge
Rayleigh numbers, which closely represent the case of geological CO2 sequestration in
deep saline aquifers, differences between the current prediction and previous predictions
of Hewitt et al. (2014) would be as large as ∼16 %. These findings are contrasted in
figure 3 with the case of two-dimensional flow, for which the data generally support Nu ≈
0.0069Ra + 2.75, as suggested by Hewitt et al. (2012), and attainment of a linear trend at
Ra ∼ 3 × 104. Hence, extrapolation of our results yields the prediction that in the ultimate
regime the Nusselt number should be larger by about 18 % in the three-dimensional than
in the two-dimensional case.

3.2. Flow structure
It is reasonable to expect that the heat transfer behaviour just discussed is reflected in
the behaviour of the flow structure. We characterize the flow structure focusing on its
signature in the near-boundary region where the contribution of both diffusion-driven
and buoyancy-driven mechanisms is important. An estimate of the location at which
diffusion and buoyancy are both important is given by the temperature boundary layer
thickness, δ, which, in Rayleigh–Darcy convection, is δ ∼ 30/Ra (see Otero et al. (2004),
Hewitt et al. (2012), and also appendix A of the present manuscript). Accordingly, in
figure 4 we show the temperature distributions in a horizontal plane at y = 50/Ra from
the bottom boundary. Indication of the domain size in diffusive–convective units, x∗

d, for
the simulations at lower Ra is given by the white boxes in panel (a). The complex flow
pattern near the boundary, which appears to be still developing at Ra < 2 × 104, seems to
attain a roughly self-similar structure at larger Ra. Hence, in the following we will mostly
refer to the S8 simulation, since the flow features we wish to discuss are emphasized at that
value of Ra.

In figure 4 (and in particular in panel (a)) we clearly observe the presence of thin
bright filaments which appear to be connected in a quasi-regular pattern of cells (Fu
et al. 2013; Amooie, Soltanian & Moortgat 2018). These filaments correspond to regions
where high-temperature fluid protrudes from the boundary, and are produced by tiny
instabilities of the thermal boundary layer. Those are the three-dimensional counterpart
of the protoplumes observed in previous two-dimensional studies (Hewitt et al. 2012; Wen
et al. 2015; De Paoli et al. 2016), and define the perimeter of rather homogeneous (dark)
regions produced by downwelling motions (downwashes) of cold fluid towards the bottom
boundary (see also the vertical slices shown in appendix A and comments therein). After
impinging on the boundary, these downwashes spread horizontally and interact with the
rising protoplumes, determining a dynamic pattern, in which some of the protoplumes
eventually cluster into specific regions – thicker bright ridges (see figure 4a) – that define
the boundaries of seemingly regular superstructures. These ‘supercells’, which encapsulate
larger ensembles of smaller cells, have shape and dynamics recalling those of classical
Rayleigh–Bénard turbulence (Stevens et al. 2018; Krug, Lohse & Stevens 2020) or those
of solar granules in the Sun’s photosphere (Bahng & Schwarzschild 1961; Miesch 2005;
Rieutord & Rincon 2010; Witze 2020) (see also animations in the supplementary movies
available at https://doi.org/10.1017/jfm.2020.1178 for a time-resolved rendering of the
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Figure 4. Temperature distribution in a plane close to the bottom boundary (x, y = 50/Ra, z), for simulations
S8 (a), S4 (b), S2 (c) and S1 (d). The domain size is also explicitly indicated in diffusive–convective units in
each panel. Indication of the domain size – rescaled using the diffusive–convective length scale x∗

d – for the
simulations at lower Ra is given in panel (a) by the white boxes. The size of the superstructures, estimated as
λi = 2πRa/ki with ki/Ra defined as in figure 5, is also shown in each panel (black bars).

supercells). The size of the supercells λi, as inferred from the analysis of the wavenumber
spectra (see figure 5 and the corresponding discussion), can be appreciated in figure 4.
Since at large Ra the size of the supercells, which is approximately one-tenth of the box
side length for simulation S8 – see figure 4(a) – does not seem to evolve once the simulation
has reached the steady state, we are keen to attribute to them an important role in the overall
heat transfer mechanisms. At the same time, an important role is played by the smaller
cells enclosed by supercells. Previous qualitative observations show a complex network
of structures composed of small cells hierarchically nesting into supercells. To determine
the size of such supercells, we use the time-averaged wavenumber power spectrum of
the temperature signal, P(k), which we obtain by taking the two-dimensional Fourier
transform of the temperature field in a horizontal plane located near the boundary (such as
the one sketched in figure 4a).

In figure 5, we show krP(kr) as a function of the normalized radial wavenumber kr/Ra,

where kr =
√

k2
x + k2

z , and kx and kz are the wavenumbers along x and z, respectively.
Results of the S3 simulation are not shown, for better readability. For all considered values
of Ra, a sharp peak occurs at low wavenumbers, which clearly characterizes the size of
the supercells. The wavenumber at which this peak occurs, labelled with ki/Ra in figure 5
(where i refers to the simulation number as in table 1, i.e. i = 1, 2, 4, 8), decreases for
increasing Ra, thus indicating growth of the supercells with Ra. Measurements of the
temperature power spectrum at the midplane of the domain (inset of figure 5) is also
characterized by the presence of sharp peaks (labelled as k′

i/Ra), which in this case are
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r)k rP
(k

r)

Figure 5. Power spectra krP(kr) (solid lines and symbols) of temperature distribution near the boundary
(sampled at the location y = 50/Ra, as in figure 4), shown as a function of the radial wavenumber kr =√

k2
x + k2

z , for all Ra considered here. Results of the S3 simulation are omitted for ease of reading. In the

inset of the figure we plot the power spectra of the temperature distribution at the centre (midplane) of the
domain. Labels ki/Ra and k′

i/Ra indicate the peaks of the spectra. The corresponding wavenumber is explicitly
reported in the main panel.

due to large megaplumes developing in the interior part of the domain (Hewitt et al. 2012;
Hewitt, Neufeld & Lister 2013; De Paoli et al. 2016; Hewitt & Lister 2017).

Direct comparison with the spectra near the boundary shows close coincidence of the
spectral peaks, thus clearly indicating that supercells at the boundary are the footprint of
the megaplumes that dominate the interior part of the flow. At larger kr, the spectrum
near the boundary features a local minimum, followed by rapid increase. Such increase,
which is not present in the spectrum at the domain centre, is naturally associated with the
small-scale protoplumes populating the region near the boundary (see the small filaments
in figure 4).

4. Conclusions

We have reported results of numerical simulation of Rayleigh–Darcy convection inside a
cubic porous layer up to Rayleigh–Darcy number Ra = 8 × 104. Exploiting the numerical
dataset we show that the Nusselt number variation at sufficiently high Ra can be
approximately expressed as Nu = 0.0081Ra + 0.067Ra0.61, with error bar no larger than
1.5 %. Extrapolation of this prediction to the ultimate regime, which we expect to set
in at Ra � 5 × 105, yields the asymptotic scaling Nu = 0.0081Ra – almost 16 % less
than inferred in previous studies, and exceeding by about 18 % the Nusselt number
found in two-dimensional simulations. We have further characterized the complex flow
structure near the boundaries, which consists of small flow cells hierarchically nesting
into supercells, and we have shown evidence that the supercells at the boundary are the
footprint of megaplumes dominating the interior part of the flow. We believe that it would
be possible to conduct direct investigations of the ultimate convective regime to check
our extrapolations, by running a simulation at Ra � 5 × 105. However, we estimate a
cost for this simulation of approximately 2 billion CPU hours, well beyond present-day
capabilities.
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δ ∼ 1/Ra δ ∼ 1/Ra
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Figure 6. Temperature distribution from the simulations S1 (a,b) and S8 (c,d) in a vertical slice located at
x = 1/2. The dimensionless domain size in diffusive–convective units is indicated. A close-up view of the
near-wall region, indicated with black squares in panels (a,c), is shown in panels (b,d).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1178.
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Appendix A. Structure of the flow in a vertical plane

In figure 6 we show the temperature distribution in a vertical (z, y) plane located at x =
1/2. A close-up view of the temperature field near the boundary is also offered to exhibit
the thickness of the thermal boundary layer, which, scaling as δ ∼ 1/Ra, would otherwise
be too small to be observed. Consistently with previous two- and three-dimensional
studies (Hewitt et al. 2012, 2014; Wen et al. 2015; De Paoli et al. 2016), we observe
that small fingers of light fluid emerge from the bottom boundary and move upwards,
and correspondingly small fingers of heavy fluid emerge from the top boundary and move
downwards. The small fingers then merge to form megaplumes (large columnar structures
that dominate the core region of the flow) which, under the vigorous action of buoyancy,
increase their vertical velocity and reach the opposite boundary. Upon impact with the
boundary, the megaplumes are deflected and create the complex flow patterns analysed in
detail in the main body of the present manuscript. As expected, the strength and persistence
of the megaplumes increase with increasing Ra.
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Figure 7. Time evolution of instantaneous horizontally-averaged Nusselt number. Nu is shown for simulations
S1 (a), S2 (b), S3 (c), S4 (d) and S8 (e). The behaviour of Nu(t) is reported for a portion of the simulation, after
the steady state is achieved (the beginning of the steady-state regime is indicated by t = tss). We observe that
Nu(t) (solid line) oscillates within 1 % to 3 % of the mean value (dashed line). For all simulations, Nu(t) is
shown in the range corresponding to ±10 % of the time-averaged value. Since each point of the Nu(t) curve is
the result of a space average (over the entire top and bottom wall), the larger Ra is, the larger the number of
points over which the space average is evaluated, and so the lower the amplitude of the fluctuations.

Appendix B. Evaluation of the Nusselt number

To estimate the averaged Nusselt number, we first run each simulation (starting from a
still fluid, plus random perturbations) until the initial transient is finished. From that time,
labelled as tss, the Nusselt number oscillates around a statistically steady value. In figure 7,
we show the time evolution of the Nusselt number, Nu(t), over a specific time window after
tss, for the main simulations herein performed. Nu(t) is observed to oscillate within 1 %
to 3 % of the mean value (indicated by the dashed line). In particular, larger values of
Ra correspond to lower relative amplitude of the fluctuations. The time-averaged Nusselt
number (reported in table 1) is computed over a time window corresponding to 128, 64,
16, 8 and 4 dimensionless time units for S1, S2, S3, S4 and S8, respectively. Naturally,
the duration of the time window, �t = t − tss, over which statistics are evaluated is less
at the largest Ra. However, it is important to point out that the Nusselt number is not
only averaged in time, but also in space (along x and z) over the entire wall surface, which
increases the size of the ensemble over which statistics are evaluated. The effective number
of samples, Ns, used to estimate the Nusselt number (and also reported in table 1) is here
defined as Ns = Nx × Nz × NT , where NT is the time interval (expressed in dimensionless
convective units, i.e. turnover times) over which statistics are performed (starting from
tss). Once the averaged value of the Nusselt number is estimated, we determine the best-fit
scaling as in (3.2), yielding prediction error of no more than 1.5 %, for Ra � 2.5 × 103.
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