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Abstract: In this paper a novel nonlinear controller for position and vibration control of flexible-
link mechanisms is introduced. The proposed control strategy is model-free and does not require
the measurement of the elastic deformation of the mechanism, since the control relies only on the
knowledge of the angular position of the actuator and on its time derivative, which can be measured
simply with a quadrature encoder. The conditions for the closed-loop stability are evaluated using
Lyapunov theory. The performance of the proposed technique is evaluated on a four-bar flexible-
link mechanism. Superior vibration damping and more accurate trajectory tracking is obtained in
comparison with a PD controller and a fractional order controller, which relies on the same set of
measurement as the proposed nonlinear controller.

Keywords: nonlinear control; flexible mechanism; dynamic modeling; fractional control

1. Introduction

Flexible-link robots present several advantages over their rigid counterparts, mainly
due to their lightweight construction, which leads to high throughput and low power
consumption. On the other hand, they require a clever choice of control strategies [1] and
trajectory planning algorithms [2,3] to avoid several vibration-induces issues.

The operation of this kind of mechanisms can be very challenging, due to their inherent
lumped actuator dynamics coupled with distributed link dynamics [4]. Exact dynamic
models are also required to take into account an infinite-dimensional system. Despite this
kind of difficulties, a large number of works on the topic have been published since the
70’s, as testified in the review papers [5–8]. The majority of the works on the control of
flexible-link mechanisms have been conducted on single-link mechanisms or on flexible
mechanisms with just one flexible link [9–12]. In [13,14], the authors deal with flexible
multibody mechanisms: in the former, a regulator for controlling a three degree-of-freedom
(DOF) planar manipulator with two flexible links is presented, while the latter concerns a
three-link planar flexible robot with payload. Therefore, the control of multi-link flexible
mechanisms is still an area that requires further investigations.

The reason can be imputed to the fact that the dynamic modeling of flexible multibody
mechanisms is a very complex and challenging task. Moreover, if linearized models around
a specified operating point are taken into consideration, as done in [15], the dynamics of
multi-link flexible mechanisms is described with limited accuracy [16]. As proved experi-
mentally by Milford and Asokanthan in [17], the eigenfrequencies of a two-link flexible
robot can vary up to 30% as a function of the manipulator configuration. Several sources,
such as [18,19], report that linear models are accurate only for single-link mechanisms.
In this sense, model-based control strategies can be very effective, as testified in several
papers. In particular, predictive control have proven to be very effective in terms of per-
formance [20–22], and have shown sufficient robustness to be a proper choice for flexible

Appl. Sci. 2021, 11, 1082. https://doi.org/10.3390/app11031082 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0770-0275
https://doi.org/10.3390/app11031082
https://doi.org/10.3390/app11031082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031082
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1082?type=check_update&version=1


Appl. Sci. 2021, 11, 1082 2 of 14

multibody mechanisms. It should also be considered that control practitioners often rely
on simple models as the basis for model-based controls [1], such as modal systems with a
limited number of state variable. In this case, the reduced accuracy in the modeling should
be compensated by increasing the robustness properties [23,24] of the controller. This is
necessary to avoid the crucial problem of spillover effect, i.e., the neglecting of higher-order
modes, which can be a source of instability if combined with linear time-varying parameter
perturbations [25,26]. While the research community has proven to be able to cope with
these difficulties by including robustness in the control formulation [24,27,28], the solution
to the problem is still not within the availability of most industrial applications.

The aim of this paper is to introduce a simple nonlinear control strategy that is shown
to be very effective for the simultaneous position control and vibration damping of flexible
multibody mechanisms. The proposed approach is of straightforward implementation, has
limited computational requirements and, therefore, could be potentially made available
to standard industrial control systems. Moreover, the control strategy introduced in this
paper has two important characteristics:

1. the control is model-free;
2. the control relies on one measured variable only.

The first characteristic is fundamental in all industrial applications, where the required
knowledge to operate with complex nonlinear models is not often found. The field of
application of the proposed solution is further enlarged, since the control strategy relies
only on the measurement of the angular position of the mechanism, which can be easily
obtained with quadrature encoders.

The paper is outlined as follows: Section 2 briefly recalls the dynamic modeling of
planar flexible mechanisms used for the numerical evaluation and the proof of stability
of the proposed control strategy. Control design and stability conditions are explained
in Section 3, whereas Section 4 reports some numerical evaluation of the closed-loop
performance and a comparison with PD control and fractional order PDµ controllers.
The conclusions are given in Section 5.

2. Dynamic Model of Multibody Flexible-Link Mechanisms

In this section, the analytic model of a generic planar multibody mechanism composed
of flexible links is briefly explained. The complete development of the equations of motion
can be found in [29] together with an experimental validation of the accuracy of the model.
The same dynamic model has been validated and used in several works, such as in [30] for
the development of predictive control strategies for position control and vibration damping,
and in [31] for the development of state observers for flexible-link mechanisms. Recently,
such model has also been extended to 3D mechanisms in [32–34]. The dynamic model
of flexible-link planar mechanisms is based on an Equivalent Rigid-Link System (ERLS)
formulation, and on the use of a discretization based on the finite element method (FEM).
First of all, each link of the mechanism must be divided into finite elements. The kinematics
of the mechanism, which can have either a closed-loop kinematic chain or an open-loop
one, is defined by means of the following vectors, measured in the fixed global reference
frame {X, Y, Z}: ri and ui are the vectors of nodal position and nodal displacement in the
i-th element of the ERLS and of their elastic displacement, respectively; pi is the position of
a generic point inside the i-th element; q is the vector of the generalized coordinates of the
ERLS. The relationship between these vectors is shown in Figure 1.
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Figure 1. Kinematic definitions of the ERLS.

The application of the principle of virtual works, which states that the sum of the
virtual works of inertial, elastic and external forces is equal to zero, leads to:

∑
i

∫
vi

δpT
i p̈idν + ∑

i

∫
vi

δεT
i Diεidν = ∑

i

∫
vi

δpT
i gρdν + (δuT + δrT)F (1)

εi, Di, ρi and δεi are the strain vector, the stress-strain matrix, the mass density of
the i-th link and the virtual strains, respectively. F is the vector of the external forces,
including gravity. Equation (1) shows the virtual works of inertial, elastic an external forces,
respectively. From this equation, pi and p̈i can be evaluated, for a generic point of the i-th
link from:

δpi = RiNiTiδri (2)

p̈i = RiNiTi + 2(ṘiNiTi + RiNiṪi)u̇i (3)

where Ti is a matrix that describes the transformation from global to local reference frame
of the i-th element, Ri is the local-to-global rotation matrix, and Ni is the shape function
matrix, which is obtained using a proper FEM description. Taking Bi(xi, yi, zi) as the
strain-displacement matrix, the following relations holds:

εi = BiTiδui (4)

δεi = BiδNiTiui + BiNiTiδui (5)

Since nodal elastic virtual displacements δu and nodal virtual displacements of the
ERLS δr are independent from each other, the equations of motion of the system can be
written as:

Mü + MSq̈ = f(u, u̇, q, u̇)
STMü + STMSq̈ = STf(u, u̇, q, u̇)

(6)

M is the mass matrix of the whole system and S is the sensitivity matrix for all
the nodes. Vector f = f(u, u̇, q, q̇) includes all the forces acting on the system, with the
exception of the inertial forces. By adding the Rayleigh damping, the right-hand side of
Equation (6) becomes:

[
f

STf

]
:=
[
−2MG − αM− βK −MṠ −K
ST(−2MG − αM) −STMS 0

] u̇
q̇
u

+

[
M I

STM STMS

][
g
F

]
(7)

Matrix MG accounts for the Coriolis contribution, while K is the stiffness matrix of
the whole mechanism. α and β are the Rayleigh damping coefficients. The system of
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differential equations in (6) and (7) can be made solvable by forcing to zero as many elastic
displacement as the generalized coordinates. In this way, the ERLS position is defined
unequivocally. By removing the displacements forced to zero from Equations (6) and (7),
an operation indicated by the operator †, the following equation is obtained:[

M† (MS)†

(STMS)† STMS

][
ü†

q̈

]
=

[
f†

STf

]
(8)

In this way, the values of the accelerations can be computed at each step by solving the
system in Equation (8), while the values of velocities and displacements can be obtained by
an appropriate integration scheme, provided that the integration step is set to a sufficiently
small value.

The structure of the mechanism taken into account for the numerical simulations
is depicted in Figure 2. The mechanical parameters and the corresponding values are
reported in Table 1. The finite element discretization of the mechanisms uses one finite
element for the crank and the coupler links, while the follower, i.e., the longest link, is
discretized with two finite elements. The ground link is considered to be perfectly rigid.
The total number of elastic displacement for all the links taken as separated would be 21,
but after assembling the mechanism and consequently taking into account the coupling
between the links, the number of nonzero elastic displacement is reduced to 12. A visual
representation of the elastic displacements is provided in Figure 3.

follower

coupler

crank

ground link

Figure 2. Four-bar linkage mechanism.
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Figure 3. Four-bar linkage: nodal elastic displacement ui and rigid displacement q.
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Table 1. Mechanical parameters of the flexible mechanism.

Parameter Value

crank length 0.373 m
coupler length 0.525 m
follower length 0.632 m
ground link length 0.36 m
beam width 6 mm
beam thickness 6 mm
Young’s modulus 2 × 1011 N/m2

flexural inertia moment 11.102 × 10−2 m4

link mass/length 0.272 kg/m
Rayleigh damping α 8.7 × 10−2

Rayleigh damping β 2.1 × 10−5

The simulation results reported in Section 4 are provided, as regards the elastic motion,
in terms of the link curvature instead of in terms of nodal elastic displacements, the latter
being of less direct interpretation.

3. Nonlinear Control Design

The proposed control algorithm is based on the following control action:

τ(t) = kp(q∗ − q(t))− kd q̇(t)− kn q̇(t)(q∗ − q(t))2 (9)

being q∗ the reference for the angular position of the mechanism q(t). kp, kd and kn are
scalar quantities that represent the tuning parameters of the controller. The control action
is nonlinear, given the presence of the term kn q̇(t)(q∗ − q(t))2. In the following, it will
be shown that the nonlinear control action, without which the control acts as a pure PD
controller, can be effectively used to improve the damping of high frequency vibration
induced on the mechanism during the motion. The PD controller is often used for the
control of this class of mechanisms, since the derivative action acts as a damping factor for
the elastic displacement. A notable work on the subject [35] also reports that any flexible-
link mechanism, even in the presence of gravity, can be asymptotically stabilized by a
simple joint PD controller, therefore without the need to measure elastic displacements.

The proposed controller belongs to the wide class of nonlinear PID control, according
to the definition of [36], which lists in this class any PID control with time-varying propor-
tional, derivative and integral gains. The use of nonlinear PID controllers is recognized
by the capability of improving the performance when used to control nonlinear plants,
or to improve damping, tracking accuracy or to reduce rise time for rapid inputs for linear
plant. The control law (9) can be written as a PD control with a nonlinear derivative
gain described by the equivalent gain k′d(t) = kd + kn(q∗ − q(t))2, and, therefore, as a
derivative gain modulation based on the magnitude of the state of the plant, according
to [36]. The numerical results provided in this work will show that the modulation of
the derivative gain can improve both the position tracking and the vibration damping for
fast-changing reference signals.

The conditions for the stability of the closed loop system can be derived by taking into
account the following Lyapunov function:

V(t) = Ek(t) + Ep(t) +
kp

2
(q∗ − q(t))2 (10)

Ek(t) and Ep(t) are the kinetic and the potential energy of the mechanism, that cannot
assume negative values. If kp is a positive scalar, also V(t) ≥ 0. According to Barbalat’s
lemma [37], the asymptotic stability can be proved if V(t) is lower bounded, V̇(t) is
negative definite, and V̇(t) is uniformly continuous in time.
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Let us verify also the second condition imposed by Barbalat’s lemma. The time
derivative of V(t) is:

V̇(t) = Ėk(t) + Ėp(t)− q̇(t)kp(q∗ − q(t)) (11)

If damping is neglected from the dynamic model of the mechanism, under conserva-
tive conditions, the variation of the total energy of the system over a time t is only due to
the work done by the actuator over the same time interval:

∆Ek(t) + ∆Ep(t) =
∫ t

0
τ(s)q̇(s)ds (12)

being τ the torque provided by the actuator. The time derivative of (12) is:

Ėk(t) + Ėp(t) = τ(t)q̇(t) (13)

which, substituted into (11), leads to:

V̇(t) = τ(t)q̇(t)− q̇(t)kp(q∗ − q(t)) (14)

Using the formulation of the control torque τ(t) as defined in (9), the last equation
leads to:

V̇(t) = q̇(t)
(
kp(q∗ − q(t))− kd q̇(t)− kn q̇(q∗ − q(t))2)− q̇(t)kp(q∗ − q(t)) (15)

which can also be written as:

V̇(t) = −q̇2(t)
(

kn(q∗ − q(t))2 + kd

)
(16)

The derivative of the Lyapunov function V̇(t) is negative as long as the term kn(q∗ −
q(t))2 + kd is positive, i.e., if kn(q∗ − q(t))2 > −kd. Under this condition, the closed loop
system is dissipative and global stability is guaranteed. It should be mentioned that this
condition is quite conservative, since it does not take into account the dissipative action of
the damping terms neglected in the Lyapunov candidate function in (12).

The third condition imposed by Barbalat’s lemma is met if V̇(t) is uniformly contin-
uous. According to [23], a sufficient condition for the uniform continuity of V̇(t) is the
boundedness of V̈(t). The latter condition will be demonstrated here.

First of all, V(t) ≤ V(0) for every t ≥ 0, as a consequence of the results presented so
far. On the other hand, V(t) is the sum of nonnegative terms (see Equation (10)). Therefore,
the boundedness of V(t) implies the boundedness of all the three terms on the right-
hand side of Equation (10). The boundedness of the kinetic energy Ek(t) also implies the
boundedness of q̇(t) and of u̇(t). At the same time, the existence of bounds on the potential
energy Ep(t) implies that u(t) is bounded [35]. Therefore, also τ(t) is bounded, according
to the control law in Equation (9). Now, from Equation (16), the second time derivative of
the Lyapunov candidate function is:

V̈(t) = −2q̇(t)q̈(t)
(

kn(q∗ − q(t))2 + kd

)
+ 2kn q̇3(t)q(t) (17)

This equation clearly shows that if also q̈(t) is bounded, then V̈(t) is bounded as well.
On the other hand, the boundedness of τ(t) implies the boundedness of the vector of
external forces f that appears in (7), both in the presence and the absence of gravity force.
Now, Equation (8) can be rewritten as:[

ü
q̈

]
=

[
M† (MS)†

(STMS)† STMS

]−1[
fT

STf

]
(18)
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Up to now it has been shown that t(u, u̇, q, q̇) is bounded, and as the consequence of
the boundedness of q̇ also the sensitivity matrix S is bounded. Therefore, the left-hand
side of Equation (18) is bounded as long as the matrix inversion can be performed. But the
matrix inversion can be performed as long as the mechanism does not encounter, during the
motion, any singular configuration, and this condition is met provided that a proper choice
of the zeroed elastic displacement is made [29]. Now, if the left-hand side of (18) is bounded,
also q̈(t) and consequently V̈(t) are bounded as well, according to (17). Therefore, all the
conditions imposed by Barbalat’s lemma are met and the control is stable, provided that
the control tuning parameters are set within the above prescribed limits.

Application to Speed-Controlled Robots

The proposed control action of Equation (9) is designed to work with torque-controlled
robots. A more frequent case, in industrial applications, is the use of speed-controlled
robots, i.e., the motor drive is set-up in order to follow a joint speed trajectory that is either
precomputed or generated in real-time by a suitable closed-loop controller. Therefore,
a possible modification to the control action of Equation (9) is the following control law:

u∗(t) = k1(q∗ − q(t)) + k2(q∗ − q(t))3 + k3

∫ t

0
(q∗ − q(t))dt (19)

The tuning parameters k1, k2 and k3 are fixed scalar quantities, and u∗(t) it the refer-
ence signal to be fed to the speed control. A direct comparison between (9) and (19) reveals
that the first controller acts as a proportional-derivative controller augmented with a non-
linear derivative action, while the second controller is essentially a proportional-integrative
controller augmented with a nonlinear proportional action. In other words, for the first
controller the modulation of gain happens on the derivative action, while for the second
one it happens on the proportional action. If the inertia J of a single-joint robot can be
approximated by a constant value, the acceleration of the joint is proportional to the torque
τ, through the obvious relationship Jq̈(t) = τ(t). If the first control is used, the last one can
be rewritten using Equation (9) as:

Jq̈(t) = τ(t) = kp(q∗ − q(t))− kd q̇(t)− kn q̇(t)(q∗ − q(t))2 (20)

Now, considering a properly tuned robot actuated by a speed-controlled drive,
with the additional feedback control of (19), Equation (20) can be written as:

Jq̈(t) = J
d
dt

u∗(t) = −Jk1q̇(t)− 3Jk2q̇(t)(q∗ − q(t))2 + Jk3(q∗ − q(t)) (21)

A direct comparison between (20) and (21) shows that the equivalence between the
two controllers happens when kp = Jk3, kd = Jk1, kn = 3Jk2. Such equivalence shows that
the proposed strategy can be used for both torque-controlled systems and speed-controlled
systems, retaining the same level of performance in both cases. The proof of the stability of
the controller of Equation (19) is omitted, since the stability bounds can be assessed using
the same procedure already developed to prove the stability of the control (9), using the
candidate Lyapunov function V(t) = T(t) + U(t) + J k3

2 (q
∗ − q(t))2. The resulting stability

bound on control gains is:
k1 + 3k2(q∗ − q(t))2 ≥ 0 (22)

The control laws of (9) and (19) both require either a measurement or an estimation of
the angular speed of the joint q̇(t). A rough estimation of the joint speed can be achieved
using numerical differentiation. Such method, while being of straightforward application,
can lead to high-frequency spurious signals [38,39] that can reduce the effectiveness or even
jeopardize the stability of the closed-loop system, especially when using low-resolution
encoders or high derivative gains. For this reason, a good practice is to make use of
observers [38] or other filtering techniques [39,40].
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4. Control Tuning and Closed-Loop Response

In this section, the effectiveness of the proposed control law is investigated numerically.
The plant used as the test bench is the four-bar linkage described in Section 2. All the
tests presented here involve the tracking of a step signal for the angular position of the
crank q. The target position is q∗ = π/2 rad, while the initial position of the mechanism
is q(0) = π/6 rad. The effectiveness of the control system is evaluated on the basis of
the precision and speed of tracking of the reference signal, but also in terms of vibration
damping. The latter is accomplished by measuring the curvatures at the midspan of the
crank and of the follower links.

The evaluation of the performance is obtained through a comparison with two other
control strategies, which share with the proposed controller the use of a single measurement,
i.e., the angular position of the crank, and the model-free approach. Moreover, all three
controllers are joint controllers, since they rely on measurements made to the actuated joint,
and they do not explicitly take into account the elastic behavior of the mechanism.

Fractional order control [41], that in its more general form is referred as PIλDµ control,
is a control system based on fractional calculus, i.e., a generalization of standard calculus
that takes into account integrals and derivatives of non-integer order [42]. In particular,
a PIλDµ control will have a standard proportional action, an integral action of order λ, and a
derivative action of order µ. For the particular case in which λ = µ = 1, the fraction order
PID control and the standard PID control are perfectly equivalent. The PDµ control used
for the numerical simulation reported in this work has been developed using FOMCON
toolbox [43]. Since the exact computation of a fractional order PID control is not possible,
being such controller an infinite dimension linear filter [44], a finite size approximation is
needed for a real-time implementation. Several approximation techniques have been pro-
posed in the literature [41], the one used in this work is the Oustaloup’s approximation [45],
which is included in the FOMCON toolbox.

Figure 4 shows the behaviour of all three controllers in terms of angular position
tracking. From the figure it can be clearly seen that the most accurate tracking, i.e., the
one with null overshoot and minimal settling time, is achieved with the nonlinear control.
The PD control produces a large overshoot, while PDµ leads to smaller overshoot with
respect to the PD control, but at the same time requires a longer settling time. The tuning
of the three controllers, whose parameters are reported in Table 2, has been set to achieve
similar rise times.
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Figure 4. Angular position of the crank, comparison with PD and PDµ controllers.
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Table 2. Control tuning parameters.

Control Tuning Parameters

PD control kp = 0.15; kd = 0.04
PDµ control kp = 0.0165; kd = 0.067; µ = 0.68
nonlinear control kp = 0.08; kd = 0.09; kn = −0.08

The results of the same three tests are shown in Figures 5 and 6 in term of link
curvatures of the crank and follower link, respectively. In both cases, it can be clearly
seen that the nonlinear control performs better than both PD and PDµ controllers as far as
vibration damping is taken into account. The time needed to dampen the elastic motion
of both links is remarkably high for the PD controller, whereas the PDµ and the nonlinear
control have similar damping properties.
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A more accurate comparison of the damping capability of the nonlinear controller can
be deduced from the results presented in Figure 7, in which the response is plotted over
an interval of 0.75 s. This comparison shows again that the nonlinear control has clearly
a more pronounced damping effect, and that also the amplitude of vibration at the very
beginning of the motion is less pronounced. This behavior can also be explained by looking
at the torque profiles reported in Figure 8. From the figure, it can be clearly seen that the
PDµ controller produces an intense control action at the beginning of the motion, which
induces pronounced vibrations. Furthermore, the PD controller has a very aggressive
control effort at the beginning of motion. This is due to the fact that vibration damping in
this kind of control requires to set the derivative gain kd to a quite high value, with the side
effect of slowing down also the position tracking. At the same time, the kp gain of the PD
controller needs to be set to an high value to compensate the speed reduction introduced
by the derivative term, with the consequence of leading also to a pronounced overshoot
(see Figure 4).
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Figure 7. Curvature of the crank and follower, detail, comparison with PDµ controller.
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The proposed nonlinear control is capable of avoiding this occurrence: the nonlinear
action governed by the gain kn, which is set to a negative value, basically reduces the effects
of derivative action when the tracking error is high, i.e., during the first part of the transient.
This momentary reduction of derivative action does not need to be compensated by an
aggressive proportional gain, which would lead to pronounced vibrations at the beginning
of the transient. Figure 8 actually shows that the nonlinear control produces a peak torque
that is reduced by 47% in comparison with PD control and by 56% in comparison with PDµ

control. The maximum values of the motor torque developed by the three control systems
is reported in Table 3.

Table 3. Performance measurement and comparison between PD, PDµ and nonlinear controller.

Performance Measurement PD PDµ Nonlinear Control

Settling time [±5%] 2.022 s 3.685 1.455
Vibration settling time [±1× 10−4 m−1] 0.2775 s 0.1616 s 0.0329 s
Overshoot [%] 19.8% 2.8% 0.006%
Peak torque [Nm] 0.157 Nm 0.2 Nm 0.088 Nm

In order to quantify the performance level of the three closed-loop controller tested
numerically, some metrics of the response of the closed-loop performance are provided in
Table 3. The performance comparison can be made in terms of settling time, which is here
measured as the time needed for the tracking error to be stabilized below±5%. As reported
in Table 3, the fastest settling time is achieved by the nonlinear controller, while the slowest
is the one obtained using the PD controller. Using a relative measurement of the settling
time, the PDµ controller is 82% slower than the PD controller, while the nonlinear control is
28% faster than the PD controller. The time evolution of the percentage tracking error is
shown in Figure 9.
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Figure 9. Tracking error, percentage.

Another measure of the closed-loop performances can be provided by the time needed
to reduce the amplitude of the follower elastic vibration. In particular, Table 3 lists the time
needed to reduce the amplitude of the elastic vibration below 1 × 10−4 m−1. With regards
to this index, the best performance is obtained, again, by the nonlinear controller, which
requires an 88% smaller time to reduce the vibration level below the chosen threshold in
comparison with the PD controller. The PDµ controller allows a reduction of the same time
over the PD controller equal to 42%. The best performance is obtained by the nonlinear
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controller also in terms of overshoot, which is equal to 0.006% for the nonlinear controller,
2.8% for the PDµ controller and 19.84% for the PD controller. The limited overshoot
obtained by the use of the nonlinear controller can be explained by looking at the torque
profile generated during the transient, which has a limited peak value. This feature is the
main advantage brought by the derivative action included in the nonlinear formulation
of the controller, which allows to set the proportional gain to a limited value. In this way,
the overshoot is limited, since the bandwidth of the controller is kept high by a rather
pronounced value of the kd gain, which in turn is compensated during the initial part of
the transient by the negative value of the kn gain.

Table 3 lists also the peak value of the motor torque, obtained with the use of each
control system. The measurements performed on the actuator action show that the non-
linear controller has a peak torque requirement that is equal to almost half of the peak
torque needed when using the PD control. The peak torque produced by the PDµ con-
troller is limited to 0.2 Nm in order to simulate the effects of an actuator with limited
torque capabilities.

The choice of the tuning of the the three controls, whose values are shown in Table 2,
has been performed using a trial-and-error procedure. Anyway, a possible procedure to
establish a suitable tuning for the nonlinear control could be the following: first, the kn
gain is set to zero, so as the nonlinear action is turned off. Then, a tuning procedure can
be conducted using some well-known strategy, such as the Ziegler-Nichols formula [46].
Then, the obtained tuning can be refined by lowering the proportional gain kp, increasing
the derivative gain kd, and introducing a small negative value for the kn gain. Before testing
a new set of gains, the closed-loop stability should be checked using (16). This procedure
has shown to produce good results, at least for second-order systems with lightly damped
elastic modes, like the example presented in this work.

5. Conclusions

In this paper a novel nonlinear controller is proposed for the simultaneous position
control and vibration damping in mechanisms with pronounced elasticity. The proposed
method is model-free, and therefore its application does not require the explicit knowledge
of the dynamic model of the plant to be controlled. Consequently, the proposed method is of
simple and straightforward application, and is well suited to many industrial applications.
An alternative formulation is provided for speed-controlled systems as well.

The conditions for the stability of the proposed nonlinear control are provided by the
application Barbalat’s lemma to a suitable Lyapunov function candidate. The superior
level of accuracy in terms of position tracking and vibration suppression achieved by the
use of the nonlinear controller are shown by comparing it to a proportional-derivative
control and a fractional order proportional-derivative control. The controls are applied to a
challenging test case, i.e., the position and vibration control of a flexible four-bar linkage.
The comparison with other controllers has highlighted a superior performance also in
terms of improved settling time and of peak torque reduction.
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