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In this work, we investigate the dynamics of long non-axisymmetric fibres in turbulent
channel flow. The experimental facility is the TU Wien Turbulent Water Channel,
consisting of a closed water channel (aspect ratio of 10), and the experiments are
performed at a shear Reynolds number of 360. Fibres are neutrally buoyant rods that are
curved and characterised by a length-to-diameter ratio of 120. Illumination is provided by
a laser sheet and the motion of fibres is recorded by four high-speed cameras in a fully
developed flow section. We apply multiplicative algebraic reconstruction techniques to the
recorded images from four high-speed cameras to identify the three-dimensional location,
shape and orientation of the fibres. The fibres are also tracked in time to obtain their
three-dimensional vectors of velocity and rotation rate. We investigate the behaviour of the
fibres, from the near-wall region to the channel centre, and we produce original statistics
on the effect of curvature of the fibres on their orientation and rotation rate. Specifically,
we measured the orientation and rotation rate of the fibres, and we can confirm that in the
centre, the most homogeneous part of the channel, statistics, although influenced by the
curvature, bear similarities to those obtained in previous investigations in homogeneous
isotropic turbulence. In addition, we have been able to compare the tumbling rate of our
long non-axisymmetric fibres with previous solutions for curved ellipsoids in simple shear
flow.

Key words: particle/fluid flow

1. Introduction

The prediction of preferential orientation of anisotropic particles in turbulent flows is of
importance because of the many implications it can have for industrial and environmental
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applications (Voth & Soldati 2017). Anisotropic particles have applications in industrially
relevant flows, such as in pulp and papermaking (Lundell, Söderberg & Alfredsson 2011)
and environmental problems, like modelling of phytoplankton (Guasto, Rusconi & Stocker
2012; Basterretxea, Font-Munoz & Tuval 2020), sedimentation (Meiburg & Kneller
2010), aerosols (Kleinstreuer & Feng 2013), ice crystals in clouds (Kristjànsson, Edwards
& Mitchell 2000; Shultz 2018; Jiang et al. 2019) and micro-fibre pollution in oceans
(Ross et al. 2021). In recent years, significant effort has been devoted to investigating
numerically the dynamics of rigid and axisymmetric ellipsoids in homogeneous and
isotropic turbulence (HIT) (Shin & Koch 2005; Ni, Ouellette & Voth 2014; Byron et al.
2015; Pujara, Voth & Variano 2019) and in turbulent channel flow (Mortensen et al.
2008; Marchioli, Fantoni & Soldati 2010; Zhao, Marchioli & Andersson 2014; Zhao
et al. 2015; Challabotla, Zhao & Andersson 2015a,b; Marchioli, Zhao & Andersson
2016; Zhao & Andersson 2016; Dotto & Marchioli 2019; Dotto, Soldati & Marchioli
2020). Natural fibres can have complex and non-regular shapes, difficult to systematically
characterise. Therefore, many theoretical and numerical investigations have been focused
on axisymmetric ellipsoids: in this case fluid torques are mathematically trackable, and
this shape has the advantage that the torques on small particles with many other shapes
are the same as their equivalent ellipsoids (Bretherton 1962; Brenner 1963). Many
analyses of axisymmetric ellipsoids in turbulence have been conducted via numerical
simulations, but the high computational costs limiting the applications to moderate
Reynolds numbers, an exception being the recent numerical simulation of Jie et al. (2019).
The common assumption of these works is that the particle size is set to be smaller than
the smallest length scale of the flow, a condition that might not be satisfied in practical
applications. Recent numerical investigations of finite-size ellipsoid in turbulent channel
flow (Do-Quang et al. 2014; Eshghinejadfard, Hosseini & Thevenin 2017; Wang et al.
2018; Zhu, Yu & Shao 2018; Ardekani & Brandt 2019; Zhu et al. 2020) overcame this
small-size assumption, but they are limited to even lower flow Reynolds numbers, small
overall number of particles and small fibre aspect ratio.

In parallel with numerical works, experimental investigations have also been considered.
However, much fewer studies have been provided experimentally. A brief review of
experimental works on anisotropic particles is presented in table 1. All investigations
consider rigid, anisotropic particles with three planes of symmetry, e.g. rod- and disk-like
particles. From table 1, it clearly emerges that a major proportion of the experimental
studies in this field is limited to two-dimensional visualisation, and such studies focused
mainly on orientation and concentration analysis (Bernstein & Shapiro 1994; Parsheh,
Brown & Aidun 2005; Dearing et al. 2012; Håkansson et al. 2013; Abbasi Hoseini, Lundell
& Andersson 2015; Yang et al. 2019). In this context, Capone, Miozzi & Romano (2017)
studied the dynamics of rigid, rod-like particles in turbulent channel flow. They showed
that, with respect to the channel centre, the relative fibre concentration decreases linearly
within the buffer layer and towards the channel wall without any sign of accumulation in
the near-wall region. Di Benedetto, Koseff & Ouellette (2019) investigated the preferential
orientation of rod and disk-like particles in a free surface gravity wave flow. Using planar
image analysis, the orientation of the particles as a function of the wave strength was
studied. They showed that the probability density function (p.d.f.) of the orientation angles
has a bimodal distribution due to the opposing forces of wave and settling, and a portion
of the particles has the tendency to orient perpendicularly with respect to the wave plane.
Recently, Bakhuis et al. (2019) performed a series of experiments using straight cylinders
inside a Taylor–Couette facility in the ultimate turbulence regime. The particle diameter
and length were both larger than the Kolmogorov length scale of the flow. Interestingly,
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they showed that the particle preferential orientation with respect to the inner wall of
the Taylor–Couette cell is independent of Reynolds number and particle concentration.
Both concentration and orientation can give important insights about the dynamics of the
fibres. However, to look at the full rotational dynamics, three-dimensional measurements
are required.

Volumetric experimental studies of anisotropic particles focused mainly on the
rotational dynamics of particles in HIT, as listed in table 1. Parsa et al. (2012), for the first
time, performed series of experiments in HIT and tracked slender rods with various aspect
ratios using a three-dimensional tracking technique. They showed that the orientation of
anisotropic and inertialess particles is correlated with the velocity gradient tensor. This
behaviour could be different in the presence of a shear flow, where fibres can either align
with the vorticity vector or be parallel to the wall, as a result of the balance between mean
velocity gradient and fluctuating velocity gradient (Voth & Soldati 2017). The aim of the
present work is to capture the fibre dynamics in conditions of high shear, in the vicinity
of the channel wall, and in quasi-shear-free conditions, in the core of the domain, to try to
compare our results with those of previous works on HIT. Parsa & Voth (2014) reported
a scaling law for the mean square rotation rate of rods as a function of the length of
fibres in the inertial range, i.e. with particle size larger than the smallest scale of the flow.
Following the same approach, a modified scaling for the tumbling rate of rod-like particles
was provided in subsequent works by Bordoloi & Variano (2017), Bounoua, Bouchet &
Verhille (2018), Kuperman, Sabban & van Hout (2019) and Bordoloi, Variano & Verhille
(2020). Recently, Jiang, Calzavarini & Sun (2020) investigated the rotation of oblate and
prolate spheroids in a Rayleigh–Bénard flow. They showed that the trend of the tumbling
rate as a function of the aspect ratio, due to shear, has a peak for weakly oblate spheroids, in
contrast with the monotonic universal trend previously reported for HIT configuration. All
these works significantly improved the understanding of the dynamics of axisymmetric
fibres in turbulent flow. However, in most industrial and environmental applications,
rod-like particles are not axisymmetric; they have an asymmetry in their shape or mass
distribution. Experimental results for the settling behaviour of inertial rods (Roy et al.
2019) showed that rods undergo a critical change in orientation due to asymmetry in their
mass distribution, and it was shown theoretically (Hinch & Leal 1979) and numerically
(Wang et al. 2012; Crowdy 2016; Thorp & Lister 2019) that even small deviations from an
axisymmetric shape can produce a significant change of the rotational dynamics. To the
best of our knowledge, neither experimental nor numerical works on non-axisymmetric
shape particles in turbulent flows are currently available, and we aim precisely at filling
this gap. Using a novel experimental methodology, we are able to evaluate the effect of
curvature on the dynamics of the fibres.

In this study, we investigate the dynamics of long, non-axisymmetric fibres in a turbulent
channel flow. Experiments are carried out in the TU Wien Turbulent Water Channel, which
is a gravity-driven, large-aspect-ratio facility. Turbulence is naturally generated by a long
hydrodynamic developing length. Fibres used in this study are neutrally buoyant, have
various curvatures and all are dispersed in the flow simultaneously. Three-dimensional
imaging of the fibres is carried out to reconstruct their shape and spatial orientation and
to track their motion. The database produced consists of concentration, orientation and
rotation rates of fibres that are classified according to their curvature. The measurements
cover more than half of the channel height, to capture both the centre of the channel
(HIT-like motion) and the near-wall region (inner and buffer layers, controlled by shear
and viscous forces). The fibres used in this study can be considered as slender bodies with
high length-to-diameter ratio, λ = 120, and very small Stokes number, St = 0.003.
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Reference Particle shape Type Re λ Stη Lf /lflow Apparatus/Technique

Bernstein & Shapiro (1994) Rod Rigid 51–1.089 × 104 10 NA NA PF/ 2D-ODF
Parsheh et al. (2005) Rod Rigid [1][8.5–17] × 104 56.14 [5.6–6.25] × 10−3 NA CWL / 2D-IP
Parsa et al. (2011) Rod Rigid [1]95–187 5–20 NA NA SEFL/2D-DS + 2D-T
Parsa et al. (2012) Rod Rigid [2]160–214 5 NA 2.6–4.8 HIT/3D-T
Dearing et al. (2012) Rod Rigid [3]250 13.3 0.7 NA PF/2D-DS + 2D-PIV
Capone, Romano & Soldati (2014) Rod Rigid [1]9000 13.3 0.7 NA TPJ/2D-DS + 2D-PIV
Marcus et al. (2014) Jack and cross Rigid [2]91 [1]10 NA [3]6 HIT/3D-T
Parsa & Voth (2014) Rod Rigid [2]150–210 5:76 NA 2.8–72.9 HIT/3D-T
Brouzet, Verhille & Le Gal (2014) Filament Flexible [1][1–14] × 106 12.22:258 NA NA VKF/3D-T
Ni et al. (2015) Rod Rigid [2]140 23.3 0.008 2.3 HIT/3D-T
Abbasi Hoseini et al. (2015) Rod Rigid [3]170 7–28 0.2:0.3 NA WT/2D-PIV + 2D-PTV
Kramel et al. (2016) Chiral dipoles Rigid [2]120–183 10 NA 35–72 HIT/3D-T
Sabban, Cohen & van Hout (2017) Rod Rigid [2]130 36.5–19 1.35–2.34 2.8 HIT/3D-T
Bordoloi & Variano (2017) Hydrogel cylinders Rigid NA 0.96–3.79 0.36–0.95 16.6–68.7 HIT/S-PIV
Capone et al. (2017) Rod Rigid [3]780 13.3 0.7 23 WBCF/2D-T
Bounoua et al. (2018) Rod Rigid [2]350–610 2.5–80 [1]0.016–2.8 22–850 CTT/3D-T
Pujara et al. (2018) Cube, cuboid, cone, rod Rigid [2]261 1–3.72 NA [2]13–55 HIT/S-PIV
Hejazi, Krellenstein & Voth (2019) Triads Flexible [2]198 [2]10 NA [3]39.28 VWBCF/3D-T
Zhao et al. (2019) Rod Rigid [2]140–271 23.3 0.002–0.01 2.3–5.2 HIT/3D-T
Kuperman et al. (2019) Rod Rigid [2]115 30.7–88.1 1–32.5 3.6–17.3 HIT/3D-T
Bakhuis et al. (2019) Rod Rigid [1][8.3–25] × 105 5.3 110–510 44–95 TC/2D-T
Di Benedetto et al. (2019) Rod and disk Rigid [4]46–66 0.16–7.8 NA NA SGWF/2D-T
Bordoloi et al. (2020) Rod Rigid [2]350–610 2–80 [2]0.014–2.68 51.1–858.9 HIT/3D-T
Jiang et al. (2020) Rod and disk Rigid [5]545 6–1/6 NA 1.43–1.57 RBC/3D-T
Present study Rod (non-axisymmetric) Rigid [3]360 120 0.003 2.38 WBCF/3D-DS + 3D-T

Table 1. Summary of experimental investigations of anisotropic particle-laden flows available in the literature. Apparatuses and techniques are reported and abbreviated
as follows: pipe flow (PF), orientation density function (ODF), close water loop (CWL), two-dimensional image processing (2D-IP), shallow electrolytic fluid layer
(SEFL), two-dimensional phase discrimination (2D-DS), two-dimensional tracking (2D-T), homogeneous isotropic turbulence (HIT), three-dimensional tracking (3D-T),
two-dimensional particle image velocimetry (2D-PIV), water table (WT), turbulent pipe jet (TPJ), von Kàrmàn flow (VKF), two-dimensional particle tracking velocimetry
(2D-PTV), stereoscopic particle image velocimetry (S-PIV), wall-bounded channel flow (WBCF), cube tank turbulence (CTT), vertical wall-bounded channel flow
(VWBCF), Taylor–Couette (TC), surface gravity wave flow (SGWF), Rayleigh–Bénard cell (RBC) and three-dimensional phase discrimination (3D-DS). Here Re is the
Reynolds number and [1], [2], [3] and [4] refer to bulk, integral, wall shear and particle Reynolds numbers, respectively. The Re in [5] is calculated based on root mean
square of velocity. Ratio λ refers to aspect ratio of the objects and in [1] and [2] λ is measured by considering the arm of the objects. Parameter Stη is the particle translational
Stokes number, but in works marked as [1] and [2], authors introduced a tumbling Stokes number to evaluate their data. Ratio Lf /lflow stands for the ratio of the length of
the objects to the flow length scale. In the works marked with [1] and [2], Lf is calculated by taking to account one arm of the objects, whereas in that marked with [3],
equivalent diameter is used.
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Long non-axisymmetric fibres in turbulent channel flow

The paper is organised as follows: In § 2, the experimental facility, particle parameters
and recording settings are described. The methodology used to reconstruct and track the
fibres is presented in § 3. Finally, distribution, orientation and rotation rates of the fibres
classified according to their curvature are discussed in §§ 4 and 5.

2. Experimental set-up

We measure experimentally the three-dimensional distribution, orientation and rotation
rate of long fibres in a fully developed, turbulent channel flow. In this section, we describe
the experimental apparatus, flow parameters, fibre properties and three-dimensional fibre
detection technique used in this study.

2.1. Flow apparatus
The experimental facility is the TU Wien Turbulent Water Channel, consisting of a
10 m long water channel, constructed by combining five sections of 2 m each, with
cross-sectional dimensions of 80 cm × 8 cm (w × 2h, where h is half-channel height).
Each section of the channel is equipped with de-airing valves, which allows the removal
of bubbles trapped close to the top wall of the channel. The channel is manufactured using
poly(methyl methacrylate) with a thickness of 1.5 cm, which is fully transparent. The
experimental set-up is sketched in figure 1(a). The upper cover of the channel is removable
in all sections, and both open- and closed-channel experiments can be performed. In
this study, we only consider the closed-channel configuration with no free surface. The
fluid is circulated from the downstream to the upstream reservoir by a pump, and the
flow is subsequently driven by gravity. A centrifugal volute pump (maximum flow rate
of 147 m3 h−1) and a Proline Promag 10D electromagnetic flowmeter are used. Average
temperature of the water is kept at 15 ◦C, which results in a dynamic viscosity equal to
μ = 1.138 × 10−3 Pa s (Korson, Drost-Hansen & Millero 1969). In order to eliminate all
vibrations, possibly created by either the pump or the chiller of the laser, both equipments
are placed on vibration isolators.

2.2. Flow and fibre properties
In all experiments, a constant flow rate of 39.6 m3 h−1 has been chosen, corresponding
to a bulk velocity of 0.172 m s−1 and a bulk Reynolds number based on channel full
height (2h) of Reb = 12 500. The shear velocity of the unladen flow is uτ = 10.2 mm s−1,
which gives a friction Reynolds number Reτ = uτh/ν = 360, where ν is the kinematic
viscosity of water at 15 ◦C. Viscous time and length scales of the flow are τ = ν/u2

τ ≈ 11
ms and δ = h/Reτ ≈ 110 μm, respectively. Kolmogorov time and length scales of the
flow at the centre of the channel are computed as tη = (τ 2/ε+d )

0.5 ≈ 220 ms and lη =
(δ4/ε+d )

0.25 ≈ 500 μm, where ε+d is the turbulent dissipation in wall units obtained from
the DNS database.

In this study, the fibres consist of Polyamide 6.6 Precision Cut Flock (Flockan) with
linear density of ρl = 9 × 10−8 kg m−1 (0.9 dtex). The density and cutting length are
ρ = 1.15 × 103 kg m−3 and Lf = 1.2 mm, respectively, corresponding to a diameter df =√

4ρl/(ρπ) ≈ 10 μm. In figure 2, we present a microscopic view of the fibres considered
in this study. This observation is important because we used this initially qualitative view
to categorise the shape of the fibres in a systematic way. In figure 2(a), we show a raw
image of a large quantity of the fibres in dry condition. Fibres are very elongated and
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Upstream

reservoir

(a) (b)

(c)

z x

y

y

x

z

Camera

Camera

Camera

Camera

2h

w

Laser source

y

Pump
Flow

Transparent channel

Downstream reservoir

Figure 1. Schematic of the TU Wien Turbulent Water Channel and test section. (a) The system consists of
two reservoirs at ambient pressure, a centrifugal pump and a rectangular channel (aspect ratio of 10). The
test section is located 8.5 m downstream of the channel entrance, to ensure a fully developed turbulent flow.
(b) Close-up view of the test section, where an array of four cameras is used to record the three-dimensional
motion of the particles. The laser volume, indicated by the green region, is located at the channel mid-span.
To reduce the optical image distortion due to astigmatism, cameras look through prisms filled with water.
The laboratory reference frame (x, y, z, respectively streamwise, wall-normal and spanwise directions) is also
shown. (c) Field of view of the cameras and illumination volume.

characterised by a large value of anisotropy ratio λ = Lf /df ≈ 120 and in addition they are
characterised by a small curvature. In figure 2(b), we show a limited number of fibres on a
white horizontal background. In this view, we can better appreciate the curvature and also,
more importantly, we can appreciate that all fibres are planar. Finally, from the close-up
view of figure 2(c), fibres seem to present no inflection point. Observing many samples
like the ones presented in figure 2 led us to hypothesise that fibres can be described by a
second-order polynomial curve. This point together with the methodology used to detect
and model the fibres are further discussed in § 3.2. Relative length and diameter of the
fibres to the length scales of the flow, Lf /lη, Lf /δ, df /lη and df /δ, are equal to 2.38, 10.58,
0.02 and 0.09, respectively.

The dimensionless parameter used to characterise the behaviour of particles transported
by the flow is the particle Stokes number, St, which quantifies the ratio between the particle
relaxation time, τf , and the viscous time scale, τ . To estimate the translational relaxation
time of the fibres, we use the relaxation time of randomly oriented prolate spheroids. We
considered the relation proposed by Bernstein & Shapiro (1994), which gives

τf = ρd2

18μ

λ ln
(
λ+ √

λ2 − 1
)

√
λ2 − 1

, (2.1)

where d, in the case of anisotropic and axisymmetric particles, is the diameter
perpendicular to the symmetry axis. Although fibres used in the present study are not
exactly prolate spheroids, (2.1) can provide a good approximation of their relaxation
time. The τf computed as in (2.1) is based on the relaxation time of a spherical particle
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100 μm

(a) (b) (c)

100 μm 100 μm

Figure 2. Fibre samples. (a) Raw image of a cluster of fibres (microscope view). (b,c) Close-up view of fibres
characterised by different shapes, mainly non-axisymmetric.

(ρd2/18μ), and corrected for prolate spheroids as function of the fibre aspect ratio, λ =
Lf /df . In the present study, the relaxation time of the fibres is τf = 3.5 μs, corresponding
to St = 0.003. In the centre of channel, the Kolmogorov time scale should be used to
estimate the Stokes number rather than viscous time scale. As a result, the particle Stokes
number based on the Kolmogorov time scale at the channel centre is 1.54 × 10−4. We
observe that in both cases the Stokes number is small enough to neglect any possible
inertial effect.

In the following, we provide an estimate of the maximum deformation that fibres can
experience. To this aim, we assume a simplified flow configuration in which a straight
fibre is cylindrical, blocked at one end and free to move at the other end (cantilever
beam). For simplicity, we consider the flow as uniform, perpendicular to the fibre axis
and characterised by a velocity uτ . We choose this penalising configuration to show that,
also in the presence of critical conditions, the deformation experienced by the fibre is
negligible, and that fibres can be considered as rigid objects. We assume that the fibre
Young’s modulus is E = 2.5 GPa (i.e. half of that measured for fibres having a diameter
of 20 μm; Bunsell (2001)). The Reynolds number of the fibre Ref = uτdf /ν ≈ 0.09 gives
a drag coefficient CD = 66.1 (Tang et al. 2014). As a result, the force acting on the fibre is
FD = CDρu2

τLf df /2 = 4.1 × 10−8 N. The maximum fibre deformation is computed with
the Euler–Bernoulli theory for beams as

wM =
qL4

f

8EI
= 7.2 × 10−3 mm, (2.2)

where I = πd4
f /64 and q = FD/Lf is the hydrodynamic force per unit of fibre length,

which we assume to be uniformly distributed along the fibre. The maximum value of
deformation obtained is sufficiently small (wM/Lf = 0.6 %) to consider fibres as rigid
bodies. However, longer and more flexible fibres can exhibit large deformations, potentially
producing flow modifications due to an intermittent storage/exchange of energy with the
fluid (Allende, Henry & Bec 2018).

2.3. Three-dimensional imaging
The measurement is carried out in correspondence with the test section, located 8.5 m
(≈200h) downstream of the channel entrance, to ensure the fully developed flow condition.
The measurement volume (53.4 mm × 53.4 mm × 14 mm) is located at the mid-span of
the channel. A close-up view of the test section is provided in figure 1(b). Illumination
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Illumination volume (x, y, z) 53.4 mm × 53.4 mm × 14 mm
CCD sensor size (cropped) 1280 × 1280 pixels
Digital resolution 0.04166 mm pixel−1

f number 22
Magnification 0.24
Depth of field 31 mm
Frame rate of fibre-laden recording 1.8 kHz
Frame rate of unladen recording, STB 1 kHz
Frame rate of double-frame unladen recording, tomo-PIV 0.04 kHz
Standard deviation of calibration fit <0.03 pixel

Table 2. Summary of the camera and laser recording parameters adopted.

comes from the bottom and consists of a thick laser sheet (527 nm, double cavity, 25 mJ
per pulse, Litron LD60-532 PIV). The images are recorded using four Phantom VEO
340 L cameras with sensor size of 2560 × 1600 pixels at 0.8 kHz and each pixel size
is 10 × 10 μm2. The cameras are located on both sides of the channel and in linear
configuration. Side and front views of the measurement volume are depicted in figure 1(c).
Camera holders are equipped with dampers to remove any possible vibration coming
from the channel frame. In order to increase the accuracy of the three-dimensional
reconstruction process, we placed the cameras with angles of 35◦ and 30◦ with respect
to the spanwise axis of the channel. To minimise the optical astigmatism, we used four
prisms filled with water at the side walls of the channel. Finally, the cameras are equipped
with Scheimpflug adapters and objective lenses with focal length f = 100 mm.

Data acquisition has been performed using three different recording settings for unladen
and fibre-laden experiments. The reason behind this choice is the high temporal resolution
that fibre-laden experiments require to accurately measure the rotation rate. We used
double-frame mode with 3.5 ms time delay for laser pulses for the image acquisition
of tomographic particle image velocimetry (tomo-PIV) in the unladen flow. In addition
to double-frame recording, to perform 3D-PTV velocimetry in the unladen flow, we
recorded single-frame images at 1 kHz acquisition rate. Flow was seeded with tracers,
with a diameter of 20 μm, by providing particle-per-pixel concentrations of 0.035 and
0.02 for tomo-PIV and 3D-PTV recordings, respectively (see § 2.4 for further details).
Source density number of the recordings, Ns, which quantifies the total number of pixels
occupied by the tracers (for further details, see Scarano (2012)), is equal to 0.44 for
tomo-PIV and 0.25 for 3D-PTV, which fall within the limits recommended by Novara
& Scarano (2012). In the case of fibre-laden experiments, images have been recorded at
1.8 kHz in single-frame mode, to ensure that the displacement of fibres in the centre of
the channel cannot exceed 2 pixels. In this way, the measurements are well resolved in
time and the accuracy of the tracking process is higher. Source density number Ns in this
case is equal to 0.1. Focal length, aperture size and depth of focus were the same for
both unladen and fibre-laden recordings and were 100 mm, f /22 and 31 mm, respectively
(table 2). As a result, the digital resolution of the images is 24.1 pixels mm−1. The camera
sensor size was cropped down to 1280 × 1280 pixels. Illumination was obtained with the
simultaneous emission of both laser cavities.

Prior to reconstruction of the measurement volume, raw images were preprocessed using
time and spatial filters. The first step of image preprocessing consists of removing the
background noise by subtracting the minimum intensity value of the dataset from each
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Long non-axisymmetric fibres in turbulent channel flow

200 pixel

y+ = 210

y+ = 282

(a)

(b)

Figure 3. (a) Example of raw image referring to a portion of the domain. Curved fibres as well as tracer
particles can be identified. (b) Close-up view of a group of fibres. The resolution adopted is sufficient to
properly characterise the fibres, which consist of tens of pixels.

image. Afterwards, a spatial filter is applied to the images by subtracting the minimum
intensity within a kernel of five pixels from each pixel. Finally, the intensities were
normalised by the average intensity within a kernel of 300 pixels. These steps were
essential for increasing the signal-to-noise ratio of the images and for improving the
quality of the reconstruction process. A three-dimensional calibration target with size
of 58 mm × 58 mm was used to map the coordinate system of the illuminated volume
on the image. Afterwards, a third-order polynomial function was used for the mapping
process. Initial standard deviation of the calibration fit was in the scale of 0.3 pixels, which
eventually reduced to values smaller than 0.03 pixels (averaged on all camera views) by
applying the volume self-calibration (VSC) algorithm (Wieneke 2008). The VSC was done
by assuming 8 × 8 × 5 (x, y, z) subvolumes and resulted in an average disparity error of
approximately 0.02 pixels, which is five times smaller than the recommended threshold for
VSC accuracy (Wieneke 2008). In order to implement the VSC, flow must be seeded with
spherical tracers. The multiplicative algebraic reconstruction technique (MART) (Elsinga
et al. 2006) was used to reconstruct the three-dimensional distribution of light intensity
from two-dimensional images of tracer particles and fibres. Since in this study we used
MART to reconstruct both unladen and fibre-laden flows and the VSC process was a
main step of the calibration to be done before MART, we seeded the water with tracers
prior to dispersing the fibres into the water. An example of a raw image of fibre-laden
flow containing both fibres and tracer is shown in figure 3. Each snapshot of fibre-laden
recording contains, on average, approximately 1000 fibres and the corresponding volume
fraction and concentration are O(10−6) and 0.025 mm−3, respectively. Therefore, it is
reasonable to consider that the one-way coupling assumption holds. All processes of image
acquisition and single-phase velocimetry have been carried out using Davis (LaVision
GmbH).

2.4. Unladen flow velocimetry
The velocimetry of the unladen flow is carried out using both tomo-PIV (Elsinga et al.
2006) and shake-the-box (STB) algorithms (Schanz, Gesemann & Schröder 2016). The
cross-correlation process was applied to interrogation volumes of 48 × 48 × 48 voxels.
Prior to using the STB method, optical transfer function was applied to correct the shape
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25
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0
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U
+  = 2.5 ln y+

 + 5.2

102

3D-PTV

tomo-PIV

DNS

Figure 4. Mean velocity profile obtained from 3D-PTV (STB; circles) and tomo-PIV (triangles) compared
with direct numerical simulation (DNS) at Reτ = 350 (solid line).

of particles by fitting an elliptical Gaussian model to each subvolume of the VSC. In
total, 3 × 104 tracks in each snapshot were detected by the STB process. To evaluate the
properties of the fluid flow considered, we compared single-phase measurements with
direct numerical simulations of channel flow at Reτ = 350. Simulations are based on an
in-house pseudo-spectral solver (Fourier–Chebyshev discretisation) (Zonta, Marchioli &
Soldati 2012). The size of the channel is 4πh × 2h × 2πh and the domain is discretised
with 512 × 513 × 512 collocation points, in directions x, y and z, respectively, with the
lower wall located at y = 0. Statistics are computed over a time window of 1500τ+.
The mean velocity profile (streamwise) obtained from 3D-PTV (STB) and tomo-PIV is
compared with direct numerical simulation results at Reτ = 350 in figure 4.

3. Fibre detection and tracking

In this study, we use MART to reconstruct the three-dimensional light intensity
distribution of both unladen and fibre-laden flows. To discriminate the fibres, we developed
a MATLAB-based in-house code, which is described in § 3.1. Fibre modelling is discussed
in §§ 3.2 and 3.3. Finally, fibre tracking and calculation of rotation rates are analysed in
§§ 3.4 and 3.5, respectively.

3.1. Phase discrimination
The process of fibre discrimination is used to distinguish the fibres from the tracers
and other spurious, reconstructed objects, and consists of a combination MART and
volumetric masking. An example of the discrimination process is shown in figure 5. First,
the three-dimensional light intensity distribution, consisting of normalised intensities (i.e.
intensity has values from 0 to 1), is obtained from the MART reconstruction process.
The three-dimensional matrix of light intensities is binarised (figure 5a), according to
a threshold value set to 0.05. All the groups of contiguous voxels with unitary value
are identified as a cluster. Then, an effective length of the cluster Leff , defined in
Appendix A, is computed. Finally, clusters with effective length in the range 20 < Leff <

40 voxels (red voxels in figure 5(a)) are identified as fibres, and all remaining clusters
(blue voxels in figure 5(a)) are removed. The above-mentioned range for the effective
length is set by considering the fibre size. By this masking, the majority of the tracers
are removed and only large clusters of voxels remain (figure 5b), which mostly represent
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Long non-axisymmetric fibres in turbulent channel flow

(a)

y

x

z

(b)

(c)

2
0
0
 v

o
x
el

200 voxel
436 voxel

Figure 5. (a) Three-dimensional light intensity distribution is obtained using MART (Elsinga et al. 2006), and
corresponding voxels are shown. (b) After masking, fibres (red voxels) are discriminated from the other objects,
e.g. tracers, noise and ghost particles (blue voxels). (c) Close-up view of a small portion of the domain (size is
reported). We observe that, although fibres are characterised by a complex shape, they are well captured by the
reconstruction and discrimination processes proposed here.

the real fibres. In some unlikely cases, these clusters may still consist of spurious objects.
However, they do not persist over long time periods and can be eliminated by removing
the clusters tracked over a short number of snapshots.

3.2. Fibre modelling
To quantify the fibre concentration, orientation and rotation rate, after discrimination, each
fibre has to be associated with the representing coordinates in the three-dimensional space.
To this aim, we developed a physically grounded geometrical model for the fibres. We
consider a rigid and non-axisymmetric fibre of length Lf and we assume that the fibres
are bent but not twisted. This hypothesis is motivated by observations, and represents the
ground of the modelling process proposed. As a consequence, one can show that the fibre
lies on a plane, i.e. it can always exist in at least one plane, Π , in the three-dimensional
space, (x, y, z), that contains the fibre. An example of voxel distribution, discriminated as
in § 3.1, is sketched in figure 6(a), where the colour of the voxels refers to the reconstructed
light intensity. The geometrical description of the fibre (red line in figure 6a) is obtained
through a process of modelling, consisting of three main steps:

(i) Preliminary determination of the fibre orientation: we consider the cluster of voxels
identified as a fibre in the discrimination process. We consider the coordinates of the
voxels located at two ends of the fibres and then find the distance between these two
points. The direction of the laboratory reference frame (x, y or z) along which this
difference is maximum is preliminarily considered as the orientation of the fibre.
In figure 6(a), the fibre orientation is x, and we define x as the preliminary ‘fibre
direction’.
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Figure 6. (a) Example of fibre reconstruction (red curve) obtained from light intensity distribution. Voxels,
here represented as cubes, are coloured according to their light intensity, from lower (white) to higher (black).
The laboratory reference frame (x, y, z, blue vectors) is shown, as well as the origin and direction of the arc
length coordinate s (green vector), which is used to perform the reconstruction. (b–d) Coordinates of the voxels
belonging to the fibres are approximated by three functions ( fx, fy, fz) obtained by fitting the coordinates of the
centres, as defined in § 3.2 (red stars in a), as a function of the curvilinear coordinate s.

(ii) Identification of the fibre cross-section centres: we consider the light intensities
of the voxels defining the fibre. We group the voxels according to the
planes perpendicular to the fibre direction. Therefore, each plane represents
(approximately) a cross-section of the fibre. We determine the centre of each
cross-section as the averaged voxel coordinate (x, y, z) weighted on the light intensity
of the voxels. In the fibre shown in figure 6(a), the centres of the cross-sections, ( y, z)
planes, are found. These centres are explicitly indicated as red stars (figure 6a).

(iii) Definition of the fibre major axis: finally, the fibre axis is defined as the best fit of
the centres defined above. To this aim, we define the arc length coordinate s, with
origin and end in the first and last cross-sectional centres, so that 0 � s � Lf . To
identify the fibre position in space, for each direction xi (where xi stands for x, y or
z), we find the function fxi that best fits in a least-square sense the coordinates of the
centres. In this way, the functions fxi required to approximate the fibre coordinate xi
as a function of the arc length coordinate s are obtained (figure 6b–d).

In particular, for the present case we set the functions fxi to be second-order polynomials,
so that

fxi = ais2 + bis + ci. (3.1)

One can show analytically that this assumption is consistent with the initial hypothesis
that the fibre is contained on a plane. This assumption is also consistent with direct
observations of the fibres (see § 2). Indeed, in figure 2(b,c) fibres seem planar and without
any inflection point.
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Long non-axisymmetric fibres in turbulent channel flow

2nd order polynomial fit

Data of raw image

(a) (b) (c)

Figure 7. Fibre samples. (a–c) Three different classes of fibres, classified according to their curvature, are
shown. The fibres (left, red objects taken from microscope images) are well fitted by the second-order
polynomials (right, black objects obtained from fitting). This assumption is required to employ the method
proposed here.

The fibre coordinates fxi can be written in matrix form as

xf =
⎡
⎣fx

fy
fz

⎤
⎦ =

⎡
⎣a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦

⎡
⎣s2

s
1

⎤
⎦ = As, (3.2)

where xf is the approximated fibre coordinate vector, A is the matrix of the coefficients
(ai, bi, ci) and s contains the arc length coordinate vector. Therefore, the modelled fibre is
fully defined by the matrix A and the length Lf . An example of the reconstruction process
performed for fibres of different shape is shown in figure 7. In particular, we observe in
figure 7(a,b) that the fibres (left, red objects taken from microscope images) are well fitted
by second-order polynomials (right, black objects obtained from fitting).

The proposed fitting method is based on the assumption that the fibre is a parabolic
segment. However, even in cases for which fibres are not precisely parabolic segments,
like the case shown in figure 7(c), in which fibre curvature exhibits strong gradients, the
proposed fitting method supplies a reasonably accurate approximation for the shape of the
real fibre.

The next step required for fibre tracking consists of identifying the fibre centre of mass
and orientation. We consider now the fibre sketched in red in figure 8(a). The projection
of the fibre on the reference planes is shown (blue lines) as well as the centre of mass of
the fibre G = (xG, yG, zG), where

xi,G = 1
Lf

∫ Lf

0
xi(s) ds, (3.3)

where xi stands for x, y or z. The plane Π containing the fibre is defined by the equation

n · [
e1(x − xG)+ e2( y − yG)+ e3(z − zG)

] = 0, (3.4)

where ei are the unit vectors of the laboratory reference frame and n is the unit vector
perpendicular to Π . Given three points of the fibre (A, B and C), n is determined as

n =
⎡
⎣( yB − yA)(zC − zA)− (zB − zA)( yC − yA)

(xC − xA)(zB − zA)− (xB − xA)(zC − zA)

(xB − xA)( yC − yA)− ( yB − yA)(xC − xA)

⎤
⎦ . (3.5)
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Figure 8. (a) Non-axisymmetric fibre (red line) lying on the plane Π . The inertial frame of reference, with
axes labelled as x, y and z, remains fixed in space and time. The fibre frame of reference, centred in the fibre
midpoint located at s = Lf /2 (O′, red bullet), has axes (x′, y′, z′) aligned with the principal directions of the
inertia tensor. The projection of the fibre on the three planes is also shown (blue lines). Note that, in general,
the centre of mass of the fibre (G, cyan bullet) may be external to the fibre. (b) Angles defined between the
reference frame of the fibre (O′x′y′z′) and the reference frame of the laboratory translated to the midpoint O′
(O′′x′′y′′z′′).

Following Voth & Soldati (2017), we define the fibre reference frame using the inertia
tensor

I ij = ρl

∫ Lf

0

[
( fxi − xi,G)

2δij − ( fxi − xi,G)( fxj − xj,G)
]

ds, (3.6)

with ρl (kg m−1) the linear density of the fibres and δij the Kronecker delta. Therefore,
we align the reference frame of the fibre (O′x′y′z′) with the normalised eigenvectors of I .
Note that the eigenvalues of I are real and positive and correspond to the principal inertia
moments of the fibre, I1, I2 and I3. In the present case, one eigenvalue is much smaller
than the other two and we align x′ with the corresponding eigenvector. Similarly, y′ and z′
are aligned with the second and third eigenvector, respectively. When the fibre is curved,
x′ and z′ belong to Π whereas y′ is aligned with n.

Three angles (ϑx, ϑy, ϑz) define the relative orientation of the fibre reference frame
(O′x′y′z′) with respect to the laboratory reference frame translated to the midpoint of
the fibre (O′′x′′y′′z′′). The system is represented in figure 8(b). Three rotations (and the
corresponding rotation matrices) are required to identify the orientation of the fibre with
respect to the laboratory reference frame. To this aim, we use the quaternions formulation
(Lecrivain et al. 2020). We consider the unit vectors of the reference frame O′x′y′z′ and
O′′x′′y′′z′′, respectively e′

1, e′
2, e′

3 and e′′
1 , e′′

2 , e′′
3 . The angle ϑx is defined here as the angle

required to align e′′
1 with e′

1. We compute the unit quaternion q as

q =

⎡
⎢⎣

qs
qx
qy
qz

⎤
⎥⎦ = 1√

(q∗
s )

2 + (q∗
x)

2 + (q∗
y)

2 + (q∗
z )

2

⎡
⎢⎣

q∗
s

q∗
x

q∗
y

q∗
z

⎤
⎥⎦ , (3.7)
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Long non-axisymmetric fibres in turbulent channel flow

T (s = Lf /2)

N (s = Lf /2)

fy′
s

fx′

Figure 9. Projection of a fibre on the plane Π . The unit vectors normal N(s) and tangent T (s) at the midpoint
of the fibre (s = Lf /2) are also shown. The normal vectors (blue) are proportional to the local curvature κl.

with q∗
s = 1 + e′′

1 · e′
1 and [q∗

x q∗
y q∗

z ]T = e′′
1 × e′

1. The rotation matrix associated with the
quaternion q is

Rϑx =

⎡
⎢⎣

1/2 − q2
y − q2

z qxqy − qsqz qxqz + qsqy

qxqy + qsqz 1/2 − q2
x − q2

z qyqz − qsqx

qxqz − qsqy qyqz + qsqx 1/2 − q2
x − q2

y

⎤
⎥⎦ , (3.8)

and we have that e′′
1 = Rϑxe′

1. The rotation angle is finally determined as

ϑx = 2atan2
(√

q2
x + q2

y + q2
z , qs

)
. (3.9)

Following the same procedure, the two rotation matrices Rϑy , Rϑz and the corresponding
angles are determined.

3.3. Curvature
The model adopted to describe the fibre, as discussed in § 3.2, makes it lie on the plane
containing the fibre,Π , which is fully determined by the normal vector n. The coordinates
of the fibre can be expressed with respect to a specific reference frame so that the two axes
(x′, y′) lie on Π and the third (z′) axis corresponds to n. As a result, the coordinates of the
fibre with respect to this reference frame are

x′
f =

⎡
⎢⎣

fx′

fy′

fz′

⎤
⎥⎦ =

⎡
⎢⎣

a′
1 b′

1 c′
1

a′
2 b′

2 c′
2

0 0 0

⎤
⎥⎦

⎡
⎢⎣

s2

s
1

⎤
⎥⎦ , (3.10)

consisting of the projection of the parametric curve defined by (3.2), with a′
i, b′

i, c′
i suitable

coefficients (these coefficients are obtained applying an appropriate rotation R to the
matrix of coefficients A). The local curvature κl(s) of the two-dimensional parametric
function defined in (3.10) is given by

κl(s) =
f ′
x′ f ′′

y′ − f ′′
x′ f ′

y′[(
f ′
x′
)2 +

(
f ′
y′
)2

]3/2 , (3.11)
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Figure 10. The p.d.f. of length (a) and normalised curvature (b) of the fibres reconstructed in this study. Most
probable fibre length measured corresponds to 1.26 mm, close to the nominal cutting value (Lf = 1.2 mm).
Most probable fibre shape corresponds to the normalised curvature value κ∗ = 0.31.

where the symbols ′ and ′′ indicate the first and second derivative with respect to the
coordinate s. Therefore, using (3.10), the local curvature reads

κl(s) = 2(a′
2b′

1 − a′
1b′

2)[(
2a′

1s + b′
1
)2 + (

2a′
2s + b′

2
)2

]3/2 , (3.12)

and the unit vectors locally tangent T (s) and normal N(s) to the fibre in the reference
frame of the plane are (see figure 9)

T (s) =

⎡
⎢⎣

2a′
1s + b′

1

2a′
2s + b′

2

0

⎤
⎥⎦ , N(s) = 1

κl(s)

⎡
⎢⎣

2a′
1

2a′
2

0

⎤
⎥⎦ . (3.13a,b)

In the following, we characterise the behaviour of the fibres according to their mean
curvature, defined here as

κ = 1
Lf

∫ Lf

0
|κl(s)| ds. (3.14)

We estimate the length of the fibre by computing the p.d.f. of the length of all fibres tracked
in our experiments (figure 10a). The representative fibre length is chosen by referring to
the peak of the p.d.f. corresponding to Lf = 1.26 mm, which is slightly greater than the
mean length of the fibres based on manufactured nominal length (1.2 mm), perhaps due
to the accuracy of the cutting process. The mean curvature κ is normalised by κ0, which
is calculated by considering the curvature of an arc of a half-circle with length equal to
the mean length of the fibres, i.e. κ0 = π/Lf = 2.53 mm−1. Finally, fibres are classified
according to their dimensionless curvature κ∗ = κ/κ0 so that straight fibres correspond
to κ∗ = 0 and semicircumference-shaped fibres to κ∗ = 1. The p.d.f. of κ∗ of all fibres
tracked in the experiments is reported in figure 10(b). We observe that the fibres used in
this study are far from being considered as straight. In order to be able to characterise their
behaviour as a function of their curvature, we arbitrarily divided the dataset into different
classes consisting of ranges of curvature. By this classification, we analyse the effect of
curvature on the main dynamics of the fibres.
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Figure 11. Trajectory of (a–c) the centre of mass (xG, yG, zG) and (d–f ) fibre orientation (ϑx, ϑz, ϑy) of the
fibre with respect to the snapshot number. Data measurements (grey symbols) are well resolved in time (see
insets), and are filtered in time using a second-order polynomial (red lines).

3.4. Tracking
The tracking process consists of the identification of the same fibre in two consecutive
frames. After fibre discrimination, reconstruction and modelling, the centre of mass of the
fibre (xG, yG, zG) is identified in the first instant. In the subsequent instant, the presence
of the centre of mass of a fibre within a distance of 5 voxels from the previous one is
searched. The threshold radius of 5 voxels is set according to the estimated flow velocity.
If a centre of mass is found within this range, the fibre in two consecutive frames is
tracked. The behaviour of a single fibre is shown in figure 11. The measured position
of the centre of mass (symbols in figure 11(a–c)) experiences fluctuations in all directions.
However, the spanwise and wall-normal components are more affected due to the short
displacement between two consecutive snapshots. This effect is even more pronounced in
the instance of the fibre orientation angles, ϑx, ϑy, ϑz (symbols in figure 11(d–f )). Since
these fluctuations have negative effects on the calculation of the velocity components,
location and orientation of the fibres are filtered in time using a second-order polynomial.
This filter is sufficient to capture the fibre motion and to reduce the noise from the
experimental measurements (Rowin & Ghaemi 2019). The window size of the filter is set
to 28 ms (or approximately 2.8τ+) and only fibres tracked longer than this time window
are considered for the statistics. Finally, the time derivatives of the filtered quantities are
obtained from the coefficients of the polynomials. The effect of the time filtering is shown
in figure 11 (red lines).
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3.5. Tumbling and spinning rates
In the case of axisymmetric particles, rotation rates are decomposed into a component
along the symmetry axis, called spinning, and two components perpendicular to the
symmetry axis, defined as tumbling (Voth & Soldati 2017). To compute the angular
velocities required to identify spinning and tumbling rates, a different set of angles is
used compared with that introduced in § 3.2. In particular, we use the Euler angles
corresponding to a specific rotation matrix. The columns of this matrix are the eigenvectors
of the inertia tensor. We consider the reference frame of the fibre (O′x′y′z′) indicated in
figure 8(b): with the Euler angles, three angular velocities can be computed, ωx, ωy and
ωz, which are aligned with the axes x′, y′ and z′, respectively.

Following Voth & Soldati (2017), we define the solid body rotation rate Ω = ωx + ωy +
ωz. In the instance of axisymmetric particles, a unit vector p aligned with the symmetry
axis is used to define the spinning and tumbling rates. In our case, since in general the
fibre is non-axisymmetric, we arbitrarily align p with x′. We can rewrite the solid body
rotation in terms of squared spinning (Ωs) and squared tumbling (Ω t) components, so that
Ω = Ωs + Ω t, where

Ωs = (Ω · p)p = ωxp and Ω t = Ω × p. (3.15a,b)

As a result, one can show that ΩtΩt = (Ω t · Ω t) = (ω2
y + ω2

z ). The temporal filter
introduced in § 3.4 is adopted here as well.

4. Results

We present the results of our dataset which consists of about 105 fibres, each tracked
over at least 50 consecutive frames. This corresponds to a minimum time window of
28 ms (≈2.8τ+). We report the wall-normal distribution of concentration, orientation and
rotation rates of non-axisymmetric fibres and we also investigate how these parameters are
influenced by the fibre curvature.

4.1. Concentration
In figure 12, we present fibre concentration and average streamwise velocity as a function
of wall distance. Fibre concentration for each curvature class, defined as the number of
fibres (N) at a given y+ normalised by the total number of fibres of that class (N0), is shown
in figure 12(a) as a function of the wall-normal coordinate. We classify here the fibres in
three different classes according to their curvature, and the classification is highlighted at
the top of figure 12. The trend observed for the fibres of the first curvature class (defined
here as straight fibres) is in agreement with previous experimental (Krochak, Olson &
Martinez 2010; Capone et al. 2017) and numerical (Zhu et al. (2018)) investigations: N
reduces from the channel centre towards the near-wall region. However, we also observe
a local near-wall accumulation for 10 < y+ < 20, corresponding to 1 < y+/Lf

+ < 2,
which was not reported in previous experimental works. Although numerical results of
Do-Quang et al. (2014) and Marchioli et al. (2010) did not exhibit a reduction of the
concentration value from the centre towards the wall, a sharp increase of the concentration
is observed close to wall (y+ ≈ Lf

+), which is in agreement with our data. While the
concentration of fibres belonging to the first curvature class reduces from the centre
towards the near-wall region, this trend changes when the curvature of the fibres is
increased. It has been shown numerically (Wang et al. 2012; Thorp & Lister 2019) that,
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Figure 12. (a) The x–z averaged normalised concentration of the fibres for three different classes. The vertical
dashed line represents the mean value of the concentration. (b) The x–z averaged streamwise velocity of fibres
U+ (solid lines). The fluid velocity profile obtained for the unladen flow (dashed line) is also shown.

unlike straight rods, curved fibres in shear flow experience a drift motion, i.e. a motion
at constant velocity in a direction that differs from the flow direction. Therefore, we
speculate that non-axisymmetric fibres in the buffer layer could experience more drift and
out-of-plane (spanwise) displacements compared with straight fibres. This increases their
permanence in the near-wall region and can possibly justify the accumulations observed
for non-axisymmetric fibres.

We report in figure 12(b) the mean velocity profile of the fibres, corresponding to
three values of curvature, against the unladen flow velocity profile. We observe that
the velocity of the fibres matches the fluid velocity when y+ � 50, and it is also
independent of curvature. Similarly to what has been reported for interface-resolved
numerical simulations (Zhu et al. (2018), and references therein), we observed that for
all curvature values considered, fibres in the near-wall region (y+ < 50) move faster than
the fluid, possibly due to fibres sampling preferentially high-speed streaks. According to
Do-Quang et al. (2014), when long finite-size fibres move towards the wall transported by
turbulent sweeps, collisions with the wall prevent fibres from passively following the fluid
towards low-speed regions. As a result, the residence time of the fibres in high-speed-flow
regions is longer than that in the low-speed regions, and therefore the average streamwise
velocity of the fibres can be larger than that of the fluid. This conclusion is supported by
the results of Abbasi Hoseini et al. (2015), who studied experimentally the behaviour of
straight fibres in the near-wall region. They observed that fibres accumulate in high-speed
streaks, and this tendency increases with the aspect ratio of the fibre. In our case, we can
assume that the effective aspect ratio of the fibre is maximum when the fibre is straight,
and it reduces when the fibre has a curvature. Therefore, it is reasonable to expect that the
straighter the fibres, the greater their tendency to stay in high-speed streaks and the higher
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Figure 13. The p.d.f. of the orientation angles of the fibres (ϑx, ϑy, ϑz) in (a–c) the channel centre
(320 � y+ � 400) and (d–f ) near the wall (0 � y+ � 25). Due to symmetry, angles shown are reduced to
the first quadrant. Dashed lines in (a–c) represent normalised random distributions.

the mean velocity. This is in agreement with the near-wall results of figure 12(b), where
an increase of curvature produces a reduction of velocity.

4.2. Orientation
To investigate the orientation of the fibres, we considered the angles that the fibres form
with respect to streamwise, spanwise and wall-normal directions (ϑx, ϑz and ϑy), as
shown in figure 8(b). Since we observed that curvature κ∗ has a strong influence on
fibre orientation, to appreciate the changes in the fibre behaviour for the entire range of
curvatures, we consider here more classes compared to figure 12, resulting in smaller
curvature intervals. We classify the fibres in three curvature classes and we show in
figure 13 the p.d.f. of these angles in two different regions of the channel: centre (320 �
y+ � 400; figure 13(a–c)) and near the wall (0 � y+ � 25; figure 13(d–f )).

The p.d.f.s of ϑy (figure 13a,d) show that the trend is independent of curvature in
both regions considered. Near the wall, the peak of the p.d.f. is close to π/2, i.e. the
major axis of the fibre x′ belongs to a plane parallel to the channel wall. In the channel
centre, no preferential alignment is expected; this is confirmed by figure 13(a), in which
the distribution appears random compared to the wall region. To summarise, in the
near-wall region (figure 13d), the most probable orientation of the fibres with respect to
the wall-normal direction, regardless of their curvature, is ϑy ≈ π/2, i.e. fibres preferably
flow with x′ parallel to the channel wall (xz plane). This observation is in agreement with
both experimental (Capone et al. 2017) and numerical (Marchioli et al. 2010; Do-Quang
et al. 2014; Challabotla et al. 2015b) findings obtained for ellipsoids in channel flow.
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Long non-axisymmetric fibres in turbulent channel flow

In the near-wall region (0 � y+ � 25), we observe a preferential out-of plane flow
orientation (ϑz; figure 13(f )), which is sensitive to the curvature class of the fibres. In
this region, for all curvatures, the p.d.f. of ϑy exhibits a sharp peak for ϑy ≈ π/2, that is,
x′ lies on xz planes and it appears that the p.d.f.s of ϑx (figure 13e) and ϑz (figure 13f )
are correlated. Fibres with high curvature values preferably align with the streamwise
direction (figure 13(e); ϑx ≈ 0), but for fibres with low curvatures, we observe a bimodal
(double peak) distribution. In contrast, the p.d.f. of ϑx for straight fibres has a dominant
peak for ϑx ≈ π/3. Although the reason behind the shape of the p.d.f. is not fully clear,
we observed (not reported here) that the two-peak distribution persists for almost all
curvature classes considered in the region 25 � y+ � 100. This behaviour is not solely
a function of curvature, but it is also sensitive to the local flow conditions (velocity
gradients). We speculate that the different preferential orientation of the fibres in sweep
and ejection structures is the main cause of the above-mentioned bimodal distribution, and
the curvature defines the magnitude of the dominant peak.

Due to possible similarities with HIT conditions, fibres in the centre of the channel have
no preferential alignment with respect to the wall-normal direction (ϑy; figure 13(a)). In
figure 13(b,c), the same behaviour is observed for the orientation with respect to the other
directions ϑx and ϑz. In this case, with respect to the near-wall region, fibres exhibit a
remarkably lower tendency to orient in a preferential direction.

4.3. Rotational dynamics
After the seminal work of Jeffery (1922), in the case of straight ellipsoids in shear flow,
Hinch & Leal (1979) investigated the dynamics of curved fibres in the same configuration.
With the aid of asymptotic techniques, they showed that the rotational dynamics of slightly
curved fibres can be significantly different from that observed for straight ellipsoids. In this
section, we present experimental observations of the effect of curvature on the rotational
dynamics of non-axisymmetric fibres discussing first the rotation rate about the axis of
the laboratory reference frame and later examining the rotation rate about the fibre frame
system, i.e. tumbling and spinning. Streamwise- and spanwise-averaged rotation rates of
the fibres, classified in three different ranges of curvature, are presented in figure 14,
showing the rate of change of ϑx, ϑz and ϑy. In particular, the x–z averaged angular
velocities |ϑ̇x|, |ϑ̇y| and |ϑ̇z| are defined as the mean value computed over horizontal planes
of |∂ϑx/∂t|, |∂ϑy/∂t| and |∂ϑz/∂t|, respectively. Our data show that non-axisymmetric
fibres rotate faster compared to straight rods, for all components considered and all along
the channel height. We observe, for the curvature classes considered, a nearly constant
difference in the magnitude of the three rotation rates. We therefore observe that in
the central region of the channel (320 � y+ � 400), the rotation rate is uniform (i.e.
independent of y+) for all classes. In this region, since fibres are long, they interact with the
large structures of the flow. In the near-wall region, due to the greater shear, the magnitude
of the rotation rate increases approaching the wall. It is also evident from figure 14(c) that
the magnitude of the rotation rate |ϑ̇y| is lower than that of the other two components |ϑ̇x|
and |ϑ̇z|.

Finally, we remark that there exists a nearly constant difference in the magnitude of
the three rotation rates for different curvatures. To explain this observation, we associate
the fibres with an effective length corresponding to the distance between two ends of the
fibres. Since all fibres have statistically the same length, non-axisymmetric fibres have
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Figure 14. The x–z averaged angular velocities of all three classes of fibres. The angular velocities in directions
x, y and z (|ϑ̇x|, |ϑ̇y|, |ϑ̇z|) are defined as the mean value computed over horizontal planes of |∂ϑx/∂t|, |∂ϑy/∂t|
and |∂ϑz/∂t|, respectively.

smaller effective length compared with straight rods. In this context, it is reasonable to
assume that the longer the effective length, the slower the rotation rate of the fibres.

In order to investigate the rotational dynamics of the fibres with respect to their local
reference frame, we analyse the statistics of square tumbling rate ΩtΩt (defined in § 3.5)
as a function of their curvature. As an example, a trajectory is shown in figure 15, in which
fibre is coloured according to the instantaneous square tumbling rate (ΩtΩt) normalised
by the mean value computed over the entire track 〈ΩtΩt〉. The fibre tracked is located in
the near-wall region, and the wall is here indicated as a grey surface. First, we observe that
the acquisition rate used is sufficient to resolve the dynamics of the fibre in the present
flow configuration (one of every three instants measured is shown in figure 15(a,b)). The
dynamics of the fibre is complex and characterised by subsequent rotations, which can
be appreciated in the front view, in figure 15(a). We also observe that the radius of the
trajectory of the fibre is of the order of 20–30 wall units, likely corresponding to the
characteristic size of the coherent structures populating the turbulent near-wall region.
It is also possible to observe from figure 15(b) the variation in the streamwise velocity
of the fibre: closer to the wall, the velocity of the fibre is lower and the displacement
between two consecutive instants is small. Away from the wall, the fibre moves faster and
the distance between two consecutive positions increases. We also observe that the fibre
can experience rapid changes of the tumbling rate, represented by strong colour gradients
in figure 15(a,b).

To provide a more global and quantitative estimation of the tumbling rates, we consider
ΩtΩt computed over the whole dataset and non-dimensionalised with respect to the local
Kolmogorov time scale 〈Ω∗

t Ω
∗
t 〉 = 〈ΩtΩt〉τ 2

k . Results are reported in figure 16(a) for
three different regions of the channel, and as a function of the curvature of the fibres.
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(a)

Figure 15. Measurement of non-axisymmetric fibre travelling close to the wall, represented here by the grey
surface. Front view (a) and side views (b,c) are shown. Fibre is coloured according to the instantaneous
tumbling rate ΩtΩt normalised by the mean value computed over the entire track |ΩtΩt|. The acquisition
rate is sufficiently high to resolve the dynamics of the fibre also in this case, in which the behaviour is complex.
One in three instants measured is shown in (b), whereas all instants recorded are shown in (c). It can be
appreciated from (c) that the measurements are sufficiently resolved in time to smoothly record the transition
from low (black) to high (yellow) tumbling dynamics. Time evolution of the motion of this track is available as
a supplementary movie available at https://doi.org/10.1017/jfm.2021.185.

Deviations from straight rod shape towards fibres with curvature produce significant
changes in the magnitude of the tumbling rate, as shown in figure 16(a), where the
dimensionless mean squared tumbling rate increases with the curvature κ∗. Moreover, we
observe that the tumbling rate increases with the wall-normal coordinate y+. The studies
investigating particle tumbling behaviour currently available in the literature are related
to straight rods (Parsa et al. 2012; Marcus et al. 2014; Sabban et al. 2017; Bounoua et al.
2018; Kuperman et al. 2019; Bordoloi et al. 2020; Jiang et al. 2020). For long and neutrally
buoyant straight rods in HIT conditions, the magnitude of mean squared tumbling rate is
observed to be approximately 0.1 (Parsa et al. 2012; Parsa & Voth 2014). The profile of
〈Ω∗

t Ω
∗
t 〉 (figure 16a) at the centre of the channel suggests that for vanishing curvature

(κ∗ → 0), 〈Ω∗
t Ω

∗
t 〉 would be of the same order of magnitude as the mean square tumbling

of straight rods obtained in HIT configuration. The same observation holds for the mean
square tumbling rate measured in the near-wall region of Rayleigh–Bénard experiments
(Jiang et al. 2020). We mention a possible error of bias here: since the time scale of the
flow varies from the wall to the centre of the channel, the temporal filter used to process
the data (see § 3.4) could underestimate – wall region – or overestimate – central region –
the magnitudes of 〈Ω∗

t Ω
∗
t 〉. However, in all cases, the reported trend will not change.

We compare now the mean square tumbling rates of non-axisymmetric fibres (present
experiments) with those of non-axisymmetric ellipsoids in viscous flow (theoretical
model). We solve numerically the autonomous system of ordinary differential equations
for the Euler angles of curved ellipsoids in laminar shear flow (Hinch & Leal 1979).
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Figure 16. Influence of curvature on the tumbling rate. (a) The x–z averaged tumbling values 〈Ω∗
t Ω

∗
t 〉 at

different wall-normal locations. (b) The x–z averaged tumbling values normalised by the maximum tumbling
value of the specified region, compared with results obtained with the Hinch & Leal (1979) model (solid line),
discussed in Appendix B.

We consider the same range of curvature (κ∗) studied in our experiments, and κ∗ → 0
gives the so-called‘Jeffery orbits’ (Jeffery 1922). We refer to the results obtained from
this procedure as the Hinch & Leal (1979) model (see Appendix B for further details). In
figure 16(b), 〈Ω∗

t Ω
∗
t 〉 is normalised by the maximum value of the mean tumbling rate of

each region 〈Ω∗
t Ω

∗
t 〉max (corresponding also to the maximum κ∗ considered), and then

shown with the data obtained from the analytical results as a function of curvature.
Even though the flow configuration is different, and more importantly shear decreases

approaching the channel centre, the dependency of the normalised tumbling rate with
respect to the curvature value is in fair agreement with the behaviour predicted by
the Hinch & Leal (1979) model. This indicates that, although fibres interact with flow
structures of different size across the entire channel height, for the specific parameter
range explored in this paper, the curvature-induced asymmetry, in other words fibre shape,
is chiefly responsible for the observed trend.

In the case of (axisymmetric) ellipsoids, the mean values of the two components of
the tumbling (ω∗

y and ω∗
z ) averaged over a long time window will match. Indeed, straight

ellipsoids can have infinite planes of symmetry containing the symmetry axis, and the
dynamics is invariant with respect to the local reference frame chosen, provided that the
symmetry axis coincides with one of the axes of the local reference frame. However,
this is not the case when the particle shape becomes non-axisymmetric. To investigate
this behaviour, in figure 17 we plot separately the components of mean square tumbling
rate averaged over the region considered, 〈ω∗

yω
∗
y 〉 and 〈ω∗

zω
∗
z 〉, along with the numerical

results obtained from the model of Hinch & Leal (1979). Note that the asterisk represents
non-dimensionalisation with respect to the local Kolmogorov time scale. We observe from
the model results that there should be a crossing point for the two tumbling components.
We confirm the existence of this crossing point for all datasets presented and at all
locations in the channel (figure 17).
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Figure 17. The x–z averaged tumbling components, as a function of curvature, for three regions of the channel.
Results for curved ellipsoids, obtained from the model of Hinch & Leal (1979) (see Appendix B), are also
reported. Squares and diamonds represent ω∗

y and ω∗
z , respectively.

Finally, we consider the p.d.f.s of square tumbling rate normalised by mean square
tumbling rate of each curvature class, Ω∗

t Ω
∗
t /〈Ω∗

t Ω
∗
t 〉. Results are shown for the

centre (320 � y+ � 400) and for the near-wall regions (0 � y+ � 25) of the channel in
figures 18(a) and 18(b), respectively. In the centre, the p.d.f.s show a trend for low values
of Ω∗

t Ω
∗
t /〈Ω∗

t Ω
∗
t 〉: curved fibres experience more frequently low-speed rotation motions

than straight ones. These results do not contradict the x–z averaged square tumbling
rate data shown in figure 16, since statistics reported in figure 18 are normalised by
the mean value of each class, which increases with curvature. In addition, our results
for ‘straight fibres’ are in fair agreement with the previously reported experimental data
obtained for straight rods in HIT configuration (Parsa et al. 2012; Jiang et al. 2020), as
shown in figure 18(a). However, we remark here that fibres belonging to the first curvature
class cannot be strictly considered as straight. In the near-wall region (figure 18b), for
all curvature classes the probability of having extreme events is higher compared to
the channel centre (figure 18a) due to the presence of near-wall coherent structures and
fibre–wall interactions. In addition, we observe from figure 18(b) that the probability
of having extreme events decreases with curvature. We remark here that, in general,
non-axisymmetric fibres are characterised by higher tumbling rates compared to straight
rods (shown in figure 16), but in figure 18 the tumbling rate reported is normalised with
respect to the mean value of each class.

5. Conclusions

In this work, we investigated experimentally the behaviour of long non-axisymmetric
fibres in turbulent channel flow. Experiments are carried out in the TU Wien Turbulent
Water Channel facility. To perform the analysis, we developed a new method to detect
and track non-axisymmetric, neutrally buoyant fibres in the flow, which is based on the
three-dimensional light intensity distribution obtained from MART reconstruction. To this
end, we used simultaneous time-resolved recordings of the flow using four high-speed
cameras.
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Figure 18. The p.d.f. distribution of tumbling rates in (a) the channel centre (320 � y+ � 400) and in (b) the
near-wall region (0 � y+ � 25) for fibres with different curvatures. Experimental measurements for straight
fibres in HIT configuration (Parsa et al. 2012; Jiang et al. 2020) are also shown (symbols) as well as results for
straight ellipsoids (Jeffery orbits, obtained with the Hinch & Leal (1979) model with κ∗ = 0; dashed line).

We provided original experimental measurements of concentration, orientation and
rotation rates of long curved fibres. The effect of the non-axisymmetric shape of the fibres
produces important differences in the fibre behaviour with respect to straight rods, in terms
of both orientation and rotation rates. We confirmed previous results for fibre concentration
and velocity, obtained from direct numerical simulations of straight fibres in turbulent
channel flow. We observed a near-wall accumulation of the fibres and we also speculate
that fibres preferably stay in high-speed streaks, in agreement with previous observations.
We also characterised the fibre behaviour in different regions of the channel, namely
channel centre and near-wall regions, and we observed that the orientation of the fibre
with respect to streamwise and spanwise directions is strongly influenced by curvature.
Similarly, the rotation rates (i.e. the rate of change of the orientation angles) strongly
depend on the curvature of the fibres: high curvature values produce large rotation rates
across the entire channel height. We measured the tumbling rate of long, non-axisymmetric
fibres and we compared the results with the numerical solutions obtained for curved
ellipsoids in shear flow (Hinch & Leal 1979). We found that the normalised square
tumbling rate of the fibres is in excellent agreement with the theoretical predictions,
and also in this case the curvature plays a key role, modulating the intensity of the
tumbling rate measured. Finally, we observed that the fibre dynamics in the centre of the
channel shares some similarities with previous results in HIT configuration, which makes
the current facility suitable for obtaining information for both bounded and unbounded
flows.

This original database, in which fibres are classified according to their curvature,
represents a first step towards the characterisation of the behaviour of complex objects
in turbulent channel flows. The results obtained can contribute to the development
and validation of new modelling approaches, which are required to tackle the variety
of environmental and industrial problems in which complex particle geometries are
present.
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Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.185.
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Appendix A

We describe here the process of identification of the effective cluster length Leff . We
consider the binarised voxel distribution obtained in § 3.1 and associated with a fibre
(figure 19a). Since the position of each voxel of the fibre in the three-dimensional space
(x, y, z) is known, the covariance matrix of the fibre can be computed as

C =

⎡
⎢⎣

cov(x, x) cov(x, y) cov(x, z)
cov( y, x) cov( y, y) cov( y, z)
cov(z, x) cov(z, y) cov(z, z)

⎤
⎥⎦ , (A1)

where cov(x, y) is the covariance of x and y defined as

cov(x, y) = 1
n

n∑
i=1

(xi − x̄)( yi − ȳ), (A2)

where x̄ is the mean value of x. The very same procedure applies to all other elements of C .
Then, a multivariate normal distribution (MND) corresponding to the mean μ = [x̄, ȳ, z̄]
and the covariance C is generated (Kotz, Balakrishnan & Johnson 2004). Scattered data
representing the MND are shown as black symbols in figure 19(b). The three-dimensional
distribution of these points defines an ellipsoid with axis length li.

A correspondence exists between this ellipsoid and the properties of the matrix C .
Indeed, the eigenvectors vi of the matrix C are oriented in the directions of the principal
axis of the ellipsoid. Moreover, λivi, i.e. the eigenvectors rescaled according to their
correspondent eigenvalues (λi), are proportional to the ellipsoid axis length li = 2

√
αλi,

where α is a scale factor. Finally, the effective length Leff used as threshold for the
discrimination process in § 3.1 is defined as the length of the major axis of the ellipsoid,
Leff = l1.
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Figure 19. (a) Fibre consisting of the binarised voxel values. (b) Scatter data (black bullets) represent the MND
having mean μ and covariance C . The three-dimensional distribution of these data defines an ellipsoid with
axis length li. The directions of the principal axis of the ellipsoid (eigenvectors vi of the covariance matrix) are
also shown. The eigenvectors are rescaled according to their corresponding eigenvalues (λi), so that the product
λivi is proportional to the ellipsoid axis length li.

Appendix B

Hinch & Leal (1979) introduced an autonomous system of ordinary differential equations
to describe the evolution of the Euler angles of any ellipsoid as

ϑ̇ = 1
2α sin 2ϑ sin 2φ + 1

2β(− sin 2ϑ sin 2φ cos 2ψ − 2 sinϑ cos 2ϑ sin 2ψ), (B1)

φ̇ = −1
2 + α cos 2φ + β(− cosϑ sin 2φ sin 2ψ + cos 2φ sin 2ψ), (B2)

ψ̇ = −α cosϑ cos 2φ + β(cos2 ϑ sin 2φ sin 2ψ − cosϑ cos 2φ cos 2ψ)

+ γ (cos2 ϑ sin 2φ sin 2ψ − 2 cosϑ cos 2φ cos 2ψ + sin 2φ sin 2ψ), (B3)

where Euler angles (ϑ, ψ, φ) are defined as in figure 20 and α = 0.25(B2 − B1), β =
0.25(B2 + B1) and γ = 0.25B3, with Bi coefficients to be defined. Thorp & Lister (2019)
observed that (B1)–(B3) are valid for any object with two planes of symmetry, provided
that B1, B2 and B3 can be measured independently. In the case of axisymmetric ellipsoids,
B1 = B2 and B3 = 0. When the particle shape starts to deviate from the symmetric
condition, values of B1, B2 and B3 will be independent of each other and should be found
from the grand resistance matrix (Sangtae & Seppo 1991). Representation of B1, B2 and
B3 values as a function of curvature for a curved prolate ellipsoid with aspect ratio of 20 is
shown in figure 20(b). We used these values to solve (B1) for ϑ , φ and ψ . An example of
Euler angles for two different values of curvature is reported in figure 21(a). Euler angles
are correlated to the rotation rate around the particles axis as follows:

ωz = ϑ̇ cos(ψ)+ sin(ϑ) sin(ψ)φ̇, (B4)

ωy = −ϑ̇ sin(ψ)+ sin(ϑ) cos(ψ)φ̇, (B5)

ωx = ψ̇ + cos(ϑ)φ̇, (B6)

withωi defined as in figure 8. We find the values ofωz andωy for different initial conditions
for the Euler angles (ϑ0, nπ, ψ0), with ϑ0, ψ0 ∈ [0;π] and n integer. Mean square
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Figure 20. (a) Definition of Euler angles (ϑ, ψ, φ) adopted. (b) Coefficients B1, B2 and B3 as a function of
curvature κ∗.
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Figure 21. (a) Evolution of Euler angles ϑ , φ and ψ for κ∗ = 0 (straight fibre) and κ∗ = 0.4 (curved fibre).
(b) Components of the tumbling rate obtained from the model of Hinch & Leal (1979). Squares and diamonds
represent 〈ω2

y 〉 and 〈ω2
z 〉, respectively, whereas the solid curve 〈ΩtΩt〉 is the sum of the two contributions.

tumbling rates are shown in figure 21(b), where ΩtΩt = ω2
z + ω2

y . These results are also
presented in figures 16 and 17. We observed that while the location of the crossing point
of the tumbling components, 〈ω2

z 〉 and 〈ω2
y〉, is sensitive to the time window considered,

the averaged tumbling rate 〈ΩtΩt〉 is independent of the time interval size.
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