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SEARCHING FOR AN ANALOGUE OF ATR0

IN THE WEIHRAUCH LATTICE

TAKAYUKI KIHARA, ALBERTO MARCONE, AND ARNO PAULY

Abstract. There are close similarities between the Weihrauch lattice and the zoo of

axiom systems in reverse mathematics. Following these similarities has often allowed

researchers to translate results from one setting to the other. However, amongst the big

five axiom systems from reverse mathematics, so far ATR0 has no identified counterpart

in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that

the situation is complicated.

§1. Introduction. Reverse mathematics [42] is a program to find the suffi-
cient and necessary axioms to prove theorems of mathematics (that can be for-
malized in second-order arithmetic). For this, a base system (RCA0) is fixed, and
then equivalences between theorems and certain benchmark axioms are proven.
Sometimes, a careful reading of the original proof of the theorem reveals which
of the benchmark axioms are used, and the main challenge is to show that the
theorem indeed implies those axioms (hence the name reverse mathematics). A
vast number of theorems turned out to be equivalent to one of only five systems:
RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0. While recently attention has shifted
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to theorems not equivalent to one of the big five, the big five still occupy a
central role in the endeavour.

Computational metamathematics in the Weihrauch lattice starts with the ob-
servation that many theorems in analysis and other areas of mathematics have
Π2-gestalt, i.e. are of the form ∀x ∈ X(Q(x)→ ∃y ∈ Y P (x, y)), and can hence be
seen as computational tasks: Given some x ∈ X satisfying Q(x), find a suitable
witness y ∈ Y. This task can also be viewed as a multivalued partial function
f :⊆ X ⇒ Y, and thus the precise definition of Weihrauch reducibility (given
in §2.2 below) deals with this kind of objects. Often, the task cannot be solved
algorithmically (equivalently, the multivalued function is not computable). The
research programme (as formulated by Gherardi and Marcone [20], Pauly [35, 37]
and in particular Brattka and Gherardi [7, 6]) is to compare the degree of im-
possibility as follows: Assume we had a black box to solve the task for Theorem
B. Can we solve the task for Theorem A using the black box exactly once? If
so, then A ≤W B, A is Weihrauch reducible to B.

As provability in RCA0 is closely linked to computability, it is maybe not
that surprising that very often, classification in reverse math can be translated
easily into Weihrauch reductions1. While there are a number of obstacles for
precise correspondence (see [24] for a detailed discussion), the resource-sensitivity
of Weihrauch reductions might be the most obvious one: A proof in reverse
mathematics can use a principle multiple times, a Weihrauch reduction uses its
black box once. This obstacle does not apply to RCA0 or WKL0 classifications.

The analogue of RCA0 are the computable principles, the analogue of WKL0

is C2N (closed choice on Cantor space), and the analogue of ACA0 is lim or finite
iterations thereof. Theorems equivalent to Π1

1-CA0 have not yet been studied
in the Weihrauch lattice, but an obvious analogue of Π1

1-CA0 is readily defined
as the function which maps a countable sequence of trees to the characteristic
function of the set of indices corresponding to well-founded trees. This leaves
ATR0 out of the big five, leading Marcone to initiate the search for an analogue
in the Weihrauch lattice at a Dagstuhl meeting on Weihrauch reducibility [13].

Two candidates have been put forth as potential answers, UCNN and CNN

(unique choice and closed choice on Baire space). We will examine some evi-
dence for both of them, and show that the question is not as easily answered
as those for the other big five. Our main focus is on three particular theorems
equivalent to ATR0 in reverse mathematics: Comparability of well orderings,
open determinacy on Baire space2 and the perfect tree theorem.

Theorem (Comparability of well orderings). If X and Y are well orderings
over N, then |X| ≤ |Y | or |Y | ≤ |X|.

Theorem (Open determinacy). Consider a two-player infinite sequential game
with moves from N. Let the first player have an open winning set. Then one
player has a winning strategy.

1The reverse direction would also be possible, but as reverse mathematics is the older field,
occurs seldom in practice.

2The version for Cantor space has been studied in the Weihrauch degrees by Le Roux and
Pauly [30].
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Theorem (Perfect Tree Theorem). If T ⊆ N<N is a tree, then either [T ] is
countable or T has a perfect subtree.

Structure of the paper. In Section 2 we recall the prerequisite notions about
Weihrauch reducibility. While reverse mathematics serves as the motivation for
this paper, its results are not invoked in our proofs, hence we do not expand on
this area. In Section 3 we recall two Weihrauch degrees of central importance,
unique choice UCNN and closed choice CNN on Baire space. We then prove some
equivalences to those for variants of comprehension and separation principles. In
Section 4, we re-examine the strength of a separation principle, which is shown
to be equivalent to Σ1

1-WKL, weak König’s lemma for Σ1
1-trees (Theorem 4.3).

The comparability of well orderings is studied in Section 5. We see two variants,
one of which we prove to be equivalent to UCNN (Theorem 5.5) whereas the other
resists full classification (Question 5.8).

Open determinacy and the perfect tree theorem are investigated in Sections
6 and 7. Both principles are formulated as disjunctions, and the versions where
we know in which case we are are proven to be equivalent to UCNN or CNN in
Section 6. The results about open determinacy can be seen as uniform versions
of the study of the complexity of winning strategies in [2]. If no case is fixed,
we arrive at Weihrauch degrees not previously studied. Some of their properties
are exhibited in Section 7. Since the degrees studied in Section 7 are not very
well behaved, we introduce the canonical principle TCNN , the total continuation
of closed choice in Section 8. We prove that up to finite parallelization, it is
equivalent to the two-sided versions of open determinacy and the perfect tree
theorem, and show some additional properties of the degree. Some concluding
remarks and open questions are found in Section 9.

The following illustrates the strength of key benchmark principles in this ar-
ticle:

UCNN <W Σ1
1-WKL <W CNN <W TCNN <W T̂CNN <W Π1

1-CA.

§2. Background on represented spaces and Weihrauch degrees. For
background on the theory of represented spaces we refer to [38], for an introduc-
tion to and survey of Weihrauch reducibility we point the reader to [12].

As usual in the area, we use angle brackets to denote a variety of pairing and
coding functions, such as those from N × N to N, from N<N to N, and from
NN×NN, (NN)<N and (NN)N to NN. The context provides information about the
one actually employed in any given instance.

2.1. Represented spaces.

Definition 2.1. A represented space X is a set X together with a partial
surjection δX :⊆ NN → X. If x ∈ X, any element of (δX)−1(x) is called a name
or a code for x.

A partial function F :⊆ NN → NN is called a realizer of a function f :⊆
X → Y between represented spaces, if f(δX(p)) = δY(F (p)) holds for all p ∈
dom(f ◦ δX). We denote F being a realizer of f by F ` f . We then call
f :⊆ X → Y computable (respectively continuous), iff it has a computable
(respectively continuous) realizer.
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Represented spaces can adequately model most spaces of interest in everyday
mathematics. For our purposes, we only need a few specific spaces that we
discuss in the following, as well as some constructions of hyperspaces.

The category of represented spaces and continuous functions is cartesian-
closed, by virtue of the UTM-theorem. Thus, for any two represented spaces
X, Y we have a represented space C(X,Y) of continuous functions from X
to Y. The expected operations involving C(X,Y) (evaluation, composition,
(un)currying) are all computable. Using the Sierpiński space S with underlying
set {>,⊥} and representation δS : NN → {>,⊥} defined via δS(⊥)−1 = {0ω}, we
can then define the represented space O(X) of open subsets of X by identifying
a subset of X with its (continuous) characteristic function into S. Since count-
able or and binary and on S are computable, so are countable union and binary
intersection of open sets. The space A(X) of closed subsets is obtained by taking
formal complements, i.e. the names for A ∈ A(X) are the same as the names of
X \A ∈ O(X) (i.e. we are using the negative information representation).

We indicate with Tr the space of trees on N represented in an obvious way
via characteristic functions on the set of finite sequences. The computable map
[ ] : Tr → A(NN) maps a tree to its set of infinite paths, and has a computable
multivalued inverse. In other words, one can compute a code of a tree T from a
code of a closed set [T ], and vice versa.

Given a represented space X and k ∈ N, using Borel codes, the collections
Σ0
k(X) (respectively Π0

k(X)) of Σ0
k (respectively Π0

k) subsets of X can be natu-
rally viewed as a represented space, cf. [3, 22, 39]. Equivalently, we can use the
jumps of S to characterize these spaces. We find that A and Π0

1 (respectively O
and Σ0

1) are identical.
The collection Σ1

1(X) of analytic subsets of X can also be represented in a
straightforward manner: p is a name of a Σ1

1 set S ⊆ X iff p is a name of a closed
set P ⊆ NN × X such that S = {x ∈ X : (∃g) (g, x) ∈ P}. Equivalently ([40,
Proposition 35]), we can define the space SΣ1

1
by letting it have the underlying

set {>,⊥}, and letting p ∈ NN be a name for > iff the tree on N coded by
p is ill-founded; and then identify Σ1

1(X) with C(X,SΣ1
1
) (here f ∈ C(X,SΣ1

1
)

represents the Σ1
1(X) set f−1(>)). Again, the collection Π1

1(X) of coanalytic
subsets of X is represented in an obvious way by taking formal complements.
We define the space SΠ1

1
with underlying set {>,⊥}, so that p ∈ NN is a name

for > iff the tree on N coded by p is well-founded.
We first check that basic operations on these represented spaces are well-

behaved.

Lemma 2.2. The following operations are computable:

1.
∨
,
∧

: SN
Σ1

1
→ SΣ1

1

2. ∃ : Σ1
1(X)→ SΣ1

1
, mapping non-empty sets to > and the empty set to ⊥.

3. id,¬ : S→ SΣ1
1

Proof. 1. For
∨

, we need to show that given a sequence of trees we can
compute a tree that is ill-founded iff one of the contributing trees is. This
can be done by simply joining them at the root. For

∧
, we need a tree
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that is ill-founded iff all them are. For that, we can take the product of the
trees (e.g. as in [34]).

2. From f ∈ C(NN,SΣ1
1
) we can compute by type-conversion some g : NN ×

NN → S such that f(p) = > iff ∃q ∈ NN g(p, q) = ⊥. But then ∃p ∈
NN f(p) = > ⇔ ∃〈p, q〉 ∈ NN g(p, q) = ⊥, and we are done.

3. For ¬ : S→ SΣ1
1
, given a name p for a point in S let the tree T be defined

by w ∈ T iff ∀n ≤ |w| p(n) = 0. For id : S → SΣ1
1
, we let T have only

branches of the form n0ω, and such a branch is present iff p(n) 6= 0.
a

Proposition 2.3. The following operations are computable for any repre-
sented space X and k > 0:

1. Σ1
1(X)N −→ Σ1

1(X), (An)n 7−→
⋃
n∈NAn (countable union);

2. Σ1
1(X)N −→ Σ1

1(X), (An)n 7−→
⋂
n∈NAn (countable intersection);

3. Σ1
1(X×Y) −→ Σ1

1(Y), A 7−→ {y ∈ Y | ∃x ∈ X (x, y) ∈ A}
4. Σ0

k(X) → Σ1
1(X), Π0

k(X) → Σ1
1(X), Σ0

k(X) → Π1
1(X), Π0

k(X) → Π1
1(X)

(inclusions);
5. Σ0

k(NN ×X)→ Σ1
1(X), Π0

k(NN ×X)→ Σ1
1(X), such that

B 7→ A =
{
x ∈ X : ∃g ∈ NN(g, x) ∈ B)

}
;

6. Σ0
k(NN ×X)→ Π1

1(X), Π0
k(NN ×X)→ Π1

1(X), such that

B 7→ A =
{
x ∈ X : ∀g ∈ NN(g, x) ∈ B

}
;

7. Π0
1(NN ×X)→ Π1

1(X), such that

C 7→ A =
{
x ∈ X : ∃!g ∈ NN(g, x) ∈ C

}
.

Proof. (1-6) These all follow directly from Lemma 2.2 together with function
composition.

(7) It is well-known that a ∈ NN is hyperarithmetical relative to {a} ∈ Π0
1(NN)

(cf. Corollary 3.3 and accompanying remarks below). The section map (x,C) 7→
{y ∈ NN | (y, x) ∈ C} : X × Π0

1(NN × X) → Π0
1(NN) is computable, see [38,

Proposition 4.2 (9)]. Thus, we find that

A = {x ∈ X | ∃y ∈ HYP(x) (y, x) ∈ C}∩{x ∈ X | ∀y, z((y, x), (z, x) ∈ C → y = z)}.

The first set on the right-hand side is Π1
1 by Kleene’s HYP-quantification

theorem [27, 28] (see also [41, Lemma III.3.1]); that is, the formula ∃y ∈
HYP(x) P (x, y) means that there are natural numbers a, e such that a ∈ Ox
(which represents an ordinal α) and the e-th real Φe(x

(α)) computable in the
α-th Turing jump of x satisfies P (x,Φe(x

(α))), where Ox is Kleene’s system of
ordinal notations relative to x (which is a Π1

1(x) set), cf. [41]. This description
is trivially Π1

1, uniformly relative to x and the complexity of P , so that we can
actually compute the Π1

1 set from C. The second set explicitly and uniformly
defines a Π1

1 set. The claim thus follows using that intersection is a computable
operation on Π1

1 sets from (2). a
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Lemma 2.4. Let X be a represented space. Then the function F :
⊔
k Π0

k(NN×
X)→ Σ1

1(X) defined by

B 7→ A =
{
x ∈ X : ∃g ∈ NN(g, x) ∈ B

}
,

is computable.

Proof. Proposition 2.3(5) is typically proved by induction on k, and the in-
ductive argument is uniform in k. Since (a name for) for B ∈

⊔
k Π0

k(NN ×
X) includes the information about the k such that B ∈ Π0

k(NN × X), we
can uniformly repeat k steps of the induction argument to obtain a name for{
x ∈ X : ∃g ∈ NN(g, x) ∈ B

}
as a Σ1

1(X) set. a

We define the represented spaces LO and WO respectively of linear orderings
and countable well orderings with domain contained in N (thus WO is a subspace
of LO) as follows: p is a name for the linear order (X,�X) with X ⊆ N if
p(〈n,m〉) = 1 if and only if n �X m. We often abuse notation by leaving �X
implicit and writing X ∈ LO. We may assume without loss of generality that,
for all X ∈ LO, 0 /∈ X (this will be useful in Definition 5.1 below). If X ∈ LO we
use interchangeably WO(X) and X ∈ WO. If X ∈ WO we indicate its order
type by |X|. Given some tree T ⊆ N<N, we define the Kleene-Brouwer ordering
�KB on T as the transitive closure of w �KB u if w w u and un �KB um if
n ≤ m. Using the coding of finite strings we view (T,�KB) as a member of LO.

Observation 2.5. The map KB : Tr → LO mapping a tree to its Kleene-
Brouwer ordering is computable. We have WO(KB(T )) iff T is well-founded.

We need a technical definition, which can be found in [42, Definition V.6.4],
for some of our proofs related to well orderings.

Definition 2.6 (double descent tree). If X,Y ∈ LO the double descent tree
T(X,Y ) is the set of all finite sequences of the form 〈(m0, n0), (m1, n1), . . . , (mk−1, nk−1)〉 ∈
N<N such that

• m0,m1, . . . ,mk−1 ∈ X and m0 >X m1 >X · · · >X mk−1,
• n0, n1, . . . , nk−1 ∈ Y and n0 >Y n1 >Y · · · >Y nk−1.

We define the linear ordering X ∗ Y = KB(T(X,Y )).

Observation 2.7. (X,Y ) 7→ (X ∗ Y ) : LO× LO→ LO is computable.

With an abuse of notation, we useQ and N to denote respectively a computable
presentation of the standard linear ordering of rational numbers and of the well
ordering of natural numbers.

Lemma 2.8. Let X,Y ∈ LO.

1. If WO(X) then X ∗ Y and Y ∗X are well orderings.
2. If WO(X) and ¬WO(Y ), then |X| ≤ |X ∗ Y |.
3. If WO(Y ), then |X ∗ Y | ≤ |Q ∗ Y |.
Proof. The proofs of 1 and 2 can be found in Lemma V.6.5 of [42]. In order

to prove 3, consider a function g : X → Q such that, for all x, x′ ∈ X,

(a) x <X x′ → g(x) <Q g(x′),
(b) x <N x

′ → g(x) <N g(x′).
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It is easy to see that such a function exists. Define then ĝ : (X ∗ Y ) → (Q ∗ Y )
by putting ĝ(〈(x0, y0), . . . , (xk−1, yk−1)〉) := 〈(g(x0), y0), . . . , (g(xk−1), yk−1))〉.
Property a. of g guarantees that ĝ is well-defined and property b. implies that
ĝ respects the Kleene-Brouwer orderings of the double descent trees X ∗ Y and
Q ∗ Y . a

2.2. Weihrauch reducibility. Intuitively, f being Weihrauch reducible to
g means that there is an otherwise computable procedure to solve f by invoking
an oracle for g exactly once. We thus obtain a very fine-grained picture of the
relative strength of partial multivalued functions. Consequently, a Weihrauch
equivalence is a very strong result compared to other approaches that allow
more generous access to the principle being reduced to.

Definition 2.9 (Weihrauch reducibility). Let f, g be multivalued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ NN → NN such that
(p 7→ K〈p,GH(p)〉) ` f for all G ` g.

If there are computable functions K,H :⊆ NN → NN such that KGH ` f for
all G ` g, then f is strongly Weihrauch reducible to g, in symbols f ≤sW g.

The relations ≤W, ≤sW are reflexive and transitive. We use ≡W (≡sW) to
denote equivalence and by <W we denote strict reducibility. Both Weihrauch
degrees [36] and strong Weihrauch degrees [17] form lattices, the former being
distributive and the latter not (in general, Weihrauch degrees behave more nat-
urally than strong Weihrauch degrees).

Rather than the lattice operations, we will use two kinds of products in this
work: The parallel product f × g is just the usual cartesian product of (mul-
tivalued) functions, which is readily seen to induce an operation on (strong)
Weihrauch degrees. We call f a cylinder, if f ≡sW (idNN × f), and note that for
cylinders, Weihrauch reducibility and strong Weihrauch reducibility coincide.

The compositional product f ? g satisfies that

f ? g ≡W max
≤W

{f1 ◦ g1 | f1 ≤W f ∧ g1 ≤W g}

and thus is the hardest problem that can be realized using first g, then something
computable, and finally f . The existence of the maximum is shown in [15]. Both
products as well as the lattice-join can be interpreted as logical and, albeit with
very different properties. The sequential product ? is not commutative, however,
it is the only one that admits a matching implication [15, 23].

Two further (unary) operations on Weihrauch degrees are relevant for us, finite

parallelization f∗ and parallelization f̂ . The former has as input a finite tuple
of instances to f and needs to solve all of them, the latter takes and solves a
countable sequences of instances. Both operations are closure operators in the
Weihrauch lattice. They can be used to relax the requirement of using the oracle
only once, if so desired, by looking at the relevant quotient lattices.

In passing, we will refer to the third operation, the jump from [11] (studied
further in [4], denoted by f ′. We use f (n) to denote the result of applying the
jump n-times. The jump only preserves strong Weihrauch degrees. The input to
f ′ is a sequence converging (with unknown speed) to an input of f , the output
is whatever f would output on the limit.



8 TAKAYUKI KIHARA, ALBERTO MARCONE, AND ARNO PAULY

The well-studied Weihrauch degrees most relevant for us are unique closed
choice and closed choice (on Baire space), to which we dedicate the follow-
ing Section 3. Two other degrees we will refer to are LPO : NN → {0, 1}
and lim :⊆ (NN)ω → NN. These are defined via LPO(p) = 1 iff p = 0ω, and

lim((pi)i∈N) = limi→∞ pi. They are related by L̂PO ≡W lim. The importance of
lim is found partially in the observation from [3] that lim is complete for Baire

class 1 functions, and more generally, that lim(n) is complete for Baire class n+1
functions.

§3. UCNN and CNN . The two Weihrauch degrees of central importance for
this paper are unique closed choice and closed choice (on Baire space). These
are defined as follows:

Definition 3.1. Given a represented space X, let CX :⊆ A(X) ⇒ X be
defined via x ∈ CX(A) iff x ∈ A (thus, A ∈ dom(CX) iff A 6= ∅). Let UCX be the
restriction of CX to singletons.

In particular, UCX is capable of finding an element of a given Π0
1 singleton in

X. In [39] Pauly introduced the notion of iterating a Weihrauch degree f over a
given countable ordinal, this is denoted by f†. It is then shown that:

Theorem 3.2 ([39, Theorem 80]). UCNN ≡W lim†

One can read the above result as a very uniform version of the famous classical
result that the Turing downward closures of Π0

1 singletons in NN exhausts the
hyperarithmetical hierarchy (cf. [41, Corollary II.4.3]).
Remark: Seeing that ATR0 asserts the existence of Turing jumps iterated along
some countable ordinal and since lim is equivalent to the Turing jump, it may
seem as if this theorem already establishes that UCNN is the Weihrauch degree
corresponding to ATR0. There is a significant difference here though in what
is meant by countable ordinal: In lim†, the input includes a code for something
which is an ordinal in the surrounding meta-theory. In particular, any com-
putable ordinal can be used for free. For ATR0 the notion of countable ordinal
is that of the model used. For example, an ill-founded computable linear order
without hyperarithmetical descending chains (Kleene, see [41, Chapter 3, Lemma
2.1]) counts as an ordinal in the ω-model HYP consisting exactly of hyperarith-
metical sets, and a similar phenomenon may happen in non-β-models of ATR0.
Things get worse if non-ω-models are considered: ATR0 (indeed, any sound c.e.
theory, of course) fails to prove well-foundedness of some computable ordinals.

Note that lim† roughly corresponds to a (uniform) hyperarithmetical reduc-
tion, and therefore Theorem 3.2, for instance, implies the following:

Corollary 3.3. Whenever {a} ∈ A(NN) is computable, then a ∈ NN is hy-
perarithmetical.

Corollary 3.4. If f ≤W UCNN for f :⊆ NN ⇒ X, then for every x ∈ dom(f),
f(x) contains some y hyperarithmetical relative to x.
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Corollary 3.3 is a well-known classical fact saying that every Π0
1 singleton is

hyperarithmetical. Indeed, Spector showed that every Σ1
1 singleton is hyper-

arithmetical (cf. [41, Theorem I.1.6]). Thus, it is natural to ask whether choice
from Σ1

1 singletons has exactly the same strength as UCNN .

One can generalize Definition 3.1 to any Γ ∈ {Σi
k,Π

i
k,∆

i
k} in a straightforward

manner: Let Γ-CX :⊆ Γ(X)⇒ X be defined via x ∈ Γ-CX(A) iff x ∈ A. In other
words, any realizer of Γ-CX sends a code of a Γ-definition of A to a name of an
element of A. Let Γ-UCX be the restriction of Γ-CX to singletons. For instance,
a realizer for Σ1

1-unique choice Σ1
1-UCNN :⊆ Σ1

1(NN) → NN is a partial function
which, given a Σ1

1-code of a singleton {x} ⊆ NN, returns a name of its unique
element x. We will see below (in Theorem 3.11) that Σ1

1-UCNN ≡W UCNN .
We now explore the strength of CNN .

Theorem 3.5 (Kleene [27]). There exists computable non-empty A ∈ A(NN)
containing no hyperarithmetical point.

That is, there is a nonempty Π0
1 set A ⊆ NN with no hyperarithmetical ele-

ment. This shows that CNN has a computable instance with no hyperarithmetical
solution. Let NHA : NN ⇒ NN be defined via q ∈ NHA(p) iff q is not hyperarith-
metical relative to p.

Corollary 3.6. NHA �W UCNN but NHA ≤W CNN .

We now get the separation between UCNN and CNN .

Corollary 3.7. UCNN <W CNN .

There are a number of variants of unique choice, comprehension and separation
that are all equivalent to UCNN w.r.t. Weihrauch reducibility. We explore some
of these next:

Definition 3.8 (Σ1
1-Separation). Let Σ1

1-Sep :⊆ (Tr×Tr)N ⇒ 2N be the mul-
tivalued function with dom(Σ1

1-Sep) = { (Sn, Tn)n∈N : ∀n([Sn] = ∅ ∨ [Tn] = ∅) }
that maps any sequence (Sn, Tn)n∈N in the domain to the set{

f ∈ 2N : ∀n (([Sn] 6= ∅ → f(n) = 0) ∧ ([Tn] 6= ∅ → f(n) = 1))
}
.

One can introduce a similar multivalued function by directly using the space
Σ1

1(N)×Σ1
1(N) instead of (Tr×Tr)N without affecting the Weihrauch degree.

Definition 3.9 (∆1
1-Comprehension). Let ∆1

1-CA :⊆ (Tr×Tr)N → 2N be the
restriction of Σ1

1-Sep to the set { (Sn, Tn)n∈N : ∀n([Sn] = ∅ ↔ [Tn] 6= ∅) }. Let
∆1

1-CA− be the restriction of ∆1
1-CA to the set {(Sn, Tn)n∈N : ∀n |[Sn]|+ |[Tn]| =

1}.

Definition 3.10 (Weak Σ1
1-Comprehension). Let Σ1

1-CA− :⊆ TrN → 2N be
the function with domain dom(Σ1

1-CA−) = { (Tn)n∈N : ∀n|[Tn]| ≤ 1 } and that
maps (Tn)n∈N to the unique f ∈ 2N such that f(n) = 1 ↔ |[Tn]| = 1 for all
n ∈ N.

Theorem 3.11. The following are strongly Weihrauch equivalent:

1. UCNN

2. Σ1
1-UCNN
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3. Σ1
1-Sep

4. ∆1
1-CA

5. ∆1
1-CA−

6. Σ1
1-CA−

Proof. (Σ1
1-UCNN ≤sW UCNN): The proof of [39, Theorem 80] implicitly con-

tains a proof of
Σ1

1-UCN ≤sW lim† (in the last paragraph). It is clear that Σ1
1-UCNN ≡sW

Σ̂1
1-UCN and that ÛCNN ≡sW UCNN , so the claim follows with Theorem 3.2.
An alternative proof can be obtained by noting that the proof of UCNN ≤sW

∆1
1-CA− given below is readily adapted to show that Σ1

1-UCNN ≤sW ∆1
1-CA

instead, and use the reductions below.
(UCNN ≤sW Σ1

1-UCNN): Trivial, as id : Π0
1(NN) → Σ1

1(NN) is computable by
Proposition 2.3(4).

(Σ1
1-Sep ≤sW UCNN): By [39, Proposition 62 & Lemma 79]. An alternative proof

can be obtained by combining Lemmata 5.6 and 5.7 below.
(∆1

1-CA ≤sW Σ1
1-Sep): The former is a restriction of the latter.

(∆1
1-CA− ≤sW ∆1

1-CA): The former is a restriction of the latter.
(UCNN ≤sW ∆1

1-CA−): Let {f} be a singleton of NN given via some tree T
such that [T ] = {f}. From T we compute the double-sequence of trees
(T 0
t , T

1
t )t∈N<N such that: for all t ∈ N<N,

• T 0
t = { s ∈ T : t v s ∨ s v t },

• T 1
t = { s ∈ T : t 6v s }.

Note that, for all t ∈ N<N, exactly one between T 0
t and T 1

t is ill-founded.
In fact, if t v f then f ∈ [T 0

t ] and, since T has only one path, T 1
t is well-

founded. Otherwise, if t 6v f then f ∈ [T 1
t ] and [T 0

t ] = ∅. Hence, we even
have that for all t ∈ N<N, |[T 0

t ]|+ |[T 1
t ]| = 1.

Since we can identify N<N with N we can consider g = ∆1
1-CA−((T 0

t , T
1
t )t∈N<N).

For all t ∈ N<N, g(t) = 0 ⇐⇒ [T 0
t ] 6= ∅ ⇐⇒ t v f . Therefore, given

n ∈ N, to compute f(n) it suffices to wait for the first t ∈ Nn+1 such that
g(t) = 0 and then put f(n) = t(n). This concludes the proof.

(∆1
1-CA− ≤sW Σ1

1-CA−): For every (T 0
n , T

1
n)n∈N ∈ dom(∆1

1-CA−) we have that
∆1

1-CA−((T 0
n , T

1
n)n∈N) = Σ1

1-CA−((T 1
n)n∈N).

(Σ1
1-CA− ≤sW Σ1

1-UCNN): Let (Tn)n∈N be a sequence of trees in dom(Σ1
1-CA−).

We claim that using Σ1
1-UCNN we are able to compute f ∈ 2N such that:

∀n(f(n) = 1↔ |[Tn]| = 1).(1)

In fact, (1) is equivalent to

∀n[(f(n) = 0 ∨ ∃g(g ∈ [Tn])) ∧ (¬∃!g(g ∈ [Tn]) ∨ f(n) = 1)],

which in turn is equivalent to

∀n[∃g(f(n) = 0 ∨ g ∈ [Tn]) ∧ ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)].(2)

Now, for each n, we can uniformly compute from (Tn)n∈N a name for{
(g, f) ∈ NN × NN : f(n) = 0 ∨ g ∈ [Tn]

}



AN ANALOGUE OF ATR0 IN THE WEIHRAUCH LATTICE? 11

as a closed subset of NN×NN, which entails that we can uniformly compute
from (Tn)n∈N a name for{

f ∈ NN : ∃g(f(n) = 0 ∨ g ∈ [Tn])
}

as a Σ1
1(NN) set for each n ∈ N. Furthermore, for each n ∈ N, we can

uniformly compute from (Tn)n∈N a name for{
(g, f) ∈ NN × NN : g ∈ [Tn] ∧ f(n) = 0

}
as a closed set and hence a name for{

f ∈ NN : ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)
}

as a Σ1
1(NN) set by Proposition 2.3(7).

Finally, since the operations of finite and countable intersection of Σ1
1

sets are computable, we are able to uniformly compute from (Tn)n∈N a
name (by Proposition 2.3(2)) for the Σ1

1(NN) singleton{
f ∈ 2N : ∀n[∃g(f(n) = 0 ∨ g ∈ [Tn]) ∧ ¬∃!g(g ∈ [Tn] ∧ f(n) = 0)]

}
.

Clearly, applying Σ1
1-UCNN to such set we obtain the unique f satisfying

(1), which is exactly Σ1
1-CA−((Tn)n).

a

Arithmetical transfinite recursion. As mentioned above, the operation
lim† from [39] is the ordinal-iteration of the map lim. Here, we will explore
a direct encoding of arithmetical transfinite recursion as a Weihrauch degree,
and give another proof of its equivalence with UCNN . Let us fix an effective
enumeration 〈φn : n ∈ N〉 of all the computable functions φ :⊆ NN → NN. Note

that L̂PO(k) is a complete Σ0
k+2-computable function, and thus one can think of

θkn = L̂PO(k) ◦ φn as the nth Σ0
k+2-computable function. Instead, we could have

used the nth Σ0
k+2 formula to define an equivalent notion.

Definition 3.12 (Arithmetical transfinite recursion). Let ATR :⊆ 2N×WO×
N2 → 2N be the function which maps each (Z,X, (k, n)) ∈ 2N×WO×N2 to the
set Y ∈ 2N such that, for all (y, j) ∈ N2,

(y, j) ∈ Y ↔ j ∈ X ∧ y ∈ θkn(Y j ⊕ Z),

where Y j = { 〈y, i〉 ∈ Y : i <X j }.

Compare Definition 3.12 with ATR0 in reverse mathematics, cf. [42, Definition
V.2.4]. Note that our ATR is a single-valued function since, as mentioned in the
first remark in this section, our X is truly well ordered, and therefore, we do not
need to consider pseudo-hierarchies.

Theorem 3.13. ATR ≡sW UCNN .

Proof. By Lemmata 3.14, 3.15 below and Theorem 3.11. a

The following is an analog of the classical reverse mathematical fact [42, The-
orem V.5.1].

Lemma 3.14. ATR ≤sW Σ1
1-Sep.
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Proof. It is easy to see that Σ1
1-Sep is a cylinder and hence it suffices to show

ATR ≤W Σ1
1-Sep. Given (Z,X, 〈k, n〉) ∈ 2N ×WO × N2, we want to compute

ATR(Z,X, 〈k, n〉) as defined in Definition 3.12. For each j ∈ X and Y ∈ 2N, let
us consider the following formula:

H(Y, j) ≡ ∀〈y, i〉 ∈ N2[〈y, i〉 ∈ Y ⇐⇒ i <X j ∧ y ∈ θkn(Y i ⊕ Z)],

Essentially, H(Y, j) says that Y is the set { 〈y, i〉 ∈ ATR(Z,X, 〈k, n〉) : i <X j }.
Using now H, we define the following two formulas for each j, z ∈ N:

ϕ0(j, z) ≡ j ∈ X ∧ ∃Y ∈ 2N[H(Y, j) ∧ z ∈ θkn(Y j ⊕ Z)],

ϕ1(j, z) ≡ j ∈ X ∧ ∃Y ∈ 2N[H(Y, j) ∧ z /∈ θkn(Y j ⊕ Z)].

Note that, for each j ∈ X and z ∈ N we have ϕ0(j, z) ⇐⇒ 〈z, j〉 ∈ ATR(Z,X, 〈k, n〉).
Using the function F defined in Lemma 2.4 and the closure properties of

Proposition 2.3, we are able to compute two names for the Σ1
1(N2)-sets A0 and

A1 corresponding to the formulas ϕ0 and ϕ1. Note that in this case the use of F
is required and we cannot appeal to Proposition 2.3(5) because k is not fixed but
is given with the input. It is easy to see that A0 and A1 are disjoint; hence one
can ask Σ1

1-Sep to give us f separating A0 from A1, which is clearly a solution
of ATR(Z,X, 〈k, n〉). Here are the details:

Since the names for A0 and A1 are Π0
1(NN × N2)-names, it is not difficult to

see that we can build a double sequence of trees (T 0
〈j,z〉, T

1
〈j,z〉)j,z∈N such that, for

each j ∈ N and z ∈ N,

• 〈j, z〉 ∈ A0 ⇐⇒ [T 0
〈j,z〉] 6= ∅,

• 〈j, z〉 ∈ A1 ⇐⇒ [T 1
〈j,z〉] 6= ∅.

Note that, if j /∈ X then for each z ∈ N, ¬ϕ0(j, z) and ¬ϕ1(j, z), which means
that [T 0

〈j,z〉] = [T 1
〈j,z〉] = ∅. If instead j ∈ X we have, for each z ∈ N, ϕ0(j, z) ⇐⇒

¬ϕ1(j, z) which implies [T 0
〈j,z〉] 6= ∅ ⇐⇒ [T 1

〈j,z〉] = ∅. Therefore the double-

sequence of trees (T 0
〈j,z〉, T

1
〈j,z〉)j,z∈N belongs to the domain of Σ1

1-Sep. So let

f ∈ Σ1
1-Sep(T 0

〈j,z〉, T
1
〈j,z〉)j,n∈N. Now we have, for each j ∈ X and z ∈ N, f(j, z) =

0 ⇐⇒ [T 0
〈j,z〉] 6= ∅ ⇐⇒ ϕ0(j, z) ⇐⇒ 〈z, j〉 ∈ ATR(Z,X, 〈k, n〉), i.e. we are

able to compute ATR(Z,X, 〈k, n〉) ∈ 2N using f .
Note that we are using the original input to test whether j ∈ X. a

Lemma 3.15. ∆1
1-CA ≤sW ATR.

Proof. Let (T 0
n , T

1
n)n∈N ∈ dom(∆1

1-CA), we want to compute f ∈ 2N such
that, for all n ∈ N, f(n) = 0 ⇐⇒ [T 0

n ] 6= ∅. In order to apply ATR we have
to specify a set parameter Z, a well ordering X and an arithmetical formula.
The role of Z in this case will be played by (T 0

n , T
1
n)n∈N. The well ordering X

is obtained as
∑
n∈N(KB(T 0

n) ∗KB(T 1
n)) + 1 (which is a well ordering by Lemma

2.8(1)).
It remains to specify an arithmetical formula ϕ(y, Y j ⊕ Z) which describes

what to do at each step of the recursion. We read both Y j and Z as coding a
sequence of pairs of trees. The idea is to eliminate at each step the leaves of all
the trees in the sequence. Thus, ϕ(y, Y j ⊕Z) holds if either Y j = ∅ and y codes
a vertex with a child in Z, or y codes a vertex with a child in each tree from Y j .
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This is easily verified to be an arithmetical formula, and hence can be coded as
some θkn.3

Finally, consider Y = ATR((T 0
n , T

1
n)n, X, 〈k, n〉), which is the set we obtain

after repeating, along the well ordering X, the procedure of eliminating leaves
from the trees T 0

n and T 1
n . Now, let fix n and consider i ∈ {0, 1} such that T in

is well founded. Note that, in order to eliminate all the tree T in, the recursion
should be done at least over the ordinal rank(T in). In our case, the recursion is
done over X whose order type is greater than the order type of KB(T in) which
in turn is greater than rank(T in), cf. Lemma 2.8(2). This means that Y does not
contain any element of the tree T in. This argument applies to each well founded
tree in the sequence (T 0

n , T
1
n)n, so we can know whether a tree in the sequence

has a path or not simply by checking if its root is in Y . It is easy to see that
this allows us to compute ∆1

1-CA((T 0
n , T

1
n)n∈N). a

§4. Σ1
1-weak König’s lemma.

4.1. Σ1
1 versus Π1

1. In this section, we focus on the following contrast between
reverse mathematics and the Weihrauch lattice regarding Σ1

1 and Π1
1-separation:

On the one hand, in reverse mathematics, we have

Π1
1-SEP0 < Σ1

1-SEP0(3)

where A < B indicates RCA0 ` B → A, but RCA0 0 A → B. On the other
hand, in the Weihrauch lattice, we have

Σ1
1-Sep <W Π1

1-Sep.(4)

The former inequality (3) was proven by Montalbán [31] using Steel’s tagged tree
forcing. The latter inequality (4) follows from the well-known fact in descriptive
set theory that Σ1

1 has the ∆1
1-separation property, while Π1

1 does not (see also
Lemma 4.4). It is not hard to explain the cause of the contrast between (3) and
(4), namely the Spector-Gandy phenomenon.

LetM be an ω-model, and let (Σ1
1)M be the collection of all subsets of ω which

are Σ1
1-definable within M, that is, (Σ1

1)M = {{n ∈ ω :M |= ϕ(n)} : ϕ ∈ Σ1
1}.

We define (Π1
1)M analogously. Consider the ω-model HYP consisting of all

hyperarithmetical reals. The Spector-Gandy theorem (cf. [41, Theorem III.3.5
+ Lemma III.3.1] or [42, Theorems VIII.3.20 + VIII.3.27]) implies that

(Σ1
1)HYP = Π1

1, and (Π1
1)HYP = Σ1

1.

The roles of Σ1
1 and Π1

1 are interchanged! We should always be careful about
this role-exchange phenomenon of Σ1

1 and Π1
1 when comparing reverse math

and computability theory. Of course, the notion of a β-model solves this role-
exchange problem. To be precise, a β-model (see [42, Section VII]) is an ω-model
M satisfying the following condition:

(Σ1
1)M = Σ1

1, and (Π1
1)M = Π1

1.

However, the notion of a β-model is obviously related to closed choice CNN : An
ω-model M is a β-model iff, for any Z ∈M and non-empty Π0

1(Z) set P ⊆ NN,

3Similar ideas are found in the investigation of the Weihrauch degree of the pruning deriv-
ative of a tree in [34].
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some α ∈ P belongs to M. Therefore, when studying principles weaker than
CNN , we cannot work within the β-models.

Now, how should we interpret the reverse-mathematical Σ1
1-separation princi-

ple in our real universe? The right answer may not exist. It may be Π1
1-Sep or

may be Σ1
1-Sep.

We have already examined the strength of the Σ1
1-separation principle Σ1

1-Sep.
In this section, we will investigate the Π1

1-separation principle, Π1
1-Sep, in the

Weihrauch lattice. In reverse mathematics, Montalbán [31] showed that the
strength of the Π1

1-separation principle is strictly between ∆1
1-CA0 and ATR0

(4):

∆1
1-CA0 < Π1

1-SEP0 < ATR0 ≡ Σ1
1-SEP0.

Moreover, ∆1
1-CA0 and Π1

1-SEP0 are theories of hyperarithmetic analysis, that
is, for every Z ⊆ ω, HYP(Z) is the least ω-model of that theory containing Z.
On the other hand, HYP 6|= ATR0. In contrast, we will see the following:

UCNN ≡W ∆1
1-CA ≡W ATR ≡W Σ1

1-Sep <W Π1
1-Sep <W CNN .

4.2. The strength of Σ1
1-weak König’s lemma. The principle of Π0

1-
separation was studied already in the precursor works by Weihrauch [44], and
Weak König’s Lemma (aka closed choice on Cantor space) was a focus in the
earliest work on Weihrauch reducibility in the modern understanding [20, 7, 5].
Here, we explore their higher-level analogues.

Let Π1
1-Sep be the following partial multivalued function: Given Π1

1-codes of
sets A,B ⊆ N, if A and B are disjoint, then return a set C ⊆ N separating A
from B, that is, A ⊆ C and B ∩ C = ∅. To be more precise:

Definition 4.1. Let Π1
1-Sep :⊆ Π1

1(N) × Π1
1(N) ⇒ 2N be such that C ∈

Π1
1-Sep(A,B) iff C separates A from B, where (A,B) ∈ dom(Π1

1-Sep) iff A∩B =
∅.

We also consider Σ1
1-weak König’s lemma Σ1

1-WKL: Given a Σ1
1-code of a set

T ⊆ 2<ω, if T is an infinite binary tree, then return a path through T . Formally
speaking:

Definition 4.2. Let Σ1
1-WKL :⊆ Σ1

1(2<ω)⇒ 2N be such that p ∈ Σ1
1-WKL(T )

iff p is an infinite path through T , where T ∈ dom(Σ1
1-WKL) iff T is an infinite

binary tree.

While Σ1
1-WKL appears as a Σ1

1-version of closed choice on Cantor space, it
is not equivalent to Σ1

1-choice on 2N (nor, equivalently, closed choice on NN).

Instead, it is equivalent to the parallelization Σ̂1
1-C2 of Σ1

1 choice on the discrete
space 2 = {0, 1}. We will show the following.

Theorem 4.3. UCNN <W Σ̂1
1-C2 ≡W Π1

1-Sep ≡W Σ1
1-WKL <W Σ̂1

1-CN ≤W

CNN .

4Actually, Montalbán showed that Π1
1-separation is strictly weaker than Σ1

1-AC.
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We will use the following fundamental notion in HYP-theory. A Π1
1-norm on

a Π1
1 set P ⊆ N is a map ϕ : N → ωCK1 ∪ {∞} such that P = {n : ϕ(n) < ∞}

and that the following relations ≤ϕ and <ϕ are Π1
1:

a ≤ϕ b ⇐⇒ ϕ(a) <∞ and ϕ(a) ≤ ϕ(b),

a <ϕ b ⇐⇒ ϕ(a) <∞ and ϕ(a) < ϕ(b).

It is well-known that every Π1
1 set admits a Π1

1-norm (in an effective manner):
Consider a many-one reduction from a Π1

1 set P to the set WO of well orderings.
We will explore the uniform complexity of this kind of stage comparison principle
in Section 5.

One can easily separate unique choice on NN and the Π1
1-separation principle

by considering the diagonally non-hyperarithmetical functions, which is a HYP
version of DNC2 (known as diagonally noncomputable functions). A very basic
fact in HYP-theory is the existence of a computable enumeration (ψe)e∈N of all
partial Π1

1 functions on N. For instance, let ψe be a standard Π1
1-uniformization

of the eth Π1
1 set Pe ⊆ N × N, that is, ψe(n) is an element in the nth section of

Pe attaining the smallest ϕ-value if it exists, where ϕ is a Π1
1-norm on Pe.

Lemma 4.4. UCNN <W Π1
1-Sep.

Proof. To see that UCNN ≤W Π1
1-Sep, note that UCNN ≡W ∆1

1-CA by The-
orem 3.11, and ∆1

1-CA ≤W Π1
1-Sep is straightforward. For the separation, let

(ψe)e∈N be an enumeration of all partial Π1
1 functions on N as above. For i < 2,

consider Pi = {e ∈ N : ψe(e) ↓= i}. Clearly Pi is Π1
1, and P0 ∩P1 = ∅. It is easy

to see that there is no ∆1
1 set separating P0 and P1. a

The proof of Lemma 4.4 motivates us to introduce the following multival-
ued function Π1

1-DNC2 : 2N ⇒ 2N: Given an oracle X, return a two-valued
X-diagonally non-hyperarithmetical function f , that is, f ∈ Π1

1-DNC2(X) iff,
whenever ψXe (e) ↓, f(e) 6= ψXe (e), where (ψXe )e∈N is a canonical enumeration of
all partial Π1

1(X) functions on N. The following is an analog of the well-known
fact that every DNC2-function has a PA-degree.

Proposition 4.5. Π1
1-Sep ≡W Π1

1-DNC2.

Proof. Let P0 and P1 be disjoint Π1
1 sets. Clearly there is e such that

n ∈ Pi iff ψe(n) ↓= i. By the recursion theorem, one can uniformly find a
computable function r such that ψr(n)(r(n)) ' ψe(n). Let f be a diagonally
non-hyperarithmetical function. If f(r(n)) = i then ψr(n)(r(n)) ' ψe(n) 6= i,
which implies n /∈ Pi. Therefore, S = {n : f(r(n)) = 1} separates P0 from P1.
This argument is easily relativizable uniformly. The converse direction is also
clear. a

Using a Π1
1-norm, one can show Σ1

1-WKL ≡W Π1
1-Sep by modifying the usual

proof of the well-known equivalence between WKL and Σ0
1-Sep.

Lemma 4.6. Σ1
1-WKL ≡W Π1

1-Sep ≡W Σ̂1
1-C2.

Proof. By a straightforward modification of the usual proof of Σ0
1-Sep ≡W

Ĉ2, it is easy to see that Π1
1-Sep ≡W Σ̂1

1-C2 holds. It is also clear that Π1
1-Sep ≤W

Σ1
1-WKL. Thus, it suffices to show that Σ1

1-WKL ≤W Π1
1-Sep.
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Given a Σ1
1-tree T ⊆ 2<ω, let ExtT ⊆ 2<ω be the set of all extendible nodes

of T . Clearly, its complement ¬ExtT = 2<ω \ExtT is Π1
1, and thus admits a Π1

1-
norm ϕ (we need to get ϕ in a uniform way, but it is straightforward). Consider
the Π1

1 set Pi = {σ : σai <ϕ σ
a(1− i)} for each i < 2. Obviously, P0 ∩ P1 = ∅.

We claim that

σ ∈ ExtT and σ /∈ Pj =⇒ σaj ∈ ExtT .

If σ /∈ Pj then σaj 6<ϕ σa(1 − j), that is, either ϕ(σaj) = ∞ or ϕ(σa(1 −
j)) ≤ ϕ(σaj) holds. If the former holds then we must have σaj ∈ ExtT . If
ϕ(σaj) <∞, then we must have ϕ(σa(1− j)) =∞ since σ ∈ ExtT implies that
σai ∈ ExtT for some i < 2. By the latter condition,∞ = ϕ(σa(1−j)) ≤ ϕ(σaj);
hence ϕ(σaj) must be ∞. In any case, we have ϕ(σaj) =∞, which means that
σaj ∈ ExtT . This verifies the above claim.

Let S be such that P0 ⊆ S and S∩P1 = ∅. Let σ0 be the empty string, and put
σn+1 = σn

aS(σn). Then, by the above claim, we have σn ∈ ExtT for any n, and
therefore

⋃
n σn ∈ [T ]. One can easily relativize this argument uniformly. a

Lemma 4.7. Σ1
1-WKL <W Σ̂1

1-CN.

Proof. By Lemma 4.6, we have Σ1
1-WKL ≤W Σ̂1

1-CN. It remains to show

that Σ̂1
1-CN �W Σ1

1-WKL. It is easy to see that Σ1
1-WKL is a cylinder, and hence

it suffices to show that Σ̂1
1-CN �sW Σ1

1-WKL.
We first show the following claim: Let T ⊆ 2<ω be a Σ1

1 tree, and Φ a Turing
functional such that for every x ∈ [T ], Φx is total. Then there exists a ∆1

1

function h : N→ N majorizing n 7→ Φx(n) for every x ∈ [T ].
Let g : N → N be a function such that for any n, if |σ| = g(n) then either

σ /∈ ExtT or Φσ(n) ↓. This condition is clearly Π1
1, and by compactness, g

is total. Hence, g is a total Π1
1 function, and thus actually ∆1

1. Then define
h(n) = max{Φσ(n) : |σ| = g(n) and Φσ(n) ↓}. Clearly h is ∆1

1 and Φx(n) ≤ h(n)
for any x ∈ [T ]. This verifies the claim.

Let (ψe)e∈ω be a computable enumeration of partial Π1
1 functions on N. Let

Se be the set of all k such that

(∀n ≤ e)(ψn(e) ↓ =⇒ ψn(e) < k).

Clearly Se is Σ1
1 and cofinite. Then every element of S =

∏
e Se dominates

all ∆1
1 functions. If Σ̂1

1-CN ≤sW Σ1
1-WKL then we must have a Σ1

1-tree T ⊆ 2<ω

whose paths compute uniformly an element of S, which is impossible by the
above claim. a

Recall that A ? B denotes the sequential composition of A and B, cf. [15],
that is, a function attaining the greatest Weihrauch degree among {g ◦ f : g ≤W

A and f ≤W B}.

Proposition 4.8. Σ1
1-WKL ?Σ1

1-WKL ≡W Σ1
1-WKL.

Proof. This is a modification of the independent choice theorem from [5].
We can assume that the inputs to Σ1

1-WKL?Σ1
1-WKL are a computable function

f , z ∈ 2N as well as (relativizable) Σ1
1 trees S and T . Then, {x ⊕ y : x ∈
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[Sz] and y ∈ [T f(z,x)]} is a Σ1
1 closed set, and any of its elements is a solution to

Σ1
1-WKL ?Σ1

1-WKL. a
There is a natural principle between UCNN and Σ1

1-WKL. Let us define Σ1
1-

weak weak König’s lemma Σ1
1-WWKL as follows: Given a Σ1

1 set T ⊆ 2<ω, if T
is an infinite binary tree and if [T ] has a positive measure, then return a path
through T . This is in analogy to the usual weak weak König’s lemma, whose
Weihrauch degree was studied in [14, 8, 10].

Note that Hjorth and Nies (see [33, Chapter 9.2]) showed that there is a Σ1
1-

closed set consisting of Π1
1-Martin-Löf random reals. Indeed, the proof shows

that Π1
1-MLR is Weihrauch reducible to Σ1

1-WWKL, where Π1
1-MLR is a multi-

valued functions representing Π1
1-Martin-Löf randomness, which is introduced in

a straightforward manner. We also have WKL �W Σ1
1-WWKL since the Turing

upward closure of any nontrivial separating class has measure zero (cf. [25, The-
orem 5.3]). We show that, even if we enhance Σ1

1-WWKL by adding a hyper-
arithmetical power, its strength is strictly weaker than Σ1

1-WKL:

Theorem 4.9. UCNN <W UCNN ?Σ1
1-WWKL <W Σ1

1-WKL.

Proof. The inequality UCNN <W UCNN ? Σ1
1-WWKL is obvious since no Π1

1-
Martin-Löf random real is hyperarithmetic. Moreover, by Proposition 4.8, we
have UCNN ?Σ1

1-WWKL ≤W Σ1
1-WKL. Suppose for the sake of contradiction that

Σ1
1-WKL ≤W UCNN ? Σ1

1-WWKL. Then, for any Σ1
1 closed set S, there are a Σ1

1

closed set P of positive measure and a Π1
1 function f : P → S, so that f(x) ≤h x

for any x ∈ P .
In particular, assume that S is the set of all Π1

1-DNC2 functions, and let P
and f be as above. It is known that x is Π1

1-random iff x is ∆1
1-random and

ωCK,x
1 = ωCK

1 (see [33, Theorem 9.3.9]). Since there are conull many Π1
1-random

reals, Q = {x ∈ P : ωCK,x
1 = ωCK

1 } also has positive measure. Given x ∈ Q,

there is an ordinal α < ωCK,x
1 = ωCK

1 such that f(x) ≤T x⊕∅(α) (cf. [16, Lemma
4.2] and [1, Section 2.3.2]). As in [25, Theorem 5.3], it is easy to see that the
∅(α)-Turing upward closure, Sα = {z : h ≤T z ⊕ ∅(α) for some h ∈ S}, of S has

measure zero for any computable ordinal α. Hence, Ŝ =
⋃
{Sα : α < ωCK

1 } is also

null. Our previous argument shows that Q ⊆ Ŝ, however µ(Ŝ) = 0 contradicts
µ(Q) > 0. a

Question 4.10 ([9]). Σ̂1
1-CN <W CNN?

§5. Comparability of well orderings. Two statements which are equiv-
alent to ATR0 in the context of reverse mathematics are comparability of well
orderings and weak comparability of well orderings ([42, Theorem V.6.8] and
[19]). These involve two kinds of effective witnesses that one well ordering is
shorter than another: strong comparison maps and order preserving maps.

Definition 5.1. If X,Y ∈ WO then we say that f : N → N is a strong
comparison map between X and Y , in symbols f : X ≤s Y , if the following
conditions hold:

• ∀n(n /∈ X → f(n) = 0),
• ∀n,m ∈ X(n ≤X m↔ f(n) ≤Y f(m)),
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• ∀n ∈ X∀k ∈ Y (k ≤Y f(n)→ ∃m ∈ Xf(m) = k).

In other words, f is an order embedding of X into Y whose image is an initial
segment of Y .

Definition 5.2 (Comparability of well orderings). Let CWO : WO×WO→
NN be the function that maps any pair (X,Y ) of countable well orderings to the
unique f ∈ NN such that f : X ≤s Y or f : Y + 1 ≤s X.

The use of Y + 1 in the previous definition makes sure that f is unique even
when X and Y are isomorphic.

Definition 5.3. If X,Y ∈ LO we say that f : N → N is an order preserving
map between X and Y , in symbols f : X ≤ Y , if the following conditions hold:

• ∀n(n /∈ X → f(n) = 0),
• ∀n,m ∈ X(n ≤X m↔ f(n) ≤Y f(m)),

Definition 5.4 (Weak comparability of well orderings). Let WCWO : WO×
WO⇒ NN be the multivalued function that maps any pair (X,Y ) of countable
well orderings to the set

{
f ∈ NN : (f : X ≤ Y ) ∨ (f : Y ≤ X)

}
.

The following classifies the Weihrauch degree of comparability of well order-
ings:

Theorem 5.5. UCNN ≡sW CWO.

Proof. By Lemmata 5.6 and 5.7 below. a

Lemma 5.6. CWO ≤sW UCNN .

Proof. If X,Y ∈WO, the conjunction of the three conditions in Definition
5.1 is a Π0

2 formula with X,Y and f as free variables. In particular, a name
for the Π0

2 set {f} = CWO(X,Y ) is computable from X and Y . Then, since
UCNN ≡sW Π0

2-UCNN by Theorem 3.11 and Proposition 2.3, we can use the second
one to obtain f . a

Lemma 5.7. Σ1
1-Sep ≤sW CWO.

Proof. We follow essentially the proof of Theorem V.6.8 in [42]. The only
modification concerns the definition of the well orderings U and V , for which the
original proof uses the Σ1

1 bounding principle.
So, let (Sn, Tn)n∈ω be a double-sequence of trees in dom(Σ1

1-Sep). Without
loss of generality we assume that for all n ∈ N, Sn and Tn are non-empty. We
can build the corresponding double-sequence of linear orderings (Xn, Yn)n such
that, for all n, Xn = KB(Sn) and Yn = KB(Tn). Note that, since (Sn, Tn)n ∈
dom(Σ1

1-Sep), we have

∀n(WO(Xn) ∨WO(Yn)).(5)

Consider U =
∑
n∈N(Q ∗ Yn) ∗Xn, which by (5) and by Lemma 2.8.1 is a well

ordering. We claim that the following holds:

∀X ∈ LO∀n(¬WO(Xn)→ |X ∗ Yn| < |U |).(6)
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In fact, let X ∈ LO and n be such that ¬WO(Xn). Then by (5) we have
WO(Yn), which means that X ∗ Yn is also a well ordering. Furthermore, by 3
and 2 of Lemma 2.8, we have |X ∗ Yn| ≤ |Q ∗ Yn| ≤ |(Q ∗ Yn) ∗Xn| < |U |.

For all n ∈ N, define Zn = (U + Xn) ∗ Yn. By (6) and by 1 and 2 of Lemma
2.8 we have, for all n ∈ N,

¬WO(Xn)→ |Zn| < |U |,(7)

¬WO(Yn)→ |U | < |Zn|.(8)

Finally, consider V = U +
∑
n∈N Zn and define the well orderings

• Z =
∑
n∈N(Zn + V · N),

• W =
∑
n∈N(V + V · N).

Note that all the well orderings we defined so far, in particular Z and W , are
computable from the double-sequence (Xn, Yn)n. In the construction of V we
can also use a special mark for its least element. Furthermore, we can code Z
in such a way that, if x ∈ Zn + V · N, for some n ∈ N, then we are able to
compute whether x belongs to Zn or to the first copy of V , and in the second
case, whether x belongs to the copy of U contained in V . Similar assumptions
can be made for the construction of W .

Let now f = CWO(Z,W ) be the comparing map between Z and W . Since
|Zn + V ·N| = |V + V ·N| for all n, we have |Z| = |W | and f is the isomorphism
of Z onto W . In particular, for each n ∈ N, f induces an isomorphism fn of
Zn + V · N onto V + V · N. Define g ∈ 2N by g(n) = 0 if and only if the image
of Zn under fn is a strict initial segment of U , i.e. |Zn| < |U |. This can be done
computably by checking whether fn maps the first element of the first copy of V
in Zn +V ·N to U or not. Then, recalling the definition of (Xn, Yn)n, if [Sn] 6= ∅
then ¬WO(Xn) and, by (7), |Zn| < |U | so that g(n) = 0. Similarly, if [Tn] 6= ∅
then, by (8), |U | ≤ |Zn| so that g(n) = 1. a

The Weihrauch degree of weak comparability of well orderings, however, has
eluded our classification attempts:

Question 5.8. Does WCWO ≡W UCNN?

Recently, Jun Le Goh [21] obtained a positive answer to our question.

§6. The one-sided versions of PTT and open determinacy. Both the
perfect tree theorem and open determinacy have at its core a disjunction A ∨B
which is not to be read constructively. A typical approach to formulate these as
computational tasks is to view these as implications ¬A ⇒ B or ¬B ⇒ A. In
this section, we explore these variants.

Recall that a tree is perfect if every node has at least two incomparable ex-
tensions. In particular, every perfect tree is pruned. The perfect tree theorem
states that every tree with uncountably many paths has a perfect subtree and
leads to the following two problems: The first problem is given a closed set A
which has no perfect subset (that simply means that A is countable), and has to
show its countability, that is, to enumerate all elements of A. We consider two
variants of this task, depending on what exactly is meant by listing. The weak
version contains no information about the cardinality, the strong version does.
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The second problem is more direct: it asks to find a perfect subset of a given
tree with uncountably many paths.

Definition 6.1. wList :⊆ A(NN) ⇒ (NN)ω maps a countable set A to some
〈b0p0, b1p1, . . . 〉 such that A = {pi | bi = 1}. List :⊆ A(NN) ⇒ (NN)ω maps a
countable set A to some n〈p0, p1, . . . 〉 such that either n = 0, pi 6= pj for i 6= j
and A = {pi | i ∈ N}; or n > 0, |A| = n− 1 and A = {pi | i < n− 1}.

Definition 6.2. PTT1 :⊆ Tr ⇒ Tr maps T such that [T ] is uncountable to
some perfect T ′ ⊆ T .

We start by reporting a result originating from discussion during the Dagstuhl
seminar on Weihrauch reducibility [13], in particular including a contribution by
Brattka:

Proposition 6.3. PTT1 ≡W CNN .

Proof. For CNN ≤W PTT1, note that from A ∈ A(NN) we can compute a tree
T such that [T ] = A × NN. If A is non-empty, then [T ] is uncountable. Given
some perfect subtree T ′ of T , we can compute a path through T ′ and hence
through T . By projecting, we obtain a point in A.

For PTT1 ≤W CNN , call a function λ : N<N → N a modulus of perfectness
for T , if v ∈ T implies that there are incomparable u,w ∈ [0, λ(v)]λ(v) with
vu, vw ∈ T . A non-empty tree has a modulus of perfectness iff it is perfect, and
given T the set

{(T ′, λ) ∈ Tr× N(N<N) | ∅ 6= T ′ ⊆ T ∧ λ is a modulus of perfectness for T ′}
is closed, and non-empty for [T ] uncountable by the perfect tree theorem. Taking

into account that Tr×N(N<N) is computably isomorphic to NN, we can thus apply
CNN and project to obtain a perfect subtree of T . a

6.1. Listing the points in a countable set. We now examine the strength
of the contrapositive of the perfect tree theorem PTT1, which is List in our setting
as explained above.

Theorem 6.4. wList ≡W List ≡W UCNN .

The main ingredient of our proof is a variant of the Cantor-Bendixson decom-
position, designed in such a way that it can be carried out in a Borel way. This
modified version works as the usual one for countable sets, but can differ for
uncountable ones5. If u and w are finite words on N, u v w means that u is a
prefix of w.

Definition 6.5. A one-step mCB-certificate of A ∈ A(NN) consists of

(a) A prefix-independent6 sequence (wi)i∈N of finite words ordered in a canon-
ical way,

(b) A sequence of bits (bi)i∈N which are not all 0,

5Kreisel has shown that computable A ∈ A(NN) may have uncomputable Cantor-Bendixson
rank [29]. As any total function from NN into the countable ordinals that is effectively Borel

is dominated by a computable function (the Spector Σ1
1-boundedness principle, cf. [39]), this

implies that the Cantor-Bendixson decomposition cannot be done in a Borel way.
6Meaning that wi @ wj never holds.
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(c) A sequence of points (pi)i∈N

subject to the following constraints:

1. If bi = 1, then pi ∈ A ∩ wiNN.
2. If bi = 0, then ∀p ∈ HYP(A) p /∈ A ∩ wiNN and pi = 0ω.
3. ∀p, q ∈ HYP(A)

(
p ∈ A ∩ wiNN ∧ q ∈ A ∩ wiNN ⇒ p = q

)
.

4. If wi 6v w for all i ∈ N, then ∃p, q ∈ A ∩ wNN p 6= q.

For a one-step mCB-certificate for A, its residue is A \
⋃
i∈N wiNN.

Definition 6.6. A global mCB-certificate for A ∈ A(NN) is indexed by some
initial I ⊆ N (which may be empty). It consists of a sequence (ci)i∈I of one-
step mCB-certificates such that there exists a linear ordering @ ⊆ I × I with
minimum 0 (if non-empty), such that c0 is a one-step mCB-certificate for A, for
each n ∈ I \ {0}, cn is an mCB-certificate for

⋂
i@nAi, where Ai is the residue

of ci; and ∀p ∈ HYP(A) p /∈ A ∩
⋂
i∈I Ai.

Lemma 6.7. The set of global mCB-certificates of A is uniformly Σ1
1 in A.

Proof. This is almost immediate from the definition, besides the quantifica-
tion over HYP. That this is unproblematic follows from Kleene’s HYP-quantification
theorem [27, 28] (the converse of the Spector-Gandy theorem). a

Lemma 6.8. For non-empty non-perfect A ∈ A(NN), A has a one-step mCB-
certificate such that its residue is equal to its Cantor-Bendixson derivative. If
all points in A are hyperarithmetical relative to A, then A has a unique one-step
mCB-certificate.

Proof. Let (qj) be the finite or infinite list of isolated points in A, and let (uj)
be the shortest prefix such that A ∩ ujNN = {qj}. It follows from Corollary 3.3
applied to A∩ ujNN that each qj is hyperarithmetical relative to A. Let (vk) be
the list of shortest prefixes such that A ∩ vkNN = ∅, excluding those extending
some uj . Now the sequence (wi) is obtained such that {wi} = {uj} ∪ {vk},
subject to the canonical ordering condition. If wi = vk, then bi = 0 and pi = 0ω,
if wi = uj then bi = 1 and pi = qj .

It is immediate that the construction satisfies Conditions (1,2,3,4) and that
the residue sees exactly the isolated points removed, i.e. is the Cantor-Bendixson
derivative of A. It remains to argue that the mCB-certificate constructed as such
is unique if all points in A are hyperarithmetical relative to A (this is a classic
result, of course). As the choice of bi and pi was uniquely determined by the
sequence (wi), we only need to prove that there is no alternative sequence (w′i).
As no wi can satisfy the conclusion of Condition (4), we know that for each wi
there exists some w′i′ with w′i′ v wi.

Assume that w′i′ @ wi for some i. If bi = 1, then wi was chosen minimal under
the constraint that A∩wiNN is a singleton, A∩w′i′ contains at least two points,
which are both hyperarithmetical. Hence, w′i′ fails Condition (3). If bi = 0, then
w′i′NN ∩ A = ∅ contradicts the choice of vk as shortest prefix, |w′i′NN ∩ A| = 1
contradicts the choice of uj as shortest prefix of an isolated point in A, and
|w′i′NN ∩A| ≥ 2 again violates Condition (3). Hence we know that all (wi) must
appear as some (w′i′).

Assume that there is some w occurring as a w′i′ but not as a wi. As the (w′i′)
are prefix-free, w is not an extension of some wi. Hence, Condition (4) for the
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(wi) implies that |A ∩ wNN| ≥ 2. But as all points in A are hyperarithmetical,
this shows that neither the conclusion of Condition (2) nor that of Condition (3)
can be satisfied for w′i′ = w, and we have obtained the desired contradiction. a

Corollary 6.9. If A ∈ A(NN) is countable, then A has a unique global mCB-
certificate, the pi for bi = 1 occurring in some one-step mCB-certificate list all
points in A, and the order type of the implied linear ordering is the Cantor-
Bendixson rank of A plus 1.

Proof of Theorem 6.4. That UCNN ≤W wList is simple: Any instance of
the former is an instance of the latter, and from a list repeating a single element,
we can recover that element. For the other direction, we show wList ≤W Σ1

1-UCNN

instead and invoke Theorem 3.11. By Lemma 6.7 the set of global mCB-
certificates of A ∈ A(NN) is computable as a Σ1

1-set from A, and by Corollary
6.9 this is a singleton for countable A. We can distinguish whether the global
mCB-certificate uses an empty or non-empty linear order. In the former case,
the set is empty, and in the latter case, we can compute a list of all points in A.

Again, wList ≤W List is trivial. For the reverse direction, we observe that
List ≤W UCNN ? wList, since UCNN more than suffices to extract the required
additional information from an unstructured list. We then use the preceding
result and UCNN ≡W UCNN ? UCNN from [5]. a

Regarding the non-uniform aspect, it is known that every countable Π0
1 (in-

deed Σ1
1) set A ⊆ NN consists only of hyperarithmetical elements ([41, Theorem

III.6.2]). Theorem 6.4 concludes that every countable Π0
1 set A ⊆ NN admits a

hyperarithmetical enumeration. Combining Proposition 6.3 (and Gandy’s basis
theorem [41, Corollary III.1.5]) and Theorem 6.4, we indeed get the following:

Corollary 6.10. For any computable tree T ⊆ ω<ω, either T has a hyperlow
perfect subtree or there is a hyperarithmetical enumeration of all infinite paths
through T .

Listing on Cantor space. We have seen that for subsets of Baire space, it
makes no difference whether we intend to list all points of a countable set or all
points of a finite set. We briefly explore the corresponding versions for Cantor
space. Let List2N,<ω :⊆ A(2N) ⇒ (2N)∗ denote the problem to produce a tuple

of all elements of a finite closed subset of 2N (i.e. (p0, . . . , pn−1) ∈ List2N,<ω(A)

iff A = {pi | i < n}). Let wList2N,≤ω :⊆ A(2N) ⇒ (2N)ω denote the problem

to list all elements of a non-empty countable closed subset of 2N (i.e. (pi)i∈N ∈
wList2N,≤ω(A) iff {pi | i ∈ N} = A). Note that List2N,<ω is not a restriction of
wList2N,≤ω, since finite tuples and lists with finite range have distinct properties.
We will in fact show in Corollary 6.15 that these two multivalued functions are
incomparable with respect to Weihrauch reducibility.

Proposition 6.11. List2N,<ω ≡W Π0
2-CN.

Proof. To see that List2N,<ω ≤W Π0
2-CN, note that we can guess a finite

partition of 2N into clopens A0, . . . , An such that |A ∩ Ai| = 1 for input A and
any i. Verifying a correct partition is Π0

2 (because A ∩Ai 6= ∅ and |A ∩Ai| ≤ 1
are respectively a Π0

1 and a Π0
2 condition), and given a correct partition, we can

compute the listing since UC2N is computable.
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For the other direction, note that we can view Π0
2-CN as the following task:

Given (p0, p1, . . . ) ∈ (2N)ω with the promise that if |{j | pi(j) = 1}| = ∞ then
|{j | pi+1(j) = 1}| =∞, and that there exists some i with |{j | pi(j) = 1}| =∞,
find such an i (for details, see [9]). We now construct A ∈ 2N as follows: For each
i, keep track of an auxiliary variable ki, which is initially 0. Start enumerating
all 0〈i,k〉1 into the complement of A except the 0〈i,ki〉1. Also enumerate all 0l1s0.
Whenever we read another 1 in pi, we do enumerate 0〈i,ki〉1, and set the new ki
to be the least k such that 0〈i,k〉1 has not been enumerated yet.

Whenever |{j | pi(j) = 1}| < ∞ for some i, then ki will eventually remain
constant. The resulting set A will be of the form {0ω}∪{0〈i,ki〉1ω | i ∈ I} where
I is the finite set of non-solutions. Having a finite listing of A lets us easily pick
some solution. a

As a corollary one can see that every finite Π0
1 subset of 2N admits a computable

listing uniformly in 0′′, and the complexity 0′′ is optimal: If a function f sends
an index (i.e. a Gödel number) of a Π0

1 set P ⊆ 2N to an index of a computable
listing of elements of P whenever P is finite, then f must compute 0′′.

Proposition 6.12. wList2N,≤ω ≡W
̂wList2N,≤ω ≤W UCNN ≡W Π0

2-CN?wList2N,≤ω.

Proof. To note that wList2N,≤ω is parallelizable, observe that we can effec-
tively join countably many trees along a comb, and the set of paths of the result
is essentially the disjoint union of the original paths. The second reduction fol-
lows from the obvious embedding of 2N into NN as a closed set and Theorem
6.4. For the third reduction, note that we can embed NN as a Π0

2-subspace B
into 2N such that 2N \B is countable. Given some singleton A ∈ A(NN), we can
compute some countable Ā ∈ A(2N) such that Ā ∩ B is the image of A under
that embedding. If we have a list of all points in Ā, we can then use Π0

2-CN
to pick the one in B. That the third reduction is an equivalence follows from
the second, the observation that Π0

2-CN ≤W UCNN and UCNN ? UCNN ≡W UCNN

(cf. [5]). a

Proposition 6.13. lim ≤W wList2N,≤ω.

Proof. Consider the map id : A(N)→ O(N) translating an enumeration of a
complement of a set to an enumeration of the set. Studied under the name EC
in [43], it is known to be equivalent to lim. Now from A ∈ A(N) we can compute
{0ω} ∪ {0n1ω | n ∈ A} ∈ A(2N). From any list of the elements of the latter set,
we can then compute A ∈ O(N). a

Proposition 6.14. The following are equivalent for single-valued f :⊆ X →
NN where X is a represented space:

1. f ≤W lim;
2. f ≤W wList2N,≤ω.

Proof. Proposition 6.13 entails that 1. implies 2.
To see that 2. implies 1., consider some single-valued f :⊆ NN → NN with

f ≤W wList2N,≤ω. So from any p ∈ dom(f), we can compute some countable

Ap ∈ A(2N), and from any enumeration of the points in Ap together with p we
can compute f(p) via some computable K. We will argue that having access
to a pruned tree T with [T ] = Ap suffices to compute f(p), and note that
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pruning a binary tree is equivalent to lim (see e.g. [34]). Let us assume that
there are prefixes w0, . . . , wn in the pruned tree such that K upon reading p and
w0, . . . , wn outputs some prefix w. Then there is some enumeration q0, q1, . . .
of points in Ap such that w0, . . . , wn are prefixes of q0, . . . , qn, hence w is a
prefix of f(p). Conversely, for any fixed enumeration q0, q1, . . . of points in Ap
and desired prefix length m of f(p) there is some k ∈ N such that K outputs
f(p)≤m after having read no more than the k-length prefixes of qi for i ≤ k.
Moreover, each (qi)≤k occurs in the pruned tree T . Thus, having access to T
lets us compute longer and longer prefixes of f(p), and since f is single-valued,
this suffices to compute f(p). a

In particular, A ⊆ N is computable from all listings of some countable Π0
1

set P ⊆ 2N iff A is 0′-computable. On the other hand, there is no computable
ordinal α such that 0(α) computes a listing of any countable Π0

1 subset of 2N.

Corollary 6.15. List2N,<ω �W wList2N,≤ω and wList2N,≤ω �W List2N,<ω.

Proof. For the first claim, it is known that Π0
2-CN ≡W Π0

2-UCN [9]. (Sketch:
Take (pi)i∈N as in Proposition 6.11, and then put p̂i,s(n) = 1 iff pi(n) = 1
and pj(t) = 0 for all j < i and s ≤ t < n. It is easy to see that there is a
unique i, s such that |{n | p̂i,s(n) = 1}| = ∞, and then |{n | pi(n) = 1}| = ∞.)

Then observe that Π0
2-UCN is single-valued, and that lim is Σ0

2-computable while
Π0

2-CN is not. The claim then follows by Proposition 6.14.
The second claim follows from the observation that any solution of a (com-

putable) instance of Π0
2-CN must be computable, while lim has computable in-

stances without computable solutions. a
Corollary 6.16. wList2N,≤ω <W wList2N,≤ω ? wList2N,≤ω ? wList2N,≤ω ≡W

UCNN .

Proof. In Proposition 6.13 we have shown that lim ≤W List2N,≤ω, which

implies Π0
2-CN ≤W lim ? lim ≤W wList2N,≤ω ? wList2N,≤ω; hence the assertion

follows from Proposition 6.12 and UCNN ?UCNN ≡W UCNN . The strictness follows
from Proposition 6.14 since UCNN is single-valued and UCNN �W lim. a

Question 6.17. Does wList2N,≤ω ? wList2N,≤ω ≡W UCNN hold?

The feature that wList2N,≤ω is not closed under composition itself, but that
the hierarchy of more and more compositions stabilizes at a finite level, seems
surprising for a natural degree. A similar observation was made before regarding
the degree of finding Nash equilibria in bimatrix games [26].

6.2. Finding winning strategies. We now move on to the complexity of
finding winning strategies in open Gale-Stewart games. In formulating the corre-
sponding multivalued functions, we implicitly code strategies in sequential games
into Baire space elements.

Definition 6.18. FindWSΣ :⊆ O(NN) ⇒ NN (FindWSΠ :⊆ O(NN) ⇒ NN)
maps an open game where Player 2 (Player 1) has no winning strategy to a
winning strategy for Player 1 (Player 2). Likewise, FindWS∆ maps a clopen
game where Player 2 has no winning strategy to a winning strategy for Player
1. Here a name for a clopen set consists of two names for open sets which are
one the complement of the other.
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On the one hand, the difficulty of finding a winning strategy for a closed player
is the same as the closed choice on Baire space.

Proposition 6.19. FindWSΠ ≡W CNN .

Proof. For CNN ≤W FindWSΠ, note that we can turn any A ∈ A(NN) into a
Σ0

1 game where Player 1’s moves do not matter, and Player 2 wins iff his moves
form a point p ∈ A.

For FindWSΠ ≤W CNN , note that given a Player 2 strategy τ and the Σ0
1

winning condition W ⊆ NN we can compute a tree TW,τ describing the options
available to Player 1: Essentially, the strategies σ winning against τ correspond
to finite paths in TW,τ ending in a leaf, whereas strategies σ′ losing against τ
correspond to infinite paths through TW,τ . Thus, τ is a winning strategy for
Player 2 iff TW,τ is a pruned tree, i.e. a tree without any leaves. Let λ : N∗ → N
be a witness of prunedness of T iff ∀v ∈ T vλ(v) ∈ T . If Player 2 has a winning
strategy for the game W , then the set

{(τ, λ) | λ is a witness of prunedness for TW,τ}
is a non-empty closed set computable from W , and projecting a member of it
yields a winning strategy for Player 2. a

On the other hand, the difficulty of finding a winning strategy for a open/clopen
player is the same as the unique choice on Baire space. In the case of clopen
games, we even get full determinacy defined as follows:

Definition 6.20. Det∆ : ∆0
1(NN) ⇒ NN × NN maps a clopen game W to a

pair of strategies σ, τ such that either σ is winning for Player 1 or τ is winning
for Player 2 (i.e. a Nash equilibrium).

Theorem 6.21. FindWS∆ ≡W Det∆ ≡W FindWSΣ ≡W UCNN .

We will prove Theorem 6.21 using the following lemmata.

Lemma 6.22. FindWSΣ ≤W Σ1
1-UCNN .

Proof. Let T be a tree describing the complement of some open set, the
payoff for Player 1. Fix some strategy σ of Player 1. We understand this to
prescribe the action even at positions made impossible by σ itself. For any
v ∈ N∗ where Player 1 moves, consider the trees T vi describing the options
available to Player 2 if the game starts at v, Player 1 plays i and otherwise
follows σ. σ is a winning strategy iff for any v compatible with σ we find that
T vσ(v) is well-founded. Only Σ1

1-UCNN is available here while a lot of strategies

may exist. We overcome this difficulty by considering the optimal strategy, that
is, the one that minimizes the rank of T vσ(v).

Let v be a position where Player 1 moves. A certificate of optimality for σ at
v describes maps preserving @ from T vσ(v) to T vi \ {λ} (here λ denotes the empty

sequence) for every i < σ(v), and maps preserving @ from T vσ(v) to T vj for every

j > σ(v). The set of strategies σ and corresponding certificates of optimality for
all positions is a closed set computable from the game.

If we fix partial strategies of all proper extensions of v such that Player 1 can
win from v, then there is a unique action of Player 1 at v such that extending
the strategy to v admits a certificate of optimality. It follows that if Player 1
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has a winning strategy, then there is a unique strategy admitting a certificate
of optimality at all compatible positions; and this strategy is winning. We can
compute this using Σ1

1-UCNN . a

Corollary 6.23. FindWSΣ ≤W UCNN .

Proof. By Lemma 6.22 and Theorem 3.11. a

Lemma 6.24. Det∆ ≤W FindWS∆.

Proof. Given a ∆0
1-game G, we can compute the derived ∆0

1-game G′ where
the first player can decide whether to play G as Player 1, or as Player 2, and
then proceed a play of a chosen side. Thus, Player 1 can definitely win G′, and
a winning strategy of Player 1 in G′ tells us who wins G and how. a

Lemma 6.25. ̂FindWS∆ ≤W FindWS∆.

Proof. Given a sequence G0, G1, . . . of ∆0
1-games all won by Player 1, we

combine them into a single ∆0
1 game where Player 2 first chooses n, and then the

players play Gn. Player 1 wins the combined game, and any winning strategy in
that game yields in the obvious way winning strategies for every Gi. a

Let SB denote the space of Borel-truth values (cf. [22, 39]). Roughly speaking,
if p is a Borel code of a Borel subset A of the singleton space {•}, then we think
of p as a name of > (⊥, resp.) iff A 6= ∅ (A = ∅, resp.); if p is not a Borel code,
p is not in the domain of the representation.

Lemma 6.26. (id : SB → 2) ≤W Det∆.

Proof. A Borel code can be viewed as a well-founded tree whose even-levels
(odd-levels, resp.) consist of ∃-vertices (∀-vertices, resp.) and leaves are labeled
by either > or ⊥ (corresponding to either {•} or ∅) [22, 39]. We can turn a
SB-name into a ∆0

1-game by letting Player 1 control the ∃-vertices, Player 2
the ∀-vertices, make the >-leaves winning for Player 1 and the ⊥-leaves losing.
Then Player 1 has a winning strategy iff the value of the root is >. Given a Nash
equilibrium (σ, τ) we can compute the leaf reached by the induced play, and find
it to be equal to the truth value of the root. a

Proof of Theorem 6.21. As shown in [39, Theorem 80], UCNN ≤W
̂(id : SB → 2).

By Lemma 6.26, the latter is reducible to D̂et∆. This is reducible to ̂FindWS∆ by
Lemma 6.24, which in turn reduces to FindWS∆ by Lemma 6.25. FindWS∆ ≤W

Det∆ is trivial, and so is FindWS∆ ≤W FindWSΣ. FindWSΣ ≤W UCNN follows
by Corollary 6.23. a

As in the case of the perfect tree theorem (Corollary 6.10), the results in this
section can be viewed as a refinement of the following known result [2]:

Corollary 6.27. For any open game, either the open player has a hyper-
arithmetical winning strategy or the closed player has a hyperlow winning strat-
egy.

§7. The two-sided versions of PTT and open determinacy. Rather
than demanding a promise about the case of the theorem we are in, we could
alternatively consider the task completely uniformly. As distinguishing the two
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cases is a Π1
1-complete question (cf. the well-known equation aΣ0

1 = Π1
1), the fully

uniform task should not include the information in which case we are. A priori,
since we considered two versions of listing, we also have the two corresponding
version of the two-sided perfect tree theorem. We are left with the following
formulations:

Definition 7.1. wPTT2 : Tr ⇒ Tr × NN has (T ′, 〈b0p0, b1p1, b2p2, . . . 〉) ∈
wPTT2(T ) iff one of the following holds:

• T ′ is a perfect subtree of T ;
• [T ] = {pi | bi 6= 0}

Definition 7.2. PTT2 : Tr⇒ Tr×NN has (T ′, n〈p0, p1, p2, . . . 〉) ∈ PTT2(T )
iff one of the following holds:

• T ′ is a perfect subtree of T ;
• n = 0, pi 6= pj for i 6= j and [T ] = {pi | i ∈ N};
• n > 0, |[T ]| = n− 1 and [T ] = {pi | i < n− 1}.

Definition 7.3. DetΣ : O(NN)⇒ NN × NN maps an open game W to a pair
of strategies σ, τ such that either σ is winning for Player 1 or τ is winning for
Player 2.

These variants are strictly harder than the non-uniform ones (which are Weihrauch
reducible to CNN by the results of Section 6). To see that, let χΠ1

1
: NN → 2 be

the characteristic function of a Π1
1-complete set. Since the single-valued func-

tions between computable Polish spaces which are Weihrauch reducible to CNN

are exactly those that are effectively Borel measurable ([5, Theorem 7.7]), and
χΠ1

1
is not such, we have χΠ1

1
�W CNN .

Observation 7.4. χΠ1
1
≤W LPO′ ? wPTT2 and χΠ1

1
≤W LPO ? DetΣ.

Proof. Deciding whether [T ] is uncountable and who wins a Σ0
1-game are

Π1
1/Σ1

1-complete decision problems. Given trees T ′ and T , we can use LPO′ to
decide whether or not T ′ is a perfect subtree of T . Given a Nash equilibrium
(σ, τ) of a Σ0

1-game, we can compute the induced play and then use LPO to
decide who wins that play – and this is the same player that has a winning
strategy in the game. a

Corollary 7.5. CNN <W wPTT2 ≤W PTT2 and CNN <W DetΣ.

Proof. Using the fact that CNN is closed under composition [5, Corollary 7.6]
we have χΠ1

1
�W CNN ≡W LPO ? CNN ≡W LPO′ ? CNN . a

In particular, we find that FindWSΣ <W DetΣ and FindWSΠ <W DetΣ. Thus,
knowing who wins a Σ0

1-game makes it strictly easier to find a Nash equilibrium.
This is in contrast to ∆0

1-games (as seen in Theorem 6.21), as well as to games
on Cantor space with winning sets in the difference hierarchy over Σ0

1 (cf. [30]).
Knowing who wins the game allows for constructions such as the one used in
Lemma 6.25 to conclude that finding a winning strategy is parallelizable (i.e.
̂FindWSΣ ≡W FindWSΣ and ̂FindWSΠ ≡W FindWSΠ). We will see in Corollary

7.13 below that this is not just an obstacle for the proof strategy, but that the
result differs for DetΣ.
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If then else. As we have seen, many theorems equivalent to ATR0 are described
as dichotomy-type theorems: Exactly one of A or B holds. Thus, it is natural
to consider the following if-then-else problem for a given dichotomy A xor B:
Provide two descriptions (α, β) trying to verify A and B simultaneously. If A
is true, then α is a correct proof validating A; or else β is a correct proof of B,
where we do not need to know which one is correct. We formalize this idea as
follows.

A space of truth values is just a represented space B with underlying set
{>,⊥}.

Definition 7.6. Let B be a space of truth values. For f :⊆ X ⇒ Y and
g :⊆ A⇒ B, we define

[if B then f else g] :⊆ B×X×A⇒ Y ×B

via (b, x0, x1) ∈ dom([if B then f else g]) iff b = > and x0 ∈ dom(f) or b = ⊥ and
x1 ∈ dom(g), and (y0, y1) ∈ [if B then f else g](b, x0, x1) iff b = > and y0 ∈ f(x0)
or b = ⊥ and y1 ∈ g(x1).

Note that the degree of [if B then f else g] depends on the precise choice of
spaces for domain and codomains involved, beyond what matters for where f and
g are actually defined and are taking their range. In particular, [if B then f else g]
is not an operation on Weihrauch degrees7.

The upper bound. Let SΣ1
1

be the space of truth values where p is a name for
> iff p codes an ill-founded tree, and a name for ⊥ iff it codes a well-founded
tree.

In the proofs of Propositions 6.3 and 6.19, we constructed closed sets contain-
ing information over the perfect subtrees or the winning strategies of Player 2
respectively. In particular, by testing whether these are empty or not, we can
decide in which case we are, and obtain the answer in SΣ1

1
. Thus, by combining

Proposition 6.3 and Theorem 6.4, respectively Proposition 6.19 and Theorem
6.21, we obtain the following:

Corollary 7.7. PTT2 ≤W [if SΣ1
1
then CNN else UCNN ].

Corollary 7.8. DetΣ ≤W [if SΣ1
1
then CNN else UCNN ].

As UCNN ≤W CNN , it follows that [if SΣ1
1
then CNN else UCNN ] ≤W CNN ?χΠ1

1
. In

particular, the difference between [if SΣ1
1
then CNN else UCNN ] and CNN disappears

if we move from Weihrauch reducibility to computable reducibility. It follows
immediately that Gandy’s basis theorem applies to DetΣ: Every Σ0

1-game has a
Nash equilibrium that is hyperlow relative to the game.

Idempotency. We can show a kind of absorption result for the if-then-else
construction. Recall that NHA asks for an output that is not hyperarithmetic
relative to the input.

7Let X be the represented space of the non-computable elements of NN, and f :⊆ NN → NN

the restriction of idNN to the non-computable elements (idX and f are the same func-
tion, but defined on different spaces); then idX ≡W f , yet [if S then f else idNN ] �W

[if S then idX else idNN ] because the former has computable inputs while the latter does not.
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Proposition 7.9. Let g have a hyperarithmetical point ρ in its codomain. If
we have f × NHA ≤W [if B then g else UCNN ], then f ≤W g.

Proof. Any x ∈ dom(f) is provided in the form of some name px, which is
a valid input to NHA. If some (x, px) ∈ dom(f × NHA) were mapped to some
(⊥, a, A) via the reduction, then A = {q} where q is hyperarithmetical in px.
Then (ρ, q) is a valid output of [if B then g else UCNN ], but we cannot compute
a solution to NHA(px) from (ρ, q).

Thus, every (x, px) gets mapped to (>, ax, A) such that from b ∈ g(ax) we can
compute y ∈ f(x) (since (b, z) for any z, say (b, ∅), is a solution to the instance
(>, ax, A)). This provides the claimed reduction f ≤W g. a

By Corollaries 7.5, 7.8 and 7.7, and Proposition 7.9 we get the following:

Corollary 7.10. wPTT2 × NHA �W [if SΣ1
1
then CNN else UCNN ].

Corollary 7.11. DetΣ × NHA �W [if SΣ1
1
then CNN else UCNN ].

Using the corollaries above in conjunction with Corollary 3.6, we obtain:

Corollary 7.12. wPTT2 × CNN �W PTT2 and hence wPTT2 × wPTT2 �W

PTT2.

Corollary 7.13. DetΣ × CNN �W DetΣ and hence DetΣ × DetΣ �W DetΣ.

Products with UCNN . While we just saw that DetΣ, PTT2 and [if SΣ1
1
then CNN else UCNN ]

are not closed under products with CNN , the situation for products with UCNN is
different:

Proposition 7.14. UCNN×[if B then CNN else UCNN ] ≡W [if B then CNN else UCNN ]
for any space of truth values B.

Proof. Let {a}, b ∈ B, A, B be the input to UCNN×[if B then CNN else UCNN ].
We can use [if B then CNN else UCNN ] on b, {a} × A and {a} × B, as {a} × A is
non-empty iff A is, and {a}×B is a singleton iff B is. We will receive as output
(〈p, x〉, 〈q, y〉) such that 〈x, y〉 is a valid output to [if B then CNN else UCNN ](b, A,B),
and at least one of p and q is a. Let us write p≤n for the prefix of p of length
n + 1. We have that, if p≤n = q≤n, then p≤n = a≤n, and if p≤n 6= q≤n, then
either p /∈ {a} or q /∈ {a}, hence we can compute a from p, q and {a}. a

Proposition 7.15. UCNN × PTT2 ≡W PTT2.

Proof. Let ({a}, T ) be the input to UCNN × PTT2. From this input we can
build a tree T0 such that [T0] = {a}×({0ω}∪1[T ]) (notice that |[T0]| = |[T ]|+1).
PTT2(T0) yields a tree T ′ and a sequence n〈(q0, t0p0), (q1, t1p1), . . . 〉.

We first explain how to compute the sequence part of PTT2(T ). If n = 1, or
n = 0 and more than one ti is 0, or n > 1 and more than one ti for i < n− 1 is
0, then the sequence is not listing [T0] (because [T0] 6= ∅ and (a, 0ω) is the only
member of [T0] whose second component starts with 0), which implies that [T0],
and hence [T ], was uncountable. In this case, we can just output some arbitrary
sequence. Otherwise let p′i be the sequence consisting of the odd digits of pi. If
n = 0, we output 0〈p′i0 , p

′
i1
, . . . 〉 where the ik are the (all but one) indices such

that ti 6= 0 (in this way, if 〈(q0, t0p0), (q1, t1p1), . . . 〉 lists injectively [T0], our
output lists injectively [T ]). To achieve the same result when n > 1 we output
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(n− 1)〈p′i0 , p
′
i1
, . . . 〉 where we are omitting the (at most one) i < n− 1 such that

ti = 0.
To compute the tree part of PTT2(T ), starting from T ′ we obtain a tree T ′′ as

follows: On the first three levels (corresponding to the first two digits of a and
the control bit), go down some arbitrary edge in T ′. Then alternate adding all
children of the present vertices into T ′′, and passing down some arbitrary edge.
If T ′ is perfect, then so is T ′′, and moreover, T ′′ ⊆ T in that case.

We need also to compute a. To produce a possible candidate, we attempt
to compute the left-most branch q of T ′. If we ever reach a leaf (which never
happens if T ′ is perfect), then we continue q by constant 0. In any case, let q′

be the even digits of q: if T ′ is a perfect subtree of T0 then a = q′. On the other
hand, if (q0, t0p0), (q1, t1p1), . . . 〉 lists [T0] then a = q0. Thus a = q0 or a = q′.
As in the proof of Proposition 7.14 it follows that we can compute a from q0, q′

and {a}. a

Proposition 7.16. UCNN × DetΣ ≡W DetΣ.

Proof. By Theorem 6.21, we have UCNN ≤W FindWS∆, i.e. we can compute
a ∆0

1-game G′1 from {a} such that Player 1 wins G′1, and from a winning strategy
of Player 1 in G′1 we can compute a. Let G′2 be the game with the roles of Player
1 and Player 2 exchanged, which is still ∆0

1. Now we construct a Σ0
1 game G′′

from a Σ0
1-game G, and from G′1 and G′2.

The players start playing G and G′2 in parallel. If Player 2 wins both of these,
he wins in G′′. Else, if he loses one of them (which would happen at some finite
time), the players proceed to play G′1, and whoever wins G′1 wins G′′. W.l.o.g. we
assume that Player 2 can choose to lose G right at the start of G′′.

Since by assumption Player 2 has a winning strategy in G′2, and Player 1 has
a winning strategy in G′1, the winning strategies of Player 2 are exactly those
that consists of playing winning strategies in G and G′2 simultaneously. On the
other hand, Player 1 can win the game for sure only by first playing a winning
strategy in G (and arbitrarily in G′2), followed by a winning strategy in G′1.

From a Nash equilibrium of the whole game we thus obtain a Nash equilibrium
in G by considering how the players play in G. Furthermore, we consider how
Player 1 plays in the copy of G′1 played when Player 2 loses in G right at the
start of G′′, and how Player 2 plays in G′2, and compute two candidates q0, q1

for a from that. As in the proof of Proposition 7.14, we can then compute a
from {a}, q0 and q1. a

Here the difference between wPTT2 and PTT2 is revealed, as the former is
more sensitive to products. We recall that a Weihrauch degree is called fractal,
if it has a representative f :⊆ NN ⇒ NN such that for any w ∈ N<N such that
wNN ∩ dom(f) 6= ∅ it holds that f |wNN ≡W f . Most of the degrees considered in
this articles are fractals, including wPTT2.

Proposition 7.17. If f is a fractal and LPO×f ≤W wPTT2, then f ≤W CNN .

Proof. W.l.o.g. assume that f :⊆ NN ⇒ NN witnesses its own fractality.
Fix a reduction of LPO× f to wPTT2 and let K1 be the computable function

that transforms the output of wPTT2 and the original input of LPO× f into the
answer to the LPO-instance. We distinguish the following cases:
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1. There exists 0n, w ∈ N<N, a finite tree T , and a finite prefix of a list
〈0q0, 0q1, 0q2, . . . 〉 such that K1 provides its answer upon reading those (as
input for LPO, input for f , first and second component of the output of
wPTT2, in that order).

Then by fixing the input to LPO to something consistent with 0n and
incompatible with the answer provided, we can make sure that the reduc-
tion needs to avoid the prefix to be valid for any input to f extending w.
But this can only be achieved by making the input to wPTT2 having un-
countable body and not having T as prefix of any perfect subtree. This
means in particular that we are dealing with an input to PTT1. As f is a
fractal, restricting to those of its inputs extending w does not decrease its
Weihrauch degree, and we conclude f ≤W CNN .

2. For no 0n, w ∈ N<N, finite tree T , and finite prefix of a list 〈0q0, 0q1, 0q2, . . . 〉,
K1 provides its answer upon reading those.

If we fix the LPO-input to be 0ω, we see that to ensure that K1 behaves
correctly, the list-component of the output of wPTT2 must actually list
some elements. This can only be guaranteed if the input to wPTT2 is a
tree with countable non-empty body, i.e. is already in the domain of List.
We thus conclude f ≤W List ≡W UCNN (by Theorem 6.4) and, a fortiori,
f ≤W CNN .

a

Corollary 7.18. LPO× wPTT2 �W wPTT2.

Corollary 7.19. wPTT2 <W PTT2.

Proof. By contrasting Corollary 7.18 and Proposition 7.15. a

We shall see that wPTT2 is still closed under some non-trivial products. For
that, let NON : 2N ⇒ 2N be defined via q ∈ NON(p) iff q �T p; i.e. NON is
the function corresponding to the theorem asserting the existence of sets non-
computable in any given set.

Proposition 7.20. NON× wPTT2 ≤W wPTT2.

Proof. Fix a Turing functional Φ such that for every p ∈ 2N, Φp is an injective
enumeration of p′, the Turing jump of p. Let p̂ ∈ NN be such that for every n we
have that p̂(n) = 0 implies n /∈ p′ and p̂(n) > 0 implies Φp(p(n)− 1) = n. Then
p̂ is Turing equivalent to p′ and hence p̂ �T p.

Notice that the function from 2N to A(NN) which sends p to {p̂} is computable.
Therefore, from (p,A) ∈ 2N×A(NN) we can compute {p̂}×({0ω}∪1A) ∈ A(NN).
From any solution to wPTT2({p̂} × ({0ω} ∪ 1A)) we can compute a solution to
wPTT2(A) with the argument of the first part of the proof of Proposition 7.15.
Moreover, any solution to wPTT2({p̂} × ({0ω} ∪ 1A)) is ≥T p̂, and hence solves
NON(p). a

In [18], products with LPO and NON are used to separate Weihrauch degrees
in a similar fashion.

§8. TCNN – a candidate for ATR0? Our separation proofs of principles like
DetΣ and PTT2 from CNN relied on being able to transform an arbitrary closed
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subset into an input for the former, with specified behaviour occurring only for
non-empty closed sets. We can capture this using the notion of total continuation
of closed choice on NN:

Definition 8.1. Let TCNN : A(NN) ⇒ NN be defined via p ∈ TCNN(A) iff
A 6= ∅ ⇒ p ∈ A.

In the same vein, we can define the total continuation of other choice principles.
The computable compactness of 2N yields TC2N ≡W C2N . The principle TCN was
studied in [32].

Proposition 8.2. 1. CNN <W TCNN ;
2. TCNN <W LPO× TCNN .
3. If NON× f ≤W TCNN , then f ≤W CNN ;
4. TCNN <W wPTT2;
5. TCNN <W DetΣ;
6. [if SΣ1

1
then CNN else UCNN ] <W TCNN × CNN .

Proof. 1. The reduction is trivial. Separation follows from LPO ?CNN ≡W

CNN and χΠ1
1
≤W LPO ? TCNN (the latter is straightforward because LPO

can check whether the output of TCNN(A) belongs to A).
2. Again, the reduction is trivial. For the separation, assume that LPO ×

TCNN ≤W TCNN via computable H, K1, K2. Recall that LPO(r) = 1 iff
r = 0ω. Consider the input 0ω for LPO and NN ∈ A(NN) (coded as some
name t) for TCNN on the left. There has to be some p ∈ NN such that
K1(0ω, t, p) = 1. By continuity, we find that K1(0kq, t≤kt

′, p) = 1 for
sufficiently large k and arbitrary q, t′.

For any A ∈ A(NN) we can compute some name of the form t≤kt
′. Now

consider what happens if the inputs on the left are 0k1ω and some t≤kt
′:

If H(0k1ω, t≤kt
′) ever returns a name for the empty set, then p is a valid

solution to TCNN on the right. But then K1 will answer incorrectly 1. Thus,
H(0k1ω, t≤kt

′) never returns a name for the empty set. But then we obtain
a reduction TCNN ≤W CNN , contradicting (1).

3. As TCNN(∅) has computable solutions, the reduction NON × f ≤W TCNN

already has to be a reduction to CNN .
4. The reduction given in Proposition 6.3 works for this, by using the following

observation: given A ∈ A(NN), T ∈ Tr such that [T ] = A × NN and
(T ′, 〈b0p0, b1p1, . . . 〉) ∈ PTT2(T ), if we realize that T ′ is not pruned (which
can happen only if A = ∅) we can continue our output with 0ω.

Strictness follows by (3), Proposition 7.20 and Corollary 7.5.
5. The reduction given in Proposition 6.19 works for this, by using the follow-

ing observation: if A = ∅ then Player 1 has a winning strategy in the Σ0
1

game we constructed (in fact, any strategy for 1 is winning), however fol-
lowing the strategy for 2 provided by DetΣ we find an element of TCNN(A).

Strictness follows by (2), Proposition 7.16 and Corollary 7.5.
6. The arguments used to establish Lemma 6.7 or 6.22 show that the total

continuation TUCNN of UCNN (i.e. the total multivalued function defined
on A(NN) which extends UCNN and is defined as NN on non-singletons) is
reducible to CNN . For example, given an arbitrary closed A ⊆ NN we can
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compute the nonempty Σ1
1 set of the mCB-certificates of A and, choosing

an element in it, compute the list of the elements of A whenever A is a
countable, and in particular a singleton.

Thus, we can consider TCNN × TUCNN in place of TCNN × CNN . Given
some input b, A,B to [if SΣ1

1
then CNN else UCNN ] we ignore b, we feed A to

TCNN , and B to TUCNN . Any resulting output pair is a valid output to
[if SΣ1

1
then CNN else UCNN ].

To see that TCNN × CNN 6≡W [if SΣ1
1
then CNN else UCNN ] first notice that

TCNN × CNN × CNN ≡W TCNN × CNN . On the other hand, we have

[if SΣ1
1
then CNN else UCNN ]× CNN �W [if SΣ1

1
then CNN else UCNN ] :

otherwise, since by Corollaries 7.7 and 3.6 we have PTT2 ≤W [if SΣ1
1
then CNN else UCNN ]

and NHA ≤W CNN , we would have PTT2×NHA ≤W [if SΣ1
1
then CNN else UCNN ]

and Proposition 7.9 would imply PTT2 ≤W CNN , against Corollary 7.5.
a

Corollary 8.3. PTT∗2 ≡W Det∗Σ ≡W TC∗NN .

Proof. TC∗NN ≤W PTT∗2 is immediate from Proposition 8.2(4). On the other
hand we have

PTT∗2 ≤W [if SΣ1
1
then CNN else UCNN ]∗ ≤W (TCNN × CNN)∗ ≤W TC∗NN ,

using Corollary 7.7 and Proposition 8.2(6).
The argument for Det∗Σ is similar. a
It is reasonable to expect a Weihrauch degree corresponding to an axiom

system from reverse mathematics to be closed under finite parallelization. For
candidates for WKL0 or ACA0 this happens inherently. Here, we might need to
demand it explicitly, and thus consider the degree TC∗NN rather than any directly
defined one to be one of the most promising candidates.

A potentially convenient way to think about the separation between CNN and
TCNN is in terms of translations between truth values. TCNN allows us to treat a
single Π1

1-set as an open set, whereas CNN cannot even bridge the gap from Σ1
1

to Borel.

Proposition 8.4.
(
id : SΠ1

1
→ S

)
≤W TCNN , but

(
id : SΣ1

1
→ SB

)
�W CNN .

Proof. For the reduction, we observe that A = ∅ iff p /∈ A for some p ∈
TCNN(A).

For the non-reduction, we recall that id : SB → 2 ≤W UCNN was shown in
[39, Lemma 79], and that UCNN?CNN ≡W CNN as shown in [5, Theorem 7.3]. Thus,

assuming the reduction would hold, we would even have that
(
id : SΠ1

1
→ 2

)
≤W

CNN , which contradicts [5, Theorem 7.7] because the unique realizer of id : SΠ1
1
→

2 is not effectively Borel measurable. a

Next, we shall see that the additional computational power of TCNN (even of

its parallelization T̂CNN) over UCNN concerns only multivalued problems.

Theorem 8.5. The following are equivalent for single-valued f :⊆ X → NN

where X is a represented space:
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1. f ≤W UCNN ;

2. f ≤W T̂CNN .

Proof. That 1 implies 2 is trivial. For the other direction, we first argue that
it suffices to consider single-valued f :⊆ NN → {0, 1}. Then we show that for

single-valued f :⊆ NN → {0, 1}, f ≤sW T̂CNN implies f ≤W ∆1
1-CA and invoke

Theorem 3.11.
Let δX be the representation of X. For f :⊆ X → NN, consider the map

F :⊆ NN → {0, 1} where F (nmp) = 1 if f(δX(p))(n) = m and F (nmp) = 0

otherwise, provided p ∈ dom(fδX). Now it holds that F ≤W f ≤W F̂ (the
latter reduction holds because f is single-valued). As UCNN is parallelizable,

F ≤W UCNN is equivalent to F̂ ≤W UCNN and hence f ≤W UCNN .
For the second claim, we can start from a strong Weihrauch reduction because

T̂CNN is a cylinder. Assume that f :⊆ NN → {0, 1} and f ≤sW T̂CNN via
computable K, H. The outer reduction witness K essentially consists of two
open sets U0, U1 ∈ O((NN)N), while the inner reduction witness H gives us for
each p ∈ NN a sequence (An(p))n∈N of closed sets. For S ⊆ N and U ∈ O((NN)N),
let πS(U) denote the projection of U to the components in S. Now we find that:

f(p) = b⇔ ∀S ⊆ N
∏
n∈S

An(p) ⊆ πS(U b).

(Notice that
∏
n∈NAn(p) ⊆ U b does not imply f(p) = b in general because some

of the An(p) could be empty.) This is a Π1
1-condition. Since exactly one of

f(p) = 0 and f(p) = 1 holds, we thus have a valid instance for ∆1
1-CA. a

In particular, T̂CNN does not reach the level of Π1
1-CA0.

Corollary 8.6. χΠ1
1
�W T̂CNN .

§9. Open questions and discussion. The results reported in Section 7
immediately lead to three interlinked questions, which unfortunately we have
been unable to resolve so far:

Question 9.1. Does DetΣ ≡W [if SΣ1
1
then CNN else UCNN ]?

Question 9.2. Does PTT2 ≡W [if SΣ1
1
then CNN else UCNN ]?

Question 9.3. How do PTT2 and DetΣ relate?

We would expect that other theorems equivalent to ATR0 (e.g. open Ram-
sey) exhibit similar behaviour, i.e. a non-constructive disjunction between cases
equivalent to CNN and UCNN respectively. Proving any reductions between the
two-sided versions of these theorems could be very illuminating. Until then, we
might have to settle for classifications in the Weihrauch lattice up to ∗, and strive
to understand better the degree TC∗NN .

Brattka has also raised the question whether the strong two-sided versions,
which return an answer on the applicable case together with a witness, are
worthwhile studying. It seems conceivable that finding reductions here would be
easier. Up to ∗, these problems would have the degree TC∗NN × χ∗Π1

1
. Would this
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be an acceptable candidate for an ATR0-equivalent, or is this degree too close
to Π1

1-CA0?
Given that TC∗NN is not closed under composition, one could make the case

that TC�NN (its closure under generalized register machines, cf. [32]) is the better

candidate. Note that TC�NN ≡W

(
TCNN × χΠ1

1

)�
, so the distinction between the

weak and strong two-sided versions of the theorems would disappear here. How
well justified this step would be in particular depends on whether there exists
a natural theorem equivalent to ATR0 in reverse mathematics where ATR0 is
actually used in a sequential way, i.e. a theorem naturally associated with a
Weihrauch degree not reducible to TC∗NN .
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