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ABSTRACT 
BACKGROUND: the first confirmed cases of COVID-19 in 
WHO European Region was reported at the end of January 
2020 and, from that moment, the epidemic has been speed-
ing up and rapidly spreading across Europe. The health, so-
cial, and economic consequences of the pandemic are diffi-
cult to evaluate, since there are many scientific uncertainties 
and unknowns.
OBJECTIVES: the main focus of this paper is on statistical 
methods for profiling municipalities by excess mortality, di-
rectly or indirectly caused by COVID-19. 
METHODS: the use of excess mortality for all causes has 
been advocated as a measure of impact less vulnerable to bi-
ases. In this paper, observed mortality for all causes at mu-
nicipality level in Italy in the period January-April 2020 was 
compared to the mortality observed in the corresponding pe-
riod in the previous 5 years (2015-2019). Mortality data were 
made available by the Ministry of Internal Affairs Italian Na-
tional Resident Population Demographic Archive and the Ital-
ian National Institute of Statistics (Istat). For each municipal-
ity, the posterior predictive distribution under a hierarchical 
null model was obtained. From the posterior predictive distri-
bution, we obtained excess death counts, attributable com-
munity rates and q-values. Full Bayesian models implemented 
via MCMC simulations were used. 
RESULTS: absolute number of excess deaths highlights the 
burden paid by major cities to the pandemic. The Attributa-
ble Community Rate provides a detailed picture of the spread 
of the pandemic among the municipalities of Lombardy, 
Piedmont, and Emilia-Romagna Regions. Using Q-values, it 
is clearly recognizable evidence of an excess of mortality from 
late February to April 2020 in a very geographically scattered 
number of municipalities. A trade-off between false discov-
eries and false non-discoveries shows the different values of 
public health actions.
CONCLUSIONS: despite the variety of approaches to calcu-
late excess mortality, this study provides an original method-
ological approach to profile municipalities with excess deaths 
accounting for spatial and temporal uncertainty.

Keywords: excess mortality, COVID-19, Bayesian models, attributable 
risk, Q-values, hierarchical models 

RIASSUNTO 
INTRODUZIONE: il primo caso confermato di COVID-19 nel-
la regione europea dell’OMS è stato registrato alla fine di 
gennaio 2020 in Italia, e da quel momento in poi la veloci-

tà di progressione dell’epidemia ha avuto una forte accelera-
zione e si è rapidamente diffusa in tutta Europa. L’impatto e 
le conseguenze sullo stato di salute della popolazione euro-
pea, sulla tenuta sociale delle sue comunità e sugli equilibri 
economici dei singoli paesi sono difficili da valutare dal mo-
mento che agli effetti diretti dell’epidemia si debbono som-
mare quelli indiretti e che ci sono ancora molti aspetti incerti 
ed ignoti relativi alle caratteristiche di questo virus e alla ma-
lattia che esso genera.
OBIETTIVI: proporre un approccio statistico per la descrizio-
ne dei comuni italiani in relazione all’eccesso di mortalità, di-
rettamente o indirettamente causata dall’epidemia.
METODI: l’utilizzo della mortalità per tutte le cause, ecce-
dente la mortalità attesa, è stato proposto come una misura 
di impatto globale, meno vulnerabile alle distorsioni determi-
nate dal processo di codifica e di identificazione della causa 
di morte. L’articolo confronta la mortalità osservata per tutte 
le cause a livello comunale durante il periodo gennaio-apri-
le 2020 con quella rilevata nei corrispondenti mesi dei pre-
cedenti 5 anni (2015-2019). I dati di mortalità sono stati resi 
disponibili dal Ministero dell’interno (Archivio demografico 
nazionale della popolazione italiana residente) e dall’Istituto 
nazionale di statistica (Istat). Per ciascuno dei comuni consi-
derati, è stata calcolata la distribuzione predittiva a posteriori 
sotto l’ipotesi nulla del modello gerarchico. L’eccesso di mor-
ti, il tasso attribuibile di comunità e i valori Q sono stati rica-
vati dalla distribuzione predittiva a posteriori. Per le analisi è 
stato utilizzato un modello bayesiano completo stimato attra-
verso un processo di simulazione MCMC. 

What is already known
n	 Excess mortality is considered a valid measure of the 
impact of COVID-19.
n	 Among known unknowns, it is listed how to calculate 
excess mortality.
n	 The raw mortality burden paid to COVID-19 pandemic 
in Italy is already known.

What this study adds
n	 Profiling municipalities for excess mortality during the 
period January-April 2020 highlights specific geographi-
cal patterns.
n	 Absolute numbers of excess deaths, attributable com-
munity rates and positive false-discovery rates (Q-values) 
provide different information of the dynamics of the 
phenomenon under study.
n	 Whatever procedure would have been followed to 
calculate predicted mortality, a fixed-point null hypoth-
esis of risk equivalence is unrealistic. A more realistic 
range of values of practical equivalence is obtained using 
a Bayesian approach and municipality-specific posterior 
predictive distributions.
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INTRODUCTION
The first confirmed cases of COVID-19 in WHO Eu-
ropean Region were reported at the end of January 2020 
and, from that moment, the epidemic has been speeding 
up and rapidly spreading across Europe. The health, social 
and economic consequences of the pandemic are difficult 
to evaluate both in terms of premature death and excess 
morbidity. Effects are not only acute but also chronic and 
they may be related to the virus, directly or indirectly.1-4

Relevant examples of these negative effects include de-
layed or lack of care for chronic diseases or delayed access 
to emergency care for acute myocardial infarction or stroke 
due to fear of the virus, social inequalities or other barri-
ers due to the COVID-19 restrictions. There may be also 
some positive effects of the lockdown (e.g., reduced work-
place injuries and car accidents).
In this context, total mortality can be seen as the result of 
several factors, some directly related to the epidemic (di-
agnosed COVID-19, COVID-19 without a direct diag-
nosis or a recognition on the death certificate) and some 
indirectly (unwillingness of seeking care or delay in receiv-
ing care in people with serious health conditions, insuffi-
cient or lack of hospital and/or intensive care, lack of spe-
cific professional skills, use of unskilled doctors and nurses 
in Intensive Care Units (ICU), heavy workload and stress 
in hospital wards, increase of mental and physical stress 
due to lockdown in the general population, improvement 
in registration efficiency and accuracy).
The main focus of this paper is on statistical methods for 
profiling municipalities by excess mortality, directly or in-
directly caused by COVID-19. 
To this purpose, the total mortality by municipality level 
in Italy in the period January-April 2020 was analysed and 
compared with the mortality observed during the same pe-
riod of time in the previous 5 years.

MATERIALS AND METHODS
The total number of deaths by municipality was made 
available by the Ministry of Internal Affairs Italian Nation-
al Resident Population Demographic Archive (Ministero 
dell’interno, Anagrafe nazionale della popolazione residente, 

ANPR) and Italian National Institute of Statistics (Istat) 
for the first four months of 2020 (released on 03.06.2020). 
The data consist in all causes of death counts by age group, 
gender and municipality for the whole Italy in the period 
1 January-30 April 2020 of the five years 2015-2019. For 
the period 1 January-15 April 2020 death counts are avail-
able for a subset of 7,485 over 7,905 Italian municipalities.
The total death counts over the period 1 January-30 April 
2020 by municipality for each single available year (2015-
2019) was considered in this study.
The statistical analysis followed these steps. For each of 
the 7,485 Italian municipalities expected death counts 
were obtained by fitting a negative binomial model to the 
death counts of the period 1 January-30 April 2020 for 
the calendar years 2015-2019. From model fitting an es-
timate of the expected average death counts for the pe-
riod 1 January-30 April 2020 was obtained. This choice 
was done to account for harvesting of frail subjects during 
winter season.5 A four-month average was considered suf-
ficient to this purpose. The 2020 winter was milder than 
in previous years – and particularly when compared to 
year 2015 and 2017 – allowing a larger proportion of frail 
people to survive. Then, for each of municipality, the pos-
terior predictive distribution was calculated using the esti-
mate from the previous step. Posterior predictive distribu-
tions are negative binomial distributions with parameters 
based on the observed death counts in the period Jan-
uary-April for the five years 2015-2019. The tail prob-
abilities over the posterior predictive distribution were 
calculated using the observed death counts on January-
April 2020. To account for multiplicity, posterior predic-
tive probabilities were post-processed. Q-values are calcu-
lated using the Benjamini-Hochbergh approach.6 Excess 
death counts are obtained from the posterior relative risk 
calculated using the observed 2020 death counts and the 
municipality-specific expected counts – the mean of the 
posterior predictive distribution. Attributable Communi-
ty Rate7 is also calculated using excess deaths over popu-
lation denominators.
All the analysis was done specifying a full Bayesian model 
and implemented via MCMC simulations.8

RISULTATI: come numero assoluto di morti in eccesso il peso 
maggiore è stato sopportato dalle grandi città. In termini di 
tasso, rapportando i morti in eccesso alla popolazione, si evi-
denzia l’impatto della pandemia a carico di alcune zone del-
le Regioni Lombardia, Piemonte ed Emilia-Romagna. I valori 
Q mostrano come l’eccesso di mortalità si concentra nel pe-
riodo febbraio-aprile in alcuni comuni variamente dispersi nel 
Centro-Nord del Paese. Differenti bilanciamenti tra falsi posi-
tivi e falsi negativi si legano a differenti obiettivi delle azioni 
di sanità pubblica.

CONCLUSIONI: nonostante la varietà di approcci alla stima 
dell’eccesso di mortalità, questo lavoro fornisce un approccio 
metodologico originale per la descrizione dei comuni in re-
lazione all’eccesso di mortalità, aggiustando per l’incertezza 
spaziale e temporale.

Parole chiave: eccesso di mortalità, COVID-19, modelli bayesiani, 
rischio attribuibile, valori Q, modelli gerarchici
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The Bayesian model
A suitable Bayesian model was defined using 2015-2019 
data to estimate a baseline mortality level (i.e., mortality in 
absence of COVID-19) for 2020. To this purpose, the pre-
dictive distribution was used (for details, see Appendix 1) 
and then compared the observed 2020 mortality with the 
baseline value.
The approach used is in line with cross-validatory tech-
niques, where a single observed value (in this case 2020 
mortality) is compared with a prediction obtained with-
out using that observation (in this case baseline mortality 
based on the previous five years)
The components of the hierarchical Bayesian models are 
specified as follows. At the lowest level of the hierarchy 
there is the Poisson likelihood:

=f (Yij |θi) Poi (θi)

where Yij is the observed death count for the i-th munici-
pality in the j-th year and the parameter θi represents the 
expected number of events for the i-th municipality in 
each of the five years of the study period 2015-2019.
It was then assumed a Gamma distribution for θi :

= Ga (vi , ai )f (θi| ai  vi )

where vi and ai  are respectively the shape and the rate pa-
rameter of the Gamma distribution.
The last stage of the hierarchy specifies the prior distribu-
tion for vi and ai :

=f (ai | a,b) f1(a,b)

=f (vi | c,d ) f2(c,d )

where a, b, c and d are the hyperparameters of the two dis-
tributions.
A simpler re-parameterization of this model consists of 
specifying a Negative Binomial Likelihood by combining 
the first two levels of the hierarchy integrating out the {θi} 
parameters:
The integrated likelihood is then:

=f (Yij | ai ,vi ) NegBin(Yij | ai ,vi )

and the priors

=f (ai | a,b) f1(a,b)

=f (vi | c,d) f2(c,d)

In other words, the estimation of the parameters of the 
Negative Binomial distribution is directly addressed. The 
Bayesian approach allows to borrow strength from the 
whole set of municipalities. A simpler Empirical Bayes 
procedure would have treated each i-th municipality sep-
arately, estimating by maximum likelihood the parame-

ters vi  and ai  using the data of the five years 2015-2019. 
This approach works properly with big municipalities but 
is inefficient and lacks of robustness when the data come 
from a municipality with small population size. Embed-
ding the model in a more complex one with priors de-
pending on hyper-parameters not dependent on a partic-
ular i-th municipality permits to gain stability. A tuning 
of the hyper-parameters is necessary due to the presence 
of municipalities with very small population size located 
in the Alpine Regions of Piedmont and Lombardy Re-
gions. But having more than 7 thousand municipalities 
the resulting posteriors are not very dependent on the pri-
or choices. For computational efficiency, the negative bi-
nomial was re-parametrized in terms of k (number of fail-
ures) and p (probability of success). The hyperprior was 
specified for k as a Gamma density with hyperparameters 
(100,100), the hyperprior for p as a Beta density with hy-
perparameters (1,1).
As reported in Appendix 1, the negative binomial is the 
predictive distribution. In particular, the cross-validated 
(leave-2020-out) posterior predictive distribution is:

,ai ,vi dai ,dvi | |f  Yi f  ai ,vi
2020 Y Y-2020 -2020( ) )(

⌠
⌡

NegBin ai ,vi dai ,dvi | |Yj Y f ai ,vi
2020 -2020( ) )(

⌠
⌡=

which has no closed form because is mathematically in-
tractable. The resulting full posteriors f (Y, a, v |Y ) were ap-
proximated by Monte Carlo Markov Chain algorithms. 
By comparison and for matter of clarity, the Empiri-
cal Bayes solution consists in evaluating Yi

2020using the 
NegBin vi ,ai|Yi

2020( )ˆ ˆ  distribution with parameters obtained 
by maximum likelihood fitting a negative binomial model 
on the j=2015,…,2019 five year data, separately for each 
municipality.
A simple OpenBugs code implementing the model is giv-
en in Appendix 2. For the Negative Binomial distribu-
tion, the parametrization based on the probability of suc-
cess in each Bernoulli trial and on the number of failures 
to be reached for the experiment to be stopped was adopt-
ed. A uniform distribution was used for the probability of 
success, while the number of failures was modeled using 
a flat Gamma.
There are connections of this proposal with the mixed pre-
dictive distributions.9,10 Their approach makes use of the 
so-called ‘predictive prior’ – f a,vθ⌠

⌡ |( ) da dv f a,v Y|( )  – 
in a hierarchical model with second stage priors, to inte-
grate out the θ parameters. As explained by Marshall and 
Spiegelhalter9 we will compare new data with a reference 
distribution. The reference distribution was built using the 
observed 2015-2019 data to get a posterior for the second 
stage parameters, in a way similar to the mixed approach. 
Connections with cross-validatory approach are also dis-
cussed in the literature. 
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Posterior distribution of relative risk
In the Poisson-Gamma model, the relative risk parameter  
is estimated as a summary measure on the Gamma poste-
rior distribution

== =f (θi |Y ) Ga(θi |Y )
f (Yi |θi ) f (θi )

⌠
⌡ f (Yi |θi ) f (θi ) dθi

Poi(θi ,Ei )Ga(v, a)

NegBin(Y |v, a)

for which the mean has a nice closed form as a shrinkage 
James-Stein estimator
 

=θi
ˆ ⎛

⎝
⎛
⎝

Yi +v
Ei +a

Since it would be inappropriate to shrink the 2020 esti-
mate towards the overall 6-year average and inconsistent 
with the adopted predictive approach, the posterior predic-
tive distribution was heuristically used to derive a posterior 
distribution for the relative risk parameter θ

and the posterior mean was used to estimate the 2020 rel-
ative risk:

=2020θi
ˆ ⎛

⎝
⎛
⎝

2020
Yi + E(v | Y )

Ei  + E(a | Y )

The excess deaths are obtained as:

= 2020EDi Yi
⎛
⎝

⎛
⎝

– 1
2020θi

ˆ
2020θi

ˆ

and the attributable community rates as ACRi=EDi / Pi 
where Pi is the population denominator.
Credibility intervals for relative risk and derived indicators 
are obtained using the centiles of the posterior predictive 
distribution.

Post-processing posterior predictive tail 
probabilities
If the objective of the analysis is profiling municipalities 
for excess deaths in 2020, we have to formally account for 
multiplicity. A sophisticated computationally intensive 
specification would require to formulate a tri-level Bayes-
ian model.11 To say it simply, a mixture model assigning 
non-zero probability to the null and to the alternative hy-
pothesis (2020 divergence, 2020 non-divergence; one-sid-
ed) should be specified. It can be shown that posterior clas-
sification probabilities (i.e., the probabilities of the null) 
from a tri-level Bayesian model can be roughly approxi-
mated by a simple post-processing of posterior predictive 
probabilities:

=
2020 |P(Y > Y(i) Y, a, v) × P(H0)

q(i)

i/m

|θi f 2020 Yi
2020)) = = |θi 

2020 Yi
2020)Ga ,Y )

| |Yi f f2020 Y, Yθi θi) )) )

| |Yi f f2020 Y, Yθi θi) )) )⌠
⌡ dθi

where (i) are the ordered observations, i=1,…,m and P(H0) 
is the prior probability of the null. The formula is due to 
Storey,12 it is simple and can be used also assuming con-
servatively P(H0)=1.13,14

Q-value  is interpreted as the expected proportion of false 
rejections among the first i rejected hypothesis, ordered on 
the basis of the p-value.
This procedure is exploratory and should be interpreted as 
a rule of thumb when screening a so large dataset of empir-
ical tail probabilities. Indeed, the asymptotic distribution 
of p-values has been derived by Robins et al.15 According 
to their results, our p values are anticonservative, a result 
which justifies caution and supports our simple post-pro-
cessing via q-values.16

RESULTS
The spatial distribution of the absolute number of excess 
deaths by municipality (figure 1) has a clear North-South 
gradient with a visible peak in the Lombardy areas most 
affected by COVID-19 and along the Via Emilia road. 
This is particularly evident in March and April. A sec-
ond cluster can be spotted along the coastal area of the 
Marche Region.
The epidemic peak in absolute terms was reached in the 
second half of March with a slow decrease afterwards.
Some small and dispersed spots can be observed along the 
country, particularly in Puglia, probably due to positive 
subjects migrating from the high-risk areas of the North 
to the Southern Regions.
In general, a larger absolute number of excess deaths can 
be observed for the main cities with some spots also in 
January.
The Attributable Community rates (i.e., the number of 
excess deaths per 100,000 inhabitants) by municipality 
(figure 2) highlight the Central-Eastern part of the Lom-
bardy Region and the neighbouring municipalities of 
Emilia-Romagna. Those were the areas most affected by 
the COVID-19 epidemic.
The trend of the epidemic, with the March peak, is also 
clearly visible comparing the different maps.
Finally, the map of q-values (figure 3) helps to identify the 
municipalities where the observed excess mortality can be 
considered anomalous and worth of further investigation.
It is worth pointing to the absence of any statistically sig-
nificant excess mortality during January and February, 
which is a clear indication that the dramatic consequences 
of the pandemic in Italy began in March.
Overall, 25,700 (95%CrI 15,963-51,045) excess deaths 
were found for the two months of March and April 
2020. If a False Discovery Rate (FDR) of 1% was cho-
sen, 18,497 excess deaths would be obtained (95%CrI 
13,079-28,541). This corresponds to 882 municipalities 
declared positive, of which 9 falsely declared positive.
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Figure 1. Excess deaths by municipality. Absolute number of excess deaths. Italy, January-April 2020. White indicates municipalities with missing data.
Figura 1. Numero assoluto di morti in eccesso per Comune. Italia, gennaio-aprile 2020. In bianco i Comuni per i quali non sono disponibili dati di mortalità.
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Figure 2. Attributable Community Rate by Municipality, per 100,000. Italy, January-April 2020. White indicates municipalities with missing data.
Figura 2. Mortalità attribuibile (morti in eccesso per 100.000 abitanti) per Comune. Italia, gennaio-aprile 2020, Italia. In bianco i Comuni per i quali non sono disponibili 
dati di mortalità.
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Figure 3. Q-value based on Posterior Predictive Probabilities, by Municipality. Italy, January-April 2020. White indicates municipalities with missing data.
Figura 3. Q-valori ottenuti dalle probabilità di eccesso della distribuzione predittiva a posteriori per Comune. Italia, gennaio-aprile 2020. In bianco i Comuni per i quali 
non sono disponibili dati di mortalità.
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DISCUSSION AND CONCLUSIONS
The chosen modelling procedure can be viewed 
as a sort of hierarchical null procedure, similar to 
those proposed in profiling health providers.17 In 
fact, it was considered inappropriate to assume that 
in each municipality the death risk is constant for 
the entire time windows (2015-2020). Some win-
ters may be milder, an influenza epidemic may oc-
cur and these fluctuations may not be synchronous 
among municipalities. The data were left to tune 
the parameters of the hierarchical null – the nega-
tive binomial distribution.
The European Mortality Monitoring Project (EU-
ROMOMO https://www.euromomo.eu/), which 
is aimed at detecting and measuring the excess 
number of deaths related to possible public health 
threats across participating European Countries, re-
ports the weekly total death counts by age group, 
from 2016 to 2020 for the participating Countries. 
The excess mortality in 2020 is already present at 
the age class 14-44 and tends to increase progres-
sively as age increases.
The 2020 peak is delayed in comparison to the 
2017-2018 peaks, it is steeper and higher. This 
finding is consistent with the general opinion of the scien-
tific community that SARS-CoV-2 infection is not com-
parable with the influenza epidemics, even when com-
pared with 2017-2018 cases, and that the general picture 
obtained by the mortality data results even more dramat-
ic than that derived by considering only the cause specific 
mortality by COVID-19.
According to preliminary, but official, numbers, in Italy, 
the SARS-CoV-2 virus has infected several hundred thou-
sand people and has caused more than 34 thousand deaths, 
placing our country as one of the most affected country at 
a global level. 
Several articles have been published in the last few months 
using mortality data released directly by Istat,18 de-
rived from the Italian Heat health watch warning system 
(HHWW Systems)19 or collected by the municipal regis-
tries at regional level.20 
At subnational level a recent paper analyses the weekly ex-
cess mortality in Italy.21 The paper gives a comprehensive 
picture of the evolution of all-cause mortality in Italy from 
2016 onward and describes the spatio-temporal differences 
in excess mortality during the COVID-19 pandemic. The 
approach is based on posterior quantities from a Bayesian 
spatio-temporal model.
Following an epidemiological time series approach Scor-
tichini et al.,22 Alicandro et al.,23 Modi et al.,24 Magnani 
et al.25 estimated an overall excess death count of 47,490, 
44,000, 51,000, 50,000 respectively. Blangiardo et al.21 
provided a lesser estimate of 41,030.
As reported in the results section, we calculated 25,700 
(95%CrI 15,963; 51,045) excess deaths for the two months 

of March and April 2020. If a FDR of 1% was chosen 
18,497 excess deaths would be obtained (95%CrI 13,079-
28,541). This corresponds to 882 municipalities declared 
positive, of which 9 falsely declared positive. At this FDR 
threshold, the negative discovery rate (NDR) is estimated 
less than 4% for an assumed true prevalence of municipali-
ties with excess death of 12.5%, an NDR of 10% for an ex-
cess prevalence of 13.5% and an NDR of 20% for an excess 
prevalence of 15%.26 The posterior predictive distributions 
are skewed with a long right tail, and this is reflected in the 
upper limit of the credibility interval. Assuming a hierar-
chical null provides lower estimates than reported in the 
previous mentioned papers. Small variations around the ex-
pected value of mortality is considered natural and not be 
counted as excess mortality.
All the papers mentioned above have observed an ex-
cess mortality in the first four months of year 2020 com-
pared with the expected number of deaths derived from the 
same period of the previous 5 years (2015-2019). In addi-
tion, this evidence has identified a peak between the end 
of March and beginning of April, a concentration of this 
phenomenon in North-West Regions (Lombardy, Emilia-
Romagna, Piedmont) and among the most fragile subjects, 
i.e., the very old and people with chronic diseases (see the 
latest official report https://www.epicentro.iss.it/en/corona-
virus/bollettino/Report-COVID-2019_22_october_2020.
pdf from the website of the Ministry of Health http://www.
salute.gov.it/portale/nuovocoronavirus/dettaglioConte-
nutiNuovoCoronavirus.jsp?id=5367&area=nuovoCoronav
irus&menu=vuoto). A second aspect, underlined by oth-
er authors, was the lower mortality observed in the last part 

Figure 4. Observed 2020 and predicted (5-days moving average 2015-2019) number of deaths in 
older age classes. Tuscany Region (Central Italy). 
Figura 4. Decessi osservati nel 2020 e predetti (media mobile su 5 giorni 2015-2019) per le classi 
di età anziane. Regione Toscana.
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Bayesian inference is based on posterior densities. The sta-
tistical model is hierarchical, at level 1 we specify the data 
likelihood and at level 2 the prior density. Bayes formu-
la is used to derive the posterior density.  In our context, 
the death counts (Yi) at municipality level (i=1, 2,…,n; 
n being the total number of municipalities) are assumed 
to follow a Poisson distribution, given the municipality 
specific relative risk or rate (θi) and known person-time 
at risk (Ei). The parameters θi are unknown and we spec-
ify a suitable prior density to reflect our previous belief – 
a conjugate useful distribution is a Gamma density.  The 
Poisson-Gamma model is widely used, a seminal paper in 
geographical epidemiology is Clayton & Kaldor.27

The likelihood is:

=f (Yi |θi) Poi (θi ;Ei)

the prior is:

= Ga (a, v)f (θi)

from the Bayes formula, the posterior for the unknown pa-
rameter is 

which is again a Gamma density thanks to the conjugacy.

The denominator in the Bayes formula is obtained by mar-
ginalization over all possible prior values of the unknown 
parameter

 
=⌠

⌡ f (Yi |θi ) f (θi ) dθi NegBin(Y |a,v;Ei )

Which, in the Poisson-Gamma model, has a closed form: 
the negative binomial distribution.
This distribution is also called the prior predictive distri-

== =f (θi |Y ) Ga(θi |Y;Ei )
f (Yi |θi ) f (θi )

⌠
⌡ f (Yi |θi ) f (θi ) dθi

Poi(θi ;Ei )Ga(a, v)

NegBin(Y |a,v;Ei )

of the 2019 and the beginning of 2020, probably due to 
the mild weather conditions that characterized this period.
This aspect is presented in figure 4 for the older age groups 
(66-75; 76-85; >85 years). The observed mortality (red 
line) is generally below the mortality that should be ex-
pected using the 2015-2019 prediction.20

However, it is worth noticing that the total number of 
deaths observed in 2019 was 435,000 people. The death 
counts in the first 4 months of 2020 is above 250,000 
deaths, meaning that almost 60% of the expected annual 
deaths are concentrated in that period, with obvious con-
sequences on the health sector and on the social perception 
of this dreadful epidemic.
The scientific community has been debating how strong-
ly this pandemic has stricken Italy or, in other terms, how 
many deaths were caused by the virus well above the sea-
sonal mortality.

The media have boosted this debate reporting the results 
of different studies which were published in Italy, some of 
them with very low scientific value.
As mentioned in the introduction, the difficulty of evaluat-
ing the impact of COVID-19 is due to the uncertainties in 
recognizing all the deaths caused by the virus because not 
all the people who died were tested for the presence of the 
infection, and because the consequences of this pandemic 
exceed the casualties directly caused by the infection.
This study is not intended to give an answer to this ques-
tion, but to provide a methodological approach to the 
analysis of epidemic data accounting for spatial and tem-
poral uncertainty.

bution.28 This distribution summarizes our information 
on newYi  before having seen the data. For example, we may 
want to assess how divergent is the new data from the di-
stribution under some a priori guess. In health service pro-
filing, we may wish to state that a relative risk range betwe-
en 0.9  .._ 1.1 is perfectly compatible with a process under 
control and translate this information in a suitable set of 
prior parameters.29 In Bayesian inference, the Region of 
Practical Equivalence procedure consists in calculating the 
percentage of the High-Density Interval of a posterior di-
stribution that falls within a predefined interval of com-
patible values for the null. ROPE is defined in opposition 
to a point null hypothesis as a range of values.30-33 Howe-
ver, the ROPE procedure refers to the posterior distribu-
tion under the alternative, while we are considering a pre-
dictive distribution under the null. Our approach is more 
coherent with the hierarchical null used in Ohlssen et al.17 
As a metric of divergence, we can use the prior predictive 
tail probability P ( )Y > Yi 

new a, v ;Ei| .34 

The posterior predictive distribution35 is defined as

=⌠
⌡ f (θi |Y )|Y,θi )f ( dθi

newYi NegBin( |Y a,v;Ei )newYi

Differently from the prior predictive distribution, it uses 
the posterior density for the unknown parameter and ta-
kes advantage of independence between the new and the 
observed data. For example, in the Poisson-Gamma model 
the posterior Gamma for θ has parameter (Yi+a, Ei+v) and 
the Negative Binomial posterior predictive distribution 
using the parameterization based on the inverse binomial 
sampling,36 i.e., the probability distribution of n trials gi-
ven k successes and p probability of success, has parameters

k = Yi + v        π = (Ei + a)/(2Ei+ a)

Appendix 1. Rationale of the Bayesian analysis
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Posterior predictive tail probabilities P (Y > obsYi |Y a,v;Ei ) 
are used in model checking and have been denoted as Ba-
yesian p-values37,38 – note here the use of the observed va-
lue as statistical threshold in the predictive distribution. 
These checks have been criticized as optimistic since they 
use the observed data twice, to estimate model parameters 
and to assess divergence.39

Gelfand et al.40 suggested a cross-validatory (leave-one out) 
approach defining a conditional posterior predictive distri-
bution

=⌠
⌡ f (Yi |Y-i ,θi ) f (θi |Y-i ) dθi NegBin(Yi |Y-i , a,v;Ei )

The actual value of  
⌠
⌡

⌠
⌡f (Yi |Y-i ,θi ) f (θi |Y-i ) dθi f (Yi |Y-i ,θi ) f (θi |Y-i )

is called conditional predictive ordinate and it is used as an 
outlier diagnostic in Bayesian model checking.

Appendix 2. OpenBugs code

A simple OpenBugs code would be the following (note 
that y20[i] is a stochastic node)

n	 model{
n	 for (i in 1:n){
n	 y15[i]~dnegbin(p[i],k[i])
n	 y16[i]~dnegbin(p[i],k[i])
n	 y17[i]~dnegbin(p[i],k[i])
n	 y18[i]~dnegbin(p[i],k[i])
n	 y19[i]~dnegbin(p[i],k[i])

n	 y20[i]~dnegbin(p[i],k[i])

n	 p[i]~dbeta(a,b)
n	 k[i]~dgamma(c,d)
n	 }}


