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A B S T R A C T  

This dissertation presents theoretical and experimental investigations concerning the 

control of flexural vibrations in beams and plates equipped with dense arrays of periodic 

inclusions. The thesis first considers a simplified model problem, which is composed of 

an infinite beam structure with a one-dimensional grid of inclusions, that is: discrete 

masses, tunable vibration absorbers and shunted piezoelectric patch transducers.  

A finite element model is introduced to derive the flexural propagation constants, which 

are used to illustrate and characterize the physics of the wave attenuation mechanism 

also known as the stop band phenomenon. In the next part of the thesis, two-dimensional 

regular arrays of inclusions are employed to control wave propagation in an infinite 

plate. Also in this case, the finite element method is used to characterize the performance 

of point masses, spring-mass vibration absorbers and shunted piezoelectric patch 

transducers. More importantly, a novel mathematical formulation of multi-resonant 

shunt circuits connected to piezoelectric patches is introduced. It allows to overcome the 

conventional issue of the nonlinear eigenvalue problem and to obtain dispersion 

properties of the two-dimensional structures characterised by multiple locally resonant 

effects. Based on this approach, the band diagram of a 2D metamaterial with periodic 

arrays of piezoelectric patch transducers connected to double-resonance shunts is 

calculated. The results show, that indeed the resonances of the shunting network split 

the dispersion curves by forming two distinct resonance band gaps. Further on in the 

thesis, mobility-impedance based and fully coupled modal models are introduced to 

investigate the responses of finite plate with periodic arrays of point masses, tunable 

vibration absorbers and shunted piezoelectric patch transducers. In this framework, 

besides the analyses of mid to high-frequency band gaps, a new method of low-

frequency flexural vibration suppression is investigated. The proposed approach utilises 

piezoelectric patch transducers connected to multi-resonant electrical shunts in such a 

way as they reduce the resonant effects of flexural vibrations of the hosting structure 

over a wide low-frequency band. The shunts are formed by multiple resistance-

inductance-capacitance (RLC) branches connected in parallel. The proposed method 

sequentially tunes the RL elements of the branches in each shunt in such a way as to 

maximise the vibration energy absorption from a progressively larger number of 

resonant flexural modes of the hosting structure. In practice the vibration energy 

absorption is estimated from the measured electric power absorbed by each shunt so 



 

 

 

that the on-line tuning algorithm can be conveniently implemented locally. To prove the 

validity of the proposed algorithm, simulation and experimental studies are presented 

considering the flexural response of a thin plate, which is equipped with piezoelectric 

patches connected to multi-resonant shunts. The study shows that the proposed 

approach allows the on-line tuning of the RLC branches in each shunt to control the 

resonant response of low order flexural modes so that the flexural response of the plate 

is effectively reduced over a wide frequency band in the low to mid-frequency range. 

The proposed algorithm can be implemented in real time such that the tuning of the RLC 

branches can track changes in the dynamic response of the hosting structure due to 

operation conditions. The validity of the proposed self-tuning algorithm has been 

verified experimentally on a thin rectangular aluminium plate equipped with five 

piezoelectric patches connected to multi-resonant shunts. The shunts are tuned in a 

dSPACE digital platform with the proposed algorithm, that maximises the flexural 

vibration power absorption of the target resonant modes by maximising the 

correspondent electrical power absorption by each shunt. 
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L I S T  O F  F I G U R E S  

Figure 1.1 Multi-resonant, current flowing shunt circuit 

Figure 2.1 (a) Representation of an infinite Euler-Bernoulli beam, comprised by 

aluminum and piezoelectric ceramic. (b) An exemplary single finite 

element. 

Figure 2.2 (a) Depiction of an infinite, uniform Euler-Bernoulli beam. (b) An 

exemplary meshed unit cell. 

Figure 2.3 Dispersion curves for an infinite Euler-Bernoulli beam. Plots (a) and (b) 

positive and negative going evanescent waves. Plots (c) and (d) positive 

and negative going flexural waves. Black lines -real parts, blue lines - 

imaginary parts of propagation constants. 

Figure 2.4 (a) Depiction of an infinite Euler-Bernoulli beam with discreet masses 

spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary meshed unit cell. 

Figure 2.5 Dispersion curves for an infinite Euler-Bernoulli beam with periodic 

point masses equal to 20% of the unit cell mass. Plots (a) and (b) positive 

and negative going evanescent waves. Plots (c) and (d) positive and 

negative going flexural waves. Black lines -real parts, blue lines - 

imaginary parts of propagation constants. 

Figure 2.6 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic point masses 

against dimensionless weight of point masses. Attenuation constants of 

flexural waves associated with (b) 𝛾 = 1, (c) 𝛾 = 0.5 and (d) 𝛾 = 0.25. 

Figure 2.7 (a) Depiction of an infinite Euler-Bernoulli beam with tunable vibration 

absorbers spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary meshed unit cell. 

Figure 2.8 Dispersion curves for an infinite Euler-Bernoulli beam with periodic 

point tunable vibration absorbers whose masses are equal to 20% of the 

unit cell mass. Plots (a) and (b) positive and negative going. 

evanescence waves. Plots (c) and (d) positive and negative going 

flexural waves. Black lines -real parts, blue lines - imaginary parts of 

propagation constants. 

 



 

 

 

Figure 2.9 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs whose 

masses are equal to 20% of the unit cell mass against the dimensionless 

frequency of the absorbers Attenuation constants of flexural waves 

associated with resonance frequency of the absorbers (b) Ω0 = 1.1, (c) 

Ω0 = 0.9 and (d) Ω0 = 0.8. 

Figure 2.10 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs tuned to 

Ω0 = 0.5 against the dimensionless weight of proof masses. 

Attenuation constants of flexural waves associated to dimensionless 

weight of proof masses (b) 𝛾 = 1, (c) 𝛾 = 0.5 and (d) 𝛾 = 0.25. 

Figure 2.11 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with damped, periodic TVAs 

whose masses are equal to 20% of the unit cell mass, against the 

dimensionless frequency of the absorbers Attenuation constants of 

flexural waves associated with resonance frequency of the absorbers (b) 

Ω0 = 1.1, (c) Ω0 = 0.9 and (d) Ω0 = 0.8. Black lines – undamped TVAs, 

blue lines – TVAs with 3% of damping ratio. 

Figure 2.12 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs tuned to 

Ω0 = 0.5 and whose proof masses are equal to 20% of the unit cell mass, 

against damping ratio of the TVAs. Attenuation constants of flexural 

waves associated to TVAs damping ratios (b) 𝜁 = 0.1, (c) 𝜁 = 0.05 and 

(d) 𝜁 = 0.015. 

Figure 2.13 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with damped, periodic TVAs 

with base masses equal to 40% and proof masses to 20% of the unit cell 

mass, against the dimensionless frequency of the absorbers Attenuation 

constants of flexural waves associated with resonance frequency of the 

absorbers (b) Ω0 = 1.5, (c) Ω0 = 0.9 and (d) Ω0 = 0.5. Black lines – 

undamped TVAs, blue lines – TVAs with 3% of damping ratio. 

 

 

 

 

 



 

 

 

Figure 2.14 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with damped, periodic TVAs 

with base masses equal to 40% and proof masses to 20% of the unit cell 

mass, against the dimensionless frequency of the absorbers Attenuation 

constants of flexural waves associated with resonance frequency of the 

absorbers (b) Ω0 = 1.5, (c) Ω0 = 0.9 and (d) Ω0 = 0.5. Black lines – 

undamped TVAs, blue lines – TVAs with 3% of damping ratio. 

Figure 2.15 (a) Depiction of an infinite Euler-Bernoulli beam with piezoelectric 

patch transducers spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary mesh of 

the unit cell. 

Figure 2.16 The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with piezoelectric patch 

transducers connected to inductive shunts, against the dimensionless 

resonance frequency of the shunts. Attenuation constants of flexural 

waves associated with resonance frequency of the shunts (b) Ω0 = 1.5, 

(c) Ω0 = 0.9 and (d) Ω0 = 0.5. 

Figure 2.17 The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with piezoelectric patch 

transducers connected to series RL shunts, against the dimensionless 

resonance frequency of the shunts. Attenuation constants of flexural 

waves associated with resonance frequency of the shunts (b) Ω0 = 1.5, 

(c) Ω0 = 0.9 and (d) Ω0 = 0.5. Black lines - inductive shunt, blue lines – 

series RL shunt. 

Figure 2.18 The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with piezoelectric patch 

transducers connected to series RL shunts and tuned to Ω0 = 0.5, 

against the quality factor of the shunts. Attenuation constants of 

flexural waves associated with quality factors of the of the shunt (b) 𝑄 =

90, (c) 𝑄 = 45 and (d) 𝑄 = 10. 

Figure 2.19 Attenuation constants of flexural waves associated with resonance 

frequencies 0.5, 0.8 (a) and 0.65, 1.3 (b). Black lines – multi-resonating, 

inductive shunts, blue lines – multi-resonating RL shunts. Whose 

resistances were set to 5Ω and 7kΩ. 

Figure 3.1 FEM element. 

 



 

 

 

Figure 3.2 (a) Depiction of a unit cell comprising FEM mesh (b) Reciprocal space 

with irreducible Brillouin zone indicated by blue color. 

Figure 3.3 (a) Dispersion curves for a uniform infinite plate; (b) Depiction of the 

unit cell. 

Figure 3.4 Displacement patterns for 9 unit cells of a uniform, infinite plate. The 

visualized displacement patterns: (b), (c), (d), (e), (f) correspond to the 

points indicated with black dots on dispersion diagram in plot (a). 

Figure 3.5 Dispersion curves for an infinite plate with periodic point mass equal 

to 20% (b) and 70% (b) of the mass of the unit cell. (c) Depiction of the 

unit cell. 

Figure 3.6 Relation between added discrete mass and distribution of the stop band 

effect. 

Figure 3.7 Displacement patterns for 9 unit cells of an infinite plate with periodic 

point masses equal to 20% of the mass of the unit cells. The visualized 

displacement patterns: (b), (c), (d), (e), (f) correspond to the points 

indicated with black dots on dispersion diagram in plot (a). 

Figure 3.8 Dispersion curves for an infinite plate with periodic vibration absorbers 

tuned to dimensionless frequency Ω0 = 0.5 (a) and Ω0 = 1 (b) and 

whose mass is equal to 20% of the unit cell mass. (c) Depiction of a unit 

cell. 

Figure 3.9 Relations between resonance frequency of the absorbers and 

distributions of the stop band effects for the absorbers equipped with 

suspended mass equal to 20% (a) and 40% (b) of the unit cell mass. (c) 

Relation between suspended mass of the absorbers and distribution of 

the stop band effect for the arbitrarily chosen resonance frequency 0.5. 

Figure 3.10 Displacement patterns for 9 unit cells of an infinite plate with periodic 

spring-mass vibration absorbers tuned to dimensionless frequency 0.5 

and whose masses are equal to 20% of the mass of the unit cell. The 

visualized displacement patterns: (b), (c), (d), (e), (f) correspond to the 

points indicated with black dots on dispersion diagram in plot (a). 

Figure 3.11 (a) Dispersion curves for an infinite plate with periodic vibration 

absorbers equipped with base masses and tuned to dimensionless 

frequency 0.5. The base masses are equal to 70% and proof masses to 

20% of the unit cell mass. (b) Depiction of a unit cell. 

 



 

 

 

Figure 3.12 Relations between resonance frequency of the absorbers and 

distributions of the stop band effects for the absorbers equipped with 

base masses equal to 40% (a) and 70% (b) of the unit cell mass. In both 

cases the proof masses are equal to 20% of the unit cell mass 

Figure 3.13 Displacement patterns for 9 unit cells of an infinite plate with periodic 

spring-mass vibration absorbers tuned to dimensionless frequency 0.5 

and whose proof masses are equal to 20% and base masses to 70% of 

the mass of the unit cell. The visualized displacement patterns: (b), (c), 

(d), (e), (f) corresponds to the points indicated with black dots on 

dispersion diagram in plot (a). 

Figure 3.14 (a) Dispersion curves of an infinite plate with periodic piezoelectric 

patch transducers whose electrical terminals are open. (b) Depiction of 

a unit cell. 

Figure 3.15 Displacement patterns for 9 unit cells of an infinite plate with 

piezoelectric patch transducers whose electrical terminals are open. The 

visualized displacement patterns: (b), (c), (d), (e), (f) correspond to the 

points indicated with black dots on dispersion diagram in plot (a). 

Figure 3.16 (a) Dispersion curves of an infinite plate with periodic piezoelectric 

patch transducers connected to single inductors tuned to dimensionless 

frequency 0.5 (b) Depiction of a unit cell. (c) Shunting inductor. 

Figure 3.17 (a) Relation between resonance frequency of the piezoelectric patches 

connected to single inductors and distribution of the stop band effects. 

(b) Magnified part of the relation indicated in plot (a). 

Figure 3.18 Displacement patterns for 9 unit cells of an infinite plate with 

piezoelectric patch transducers connected to single inductors and 

tuned to dimensionless frequency 0.5. The visualized displacement 

patterns: (b), (c), (d), (e), (f) correspond to the points indicated with 

black dots on dispersion diagram in (a). 

Figure 3.19 (a) Dispersion curves of an infinite plate with periodic piezoelectric 

patch transducers connected to multi-resonating shunt circuits and 

tuned to dimensionless frequencies 0.5 and 1. (b) Depiction of a unit 

cell. (c) Multi-resonating shunt circuit. (d) Simplification of the multi-

resonating circuit. 

 

 



 

 

 

Figure 4.1 Finite plate material equipped with 5 × 5 array of inclusions and 

excited by the rain-on-the-roof stochastic process, modelled as 4 × 4 

matrix of uncorrelated point forces. Four types of inclusions used in this 

framework point mass (b), vibration absorber (c), vibration absorber 

with base mass (d), piezoelectric patch transducer (e). 

Figure 4.2 (a) Evolution of the flexural kinetic energy of the finite plate equipped 

with periodic masses against their dimensionless ratio. Power spectral 

density functions of the kinetic energy when dimensionless mass is 

equal to 0.5 (d), 1 (c) and 1.5 (b). 

Figure 4.3 (a) Evolution of flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of vibration absorbers whose masses are equal to 20% of 

the plate mass with respect to their resonance frequency (A). Power 

spectral density functions of the kinetic energy when absorbers are 

tuned to 1300 Hz (b), 900 Hz (c) and 460 Hz (d). 

Figure 4.4 (a) Evolution of the flexural kinetic energy of the finite plate equipped 

with a 5 × 5 array of vibration absorbers whose masses are equal to 40% 

of the plate mass with respect to their resonance frequency. Power 

spectral density functions of the kinetic energy when absorbers are 

tuned to 1300 Hz (b), 900 Hz (c) and 460 Hz (d). 

Figure 4.5 (a) Evolution of the flexural kinetic energy of the finite plate equipped 

with a 5 × 5 array of vibration absorbers tuned to 650 Hz against the 

dimensionless mass ratio of the absorbers. The power spectral density 

functions of the kinetic energy when the mass ratios are equal to 0.2 (b), 

1 (c) and 0.5 (d). 

Figure 4.6 (a) Evolution of flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of vibration absorbers with base masses equal to 0.7 and 

proof masses to 0.2 of the plates mass, with reference to resonance 

frequency of the absorbers. Power spectral density functions of the 

kinetic energy when absorbers are tuned to 460 Hz (d), 900 Hz (c) and 

1350 Hz (b). 

Figure 4.7 (a) Evolution of flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of piezoelectric patch transducers connected to series RL 

shunts. Power spectral density function of the kinetic energy when the 

shunts are tuned to 400 Hz (b), 900 Hz (c) and 1600 Hz (d). 
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dimensionless mass ratio of the absorbers. The power spectral density 
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Figure 4.6 (a) Evolution of flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of vibration absorbers with base masses equal to 0.7 and 

proof masses to 0.2 of the plates mass, with reference to resonance 

frequency of the absorbers. Power spectral density functions of the 

kinetic energy when absorbers are tuned to 460 Hz (d), 900 Hz (c) and 

1350 Hz (b). 

Figure 4.7 (a) Evolution of flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of piezoelectric patch transducers connected to series RL 

shunts. Power spectral density function of the kinetic energy when the 

shunts are tuned to 400 Hz (b), 900 Hz (c) and 1600 Hz (d). 

 

 



 

 

 

Figure 4.8 (a) Power spectral density function of the kinetic energy of the plate with 

a 5 × 5 array of piezoelectric patches connected to multi-resonating 

shunts in open circuit configuration (blue line) and tuned to 𝑓1 = 780𝐻𝑧 

and 𝑓1 = 1200𝐻𝑧 (red line). (b) Spatial configuration of piezoelectric 

patches. (c) Depiction of the multi-resonating shunt circuit. 

Figure 5.1 (a) Plate equipped with two piezoelectric patches subject to a rain on the 

roof excitation modelled as a 4 × 4 array of uncorrelated point forces. (b) 

Electrical model of a piezoelectric patch connected to the current-flowing 

shunt composed of multiple RLC branches. (c) Simplified electrical 

model of the shunt. 

Figure 5.2 Time averaged total flexural kinetic energy of the smart plate structure 

(a) and time averaged electrical power absorbed (b) by the RL shunt 

circuit connected to the piezoelectric patch N.1 (c). 

Figure 5.3 Figure 5.3 Time averaged total flexural kinetic energy of the smart plate 

structure (a) and time averaged electrical power absorbed (b) by the RLC 

shunt circuits connected to the piezoelectric patch N.1 (c) having 𝐶𝑓11 =

 10𝐶𝑝𝑒1 (first row), 𝐶𝑓11 = 𝐶𝑝𝑒1 (second row), 𝐶𝑓11 = 0.1𝐶𝑝𝑒1 (third row). 

Figure 5.4 (a) Time averaged total flexural kinetic energy of the smart plate 

structure, (b) time averaged electrical power absorbed and (c) PSD of the 

plate flexural kinetic energy (solid blue line no shunt; dashed red line 

with shunt) and electric power absorbed by the shunt (dotted black line) 

by the RLC multi-resonant shunt circuits connected to the piezoelectric 

patch N.1 (d) while the piezoelectric patch N.2 is in open circuit. 

Figure 5.5 (a) Time averaged total flexural kinetic energy of the smart plate 

structure, (b) time averaged electrical power absorbed and (c) PSD of the 

plate flexural kinetic energy (solid blue line no shunt; dashed red line 

with shunt) and electric power absorbed by the shunt (dotted black line) 

by the RLC multi-resonant shunt circuits connected to the piezoelectric 

patch N.2 (d) while the piezoelectric patch N.1 implements a four 

branches multi-resonant shunt. 

Figure 5.6 (c) Time averaged electrical power absorbed by the shunt circuit shown 

in (d). Plots (a) and (b) present slices of the surface plot (c) cut along a 

constant resistance 𝑅𝑠11 = 200 Ω (a) and constant inductance 𝐿𝑏11 =

21.1 H (b), that is a plate and shunt resonance frequency 𝑓𝑏11 = 184.5Hz. 

 



 

 

 

Figure 5.7 First stage coarse (a, b, c) and fine (d, e, f) inductance (frequency) tuning 

based on the maximisation of the electrical power absorbed by the 

shunt branches. (a, d) Amplitude, (b, e) first derevative, (c, f) second 

derivatives of the absorbed power with respect to the inductances 

implemented in the four branches. Thick vertical bands indicate the 

inductances (frequencies) where the fine frequency tuning is performed 

as shown in plots (d, e, f). 

Figure 5.8 Second stage fine (a, b, c) resistance tuning based on the maximisation 

of the electrical power absorbed by the shunt branches. (a) Amplitude, 

(b) first derivative, (c) second derivative of the absorbed electric power 

with respect to the resistances implemented in the four branches. 

Figure 5.9 Power spectral densities of the total flexural kinetic energy of the plate 

equipped with 1, 6, 12, 20, 35, 48 piezoelectric patches in open loop 

(solid blue lines) and connected to shunts with respectively 4, 7, 8, 8, 8, 

8 branches (dashed red lines) whose RL elements are set in such a way 

as to maximize the electric power absorbed by the shunts (dotted black 

lines). 

Figure 5.10 Power spectral densities of the total flexural kinetic energy of the plate 

equipped with 48 piezoelectric patches in open loop (solid blue lines) 

and connected to shunts with 12 branches (dashed red lines) whose RL 

elements are set in such a way as to maximize the electric power 

absorbed by the shunts (dotted black lines). 

Figure 5.11 (a) Experimental setup. (b) Perspex box showing the five patches. (c) 

Hexagonal piezoelectric patch. 

Figure 5.12 (a) Electrical implementation of the synthetic shunt impedances in 

dSPACE platform. (b) An equivalent electrical circuit. 

Figure 5.13 Multi-resonant, current flowing shunt circuit 

Figure 5.14 (a) The flexural kinetic energy per unit force of the smart plate 

structure. (b) The electrical power absorbed by five identical shunts 

illustrated in plot (c).  

Figure 5.15 (a) The flexural kinetic energy per unit force (solid blue line - shunts in 

open loop; solid red line - optimal shunts) and power absorbed per unit 

force by five optimal shunts (dotted black line). (b) Configurations of 

the optimal multi-resonant shunt circuits. 
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1  
I N T R O D U C T I O N  

Mechanical vibrations arise from the dynamic response of mechanical systems 

subjected to impulsive, harmonic and stochastic excitations. Often, mechanical 

vibrations lead to undesired effects both, for the vibrating mechanical system itself as 

well as for people and the environment. In the worst case, excessive mechanical 

vibrations can cause fatigue phenomena that can damage or destroy a mechanical 

system or structure. Also, in few cases they can bring a direct danger to human life 

and to the environment. In general, vibrations of distributed flexible structures are 

effectively connected into sound or unwanted noise. In fact, a prolonged exposure to 

high levels of noise may have far-reaching consequences for human health [1]. 

Starting from annoyance and insomnia through cognitive impairment to permanent 

tinnitus and cardiovascular diseases. The sphere of human life is not the only one 

affected by the negative effects of mechanical vibrations and noise radiation. They are 

also present in many other fields, and in various branches of industry and technology, 

not excluding the most advanced sectors such as aerospace, space and semiconductor, 

where problems related to mechanical vibrations and noise have a specific economic 

dimension. For example, noise of the rocket boosters generates high level of 

mechanical vibrations in the fairing part, which can damage or even destroy the 

payload. In the semiconductor industry, the mapping of transistors and other 

electronic elements on the surface of a silicon wafer covered by photoresist takes place 

through a high precision lithography process, which can be jeopardised by vibrations 

of the base structure, the current resolution of this technology, the so-called half-pitch, 

or in other words half distance between two identical details reproduced on the 

surface of the photoresist, reaches about 7 ∙ 10𝑚−9. With this in mind, it is not difficult 

to realize how even the smallest mechanical vibrations can be a serious problem in 

practical applications. Therefore, vibrations can have a direct impact on productivity, 

and thus affect share capital. Examples being closer to our everyday lives are mainly 

related to household goods, electro-mechanical tools or cars, where a consumer 

discomfort may result in a loss of the market share [1-3]. Finally, many countries have 



 

 

 

legislated on the permissible vibration standards that workers in the industrial sectors 

may be subjected to. For example, in the European Union regulations on noise and 

vibrations are the Noise at Work Directive 2003/10/EC and the Human Vibration 

Directive 2002/44/EC, establishing a limit of 87 dB as a daily averaged dose of noise, 

and 2.5
𝑚

𝑠2 of vibration magnitude for single action hand for maximum 8 hours daily, 

or 5
𝑚

𝑠2 for whole body for no more than 8 hours daily. 

All of these are just few examples of the problems which brought scientists to study 

and develop vibration and noise control systems and treatments. 

1.1  MEANS OF VIBRATION TREATMENT 

Over the years many techniques have been developed to control vibration of 

mechanical structures. Most often they are divided into three main categories 

depending on the use of an external power source, such as passive vibration control, 

active vibration control and an intermediate category, called semi-active vibration 

control. 

1.1.1 Passive vibration control 

Passive vibration control is based on modification of the physical parameters of a 

mechanical structure such as mass, stiffness or damping to improve its vibro-acoustic 

properties, i.e. making it less responsive to unwanted excitations [3]. These 

modifications can be provided in many ways, for example by adding to the structure 

elements in the form of masses and dynamic absorbers, which placed in the right 

locations, can effectively reduce vibrations. Also, batches of highly damped material 

can be used to reduce resonant response of structures. Finally, design optimization of 

the mechanical system itself may improve the response of a system by, for example, 

shifting the resonance frequencies away from excitation harmonies. 

 

In general, passive vibration control performs very well at high frequencies but 

presents poor efficiency at low frequencies. The reason for this is that obtaining 

effective control of vibrations at low frequencies would require, bulky mass, stiffness 

and damping treatments that would considerably increase the structure mass or 

volume, making the whole solution impractical. 
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1.1.2 Active vibration control 

In contrast to passive solutions, active vibration control is most often well suited for 

low frequencies. In general, these systems are formed by vibration sensors and 

actuators connected via a single or multi-channel controller that implements either a 

feed forward or a feedback control architecture. Several types of actuators are used, 

such as electromechanical, electromagnetic or electro-pneumatic, whose task is to 

create a vibration that will cancel out those caused by external excitations. Active 

systems are composed of sensors that measure the vibration level of the structure, as 

well as the electronic system that processes information from the sensors and 

provides the appropriate control signal, which drives the actuator. Active systems are 

usually divided into two categories, namely feedforward and feedback systems. The 

first type relies on advance knowledge of the controlled disturbance, both when the 

disturbance is deterministic (i.e. tonal), or stochastic (i.e. stationary random noise) 

when there is a reference signal strongly correlated with the disturbance [4]. Based on 

this a-priori knowledge, feed-forward systems can deliver a secondary vibration 

control field with a similar amplitude but opposite phase to the primary one, to obtain 

a strong destructive interference effect. Active systems of this kind are also capable of 

adapting to changing conditions, if combined with an adaptive filter. In this case, an 

external signal is measured and sent to the adaptive filter.  

 

Feedback vibration control is most often implemented when the excitation of the 

structure is not deterministic or cannot be directly observed. In general, in situations 

where there is no advance information on the primary disturbance, feedback control 

could be effectively implemented. Feedback vibration control systems are most often 

used to control structures whose frequency response is characterised by well 

separated resonance peaks of low order natural modes. 

 

Beside numerous advantages, active vibration control also has its limitations, that 

include an additional power source, and therefore the ability to supply energy to a 

controlled system, which by itself may lead to instability or the so called spillover 

effect which is a phenomenon of strengthening of vibration levels at certain 

frequencies.  



 

 

 

1.1.3 Semi-active vibration control 

The third important approach for vibration treatment is the so called semi-active 

vibration control, which includes solutions at the interface between active and passive 

category. Semi-active control systems expand a small amount of energy to change 

system parameters, such as damping and stiffness to update or adapt to changes in 

working and environmental conditions that may affect the properties of the 

controlled structure. A spectacular example of systems comprised within this 

category are piezoelectric transducers connected to electrical shunting circuits, where 

electrical components of the circuit can be varied to obtain the desired effects of 

vibration control [5]. 

1.2  SHUNTED PIEZOELECTRIC TRANSDUCERS 

The use of shunted piezoelectric patches has nowadays become a practical option for 

the reduction of vibrations in mechanical thin structures. Since their inception by 

Forward [7], many works have been carried out on this technology, investigating not 

only the underlying physics of piezoelectric shunts, but also exploring a variety of 

passive and active shunt circuits that would enhance the vibration absorption effects. 

Some of these works can be found in references [8-15]; but the initial concept of a 

tuned vibration absorber composed of a piezoelectric patch transducer connected to 

a resistance-inductance (RL) shunt is contained in the work by Hagood and von 

Flotow [5]. The operating principle of an RL shunted piezoelectric patch is like the 

one that characterise tuned spring-mass-damper vibration absorber [16]. In fact, the 

combination of the piezoelectric patch capacitance and shunt circuit resistance-

inductance elements produce an equivalent of the tuned spring-mass-damper 

vibration absorption effect on the hosting structure via the piezoelectric transducer 

[17]. Therefore, Hagood and von Flotow [5] could employ the classical approach 

proposed by Den Hartog for tunable mechanical vibration absorbers [16] to optimally 

tune the resistance and inductance of the shunt circuit to reduce the resonant 

vibration of a mechanical system excited by a broad band disturbance. As can be 

found in Refs. [17-22], over the years several criteria have been proposed to tune the 

RL components of such a resonant shunt. In general, to effectively reduce the broad 

band vibration of the structure where the shunted piezoelectric patch is bonded, the 

inductance should be tuned in such a way as the shunt resonates at a frequency close 

to the resonance frequency of the target flexural mode of the hosting structure and 
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the resistance should then be fixed in such a way as to minimise the broad band 

vibration response of the hosting structure. Also, the smaller is the capacitance of the 

piezoelectric patch, the higher is the vibration absorption effect. Parallel and series 

RL networks are currently the most commonly used shunts to form piezoelectric 

vibration absorbers [5,15,23], although their performances are often enhanced by 

adding a synthetic negative capacitance to form a resistance-inductance-capacitance 

(RLC) shunt [17,24-42]. Indeed, a negative capacitance can be added to the RL 

elements to reduce the inherent capacitance of the piezoelectric patch and thus 

enhance the vibration absorption effect of the shunted piezoelectric patch [17].  

In practice, this can only be accomplished with active electronic circuits and thus care 

must be taken in the parameters design to avoid instability problems.  

1.2.1 Multi-resonating shunts 

Research efforts have also been focused on the development of multi-resonant shunts 

[43-50], such that the shunted piezoelectric patch can effectively absorb flexural 

vibrations in correspondence of several resonance frequencies of the structure where 

it is bonded. Particularly noteworthy is the idea proposed by Behrens et al. [43], who, 

starting from the work of Hollkamp [44], developed the so called “current-flowing” 

shunt as a mean for simplifying the implementation of high order multi-resonant 

circuits. Indeed, in comparison to other configurations, this circuit is much simpler to 

implement since it requires a relatively smaller number of electrical components. 

 

 

Figure 1.1 (a) Multi-resonant, current flowing shunt circuit. (b) Simplified current 

flowing shunt circuit.  

 

Figure 1.1 shows the current flowing shunt circuit introduced by Behrens et al. [43], 

which is formed by N-RLC branches, where, each branch can be tuned in such a way 

as to absorb flexural vibrations of the structure at several frequencies Considering the 
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shunt connected to the piezoelectric patch, the i-th branch is characterised by the 

series inductance 𝐿𝑓𝑖 and capacitance 𝐶𝑓𝑖 that create the so called current-flowing 

effect. These two components are tuned in such a way as to approximate a short 

circuit at the target resonance frequency of the flexural mode to be controlled by the 

branch and an open circuit at the resonance frequencies where the other branches of 

the shunt are tuned. In other words, the branch acts as a narrow band pass filter 

centred at the resonance frequency of the target flexural mode. The classical RL shunt 

vibration absorption effect from the target resonating flexural mode is then obtained 

by setting the additional inductance 𝐿𝑠𝑖 and resistance 𝑅𝑠𝑖 in such a way as to 

maximise the vibration energy absorption from the target resonant flexural mode of 

the hosting structure via the piezoelectric patch transducer. Therefore, assuming the 

capacitances 𝐶𝑓1, … , 𝐶𝑓𝑁 are fixed a priory, to obtain the narrow band filtering effects 

the inductances 𝐿𝑓1, … , 𝐿𝑓𝑁 are set equal to 𝐿𝑓1 =
1

𝜔𝑟1
2 𝐶𝑓1

, 𝐿𝑓2𝑗 =
1

𝜔𝑟1
2 𝐶𝑓2

, …,  

𝐿𝑓𝑁𝑗 =
1

𝜔𝑟𝑁
2 𝐶𝑓𝑁

, where 𝜔𝑟1, 𝜔𝑟2, ⋯ , 𝜔𝑟𝑁 are the resonance frequencies of the target 

flexural modes of the hosting structure. Moreover, for the given capacitance 𝐶𝑝𝑒 of 

the piezoelectric patch, to obtain the tuned vibration absorption effects, the 

inductances 𝐿𝑠1, … , 𝐿𝑠𝑁 are set equal to: 𝐿𝑠1 =
1

𝜔𝑟1
2 𝐶𝑝𝑒

, 𝐿𝑠2 =
1

𝜔𝑟2
2 𝐶𝑝𝑒

, … , 𝐿𝑠𝑁𝑗 =
1

𝜔𝑟𝑁
2 𝐶𝑝𝑒

 

whereas the resistances 𝑅𝑠1, … , 𝑅𝑠𝑁 can be tuned in such a way as to maximise the 

vibration energy absorption of the target flexural mode of the hosting structure. Since 

the two inductances in each branch are connected in series, as schematically shown 

in Figure 1.1 (b), they can be combined into a single inductance 𝐿𝑏𝑖𝑗, which is given 

by: 

 𝐿𝑏𝑖𝑗 = 𝐿𝑓𝑖 + 𝐿𝑠𝑖 =
1

𝜔𝑟𝑖
2 𝐶𝑓𝑖

+
1

𝜔𝑟𝑖
2 𝐶𝑝𝑒

=
𝐶𝑓𝑖+𝐶𝑝𝑒

𝜔𝑟𝑖
2 𝐶𝑓𝑖𝐶𝑝𝑒

 , (1.1) 

and can be used as an approximate inductance tuning formula for inductive elements 

of the branches. This is especially important because most of multi-resonant shunt 

circuits do not possess an analytical tuning formula. Due to this fact and to the 

simplicity of the circuit, which requires only two components to form a resonating 

branch, the current flowing shunt has been chosen to be exploited in this work. 
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1.3  MODERN PERIODIC STRUCTURES 

Periodic structures can be described as assemblies of identical components (micro or 

macroscopic), also called unit cells, which are connected to each other with their ends 

or walls to form a whole structure. Rayleigh was the first to consider continuous 

periodic structures at the end of the nineteenth century, but the mathematical 

techniques needed to analyse wave propagation in periodic media became available 

during the first few decades of the twentieth century. During that time, Brillouin who 

was working on the propagation of electron waves in the crystal lattice, suggested 

that there should be frequency ranges over which the wave propagation is stopped 

[51]. These frequency ranges, called stop bands or band gaps, have been later 

confirmed experimentally and the concept was adopted in photonics. Photonic 

structures in the form of multiple layers of alternating materials with varying 

refractive index [52] became extensively used to manipulate light waves, and quickly 

inspired many inventions present in light emitting diodes and lasers, optical fiber 

tractions as well as in many sophisticated quantum devices [53]. 

In the next decades, following the pioneering work by Liu [54], the concepts 

developed for electromagnetism began to be strongly explored in the field of acoustic 

and elastic waves under a common name of phononic crystals (PC). Stop band 

phenomenon in both photonic and phononic crystals arise from the same oscillation 

interference mechanism called Bragg scattering, which occur due to the destructive 

interference between transmitted and reflected waves traveling through the periodic 

medium. In case of non-periodic and uniform structures, it is expected that the waves 

will propagate unaffected until they reach the boundary. However, when the 

medium possesses discontinuities, as for example in the form of density changes 

(phononic crystals) or interfaces between materials characterised by different 

refractive indexes (photonic crystals), the wave will be partially transmitted and 

partially reflected. Interactions between incident and reflected waves produce 

constructive and destructive interferences. Thus, periodically engineered 

discontinuities can indeed generate frequency bands in which the free wave 

propagation is stopped. These kinds of band gaps are generally known as Bragg gaps 

(BG) or interference stop bands, and the frequencies of their occurrence are linked to 

the length of the periodicity by the following relation: 

 𝑓 = 𝑛(𝑣/2𝑎)    for 𝑛 = (1,2,3,… ), (1.2) 



 

 

 

where 𝑣 is the elastic velocity of the material structure and 𝑎 is the periodicity length 

or the so-called lattice constant. The relationship between the Bragg gap frequency 

and the lattice constant makes stop bands of this kind difficult to obtain at low 

frequencies due to overall size of the structures. 

 

A locally resonant (LR) mechanism is a way to overcome these difficulties. Resonant 

stop band effects can be obtained at frequencies two orders of magnitude lower than 

those limited by the Bragg scattering [55]. Solutions based on the local resonance 

effect are often called locally resonant phononic crystals (LRPC), or acoustic 

metamaterials (AM). These types of materials are often characterised by a periodic 

structure at a sub-wavelength scale, where each cell either contains or acts as a 

localised resonator [55]. Normally, this can be accomplished by a set of tunable 

vibration absorbers (TVAs) regularly distributed on a mechanical structure such as 

rods, beams or plates. It is known, that coupled systems of this kind can exhibit Fano 

scattering phenomenon, which manifests into asymmetric amplitudes of the coupled 

resonators responses [56]. The phenomenon itself was first described by Ugo Fano 

during his work on inelastic scattering of helium electrons [57], however due to the 

general wave nature of the phenomenon, is observed in many areas of physics. Fano’s 

effect is a resonant scattering phenomenon that occurs through interference between 

the scattering effect of a hosting structure with the resonant scattering of the localised 

resonator. In classical vibro-acoustic applications coupled systems composed of a 

mechanical structure connected with spring-mass vibration absorbers can be 

employed to produce Fano’s scattering. In this case, when the resonance frequency of 

the TVA corresponds to a resonance frequency of the hosting structure, the resonance 

peak of the hosting structure is modified into a pair of peaks of about the same 

amplitude that characterize the frequency response of the coupled system. The 

amplitude of the two peaks can then be lowered by the introduction of damping into 

the TVA.  

 

Concepts of this type have been revised for many simple mechanical structures such 

as wires, beams, cylinders or plates [58-62] and can be further extended by using 

arrays of shunted piezoelectric patch vibration absorbers. 
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1.3.1 Mechanical structures with shunted arrays of piezoelectric patch transducers 

The regular arrays of piezoelectric patches mounted on structures and connected to 

electrical shunting circuits allow implementations of the wave propagation control 

strategies whose spatial periods significantly exceed the dimensions of the patches. 

The approach was first proposed by Thorp et al [98]. who used periodic array of RL 

shunted piezo-patches as the mean to create resonance band gaps at frequencies 

corresponding to resonance frequencies of the shunt circuits. Due to its tunable 

character, the concept became attractive and was quickly adopted to more complex 

mechanical structures such as fluid-loaded shells [99] and plates [80,100]. In these 

investigations, the authors showed how to utilise piezoelectric resonance shunts to 

affect the equivalent mechanical properties of hosting structures. This allowed for 

better understanding of the stop band generation at frequencies not associated with 

the Bragg scattering and classified structures with shunted piezoelectric arrays as one 

of potential forms of acoustic metamaterials. That is the vibro-acoustic materials 

whose properties resulting mainly from the properties of resonant compositional cells 

rather than the inherent material properties. Despite the periodic organization, which 

is often characteristic for these materials, the stop bands are no longer conditioned 

through the Bragg’s law. Therefore, they provide an attractive opportunity for 

practical implementations of low-frequency wave attenuation, which is immensely 

important in the field of noise transmission and vibration control. For this reason, 

many theoretical and experimental works have been carried out in this field. 

Noteworthy are in particular the works of Casadei et all [80,100-102] as closely related 

to this dissertation, in which the authors conducted both, theoretical and 

experimental studies on the implementation of shunted piezoelectric arrays on plates. 

In these investigations, the finite element method was employed to build up a 

coupled (plate/piezoelectric patch/shunt circuit) mathematical model to predict the 

attenuation bands, which were then confirmed experimentally. Despite the good 

performance, systems of this kind are still facing some limitations. The required 

inductance of the shunts needed to produce the vibration absorption effect is very 

large [21,103]. Furthermore, the narrow bandwidth of the resonance effect allows to 

control only one mode in a low frequency range. For this purpose multi-resonant 

shunts were introduced but suffered by the lack of closed form tuning solutions and 

large number of components required for dense arrays [44, 104]. To overcome some 

of these difficulties the synthetic, multi-resonant, current flowing shunts are used in 

this work. 



 

 

 

1.4  OBJECTIVE OF THE THESIS  

The main purpose of this dissertation is to investigate the low, mid and high-

frequency control effects produced in one and two-dimensional structures equipped 

with periodic arrays of discrete masses, discrete vibration absorbers and shunted 

piezoelectric patch vibration absorbers. 

1.5  CONTRIBUTIONS OF THE THESIS  

The principal contributions of the dissertation are the following 

  

• Development of a fully coupled, finite element model of the metamaterial 

comprised by the Euler-Bernulli beam with one-dimensional grid of 

piezoelectric patch vibration absorbers connected to multi-resonant 

shunts for mid to high frequency wave propagation control. 

  

• Development of a fully coupled, finite element model of the metamaterial 

plate with two-dimensional array of piezoelectric patch vibration 

absorbers connected to multi-resonant shunts for mid to high frequency 

wave propagation control. 

 

• Analysis and characterisation of the stop band phenomena derived from 

the finite element models of the beam and plate with periodic arrays of 

piezoelectric patch vibration absorbers connected to the classical RL and 

multi-resonant shunt circuits. 

 

• Extension of the studies of the stop-band phenomena to finite 

metamaterial plates equipped with shunted piezoelectric patch vibration 

absorbers. 

 

• Development of a novel approach for the tuning of multi-resonant shunts 

connected to arrays of piezoelectric patches bonded on flexible structures, 

which is based on maximisation of the vibration absorption by each 

shunted patch through the measured electric power absorbed by each 

shunt. 

 

• Experimental implementation of the proposed tuning approach, with a rig 

composed of a plate equipped with five piezoelectric patches, connected 

via an interface circuit to a dSPACE digital platform where the tuning 

algorithms of the multi-resonant shunts are implemented. 
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1.6  STRUCTURE OF THE THES IS  

The first part of the thesis contained in Chapters 2 and 3 is focused on mid to high-

frequency wave propagation control in beams and plates. Chapter 2 considers 

simplified model problems for the analysis of flexural wave propagation in an infinite 

Euler-Bernoulli beam. In particular, it devotes the characterisation of stop band 

phenomena produced by the one-dimensional grids of inclusions through scattering 

and locally resonant processes. Chapter 3 continues from the previous one, 

considering the more complex problem of wave propagation in an infinite plate.  

Also in this case, the investigation is focused on the analysis of stop band phenomena 

produced by the two-dimensional arrays of inclusions. Both chapters contain 

derivations of the fully coupled finite element models which allow to obtain 

dispersion properties of the considered periodic structures. 

Chapter 4 supplements the simulation studies with the analysis of stop band 

phenomena in finite plates. It begins with the introduction of mobility-impedance and 

fully coupled modal models, which are then utilised to investigate the effects of 

periodic inclusions on vibration properties of finite plates. 

 

In the second part of the thesis, summarised in Chapter 5, the study focuses on low-

frequencies vibration control of a finite plate through regular arrays of RLC shunted 

piezoelectric patch transducers. In particular, a novel approach for the broadband 

flexural vibration control in a thin panel equipped with piezoelectric patch 

transducers connected to multi-resonant RLC shunts is proposed and investigated.  

A practical algorithm for the on-line tuning of the multi-resonant shunt circuit 

components is also presented. In the following sections Chapter 5 presents both 

simulation and experimental studies carried out to demonstrate the feasibility of the 

proposed tuning approach of multi-resonant shunts connected to piezoelectric 

patches, which are bonded on a thin rectangular plate. 

 

The last chapter is a general summary of the conducted studies, where suggestions 

about the further work are also made. 

 

 

 

 

 



 

 

 

2  
I N F I N I T E  B E A M  W I T H  P E R I O D I C  I N C L U S I O N S  

This chapter presents the theoretical study on the wave propagation in one-

dimensional infinite beam with the periodic cells delimited by the following 

inclusions: point masses, vibration absorbers and piezoelectric patch transducers 

connected to shunting circuits. The finite element method has been used to model the 

flexural wave propagation, whereas the governing equation of the beam cell 

composed of a number of beam segments were derived from Hamilton’s principle for 

electro-mechanical systems. Finally, Bloch’s theorem and the transfer matrix 

technique were employed to obtain the wave propagation constants and characterize 

stop band phenomena produced by the inclusions. The first section contains the 

derivation of the mathematical model for the flexural wave propagation in unit cell, 

while the second section presents implementations of inclusions and parametric 

studies on the stop band effects. 

2.1  INTRODUCTION 

The wave propagation in an infinite periodic structure can be regarded by the analysis 

of the response of a single unit cell [63-66]. A properly defined unit cell contains all 

the information needed to analyse wave propagation in the entire structure. Many 

methods can be applied to model a unit cell, among others the Plane Wave Expansion 

(PWE) and combination of the Finite Element Method (FE, FEM) and the Transfer 

Matrix method (TM) are often used in engineering. Most works on flexural vibration 

in beams, on longitudinal vibration in rods and wave propagation in one-dimensional 

solids reported in literature use one of these methods to obtain the wave propagation 

properties of the structures [63-70]. 

 

In the PWE method the material constants of an infinitely periodic unit cell are 

expanded as Fourier series. Given the propagation vector (i.e. wave direction and 

spatial period), the PWE method can be used calculate all natural of the periodic 

structure. In case of a high discrepancy between the physical properties of materials 
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contained in a unit cell, the method becomes inaccurate unless many Fourier 

components is employed to model the transition [71]. 

 

For the majority of practical systems, the partial differential equations describing the 

physical system cannot be solved with analytical methods. Instead discretized 

equations can be derived and solved. For instance, in the FE method a unit cell is 

discretized into a number of smaller, continuous structural elements, called finite 

elements. The elements are connected to each other at intersecting points known as 

nodes. When the compatibility of displacements is maintained at these points, the 

structure behaves as a single entity. In such framework the TM method can be 

conveniently applied to model wave propagation in structures composed of a number 

of identical unit cells. The TM method relies on the continuity of displacements and 

the force equilibrium across boundaries of sequential unit cells. With the knowledge 

of the displacement field at the beginning of a unit cell the TM technique allows to 

compute the field at the end of the unit cell from a simple matrix expression.  

 

Due to the flexibility and ease of operation, the finite element method and the transfer 

matrix technique were selected for the studies presented in this chapter. 

2.2  MODEL FORMULATION  

In this section the finite element model is derived for a unit cell composed of a beam 

structure with a piezoelectric patch on top. 

2.2.1 FEM discretization 

The finite element discretization has been performed according to Ref. [72]. For the 

beam discretization, i.e. transformation of the infinite dimensional partial differential 

equation into an ordinary differential equation, the beam has been split into finite 

length elements as illustrated in Figure 2.1. Each beam element has two vertices with 

degrees of freedom on each side. Between these vertices, the displacement is 

interpolated by Hermite shape functions. 



 

 

 

 

Figure 2.1 (a) Representation of an infinite Euler-Bernoulli beam, comprised by 

aluminum and piezoelectric ceramic. (b) An exemplary single finite element.  

 

Considering the effect of flexural vibrations only, the transverse and axial 

displacements of a section of the beam are given by 

 𝑤(𝑥, 𝑦) = 𝑤(𝑥) , (2.1) 

 𝑢(𝑥, 𝑦) = −𝑦𝜃 = −𝑦
𝜕𝑤(𝑥)

𝜕𝑥
 . (2.2) 

Where, 𝑤 accounts for the displacements (also called deflections) perpendicular to 

the beam and 𝑢 for the displacements in x direction. 

The bending strain relation is given by 

 𝑆 =
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
= −𝑦

𝜕2𝑤(𝑥)

𝜕𝑥2  . (2.3) 

Since the beam is not excited in the y and z directions, the bending stress is given by  

 𝑇 = 𝑌𝑏𝑆 . (2.4) 

Where 𝑌𝑏 is the Young’s modulus of the beam material.  

Every beam element has two nodes with two degrees of freedom at each node: 

displacement in perpendicular direction to the beam normal and rotation (i.e. cross 

section rotation), thus the following nodal displacement vector can be defined 

 𝐝𝑖 = [
𝑤𝑖

𝜃𝑖 
] , (2.5) 

where 𝑖 = 1,2.  

 a 

 b 

hpe

hp

y

 

 1

  

w 
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A nodal displacement can then be defined for the two nodes of the element 

 

𝐝𝑒 = [
𝐝1

𝐝2
] = [

𝑤1

𝜃1

𝑤2

𝜃2

] .. 

(2.6) 

The Hermite shape functions can be used to define the element displacement with 

reference to the nodal displacements: 

 𝑤 = 𝐍𝐝𝑒 , (2.7) 

where 𝐍 contains the shape functions 

 

𝐍 =

[
 
 
 
 
 
 

1

𝐿𝑏
3 (2𝑥3 − 3𝐿𝑏𝑥

2 + 𝐿𝑏
3)

1

𝐿𝑏
2 (𝑥3 − 2𝐿𝑏𝑥

2 + 𝐿𝑏
2𝑥)

1

𝐿𝑏
3 (−2𝑥3 + 3𝐿𝑥2)

1

𝐿𝑏
2 (𝑥3 − 𝐿𝑏𝑥

2)
]
 
 
 
 
 
 
𝑇

. 

(2.8) 

Substitution of Eq. (2.7) into Eq. (1.1) gives the following strain-displacement relation 

 𝑆 = −𝑦
𝜕2

𝜕𝑥2 𝐍𝐝𝑒 , (2.9) 

which can be written as  

 𝑆 = −
𝑦

𝐿𝑏
3 𝐁𝐾𝐝𝑒 , (2.10) 

where 

 𝐁𝐾 = [12𝑥 − 6𝐿𝑏 6𝐿𝑏𝑥 − 4𝐿𝑏
2 −12𝑥 + 6𝐿𝑏 6𝐿𝑏𝑥 − 2𝐿𝑏

2 ] . (2.11) 

Substituting Eq. (2.10) to Eq. (2.4) yields 

 𝑇 = 𝑌𝑏
𝑦

𝐿𝑏
3 𝐁𝐾𝐝𝑒 . (2.12) 

2.2.2 Piezoelectric transducer 

Piezoelectric phenomena are characterised by the following linear constitutive 

relations: 

 𝑇 = −𝑒𝑝𝑒𝐸𝑝𝑒 + c𝑝𝑒
𝐸 𝑆 , (2.13) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝑆 𝐸𝑝𝑒 + e𝑝𝑒

𝑇 𝑆 . (2.14) 



 

 

 

Here, 𝐸𝑝𝑒 = 𝐸3 and 𝐷𝑝𝑒 = 𝐷3 are the electric field and electric displacement 

components in the direction 3, respectively. Also, e𝑝𝑒 is the stress / charge constants 

defined as 

 𝑒𝑝𝑒 = 𝑒31 . (2.15) 

Moreover, the elastic constant of the piezoelectric material under constant electric 

field (𝐸 = 0) is given by 

  𝑐𝑝𝑒
𝐸 = 𝑌𝑝𝑒

𝐸  , (2.16) 

where, 𝑌𝑝𝑒
𝐸  denotes the Young’s modulus of the piezoelectric material measured  

at constant field intensity. Finally, 𝜀𝑝𝑒
𝑆 = 𝜀33

𝑆  is the piezoelectric material permittivity 

in transverse direction under constant strain (𝑆 = 0).  

Note, that normally parameters 𝑒31 and 𝜀33
𝑆  are not available in commercial datasheets 

of piezoelectric transducers, thus they need to be derived from the governing 

equations expressed in the following form: 

 𝑆 = 𝑑𝑝𝑒𝐸𝑝𝑒 + 𝑠𝑝𝑒
𝐸 𝑇 , (2.17) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
T 𝐸𝑝𝑒 + 𝑑𝑝𝑒𝑇 . (2.18) 

Here 𝑑𝑝𝑒 is the piezoelectric strain / charge constant 

 𝑑𝑝𝑒 = 𝑑31 , (2.19) 

and 𝑠𝑝𝑒
𝐸  is the compliance constant for the piezoelectric material 

  𝑠𝑝𝑒
𝐸 =

1

𝑌𝑝𝑒
𝐸  . (2.20) 

Finally, 𝜀𝑝𝑒
𝑇  is the permittivity of piezoelectric material in transverse direction under 

constant stress (𝑇 = 0).  

The value of the piezoelectric material permittivity under constant strain 𝜀𝑝𝑒
𝑆  and the 

value of 𝑒𝑝𝑒 can be now obtain by setting the stress 𝑇 to zero in Eqs. (2.13), (2.14), 

(2.17) and (2.18). 

 0 = −𝑒𝑝𝑒𝐸𝑝𝑒 + 𝑐𝑝𝑒
𝐸 𝑆 , (2.21) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝑆 𝐸𝑝𝑒 + 𝑒𝑝𝑒𝑆 , (2.22) 

 𝑆 = 𝑑𝑝𝑒𝐸𝑝𝑒 , (2.23) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
T 𝐸𝑝𝑒 . (2.24) 
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Substituting Eq. (2.23) to (2.21) yields 

 𝑒𝑝𝑒 = 𝑐𝑝𝑒
𝐸 𝑑𝑝𝑒 , (2.25) 

also substituting Eqs. (2.23), (2.24) and (2.25) to Eq. (2.22) gives  

 𝜀𝑝𝑒
𝑆 = 𝜀𝑝𝑒

T (1 − 𝑘2) , (2.26) 

where, 𝑘 denotes the electromechanical coupling coefficient [15,73] of the 

piezoelectric material and can be defined as 

 𝑘2 =
𝑒𝑝𝑒c𝑝𝑒

𝐸 𝑑𝑝𝑒

𝜀𝑝𝑒
T  . (2.27) 

Application of a potential difference to the electrodes forces the piezoelectric material 

to expand such that the upper layer of the beam contracts. This results in a curvature 

of the beam. The inverse effect will generate a charge across the electrodes, which is 

collected through the surface of the electrodes as a voltage. Considering a transverse 

poling direction, the applied or induced voltage through the piezoelectric transducer 

is given by the following relation [74]. 

 𝑣𝑝𝑒𝑦
=

(𝑦−
ℎ𝑏
2

)

ℎ𝑝𝑒
𝑣𝑝𝑒 , (2.28) 

where ℎ𝑏 and ℎ𝑝𝑒 are thicknesses of the beam and piezoelectric patch respectively and 

𝑣𝑝𝑒 is the maximum electric potential at the external surfaces of the piezoelectric layer, 

while y is defined as 

 
ℎ𝑏

2
≤ 𝑦 ≤

ℎ𝑏

2
+ ℎ𝑝𝑒 . (2.29) 

Assuming the electric field to be constant through the piezoelectric transducer, the 

following relation can be written 

 𝐸𝑝𝑒 = −
𝜕𝑣𝑝𝑒𝑦

𝜕𝑦
= −

𝑣𝑝𝑒

ℎ𝑝𝑒
 . (2.30) 

2.2.3 Hamilton’s principle 

Hamilton’s principle is employed here to derive the governing equations of a beam 

element [73, 88, 89]. The Lagrangian for electro-mechanical system is defined as 

 𝐿 = 𝑇∗ − 𝑉 + 𝑊𝑒
∗ , (2.31) 

where 𝑇∗ is the kinetic co-energy, 𝑉 is the elastic potential energy and 𝑊𝑒
∗ is the work 

done by electrical forces. 



 

 

 

Hamilton’s principle states that 

 ∫ [𝛿𝐿 + 𝛿𝑊𝑛𝑐]𝑑𝑡 = 0
𝑡2

𝑡1
 . (2.32) 

Where 𝛿 is the variation operator and 𝛿𝑊𝑛𝑐 stands for the work done by non-

conservative forces. 

The kinetic energy due to transverse motion in the of the beam is given by 

 𝑇∗ =
1

2
∫ 𝜌𝑏𝑉𝑏

𝑤̇2𝑑𝑉𝑏 +
1

2
∫ 𝜌𝑝𝑒𝑉𝑝𝑒

𝑤̇2𝑑𝑉𝑝𝑒 . (2.33) 

Here,  

 𝑑𝑉𝑏 = ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑑𝑧
𝐿𝑏

0

𝑏

0

ℎ𝑝

0
 , (2.34) 

 𝑑𝑉𝑝𝑒 = ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑑𝑧
𝐿𝑝𝑒

0

𝑏

0

ℎ𝑝+ℎ𝑝𝑒

ℎ𝑝
 , (2.35) 

Only thin beams are considered in this study; thus, the rotatory inertia is neglected.  

The strain energy of the beam due to bending is given by 

 𝑉 =
1

2
∫ 𝑆𝑇
𝑉𝑏

𝑑𝑉𝑏 +
1

2
∫ 𝑆𝑇
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 . (2.36) 

The work done by electrical forces and the work done by non-conservative forces is 

defined as 

 𝑊𝑒
∗ =

1

2
∫ 𝐸𝑝𝑒𝐷𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (2.37) 

 𝑊𝑛𝑐 = ∫ 𝑤𝐟𝑥
𝐿𝑏

0
𝑑𝑥 − ∫ 𝜎𝑣𝑝𝑒𝐴𝑝𝑒

𝐴𝑝𝑒 . (2.38) 

Here, 𝐟𝑥is uncorrelated transverse force excitation per unit length, 𝜎 is the surface 

charge density at the electrodes of the piezoelectric transducer. 

Substituting Eq. (2.4) and (2.14) into Eq. (2.36)results in 

 𝑉 =
1

2
∫ 𝑆2𝑌𝑏𝑉𝑏

𝑑𝑉𝑏 +
1

2
∫ 𝑆2𝑌𝑝𝑒

𝐸
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
1

2
∫ 𝑆e𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 . (2.39) 

Then, substituting into Eqs. (2.13) and (2.14) to Eq. (2.37) yields 

 𝑊𝑒
∗ =

1

2
∫ 𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝐸𝑝𝑒𝑒𝑝𝑒𝑆𝑉𝑝𝑒

𝑑𝑉𝑝𝑒  (2.40) 
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2.2.4 Variation indicator 

The variations of the Lagrangian and the work done by the non-conservative forces 

can be calculated by using exact differentiation summarised in the following 

e pressions for the functions used in Hamilton’s principle. 

 𝛿𝐿 =
𝜕𝐿

𝜕𝑤̇
𝛿𝑤̇ +

𝜕𝐿

𝜕𝑆
𝛿𝑆 +

𝜕𝐿

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (2.41) 

 𝛿𝑊𝑛𝑐 =
𝜕𝑊𝑛𝑐

𝜕𝑤
𝛿𝑤 +

𝜕𝑊𝑛𝑐

𝜕𝑣𝑝𝑒
𝛿𝑣𝑝𝑒 . (2.42) 

 𝛿𝑇∗ =
𝜕𝑇∗

𝜕𝑤̇
𝛿𝑤̇ +

𝜕𝑇∗

𝜕𝑆
𝛿𝑆 +

𝜕𝑇∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (2.43) 

 𝛿𝑉 =
𝜕𝑉

𝜕𝑤̇
𝛿𝑤̇ +

𝜕𝑉

𝜕𝑆
𝛿𝑆 +

𝜕𝑉

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (2.44) 

 𝛿𝑊𝑒
∗ =

𝜕𝑊𝑒
∗

𝜕𝑤̇
𝛿𝑤̇ +

𝜕𝑊𝑒
∗

𝜕𝑆
𝛿𝑆 +

𝜕𝑊𝑒
∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (2.45) 

After some mathematical manipulations Eqs. (2.42)-(2.45) give the following 

expressions: 

 𝜕𝑊𝑛𝑐

𝜕𝑤
𝛿𝑤 = ∫ 𝛿𝑤𝐟𝑥

𝐿𝑏

0
𝑑𝑥 , (2.46) 

 𝜕𝑊𝑛𝑐

𝜕𝑣𝑝𝑒
𝛿𝑣𝑝𝑒 = −∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝐴𝑝𝑒 , (2.47) 

 
𝜕𝑇∗

𝜕𝑤̇
𝛿𝑤̇ = ∫ 𝜌𝑝𝑉𝑏

𝛿𝑤̇𝑤̇𝑑𝑉𝑏 + ∫ 𝜌𝑝𝑒𝑉𝑝𝑒
𝛿𝑤̇𝑤̇𝑑𝑉𝑝𝑒 , (2.48) 

 𝜕𝑇∗

𝜕𝑆
𝛿𝑆 = 0 , (2.49) 

 𝜕𝑇∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = 0 , (2.50) 

 𝜕𝑉

𝜕𝑤̇
𝛿𝑤̇ = 0 , (2.51) 

 𝜕𝑉

𝜕𝑆
𝛿𝑆 = ∫ 𝛿𝑆𝑌𝑏𝑆𝑉𝑏

𝑑𝑉𝑏 + ∫ 𝛿𝑆𝑌𝑝𝑒
𝐸 𝑆

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 −

1

2
∫ 𝛿𝑆e𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 , (2.52) 

 𝜕𝑉

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = −

1

2
∫ 𝑆e𝑝𝑒𝛿𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (2.53) 

 𝜕𝑊𝑒
∗

𝜕𝑤̇
𝛿𝑤̇ = 0 , (2.54) 



 

 

 

 𝜕𝑊𝑒
∗

𝜕𝑆
𝛿𝑆 =

1

2
∫ 𝐸𝑝𝑒e𝑝𝑒𝛿𝑆
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (2.55) 

 𝜕𝑊𝑒
∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = ∫ 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝛿𝐸𝑝𝑒e𝑝𝑒𝑆𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 . (2.56) 

Variation of the Lagrangian is the sum of all terms from Eq. (2.46) to (2.56): 

 

∫ [∫ 𝜌𝑝𝛿𝑤̇𝑤̇
𝑉𝑏

𝑑𝑉𝑏 + ∫ 𝜌𝑝𝑒𝛿𝑤̇𝑤̇
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 − ∫ 𝛿𝑆𝑌𝑏𝑆𝑉𝑏
𝑑𝑉𝑏 −

𝑡2

𝑡1
  

−∫ 𝛿𝑆𝑌𝑝𝑒
𝐸 𝑆

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝛿𝑆e𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 +
1

2
∫ 𝑆e𝑝𝑒𝛿𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +  

+
1

2
∫ 𝐸𝑝𝑒e𝑝𝑒

𝑇 𝛿𝑆
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 + ∫ 𝛿𝐸𝑝𝑒𝜀𝑝𝑒
𝑆 𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑒 +
1

2
∫ 𝛿𝐸𝑝𝑒e𝑝𝑒

𝑇 𝑆
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝑤𝐟𝑥
𝐿𝑏

0
𝑑𝑥 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝑑𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(2.57) 

The integral equation can be simplified as follow 

 

∫ [∫ 𝜌𝑝𝛿𝑤̇𝑤̇
𝑉𝑏

𝑑𝑉𝑏 + ∫ 𝜌𝑝𝑒𝛿𝑤̇𝑤̇
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
𝑡2

𝑡1
∫ 𝛿𝑆𝑌𝑏𝑆𝑉𝑏

𝑑𝑉𝑏 +  

+∫ (𝛿𝑆e𝑝𝑒𝐸𝑝𝑒 − 𝛿𝑆𝑌𝑝𝑒
𝐸 𝑆 + 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒 + 𝛿𝐸𝑝𝑒e𝑝𝑒𝑆)
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝑤𝐟
𝐿𝑏

0
𝑑𝑥 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝑑𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(2.58) 

Then, integration by parts of the first two terms yields 

 

∫ [−∫ 𝜌𝑏𝛿𝑤𝑤̈
𝑉𝑏

𝑑𝑉𝑏 − ∫ 𝜌𝑝𝑒𝛿𝑤𝑤̈
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
𝑡2

𝑡1
∫ 𝛿𝑆𝑌𝑏𝑆𝑉𝑏

𝑑𝑉𝑏 +  

+∫ (𝛿𝑆e𝑝𝑒𝐸𝑝𝑒 − 𝛿𝑆𝑌𝑝𝑒
𝐸 𝑆 + 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒 + 𝛿𝐸𝑝𝑒e𝑝𝑒
𝑇 𝑆)

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝑤𝐟𝑥
𝐿𝑏

0
𝑑𝑥 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝑑𝐴𝑝𝑒] 𝑑𝑡 = 0 , 

(2.59) 

and 

 

∫ [−∫ (𝜌𝑏𝛿𝑤𝑤̈ + 𝛿𝑆𝑌𝑏𝑆)𝑑𝑉𝑏𝑉𝑏

𝑡2

𝑡1
+ ∫ (𝛿𝑆e𝑝𝑒𝐸𝑝𝑒𝑉𝑝𝑒

− 𝛿𝑆𝑌𝑝𝑒
𝐸 𝑆 +  

+𝛿𝐸𝑝𝑒𝜀𝑝𝑒
𝑆 𝐸𝑝𝑒 + 𝛿𝐸𝑝𝑒e𝑝𝑒

𝑇 𝑆 − 𝜌𝑝𝑒𝛿𝑤𝑤̈)𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝑤𝐟𝑥
𝐿𝑏

0
𝑑𝑥 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝑑𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(2.60) 

Substituting Eqs.(2.7), (2.10), (2.12) to Eq. (2.59)  

 ∫ [−∫  𝛿𝐝𝑒
𝑇 (𝜌𝑏𝐍

𝑇𝐍𝐝̈𝒆 + 𝐁𝐾
𝑇 𝑦2

𝐿𝑏
6 𝑌𝑏𝐁𝐾𝐝𝑒)𝑉𝑏

 𝑑𝑉𝑏 +
𝑡2

𝑡1
  (2.61) 
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+∫ 𝛿𝐝𝑒
𝑇 (𝐁𝐾

𝑇 𝑦

ℎ𝑝𝑒𝐿𝑏
3 e𝑝𝑒𝑣𝑝𝑒 − 𝐁𝐾

𝑇 𝑦2

𝐿𝑏
6 𝑌𝑝𝑒

𝐸 𝐁𝐾𝐝𝑒 − 𝐍𝑇𝐍𝐝̈𝒆)𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝑣𝑝𝑒 (
𝑦

ℎ𝑝𝑒𝐿𝑏
3 e𝑝𝑒

𝑇 𝐁𝐾𝐝𝑒 +
1

ℎ𝑝𝑒
2 𝜀𝑝𝑒

𝑆 𝑣𝑝𝑒)𝑑𝑉𝑝𝑒𝑉𝑝𝑒
−  

−∫ 𝛿𝑣𝑝𝑒𝜎𝐴𝑝𝑒
𝑑𝐴𝑝𝑒 ∫  𝛿𝐝𝑒

𝑇𝐟𝑥
𝐿𝑏

0
𝑑𝑥] 𝑑𝑡 = 0  

Expression (2.32) can be now rewritten as 

 
∫ {𝛿𝐝𝑘

𝑇[(𝐌𝑏 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑏 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 − 𝐟]
𝑡2

𝑡1
+  

+𝛿𝑣𝑝𝑒[𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 + 𝑞]}𝑑𝑡 = 0 , 

(2.62) 

where, 

 𝐌𝒃 = 𝜌𝑝 ∫ 𝐍𝑇𝐍𝑑𝑉𝑏𝑉𝑏
  (2.63) 

 𝐌𝑝𝑒 = 𝜌𝑝𝑒 ∫ 𝐍𝑇𝐍𝑑𝑉𝑝𝑒𝑉𝒑𝒆
 , (2.64) 

 𝐊𝑏 = ∫ 𝐁𝐾
𝑇 𝑦2

𝐿𝑏
6 𝑌𝑏𝐁𝐾𝑉𝒃

𝑑𝑉𝑏 , (2.65) 

 𝐊𝑝𝑒 = ∫ 𝐁𝐾
𝑇 𝑦2

𝐿𝑏
6 𝑌𝑝𝑒

𝐸 𝐁𝐾𝑑𝑉𝑝𝑒𝑉𝒑𝒆
 , (2.66) 

 𝛉𝑝𝑒 = −∫ 𝐁𝐾
𝑇 𝑦

𝐿𝑏
3 e𝑝𝑒𝑑𝑉𝑝𝑒𝑉𝑝𝑒

 , (2.67) 

 C𝑝𝑒 = ∫
1

ℎ𝑝𝑒
2 𝜀𝑝𝑒

𝑆 𝑑𝑉𝑝𝑒𝑉𝑝𝑒
 , (2.68) 

 𝑞 = ∫ 𝜎
𝐴𝑝𝑒

𝐴𝑝𝑒 . (2.69) 

 𝐟 = ∫ 𝐟𝑥
𝐿𝑏

0
𝑑𝑥 . (2.70) 

Breaking volume integrals into products of integrals over length and area gives: 

 𝐌𝑝 = 𝜌𝑝𝐴𝑏 ∫ 𝐍𝑇𝐍𝑑𝑉𝑏
𝐿𝑏

0
 , (2.71) 

 𝐌𝑝𝑒 = 𝜌𝑝𝑒𝐴𝑝𝑒 ∫ 𝐍𝑇𝐍𝑑𝑉𝑝𝑒
𝐿𝑏

0
 , (2.72) 

 𝐊𝑝 =
𝐼𝑏

𝐿𝑏
6 𝑌𝑏 ∫ 𝐁𝐾

𝑇𝐁𝐾
𝐿𝑏

0
𝑑𝑉𝑏 , (2.73) 

 𝐊𝑝𝑒 =
𝐼𝑏

𝐿𝑏
6 𝑌𝑝𝑒

𝐸 ∫ 𝐁𝐾
𝑇𝐁𝐾𝑑𝑉𝑝𝑒

𝐿𝑏

0
 , (2.74) 



 

 

 

 𝛉𝑝𝑒 = −
ℎ𝑝+ℎ𝑝𝑒

2𝐿𝑏
3 𝑏𝑝𝑒 ∫ 𝐁𝐾

𝑇e𝑝𝑒𝑑𝑉𝑝𝑒𝑉𝑝𝑒
 , (2.75) 

 C𝑝𝑒 = ∫
1

ℎ𝑝𝑒
2 𝜀𝑝𝑒

𝑆 𝑑𝑉𝑝𝑒𝑉𝑝𝑒
=

𝐴𝑝𝑒𝜀𝑝𝑒
𝑆

ℎ𝑝𝑒
 , (2.76) 

 𝑞 = ∫ 𝜎
𝐴𝑝𝑒

𝐴𝑝𝑒 , (2.77) 

 𝐟 = ∫ 𝐟𝑥
𝐿𝑏

0
𝑑𝑥 . (2.78) 

Allowing arbitrary variations of 𝐝𝑒 and 𝑣𝑝𝑒, governing matrix equations can be 

written for k-th element as follows: 

 (𝐌𝑏 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑏 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 = 𝐟 , (2.79) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 = 𝑞 . (2.80) 

2.3  WAVE PROPAGATION IN ONE-DIMENSIONAL PERIODIC BEAM 

The most suitable way to characterize wave propagation in one-dimensional periodic 

media is through the so-called propagation constant: 

 𝜇 = 𝛿 + 𝑖𝜖 , (2.81) 

which is a measure of wave attenuation and phase delay across a unit cell length.  

In general, the propagation constant μ is a complex term, where the real part, also 

known as attenuation constant 𝛿, represents the attenuation of the wave amplitude 

through a unit cell, while the imaginary part 𝜖, also called phase constant, represents 

the phase delay the propagating wave builds up through a cell.  

The transfer matrix technique can be conveniently employed to obtain complex 

propagation constants for one-dimensional media. To implement this method,  

a matrix relation between forces and displacements at both ends of a unit cell is 

required. Since the neighbouring cells are connected in sequence, the resulting total 

transfer matrix through a structure is a product of the single transfer matrix through 

a unit cell. In periodic structures a unit cell repeats unchanged indefinitely, thus the 

study of a unit cell transfer matrix is enough to describe the behaviour of a whole 

structure. An eigenvalue problem can then be defined and solved to obtain complex 

propagation constants [63-66] and that characterize the wave propagation. 

The material and geometrical properties of the beam used for the investigations 

contained in this chapter are summarized in Table 2.1. 
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Table 2.1. Physical and geometrical parameters of the beam and piezoelectric 

patches. 

Parameter Plate Piezoelectric patch 

thickness ℎ𝑝 = 1 𝑚𝑚 ℎ𝑝𝑒 = 1 𝑚𝑚 

length 𝐿𝑏 = 10 𝑐𝑚 𝐿𝑝𝑒 = 3.33 𝑐𝑚 

density 𝜌𝑏 = 2700 𝑘𝑔/𝑚3 𝜌𝑝𝑒 = 7600 𝑘𝑔/𝑚3 

Young’s modulus 𝑌𝑝 = 7 × 1010 𝑁/𝑚2 𝑌𝑝𝑒 = 2.7 × 1010 𝑁/𝑚2 

Poisson’s ratio 𝜐𝑝 = 0.33 𝜐𝑝𝑒 = 0.275 

strain / charge constants  𝑑31
0 = 150 × 10−12 𝑚/𝑉 

𝑑32
0 = 150 × 10−12 𝑚/𝑉 

𝑑36
0 = 0 

permittivity  𝜀𝑝𝑒 = 84 × 10−9 𝐹/𝑚 

capacitance  𝐶𝑝𝑒 = 3.167 × 10−9 𝐹 

lattice constant 𝐿𝑐𝑒𝑙𝑙 = 10 𝑐𝑚  

 

2.3.1 Infinite beam with no inclusions 

To start with, since the structure is uniform and possesses no inclusions, the 

elementary unit cell can be defined by an arbitrarily chosen section of the beam, 

comprising a finite number of finite elements as depicted in Figure 2.2. 

 

 

Figure 2.2 (a) Depiction of an infinite, uniform Euler-Bernoulli beam. (b) An 

exemplary meshed unit cell.  
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The equation of motion of the unit cell of a one-dimensional infinite beam composed 

of n finite elements is given by 

 𝐌𝑏𝐝̈ + 𝐊𝑏𝐝 = 𝐟 , (2.82) 

where 𝐌𝑏 and 𝐊𝑏 are the global mass and the global stiffness matrices of the unit cell. 

They are assembled from the stiffness and mass matrices of the beam elements 

obtained by the finite element method, 𝐝 = [𝐝𝑖  𝐝𝑙  𝐝𝑟]
𝑇 is the vector of the all nodal 

degrees of freedom, and 𝐟 = [𝐟𝑖  𝐟𝑙  𝐟𝑟]
𝑇 is the vector of the cell nodal forces, indexes i, l 

and r indicate the inner, the left and the right nodes of the unit cell. Assuming 

harmonic motion at frequency 𝜔 Eq. (2.82) can be rewritten as 

 (𝐊𝑏 − 𝜔2𝐌𝑏)𝐝 = 𝐟 , (2.83) 

where (𝐊𝑏 − 𝜔2𝐌𝑏) is the dynamic stiffness matrix of the unit cell assembled in the 

following manner 

 
𝐃 = [

𝐃𝑖𝑖 𝐃𝑖𝑙 𝐃𝑖𝑟

𝐃𝑙𝑖 𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑖 𝐃𝑟𝑙 𝐃𝑟𝑟

] . 
(2.84) 

Expressing the matrix equation of motion in term of dynamic stiffness yields 

 
[

𝐃𝑖𝑖 𝐃𝑖𝑙 𝐃𝑖𝑟

𝐃𝑙𝑖 𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑖 𝐃𝑟𝑙 𝐃𝑟𝑟

] [

𝐝𝑖

𝐝𝑙

𝐝𝑟

] = [

𝐟𝑖
𝐟𝑙
𝐟𝑟

] . 
(2.85) 

Assuming no external forces are exerted at internal nodes 𝐟𝑖 = 0, the inner degrees of 

freedom can be eliminated through the first row of Eq. (2.85)  

 𝐝𝑖 = 𝐃𝑖𝑖
−1(𝐃𝑖𝑙𝐝𝑙 + 𝐃𝑖𝑟𝐝𝑟) . (2.86) 

Substitution of Eq. (2.86) back to Eq. (2.85) yields 

 [
𝛂𝑙𝑙 𝛂𝑙𝑟

𝛂𝑟𝑙 𝛂𝑟𝑟
] [

𝐝𝑙

𝐝𝑟
] = [

𝐟𝑙
𝐟𝑟

] , (2.87) 

where matrices 𝛂 are can be calculated from 

 𝛂𝑙𝑙 = 𝐃𝑙𝑙 − 𝐃𝑙𝑖𝐃𝑖𝑖
−1𝐃𝑖𝑙 , (2.88) 

 𝛂𝑙𝑟 = 𝐃𝑟𝑙 − 𝐃𝑟𝑖𝐃𝑖𝑖
−1𝐃𝑖𝑙 , (2.89) 

 𝛂𝑟𝑙 = 𝐃𝑙𝑟 − 𝐃𝑙𝑖𝐃𝑖𝑖
−1𝐃𝑖𝑟 , (2.90) 

 𝛂𝑟𝑟 = 𝐃𝑟𝑟 − 𝐃𝑟𝑖𝐃𝑖𝑖
−1𝐃𝑖𝑟 . (2.91) 
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The continuity of displacements and force equilibrium at the boundaries of the unit 

cells are defined by the following relations 

 𝐝𝑙(𝑛 + 1) = 𝐝𝑟(𝑛)., (2.92) 

 𝐟𝑙(𝑛 + 1) = −𝐟𝑟(𝑛).. (2.93) 

The state vectors composed of degrees of freedom and forces on the left-hand side of 

adjacent unit cells can be now introduced 

 𝐮𝑙(𝑛) = [
𝐝𝑙(𝑛)
𝐟𝑙(𝑛)

] , (2.94) 

 𝐮𝑙(𝑛 + 1) = [
𝐝𝑙(𝑛 + 1)
𝐟𝑙(𝑛 + 1)

]. (2.95) 

By considering the boundary conditions from Eqs. (2.92), (2.93), Eq. (2.97) turns into 

 𝐮𝑙(𝑛 + 1) = [
𝐝𝑟(𝑛)
−𝐟𝑟(𝑛)

] . (2.96) 

Eq. (2.87) can be now reformulated in terms of the state vectors 𝐮𝑙as 

 [
𝐝𝑟(𝑛)
−𝐟𝑟(𝑛)

] = 𝐓 [
𝐝𝑙(𝑛)
𝐟𝑙(𝑛)

] , (2.97) 

where the transfer matrix T is given by 

 
𝐓 = [

−𝛂𝑙𝑟
−1𝛂𝑙𝑙 𝛂𝑙𝑟

−1

−𝛂𝑟𝑙 + 𝛂𝑟𝑟𝛂𝑙𝑟
−1𝛂𝑙𝑙 −𝛂𝑟𝑟𝛂𝑙𝑟

−1] . 
(2.98) 

Application of the Bloch’s theorem implies 

 𝐮𝑙(𝑛 + 1) = 𝑒𝜇𝐮𝑙(𝑛) , (2.99) 

where 𝜇 is the propagation constant? Substituting Eq. (2.97) to Eq. (2.99) leads to linear 

eigenvalue problem of the form 

 𝐓 [
𝐝𝑙(𝑛)
𝐟𝑙(𝑛)

] = 𝑒𝜇 [
𝐝𝑙(𝑛)
𝐟𝑙(𝑛)

] . (2.100) 

The general eigenvalue problem can be therefore expressed as 

 𝐓 [
𝐝𝑙

𝐟𝑙
] = 𝑒𝜇 [

𝐝𝑙

𝐟𝑙
] . (2.101) 

It has been noticed by Zhong and Williams [75], that direct solution of the eigenvalue 

problem given in Eq. (2.101) can lead to numerical ill-conditioning since the state 

vectors are partitioned into displacement and force components whose values may 



 

 

 

diverge significantly. To overcome this difficulty a homogenization of the eigenvalue 

problem has been proposed, where 

 [
𝐝𝑙

𝐟𝑙
] = 𝐋 [

𝐝𝑙

𝐝𝑟
] ,        [

𝐝𝑟

−𝐟𝑟
] = 𝐍 [

𝐝𝑙

𝐝𝑟
] , (2.102-2.103) 

and matrices are 

  𝐋 = [
𝐈 𝟎

𝛂𝑙𝑙 𝛂𝑙𝑟
] ,        𝐍 = [

𝟎 𝐈
−𝛂𝑟𝑙 −𝛂𝑟𝑟

] . (2.104-2.105) 

This leads to the following expression of the eigenvalue problem: 

 (𝐍 − 𝑒𝜇𝐋) [
𝐝𝑙

𝐝𝑟
] = 𝟎 (2.106) 

Solving the eigenvalue problem and calculating the propagation constant for a given 

frequency range delivers important information about both attenuation and phase 

delay that waves build up while traveling through a unit cell. In the following studies 

the propagation constants are presented as functions of normalised frequency Ω, 

which is a ratio of the frequency and the frequency at which the wavelength is equal 

to twice the unit cell length i.e. the phase shift across the cell is equal to 𝜋 

 Ω =
𝜔

𝜔𝐵
 . (2.107) 

Here, 𝜔𝐵 is the Bragg frequency, which in case of the one-dimensional, infinite Euler-

Bernulli beam without inclusions is given by 

 
𝜔𝐵 =

𝜋2

𝐿𝑐𝑒𝑙𝑙
2 √

𝑌𝑏𝐼𝑏

𝜌𝑏𝐴𝑏
 . 

(2.108) 

Expressing the propagation constants in this way makes the result independent upon 

the lattice constant i.e. unit cell length 𝐿𝑐𝑒𝑙𝑙. 

 

The plots in Figure 2.3 present the propagation constants for a normalized frequency 

range 0 to 2.5. The results indicate that propagation in beams is characterised by two 

wave types. The first type illustrated in plots (a) and (b) of Figure 2.3 corresponds to 

spatially decaying waves in both, positive and negative directions, also known as 

evanescent waves or near-field. The decay rate of these attenuated waves is 

represented by the frequency dependent attenuation constant Re{𝜇}. 
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Figure 2.3 Dispersion curves for an infinite Euler-Bernoulli beam. Plots (a) and (b) 

positive and negative going evanescent waves. Plots (c) and (d) positive and negative 

going flexural waves. Black lines -real parts, blue lines - imaginary parts of 

propagation constants. 

 

The second wave type shown in plots (c) and (d) of Figure 2.3 is characterised by 

attenuation constant Re{𝜇} = 0 in both directions, which indicates freely traveling 

waves. That is propagating without distortions and whose phase constant Im{𝜇} 

varies with frequency. Since the second wave type can propagate freely at any given 

frequency, the uniform one-dimensional beam cannot possess wave filtering 

capabilities. 

 

 

 

 a  b 
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2.3.2 Infinite beam with regular grid of point masses 

This paragraph considers the wave propagation in an infinite beam with a regular 

grid of point masses. Application of a discrete point mass to the unit cell of a beam is 

straight forward and requires only addition of a mass value to the associated node in 

the global mass matrix of the unit cell. It is known that point masses can produce the 

flexural wave scattering effects. The scattering occurs due to the impedance mismatch 

between the uniform beam segments and the point masses, that leads to traveling 

waves being partially reflected and partially transmitted to neighbouring cells.  

At certain frequencies the interactions between reflected and transmitted waves give 

rise to destructive interference effects, which results in frequency bands where the 

free wave propagation is stopped. Due to the interference nature of the phenomenon, 

the stop band frequency is directly linked to the spatial organization of a unit cell, 

namely the lattice constant 𝐿𝑐𝑒𝑙𝑙. The frequency at which the structural wavelength is 

equal twice the unit cell and thus the phase delay is equal to 𝜋 across the single cell, 

makes destructive interference possible. 

 

 

Figure 2.4 (a) Depiction of an infinite Euler-Bernoulli beam with discreet masses 

spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary meshed unit cell. 

 

The plots in Figure 2.5 presents dispersion curves for the unit cell with point mass 

equal to 20% of the unit cell mass. Again, two types of waves are found, plots (a) and 

(b) in Figure 2.5 show the propagation constants of the rapidly decaying near field, 

which do not differ from those calculated for the uniform beam. Plots (c) and (d) 

present dispersion curves for flexural waves, which are propagating freely in positive 

and negative directions, with increasing phase delay ranging from dimensionless 
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frequency 0 to about 0.8. At around 0.8 the phase shift across the unit cell length 

reaches 𝜋 and becomes constant making negative interference possible up to 

dimensionless frequency 1. 

 

 

Figure 2.5 Dispersion curves for an infinite Euler-Bernoulli beam with periodic point 

masses equal to 20% of the unit cell mass. Plots (a) and (b) positive and negative going 

evanescent waves. Plots (c) and (d) positive and negative going flexural waves. Black 

lines -real parts, blue lines - imaginary parts of propagation constants. 

 

Considering now the attenuation constant, it is noted that, although no energy 

dissipation effects are considered, the attenuation constant is non-zero over the 

frequency region from 0.8 to 1. This frequency band is called interference stop band, 

since the wave attenuation effect depends on the wave circulations inside the cells 

rather than on material dissipation effects. In other words, it is the result of a wave 



 

 

 

interference effects produced by the point masses. This phenomenon, also called the 

Bragg scattering, has been investigated in several studies for different types of 

physical systems [76]. 

 

 

Figure 2.6 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic point masses against 

dimensionless weight of point masses. Attenuation constants of flexural waves 

associated with (b) 𝛾 = 1, (c) 𝛾 = 0.5 and (d) 𝛾 = 0.25.  

 

Figure 2.6(a) presents the evolution of the interference stop band distribution with 

reference to dimensionless mass, defined as the ratio of the point mass relative to the 

mass of the unit cell 𝛾 =
𝑚𝑝

𝑚𝑐𝑒𝑙𝑙
. 

 

In general, when the mass ratio increases the stop band distribution expands towards 

lower frequencies but maintains the upper bound limit at normalised frequency equal 

to 1. As depicted in Figure 2.6 (a) and (b) the interference stop band effect can cover 

an impressive bandwidth, however to achieve such effect, a significant mass addition 

is required. Considering vibration treatment this is rather undesired, since the 

increase in total mass of a structure should be minimal. Thus, the generation of stop 
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bands in this way seems to be impractical and suitable only to large and heavy 

structures i.e. bridges. 

2.3.3 Infinite beam with regular grid of spring-mas vibration absorbers 

As proposed by Liu [54], stop bands can also be produced by periodic cells with 

resonating elements. For example, in this study the behaviour of the cell with a 

tunable vibration absorber (TVA), modelled as the single degree of freedom 

translational spring-mass system is considered.  

 

 

Figure 2.7 (a) Depiction of an infinite Euler-Bernoulli beam with tunable vibration 

absorbers spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary meshed unit cell. 

 

The same formulation introduced above for the beam with cells equipped with point 

masses is used here considering the dynamic stiffness of the absorber. Addition of the 

TVA into the system requires an additional degree of freedom associated with the 

absorber. Therefore, equation of motion is given by 

 {[
0 0
0 𝐃

] + 𝐃𝑡𝑣𝑎} [
𝑑𝑡𝑣𝑎

𝐝
] = [

𝑓𝑡𝑣𝑎

𝐟
], (2.109) 

where, 𝐃 is the dynamic stiffness matrix given by Eq. (2.84), the vectors containing 

degrees of freedom and forces related to the unit cell are arranged in the following 

way 𝐝 = [𝐝𝑖 𝐝𝑙  𝐝𝑟]
𝑇, 𝐟 = [𝐟𝑖  𝐟𝑙  𝐟𝑟]

𝑇. 𝐃𝑡𝑣𝑎 is the dynamic stiffness matrix of the vibration 

absorber composed of stiffness and mass matrices and assembled as the global matrix 

 𝐃𝑡𝑣𝑎 = 𝐊𝑡𝑣𝑎 − 𝜔2𝐌𝑡𝑣𝑎, (2.110) 



 

 

 

with non-zero elements distributed in accordance to degrees of freedom associated 

with the inter-connection node (i.e. central inner node). The degree of freedom 

associated to the vibration absorber can be treated as the i-th inner degree of freedom 

and thus the total stiffness matrix can be rewritten in the form of  

 

𝐃 = [

𝐃̃𝑖𝑖 𝐃̃𝑖𝑙 𝐃̃𝑖𝑟

𝐃̃𝑙𝑖 𝐃̃𝑙𝑙 𝐃̃𝑙𝑟

𝐃̃𝑟𝑖 𝐃̃𝑟𝑙 𝐃̃𝑟𝑟

] . 

(2.111) 

Assuming no external forces are exerted on the internal nodes, the internal degrees of 

freedom can be eliminated, such that equation of motion can be written in terms of 

left-hand side and right-hand side degrees of freedom and forces of the unit cell. The 

procedure to obtain the propagation constants is the same as already described in 

previous subsection. To be consistent with the previous analysis, reference is made to 

dimensionless frequency of the absorbers 

 Ω0 =
𝜔0

𝜔𝐵
 , (2.112) 

where, 𝜔0 = √
𝑘

𝑚𝑠
 is the resonance frequency of the absorbers. In this study, the spring 

𝑘 was chosen so that the dimensionless resonance frequency of the absorbers is given 

by Ω0 = 0.5 and the suspended masses equal to 20% of the unit cell mass. The 

calculated band structures of the propagation constants for the infinite beam with 

periodically added vibration absorbers are presented in Figure 2.8.  

 

Considering first the diagrams of the phase constants given by the blue lines, it is 

noted that they are characterised by similar shapes to those found for the beam with 

cells containing point mass, except for a new sharp peak in correspondence to the 

absorber resonance frequency, i.e. Ω = 0.5. Similar conclusions can be drawn also for 

the attenuation constants, which, as depicted by black lines, is in this case 

characterised by rather high and sharp peak for Ω = 0.5 and then one tiny peak 

centred at Ω = 1.1. The former is classified as a resonance stop band effect while the 

latter is classified as an interference stop band, which in this case, is due to wave 

scattering effect produced by absorber itself. The resonance stop band is instead due 

to the well-known property of vibration absorbers, which effectively absorb energy 

from the flexural vibration of the hosting structure where they are mounted at 

frequencies close to their fundamental resonance frequency i.e. 𝜔 = 𝜔0.  

The attenuation constant produced by the absorber at Ω = 0.5 reaches a peak value of 

about 2, which is well above 0.5 produced by point masses.  
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Figure 2.8 Dispersion curves for an infinite Euler-Bernoulli beam with periodic point 

tunable vibration absorbers whose masses are equal to 20% of the unit cell mass. Plots 

(a) and (b) positive and negative going. evanescence waves. Plots (c) and (d) positive 

and negative going flexural waves. Black lines -real parts, blue lines - imaginary parts 

of propagation constants. 

 

Due to its nature, the resonance stop band is not dependent on the unit cell geometry 

and can be tuned to any given frequency by varying the physical properties of the 

absorbers (mass or stiffness). Figure 2.9 (a) shows the evolution of the attenuation 

factor associated with the flexural waves with reference to the dimensionless 

frequency of the absorbers Ω0 assuming the proof mass of the tunable vibration 

absorbers is 20% of the unit cell beam mass. This figure shows the presence of both 

resonance and interference stop band branches, which couples when the absorber 



 

 

 

resonance frequency is tuned such that Ω0 ≈ 1. When the plot is sliced in 

correspondence to Ω0 ≈ 1, the resonance and interference stop bands merge into 

significantly wider and higher attenuation band gaps. The nature of the coupling gap 

formation mechanism in one-dimensional system can be explained mathematically 

by the band edge frequency dependences, which can be derived from the 

trigonometric form of the propagation constant by using a combination of the spectral 

element method and Bloch theorem [77]. 

 

 

Figure 2.9 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs whose masses are 

equal to 20% of the unit cell mass against the dimensionless frequency of the 

absorbers Attenuation constants of flexural waves associated with resonance 

frequency of the absorbers (b) Ω0 = 1.1, (c) Ω0 = 0.9 and (d) Ω0 = 0.8. 

 

The effect of changing the proof mass while keeping the resonance frequency of the 

absorbers constant is now considered. Figure 2.10 (a) shows the evolution of the 

attenuation factor associated with the flexural wave with reference to the mass ratio: 

𝛾 =
𝑚𝑠

𝑚𝑐𝑒𝑙𝑙
. The plot considers absorbers tuned to the dimensionless resonance 

frequency 0.5.Thus, in this case the stiffness of the TVAs is continuously adjusted to 

maintain constant resonance frequency. 

 a  b 
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Figure 2.10 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs tuned to Ω0 = 0.5 

against the dimensionless weight of proof masses. Attenuation constants of flexural 

waves associated to dimensionless weight of proof masses (b) 𝛾 = 1, (c) 𝛾 = 0.5 and 

(d) 𝛾 = 0.25. 

 

As depicted in Figure 2.10, increasing the proof mass of the absorber leads to wider 

stop band distributions, both for the resonance and the interference stop bands. The 

resonance stop band is concentrated around Ω = 0.5 and expands towards lower and 

higher frequencies as the proof mass is increased. Apart from that, at dimensionless 

frequency 1 the interference effect arises as the result of wave scattering from the 

proof mass of the absorber which is moving out of phase with respect to the beam. 

The bandwidth distribution associated with this effect is left hand limited by the edge 

frequency 1 and expands with added proof mass only towards higher frequencies. 

 

So far, no consideration was made about damping. Adding a dashpot in parallel to 

the spring allows to investigate the effect of damped vibration absorbers on the 

distribution of the stop bands. Damping elements can be useful and effective in terms 

of increasing the width of the band gaps. In this case the dynamic stiffness matrix 

from Eq. (2.110) becomes 



 

 

 

 𝐃𝑡𝑣𝑎 = 𝐊𝑡𝑣𝑎 − 𝜔2𝐌𝑡𝑣𝑎 + j𝜔𝐂𝑡𝑣𝑎 , (2.113) 

Where 𝐂𝑡𝑣𝑎 contains non-zero damping coefficients associated with degrees of 

freedom of the absorber and inter-connecting node. 

 

 

Figure 2.11(a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with damped, periodic TVAs whose 

masses are equal to 20% of the unit cell mass, against the dimensionless frequency of 

the absorbers Attenuation constants of flexural waves associated with resonance 

frequency of the absorbers (b) Ω0 = 1.1, (c) Ω0 = 0.9 and (d) Ω0 = 0.8. Black lines – 

undamped TVAs, blue lines – TVAs with 3% of damping ratio. 

 

Figure 2.11 (a) presents the evolution of the propagation constant of the flexural wave, 

when vibration absorbers are equipped with dashpot with 3% of damping ratio.  

As one can expect the sharp contours indicating boundaries of the stop band 

phenomenon when dashpot is not present, become smoother and the overall effect 

within investigated dimensionless frequency range is weaker but has wider 

frequency range. This is particularly visible in plots (b), (c) and (d) of Figure 2.11, 

where dispersion curves are shown for an infinite beam containing absorbers with 

and without dashpots. 
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The influence of damping of the vibration absorbers on the distribution of the 

attenuation band is also depicted in Figure 2.12. This figure illustrates the evolution 

of the resonance stop band effect generated by the absorbers at Ω = 0.5 with respect 

to added damping 0-0.3. As shown in subsequent plots (b), (c) and (d), a gradual 

increase of damping decreases the response amplitudes of the absorbers but makes 

their distributions wider in frequency. 

 

 

Figure 2.12 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with periodic TVAs tuned to Ω0 = 0.5 and 

whose proof masses are equal to 20% of the unit cell mass, against damping ratio of 

the TVAs. Attenuation constants of flexural waves associated to TVAs damping ratios 

(b) 𝜁 = 0.1, (c) 𝜁 = 0.05 and (d) 𝜁 = 0.015. 

2.3.4 Infinite beam with regular grid of vibration absorbers equipped with base masses 

In the next step, the evolution of the stop band effects of vibration absorbers equipped 

with base masses is examined.  
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Figure 2.13 (a) Depiction of an infinite Euler-Bernoulli beam with tunable vibration 

absorbers equipped with base masses and spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An 

exemplary mesh of the unit cell. 

 

The base masses introduce additional wave scattering effects, that can produce stop 

bands at frequencies near to the edge frequency given by the Bragg’s condition.  

Due to the interference nature of this phenomenon, the effect is right-hand side 

limited by the dimensionless frequency 1 linked to the lattice constant. Thus, the 

bandwidth of the effect can only be extended towards lower frequencies, by 

increasing the weight of base masses. When weight of base masses is significant with 

respect to the unit cell, an interesting feature of this system is its ability to produce 

resonance and interference bands simultaneously. As shown in Figure 2.14 (a), the 

resonance stop band evolves in the same manner as the one produced by spring-mass 

vibration absorbers by delivering noticeable effect and allowing for an arbitrary 

tuning across considered frequency range. However, due to the presence of the base 

masses the additional stop band is present near dimensional frequency 1, this effect 

maintains its bandwidth, along with the increase of dimensionless resonance 

frequency up to Ω0 = 0.6. As a result, two distinct stop band effects can be produced 

also at frequencies below the strong coupling regime of the resonance and 

interference effects, as presented in plot (d) of Figure 2.14. 
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Figure 2.14 (a) The evolution of the attenuation constant of positive going flexural 

waves in an infinite Euler-Bernoulli beam with damped, periodic TVAs with base 

masses equal to 40% and proof masses to 20% of the unit cell mass, against the 

dimensionless frequency of the absorbers Attenuation constants of flexural waves 

associated with resonance frequency of the absorbers (b) Ω0 = 1.5, (c) Ω0 = 0.9 and 

(d) Ω0 = 0.5. Black lines – undamped TVAs, blue lines – TVAs with 3% of damping 

ratio. 

2.3.5 Infinite beam with regular grid of piezoelectric patch transducers connected to 

inductive shunts 

Periodically spaced piezoelectric patch transducers connected to electrical shunts can 

also produce resonance stop band effects. In this section it is assumed the piezoelectric 

patches are connected to identical shunts formed only by inductive elements. The 

resistive component is for the time being neglected. In each shunt the inductance is 

connected in parallel with the internal capacitance of the piezoelectric patch to form 

a resonating electrical circuit whose resonance frequency can be derived from the 

following relation 

 𝐿 =
1

𝜔0
2𝐶𝑝𝑒

  , (2.114) 

 



 

 

 

 

Figure 2.15 (a) Depiction of an infinite Euler-Bernoulli beam with piezoelectric patch 

transducers spaced by a distance 𝐿𝑐𝑒𝑙𝑙. (b) An exemplary mesh of the unit cell. 

 

Recalling the systems governing equations from Eqs. (2.79), (2.80) 

 (𝐌𝑏 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑏 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 = 𝐟 , (2.115) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 = 𝑞 , (2.116) 

and if piezoelectric patch is connected only to the electrical inductance 𝐿, the voltage 

across the patch is given by 

 𝑣𝑝𝑒 = 𝑞̈𝐿 . (2.117) 

Substituting Eq. (2.117) into Eqs. (2.115) and (2.116) yields 

 𝐌𝑡𝐝̈𝑘 + 𝐊𝑡𝐝𝑘 + 𝛉𝑝𝑒𝐿𝑞̈ = 𝐟 , (2.118) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝐿𝑞̈ = 𝑞 . (2.119) 

These equations can now be reformulated in terms of state vectors in the following 

way 

 𝐌𝐮̈ + 𝐊𝐮 = 𝐅 , (2.120) 

where the vectors are defined in the following way 𝐮 = [𝑞 𝐝𝑖 𝐝𝑙  𝐝𝑟]
𝑇, 𝐅 = [0 𝐟𝑖  𝐟𝑙  𝐟𝑟]

𝑇. 

Also, the global matrices are assembled as follows: 

 𝐌 = [
𝛉𝑝𝑒𝐿 𝐌𝑡

𝐶𝑝𝑒𝐿 𝟎
] , (2.121) 
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𝐊 = [

𝟎 𝐊𝑡

−1 𝛉𝑝𝑒
𝑇 ] . 

(2.122) 

The dynamic stiffness matrix can then be derived from the following equation 

 𝐃 = 𝐊 − 𝜔2𝐌 (2.123) 

By treating charge as an inner degree of freedom, the dynamic stiffness matrix can be 

arranged in the same form as that presented above 

 
𝐃 = [

𝐃𝑖𝑖 𝐃𝑖𝑙 𝐃𝑖𝑟

𝐃𝑙𝑖 𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑖 𝐃𝑟𝑙 𝐃𝑟𝑟

] . 
(2.124) 

As described previously, assuming no forces act on internal nodes, the inner degrees 

of freedom can be eliminated, and the equation of motion can be expressed in the 

following way 

 [
𝛂𝑙𝑙 𝛂𝑙𝑟

𝛂𝑟𝑙 𝛂𝑟𝑟
] [

𝐝𝑙

𝐝𝑟
] = [

𝐟𝑙
𝐟𝑟

] . (2.125) 

From this point the derivation of propagation constants proceeds in the same way as 

already described in the previous subsections. 

 

The effects produced by an array of shunted piezoelectric patch transducers are now 

examined. The stop band distribution pattern shown in Figure 2.16 is very similar to 

the one illustrated in Figure 2.14 for spring-mass vibration absorbers equipped with 

base masses. The only difference is that the entire distribution pattern is shifted 

towards lower frequencies with respect to the one from Figure 2.14. For example, one 

can notice that the right-hand side edge frequency associated with the interference 

stop band effects is lowered to about 0.75. This occurrence is related to the spatial 

distribution of the mass of piezoelectric transducers, which is not concentrated in a 

point as it was in the case of vibration absorbers equipped with base masses.  

As a result, the obtained spectrum is characterised by the edge frequency which 

deviates from the approximate frequency given by the Bragg’s condition for an 

infinite Euler-Bernoulli beam. 

In practice, point masses are bound to occupy a certain length of the beam cell. 

Therefore, the results presented above consider an idealised system which could be 

representative for rather small masses. 



 

 

 

 

Figure 2.16 The evolution of the attenuation constant of positive going flexural waves 

in an infinite Euler-Bernoulli beam with piezoelectric patch transducers connected to 

inductive shunts, against the dimensionless resonance frequency of the shunts. 

Attenuation constants of flexural waves associated with resonance frequency of the 

shunts (b) Ω0 = 1.5, (c) Ω0 = 0.9 and (d) Ω0 = 0.5. 

 

2.3.6 Infinite beam with regular grid of piezoelectric patch transducers connected to 

resistive-inductive shunts 

When a resistance is introduced in the shunt circuits, the distribution of local 

resonance effects is broadened. A resistance in the shunt circuit produces a 

comparable effect to that of a dashpot in a tunable vibration absorber. Thus, it 

produces energy dissipation effect. In the following part of this analysis, the quality 

factor is introduced as a dimensionless measure of energy dissipation produced by 

the resistor in the resonating RLC circuit of the shunted piezoelectric patch, given by: 

 𝑄𝑅𝐿 ≈
𝜔0𝐿

𝑅𝑠
 . (2.126) 

Here 𝐿 and 𝑅𝑠 are respectively the inductance and the resistance of the shunt. The 

implementation of the resistance in the shunt circuit is relatively easy but requires 

some mathematical manipulations in the formulation of the state matrices.  
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Recalling the systems governing equations from Eqs. (2.79), (2.80) 

 (𝐌𝑏 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑏 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 = 𝐟 , (2.127) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 = 𝑞 . (2.128) 

If piezoelectric patch is connected only to the series RL shunt, the voltage across the 

patch is given by 

 𝑣𝑝𝑒 = 𝑞̈𝐿 + 𝑞̇𝑅𝑠 . (2.129) 

Substituting Eq. (2.117) into Eqs. (2.115) and (2.116) yields 

 𝐌𝑡𝐝̈𝑘 + 𝐊𝑡𝐝𝑘 + 𝛉𝑝𝑒𝐿𝑞̈ + 𝛉𝑝𝑒𝑞̇ = 𝐟 , (2.130) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝐿𝑞̈ + 𝐶𝑝𝑒𝑅𝑞̇ − 𝑞 = 0 . (2.131) 

These equations can now be reformulated in terms of state vectors in the following 

way 

 𝐌𝐮̈ + 𝐊𝐮 = 𝐅 . (2.132) 

Where the vectors are arranged as  𝐮 = [𝑞 𝐝𝑖  𝐝𝑙  𝐝𝑟]
𝑇, 𝐅 = [0 𝐟𝑖  𝐟𝑙  𝐟𝑟]

𝑇. 

And the matrices given by 

 𝐌 = [
𝛉𝑝𝑒𝐿 𝐌𝑡

𝐶𝑝𝑒𝐿 𝟎
] , (2.133) 

 
𝐂 = [

𝛉𝑝𝑒𝑅 𝟎

𝐶𝑝𝑒𝑅 𝟎
] , 

(2.134) 

 
𝐊 = [

𝟎 𝐊𝑡

−1 𝛉𝑝𝑒
𝑇 ] . 

(2.135) 

The dynamic stiffness matrix is in this case given by the following expression: 

 𝐃 = 𝐊 − 𝜔2𝐌 + j𝜔𝐂 (2.136) 

Treating electrical charge as an inner degree of freedom, the dynamic stiffness matrix 

can be arranged in the already well-known form 

 
𝐃 = [

𝐃𝑖𝑖 𝐃𝑖𝑙 𝐃𝑖𝑟

𝐃𝑙𝑖 𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑖 𝐃𝑟𝑙 𝐃𝑟𝑟

] . 
(2.137) 

As described previously, by assuming no forces are exerted on internal nodes, the 

inner degrees of freedom can be eliminated, and the equation of motion can be 

expressed in the following way 



 

 

 

 [
𝛂𝑙𝑙 𝛂𝑙𝑟

𝛂𝑟𝑙 𝛂𝑟𝑟
] [

𝐝𝑙

𝐝𝑟
] = [

𝐟𝑙
𝐟𝑟

] . (2.138) 

From this point onwards, the derivation of propagation constants proceeds in the 

same way as already described in the previous subsections. 

 

The evolution of the attenuation constant with respect to the dimensionless resonance 

frequency of the shunt for the beam with the array of piezoelectric patches connected 

to series RL shunts is depicted in Figure 2.17 (a). The quality factor was arbitrarily 

chosen as 𝑄𝑅𝐿 = 25 and kept constant by adopting the resistance with reference to 

resonance frequency. As one would expect, due to the presence of dissipative 

elements, a blue shadow surrounding the edge frequencies of the stop band 

phenomena is now visible, which indicates that the width of the stop band effect is 

widened although the effect is also lowered. 

 

 

Figure 2.17 The evolution of the attenuation constant of positive going flexural waves 

in an infinite Euler-Bernoulli beam with piezoelectric patch transducers connected to 

series RL shunts, against the dimensionless resonance frequency of the shunts. 

Attenuation constants of flexural waves associated with resonance frequency of the 

shunts (b) Ω0 = 1.5, (c) Ω0 = 0.9 and (d) Ω0 = 0.5. Black lines - inductive shunt, blue 

lines – series RL shunt. 
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To illustrate the influence of the electrical energy dissipation on the distribution of 

the resonance stop band effect, the resonance frequency of the shunts was kept at 

dimensionless frequency Ω0 = 0.5, while the resistances was varied in such a way as 

to gradually increase the quality factor from 1 to 100. Figure 2.18 (a) illustrate changes 

in the stop distribution and in the attenuation rate with reference to quality factor that 

characterizes the losses produced by the resistors in the electrical shunts. The set of 

plots (b), (c) and (d) in Figure 2.18 shows how the locally resonant effect generated by 

the shunted transducers becomes weaker, due to the lower quality factors. 

 

 

Figure 2.18 The evolution of the attenuation constant of positive going flexural waves 

in an infinite Euler-Bernoulli beam with piezoelectric patch transducers connected to 

series RL shunts and tuned to Ω0 = 0.5, against the quality factor of the shunts. 

Attenuation constants of flexural waves associated with quality factors of the of the 

shunt (b) 𝑄 = 90, (c) 𝑄 = 45 and (d) 𝑄 = 10. 

 

2.3.7 Infinite beam with regular grid of piezoelectric patch transducers connected to multi-

resonant shunt circuits 

In this section, the effects produced by multi-resonant shunt circuits introduced by 

Behrens [43] are considered. Assuming the electrical functions are time-harmonic and 



 

 

 

given in the form 𝑓(𝑡) = 𝑓(𝜔)𝑒𝑥𝑝 (j𝜔), where 𝑓(𝜔) is the complex amplitude, 𝜔 is the 

circular frequency, the ratio of charge and potential difference across of the current 

flowing shunt circuit can be expressed as the sum of two second order terms: 

 
𝑞

𝑣𝑝𝑒
=

1

𝐿𝑏1

−𝜔2+j𝜔
𝑅𝑠1
𝐿𝑏1

+
1

𝐶𝑓1𝐿𝑏1

+

1

𝐿𝑏2

−𝜔2+j𝜔
𝑅𝑠2
𝐿𝑏2

+
1

𝐶𝑓2𝐿𝑏2

 . (2.139) 

Each second order term in Eq. (2.139) can be envisaged as the ratio between a 

generalized charge and a voltage across piezoelectric patch. Thus, the charge can be 

expressed with the following matrix equation 

 𝑞 = 𝚿𝚲 , (2.140) 

where, 𝚿 = [
1

√𝐿𝑏1

1

√𝐿𝑏2
]. and 𝚲 = ⌊𝛬1 𝛬2⌋

𝑇 is the vectors with generalized charges, 

which can be given by the following matrix relation 

 𝚲 = 𝐆𝚿𝑇𝑣𝑝𝑒 , (2.141) 

that is 

 [
𝛬1

𝛬2
] =

[
 
 
 
 

1

−𝜔2+j𝜔
𝑅𝑠1
𝐿𝑏1

+
1

𝐶𝑓1𝐿𝑏1

1

−𝜔2+j𝜔
𝑅𝑠1
𝐿𝑏1

+
1

𝐶𝑓2𝐿𝑏2]
 
 
 
 

[

1

√𝐿𝑏1

1

√𝐿𝑏2

] 𝑣𝑝𝑒 . (2.142) 

Considering the expanded form of Eq. (2.142) 

 𝐈𝚲̈ + ∆𝚲̇ + 𝛀𝚲 = 𝚿𝑇𝑣𝑝𝑒 , (2.143) 

where the matrices are defined 

 𝐈 = [ 1
1

] , (2.144) 

 
∆= [

𝑅𝑠1

𝐿𝑏1

𝑅𝑠2

𝐿𝑏2

] , 
(2.145) 

 

𝛀 = [

1

𝐶𝑓1𝐿𝑏1

1

𝐶𝑓2𝐿𝑏2

] . 

(2.146) 



 

 

47 

Starting from Eqs. (2.140)-(2.143) it is possible to express the governing system of Eqs. 

(2.127), (2.128) in terms of the vectors: 𝐝̈, 𝐝̇, 𝐝 and 𝚲̈, 𝚲̇, 𝚲. First, substituting Eq. (2.140) 

to Eq. (2.128) yields 

 𝛉𝑝𝑒
𝑇 𝐝 + 𝐶𝑝𝑒𝑣𝑝𝑒 = 𝚿𝚲 , (2.147) 

so that potential difference can be written as 

 𝑣𝑝𝑒 = 𝐶𝑝𝑒
−1𝚿𝚲 − 𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 . (2.148) 

This expression can then be substituted to Eq. (2.127) to obtain the first set of 

governing equations in terms of 𝐝̈, 𝐝 and 𝚲. 

 𝐌𝑡𝐝̈ + (𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 )𝐝 + 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿𝚲 = 𝐟 . (2.149) 

The second set of governing equations is then obtained by pre-multiplication of Eq. 

(2.148) by 𝚿𝑇 

 𝚿𝑇𝑣𝑝𝑒 = 𝚿𝑇𝐶𝑝𝑒
−1𝚿𝚲 − 𝚿𝑇𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 , (2.150) 

and substitution of Eq. (2.150) into Eq. (2.143). 

 𝐈𝚲̈ + ∆𝚲̇ + 𝛀𝚲 = 𝚿𝑇𝐶𝑝𝑒
−1𝚿𝚲 − 𝚿𝑇𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 . (2.151) 

In this way the governing system equations are reformulated to account for multi-

resonating shunt circuit, composed of two RLC branches. 

 𝐌𝑡𝐝̈ + (𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 )𝐝 + 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿𝚲 = 𝐟 , (2.152) 

 𝐈𝚲̈ + ∆𝚲̇ + 𝚿𝑇𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 𝐝 + (𝛀 − 𝚿𝑇𝐶𝑝𝑒
−1𝚿)𝚲 = 𝟎 . (2.153) 

The governing equations can be now casted in the canonical matrix form 

 𝐌𝐮̈ + 𝐂𝐮̇ + 𝐊𝐮 = 𝐅 , (2.154) 

where, 𝐌 and 𝐊 matrices are organized as 

 𝐌 = [
𝐈 𝟎
𝟎 𝐌𝑡

] , (2.155) 

 𝐂 = [
∆ 𝟎
𝟎 𝟎

] , (2.156) 



 

 

 

 
𝐊 = [

𝛀 − 𝚿𝑇𝐶𝑝𝑒
−1𝚿 𝚿𝑇𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇

𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿 𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 ] . 

(2.157) 

and vectors are arranged according to the Figure 2.15 𝐮 = [𝛬1 𝛬2 𝐝𝑖 𝐝𝑙  𝐝𝑟]
𝑇, 

𝐅 = [0 0 𝐟𝑖  𝐟𝑙  𝐟𝑟]
𝑇.  

The dynamic stiffness matrix can be formulated as  

 𝐃 = jω𝐂 + 𝐊 − 𝜔2𝐌 (2.158) 

Considering the generalised charges as the inner degrees of freedom, the dynamic 

stiffness matrix can be arranged in the familiar form 

 
𝐃 = [

𝐃𝑖𝑖 𝐃𝑖𝑙 𝐃𝑖𝑟

𝐃𝑙𝑖 𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑖 𝐃𝑟𝑙 𝐃𝑟𝑟

] . 
(2.159) 

Assuming no external forces are exerted on internal nodes, the inner degrees of 

freedom can be eliminated, and the equation of motion can be expressed as follows 

 [
𝛂𝑙𝑙 𝛂𝑙𝑟

𝛂𝑟𝑙 𝛂𝑟𝑟
] [

𝐝𝑙

𝐝𝑟
] = [

𝐟𝑙
𝐟𝑟

] . (2.160) 

From this point onwards, the derivation of propagation constants proceeds in the 

same way as already described in the previous subsections. 

 

 

Figure 2.19 Attenuation constants of flexural waves associated with resonance 

frequencies 0.5, 0.8 (a) and 0.65, 1.3 (b). Black lines – multi-resonating, inductive 

shunts, blue lines – multi-resonating RL shunts. Whose resistances were set to 5Ω and 

7kΩ. 
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Figure 2.19 shows the propagation constants for an infinite beam equipped with 

periodic piezoelectric patch transducers combined with a two-resonances electrical 

shunt. As can be noticed, both resonance effects are characterised by a relatively high 

attenuation constant and a narrow bandwidth, which can be slightly increased by 

adding resistance components into the shunt topology, as indicated by the blue lines. 

2.4  CONCLUDING REMARKS  

The study presented in this chapter has shown that, both interference and resonance 

stop bands can be produced in a beam structure with periodic grids of considered 

inclusions. The results indicate that the interference effects are characterised by rather 

weak attenuation in relatively wide frequency band. In line with the Bragg’s 

condition the study showed, that the stop bands generated by the wave scattering 

from the periodic masses are limited at dimensionless frequency 1. Although the 

effects can still be extended towards lower frequencies by increasing the mass of the 

inclusions, the noticeable extensions require significant mass addition relative to unit 

cell mass. Weighty inclusions can also improve the attenuation properties of the 

structure by limiting the wave amplitude transmission from one unit cell to the other. 

In contrary to the interference stop bands, the effects produced by the resonant 

inclusions are characterised by rather strong attenuation within narrow frequency 

band. As shown in this chapter, these types of structures are mostly driven by the 

unit cell resonance frequency and can generate stop band effects despite the unit cell 

spatial organisation. This is a doubtless practical advantage over the interference-

based solutions, since the effects can be conveniently tuned to the target frequency by 

adjusting the physical properties of the resonant inclusions. The obtained results also 

indicated that bandwidths of the resonance effects widen as the resonance frequency 

of the inclusions increase towards the Bragg’s frequency. This phenomenon is most 

likely a manifestation of the increasing coupling between the resonance and 

interference effects that proceeds until both effects are fully coupled and create very 

wide attenuation phenomena. The bandwidth extends also when damping of the 

inclusions is considered. This is also true for the shunted piezoelectric patch vibration 

absorbers when resistance is present in a circuit. Although, addition of the energy loss 

mechanism allows for a slight extension of the frequency band it also reduces the 

attenuation amplitude. 

Finally, the studies demonstrated that periodic piezoelectric patches connected to 

multi-resonant shunts can be utilised to produce multiple locally resonant stop band 



 

 

 

effects in one-dimensional beam. Thus, validating that the original modal formulation 

of the shunt equations can be regarded as an effective way to model the effects of 

periodic piezoelectric patch transducers connected to complex shunting circuits on 

wave propagation and vibration properties of the one-dimensional mechanical 

structure. 

 

The analysis of stop band effects is continued for an infinite two-dimensional plate in 

the next chapter. 
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3  
I N F I N I T E  P L A T E  W I T H  P E R I O D I C  I N C L U S I O N S  

This chapter is a natural extension of the previous one and considers the wave 

propagation in an infinite plate equipped with two-dimensional regular arrays of 

inclusions. It focuses on the characterisation of stop band phenomena, resulting from 

the implementation of several types of inclusions, that is discrete masses, spring-mass 

vibration absorbers and piezoelectric patch transducers connected to single and 

multi-resonant shunts that produce single or multiple resonance effects. A novel 

mathematical formulation of the modal electrical response of the multi-resonant 

shunt circuit is introduced to characterize electrical branches of the shunts as 

additional degrees of freedom and to overcome the conventional issue of the 

nonlinear eigenvalue problem. In this chapter the finite element method is utilised as 

a framework to model the dynamic response of the unit cell, whereas the governing 

equations of the unit cell were derived from Hamilton’s principle for electro-

mechanical systems. The Bloch’s theorem is then applied in the so-called inverse 

approach to obtain the band diagrams of the analysed two-dimensional periodic 

structures. 

3.1  INTRODUCTION  

In this chapter the inverse approach is used to calculate the band structures of an 

infinite plate with two-dimensional regular arrays of inclusions. As pointed out by 

Spadoni [80], dynamic stiffness matrices of two-dimensional structures are given by 

complicated functions of frequency and thus, the direct approach utilised in Chapter 

2 cannot calculate the dispersion properties of waves propagating in arbitrary 

directions. In the same work, the authors generalized the direct transfer matrix 

technique and showed that the dispersion properties can only be obtained for waves 

propagating in some specific directions. To overcome this problem the inverse 

approach was developed as a mean of modelling to predict the dispersion properties 

in an arbitrary direction. In contrary to the direct approach, where the propagation 

constants are calculated directly, the inverse method consists in finding all 



 

 

 

frequencies at which free wave propagation is possible. The frequency ranges for 

which no free wave propagation is found are the stop bands. To implement this 

approach, the electro-mechanical model should not account for energy loss effects 

(i.e. damping matrix is equal to zero-matrix) and should only consider free wave 

propagation [63,78,79]. For waves propagating in infinite two-dimensional periodic 

structures the complex propagation vector 𝛍 can be defined as a measure of the 

amplitude attenuation and the phase delay across the lengths of an elementary unit 

cell along x and y axes as 

 𝛍 = [𝜇𝑥 , 𝜇𝑦] = [𝛿𝑥 + j𝜖𝑥, 𝛿𝑦 + j𝜖𝑦] . (3.1) 

Here, 𝜇𝑥 and 𝜇𝑦 are complex terms, whose real parts: 𝛿𝑥, 𝛿𝑦 represents the attenuation 

of the wave amplitude through a cell along x and y axes, while the imaginary parts: 

𝜖𝑥, 𝜖𝑦 represents the spatial periods across the unit cell along x and y axes. Since the 

waves are meant to propagate without distortions, this chapter considers only purely 

imaginary propagation vectors: 𝛿𝑥 = 0 and 𝛿𝑦 = 0. 

3.2  MODEL FORMULATION  

The finite element formulation considered in this chapter is based on the works of de 

Abreu and Szilard [72, 81]. For the finite element discretization, the plate has been 

split into 4 nodes, 12 degrees of freedom, square elements based on Kirchhoff plate 

theory. The transverse displacement of the plate element is interpolated with 

polynomial shape functions. 

3.2.1 FEM discretization 

 

Figure 3.1 FEM element. 
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According to Kirchhoff hypotheses, the in-plane: 𝑢, 𝑣 and out-of-plane: 𝑤 

displacements (Figure 3.1) can be expressed by the following linear relationships [85]: 

 𝑢(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤(𝑥,𝑦)

𝜕𝑥
 , (3.2) 

 𝑣(𝑥, 𝑦, 𝑧) = −𝑧
𝜕𝑤(𝑥,𝑦)

𝜕𝑦
 , (3.3) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) , (3.4) 

where x and y are the in-plane axes and z is the axis along the plate thickness 

direction, 𝑢 and 𝑣 are displacements in x and y-axes, whereas 𝑤 is transverse 

displacement along the z-axis. The Kirchhoff hypothesis assumes a plane strain state, 

which leads to strain components: 𝑆3, 𝑆4 and 𝑆5 being equal to zero. 

Assuming shear strains 𝑆4 and 𝑆5 to be zero for isotropic materials turns shear stresses 

𝑇4 and 𝑇5 also to zero. Then, the out-of-plane stress is assumed to be significantly 

small compared to the in-plane normal stresses, which leads to 𝑇3 also equal to zero. 

 𝐓 = [
𝑇1

𝑇2

𝑇6

] ,        𝐒 = [

𝑆1

𝑆2

𝑆6

] , (3.5-3.6) 

Linear strain-displacement relation is given by: 

 𝑆1 =
𝜕𝑢

𝜕𝑥
 , (3.7) 

 𝑆2 =
𝜕𝑣

𝜕𝑦
 , (3.8) 

 𝑆6 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 . (3.9) 

Substituting displacements from Eqs. (3.2)-(3.4) leads to the following strain-

displacement relations: 

 𝑆1 = −𝑧
𝜕2𝑤

𝜕𝑥2  , (3.10) 

 𝑆2 = −𝑧
𝜕2𝑤

𝜕𝑦2  , (3.11) 

 𝑆6 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= −2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
 . (3.12) 

Considering only out-of-plane displacement, the strain vector can be expressed as 



 

 

 

 𝐒 = −𝑧

[
 
 
 
 

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦]
 
 
 
 

 . (3.13) 

For isotropic material, the relation between plane stress and strain can be expressed 

by the following matrix relation 

 𝐓 = 𝐜𝑝𝐒 , (3.14) 

where 𝐜𝑝 is the matrix containing elastic constants of the plate material given by 

 𝐜𝑝 =

[
 
 
 
 
 

𝑌𝑝

1−𝑣𝑝
2

𝑣𝑝𝑌𝑝

1−𝑣𝑝
2 0

𝑣𝑝𝑌𝑝

1−𝑣𝑝
2

𝑌𝑝

1−𝑣𝑝
2 0

0 0
𝑌𝑝

2(1+𝑣𝑝)]
 
 
 
 
 

 . (3.15) 

Here, 𝑣𝑝 is the Poisson ratio and 𝑌𝑝 denotes the Young’s modulus of the plate. 

Considering a four-node plate element illustrated in Figure 3.1, where each node 

possesses three degrees of freedom: a displacement in z direction and two rotations 

about x and y axis, the nodal displacement vector can be defined  

 𝐝𝑖 = [

𝑤𝑖

𝜃𝑥𝑖

𝜃𝑦𝑖 

] , (3.16) 

with 𝑖 = 1,2,3,4. The polynomial expression to define the transversal displacement 

field of the rectangular element can be computed from 

 
𝑤(𝑥, 𝑦) = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥

2 + 𝛼5𝑥𝑦 + 𝛼6𝑦
3 + 𝛼7𝑥

3 + 

+𝛼8𝑥
2𝑦 + 𝛼9𝑥𝑦2 + 𝛼10𝑦

3 + 𝛼11𝑥
3𝑦 + 𝛼12𝑥𝑦3 , 

(3.17) 

and re-written as 

 𝑤(𝑥, 𝑦) = 𝐰𝑇𝛂 , (3.18) 

where 𝛂 = [𝛼1 … 𝛼12]
𝑇 is the coefficient vector and 

 𝐰 = [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥3𝑦 𝑥𝑦3]𝑇 . (3.19) 

The rotations about x axis of nodal points are obtained from 

 
𝜃𝑥𝑖

=
𝜕𝑤𝑖

𝜕𝑦
= 𝛼3 + 𝛼5𝑥 + 2𝛼6𝑦 + 𝛼8𝑥

2 + 2𝛼9𝑥𝑦 + 3𝛼10𝑦
2 + 𝛼11𝑥

3 +

+3𝛼12𝑥𝑦2 , 
(3.20) 
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whereas the rotations of nodal points about y axis from 

 
𝜃𝑦𝑖

= −
𝜕𝑤𝑖

𝜕𝑥
= −𝛼2 − 2𝛼4𝑥 − 𝛼5𝑦 − 3𝛼7𝑥

2 − 2𝛼8𝑥𝑦 − 𝛼9𝑦
2 +

+3𝛼11𝑥
2𝑦 − 𝛼12𝑦

3 , 
(3.21) 

In order to determine unknown vector of parameters 𝜶 we substitute the nodal point 

coordinates 𝑥𝑖 and 𝑦𝑖 are substituted into equations (3.17), (3.20) and (3.21). 

 𝐝𝑒 = [

𝐝1

𝐝2

𝐝3

𝐝4

] =

[
 
 
 
 
 
 
 
𝑤1

𝜃𝑥1

𝜃𝑦1 

⋮
𝑤4

𝜃𝑥4

𝜃𝑦4 ]
 
 
 
 
 
 
 

= 𝐀 [

𝛼1

⋮
𝛼12

] . (3.22) 

Here the vector 𝐝𝑒 contains nodal displacement field in the element, and the explicit 

form of matrix A is given by 

𝐀 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1 𝑥1 𝑦1 𝑥1

2 𝑥1𝑦1 𝑦1
2 𝑥1

3 𝑥1
2𝑦1 𝑥1𝑦1

2 𝑦1
3 𝑥1

3𝑦1 𝑥1𝑦1
3

0 0 1 0 𝑥1 2𝑦1 0 𝑥1
2 2𝑥1𝑦1 3𝑦1

2 𝑥1
3 3𝑥1𝑦1

2

0 −1 0 −2𝑥1 −𝑦1 0 −3𝑥1
2 2𝑥1𝑦1 −𝑦1

2 0 −3𝑥1
2𝑦1 −𝑦1

3

1 𝑥2 𝑦2 𝑥2
2 𝑥2𝑦2 𝑦2

2 𝑥2
3 𝑥2

2𝑦2 𝑥2𝑦2
2 𝑦2

3 𝑥2
3𝑦2 𝑥2𝑦2

3

0 0 1 0 𝑥2 2𝑦2 0 𝑥2
2 2𝑥2𝑦2 3𝑦2

2 𝑥2
3 3𝑥2𝑦2

2

0 −1 0 −2𝑥2 −𝑦2 0 −3𝑥2
2 2𝑥2𝑦2 −𝑦2

2 0 −3𝑥2
2𝑦2 −𝑦2

3

1 𝑥3 𝑦3 𝑥3
2 𝑥3𝑦3 𝑦3

2 𝑥3
3 𝑥3

2𝑦3 𝑥3𝑦3
2 𝑦3

3 𝑥3
3𝑦3 𝑥3𝑦3

3

0 0 1 0 𝑥3 2𝑦3 0 𝑥3
2 2𝑥3𝑦3 3𝑦3

2 𝑥3
3 3𝑥3𝑦3

2

0 −1 0 −2𝑥3 −𝑦3 0 −3𝑥3
2 2𝑥3𝑦3 −𝑦3

2 0 −3𝑥3
2𝑦3 −𝑦3

3

1 𝑥4 𝑦4 𝑥4
2 𝑥4𝑦4 𝑦4

2 𝑥4
3 𝑥4

2𝑦4 𝑥4𝑦4
2 𝑦4

3 𝑥4
3𝑦4 𝑥4𝑦4

3

0 0 1 0 𝑥4 2𝑦4 0 𝑥4
2 2𝑥4𝑦4 3𝑦4

2 𝑥4
3 3𝑥4𝑦4

2

0 −1 0 −2𝑥4 −𝑦4 0 −3𝑥4
2 2𝑥4𝑦4 −𝑦4

2 0 −3𝑥4
2𝑦4 −𝑦4

3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 . (3.23) 

Thus, coefficient vector 𝛂 can be obtained from 

 𝛂 = 𝐀−1𝐝𝑒 . (3.24) 

By substituting Eq. (3.25) into Eq. (3.18)  

 𝑤(𝑥, 𝑦) = 𝐍𝐝𝑒 , (3.25) 

where 𝐍 is the shape functions matrix given by 

 𝐍 = 𝐰𝑇𝐀−1 .  (3.26) 

Now, substituting Eq. (3.25) into Eq. (3.13) the following strain expression is obtained  



 

 

 

 𝐒 = −𝑧

[
 
 
 
 

𝜕2𝒘

𝜕𝑥2

𝜕2𝒘

𝜕𝑦2

2
𝜕2𝒘

𝜕𝑥𝜕𝑦]
 
 
 
 

𝐀−1𝐝𝑒 , (3.27) 

which, after manipulations results in 

 𝐒 = −𝑧𝐁𝐾𝐀−1𝐝𝑒 , (3.28) 

where 

 𝐁𝐾 = [

0 0 0 2 0 0 6𝑥 2𝑦 0 0 6𝑥𝑦 0
0 0 0 0 0 2 0 0 2𝑥 6𝑦 0 6𝑥𝑦

0 0 0 0 2 0 0 4𝑥 4𝑦 0 6𝑥2 6𝑦2
] . (3.29) 

The displacement field (𝑢, 𝑣 , 𝑤) is now cast into the following vector  

 𝐝 = [
𝑤
𝑢
𝑣
] = [

𝑤

−𝑧
𝜕𝑤

𝜕𝑥

−𝑧
𝜕𝑤

𝜕𝑦

] . (3.30) 

Substituting Eq. (3.54) into (3.30) yields 

 𝐝 = 𝐇𝐁𝑀𝐀−1𝐝𝑒 , (3.31) 

where 

 𝐁𝑀 = [

1 𝑥 𝑦 𝑥2 𝑥𝑦  𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥3𝑦 𝑥𝑦3

0 1 0 2𝑥 𝑦 0 3𝑥2 2𝑥𝑦 𝑦2 0 3𝑦𝑥2 𝑦3

0 0 1 0 𝑥 2𝑦 0 𝑥2 2𝑥𝑦 3𝑦2 𝑥3 3𝑥𝑦2

] , (3.32) 

and 

 𝐇 = [
1 0 0
0 −𝑧 0
0 0 −𝑧

] . (3.33) 

3.2.2 Piezoelectric effects on plate 

The formulation for the piezoelectric effects on plates is based on the following linear 

constitutive relations for piezoelectric material 

 𝐓 = −𝐞𝑝𝑒𝐸𝑝𝑒 + 𝐜𝑝𝑒
𝐸 𝐒 , (3.34) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝐒 𝐸𝑝𝑒 + 𝐞𝑝𝑒

𝑇 𝐒 , (3.35) 
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where, 𝐸𝑝𝑒 = 𝐸3 and 𝐷𝑝𝑒 = 𝐷3 are the electric field and electric displacement 

components in the direction 3, respectively. Since the electric field generated by the 

potential difference at the piezoelectric material electrodes is characterised by the 

same direction as the polarization vector, the vectoral notation of electric field and 

electric displacement given by 

 𝐄 = [
𝐸1

𝐸2

𝐸3

] = [
0
0
𝐸3

] ,        𝐃 = [
𝐷1

𝐷2

𝐷3

] = [
0
0
𝐷3

] , (3.36-3.37) 

can be replaced by scalars 𝐸𝑝𝑒, and 𝐷𝑝𝑒. Also, 𝐞𝑝𝑒 is the vector with stress / charge 

constants defined as 

 𝐞𝑝𝑒 = [
𝑒31

𝑒32

0
] , (3.38) 

and the matrix 𝐜𝑝𝑒
𝐸  contains elastic constants of the piezoelectric material under 

constant electric field (𝐄 = 0) 

  𝐜𝑝𝑒
𝑬 =

[
 
 
 
 
 

𝑌𝑝𝑒
𝐸

1−𝑣𝑝𝑒
𝐸2

𝑣𝑝𝑒
𝐸 𝑌𝑝𝑒

𝐸

1−𝑣𝑝𝑒
𝐸2 0

𝑣𝑝𝑒
𝐸 𝑌𝑝𝑒

𝐸

1−𝑣𝑝𝑒
𝐸2

𝑌𝑝𝑒
𝐸

1−𝑣𝑝𝑒
𝐸2 0

0 0
𝑌𝑝𝑒

𝐸

2(1+𝑣𝑝𝑒
𝐸 )]

 
 
 
 
 

 . (3.39) 

Here, 𝑣𝑝𝑒
𝐸  is the Poisson ratio and 𝑌𝑝𝑒

𝐸  denotes the Young’s modulus of the piezoelectric 

material measured at constant field intensity. Finally, 𝜀𝑝𝑒
𝐒 = 𝜀33

𝐒  is the piezoelectric 

material permittivity in transverse direction under constant strain 

(𝐒 = 0).  

Since the parameters 𝑒31, 𝑒32, as well as 𝜀33
𝐒  are normally not available in commercial 

datasheets of the piezoelectric ceramics, they must be derived by using the following 

form of the governing equations 

 𝐒 = 𝐝𝑝𝑒𝐸𝑝𝑒 + 𝐬𝑝𝑒
𝐸 𝐓 , (3.40) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝐓 𝐸𝑝𝑒 + 𝐝𝑝𝑒

𝑇 𝐓 , (3.41) 

where 𝐝𝑝𝑒 is the vector with piezoelectric strain / charge constants 

 𝐝𝑝𝑒 = [
𝑑31

𝑑32

0

] , (3.42) 

and 𝐬𝑝𝑒
𝐸  gives the compliance constants for the piezoelectric material 



 

 

 

  𝐬𝑝𝑒
𝑬 =

[
 
 
 
 
 

1

𝑌𝑝𝑒
𝐸 −

𝑣𝑝𝑒
𝐸

𝑌𝑝𝑒
𝐸 0

−
𝑣𝑝𝑒

𝐸

𝑌𝑝𝑒
𝐸

1

𝑌𝑝𝑒
𝐸 0

0 0
2(1+𝑣𝑝𝑒

𝐸 )

𝑌𝑝𝑒
𝐸 ]

 
 
 
 
 

 . (3.43) 

Finally, 𝜀𝑝𝑒
𝐓  is the permittivity of piezoelectric material in transverse direction under 

constant stress (𝐓 = 0). 

The values of the piezoelectric material permittivity under constant strain 𝜀𝑝𝑒
𝐒  and the 

values contained in the vector 𝐞𝑝𝑒 can now be obtain by setting stress vector 𝐓 to zero 

in Eqs. (2.13), (2.14), (2.17) and (2.18): 

 0 = −𝐞𝑝𝑒𝐸𝑝𝑒 + 𝐜𝑝𝑒
𝐸 𝐒 , (3.44) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝐒 𝐸𝑝𝑒 + 𝐞𝑝𝑒

𝑇 𝐒 , (3.45) 

 𝐒 = 𝐝𝑝𝑒𝐸𝑝𝑒 , (3.46) 

 𝐷𝑝𝑒 = 𝜀𝑝𝑒
𝐓 𝐸𝑝𝑒 . (3.47) 

Substituting Eq. (2.23) into (2.21) yields 

 𝐞𝑝𝑒 = 𝐜𝑝𝑒
𝐸 𝐝𝑝𝑒 . (3.48) 

Also substituting Eqs. (2.23), (2.24) and (2.25) to Eq. (2.22) gives  

 𝜀𝑝𝑒
𝐒 = 𝜀𝑝𝑒

𝐓 (1 − 𝑘2) , (3.49) 

where, 𝑘 denotes the electromechanical coupling coefficient [15,73] of the 

piezoelectric material and can be defined as 

 𝑘2 =
𝐞𝑝𝑒
𝑇 𝐜𝑝𝑒

𝐸 𝐝𝑝𝑒

𝜀𝑝𝑒
𝐓  . (3.50) 

Application of a potential difference to piezoelectric materials electrodes forces the 

plate lower layer to expand and upper layer to contract, resulting in a curvature. The 

inverse effect will generate a charge across the electrodes, which is collected through 

the surface as a voltage. 

 

Considering only the poling direction, the applied or induced voltage through the 

piezoelectric transducer is given by the following relation [74]. 
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 𝑣𝑝𝑒𝑧
=

(𝑧−
ℎ𝑝

2
)

ℎ𝑝𝑒
𝑣𝑝𝑒 , (3.51) 

where ℎ𝑝 and ℎ𝑝𝑒 are thicknesses of the plate and piezoelectric patch and 𝑣𝑝𝑒 is the 

maximum electric potential at the external surfaces of the piezoelectric layer, while z 

is defined as 

 
ℎ𝑝

2
≤ 𝑧 ≤

ℎ𝑝

2
+ ℎ𝑝𝑒 . (3.52) 

Assuming the electric field to be constant through the piezoelectric layer, the 

following relation can be written 

 𝐸𝑝𝑒 = −
𝜕𝑣𝑝𝑒𝑧

𝜕𝑧
= −

𝑣𝑝𝑒

ℎ𝑝𝑒
 . (3.53) 

3.2.3 Hamilton’s principle 

Hamilton’s principle is used here to derive the set of equations governing the finite 

plate element with a piezoelectric transducer layer [73, 88, 89]. In this case the 

functional of the Lagrangian can be written as follows 

 𝛿𝑆 = ∫ [𝛿(𝑇∗ − 𝑉 + 𝑊𝑒
∗) + 𝛿𝑊𝑛𝑐]𝑑𝑡 = 0

𝑡2

𝑡1
 , (3.54) 

where 𝛿 is the variation operator, 𝑇∗ is the kinetic co-energy 𝑉 is the elastic potential 

energy and 𝛿𝑊𝑛𝑐 stands for the virtual work done by non-conservative forces: 

 𝑇∗ =
1

2
∫ 𝜌𝑝𝑉𝑝

𝐝̇𝑇𝐝̇𝑑𝑉𝑝 +
1

2
∫ 𝜌𝑝𝑒𝑉𝑝𝑒

𝐝̇𝑇𝐝̇𝑑𝑉𝑝𝑒 , (3.55) 

 𝑉 =
1

2
∫ 𝐒𝑇𝐓
𝑉𝑝

𝑑𝑉𝑝 +
1

2
∫ 𝐒𝑇𝐓
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (3.56) 

 𝑊𝑒
∗ =

1

2
∫ 𝐸𝑝𝑒𝐷𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (3.57) 

 𝑊𝑛𝑐 = ∫ 𝐝𝑇𝐟𝑠𝐴𝑝
𝐴𝑝 + ∫ 𝐝𝑇𝐟𝑏𝑉𝑝

𝑉𝑝 − ∫ 𝜎𝑣𝑝𝑒𝐴𝑝𝑒
𝐴𝑝𝑒 , (3.58) 

where, 𝑑𝑉𝑝 and  𝑑𝑉𝑝𝑒 are given by 

 𝑑𝑉𝑝 = ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑧
𝑏

−𝑏

𝑎

−𝑎

ℎ𝑝/2

−ℎ𝑝/2
 , (3.59) 

 𝑑𝑉𝑝𝑒 = ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

−𝑏

𝑎

−𝑎

ℎ𝑝/2+ℎ𝑝𝑒

ℎ𝑝/2
 , (3.60) 

Substituting Eqs. (3.14) and (2.13) into Eq. (3.56) results in 



 

 

 

 𝑉 =
1

2
∫ 𝐒𝑇𝐜𝑝𝐒
𝑉𝑝

𝑑𝑉𝑝 +
1

2
∫ 𝐒𝑇𝐜𝑝𝑒

𝐸 𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
1

2
∫ 𝐒𝑇𝐞𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 , (3.61) 

Finally, by substituting Eq. (2.14) into (3.57) gives: 

 𝑊𝑒
∗ =

1

2
∫ 𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝐸𝑝𝑒𝐞𝑝𝑒

𝑇 𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 . (3.62) 

3.2.4 Variation indicator 

The variations of the Lagrangian and the work done by the non-conservative forces 

can be calculated with the following exact differentiations: 

 𝛿𝐿 =
𝜕𝐿

𝜕𝐝̇
𝛿𝐝̇ +

𝜕𝐿

𝜕𝐒
𝛿𝐒 +

𝜕𝐿

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (3.63) 

   𝛿𝑊𝑛𝑐 =
𝜕𝑊𝑛𝑐

𝜕𝐝
𝛿𝐝 +

𝜕𝑊𝑛𝑐

𝜕𝑣𝑝𝑒
𝛿𝐒 . (3.64) 

 𝛿𝑇∗ =
𝜕𝑇∗

𝜕𝐝̇
𝛿𝐝̇ +

𝜕𝑇∗

𝜕𝐒
𝛿𝐒 +

𝜕𝑇∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (3.65) 

 𝛿𝑉 =
𝜕𝑉

𝜕𝐝̇
𝛿𝐝̇ +

𝜕𝑉

𝜕𝐒
𝛿𝐒 +

𝜕𝑉

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 , (3.66) 

 𝛿𝑊𝑒
∗ =

𝜕𝑊𝑒
∗

𝜕𝐝̇
𝛿𝐝̇ +

𝜕𝑊𝑒
∗

𝜕𝐒
𝛿𝐒 +

𝜕𝑊𝑒
∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 . (3.67) 

Solving Eqs. (3.64)-(3.67) results in 

 𝜕𝑊𝑛𝑐

𝜕𝐝
𝛿𝐝 = ∫ 𝛿𝐝𝑇𝐟𝑠𝐴𝑝

𝐴𝑝 + ∫ 𝛿𝐝𝑇𝐟𝑏𝑉𝑝
𝑉𝑝 , (3.68) 

 𝜕𝑊𝑛𝑐

𝜕𝑣𝑝𝑒
𝛿𝑣𝑝𝑒 = −∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒

𝐴𝑝𝑒 , (3.69) 

 
𝜕𝑇∗

𝜕𝐝̇
𝛿𝐝̇ = ∫ 𝜌𝑝𝑉𝑝

𝛿𝐝̇𝑇𝐝̇𝑑𝑉𝑝 + ∫ 𝜌𝑝𝑒𝑉𝑝𝑒
𝛿𝐝̇𝑇𝐝̇𝑑𝑉𝑝𝑒 , (3.70) 

 𝜕𝑇∗

𝜕𝐒
𝛿𝐒 = 0 , (3.71) 

 𝜕𝑇∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = 0 , (3.72) 

 𝜕𝑉

𝜕𝐝̇
𝛿𝐝̇ = 0 , (3.73) 

 𝜕𝑉

𝜕𝐒
𝛿𝐒 = ∫ 𝛿𝐒𝑇𝐜𝑝𝐒

𝑉𝑝
𝑑𝑉𝑝 + ∫ 𝛿𝐒𝑇𝐜𝑝𝑒

𝐸 𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
1

2
∫ 𝛿𝐒𝑇𝐞𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 , (3.74) 
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 𝜕𝑉

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = −

1

2
∫ 𝐒𝑇𝐞𝑝𝑒𝛿𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (3.75) 

 𝜕𝑊𝑒
∗

𝜕𝐝̇
𝛿𝐝̇ = 0 , (3.76) 

 𝜕𝑊𝑒
∗

𝜕𝐒
𝛿𝐒 = +

1

2
∫ 𝐸𝑝𝑒𝐞𝑝𝑒

𝑇 𝛿𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 , (3.77) 

 𝜕𝑊𝑒
∗

𝜕𝐸𝑝𝑒
𝛿𝐸𝑝𝑒 = ∫ 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝛿𝐸𝑝𝑒𝐞𝑝𝑒

𝑇 𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 . (3.78) 

The Lagrangian variation is then given by the sum of all terms in Eqs. (3.68) to (3.78): 

 

∫ [∫ 𝜌𝑝𝛿𝐝̇𝑇𝐝̇
𝑉𝑝

𝑑𝑉𝑝 + ∫ 𝜌𝑝𝑒𝛿𝐝̇𝑇𝐝̇
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 − ∫ 𝛿𝐒𝑇𝐜𝑝𝐒
𝑉𝑝

𝑑𝑉𝑝
𝑡2

𝑡1
  

−∫ 𝛿𝐒𝑇𝐜𝑝𝑒
𝐸 𝐒

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +

1

2
∫ 𝛿𝐒𝑇𝐞𝑝𝑒𝑉𝑝𝑒

𝐸𝑝𝑒𝑑𝑉𝑝𝑒 +  

+
1

2
∫ 𝐒𝑇𝐞𝑝𝑒𝛿𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +
1

2
∫ 𝐸𝑝𝑒𝐞𝑝𝑒

𝑇 𝛿𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝐸𝑝𝑒𝜀𝑝𝑒
𝑆 𝐸𝑝𝑒𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +
1

2
∫ 𝛿𝐸𝑝𝑒𝐞𝑝𝑒

𝑇 𝐒
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝐝𝑇𝐟𝑠𝐴𝑝
𝐴𝑝 + ∫ 𝛿𝐝𝑇𝐟𝑏𝑉𝑝

𝑉𝑝 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒
𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(3.79) 

Since 𝐒 and 𝐞𝑝𝑒 are vectors, Eq. (3.79) can be simplified 

 

∫ [∫ 𝜌𝑝𝛿𝐝̇𝑇𝐝̇
𝑉𝑝

𝑑𝑉𝑝 + ∫ 𝜌𝑝𝑒𝛿𝐝̇𝑇𝐝̇
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
𝑡2

𝑡1
∫ 𝛿𝐒𝑇𝐜𝑝𝐒
𝑉𝑝

𝑑𝑉𝑝 +  

+∫ (𝛿𝐒𝑇𝐞𝑝𝑒𝐸𝑝𝑒 − 𝛿𝐒𝑇𝐜𝑝𝑒
𝐸 𝐒 + 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒 + 𝛿𝐸𝑝𝑒𝐞𝑝𝑒
𝑇 𝐒)

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝐝𝑇𝐟𝑠𝐴𝑝
𝐴𝑝 + ∫ 𝛿𝐝𝑇𝐟𝑏𝑉𝑝

𝑉𝑝 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒
𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(3.80) 

Variation and differentiation operators are commutative; therefore, integration by 

parts of the first two terms yields 

 

∫ [−∫ 𝜌𝑝𝛿𝐝𝑇𝐝̈
𝑉𝑝

𝑑𝑉𝑝 − ∫ 𝜌𝑝𝑒𝛿𝐝𝑇𝐝̈
𝑉𝑝𝑒

𝑑𝑉𝑝𝑒 −
𝑡2

𝑡1
∫ 𝛿𝐒𝑇𝐜𝑝𝐒
𝑉𝑝

𝑑𝑉𝑝 +  

+∫ (𝛿𝐒𝑇𝐞𝑝𝑒𝐸𝑝𝑒 − 𝛿𝐒𝑇𝐜𝑝𝑒
𝐸 𝐒 + 𝛿𝐸𝑝𝑒𝜀𝑝𝑒

𝑆 𝐸𝑝𝑒 + 𝛿𝐸𝑝𝑒𝐞𝑝𝑒
𝑇 𝐒)

𝑉𝑝𝑒
𝑑𝑉𝑝𝑒 +  

+∫ 𝛿𝐝𝑇𝐟𝑠𝐴𝑝
𝐴𝑝 + ∫ 𝛿𝐝𝑇𝐟𝑏𝑉𝑝

𝑉𝑝 − ∫ 𝜎𝛿𝑣𝑝𝑒𝐴𝑝𝑒
𝐴𝑝𝑒] 𝑑𝑡 = 0 . 

(3.81) 

Note that 𝛿𝐝𝑇 = 0, for 𝑡 = 𝑡1 and 𝑡 = 𝑡2. Now, substitution of Eqs. (3.28) (3.31) and 

(2.30) leads to 



 

 

 

 
∫ {𝛿𝐝𝑘

𝑇[(𝐌𝑝 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑝 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 − 𝐟]
𝑡2

𝑡1
+  

+𝛿𝑣𝑝𝑒[𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 + 𝑞]}𝑑𝑡 = 0 . 

(3.82) 

Here, 

 𝐌𝑝 = 𝜌𝑝 ∫ 𝐀−𝑇𝐁𝑀
𝑇 𝐇𝑇𝐇𝐁𝑀𝐀−1𝑑𝑉𝑝𝑉𝒑

  (3.83) 

 𝐌𝑝𝑒 = 𝜌𝑝𝑒 ∫ 𝐀−𝑇𝐁𝑀
𝑇 𝐇𝑇𝐇𝐁𝑀𝐀−1𝑑𝑉𝑝𝑒𝑉𝒑𝒆

 , (3.84) 

 𝐊𝑝 = 𝐀−𝑇 ∫ 𝑧2𝐁𝐾
𝑇𝐜𝑝𝐁𝐾𝐀−1𝑑𝑉𝑝𝑉𝒑

 , (3.85) 

 𝐊𝑝𝑒 = 𝐀−𝑇 ∫ 𝑧2𝐁𝐾
𝑇𝐜𝑝𝑒

𝐸 𝐁𝐾𝐀−1𝑑𝑉𝑝𝑒𝑉𝒑𝒆
 , (3.86) 

 𝛉𝑝𝑒 = −∫
1

ℎ𝑝𝑒
𝑧𝐞𝑝𝑒

𝑇 𝐁𝐾𝐀−1𝑑𝑉𝑝𝑒𝑉𝑝𝑒
 , (3.87) 

 C𝑝𝑒 = ∫
1

ℎ𝑝𝑒
2 𝜀𝑝𝑒

𝑆 𝑑𝑉𝑝𝑒𝑉𝑝𝑒
 , (3.88) 

 𝑞 = ∫ 𝜎
𝐴𝑝𝑒

𝐴𝑝𝑒 . (3.89) 

 𝐟 = ∫ 𝐟𝑠𝐴𝑝𝑒
𝑑𝐴𝑝 + ∫ 𝐟𝑏𝑉𝑝𝑒

𝑑𝑉𝑝 , (3.90) 

Breaking the volume integrals from Eqs. (3.85) and (3.86) into products of area and 

thickness integrals and solving those thickness integrals gives the following 

expressions for the stiffens matrices 

 𝐊𝑝 = ℎ1𝐀
−𝑇 ∫ 𝐁𝐾

𝑇𝐜𝑝𝐁𝐾𝐀−1𝑑𝑉𝑝𝐴𝒑
 , (3.91) 

 𝐊𝑝𝑒 = ℎ2𝐀
−𝑇 ∫ 𝐁𝐾

𝑇𝐜𝑝𝑒
𝐸 𝐁𝐾𝐀−1𝑑𝐴𝑝𝑒𝐴𝒑𝒆

 , (3.92) 

where 

 ℎ1 = ∫ 𝑧2𝑑𝑧
1

2
ℎ𝑝

−
1

2
ℎ𝑝

=
ℎ𝑝

3

12
 , (3.93) 

 
ℎ2 = ∫ 𝑧2𝑑𝑧

1

2
ℎ𝑝+ℎ𝑝𝑒

1

2
ℎ𝑝

= ℎ𝑝𝑒 (
ℎ𝑝

2
+

ℎ𝑝𝑒

2
)
2

+
ℎ𝑝𝑒

3

12
 . 

(3.94) 

Similarly, integration in the z direction, Eqs. (3.84) and (3.85) results in the mass 

matrix expressions 
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 𝐌𝑝 = 𝜌𝑝 ∫ 𝐀−𝑇𝐁𝑀
𝑇 𝐇𝑝𝐁𝑀𝐀−1𝑑𝐴𝑝𝐴𝒑

 , (3.95) 

 𝐌𝑝𝑒 = 𝜌𝑝𝑒 ∫ 𝐀−𝑇𝐁𝑀
𝑇 𝐇𝑝𝑒𝐁𝑀𝐀−1𝑑𝐴𝑝𝑒𝐴𝒑𝒆

 , (3.96) 

where matrices 𝐇𝑝 and 𝐇𝑝𝑒 are given by 

 𝐇𝑝 = [

ℎ𝑝

ℎ1

ℎ1

] ,        𝐇𝑝𝑒 = [

ℎ𝑝𝑒

ℎ2

ℎ2

] . (3.97- 3.98) 

Now, integration in the z direction Eq. (3.87) gives  

 𝛉𝑝𝑒 = −
1

2
(ℎ𝑝 + ℎ𝑝𝑒) ∫ 𝐞𝑝𝑒

𝑇 𝐁𝐾𝐀−1𝑑𝐴𝑝𝑒𝐴𝑝𝑒
 . (3.99) 

Finally integrating Eq. (3.88) over the volume of piezoelectric element results in 

 C𝑝𝑒 =
4𝑎𝑏𝜀𝑝𝑒

𝑆

ℎ𝑝𝑒
 . (3.100) 

Allowing arbitrary variations of 𝐝𝑘(𝑡) and 𝑣𝑝𝑒(𝑡), such that 𝐝𝑘 = 0 for 𝑡 = 𝑡1, 𝑡 = 𝑡2, 

Eq. (3.82) leads to the following two matrix equations:  

 (𝐌𝑝 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑝 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 − 𝐟 = 𝟎 , (3.101) 

   𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 + 𝑞 = 0 . (3.102) 

3.3  DISPERSION PROPERTIES 

In this section an infinite, two-dimensional periodic material is considered, which 

consists of a thin aluminium substrate with arrays of periodic inclusions. Inclusions 

were chosen to be point masses, spring-mass vibration absorbers and shunted 

piezoelectric patch transducers. The dispersion relations for an infinite plate with 

periodic arrays of inclusions are calculated considering a free wave propagation. In 

periodic media, a free wave propagation can be conveniently investigated by 

analysing the dynamics of a single unit cell. For this purpose, real parts of the 

propagation vectors are always set to zero, i.e. 

 𝛍 = [𝜇𝑥 , 𝜇𝑦] = [0 + j𝜖𝑥, 0 + j𝜖𝑦] . (3.103) 

where, 𝜖𝑥 = 𝑘𝑥𝐿 and 𝜖𝑦 = 𝑘𝑦𝐿 are equal to the wavenumber component in 

propagation direction multiplied by the spatial period of the unit cell. Purely 

imaginary propagation vectors correspond to waves which are propagating freely, 



 

 

 

without amplitude attenuation as elastic waves propagate from one cell to the other. 

In this respect, the finite element method has been used to model the dynamics of the 

unit cells composed of 10 × 10, 4-nodes, 12-degrees of freedom Kirchhoff plate 

elements. The material and geometrical properties used for these studies are 

summarized in Table 3.1. 

 

Table 3.1. Physical and geometrical parameters of the plate and piezoelectric patches.  

Parameter Plate Piezoelectric patch 

Thickness ℎ𝑝 = 1 𝑚𝑚 ℎ𝑝𝑒 = 1 𝑚𝑚 

Area 𝐴𝑝 = 10 𝑐𝑚 × 10 𝑐𝑚 𝐴𝑝𝑒 = 4 𝑐𝑚 × 4 𝑐𝑚 

Density 𝜌𝑝 = 2700 𝑘𝑔/𝑚3 𝜌𝑝𝑒 = 7600 𝑘𝑔/𝑚3 

Young’s modulus 𝑌𝑝 = 7 × 1010 𝑁/𝑚2 𝑌𝑝𝑒 = 2.7 × 1010 𝑁/𝑚2 

Poisson’s ratio 𝜐𝑝 = 0.33 𝜐𝑝𝑒 = 0.275 

strain/charge constants  𝑑31
0 = 150 × 10−12 𝑚/𝑉 

𝑑32
0 = 150 × 10−12 𝑚/𝑉 

𝑑36
0 = 0 

permittivity  𝜀𝑝𝑒 = 84 × 10−9 𝐹/𝑚 

capacitance  𝐶𝑝𝑒 = 3.167 × 10−9 𝐹 

Lattice constant 10 cm  

 

3.3.1 Infinite plate with no inclusions 

The governing equation for the undamped plate unit is given by the following 

relation 

 𝐌𝑝𝐝̈ + 𝐊𝑝𝐝 = 𝐟. (3.104) 

Here, 𝐝 = [𝐝𝑖 𝐝𝑏 𝐝𝑡  𝐝𝑙  𝐝𝑟 𝐝𝑙𝑏 𝐝𝑟𝑏 𝐝𝑙𝑡 𝐝𝑟𝑡]
𝑇 is the vector of nodal displacements, 

partitioned according to the nodal positions illustrated in Figure 3.2 (a). Also,  

𝐟 = [𝐟𝑖  𝐟𝑏 𝐟𝑡  𝐟𝑙  𝐟𝑟 𝐟𝑙𝑏 𝐟𝑟𝑏 𝐟𝑙𝑡  𝐟𝑟𝑡]
𝑇 is the corresponding vector of nodal forces. Structural 

mass and stiffness matrices are defined in Eq. (3.91) and (3.95).  

Assuming harmonic motion at frequency ω Eq. (3.104) turns into 

 ( 𝐊𝑢𝑢 − 𝜔2𝐌𝑢𝑢)𝐝 = 𝐟 . (3.105) 

Application of the Bloch theorem yields 

 𝐝𝑡 = 𝐈𝑒j𝑘𝑦𝐿𝐝𝑏 , (3.106) 
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 𝐝𝑟 = 𝐈𝑒j𝑘𝑥𝐿𝐝𝑙 , (3.107) 

 𝐝𝑙𝑡 = 𝐈𝑒j𝑘𝑦𝐿𝐝𝑙𝑏 , (3.108) 

 𝐝𝑟𝑏 = 𝐈𝑒j𝑘𝑥𝐿𝐝𝑙𝑏 , (3.109) 

 𝐝𝑟𝑡 = 𝐈𝑒j(𝑘𝑥+𝑘𝑦)𝐿𝐝𝑙𝑏 , (3.110) 

and 

 𝐟𝑏 + 𝑒−j𝑘𝑦𝐿𝐟𝑡 = 𝟎 , (3.111) 

 𝐟𝑙 + 𝑒−j𝑘𝑥𝐿𝐟𝑟 = 𝟎 , (3.112) 

 𝐟𝑙𝑏 + 𝑒−j𝑘𝑥𝐿𝐟𝑟𝑏 + 𝑒−j𝑘𝑦𝐿𝐟𝑙𝑡 + 𝑒−j(𝑘𝑥+𝑘𝑦)𝐿𝐟𝑟𝑡 , (3.113) 

where 𝑘𝑥𝐿 and 𝑘𝑦𝐿 are the propagation wave vector components in x and y directions 

and 𝐿 is the length of a unit cell. Note that, since a free wave propagation is considered 

only purely imaginary propagation vectors are utilized. 

Using the relations (3.106)-(3.113) the following transfer matrix can be defined 

 T=[

𝐈 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐈 𝐈𝑒j𝑘𝑦𝐿 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐈 𝐈𝑒j𝑘𝑥𝐿 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐈 𝐈𝑒j𝑘𝑥𝐿 𝐈𝑒j𝑘𝑦𝐿 𝐈𝑒j(𝑘𝑥+𝑘𝑦)𝐿

]

𝑇

, (3.114) 

for the displacement vector transformation 

 𝐝 = 𝐓𝐝𝑟𝑒 , (3.115) 

Where 𝐝𝑟𝑒 = [𝐝𝑖  𝐝𝑏 𝐝𝑙  𝐝𝑙𝑏]
𝑇  is the reduced displacement vector. Substituting Eq. 

(3.114) into Eq. (3.105) yields  

 ( 𝐊𝑝𝐓 − 𝜔2𝐌𝑝𝐓)𝐝𝑟𝑒 = 𝐟 . (3.116) 

Pre-multiplying the above equation by 𝐓𝐻 imposes force equilibrium condition at the  

boundaries between the unit cells and leads to 

 (𝐓𝐻 𝐊𝑝𝐓 − 𝜔2𝐓𝐻𝐌𝑝𝐓)𝐝𝑟𝑒 = 𝐓𝐻𝐟 . (3.117) 

Here, 𝐊𝑒 = 𝐓𝐻 𝐊𝑝𝐓 and 𝐌𝑟𝑒 = 𝐓𝐻𝐌𝑝𝐓 are reduced stiffness and mass matrices and 

𝐟𝑟𝑒 = 𝐓𝐻𝐟  is the reduced force vector. Superscript 𝐻 denotes the Hermitian 

transpose. 

 



 

 

 

 

Figure 3.2 (a) Depiction of a unit cell comprising FEM mesh (b) Reciprocal space with 

irreducible Brillouin zone indicated by blue color. 

 

Under the assumption of no external forces applied on the internal nodes 𝐟𝑟𝑒 = 𝟎, Eq. 

(3.119) becomes the linear eigenvalue problem of the form 

 ( 𝐊𝑟𝑒 − 𝜔2𝐌𝑟𝑒)𝐝𝑟𝒆 = 𝟎 . (3.118) 

Eq. (3.118) can be solved to obtain dispersion relations for given propagation direction 

𝜖 = [𝜖𝑥  𝜖𝑦], where 𝜖𝑥 = 𝑘𝑥𝐿 and 𝜖𝑦 = 𝑘𝑦𝐿. To ensure completeness of the band 

structure of the two-dimensional lattice, it is necessary to solve the eigenvalue 

problem for all 𝜖 belonging to the irreducible Brillouin zone indicated by blue colour 

in Figure 3.2 (b) [83,84]. However, in this case, due to axial symmetries and angular 

symmetry of the unit cell it is sufficient to solve only for vectors belonging to 

irreducible Brillouin contour: Γ(0,0) →  X(0, π) → M(π, π) → Γ(0,0) [84]. Solving 

eigenvalue problems for the vectors comprised in the irreducible Brillouin contour, 

the frequency zones of free wave propagation are acquired. Frequency bands that are 

not the solutions to the eigenvalue problem are the frequencies at which waves cannot 

propagate without attenuation and thus belong to the stop band effects. 

 

Figure 3.3 (a) shows the dispersion curves obtained for an infinite uniform plate with 

reference to the vectors belonging to irreducible Brillouin contour and frequency ratio 

 𝛺 =
𝜔

𝜔𝐵
 , (3.119) 
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where 𝜔𝐵is the so-called Bragg frequency and defines the frequency at which the 

flexural wavelength on the plate equals the separation distance between the centres 

of two consecutive unit cells. 

 𝜔𝐵 =
2𝜋2

2𝐿𝑐𝑒𝑙𝑙
2 √

ℎ𝑝
2𝑌𝑝

12𝜌𝑝(1−𝜐𝑝
2)
 , (3.120) 

Expressing the frequencies as ratios, makes the result independent from the unit cell 

length.  

 

As can be seen from Figure 3.3 (a) every dimensionless frequency can be associated 

with the wave vector belonging to irreducible Brillouin contour, thus the stop band 

phenomenon does not occur in this structure. The visualisations of the displacement 

patterns related to particular points (propagation vectors) on the dispersion diagram 

are depicted in Figure 3.4. Here, plot (b) depicts no propagation, since both 

propagation vector components are equal to zero. Plot (c) depicts propagation in x 

direction with a spatial periodicity equal to 
π

2
 per unit cell length. Plot d illustrates the 

propagation along the x axis when the spatial period reaches π over a unit cell length. 

In contrast to the previous ones, plots e and f illustrate wave propagation in both 

directions, with spatial periods across the unit cell equal to [
π

2
, π] and [π, π], 

respectively. 

 

 

Figure 3.3 (a) Dispersion curves for a uniform infinite plate; (b) Depiction of the unit 

cell. 

 

 a  b 



 

 

 

 

Figure 3.4 Displacement patterns for 9 unit cells of a uniform, infinite plate. The 

visualized displacement patterns: (b), (c), (d), (e), (f) correspond to the points 

indicated with black dots on dispersion diagram in plot (a). 
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3.3.2 Infinite plate with regular array of point masses 

Addition of periodic point masses to a plate structure creates impedance mismatch 

zones and give foundations for the interference stop band effect. 

 

 

Figure 3.5 Dispersion curves for an infinite plate with periodic point mass equal to 

20% (b) and 70% (b) of the mass of the unit cell. (c) Depiction of the unit cell. 

 

Figure 3.5 (a) and (b), presents dispersion curves for an infinite plate equipped with 

periodic point masses equal to 20% and 70% of the unit cell mass. As can be noticed 

from plot (a), the addition of point mass creates an opening for dimensionless 

frequencies from about 0.8 to 1 for point X(0, π) of irreducible Brillouin contour, 

indicating a frequency zone for which the free wave propagation in Γ →  X direction 

is stopped. A similar effect is visible for point M(π, π) for dimensionless frequencies 

of 1.4 to 1.8, leading to the conclusion that a free wave propagation in certain 

directions is prohibited, but not in all directions due to the significant mismatch 

between frequency zones in which the openings occur for X and M.  

 

 a  b 

 c 



 

 

 

Increasing the point mass to 70% of the unit cell mass creates wider openings at points 

X(0, π) and M(π, π), and the frequency zones associated with openings partially 

overlap allowing the stop band effect to develop within dimensionless frequency 

between 0.9 and 1. Due to rather significant mass required to achieve this effect, 

generation of stop bands in this way appears to be rather impractical. 

 

 

Figure 3.6 Relation between added discrete mass and distribution of the stop band 

effect. 

 

Figure 3.6 shows the relationship between dimensionless mass defined as the ratio of 

discrete mass and mass of the unit cell  

 𝛾 =
𝑚𝑑

𝑚𝑐𝑒𝑙𝑙
 , (3.121) 

and the frequency distribution of the stop band effect. According to Figure 3.6 waves 

can propagate in the frequency ranges associated with black vertical lines, while the 

white opening refers to the frequencies at which propagation in every direction is 

stopped. 

 

It is easy to notice that the upper frequency of the stop band effect (𝛺 = 1) does not 

vary despite of the increasing mass, which can be explained by the scatterers being in 

nodal positions [63, 78]. Thus, at frequencies higher than 1 waves can propagate 

without interactions with discrete masses as depicted in plots (c), (e) and (f) of  

Figure 3.7. 
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Figure 3.7 Displacement patterns for 9 unit cells of an infinite plate with periodic point 

masses equal to 20% of the mass of the unit cells. The visualized displacement 

patterns: (b), (c), (d), (e), (f) correspond to the points indicated with black dots on 

dispersion diagram in plot (a). 



 

 

 

3.3.3 Infinite plate with regular array of spring-mass vibration absorbers 

Another type of stop band effect can be generated through locally resonant inclusions 

i.e. spring-mass vibration absorbers (TVAs). Application of the vibration absorber to 

a cell structure is simple but requires an additional degree of freedom associated with 

the TVA. Thus, the displacement and force vectors become 𝐝̃ = [𝑑𝑡𝑣𝑎 𝐝𝑇]𝑇, 

 𝐟 = [𝑓𝑡𝑣𝑎  𝐟𝑇]𝑇 as well as the transfer matrix 

 𝐓̃ = [
1 0
0 𝐓𝑇]

𝑇

 , (3.122) 

where matrix 𝐓 is given by Eq. (3.114). 

Mass and stiffness matrices of a unit cell also need to be expanded by one row and 

one column 

 𝐌̃𝑝 = [
0 0
0 𝐌𝑝

] , (3.123) 

 𝐊̃𝑝 = [
0 0
0 𝐊𝑝

] , (3.124) 

and sum with corresponding mass and stiffness matrices of the TVA, whose matrices 

are given by 

 𝐌𝑡𝑣𝑎 = [
𝑚𝑠 0
0 0

] , (3.125) 

 𝐊𝑡𝑣𝑎 = [
𝑘𝑡𝑣𝑎 −𝑘𝑡𝑣𝑎

−𝑘𝑡𝑣𝑎 𝑘𝑡𝑣𝑎
] . (3.126) 

Note that 𝐊𝑡𝑣𝑎 and 𝐌𝑡𝑣𝑎 need to be first assembled into global system matrices 

compatible with matrices of a unit cell.  

In the following example, the vibration absorber is attached to the inner node of a unit 

cell, thus 𝐊𝑡𝑣𝑎 turns into 𝑁 × 𝑁 𝐊̃𝑡𝑣𝑎 matrix with four non-zero elements 

 𝐊̃𝑡𝑣𝑎(1,1) = 𝑘𝑡𝑣𝑎 ,        𝐊̃𝑡𝑣𝑎(1, 𝑖) = −𝑘𝑡𝑣𝑎 , (3.127-3.128) 

 𝐊̃𝑡𝑣𝑎(𝑖, 1) = −𝑘𝑡𝑣𝑎 ,        𝐊̃𝑡𝑣𝑎(𝑖, 𝑖) = 𝑘𝑡𝑣𝑎 , (3.129-3.130) 

while 𝐌𝑡𝑣𝑎 is formed into a 𝑁 × 𝑁 𝐌̃𝑡𝑣𝑎 matrix, with one non-zero element 

 𝐌̃𝑡𝑣𝑎(1,1) = 𝑚𝑠 . (3.131) 

In above equations, 𝑘𝑡𝑣𝑎 is the stiffness of the spring and 𝑚𝑠 is the suspended mass, 

and 𝑁 stands for the total number of degrees of freedom in the unit cell. From this 
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point onwards, the procedure of obtaining dispersion relations is the same as that 

already described for point masses.  

In this case, the normalised frequency is defined with the following formula 

 Ω0 =
𝜔𝑡𝑣𝑎

𝜔𝐵
=

√𝑘𝑡𝑣𝑎

𝑚𝑠
/𝜔𝐵 , (3.132) 

Where, Figure 3.8 presents dispersion curves for an infinite plate equipped with 

periodic vibration absorbers tuned to Ω0 = 0.5 and whose suspended masses are 

equal to 20% of the unit cell mass.  

 

 

Figure 3.8 Dispersion curves for an infinite plate with periodic vibration absorbers 

tuned to dimensionless frequency Ω0 = 0.5 (a) and Ω0 = 1 (b) and whose mass is 

equal to 20% of the unit cell mass. (c) Depiction of a unit cell. 

 

Due to resonance effects of vibration absorbers, the resonance stop band phenomenon 

develops from dimensionless frequency of about 0.48 to 0.51. One can notice that this 

effect differs from the one developed for the point masses. The differences relate to 

the way how the bottom curve is being held down by the resonance effect and the 

presence of additional curve above resonance frequency of the TVAs. The top and 

bottom curves illustrate the classic effect of phase change of the motion of the 



 

 

 

oscillating spring mass system when crossing its resonance frequency. Where the 

bottom curve is associated with in-phase, and top curve with out of phase motion of 

the plate and TVAs masses [63,78].  

 

 

Figure 3.9 Relations between resonance frequency of the absorbers and distributions 

of the stop band effects for the absorbers equipped with suspended mass equal to 

20% (a) and 40% (b) of the unit cell mass. (c) Relation between suspended mass of the 

absorbers and distribution of the stop band effect for the arbitrarily chosen resonance 

frequency 0.5. 

 

A wider resonance stop band effect is depicted in plot (b) of Figure 3.8, which is 

generated by setting the resonance frequency of vibration absorbers to dimensionless 

frequency 1, which is in fact the upper frequency limit for the TVAs. This can be 

confirmed by plots (a) and (b) of Figure 3.9, where the frequency distribution of the 
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stop band effect is shown in relation to the resonance frequency of vibration absorbers 

equipped with mass equal to 20% and 40% of the unit cell, respectively. Plots (a) and 

(b) indicate that the resonance stop band effect does not appear above dimensionless 

frequency 1, despite of vibration absorbers being tuned to dimensionless frequency 

higher than one. This is because TVAs are either in nodal positions or if the spatial 

wavelengths are short enough to create displacement pattern that avoids interactions 

with the periodic grid of resonators. Another interesting phenomenon can also be 

seen from plots a and b in Figure 3.9. Namely, the tendency of broadening of the 

resonance stop band effect when resonance frequency of the vibration absorbers 

become close to dimensionless frequency 1. In this case of the resonance stop band 

effect couples with the interference stop band effect generated by the waves scattered 

from the suspended masses and as a result, a wider broadband attenuation 

phenomenon is obtained. Figure 3.9 (c) shows the relation between stop band 

distribution and the suspended mass of the absorbers. The resonance frequency was 

arbitrarily chosen to be 0.5 and the stiffness of the absorbers was varied to maintain 

the resonance frequency while increasing the suspended mass ratio. Increasing the 

mass results in broadening the resonance stop band phenomenon, although  

a significant mass is required to achieve low frequency broad band effects. Finally, 

Figure 3.10 illustrates the displacement patterns for the edge frequencies of the 

resonance stop band effect associated with two propagation vectors [π, 0] and [π, π]. 



 

 

 

 

Figure 3.10 Displacement patterns for 9 unit cells of an infinite plate with periodic 

spring-mass vibration absorbers tuned to dimensionless frequency 0.5 and whose 

masses are equal to 20% of the mass of the unit cell. The visualized displacement 

patterns: (b), (c), (d), (e), (f) correspond to the points indicated with black dots on 

dispersion diagram in plot (a). 
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3.3.4 Infinite plate with regular array of vibration absorbers equipped with base masses 

In this section the effect produced by arrays of vibration absorbers with base point 

mass is analysed. As seen in Section 3.3.2 the point base mass should introduce an 

interference stop band effect alongside with the resonance stop bane effect of the 

TVA. Casting the base mass 𝑚𝑏 in vibration absorber is simple and limited to addition 

of a single nonzero element into 𝐌𝑡𝑣𝑎 matrix, so that 

 𝐌𝑡𝑣𝑎 = [
𝑚𝑠 0
0 𝑚𝑏

] , (3.133) 

which after turning into 𝑁 × 𝑁 global matrix is characterised by two non-zero 

elements:  

 𝐌̃𝑡𝑣𝑎(1,1) = 𝑚𝑠 ,        𝐌̃𝑡𝑣𝑎(𝑖, 𝑖) = 𝑚𝑏 . (3.134-3.135) 

From this point onwards, the derivation of the band structure does not differ from 

the one already described.  

 

Figure 3.11 (a) depicts the band structure obtained for infinite plate equipped with 

periodic grid of tunable vibration absorbers, whose base mass is equal to 70% and 

suspended mass to 20% of the unit cell mass. As anticipated above, Figure 3.11 (a) 

shows coexistence of two kinds of stop band phenomena. The first stop band effect 

occurs around resonance frequency of the oscillating vibration absorbers and has 

pure resonance character, while the second, around dimensionless frequency 1 and 

relates to the interference effects of the scattering waves from the base masses.  

The relation between the distributions of those stop band effects and the resonance 

frequency of the vibration absorbers is summarised in plots (a) and (b) of Figure 3.12, 

where plot (a) accounts for the vibration absorbers whose base masses are equal to 

40% of the unit cell mass, while plot (b) for the base masses equal to 70% of the unit 

cell mass. In both cases suspended mass was at 20% of the unit cell mass.  

As can be seen from both plots of Figure 3.12 the resonance stop band becomes wider 

with the resonance frequency Ω0 due to stronger coupling with interference effect 

generated by the suspended mass until it reaches its maximum width at around  

Ω0 = 1. Further, increasing the resonance frequency of vibration absorbers does not 

generate stop band effect above dimensionless frequency 1 and has no impact on the 

distribution of the existing stop band. This leads to the conclusion, that the remaining 

effect is mostly driven by the interference, due to the base mass. Moreover, as 

depicted in plot (b) if the suspended mass is significant, an additional interference 



 

 

 

stop band coexists with the resonance stop band up to the resonance frequencies close 

to dimensionless frequency 1. At these frequencies distribution of the interference 

stop band effect becomes narrow, until it vanishes at around Ω0 = 0.8. Figure 3.13 

illustrates the displacement patterns for the edge frequencies of the resonance and 

interference stop band effects associated with two propagation vectors [π, 0] and 

[π, π]. 

 

 

Figure 3.11 (a) Dispersion curves for an infinite plate with periodic vibration 

absorbers equipped with base masses and tuned to dimensionless frequency 0.5. The 

base masses are equal to 70% and proof masses to 20% of the unit cell mass. (b) 

Depiction of a unit cell. 

 

  

Figure 3.12 Relations between resonance frequency of the absorbers and distributions 

of the stop band effects for the absorbers equipped with base masses equal to 40% (a) 

and 70% (b) of the unit cell mass. In both cases the proof masses are equal to 20% of 

the unit cell mass 
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Figure 3.13 Displacement patterns for 9 unit cells of an infinite plate with periodic 

spring-mass vibration absorbers tuned to dimensionless frequency 0.5 and whose 

proof masses are equal to 20% and base masses to 70% of the mass of the unit cell. 

The visualized displacement patterns: (b), (c), (d), (e), (f) corresponds to the points 

indicated with black dots on dispersion diagram in plot (a). 



 

 

 

3.3.5 Infinite plate with regular array of piezoelectric patch transducers connected to 

inductive shunts 

Application of periodic arrays of piezoelectric patch transducers connected to shunt 

circuits can also lead to developments of the stop band phenomena. The concept of 

vibration absorber composed of a piezoelectric patch transducer connected to a shunt 

circuit is very similar to the tunable vibration absorber since as discussed in Section 

1.2 it produces an electro-mechanical resonant vibration absorption effect. The 

principle of operation of these devices lies in the conversion of mechanical energy 

from vibrations into electrical energy dissipated in the components of electrical 

circuits. The shunt circuits are often chosen to maximise energy transfer from one 

domain to the other at resonance frequency, so that the vibration absorption of the 

mechanical vibrations can be optimised. An inductive shunt is used, which combined 

with the inherent capacitive effect of the piezoelectric transducers give rise to a 

resonant circuit.  

 

The work here starts from the governing equations of the unit cell 

 (𝐌𝑝 + 𝐌𝑝𝑒)𝐝̈𝑘 + (𝐊𝑝 + 𝐊𝑝𝑒)𝐝𝑘 + 𝛉𝑝𝑒𝑣𝑝𝑒 − 𝐟 = 𝟎 , (3.136) 

 𝛉𝑝𝑒
𝑇 𝐝𝑘 + 𝐶𝑝𝑒𝑣𝑝𝑒 + 𝑞 = 0 . (3.137) 

First it is assumed that piezoelectric patch is shunted by a single inductor L in which 

case 

 𝑣𝑝𝑒 = 𝐿𝑞̈ . (3.138) 

In this case the piezoelectric patch charge can be treated as additional degree of 

freedom, such that Eqs.(3.136) and (3.137) can be casted in such a way as 

 𝐌𝐮̈ + 𝐊𝐮 = 𝐅 , (3.139) 

where the vectors are organized in following way 𝐮 = [𝐝 𝑞]𝑇, 𝐅 = [𝐟 0]𝑇 and the 

matrices defined as 

 𝐌 = [
𝐌𝑡 𝛉𝑝𝑒𝐿

𝟎 𝐶𝑝𝑒𝐿
] , (3.140) 

 
𝐊 = [

𝐊𝑡 𝟎

𝛉𝑝𝑒
𝑇 −1

] . 
(3.141) 

Assuming harmonic motion at frequency 𝜔 Eq. 42 becomes 
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 ( 𝐊 − 𝜔2𝐌)𝐮 = 𝐅 , (3.142) 

where vectors 𝐮 and 𝐅 are arranged according to Figure 3.2, 

 𝐮 = [𝐝𝑖 𝐝𝑏 𝐝𝑡  𝐝𝑙  𝐝𝑟 𝐝𝑙𝑏 𝐝𝑟𝑏 𝐝𝑙𝑡 𝐝𝑟𝑡  𝑞]𝑇, 𝐅 = [𝐟𝑖  𝐟𝑏 𝐟𝑡  𝐟𝑙  𝐟𝑟  𝐟𝑙𝑏 𝐟𝑟𝑏 𝐟𝑙𝑡  𝐟𝑟𝑡  0]𝑇. Application 

of the Blochs theorem leads to a transfer matrix 

 𝐓̃ = [𝐓
𝑇 0

0 1
]
𝑇

 , (3.143) 

where the matrix 𝐓 is given by Eq. (3.114). From this point onwards, the procedure of 

obtaining dispersion curves does not vary from that described in the first subsection. 

 

 

Figure 3.14 (a) Dispersion curves of an infinite plate with periodic piezoelectric patch 

transducers whose electrical terminals are open. (b) Depiction of a unit cell. 

 

Figure 3.14(a) presents the dispersion curves for an infinite plate with periodic array 

of piezoelectric patch transducers whose electrical terminals remain open 𝐿 = 0. The 

resultant dispersion curves do not vary much from the ones obtained for an ordinary 

plate with no inclusions. Every frequency on the band diagram can be associated with 

a point in the wave domain, thus there are no frequency zones where the wave 

propagation is stopped. Although there is no stop band phenomenon present, some 

interference effects occur for two directions of propagations [π, 0], [π, π] where the 

development of small openings can be spotted. The displacement pattern associated 

with edge frequencies of these effects are depicted in plots (b), (c), (e) and (f) of 

Figure 3.15.  

 a  b 



 

 

 

 

Figure 3.15 Displacement patterns for 9 unit cells of an infinite plate with piezoelectric 

patch transducers whose electrical terminals are open. The visualized displacement 

patterns: (b), (c), (d), (e), (f) correspond to the points indicated with black dots on 

dispersion diagram in plot (a). 
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When the shunt inductance is greater than zero, the shunted piezoelectric patch 

produces a vibration absorption effect such that separation of dispersion curves 

occurs, which leads to the formation of the narrow resonance stop band effect around 

the dimensionless frequency 0.5. Further analysis showed that a stop band 

distribution is indeed very narrow within investigated frequency span 0-1.5 and does 

not vary much. Due to this fact, the relation between resonance frequency and a 

distribution of the stop is only to small extend depicted in Figure 3.17. 

 

  

Figure 3.16 (a) Dispersion curves of an infinite plate with periodic piezoelectric patch 

transducers connected to single inductors tuned to dimensionless frequency 0.5 (b) 

Depiction of a unit cell. (c) Shunting inductor. 

 

  

Figure 3.17 (a) Relation between resonance frequency of the piezoelectric patches 

connected to single inductors and distribution of the stop band effects. (b) Magnified 

part of the relation indicated in plot (a). 

  

 a  b  c 



 

 

 

 

Figure 3.18 Displacement patterns for 9 unit cells of an infinite plate with piezoelectric 

patch transducers connected to single inductors and tuned to dimensionless 

frequency 0.5. The visualized displacement patterns: (b), (c), (d), (e), (f) correspond to 

the points indicated with black dots on dispersion diagram in (a). 
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3.3.6 Infinite plate with regular array of piezoelectric patch transducers connected to multi-

resonant shunt circuits 

In this section the effect produced by two-dimensional arrays of piezoelectric patches 

connected to multi-resonant shunts is analysed. Assuming the electrical functions are 

time-harmonic and given in the form 𝑓(𝑡) = 𝑓(𝜔)𝑒𝑥𝑝 (j𝜔), where 𝑓(𝜔) is the complex 

amplitude, 𝜔 is the circular frequency, the ratio of charge and potential difference 

across of the current flowing shunt circuit can be expressed as the sum of two second 

order terms: 

 
𝑞

𝑣𝑝𝑒
=

1

𝐿𝑏1

−𝜔2+
1

𝐶𝑓1𝐿𝑏1

+

1

𝐿𝑏2

−𝜔2+
1

𝐶𝑓2𝐿𝑏2

 , (3.144) 

Each second order term in Eq. (3.144) can be envisaged as the ratio between a 

generalized charge and potential difference. Thus, the charge can be expressed with 

the following matrix equation 

 𝑞 = 𝚿𝚲 , (3.145) 

where = [
1

√𝐿𝑏1

1

√𝐿𝑏2
] . And 𝚲 = ⌊𝛬1 𝛬2⌋

𝑇 is the vectors with generalized charges, 

which can be given by the following matrix relation 

 𝚲 = 𝐆𝚿𝑇𝑣𝑝𝑒 , (3.146) 

that is 

 [
𝛬1

𝛬2
] =

[
 
 
 

1

−𝜔2+
1

𝐶𝑓1𝐿𝑏1

1

−𝜔2+
1

𝐶𝑓2𝐿𝑏2]
 
 
 

[

1

√𝐿𝑏1

1

√𝐿𝑏2

] 𝑣𝑝𝑒 . (3.147) 

Considering the expanded form of Eq. (3.147) 

 𝐈𝚲̈ + 𝛀𝚲 = 𝚿𝑇𝑣𝑝𝑒 . (3.148) 

Where 

 𝐈 = [ 1
1

] , . (3.149) 



 

 

 

 

𝛀 = [

1

𝐶𝑓1𝐿𝑏1

1

𝐶𝑓2𝐿𝑏2

] . 

(3.150) 

With Eqs. (3.145)-(3.150) it is possible to express the governing Eqs. (3.136)-(3.137) in 

terms of vectors: 𝐝̈, 𝐝 and 𝚲̈, 𝚲. First, substituting Eq. (3.145) to Eq. (3.137) yields 

 𝛉𝑝𝑒
𝑇 𝐝 + 𝐶𝑝𝑒𝑣𝑝𝑒 = 𝚿𝚲 , (3.151) 

so that potential difference can be written as 

 𝑣𝑝𝑒 = 𝐶𝑝𝑒
−1𝚿𝚲 − 𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 . (3.152) 

This equation is in turn substituted to Eq. (3.136) to obtain the first set of the governing 

equations in terms of the vectors: 𝐝̈, 𝐝 and  𝚲̈, 𝚲: 

 𝐌𝑡𝐝̈ + (𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 )𝐝 + 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿𝚲 = 𝐟 . (3.153) 

The second set of governing equations is derived from pre-multiplying of Eq. (3.152) 

by 𝚿𝑇 

 𝚿𝑇𝑣𝑝𝑒 = 𝚿𝑇𝐶𝑝𝑒
−1𝚿𝚲 − 𝚿𝑇𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 , (3.154) 

and from substitution of Eq. (3.148) into Eq. (3.154) 

 𝐈𝚲̈ + 𝛀𝚲 = 𝚿𝑇𝐶𝑝𝑒
−1𝚿𝚲 − 𝚿𝑇𝐶𝑝𝑒

−1𝛉𝑝𝑒
𝑇 𝐝 . (3.155) 

In this way the governing system equations are reformulated to account for multi-

resonating shunt circuit, composed of two LC branches. 

 𝐌𝑡𝐝̈ + (𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 )𝐝 + 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿𝚲 = 𝐟 , (3.156) 

 𝐈𝚲̈ + 𝚿𝑇𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 𝐝 + (𝛀 − 𝚿𝑇𝐶𝑝𝑒
−1𝚿)𝚲 = 𝟎 . (3.157) 

The governing equations can now be casted in the form of 

 𝐌𝐮̈ + 𝐊𝐮 = 𝐅 , (3.158) 

where, 𝐌 and 𝐊 matrices are organized as 

 𝐌 = [
𝐌𝑡 0
𝟎 𝐈

] , (3.159) 
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𝐊 = [

𝐊𝑡 − 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 𝛉𝑝𝑒𝐶𝑝𝑒
−1𝚿

𝚿𝑇𝐶𝑝𝑒
−1𝛉𝑝𝑒

𝑇 𝛀 − 𝚿𝑇𝐶𝑝𝑒
−1𝚿

] , 
(3.160) 

and the vectors arranged according to Figure 3.2(a) 

𝐮 = [𝐝𝑖 𝐝𝑏 𝐝𝑡  𝐝𝑙  𝐝𝑟 𝐝𝑙𝑏 𝐝𝑟𝑏 𝐝𝑙𝑡 𝐝𝑟𝑡 𝛬1 𝛬2]
𝑇, 𝐅 = [𝐟𝑖  𝐟𝑏 𝐟𝑡  𝐟𝑙  𝐟𝑟 𝐟𝑙𝑏 𝐟𝑟𝑏 𝐟𝑙𝑡  𝐟𝑟𝑡  0 0]𝑇. 

Application of the Bloch’s theorem leads to the following transfer matrix 

 𝐓̃ = [
𝐓𝑇 0 0
0 1 0
0 0 1

]

𝑇

 . (3.161) 

Where matrix 𝐓 is given by Eq. (3.114). From this point onwards, the procedure of 

obtaining dispersion relation is the same as seen above for uniform infinite plate. 

 

 

Figure 3.19 (a) Dispersion curves of an infinite plate with periodic piezoelectric patch 

transducers connected to multi-resonating shunt circuits and tuned to dimensionless 

frequencies 0.5 and 1. (b) Depiction of a unit cell. (c) Multi-resonating shunt circuit. 

(d) Simplification of the multi-resonating circuit. 
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Figure 3.19 (a) shows the dispersion curves for an infinite plate equipped with 

periodic piezoelectric patch transducers connected to multi-resonant electrical 

shunts. Inductances of the shunts were selected according to approximated formula 

provided by Berhens [43] and correspond to the two resonant frequencies: 0.5 and 1. 

The results demonstrate the benefits of using this type of solution to generate stop 

band effects for wave propagation control, without the need for excessive mass 

increase, as in the case of dynamic absorbers. As one can see in the Figure 3.19 (a), 

two resonant stop-band effects with relatively wide widths are generated in all 

directions of propagation. What is more important, the electrical shunt can be 

extended with additional branches, allowing for supplementary local resonance 

effects. The condition for an efficient use of this type of shunt is frequency tuning, 

which ensures a certain difference in resonant frequencies corresponding to 

individual branches. Small differences in individual resonant frequencies may lead 

to a coupling between branches and an efficiency drop. 

3.4  CONCLUDING REMARKS  

The work presented in this chapter was focused on the characterization of stop band 

phenomena produced by two-dimensional arrays of inclusions distributed on an 

infinite plate. The studies first confirmed that the interference stop bands generated 

through the wave scattering from the arrays of discrete masses are linked to the 

standing wave behaviour and therefore related to the geometry of the unit cell. The 

obtained results indicate that the right-hand side edge frequency associated with the 

interference stop bands is limited by the Bragg’s condition and thus, the effects can 

only be expanded towards lower frequencies by increasing the mass of the inclusions. 

As pointed out in this chapter, the broadband interference effects are possible in two-

dimensional structures, but require significant mass addition which make them less 

suitable for practical applications. 

The simulation studies then confirmed that the arrays of locally resonant inclusions 

can produce stop bands in two-dimensional mechanical structures, although certain 

frequency range limiting restrictions are present. In general, the resonance stop bands 

can be generated at the resonance frequency of the inclusions, however spring-mass 

vibration absorbers cannot develop the effect at dimensionless frequencies higher 

than 1. This is related to the implementation of idealised, point-like vibration 

absorbers, which are found to be in nodal positions above the dimensionless 

frequency 1. In contrary, shunted piezoelectric patch vibration absorbers can produce 

stop bands for certain directions of propagation at frequencies above dimensionless 

frequency 1. It is possible due to spatial organization of the piezoelectric patches on 

the surface of the plate, that allows for some degree of electro-mechanical coupling 

even with high frequency modes. 
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In addition, the simulation studies demonstrated that the phenomenon of widening 

of the resonance stop bands is also present in two-dimensional structure. The 

bandwidth of the resonance effects is expanding from very narrow along with 

increase of the resonance frequency until the maximum width is reached at 

dimensionless frequency 1. At this frequency, resonance and interference effects are 

fully coupled producing a cumulative stop band characterised by the widest 

bandwidth. Since the broadband resonance effects are only possible at frequencies 

not very distant from the Bragg’s frequency, the structures determined by such 

dynamics carry some practical limitations regarding low frequency applications.  

At the end of the chapter, the modal formulation of the multi-resonant shunt circuits 

to was implemented into the finite-element model. This formulation constitutes a 

major contribution in considered subject as it allows to derive dispersion relations of 

two-dimensional structures with periodic arrays of piezoelectric patch transducers 

characterised by a number of locally resonant effects. The formulation was then used 

to calculate the band structure of an infinite plate equipped with piezoelectric patches 

connected to double-resonance shunts. The formulation has proven to be valuable, 

because not only overcomes the common issue of the nonlinear eigenvalue problem, 

but also allows to obtain dispersion properties of two-dimensional electro-mechanical 

structures in a computationally nondemanding way.  

 

The analysis of stop band effects is continued for two-dimensional finite plate in the 

next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4  
F I N I T E  P L A T E  W I T H  P E R I O D I C  I N C L U S I O N S  

In this chapter two-dimensional arrays of inclusions are analysed as the means of 

passive vibration treatment in a finite rectangular thin plate. Again, a focus of this 

chapter is devoted to the generation and characterisation of the band gaps, occurring 

for point masses, spring-mass vibration absorbers and RLC shunted piezoelectric 

patch vibration absorbers. The chapter first considers a simplified model problem, 

which is composed of a finite plate with two-dimensional array of discrete masses 

and spring-mass vibration absorbers. The plate is exposed to a rain on the roof 

stochastic excitation and the system response is derived through a mobility-

impedance based model. The inclusions are spaced in such a way as to produce a 

considerable reduction of the flexural response in a given frequency band. The stop 

band effects are obtained both via the spatial spacing of the discrete masses (Bragg 

gaps) and the physical properties of the vibration absorbers (locally resonant). The 

overall response of the plate is considered in terms of the Power Spectral Density 

(PSD) functions of the time averaged total kinetic energy of the plate structure.  

The second part of the chapter introduces the formulation of the fully coupled modal 

model of the finite plate with regular arrays of piezoelectric patch transducers 

connected to RLC shunt circuits. In the following part, the transducers are connected 

to identical shunts and the evolution of the resonance stop bands are presented in 

terms of the time averaged total kinetic energy. In the final part of the chapter, multi-

resonat shunt circuits are implemented to emphasize the possibility of obtaining 

multiple stop band effects also in finite structures. 

 

The vibration attenuation properties of all plate systems are then analysed and 

interpreted in view of the physical effects enlighten in the previous chapter for an 

infinite plate structure. 
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4.1  DESCRIPTION OF THE SYSTEM 

The vibration attenuation effects produced by two dimensional arrays of point 

masses and point spring-mass vibration absorbers on a thin panel is now investigated 

in view of the attenuation frequency stop band concepts introduced for infinite plates 

in the previous chapter. As shown in Figure 4.1, the plate material considered here 

comprises an array of 25 inclusions that is: point masses, spring-mass vibration 

absorbers and RLC shunted piezoelectric patch vibration absorbers which are 

arranged in a 5 × 5 grid such that they are equally spaced in x and y directions by 

𝐿 = 5.7 cm. The details of the dimensions and material properties of the plate is given 

in Table 4.1. As shown in Figure 4.1 (a), the plate is exposed to an 4 × 4 array of 

uncorrelated white noise point forces, which resemble a rain on the roof excitation. 

 

 

Figure 4.1 Finite plate material equipped with 5 × 5 array of inclusions and excited 

by the rain-on-the-roof stochastic process, modelled as 4 × 4 matrix of uncorrelated 

point forces. Four types of inclusions used in this framework point mass (b), vibration 

absorber (c), vibration absorber with base mass (d), piezoelectric patch transducer (e). 

 

 

 

 



 

 

 

Table 4.1. Physical and geometrical parameters of the plate. 

Parameter Plate 

Thickness ℎ𝑝 = 1 𝑚𝑚 

Width 𝑙𝑥 = 0.314 𝑚 

Length 𝑙𝑦 = 0.314 𝑚 

Density 𝜌𝑝 = 2700 𝑘𝑔/𝑚3 

Young’s modulus 𝑌𝑝 = 7 × 1010 𝑁/𝑚2 

Poisson’s ratio 𝜐𝑝 = 0.33 

Plate loss factor 𝜂 = 2% 

Resonators damping ratio 𝜁 = 3% 

Lattice constant 𝐿 = 5.7 cm 

 

4.2  STOP BAND PHENOMENA IN FINITE PLATES 

 

4.2.1 Finite plate with regular array of point masses / spring-mass vibration absorbers 

The flexural response of the panel is derived from a mobility-impedance model. 

Assuming harmonic time dependence in complex form of 𝑒𝑥𝑝(j𝜔𝑡) at circular 

frequency 𝜔, the complex transverse velocities at the bases of the point masses / 

spring-mass vibration absorbers were grouped into the column vector:  

𝐰̇𝑚(𝜔) = [𝑤̇(𝑥𝑚1
, 𝑦𝑚1

, 𝜔)… 𝑤̇(𝑥𝑚24
, 𝑦𝑚24

, 𝜔)]
𝑇
. The flexural vibration at these 

positions can be expressed with a mobility matrix expression in terms of the vector 

with the complex primary forces 𝐟𝑝(𝜔) = [𝑓(𝑥𝑝1
, 𝑦𝑝1

, 𝜔)…𝑓𝑚(𝑥𝑝16
, 𝑦𝑝16

, 𝜔)]
𝑇

 and the 

complex secondary excitations 𝐟𝑚(𝜔) = [𝑓(𝑥𝑚1
, 𝑦𝑚1

, 𝜔)…𝑓(𝑥𝑚25
, 𝑦𝑚25

, 𝜔)]
𝑇
 

generated by the inclusions: 

 𝐰̇𝑚 = 𝐘𝑚𝑝𝐟𝑝 + 𝐘𝑚𝑚𝐟𝑚 . (4.1) 

The mobility elements in the matrices 𝐘𝑝𝑚 and 𝐘𝑚𝑚 are derived from the following 

matrix expressions 

 𝐘𝑚𝑝 = 𝛟𝑚
𝑇 𝛀𝛟𝑝 , (4.2) 

 𝐘𝑚𝑚 = 𝛟𝑚
𝑇 𝛀𝛟𝑚 , (4.3) 
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where 𝛟𝑚 and 𝛟𝑝 are the matrices with the following amplitudes of the plate flexural 

natural modes  

 𝛟𝑚 = [

𝜙1(𝑥𝑚1
, 𝑦𝑚1

) ⋯ 𝜙1(𝑥𝑚25
, 𝑦𝑚25

)

⋮ ⋱ ⋮
𝜙𝑁(𝑥𝑚1

, 𝑦𝑚1
) ⋯ 𝜙𝑁(𝑥𝑚25

, 𝑦𝑚25
)
] , (4.4) 

 
𝛟𝑝 = [

𝜙1(𝑥𝑝1
, 𝑦𝑝1

) ⋯ 𝜙1(𝑥𝑝16
, 𝑦𝑝16

)

⋮ ⋱ ⋮
𝜙𝑁(𝑥𝑝1

, 𝑦𝑝1
) ⋯ 𝜙𝑁(𝑥𝑝16

, 𝑦𝑝16
)
] , 

(4.5) 

and 𝛀 is the following diagonal matrix 

 𝛀 =

[
 
 
 
 

j𝜔

𝑀𝑝[𝜔𝑛1
2 (1+j𝜂)−𝜔2]

⋱
j𝜔

𝑀𝑝[𝜔𝑛𝑁
2 (1+j𝜂)−𝜔2]]

 
 
 
 

 . (4.6) 

Here, 𝑀𝑝 = 𝜌ℎ𝑙2 is the mass of the plate, 𝜌 is the density of the material of the plate, 

𝑙, and ℎ are the dimensions and thickness of the plate, and 𝜂 is the plate loss factor. 

The i-th natural frequency 𝜔𝑛𝑖 and i-th natural mode 𝜙𝑛𝑖(𝑥, 𝑦) for the simply 

supported plate are given by 

 𝜔𝑛𝑖
= √

𝐷

𝜌ℎ
[(

𝑛1𝜋

𝑙
)
2
+ (

𝑛2𝜋

𝑙
)
2
] , (4.7) 

 𝜙𝑛𝑖
(𝑥, 𝑦) = 2sin (

𝑛1𝜋𝑥

𝑙
) sin (

𝑛2𝜋𝑦

𝑙
) , (4.8) 

where 𝑛1, 𝑛2 are the indices of the i-th natural mode.  

The arrays of point masses and point absorbers are characterised by the following 

impedance relation: 

 𝐟𝑚 = −𝐙𝑚𝐰̇𝑚 , (4.9) 

where 𝐙𝑚 is a diagonal 25 × 25 matrix with the point impedances either of the point 

masses, 𝑍𝑖(ω) = 𝑗ω𝑚, or the spring-mass point vibration absorbers: 

 𝑍𝑖(ω) =
(−𝑚𝑏𝜔2+𝑗𝜔𝑐+𝑘)(−𝑚𝜔2+𝑗𝜔𝑐+𝑘)−(𝑗𝜔𝑐+𝑘)2

𝑗𝜔(−𝑚𝜔2+𝑗𝜔𝑐+𝑘)
. The negative sign in Eq. (4.9) is because 

the forces in the vector 𝐟𝑚 act on the plate, thus the forces acting on the point masses 

and the point absorbers are given by −𝐟𝑚. Substituting Eq. (4.9) into Eq. (4.1) yields 

 𝐰̇𝑚 = (𝐈 + 𝐘𝑚𝑚𝐙𝑚)−1𝐘𝑚𝑝𝐟𝑝 . (4.10) 



 

 

 

The overall vibration of the plate produced by rain-on-the-roof disturbance, which is 

a stationary white noise process, can be assessed in terms of time-averaged total 

kinetic energy: 

 𝑆𝐾(𝜔) =
1

2
∫ 𝜌𝑝𝐴𝑝

ℎ𝑝ℱ[ℛ𝑤̇𝑤̇(𝜏)]d𝐴𝑝 , (4.11) 

where ℱ[ ] denotes the Fourier Transform. Also, ℛ𝑤̇𝑤̇(𝜏) is the autocorrelation 

function between plate velocities. Using the definition of Fourier Transform given in 

Ref. [86], the above PSD functions can be rewritten as follows: 

 𝑆𝑘(𝜔) =
1

2
𝜌𝑝ℎ𝑝 ∫ lim

𝑇→∞
E [

1

𝑇
𝑤̇(𝑥, 𝑦, 𝜔)∗𝑤̇(𝑥, 𝑦, 𝜔)] d𝐴𝑝𝐴𝑝

 , (4.12) 

where the superscript ∗ indicates the complex conjugate and 𝑤̇(𝑥, 𝑦, 𝜔) is the 

complex transverse velocity over the plate surface. The flexural vibration on a generic 

position of the panel due to primary and secondary force excitations can be then 

expressed as 

 𝑤̇(𝑥, 𝑦, 𝜔) = 𝛟𝑇(𝑥, 𝑦)𝛀𝛟𝑝𝐟𝑝 + 𝛟𝑇(𝑥, 𝑦)𝛀𝛟𝑚𝐟𝑚 , (4.13) 

where 𝛟𝑇(𝑥, 𝑦) = [𝜙1(𝑥, 𝑦) ⋯ 𝜙𝑁(𝑥, 𝑦)] is a row vector with the modal amplitudes 

at position (𝑥, 𝑦) of the plate. Also, according to Eqs. (4.9) and (4.10), 

 𝐟𝑚 = −𝐙𝑚(𝐈 + 𝐘𝑚𝑚𝐙𝑚)−1𝐘𝑚𝑝𝐟𝑝 . (4.14) 

Substituting Eq. (4.13) into Eq. (4.12) yields 

 𝑆𝑘(𝜔) =
1

2
𝜌𝑝ℎ𝑝 ∫ lim

𝑇→∞
E [

1

𝑇
𝐟𝑝
𝐻𝐘𝐻𝛟𝛟𝑇𝐘𝐟𝑝] d𝐴𝑝𝐴𝑝

 , (4.15) 

where  

 𝐘 = 𝛀𝛟𝑝 − 𝛀𝛟𝑚𝐙𝑚(𝐈 + 𝐘𝑚𝑚𝐙𝑚)−1𝐘𝑚𝑝 . (4.16) 

The plate natural modes are orthogonal and normalised such that  

 ∫ 𝛟(𝑥, 𝑦)𝛟𝑇(𝑥, 𝑦)𝑑𝐴𝑝  
𝐴𝑝

= 𝐴𝑝 , (4.17) 

where 𝐴𝑝 = 𝑙2 is the area of the plate. Thus, after a few mathematical manipulations, 

Eq. (4.17) results  

 𝑆𝑘(𝜔) =
1

2
𝐌𝑝Tr [ 𝐘 𝐒𝐟𝑝𝐟𝑝

(𝜔) 𝐘𝐻 ] , (4.18) 



 

 

95 

where Tr[…] is the trace matri  function and  𝐒𝐟𝑝𝐟𝑝
(𝜔) is a matrix with PDSs of the 

excitations, which, for the uncorrelated rain-on-the-roof forces of unit amplitudes is 

given by  

  𝐒𝐟𝑝𝐟𝑝
(𝜔) = 𝐈 . (4.19) 

 

Plot (a) in Figure 4.2 presents the evolution of the flexural kinetic energy of the plate 

with an array of 25-point masses against the dimensionless weight ratio of the point 

masses with reference to the weight of the plate: 

 𝛾 =
∑ 𝑚𝑖

25
𝑖=1

𝑚𝑝
 . (4.20) 

 

  

Figure 4.2 (a) Evolution of the flexural kinetic energy of the finite plate equipped with 

periodic masses against their dimensionless ratio. Power spectral density functions of 

the kinetic energy when dimensionless mass is equal to 0.5 (d), 1 (c) and 1.5 (b). 

 

This graph effectively shows that, when the weight of point masses reaches about 

40% of the weight of the plate, the band gap starts to develop at around 1350 Hz and 

expands with added mass towards lower frequencies. This result seems to confirm 

the findings of simulation studies performed for the infinite plate with periodic point 

 a  b 

 c 

 d 

b

c

d



 

 

 

masses. Wherein, the distribution of the interference stop band produced by the 

scattering from the inclusions is unilaterally limited at dimensionless frequency 1.  

For the considered finite plate system this frequency corresponds to 1350 Hz.  

Plots (b), (c), and (d) show the spectra of the total kinetic energy of the plate when 

total weight of point masses is equal to 150%, 100% and 50% of the mass of the plate. 

Plot (d) does not differ from a typical spectrum of the total flexural response of a 

uniform plain plate, which is characterised by a sharp resonance peak due to the 

fundamental natural mode of the plate, followed by well separated resonance peaks 

due to the lower order natural modes of the panel. Above about 500 Hz, the plate 

modal overlap exceeds unity and thus the response of the panel at each frequency is 

characterised by the superposition of an increasing number of higher order natural 

modes, which generate sequences of wide band crests and wide band lows.  

In contrast, plots (b) and (c) show that, when the total weight of the point masses is 

relevant compared to the weight of the plate, the plate dynamics is characterised by 

a wide band gap.  

 

Figure 4.3 (a) presents the evolution of the flexural kinetic energy of the plate 

equipped with vibration absorbers whose total mass is equal to 20% of the mass of 

the plate. The distribution of the stop band effect with reference to resonance 

frequency of the absorbers is depicted by the blue shadow elongating diagonally 

through the surface plot. When resonance frequency of the absorbers is increased 

towards 1350 Hz, a tendency of widening of the stop band effect can be noticed.  

The effect reaches its maximal width at around 1300 Hz and vanishes at around 1350 

Hz. When the weight of the proof masses is increased to 40% of the mass of the plate, 

the interference effect linked to the proof masses is enhanced. As a consequence, the 

vertical elongation of the blue shadow is visible above resonance frequency of  

1350 Hz, as illustrated in Figure 4.4 (a). 



 

 

97 

 

Figure 4.3 (a) Evolution of flexural kinetic energy of the finite plate equipped with a 

5 × 5 array of vibration absorbers whose masses are equal to 20% of the plate mass 

with respect to their resonance frequency (A). Power spectral density functions of the 

kinetic energy when absorbers are tuned to 1300 Hz (b), 900 Hz (c) and 460 Hz (d). 

 

 

Figure 4.4 (a) Evolution of the flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of vibration absorbers whose masses are equal to 40% of the plate mass 

with respect to their resonance frequency. Power spectral density functions of the 

kinetic energy when absorbers are tuned to 1300 Hz (b), 900 Hz (c) and 460 Hz (d). 
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The influence of the weight of the proof masses on the distribution of the resonance 

stop band effect is presented in Figure 4.5(a). The resonance frequency of the 

absorbers was kept constant at 650 Hz by adjusting the stiffness of the springs as a 

function of added mass. The results of this simulations indicate that the distribution 

of the stop band effect at frequencies below 1350 Hz can be modified to great extent 

by the suspended mass weight. 

 

 

Figure 4.5 (a) Evolution of the flexural kinetic energy of the finite plate equipped with 

a 5 × 5 array of vibration absorbers tuned to 650 Hz against the dimensionless mass 

ratio of the absorbers. The power spectral density functions of the kinetic energy 

when the mass ratios are equal to 0.2 (b), 1 (c) and 0.5 (d). 

 

Equipping the resonators with base masses introduces additional scattering processes 

that lead to the interference band gap. When the weight of the base masses is 

significant in relation to the weight of the plate, the interference becomes relevant and 

influences the evolution of the resonance stop band effect. Figure 4.6 (a) highlights 

how, a noticeable resonance stop band effect can be affected by the presence of the 

additional scatterers. In this plot, the wide blue shadow centred at around 1200Hz 

indicates a strong interference effect that elongates vertically with the resonance 

frequency of the absorbers. The resonance effect of vibrating absorbers and the 

interference effect due to the point masses coexist up to the resonance frequency of 

 a  b 

 c 

 d 

b

c

d
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800Hz. Between 800 Hz and 1200 Hz the interference effect becomes increasingly 

smaller and finally vanishes leaving a narrow separation gap, between the two effects. 

The gap itself is a strong manifestation of the physics of the Fano scattering, where 

the resonance peak of the hosting structure is modified into a pair of peaks of the 

same amplitude by the oscillating vibration absorbers. From the other hand, the 

resonance stop band effect becomes wider with the resonance frequency until it 

reaches its maximum width due to the coupling with interference effect occurring for 

proof masses. As one can note, further increase of the resonance frequency has no 

impact on the evolution of the resonance stop band effects, thus the remaining effect 

is driven mostly by the interference. 

 

  

Figure 4.6 (a) Evolution of flexural kinetic energy of the finite plate equipped with a 

5 × 5 array of vibration absorbers with base masses equal to 0.7 and proof masses to 

0.2 of the plates mass, with reference to resonance frequency of the absorbers. Power 

spectral density functions of the kinetic energy when absorbers are tuned to 460 Hz 

(d), 900 Hz (c) and 1350 Hz (b). 

 

4.2.2 Finite plate with regular array of piezoelectric patch transducers connected to 

resistive-inductive shunts 

The mathematical formulation used to study the flexural response when the plate is 

equipped with shunted piezoelectric patches is based on Kirchhoff hypothesis 
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 c 
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[17,85,87]. In-plane vibrations are not taken into account, which is a reasonable 

assumption within the considered frequency range, that is 50 – 1.5 kHz. Also, the fluid 

loading effect of air is simply modelled as a damping effect on the flexural response 

of the plate. The response of the smart plate is derived from the generalised form of 

Hamilton’s principle for electromechanical systems [17,73,88,89]: 

 ∫ [𝛿(𝐾∗ − 𝑉 + 𝑊𝑒
∗) + 𝛿𝑊𝑛𝑐]d𝑡 = 0

𝑡2

𝑡1
 , (4.21) 

where 𝛿( )  is the variation operator, 𝐾∗, 𝑉, 𝑊𝑒
∗ are the kinetic coenergy, the elastic 

potential energy and the electrical coenergy for the flexural vibrations of the plate 

with the piezoelectric patches and 𝛿𝑊𝑛𝑐 is the virtual work done by non-conservative 

actions, that is the virtual work done by the external uncorrelated transverse forces 

exciting the panel, the virtual work done by the damping forces exerted by the 

interaction between the panel flexural vibration and the air and the virtual work done 

by the shunts currents flowing into the piezoelectric patches. The expressions 

presented in Ref. [17] for these energy functions have been used in Eq. (4.21) assuming 

the transverse displacement of the plate is given by the following modal summation 

[90]: 

 𝑤(𝑥, 𝑦, 𝑡) = 𝛟(𝑥, 𝑦)𝐝(𝑡) , (4.22) 

where 𝛟(𝑥, 𝑦) = ⌊𝜙1(𝑥, 𝑦) ⋯ 𝜙𝑅(𝑥, 𝑦)⌋ is a row vector with the first 𝑅 natural 

modes of the plain plate (i.e. with no piezoelectric patches bonded on it), 

𝜙1(𝑥, 𝑦), … , 𝜙𝑅(𝑥, 𝑦), and 𝐝(𝑡) = ⌊𝑑1(𝑡) ⋯ 𝑑𝑅(𝑡)⌋𝑇 is a column vector with the first 

𝑅 generalized coordinates for the transverse vibrations of the plain plate, 

𝑑1(𝑡), … , 𝑑𝑅(𝑡). The natural frequencies and natural modes of the simply supported 

plain plate have been derived from the following expressions  

𝜔𝑛𝑟 = √
𝐵𝑝

𝑚𝑝
 [(𝑟1𝜋

𝑙𝑥𝑝
)
2
+ (𝑟2𝜋

𝑙𝑦𝑝
)
2
], 𝜙𝑟(𝑥, 𝑦) = 2𝑠𝑖𝑛 (𝑟1𝜋𝑥

𝑙𝑥𝑝
) 𝑠𝑖𝑛 (𝑟2𝜋𝑦

𝑙𝑦𝑝
), where,  

𝐵𝑝 = 𝑌𝑝ℎ𝑝
3 (12(1 − 𝜈𝑝

2))⁄  and 𝑚𝑝 = 𝜌𝑝ℎ𝑝 are the bending stiffness and mass per unit 

surface of the plate assuming 𝑌𝑝, 𝜈𝑝, 𝜌𝑝 are the Young’s modulus, Poisson ratio and 

density of the plate material, 𝑙𝑥𝑝, 𝑙𝑦𝑝 are the plate dimensions and 𝑟1, 𝑟2 are the modal 

indices of the 𝑟-th mode. After implementing the lengthy sequence of mathematical 

manipulations described in Refs. [17,91], the integral equation of Hamilton’s principle 

is transformed into a set of mechanical and a set of electrical ordinary differential 

equations, which are casted in the following two matrix equations  
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 𝐌𝑡𝐝̈(𝑡) + 𝐂𝑝𝐝̇(𝑡) + 𝐊𝑡𝐝(𝑡) + 𝚯𝑝𝑒𝐯𝑠(𝑡) = 𝚽𝑝𝐟𝑝(𝑡) ,  (4.23) 

 −𝚯𝑝𝑒
𝑇 𝐝(𝑡) + 𝐂𝑝𝑒𝐯𝑠(𝑡) = 𝐪𝑠(𝑡) ,  (4.24) 

In Eq. (4.25), 𝐌𝑡 = 𝐌𝑝 + 𝐌𝑝𝑒 and 𝐊t = 𝐊p + 𝐊pe are the 𝑅 × 𝑅 modal mass and 

stiffness matrices, which are given by the sum of a diagonal matrix for the plain plate 

modal responses, respectively 𝐌𝑝 and 𝐊p, and a fully populated matrix for the 

coupled modal responses due to the piezoelectric patches effects, respectively 

𝐌𝑝𝑒 and 𝐊pe. Also, 𝐂𝑝 is the 𝑅 × 𝑅 modal damping matrix of the plate. 

 𝐌𝑝 = 𝑚𝑝 ∫ 𝛗𝑇
𝐴𝑝

𝛗𝑑𝐴𝑝 = 𝑚𝑝𝐈 , (4.25) 

 𝐌𝑝𝑒 = ∑ 𝑚𝑝𝑒 ∫ 𝛗𝑇
𝐴𝑝𝑒,𝑖

(𝑥, 𝑦)𝛗(𝑥, 𝑦)𝑑𝐴𝑝𝑒,𝑖
25
𝑖=1  , (4.26) 

 𝐂𝑝 = ∫ 𝜇𝛗𝑇
𝐴𝑝

𝛗𝑑𝐴𝑝 = 2𝜁𝑝𝑚𝑝𝛀 , (4.27) 

 𝐊𝑝 = 𝐼𝑝 ∫ 𝛙𝑇
𝐴𝑝

𝐜𝑝𝛙𝑑𝐴𝑝 = 𝑚𝑝𝛀2 , (4.28) 

 𝐊𝑝𝑒 = ∑ 𝐼𝑝𝑒 ∫ 𝛙𝑇
𝐴𝑝𝑒,𝑖

𝐜𝑝𝑒
𝐸 𝛙𝑑𝐴𝑝𝑒,𝑖

25
𝑖=1  , (4.29) 

Here 𝐈 is a 𝑅 ×  𝑅  identity matrix, 𝐼𝑝, 𝐼𝑝𝑒 are the second moments of the plate and 

piezoelectric patch and 

  𝛙 = [

𝛗,𝑥𝑥

𝛗,𝑦𝑦

2𝛗,𝑥𝑦

] , (4.30) 

 
𝛀 = [

𝜔𝑛1

⋱
𝜔𝑛𝑅

] . 

(4.31) 

In these expressions 𝚽𝑝 is a 𝑅 × 16 matrix with the modal amplitudes at the excitation 

points 𝚽𝑝 = [𝛗𝑇(𝑥1, 𝑦1) ⋯ 𝛗𝑇(𝑥16, 𝑦16)] and 𝐟𝑝 = ⌊𝑓𝑝1 ⋯ 𝑓𝑝16⌋𝑇 is the vector 

with the amplitudes of the 4 × 4 array of uncorrelated rain on the roof forces acting 

on the plate. In Eq. (4.26), the vector 𝐪 = ⌊𝑞1 ⋯ 𝑞25⌋𝑇 and  

𝐯s = ⌊𝑣𝑠1 ⋯ 𝑣𝑠25⌋𝑇contain respectively the charges and voltages of the shunts. 

Also, 𝐂𝑝𝑒 is a 25 × 25 diagonal matrix with the capacitances of the piezoelectric 



 

 

 

patches: 𝐶𝑝𝑒 = 𝜀𝑝𝑒
𝑆 𝐴𝑝𝑒/ℎ𝑝𝑒, where 𝜀𝑝𝑒

𝑆  is the permittivity for constant strain and 𝐴𝑝𝑒 

and ℎ𝑝𝑒 are respectively the area and thickness of the piezoelectric patches. Finally,  

𝚯𝑝𝑒 = [𝚽𝑝𝑒,1 ⋯ 𝚽𝑝𝑒,25] is the 𝑅 × 25 piezoelectric coupling matrix given by 

 𝚽𝑝𝑒,𝑖 = 𝓏𝑝𝑒 ∫ 𝛙𝑇
𝐴𝑝𝑒,𝑖

𝐞𝑝𝑒𝑑𝐴𝑝𝑒,𝑖 . (4.32) 

The details of all these matrices can be found in Refs. [17,91]. The modal summation 

formulation used to reconstruct the flexural vibration of the plate and piezoelectric 

patches refers to the flexural natural modes of the plain plate. Therefore, as discussed 

in Ref. [17] a rather large number of natural modes has been taken into account to 

form a mathematical basis that properly reconstructs the effective flexural deflection 

shapes of the plate and piezoelectric patches assembly in the low frequency range 

taken into consideration in this work. A convergence study indicated that, for the 

20 – 250 Hz frequency range considered in the simulations, the modal summation 

should include at least 300 flexural natural modes of the plain plate with natural 

frequencies up to 7.7 kHz. This rather large number of modes is necessary to model 

the discontinuity effects occurring along the borders of the piezoelectric patches. 

 

Assuming the time-harmonic motion given in the form 𝑔(𝜔) = 𝑔(𝜔)𝑒𝑥𝑝 (j𝜔), where 

𝑔(𝜔) is the complex amplitude and 𝜔 is the circular frequency, the two matrix 

expressions describing the system can be written in terms of the complex amplitudes 

𝐝(𝜔), 𝐟𝑝(𝜔) , 𝐯𝑠(𝜔), 𝐪𝑠(𝜔) as follows: 

 𝐌𝑡𝐝̈(𝜔) + 𝐂𝑝𝐝̇(𝜔) + 𝐊𝑡𝐝(𝜔) + 𝚯𝑝𝑒𝐯𝑠(𝜔) = 𝚽𝑝𝐟𝑝(𝜔) , (4.33) 

 −j𝜔𝚯𝑝𝑒
𝑇 𝐝(𝜔) + j𝜔𝐂𝑝𝑒𝐯𝑠(𝜔) = 𝐢𝑠(𝜔) . (4.34) 

Application of Ohm’s law to the decentralized shunt circuits leads to the following 

matrix relation 

 𝐯𝑠(𝜔) = −𝐙𝑠(𝜔)𝐢𝑠(𝜔) , (4.35) 

where 𝐙𝑆(𝜔) is a diagonal matrix with the impedances of the shunt. Substitution of 

Eq. (4.36) into Eq. (4.35) and then of the resulting equation into Eq. (4.34) gives  

 [−𝜔2𝐌𝑡 + j𝜔(𝐂𝑝 + 𝚯𝑝𝑒𝐙̅𝑠𝚯𝑝𝑒
𝑇 ) + 𝐊𝑡]𝐝(𝜔) = 𝚽𝑝𝐟𝑝(𝜔) , (4.36) 

where 
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 𝐙̅𝑆 = [𝐈 + j𝜔𝐙𝑠𝐂𝑝𝑒]
−1

𝐙𝑠 . (4.37) 

The overall vibration of the plate produced by rain-on-the roof disturbance, which is 

a stationary white noise process, can be assessed in terms of the Power Spectral 

Density (PSD) of the time-averaged total kinetic energy, which, as shown in Refs. [17], 

is given by 

 

𝑆𝐾(𝜔) =
1

2
𝜌𝑝ℎ𝑝 ∫ lim

𝑇→∞
E [

1

𝑇
𝑤̇∗(𝑥, 𝑦, 𝜔)𝑤̇(𝑥, 𝑦, 𝜔)] d𝐴𝑝 +

𝐴𝑝
  

+ ∑
1

2
𝜌𝑝𝑒ℎ𝑝𝑒 ∫ lim

𝑇→∞
E [

1

𝑇
𝑤̇∗(𝑥, 𝑦, 𝜔)𝑤̇(𝑥, 𝑦, 𝜔)] 𝑑𝐴𝑝𝑒,𝑖𝐴𝑝𝑒,𝑖

25
𝑖=1  , 

(4.38) 

where E[…] denotes the e pectation operator, 𝑤̇(𝑥, 𝑦, 𝜔) is the complex transverse 

velocity over the plate surface and the superscript * indicates the complex conjugate 

operator. According to Eq. (4.22)  𝑤̇(𝑥, 𝑦, 𝜔) = 𝛗(𝑥, 𝑦)𝐝̇(𝜔), thus the total kinetic 

energy PSD results in 

 

𝑆𝐾(𝜔) =
1

2
𝜌𝑝ℎ𝑝 ∫ lim

𝑇→∞
E [

1

𝑇
𝐝̇𝐻(𝜔)𝛗𝑇(𝑥, 𝑦)𝛗(𝑥, 𝑦)𝐝̇(𝜔)] d𝐴𝑝𝐴𝑝

+  

+∑
1

2
𝜌𝑝𝑒ℎ𝑝𝑒 ∫ lim

𝑇→∞
E [

1

𝑇
𝐝̇𝐻(𝜔)𝛗𝑇(𝑥, 𝑦)𝛗(𝑥, 𝑦)𝐝̇(𝜔)] 𝑑 𝐴𝑝𝑒,𝑖𝐴𝑝𝑒,𝑖

25
𝑖=1 =  

=
1

2
Tr[𝐌𝑡𝐒𝐝𝐝(𝜔)] . 

(4.39) 

Here Tr[𝐒𝐝𝐝(𝜔)] is the trace matrix of the fully populated matrix 𝐒𝐝𝐝(𝜔) containing 

the self and cross PSD terms of the plate modal velocities produced by the random 

excitation, and superscript 𝐻 denotes the Hermitian transpose. 

 𝐒𝐝𝐝(𝜔) = lim
𝑇→∞

𝐸 [
1

𝑇
𝐝̇(𝜔)𝐝̇𝐻(𝜔)] . (4.40) 

According to Eq. (4.37) the complex modal velocities can be expressed in terms of the 

following equation 

 𝐝̇(𝜔) = 𝐘(𝜔)𝐟𝑝(𝜔) , (4.41) 

where, 𝐘(𝜔) is a modal mobility matrix, which is given by 

 𝐘(𝜔) = j𝜔[−𝜔2𝐌𝑡 + j𝜔(𝐂𝑝 + 𝚯𝑝𝑒𝐙̅𝑠𝚯𝑝𝑒
𝑇 ) + 𝐊𝑡]

−1
𝚽𝑝 . (4.42) 

Substitution of Eq. (41) into Eq. (40) yields 

 𝐒𝐝𝐝(𝜔) = lim
𝑇→∞

𝐸 [
1

𝑇
𝐘(𝜔)𝐟𝑝(𝜔)𝐟𝑝

𝑇(𝜔)𝐘𝐻(𝜔)] = 𝐘(𝜔)𝐒𝐟𝑝𝐟𝑝(𝜔) 𝐘𝐻(𝜔) , (4.43) 



 

 

 

where 𝐒𝐟𝑝𝐟𝑝(𝜔)  is the matrix with the PSD functions of the 16 uncorrelated white 

noise forces acting on the plate, which, assuming unit excitations, is given by 

a 16 × 16 identity matrix. In summary, the kinetic energy PSD can be derived by 

substituting Eq. (4.44) into Eq. (4.40) so that 

 S𝐾(𝜔) =
1

2
Tr [𝐌𝑡𝐘(𝜔)𝐒𝐟𝑝𝐟𝑝(𝜔)𝐘𝐻(𝜔)] . (4.44) 

 

This paragraph presents simulation studies that show the plate vibration control 

effects that could be produced with the 5 × 5 array of piezoelectric patches connected 

to identical, series RL shunts. As discussed in Ref. [17], when the resonance frequency 

ω0 of a piezoelectric patch connected to an inductive shunt corresponds to a 

resonance of the hosting structure, the resonance peak that characterize the PSD of 

the flexural response at ω0 is modified in a pair of peaks of about the same amplitude. 

The amplitude of the two peaks can then be lowered by introducing a resistor in series 

with an inductor. Figure 4.7 (a) shows how the kinetic energy PSD varies as the 

inductance of the 25 shunts is tuned to a given frequency and the quality factor  

 𝑄𝑅𝐿𝐶 ≈
𝜔0𝐿𝑠

𝑅𝑠
 , (4.45) 

that characterizes the losses produced by the resistors in the electrical shunts is set 

equal to 25 (i.e. damping ratio of 3%). In Eq. (4.45) the inductance of the shunt is set 

such that the shunt resonates at frequency 𝜔0, thus it has been set equal to 

 𝐿𝑠 =
1

ω0
2𝐶𝑝𝑒

 . (4.46) 

 

The shunted piezoelectric patches produce rather smaller effects at the targeted 

frequencies compared to spring-mass vibration absorbers. Plots (b), (c) and (d) in 

figure Figure 4.7 show the kinetic energy PSD at three targeted frequencies, which are 

highlighted by the blue arrows in the spectra. Despite the poorer performance, the 

piezoelectric transducers can generate stop-band effects at frequencies above the edge 

frequency limiting the central effects produced by vibration absorbers. This is due to 

the spatial distribution of the patches on the surface of the plate, such that they can 

couple to flexural modes also when they are positioned across modal lines. This can 

also be seen in Figure 4.7 (a), where the transverse blue shadow indicating the 

resonance stop band effect generated by the transducers elongates through a 
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sequence of vertical yellow lines in correspondence to the resonance peaks of the 

plate. The blue shadow vanishes at around 1450 Hz, which corresponds to the 

resonance crest of the higher order natural modes and reappear when the resonance 

frequency of the shunts is further increased to around 1470 Hz. This example shows 

that the spatial distribution of the patches can immunize the resonance stop band 

effect to a certain extent from a standing wave behaviour. Other advantages of the 

piezoelectric patch transducers could be their low weight and ability to generate 

many locally resonant effects when combined with multi-resonating shunt circuits. 

 

 

Figure 4.7 (a) Evolution of flexural kinetic energy of the finite plate equipped with a 

5 × 5 array of piezoelectric patch transducers connected to series RL shunts. Power 

spectral density function of the kinetic energy when the shunts are tuned to 400 Hz 

(b), 900 Hz (c) and 1600 Hz (d). 

 

4.2.3 Finite plate with arrays of shunted piezoelectric patch transducers connected to multi-

resonating shunts 

In this short section, the multi-resonating shunt circuits, are implemented to 

demonstrate the concept of double stop-band generation in a finite simply supported 

plate with a 5 × 5 array of piezoelectric patch transducers. The piezoelectric patches 

are organized on the plate as depicted in plot (b) of Figure 4.8 and connected to 

identical shunts illustrated in plot (c) of this figure. 
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 c 
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The application of multi-resonant shunts to the model is simple and requires only 

substitution of the electric impedance of the circuits into Eq. (4.37). Since all the shunts 

are identical and composed of two parallel LC branches, the total electrical impedance 

is given by the following formula: 

 𝑍𝑠(𝜔) = − [
j𝜔

1

𝐿𝑏1

−𝜔2+j𝜔
𝑅𝑠1
𝐿𝑏1

+
1

𝐶𝑓1𝐿𝑏1

−
j𝜔

1

𝐿𝑏2

−𝜔2+j𝜔
𝑅𝑠2
𝐿𝑏2

+
1

𝐶𝑓2𝐿𝑏2

]

−1

. (4.47) 

The two target frequencies, as well as two resistances were arbitrarily chosen, and set 

to 𝑓1 = 780𝐻𝑧, 𝑅𝑠1 = 5𝑘Ω and 𝑓1 = 1200, 𝑅𝑠2 = 7𝑘Ω. Figure 4.8(a) illustrates the 

power spectral density function of the kinetic energy of the plate. The graph clearly 

shows double peak resonance effects characterised by rather significant attenuation 

amplitudes. 

 

 

Figure 4.8 (a) Power spectral density function of the kinetic energy of the plate with a 

5 × 5 array of piezoelectric patches connected to multi-resonating shunts in open 

circuit configuration (blue line) and tuned to 𝑓1 = 780𝐻𝑧 and 𝑓1 = 1200𝐻𝑧 (red line). 

(b) Spatial configuration of piezoelectric patches. (c) Depiction of the multi-resonating 

shunt circuit. 

4.3  CONCLUDING REMARKS  

This chapter was focused on the generation and characterization of stop band 

phenomena in a finite plate equipped with two-dimensional arrays of inclusions. 

Most of all the studies confirmed that both interference and resonance stop bands can 

be effectively produced in finite plates and their general characteristics do not differ 

from ones obtained for infinite plates. In line with the previous findings the study 

showed, that relevant interference effects generated by arrays of point masses arise 

only at frequency associated with standing wave whose spatial period matches twice 

the spacing between scatterers. Due to this limitation the interference effects can only 

be extended towards lower frequencies by increasing the mass of inclusions. Indeed, 

a significant low-frequency band coverage is possible, but requires substantial mass 

addition, which makes this type of solution far less practical. Then, the studies 
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demonstrated that significant stop band effects can be produced in finite plates by 

relatively small number of resonating inclusions. It was showed that an 5 × 5 array 

of spring-mass vibration absorbers can be effectively tuned to produce stop bands up 

to certain edge frequency. Above this limiting frequency the stop bands cannot be 

generated due to the coupling limitations of the point-like absorbers with high 

frequency plate natural modes. Piezoelectric patches can partly overcome this 

difficulty and deliver some effects at higher frequencies due their spatial 

organization, which allows them to avoid nodal positions. The simulation studies also 

confirmed that a phenomenon of widening of resonance stop bands is maintained in 

finite plates. The stop band distribution maps assembled from the power spectral 

density functions of the plates flexural kinetic energy illustrate widening of the 

resonance bands along with resonance frequency of the inclusions. The results 

therefore indicate that the periodicity of the structure significantly influences the 

tuning range of the inclusions, in which broadband resonance effects are achievable 

at frequencies not very distant from the edge frequency. This represent a considerable 

practical limitation for low-frequency broadband applications, since a decrease of the 

edge frequency comes with an increase of the spacing between resonators. For this 

reason, the presented solutions can be rather valuable in mid to high-frequency 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

5  
F I N I T E  P L A T E  W I T H  A R R A Y S  O F  S H U N T E D  

P I E Z O E L E C T R I C  P A T C H E S  F O R  L O W  

F R E Q U E N C I E S  V I B R A T I O N  C O N T R O L  

In this chapter a practical algorithm is proposed for the on-line tuning of multi-

resonant shunts connected to piezoelectric patches that are bonded on thin structures 

to reduce the effects of flexural vibrations over a wide frequency band. Unlike the 

previous chapters, where investigations were associated with rather mid to high 

frequency regimes, this chapter focuses on the low frequencies range where the 

response of the plate at each frequency is characterised by the superposition of one or 

few modes. In the following studies the multi-resonant shunts are formed by multiple 

resistance-inductance-capacitance (RLC) branches connected in parallel. A tuning 

algorithm is proposed which sequentially tunes the RL elements of the branches in 

each shunt in such a way as to maximise the vibration energy absorption from a 

progressively larger number of resonant flexural modes of the hosting structure.  

The algorithm can be used also to tune the RL elements of classical, single branch, 

shunts. In practice the vibration energy absorption is estimated from the measured 

electric power absorbed by each shunt so that the on-line tuning algorithm can be 

conveniently implemented locally. To prove the validity of the proposed algorithm, 

first a simulation study is presented considering the flexural response of a thin plate 

structure, which is equipped with piezoelectric patches connected to multi-resonant 

shunts and is excited by a rain on the roof space and time stochastic disturbance.  

The study shows that the proposed approach allows the online tuning of the RLC 

branches in each shunt to control the resonant response of low order flexural modes 

so that the flexural response of the smart plate is effectively reduced over a wide low 

frequencies band. The proposed algorithm is then validated experimentally with a 

test rig composed of a clamed aluminium plate equipped with five piezoelectric 

patches connected to identical shunts. The multi-resonant shunts are synthetized 

digitally in a multi-channel dSPACE platform and tuned with the proposed method 
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such that piezoelectric patches exhibit multi-resonance vibration control effect on 

three flexural modes of the plate in the low-frequency range 40-150Hz. 

5.1  INTRODUCTION 

This chapter proposes a novel practical algorithm for the on-line tuning of multi-

resonant current-flowing shunts connected to piezoelectric patches that are bonded 

on thin structures to reduce the effects of flexural vibrations in a wide frequency band. 

The multi-resonant shunts are formed by multiple RLC branches connected in 

parallel. The proposed algorithm sequentially sets the RLC elements of the branches 

in each shunt in such a way as to maximise the vibration energy absorption from a 

progressively larger number of resonant flexural modes of the hosting structure.  

In practical applications, the vibration energy absorption will be estimated from the 

measured electric power absorbed by each shunt. In this way, the on-line tuning 

algorithm can be conveniently implemented in the electronic board of the shunt.  

To make the proposed tuning approach more readily comprehensible, a simple 

problem is considered in this chapter, which, as detailed in Section 5.2, is composed 

of a thin rectangular plate equipped with two piezoelectric patches connected to 

multi-resonant current-flowing shunts and excited by a rain on the roof space and 

time stochastic disturbance. As mentioned in Section 5.3, the flexural response of the 

smart plate is derived by combining the classical modal formulation for the coupled 

electromechanical response of the plate and piezoelectric patches used in Chapter 4 

with an original modal formulation for the electric response of the multi-resonant 

shunts, which is described in Section 5.3.2. The proposed on-line tuning algorithm of 

the RLC components in the branches of the shunts is then introduced and discussed 

in Section 5.4. A parametric study is presented in Section 5.5 to show the flexural 

vibration reduction effects that can be obtained when the plate is equipped with 

increasingly larger arrays of shunted piezoelectric patch transducers connected to 

multi-resonant current-flowing shunts tuned on line. Finally, the experimental 

evaluation of the proposed method of sequential multi-resonant shunt tuning is 

presented in Section 5.6. 

5.2  DESCRIPTION OF THE SYSTEM 

Figure 5.1 shows the system considered in this study, which is composed of a simply 

supported rectangular thin aluminium plate immerged in air, whose geometry and 

physical properties are summarised in Table 5.1 As depicted in Figure 5.1, the plate 

http://context.reverso.net/traduzione/inglese-italiano/to+make
http://context.reverso.net/traduzione/inglese-italiano/more+readily+comprehensible


 

 

 

is exposed to a white noise rain-on-the-roof time and space stochastic excitation, 

which is modelled in terms of a 4 × 4 = 16 array of uncorrelated random point forces 

uniformly distributed over the surface of the plate. To start with, two square 

piezoelectric patches are arranged on the plate as shown in Figure 5.1 (a).  

The geometry and physical properties of the two patches are also summarised in  

Table 5.1. Each patch is connected to a multi-resonant shunt, which, as described in 

Figure 5.1 (b) is composed of a cascade of parallel RLC branches. Each branch is 

formed by an inductor 𝐿𝑓𝑖𝑗 and a capacitor 𝐶𝑓𝑖𝑗 that produce the so called current 

flowing effect, that is a band pass filtering effect with centre frequency  

𝜔𝑓𝑖 = 1 √𝐿𝑓𝑖𝑗𝐶𝑓𝑖𝑗⁄ . Also it encompasses an inductor 𝐿𝑠𝑖𝑗, which, coupled with the 

piezoelectric patch capacitor 𝐶𝑝𝑒𝑗, produces the shunt vibration absorption effect at 

the tuning frequency 𝜔𝑠𝑖 = 1 √𝐿𝑠𝑖𝑗𝐶𝑝𝑒𝑗⁄  . Finally, it incorporates a resistor 𝑅𝑠𝑖𝑗 which 

is set to maximise the vibration absorption via the piezoelectric patch at frequencies 

close to the tuning frequency 𝜔𝑠𝑖. In practice, as shown in Figure 5.1 (c), since the two 

inductors are connected in series, they are implemented with a single inductor 

𝐿𝑏𝑖𝑗 = 𝐿𝑓𝑖𝑗 + 𝐿𝑠𝑖𝑗. The response of the smart plate with the two piezoelectric patches 

connected to multi-resonant shunts is used initially to describe the physics of the 

proposed tuning approach and to introduce the proposed on-line tuning algorithm. 

The vibration control effects produced by an increasingly denser array of piezoelectric 

patches that implement multi-resonant shunts with an increasingly larger number of 

RLC branches are then examined. 

 

 

Figure 5.1 (a) Plate equipped with two piezoelectric patches subject to a rain on the 

roof excitation modelled as a 4 × 4 array of uncorrelated point forces. (b) Electrical 

model of a piezoelectric patch connected to the current-flowing shunt composed of 

multiple RLC branches. (c) Simplified electrical model of the shunt. 

    

    

    

    

    

    

            

   

   

    

    

    

    

    

    

    

    

    

    

    

    

    

   

   

 

 

 

 

 a 

 b  c 



 

 

111 

 

Table 5.1. Physical and geometrical parameters of the plate. 

Parameter Plate Piezoelectric patches 

Dimensions 𝑙𝑥𝑝 × 𝑙𝑦𝑝 = 414 × 314 𝑚𝑚 𝑙𝑥𝑝𝑒 × 𝑙𝑦𝑝𝑒 = 85 × 85 𝑚𝑚 

Thickness ℎ𝑝 = 1 𝑚𝑚 ℎ𝑝𝑒 = 1 𝑚𝑚 

Density 𝜌𝑝 = 2700 𝑘𝑔/𝑚3 𝜌𝑝𝑒 = 7600 𝑘𝑔/𝑚3 

Young’s modulus 𝐸𝑝 = 7 × 1010 𝑁/𝑚2 𝐸𝑝𝑒 = 2.7 × 1010 𝑁/𝑚2 

Poisson ratio 𝜐𝑝 = 0.33 𝜈𝑝𝑒 = 0.275 

Modal damping ratio 𝜁𝑝 = 0.02 𝜁𝑝𝑒 = 0.02 

Strain / charge constants  𝑑31
0 = 150 × 10−12 𝑚/𝑉 

𝑑32
0 = 150 × 10−12 𝑚/𝑉 

𝑑36
0 = 0 

Permittivity for constant stress  𝜀𝑝𝑒
𝑇 = 84 × 10−9 𝐹/𝑚 

Capacitance  𝐶𝑝𝑒 = 2.113 × 10−7 𝐹 

Centre position patch 1  𝑥𝑝𝑒1 = 166 𝑚𝑚 ,  𝑦𝑝𝑒1 = 266  𝑚𝑚 

Centre position patch 2  𝑥𝑝𝑒2 = 333 𝑚𝑚 ,  𝑦𝑝𝑒2 = 133  𝑚𝑚 

 

5.3  MATHEMATICAL MODEL  

The mathematical model used in this chapter is the same as presented in Section 4.2.2 

of Chapter 4. The following Section 5.3.1 briefly recalls the expressions for the coupled 

mechanical and electrical equations that characterise the flexural response of the 

smart plate with reference to modal coordinates. The formulation assumes the plate 

is equipped with two shunted piezoelectric patches. Section 5.3.2 introduces the 

formulation used to describe the electrical response of the j-th shunt, which is casted 

in an original form based on “electrical modal coordinates” for the 𝑖 = 1, … , 𝑁 

branches. Then, Section 5.3.3 presents a state-space formulation with reference to 

mechanical and electrical modal state variables. Starting from this formulation, the 

time averaged electrical power absorbed by each shunt are then derived in Section 

5.3.4 with simple matrix expressions based on Lyapunov equation [92,93]. The time 

averaged total flexural kinetic energy is used to assess the global flexural response of 

the smart plate whereas the time averaged electrical power absorbed by each shunt 

is used to estimate the flexural vibration energy absorbed by each shunted 

piezoelectric patch. This second parameter is therefore employed in the on-line local 

tuning of the electrical components in the multi-resonant shunts proposed in this 



 

 

 

chapter. Finally, the Power Spectral Density (PSD) of the total flexural kinetic energy 

of the smart plate and the PSD of the electrical power absorbed by each shunt [92] are 

derived in Section 5.3.5 for the frequency analysis used to assess the effects produced 

by the shunted piezoelectric patches and to investigate the physics of the proposed 

tuning approach. 

5.3.1 Mechanical and electrical equations 

According to Section 4.2.2 the system governing equations are given by 

 𝐌𝑡𝐝̈(𝑡) + 𝐂𝑝𝐝̇(𝑡) + 𝐊𝑡𝐝(𝑡) + 𝚯𝑝𝑒𝐯𝑠(𝑡) = 𝚽𝑝𝐟𝑝(𝑡) , (5.1) 

 −𝚯𝑝𝑒
𝑇 𝐝(𝑡) + 𝐂𝑝𝑒𝐯𝑠(𝑡) = 𝐪𝑠(𝑡) . (5.2) 

In Eq. (5.1), 𝐌𝑡 = 𝐌𝑝 + 𝐌𝑝𝑒 and 𝐊t = 𝐊p + 𝐊pe are the 𝑅 × 𝑅 total modal mass and 

stiffness matrices. Also, 𝐂𝑝 is the 𝑅 × 𝑅 modal damping matrix of the plain plate and 

𝐝 = ⌊𝑑1 ⋯ 𝑑𝑅⌋𝑇 is the vector with the generalized coordinates. Next, 𝚯𝑝𝑒 is the 

𝑅 × 2 piezoelectric coupling matrix and 𝐯s = ⌊𝑣𝑠,1 ⋯ 𝑣𝑠,2⌋𝑇 contain the voltages of 

the shunts. Finally, 𝚽𝑝 is a 𝑅 × 16 matrix with the modal amplitudes at the excitation 

positions and 𝐟𝑝 = ⌊𝑓𝑝,1 ⋯ 𝑓𝑝,16⌋𝑇 is the vector with the amplitudes of the 4 × 4 

array of the rain on the roof process. In Eq. (5.2), 𝐪s = ⌊𝑞𝑠1 𝑞𝑠2⌋𝑇 contain charges of 

the shunts and 𝐂𝑝𝑒 is the 2 × 2 diagonal matrix with capacitances of the piezoelectric 

patches, which are assumed equal and thus given by: 𝐶𝑝𝑒 = 𝜀𝑝𝑒
𝑆 𝐴𝑝𝑒/ℎ𝑝𝑒, where 𝜀𝑝𝑒

𝑆  is 

the permittivity for constant strain and 𝐴𝑝𝑒 and ℎ𝑝𝑒 are respectively the area and 

thickness of the piezoelectric patches.  

 

The modal summation formulation used to reconstruct the flexural vibration of the 

plate and piezoelectric patches refers to the flexural natural modes of the plain plate. 

Therefore, as discussed in Ref. [17] a rather large number of natural modes has been 

taken into account to form a mathematical basis that can be used to properly 

reconstruct the effective flexural deflection shapes of the plate and piezoelectric 

patches assembly in the low frequency range taken into consideration in this work.  

A convergence study indicated that, for the 20 – 250 Hz frequency range considered 

in the simulations, the modal summation should include at least 300 flexural natural 

modes of the plain plate with natural frequencies up to 7.7 kHz. This rather large 

number of modes is necessary to model the discontinuity effects occurring along the 

borders of the piezoelectric patches.   
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5.3.2 Multi-resonant shunt equations 

To derive a state space model for the coupled response of the structure and 

piezoelectric patches connected to multi-resonant shunts, a modal formulation is 

proposed for the multiple RLC branches shunt circuits, which considers “modal 

currents” or “modal charges” and “modal voltage” variables. The new formulation 

allows to express the systems governing equations in the form of the continuous 

Lyapunow equation, which can be conveniently solved. The derivation starts from 

the complex impedance of multiple RLC branches of the shunt. Assuming time-

harmonic functions to have the form 𝑓(𝑡) = 𝑅𝑒{𝑓(𝜔)𝑒𝑥𝑝 (j𝜔𝑡)}, where 𝑓(𝜔) is the 

complex amplitude, 𝜔 is the circular frequency. The admittance of the shunt circuit 

can be recalled from Section 1.2.1 as the following series of 𝑁 second order terms: 

 

𝑖𝑠𝑗(𝜔)

𝑣𝑠𝑗(𝜔)
=

𝑞̇𝑠𝑗(𝜔)

𝑣𝑠𝑗(𝜔)
= −𝑌𝑠𝑗(𝜔) = −∑

1

𝐿𝑏𝑖𝑗

𝑗𝜔

−𝜔2+𝑗𝜔(
𝑅𝑏𝑖𝑗

𝐿𝑏𝑖𝑗
)+

1

𝐶𝑓𝑖𝑗𝐿𝑏𝑖𝑗

𝑁
𝑖=1  . 

(5.3) 

As it was already shown in the previous chapters, each second order term in the 

summation of Eq. (5.3), can be envisaged as the weighted sum of the ratio between a 

modal current 𝐼𝑖𝑗, i.e. modal charge rate 𝑄̇𝑠𝑖𝑗, and modal voltage 𝑉𝑠𝑖𝑗, that is  

𝐼𝑠𝑖𝑗

𝑉𝑠𝑖𝑗
=

𝑄̇𝑠𝑖𝑗

𝑉𝑠𝑖𝑗
= − 𝑗𝜔

−𝜔2+𝑗𝜔(
𝑅𝑠𝑖𝑗
𝐿𝑏𝑖𝑗

)+
1

𝐶𝑓𝑖𝑗𝐿𝑏𝑖𝑗

 . The charge flowing in the j-th shunt can thus be 

expressed in terms of the modal charges with the following matrix equation 

 𝑞𝑠𝑗 = 𝚿𝑠𝑗𝐐𝑠𝑗 , (5.4) 

where 𝚿𝑠𝑗 = [
1

√𝐿𝑏1𝑗
⋯

1

√𝐿𝑏𝑁𝑗
] contains modal weighting factors and 

𝐐𝑠𝑗 = ⌊𝑄𝑠1𝑗 ⋯ 𝑄𝑠𝑁𝑗⌋𝑇 is the vector with the modal charges, which can be written in 

terms of the modal voltages by the following matrix relation 

 𝐐𝑠𝑗(𝜔) = 𝐆𝑠𝑗(𝜔)𝐕𝑠𝑗(𝜔) , (5.5) 

that is 

 

[
 
 
 
 
𝑄𝑠1𝑗(𝜔)

𝑄𝑠𝑁𝑗(𝜔)]
 
 
 
 

= −

[
 
 
 
 
 

1

−𝜔2+𝑗𝜔(
𝑅𝑠1𝑗

𝐿𝑏1𝑗
)+

1

𝐶𝑓1𝑗𝐿𝑏1𝑗

⋱
1

−𝜔2+𝑗𝜔(
𝑅𝑠𝑁𝑗

𝐿𝑏𝑁𝑗
)+

1

𝐶𝑓𝑁𝑗𝐿𝑏𝑁𝑗]
 
 
 
 
 

[
 
 
 
 
𝑉𝑠1𝑗(𝜔)

𝑉𝑠𝑁𝑗(𝜔)]
 
 
 
 

   (5.6) 

Here  𝐕𝑠𝑗(𝜔) = ⌊𝑉𝑠1𝑗 ⋯ 𝑉𝑠𝑁𝑗⌋𝑇 is the vector with the modal voltages, which in turn 

is given by  



 

 

 

 𝐕𝑠𝑗 = 𝚿𝑠𝑗
𝑇 𝑣𝑠𝑗 , (5.7) 

where 𝑣𝑠𝑗 is the voltage at the terminals of the j-th shunt. Considering the expanded 

matrix (5.6), the frequency domain Eq. (5.5) can be straightforwardly transformed into 

the following time domain expression: 

 𝐈𝐐̈𝑠𝑗(𝑡) + 𝚫𝑠𝑗𝐐̇𝑠𝑗(𝑡) + 𝛀𝑠𝑗𝐐𝑠𝑗(𝑡) = −𝐕𝑠𝑗(𝑡) , (5.8) 

where 𝐈, 𝚫𝑠𝑗, 𝛀𝑠𝑗 are 𝑁 × 𝑁 diagonal matrices given by: 

 𝐈 = [
1

⋱
1

] , (5.9) 

 

𝚫𝑠𝑗 =

[
 
 
 
 
𝑅𝑠1𝑗

𝐿𝑏1𝑗

⋱
𝑅𝑠𝑁𝑗

𝐿𝑏𝑁𝑗]
 
 
 
 

 , 

(5.10) 

 𝛀𝑠𝑗 =

[
 
 
 
 

1

𝐶𝑓1𝑗𝐿𝑏1𝑗

⋱
1

𝐶𝑓𝑁𝑗𝐿𝑏𝑁𝑗]
 
 
 
 

 . (5.11) 

Now, considering two independent shunt circuits, Eq. (5.8) becomes 

 𝐐̈̂𝑠(𝑡) + 𝚫̂𝑠𝐐̇̂𝑠(𝑡) + 𝛀̂𝑠𝐐̂𝑠(𝑡) = −𝐕̂𝑠(𝑡) , (5.12) 

where 𝐐̂𝑠 = [𝐐𝑠1
𝑇 𝐐𝑠2

𝑇 ]𝑇, 𝐕̂𝑠 = [𝐕𝑠1
𝑇 𝐕𝑠2

𝑇 ]𝑇, and matrices are given by 

 𝐈̂ = [
𝐈 𝟎
𝟎 𝐈

] , (5.13) 

 𝚫̂𝑠 = [
𝚫𝑠1 𝟎
𝟎 𝚫𝑠2

] , (5.14) 

 𝛀̂𝑠 = [
𝛀𝑠1 𝟎
𝟎 𝛀𝑠2

] , (5.15) 

where 𝟎 are square matrices of zeros. Also Eqs. (5.4) and (5.10) become  

 𝐪𝑠(𝑡) = 𝚿̂𝑠𝐐̂𝑠(𝑡) , (5.16) 

 𝐕̂𝑠(𝑡) = 𝚿̂𝑠
𝑇𝐯𝑠(𝑡) ,, (5.17) 
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where  

 𝚿̂𝑠 = [
𝚿𝑠1 𝟎
𝟎 𝚿𝑠2

] (5.18) 

is a rectangular matrix and 𝐪𝑠 = ⌊𝑞𝑠1 𝑞𝑠2⌋𝑇 , 𝐯𝑠 = ⌊𝑣𝑠1 𝑣𝑠2⌋𝑇. Here 𝟎 are vectors of 

zeros. This formulation for 2 shunts can be straightforwardly expanded to systems 

with several shunts. 

5.3.3 State-space formulation 

The time domain Eqs. (5.1), (5.2) are now used to generate a State Space formulation 

[91,93,94] for the response of the plate with the shunted piezoelectric patches.  

First, Eq. (5.16) is employed to rewrite Eq. (5.2) as follows: 

 −𝛉𝑝𝑒
𝑇 𝐲(𝑡) + 𝐂𝑝𝑒𝐯𝑠(𝑡) = 𝚿̂𝑠𝐐̂𝑠(𝑡) , (5.19) 

such that the vector with the shunt voltages results: 

 𝐯𝑠(𝑡) = 𝑪𝑝𝑒
−1𝚿̂𝑠𝐐̂𝑠(𝑡)+𝐂𝑝𝑒

−1𝚯𝑝𝑒
𝑇 𝐝(𝑡) . (5.20) 

This expression is then substituted into Eq. (5.1) to derive the following matrix 

expression for the vector 𝐝̈(𝑡): 

 

𝐝̈(𝑡) = −𝐌𝑡
−1[𝐊𝑡 + 𝚯𝑝𝑒𝐂𝑝𝑒

−1𝚯𝑝𝑒
𝑇 ]𝐝(𝑡) − 𝐌𝑡

−1𝐂𝑝𝐝̇(𝑡) − 

−𝐌𝑡
−1𝚯𝑝𝑒𝐂𝑝𝑒

−1𝚿̂𝑠𝐐̂𝑠(𝑡) + 𝐌𝑡
−1𝚽𝑝𝐟𝑝(𝑡) . 

(5.21) 

Also, Eq. (5.12) is used to rewrite the electric Eq. (5.20) in terms of the modal charges. 

This is done by pre-multiplying the left and right hand side of Eq. (5.20) by 𝚿̂𝑠
𝑇 such 

that, the following equation is obtained: 

 𝚿̂𝑠
𝑇𝐯𝑠(𝑡) = 𝚿̂𝑠

𝑇𝐂𝑝𝑒
−1𝚿̂𝑠𝐐̂𝑠(𝑡)+𝚿̂𝑠

𝑇𝐂𝑝𝑒
−1𝚯𝑝𝑒

𝑇 𝐲(𝑡) . (5.22) 

Recalling Eqs. (5.12) and (5.17), the equation derived above is then rewritten as 

follows 

 −𝐐̈̂𝑠(𝑡) − 𝚫̂𝑠𝐐̇̂𝑠(𝑡) − 𝛀̂𝑠𝐐̂𝑠(𝑡) = 𝚿̂𝑠
𝑇𝐂𝑝𝑒

−1𝚿̂𝑠𝐐̂𝑠(𝑡)+𝚿̂𝑠
𝑇𝐂𝑝𝑒

−1𝚯𝑝𝑒
𝑇 𝐝(𝑡) , (5.23) 

such that the following matrix expression is derived for the vector 𝐐̈̂s(t): 

 𝐐̈̂𝑠(𝑡) = −𝚿̂𝑠
𝑇𝐂𝑝𝑒

−1𝚯𝑝𝑒
𝑇 𝐲(𝑡) − [𝚿̂𝑠

𝑇𝐂𝑝𝑒
−1𝚿̂𝑠 + 𝛀̂𝑠]𝐐̂𝑠(𝑡) − 𝚫̂𝑠𝐐̇̂𝑠(𝑡) . (5.24) 



 

 

 

At this point, Eqs. (5.21) and (5.24) are used to construct the state space formulation 

with respect to the following modal state vector 

 𝐱(𝑡) = [𝐝𝑇 𝐝̇𝑇 𝐐̂𝑠
𝑇 𝐐̇̂𝑠

𝑇]
𝑇

 . (5.25) 

A classical state space formulation is thus derived with two output equations, one for 

the modal velocities of the structural response, and one for the modal charges of the 

j-th shunt: 

 𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐟𝑝(𝑡) , (5.26) 

 𝐝̇(𝑡) = 𝐂𝐲̇𝐱(𝑡) , (5.27) 

 𝐐̇̂𝑠𝑗(𝑡) = 𝐂
𝐐̇̂𝑗

𝐱(𝑡) . (5.28) 

Here, the state and the input matrices are given by the following expressions 

 𝐀 =

[
 
 
 

𝟎 𝐈 𝟎 𝟎
−𝐌𝑡

−1[𝐊𝑡 + 𝚯𝑝𝑒𝐂𝑝𝑒
−1𝚯𝑝𝑒

𝑇 ] −𝐌𝑡
−1𝐂𝑝 −𝐌𝑡

−1𝚯𝑝𝑒𝐂𝑝𝑒
−1𝚿̂𝑠 𝟎

𝟎 𝟎 𝟎 𝐈
−𝚿̂𝑠

𝑇𝐂𝑝𝑒
−1𝚯𝑝𝑒

𝑇 𝟎 −[𝚿̂𝑠
𝑇𝐂𝑝𝑒

−1𝚿̂𝑠 + 𝛀̂𝑠] −𝚫̂𝑠]
 
 
 

 , (5.29) 

 𝐱(𝑡) = [𝐝𝑇 𝐝̇𝑇 𝐐̂𝑠
𝑇 𝐐̇̂𝑇 ]

𝑇
 . (5.30) 

Also, the two output matrices are given by  

 𝐂𝐲̇ = [𝟎 𝐈 𝟎 𝟎]𝑇 , (5.31) 

 𝐂
𝐐̇̂𝑗

= [𝟎 𝟎 𝟎 𝐈𝑗]𝑇 , (5.32) 

where, for example, 𝐈1 is a diagonal matrix with the first 𝑁 terms equal to 1 and the 

remaining terms equal to 0. 

5.3.4 Time averaged energy functions 

As anticipated above, this study considers two energy functions: the total flexural 

kinetic energy of the smart plate and the electric power absorbed by the j-th shunt, 

which are given by the following expressions [17,91,92,95]. 

 𝐾(𝑡) =
1

2
∫ 𝜌𝑝ℎ𝑝𝑤̇(𝑥, 𝑦, 𝑡)2
𝐴𝑝

d𝐴𝑝 +
1

2
∑ ∫ 𝜌𝑝𝑒ℎ𝑝𝑒𝑤̇(𝑥, 𝑦, 𝑡)2

𝐴𝑝𝑒𝑗
d𝐴𝑝𝑒𝑗

2
𝑗=1  , (5.33) 
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 𝑃𝑗(𝑡) = 𝑣𝑠𝑗(𝑡)𝑖𝑠𝑗(𝑡) . (5.34) 

In Eq. (36), 𝜌𝑝, ℎ𝑝 and 𝜌𝑝𝑒 , ℎ𝑝𝑒 represent the material density and thickness of the plate 

and piezoelectric patches respectively. Also, 𝐴𝑝, 𝐴𝑝𝑒𝑗 are the surface area of the plate 

and piezoelectric patches. Finally, 𝑤̇(𝑥, 𝑦, 𝑡) is the plate transverse velocity, whereas, 

in Eq. (37), 𝑣𝑠𝑗 and 𝑖𝑠𝑗(𝑡) are the voltage and current at the terminals of the j-th shunt. 

Considering the formulations presented in Refs. [92], the time averaged total flexural 

kinetic energy of the smart plate, 𝐾̅, and the time averaged total power absorbed by 

the the j-th shunt, 𝑃̅𝑗, can be expressed as follows: 

 𝐾̅ = 𝐸[𝐾(𝑡)] = 𝐸 [
1

2
𝐝̇𝑇𝐌𝑡𝐝̇] =

1

2
Tr[𝐂𝐲̇

𝑇𝐌𝑡𝐂𝐲̇𝐗] , (5.35) 

 𝑃̅𝑗 = 𝐸[𝑃𝑗(𝑡)] = 𝐸 [𝐐̇̂𝑠𝑗
𝑇 𝐋𝑠𝑗

−1𝐑𝑠𝑗𝐐̇̂𝑠𝑗] = Tr [𝐂
𝐐̇̂𝑗

𝑇 𝐋𝑠𝑗
−1𝐑𝑠𝑗𝐂𝐐̇̂𝑗

𝐗] , (5.36) 

where 𝐸[ ] is the expectation operator and 

 𝐋𝑠𝑗 = [

𝐿𝑏1𝑗

⋱
𝐿𝑏𝑁𝑗

] , (5.37) 

 
𝐑𝑠𝑗 = [

𝑅𝑠1𝑗

⋱
𝑅𝑠𝑁𝑗

] , 
(5.38) 

are diagonal matrices with the inductance and resistance in the branches of the j-th 

shunt. Finally, the covariance matrix 𝐗 satisfies the Lyapunov equation [92,93]  

 𝐀𝐗 + 𝐗𝐀𝐻 + 𝐁𝐅𝐁𝑇 = 𝟎 , (5.39) 

where 𝐅 = 𝐸[𝐟𝑝𝐟𝑝 ] is the covariance matrix of the rain on the roof excitation, which, 

in this study, is assumed as an identity matrix.  

5.3.5 Power spectral density of the time average energy functions 

The physics of the proposed tuning approach is studied with reference to the PSD of 

the plate total flexural kinetic energy and the PSD of the power absorbed by the j-th 

shunt, which, considering the formulations presented in Refs. [17,91,92], are given by 

the following expressions: 



 

 

 

 

𝑆𝐾(𝜔) =
1

2
∫ 𝜌𝑝𝐴𝑝

ℎ𝑝ℱ[ℛ𝑤̇𝑤̇(𝜏)]d𝐴𝑝 +  

+
1

2
∑ ∫ 𝜌𝑝𝑒ℎ𝑝𝑒ℱ[ℛ𝑤̇𝑤̇(𝜏)]

𝐴𝑝𝑒𝑗
d𝐴𝑝𝑒𝑗

2
𝑗=1  , 

(5.40) 

 𝑆𝑃𝑗
(𝜔) = 𝑅𝑒 {ℱ [ℛ𝑣𝑠𝑗𝑖𝑠𝑗(𝜏)]} . (5.41) 

Here, ℱ[ ] and 𝑅𝑒{ } are respectively the Fourier Transform and real part operators. 

Also, ℛ𝑤̇𝑤̇(𝜏) is the autocorrelation function between plate velocities and ℛ𝑣𝑠𝑗𝑖𝑠𝑗(𝜏) is 

the cross-correlation function between the voltage and current at the terminals of the 

j-th shunt [92]. By using the mathematical procedure presented in Section 4.2.2. Eq. 

(5.40) can be expressed as 

 𝑆𝐾(𝜔) =
1

2
Tr[𝐌𝑡𝐘(𝜔)𝐒𝐟𝐟(𝜔)𝐘𝐻(𝜔)] , (5.42) 

were, 𝐻 is the Hermitian transpose matrix operator, Tr[ ] is a trace matrix operator, 

𝐘 is the global mobility matrix and 𝐒𝐟𝐟 is a diagonal matrix with the PSD of the 16 

uncorrelated white noise rain on the roof forces acting on the plate, which is therefore 

equal to a 16 × 16 identity matrix. 

By using the definition of Fourier Transform given in Ref. [86], Eq. (5.41) can be 

rewritten as 

 𝑆𝑃𝑗
(𝜔) = 𝑅𝑒 { lim

𝑇→∞
𝐸[1

𝑇
𝑣𝑠𝑗(𝜔)∗𝑖𝑠𝑗(𝜔)]} , (5.43) 

where the superscript ∗ indicates the complex conjugate and ẇ(x, y, ω) is the 

complex amplitude of the plate time-harmonic transverse velocity whereas vsj(ω) 

and isj(ω) are the complex amplitudes of the time-harmonic voltage and current at 

the terminals of the j-th shunt. Assuming time-harmonic functions, Eqs. (5.1) and (5.2) 

can be rewritten as follows: 

 [−𝜔2𝐌𝑡 + j𝜔𝐂𝑝 + 𝐊𝑡]𝐝(𝜔) + 𝚯𝑝𝑒𝐯𝑠(𝜔) = 𝚽𝑝𝐟𝑝(𝜔) , (5.44) 

 −j𝜔𝚯𝑝𝑒
𝑇 𝐝(𝜔) + j𝜔𝐂𝑝𝑒𝐯𝑠(𝜔) = 𝐢𝑠(𝜔) . (5.45) 

Moreover, considering the notation shown in Figure 5.1, the voltages and currents at 

the terminals of the shunt can be linked via the following impedance expression: 

 𝐯𝑠(𝜔) = −𝐙𝑠𝐢𝑠(𝜔) . (5.46) 
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In these three equations, (𝜔), 𝐟𝑝(𝜔), 𝐯𝑠(𝜔), 𝐢𝑠(𝜔) are the vectors with the complex 

amplitudes of the time-harmonic plate modal displacements, plate excitation forces, 

shunts voltages and shunts currents. Also the diagonal matrix 𝐙𝑠 contains the 

impedances of the multi-branches shunts. Eqs. (5.44), (5.45) and (5.46) can be 

combined to give: 

 𝐝̇(𝜔) = 𝐘(𝜔)𝐟𝑝(𝜔) , (5.47) 

 𝐢𝑠(𝜔) = 𝐇(𝜔)𝐟𝑝(𝜔) , (5.48) 

where: 

 𝐘(𝜔) = j𝜔[−𝜔2𝐌𝑡 + j𝜔(𝐂𝑝 + 𝚯𝑝𝑒𝐙𝑠𝑝𝑒𝚯𝑝𝑒
𝑇 ) + 𝐊𝑡]

−1
𝚽𝑝 , (5.49) 

 𝐙𝑠𝑝𝑒(𝜔) = [𝐈 + j𝜔𝐙𝑠𝐂𝑝𝑒]
−1

𝐙𝑠 , (5.50) 

 𝐇(𝜔) = [𝐈 + j𝜔𝐙𝑠𝐂𝑝𝑒]
−1

𝚯𝑝𝑒
𝑇 𝐘(𝜔) . (5.51) 

At this point, recalling the modal summation 𝑤(𝑥, 𝑦, 𝜔) = 𝛟(𝑥, 𝑦)𝐝(𝜔) and using Eqs. 

(5.44), (5.45), (5.46) the expression is derived for the PSD of the power absorbed by 

the j-th shunt [92]: 

 

𝑆𝑃𝑗
(𝜔) = 𝑅𝑒 { lim

𝑇→∞
𝐸[1

𝑇
𝑣𝑠𝑗(𝜔)∗𝑖𝑠𝑗(𝜔)]} =   

= −𝑅𝑒 { lim
𝑇→∞

𝐸 [
1

𝑇
𝐢𝑠
𝐻(𝜔)𝒁𝑠𝑗

𝐻 (𝜔)𝐢𝑠(𝜔)]} =  

= −𝑅𝑒 { lim
𝑇→∞

𝐸 [
1

𝑇
𝐟𝑝(𝜔)𝐻𝐇𝐻(𝜔)𝒁𝑠𝑗

𝐻 (𝜔)𝐇(𝜔)𝐟𝑝(𝜔)]} , 

(5.52) 

where 𝐻 is the Hermitian transpose matrix operator and Zsj(ω) contains the 

impedances of the N branches relative to the j-th shunt only. These two equations can 

be further simplified using the trace matrix operator Tr[ ], which is invariant under 

cyclic product operations, such that Eq. (5.52) can be rewritten as 

 𝑆𝑃𝑗
(𝜔) = −Tr[𝑅𝑒{𝒁𝑠𝑗

𝐻 (𝜔)}𝐇(𝜔)𝐒𝐟𝐟(𝜔)𝐇𝐻(𝜔)] , (5.53) 

where 

 𝐒𝐟𝐟(𝜔) = lim
𝑇→∞

𝐸 [
1

𝑇
𝐟𝑝(𝜔)𝐻𝐟𝑝(𝜔)]  (5.54) 



 

 

 

is a diagonal matrix with the PSD of the 16 uncorrelated white noise rain on the roof 

forces and assumed equal to a 16 × 16 identity matrix. 

5.4  TUNING OF MULTI-RESONANT SHUNTS 

This section describes the proposed novel algorithm to locally tune the RL 

components in the RLC branches of multi-resonant shunts.  Before entering into the 

details of the algorithm, the physical effects produced by the RLC branches in the 

shunts are first examined. For the sake of clarity, the effects produced by a single 

classical RL branch and a single RLC branch connected to a piezoelectric path are first 

analysed in Section 5.4.1. Then, the incremental effects of multi-resonant RLC 

branches connected to two piezoelectric patches are discussed in Section 5.4.2. Finally, 

the proposed algorithm for the on-line tuning of the RL components in multiple RLC 

branches of multi-resonant shunts is presented and discussed in Section 5.4.3. 

5.4.1 Effects produced by RL and RLC single branches 

To start with, this section assumes the piezoelectric patch N.1 is connected to a 

classical RL shunt whereas the second patch is left in open circuit. Figure 5.2 shows 

(a) the time averaged total flexural kinetic energy of the plate, 𝐾̅, and (b) the time 

averaged total power absorbed by the first shunt, 𝑃̅1, when the shunt inductance is 

varied in the range 𝐿𝑠11 = 2 − 300𝐻 and the shunt resistance is varying in the range 

𝑅𝑠11 = 0.1 − 2𝑘𝛺. As highlighted in the bottom axis of the two surface graphs, the 

combined effect of the varied shunt inductance (𝐿𝑠11 = 2 − 300𝐻) and fixed 

piezoelectric patch capacitance (𝐶𝑝𝑒1 = 2.113 × 10−7𝐹) produces a tuning resonance 

frequency of the shunt comprised between 20 and 250Hz. The left hand side plots (a) 

show that, when the shunt resistance is set to low values, the time averaged total 

flexural kinetic energy of the plate is characterised by a sequence of troughs aligned 

in parallel direction to the inductance axis and centred at four resonance frequencies 

of the smart plate structure, that is at 𝑓𝑟1 = 44𝐻𝑧, 𝑓𝑟2 = 92𝐻𝑧, 𝑓𝑟3 = 135𝐻𝑧,  

𝑓𝑟4 = 190𝐻𝑧, that coincide with the resonance frequencies of the low order flexural 

natural modes of the smart plate, i.e. 𝑓𝑠1 = 𝑓𝑟1, 𝑓𝑠2 = 𝑓𝑟2, etc. and the shunt resistance 

is suitably tuned. The companion right hand side plots (b) show symmetrical graphs, 

which in this case are characterised by a sequence of crests aligned in parallel 

direction to the inductance axis and centred at the first four resonance frequencies of 

the smart plate structure. An accurate analysis and comparison of plots (b) with the 

equivalent plots (a) shows that the maxima of the power crests occurs for the same 
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shunt inductance and resistance as those for the minima of the kinetic energy troughs. 

This indicates that, when the shunt is optimally tuned to minimise the response of a 

resonant flexural mode of the smart plate, the power absorbed by the shunt is actually 

maximised. This is quite an important observation since it suggests that the RL 

components of the shunt can be locally tuned to minimise the response of a flexural 

resonant mode of the smart plate simply by maximising the total power absorbed by 

the shunt band-filtered in correspondence to the resonance frequency of the targeted 

flexural mode of the smart plate. 

 

 

Figure 5.2 Time averaged total flexural kinetic energy of the smart plate structure (a) 

and time averaged electrical power absorbed (b) by the RL shunt circuit connected to 

the piezoelectric patch N.1 (c).  

 

The effects produced by a band pass filtered classical RL shunt are therefore now 

considered. As anticipated in Section 1.2.1 of Chapter 1, the band filtering effect is 

generated by adding in series to the classical 𝑅𝑠11, 𝐿𝑠11 shunt components two 

additional 𝐿𝑓11, 𝐶𝑓11 filtering components that create the current-flowing effect, which 

narrows the band of the current signal passed to the 𝑅𝑠11, 𝐿𝑠11 elements at a centre 

frequency given by 𝜔𝑓1 =
1

√𝐿𝑓11𝐶𝑓11
 . The series of plots in Figure 5.3 show (a) the time 

averaged total flexural kinetic energy of the smart plate 𝐾̅ and (b) the time averaged 

total power absorbed by the first shunt 𝑃̅1, with reference to the combined shunt and 

current flow inductances 𝐿𝑏11 = 𝐿𝑠11 + 𝐿𝑓11 and with reference to the shunt resistance 

𝑅𝑠1 when the current flow capacitance is set to three values: first row, 𝐶𝑓11 = 10𝐶𝑝𝑒1, 

          

                  

    

    

 a  b  c 



 

 

 

second row 𝐶𝑓11 = 𝐶𝑝𝑒1, third row 𝐶𝑓11 = 0.1𝐶𝑝𝑒1. Assuming the inductance of the 

shunt 𝐿𝑠11 and the inductance of the current-flowing filter 𝐿𝑓11 are set such that both 

the shunt and the filter are tuned to the same target frequency, such that  

𝜔𝑠1 = 𝜔𝑓1 = 𝜔𝑏1, according to 

 𝐿𝑏𝑖𝑗 = 𝐿𝑓𝑖𝑗 + 𝐿𝑠𝑖𝑗 =
1

𝜔𝑟𝑖
2 𝐶𝑓𝑖𝑗

+
1

𝜔𝑟𝑖
2 𝐶𝑝𝑒𝑗

=
𝐶𝑓𝑖𝑗+𝐶𝑝𝑒𝑗

𝜔𝑟𝑖
2 𝐶𝑓𝑖𝑗𝐶𝑝𝑒𝑗

 . (5.55) 

The combined effect of piezoelectric patch capacitance 𝐶𝑝𝑒1 with the shunt 𝑅𝑠11, 𝐿𝑠11 

and current-flowing 𝐿𝑓1, 𝐶𝑓1 elements connected in series produces a sharp resonance 

effect at frequency:  

 𝜔𝑏1 = √
𝐶𝑝𝑒1+𝐶𝑓11

𝐿𝑏11𝐶𝑝𝑒11
 . (5.56) 

The sequence plots in Figure 5.3 show that, as the combined inductance effect 

𝐿𝑏11 = 𝐿𝑠11 + 𝐿𝑓11 is varied between given ranges such that the resonance frequency 

of the shunt is swept between 20 and 250Hz, the kinetic energy troughs and the 

electrical power crests that occur in correspondence of four resonance frequencies of 

the smart plate become progressively sharper as the value of the capacitance 𝐶𝑓11 is 

reduced with respect to the capacitance of the piezoelectric patch 𝐶𝑝𝑒1. Therefore, to 

have a sharp filtering effect, the capacitance in the shunt branch should be fixed to a 

value comparatively smaller than the capacitance of the piezoelectric patch, although 

this may then require rather large shunt inductances to produce the filtering and 

shunt effects. The forthcoming simulation results were derived assuming the 

capacitances in the shunt branches are equal to 𝐶𝑓𝑖𝑗 = 0.2𝐶𝑝𝑒1.  
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Figure 5.3 Time averaged total flexural kinetic energy of the smart plate structure (a) 

and time averaged electrical power absorbed (b) by the RLC shunt circuits connected 

to the piezoelectric patch N.1 (c) having 𝐶𝑓11 = 10𝐶𝑝𝑒1 (first row), 𝐶𝑓11 = 𝐶𝑝𝑒1 

(second row), 𝐶𝑓11 = 0.1𝐶𝑝𝑒1 (third row). 

 

It is important to highlight that, as the capacitance in the shunt is lowered, the 

aggregate inductance 𝐿𝑏11 = 𝐿𝑠11 + 𝐿𝑓11 necessary to obtain the band pass filtering 

effect and the shunt resonant effect becomes increasingly larger and reaches values 

that would require a rather bulky inductor element. This is a critical practical 

problem, which, however, could be overcome by synthesising the shunt inductance 

electronically with an active circuit involving operational amplifiers [96]. In this case, 

a negative capacitance could also be synthesised in the active circuit to lower the 

capacitive effect of the piezoelectric patch and thus increase the vibration energy 

absorption from the target flexural mode so that its flexural response is significantly 

reduced [17,24-42]. This study is focussed on the tuning of single and multi-branch 

shunts, therefore, to keep the formulation and discussion simple, classical shunts 
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composed of passive electrical elements will be considered, which do not produce the 

negative capacitance necessary to magnify the vibration control effect of the target 

resonant modes of the hosting structure. Thus, it is important to anticipate that the 

vibration reductions predicted in the following part of the chapter could be 

significantly increased in practice with multi-resonant shunts formed by active 

circuits that synthesise negative capacitors, large inductors and, indeed, also the 

tuning algorithm proposed in this study.  

5.4.2 Incremental effect produced by multiple RLC branches 

The vibration control effects produced by multi-resonant RLC branches connected to 

the two piezoelectric patches are now investigated. To start with, the piezoelectric 

patch N.1 is connected to a shunt with 1, 2, 3, 4 RLC branches whereas the 

piezoelectric patch N.2 is left open circuit. The simulation results for the incremental 

effects produced by the four branches are summarised in Figure 5.4, which is 

organised in four rows, each with three plots that show (a) the smart plate time 

averaged flexural kinetic energy, (b) the shunt time-averaged absorbed electric power 

and (c) the PSD of the plate flexural kinetic energy (solid blue line – no shunt; dashed 

red line – with shunt) and electric power absorbed by the shunt (dotted black line) 

when the piezoelectric patch N.1 is connected to shunts with respectively 1, 2, 3, 4 RLC 

branches  d . Let’s consider first the case where the piezoelectric patch is connected 

to the first RLC branch. In this case plots (a) and (b) replicate those already discussed 

above in Section 5.4.1. The two graphs are characterised respectively by a sequence of 

troughs and crests that occur for values of the shunt inductance 𝐿𝑏11 such that the 

branch resonates in correspondence of four resonances of the low order flexural 

modes of the smart plate. As observed above, the RL values for the minima of the four 

troughs correspond to the RL values for the maxima of the four crests. Hence, if, for 

example, the inductance 𝐿𝑏11 and resistance 𝑅𝑠11 components of this first branch are 

fixed to the optimal values that would maximise the absorbed electric power in 

correspondence to the fourth crest and thus would minimise the flexural response in 

correspondence of the fourth trough, i.e. 𝐿𝑏11 = 𝐿𝑜𝑝𝑡1 and 𝑅𝑠11 = 𝑅𝑜𝑝𝑡1, as shown by 

the solid blue and dashed red lines in plot (c), the PSD of the flexural kinetic energy 

would be effectively minimised in correspondence of the fifth resonance frequency of 

the smart plate whereas the PSD of the absorbed electric power (dotted black line) 

would be characterised by a dominant peak at the fifth resonance frequency of the 

smart plate. 
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Figure 5.4 (a) Time averaged total flexural kinetic energy of the smart plate structure, 

(b) time averaged electrical power absorbed and (c) PSD of the plate flexural kinetic 

energy (solid blue line no shunt; dashed red line with shunt) and electric power 

absorbed by the shunt (dotted black line) by the RLC multi-resonant shunt circuits 

connected to the piezoelectric patch N.1 (d) while the piezoelectric patch N.2 is in 

open circuit.  

 

Plots (a) and (b) are characterised respectively by four troughs and four crests 

whereas plot (c) is characterised by five resonance peaks. Indeed, plots (a), (b) are 

missing respectively a trough and a crest in correspondence to the fourth resonance 

frequency of the smart plate. This is due to the fact that the piezoelectric patch N.1 is 

positioned in the vicinity of a nodal line of the fourth flexural mode of the smart plate 
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so that the patch is weakly coupled with this mode. As a result, the shunt cannot 

extract vibration energy and thus minimise the flexural response of this resonant 

mode. If now a second RLC branch is added to the shunt, plots (a) and (b) in the 

second row of Figure 5.4 show only three troughs and three crests that occur for 

values of the shunt inductance 𝐿𝑏21 such that the branch resonates in correspondence 

of the first three resonances of the smart plate. There is no a fourth trough and a fourth 

crest since the first branch in the shunt is already optimally tuned to maximise the 

vibration energy absorption, and thus minimise the flexural vibration energy, due to 

the fifth resonant mode of the smart plate. If now the inductance 𝐿𝑏21 and resistance 

𝑅𝑠21 components of this second branch are fixed to the optimal values that would 

maximise the absorbed electric power and minimise the flexural response in 

correspondence of the third crest and trough respectively, i.e. 𝐿𝑏21 = 𝐿𝑜𝑝𝑡2 and  

𝑅𝑠21 = 𝑅𝑜𝑝𝑡2, as shown by the solid blue and dashed red lines in plot (c), the PSD of 

the flexural kinetic energy would be effectively minimised in correspondence of the 

third and fifth resonance frequencies of the smart plate whereas the PSD of the 

absorbed electric power (dotted black line) would be characterised by two dominant 

peaks at these two resonance frequencies. A third branch can now be added to the 

shunt, such that plots (a) and (b) in the third row of Figure 5.4 show only two troughs 

and two crests. The inductance 𝐿𝑏31 and resistance Rs31 components of this third 

branch can thus be fixed to maximise the absorbed electric power and minimise the 

flexural response in correspondence to the second crest and second trough 

respectively, i.e. 𝐿𝑏31 = 𝐿𝑜𝑝𝑡3 and 𝑅𝑠31 = 𝑅𝑜𝑝𝑡3. In this case, plot (c) shows that the 

PSD of the flexural kinetic energy (solid blue line and dashed red line) is brought 

down in correspondence of the second, third and fifth resonance frequencies of the 

smart plate whereas the PSD of the absorbed electric power (dotted black line) is 

characterised by three peaks at these resonance frequencies.inductance 𝐿𝑏41 and 

resistance 𝑅𝑠41 can be fixed to maximise the absorbed electric power and minimise 

the flexural response of this crest and trough respectively, i.e. 𝐿𝑏41 = 𝐿𝑜𝑝𝑡4 and  

𝑅𝑠41 = 𝑅𝑜𝑝𝑡4, such that, as shown in plot (c), the PSD of the flexural kinetic energy 

(blue solid line and red dashed line) is brought down in correspondence of the first, 

second, third and fifth resonance frequencies of the smart plate whereas the PSD of 

the absorbed electric power (dotted black line) is characterised by four peaks at the 

first, second, third and fifth resonance frequencies of the smart plate.  
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Figure 5.5 (a) Time averaged total flexural kinetic energy of the smart plate structure, 

(b) time averaged electrical power absorbed and (c) PSD of the plate flexural kinetic 

energy (solid blue line no shunt; dashed red line with shunt) and electric power 

absorbed by the shunt (dotted black line) by the RLC multi-resonant shunt circuits 

connected to the piezoelectric patch N.2 (d) while the piezoelectric patch N.1 

implements a four branches multi-resonant shunt. 

 

The same analysis can now be repeated for the piezoelectric patch N.2 assuming the 

piezoelectric patch N.1 is connected to the four branches multi-resonant shunt set to 

control the flexural response of the first, second, third and fifth resonances of the 

smart plate as described just above. Figure 5.5  shows the same sequence of plots than 

Figure 5.4, which are once more organised in four rows, each with three plots that 

show (a) the plate time averaged flexural kinetic energy, (b) the shunt time-averaged 

absorbed electric power and (c) the PSD of the plate flexural kinetic energy (solid blue 
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line – no shunt; dashed red line – with shunt) and electric power absorbed by the 

shunt (dotted black line) when the piezoelectric patch N.2 is connected to shunts with 

respectively 1, 2, 3, 4 RLC branches (d). The four rows of plots present a very similar 

story to that depicted in Figure 5.4 for the piezoelectric patch N.1 connected to a four 

multi-resonant branches shunt. Therefore, the four RLC branches can be iteratively 

tuned to maximise the electric power absorption by the shunt filtered in 

correspondence to the fifth, third, second and first resonance frequency of the smart 

plate such that, the flexural response of the smart plate is then minimised at these 

resonance frequencies. The same procedure proposed above can thus be 

implemented to find the optimal values of the inductance and resistance elements in 

the four branches such that: first, 𝐿𝑏12 = 𝐿𝑜𝑝𝑡5 and 𝑅𝑠12 = 𝑅𝑜𝑝𝑡5; second, 𝐿𝑏22 = 𝐿𝑜𝑝𝑡6 

and 𝑅𝑠22 = 𝑅𝑜𝑝𝑡6; third, 𝐿𝑏32 = 𝐿𝑜𝑝𝑡7 and 𝑅𝑠32 = 𝑅𝑜𝑝𝑡7; fourth 𝐿𝑏42 = 𝐿𝑜𝑝𝑡8 and 

𝑅𝑠42 = 𝑅𝑜𝑝𝑡8.  

 

The results presented in this section naturally lead to the conception of a practical 

approach for the tuning of the RL components in the branches of multi-resonant 

shunts connected to piezoelectric patches that are bonded on thin structures to control 

the flexural response due to resonance effects of low order flexural modes. Indeed an 

algorithm can be devised, which iteratively search for the maximum power 

absorption in the vicinity of a resonance frequency of the smart plate to set the optimal 

values of the inductance and resistance elements in a first branch of a shunt and then 

move forward to search for the maximum power absorption in the vicinity of a 

neighbour resonance frequency of the smart plate to set the optimal values of the 

inductance and resistance elements in a second branch of a shunt and so on. This 

process can be repeated sequentially in the shunts of all piezoelectric patches bonded 

on the hosting structure. In principle, every time a branch is added to each shunt the 

existing branches could become mistuned and thus the tuning sequence described 

above should be repeated indefinitely. For instance, for the system at hand, after the 

branches in the shunts N.1 and N.2 have been tuned, the algorithm should restart 

from the shunt N.1 and then move again to the shunt N.2 and so on to upgrade the 

optimal values of the RL components in the four branches of the two shunts. 

However, further simulations have shown that a second iteration would slightly 

modify the optimal values of the RL components in the branches of the shunts N.1 

and N.2 and, thus, marginally modify the electric power absorbed by the multi-

resonant shunts as well as the flexural response of the smart plate. Nevertheless, in 

many practical applications it may be essential to run the tuning sequence 
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continuously to track changes in the dynamic response of the hosting structure due 

for example to temperature changes or tensioning effects generated by operation 

conditions. 

5.4.3 Tuning algorithm based on the maximisation of electric power absorbed by a multi 

resonant shunt 

The previous section has shown that the time-averaged electric power absorbed by a 

shunt varies with respect to the inductance and resistance components in a branch of 

the shunt so as to form a surface characterised by a series of crests. For instance, if a 

single RLC branch is connected to the piezoelectric patch N.1, as shown in Figure 5.6, 

the electric power absorbed by the shunt is characterised by a surface with four crests. 

The crests have stretched bell shapes with principal axes parallel to the inductance, 

which is the stretching direction, and resistance axes. Therefore, the inductance and 

resistance values of the crests maxima can be found independently with a two stages 

search: the first stage finds the optimal inductance by setting a fixed tentative value 

of the shunt resistance (normally a low value) whereas the second stage finds the 

optimal resistance with reference to the optimal inductance identified in the first 

stage. These searches are therefore carried out on slices of the absorbed electric power 

surface that resemble the curves in the top and left-hand side plots of Figure 5.6.  

The RL components in the branches of the multi-resonant shunts considered in this 

study can therefore be found with an iterative procedure, which, as proposed in 

Section 5.4.2, scrolls the RL components of the first branch until the optimal values 

that maximise the absorbed electric power filtered in correspondence of the fourth 

crest are found, then scrolls the RL components of the second branch until the optimal 

values that maximise the absorbed electric power filtered in correspondence of the 

third crest are found, and so on. As discussed in Section 5.4.2 and depicted in the 

second column of the plots presented in Figure 5.4 and Figure 5.5 for the shunts N.1 

and N.2 respectively, this scrolling procedure will work on absorbed power surfaces 

that change every time a new branch is added to the shunt. For the first branch the 

search starts by setting the resistance to a relatively low value and the inductance to 

a value such that the branch resonates at a given upper frequency that defines the 

operation band of the multi-resonant shunt. For instance, for the model problem 

considered in this study, the initial resistance and inductance of the first branch were 

chosen equal to 𝑅𝑠11 = 200 Ω 𝐿𝑏11 = 12.5 H. The searches for the successive branches 

then start by setting the branch resistance to a relatively low value and the branch 



 

 

 

inductance to a value equal to the optimal inductance found in the previous search. 

In other words, the searching algorithm restart for each branch from the resonance 

frequency of the previous branch.  

 

 

Figure 5.6 (c) Time averaged electrical power absorbed by the shunt circuit shown in 

(d). Plots (a) and (b) present slices of the surface plot (c) cut along a constant resistance 

𝑅𝑠11 = 200 Ω (a) and constant inductance 𝐿𝑏11 = 21.1 H (b), that is a plate and shunt 

resonance frequency 𝑓𝑏11 = 184.5Hz. 

 

Several algorithms can be employed for the two stages search of the optimal 

inductance and resistance components that maximise the electric power absorbed by 

a branch of the shunt. For instance, in this study, a coarse and fast initial search was 

implemented with a simple algorithm based on the following finite difference 

expressions of the first and second derivatives of the electric power absorbed by the 

shunt with reference to either fixed steps increments of the inductance,  

Eqs. (5.57-5.58), or fixed steps increments of the resistance, Eqs. (5.59-5.60), in the 

branch of the shunt: 
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Here the indices m, n identify the m-th iteration for the optimal inductance search and 

the n-th iteration for the optimal resistance search, which are implemented 

considering fixed steps of the inductance and resistance equal to ∆𝐿𝑏 and ∆𝑅𝑠 

respectively. Thus, at each iteration the optimal values of the branch inductance and 

resistance are updated by simply summing the fixed step intervals, that is: 

𝐿𝑏𝑚+1
= 𝐿𝑏𝑚

+ ∆𝐿𝑏 and 𝑅𝑠𝑛+1
= 𝑅𝑠𝑛

+ ∆𝑅𝑠. The maxima of the two stages search occur 

when the first derivative changes sign from negative to positive and the second 

derivative is negative. 

 

 

Figure 5.7 First stage coarse (a, b, c) and fine (d, e, f) inductance (frequency) tuning 

based on the maximisation of the electrical power absorbed by the shunt branches. (a, 

d) Amplitude, (b, e) first derevative, (c, f) second derivatives of the absorbed power 

with respect to the inductances implemented in the four branches. Thick vertical 

bands indicate the inductances (frequencies) where the fine frequency tuning is 

performed as shown in plots (d, e, f). 

 

 

Figure 5.8 Second stage fine (a, b, c) resistance tuning based on the maximisation of 

the electrical power absorbed by the shunt branches. (a) Amplitude, (b) first 

derivative, (c) second derivative of the absorbed electric power with respect to the 

resistances implemented in the four branches. 

 a  c  b 

            



 

 

 

 

Plots (a), (b), (c) in Figure 5.7 show the details of the first stage search for the 

inductances in the four branches of the multi-resonant shunt connected to the 

piezoelectric patch N.1. In this case, the search is carried out assuming the branches 

implement small resistances equal to 100 Ω. Plots (a), (b), (c) respectively show the 

amplitude, the fist derivate and the second derivative of the electric power absorbed  

by the shunt with reference to constant increments of the inductances implemented 

sequentially in the four branches of the multi-resonant shunt connected to the 

piezoelectric patch N.1. It is interesting to note how, once the optimal inductance in a 

given branch is identified and then the search for the optimal inductance in the 

following branch starts the amplitude, first derivative and second derivative plots of 

the electric power function undergo an abrupt change, which, as discussed in  

Section 5.4.2 is due in fact to the action of the new branch assuming the initial value 

of its inductance element is equal to the optimal inductance found for the previous 

branch. Therefore, there is now a new branch absorbing power even though it doesn’t 

yet implement the optimal inductance necessary to maximise the power absorption 

from the neighbour resonant flexural mode of the smart plate. Unless very small steps 

are implemented, though at the expenses of convergence speed, this simple search 

procedure is not sufficiently accurate, particularly for the search of the optimal 

inductance which, as can be deduced from the top plot in Figure 5.6, is carried out 

along sharp bell-shaped curves. Thus, the two stages search was refined by 

implementing either Eqs. (5.57-5.58) or Eqs. (5.59-5.60) with variable step iterations, 

where the amplitudes of the inductance and resistance steps is given by Newton’s 

algorithm [97], so that at each iteration  
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⁄  (5.61-5.62) 

and thus at each iteration the optimal values of the branch inductance and resistance 

are updated with the following formulae: 𝐿𝑏𝑚+1
= 𝐿𝑏𝑚

−
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2 |
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𝜕𝑅𝑠
2|

𝑛
⁄ . In this case, as can be noticed in plots d, e, f of Figure 5.7 

this refined iterative procedure is characterised by increasingly smaller steps as the 

inductance and resistance values progressively converge toward the optimal values. 

Plots (a), (b), (c) in Figure 5.8 show respectively the amplitude, fist derivate and 

second derivative of the electric power absorbed by the shunt with reference to 

increasingly smaller increments of the resistance implemented sequentially in the first 
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branch of the multi-resonant shunt connected to the piezoelectric patch N.1 after the 

optimal inductance crest has been found in the first stage search. 

5.5  SMART PLATE EQUIPPED WITH INCREASINGLY DENSER ARRAYS 

OF PIEZOELECTRIC PAT CHES CONNECTED TO MULTI-RESONANT 

SHUNTS TUNED TO MAXIMISE POWER ABSORPTION 

To conclude this study, Figure 5.9 shows the effects produced by 1, 6, 12, 20, 35, 48 

piezoelectric patches connected respectively to 4, 7, 8, 8, 8, 8 branches multi-resonant 

RLC shunts whose optimal RL components are derived with the two-stage search 

tuning sequence proposed in this chapter. The overall surface of the piezoelectric 

patches is kept constant and equal to 30% of that of the plate. The plots show that the 

PSD of the smart plate total flexural kinetic energy between 20 and 500 Hz (solid blue 

lines) is progressively reduced in correspondence of 8 resonance frequencies (dashed 

red lines) thanks to the shunted piezoelectric patches that effectively absorb vibration 

energy at these frequencies as can be seen from the dashed black lines, which show 

the total electric power absorbed by the shunts. Reductions up to 10 dB are obtained 

for most resonance peaks, although, as highlighted above, the results shown here 

consider classical shunts. Thus, it is expected that the reductions shown in this chapter 

can be significantly increased by implementing a negative capacitance in the shunts 

that reduces the capacitive effect of the piezoelectric patches. Nevertheless, as shown 

in Figure 5.10, when for example the setup with 48 piezoelectric patches is connected 

to 12 branches resonant shunts, rather large reductions of the plate flexural kinetic 

energy PSD comprised between 5 and 10 dB are produced up to 1300 Hz. 



 

 

 

 

Figure 5.9 Power spectral densities of the total flexural kinetic energy of the plate 

equipped with 1, 6, 12, 20, 35, 48 piezoelectric patches in open loop (solid blue lines) 

and connected to shunts with respectively 4, 7, 8, 8, 8, 8 branches (dashed red lines) 

whose RL elements are set in such a way as to maximize the electric power absorbed 

by the shunts (dotted black lines). 

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

                             

      

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

 
  
 
 
  
 
  
  
 
 

 
  
 
 
  
 
  
  
 

 

      

                             
   

   

 

   

   

 

  
  

 

 

   

   

   

   

     

        

  
  

 

 

   

   

   

   

  
  

 

 

   

   

   

   

  
  

 

 

   

   

   

   
  
  

 

 

   

   

   

   

  
  

 

 

   

   

   

   

     

        

     

        

     

        

     

        

     

        

      

                             

      

                             

      

                             

      

                             

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

   

   

 

 a 

 b 

 c 

 d 

 e 

 f 



 

 

135 

 

 

Figure 5.10 Power spectral densities of the total flexural kinetic energy of the plate 

equipped with 48 piezoelectric patches in open loop (solid blue lines) and connected 

to shunts with 12 branches (dashed red lines) whose RL elements are set in such a 

way as to maximize the electric power absorbed by the shunts (dotted black lines). 

 

5.6  EXPERIMENTAL VALIDATI ON OF THE PROPOSED TUNING METHOD 

OF MULTI RESONANT SHUNTS 

This section presents experimental validation tests on the feasibility of the tuning 

approach proposed in the previous sections for multi-resonant RLC shunts connected 

to piezoelectric patches to form electromechanical vibration absorbers, that can be 

used to control the flexural vibrations of thin structures. A test rig is used, which is 

composed of a clamped aluminium plate equipped with five piezoelectric hexagonal 

patches connected to identical shunts, synthesised digitally in a multi-channel 

dSPACE platform. The tuning approach presented in the previous section has been 

applied to find optimal RL branch parameters such that the shunted piezoelectric 

patches form multi-resonant vibration absorbers that control three flexural modes of 

the plate in the low frequency regime 40-150Hz. Two set of measurements were 

carried out in order to evaluate the proposed method. In the first, the total kinetic 

energy of the vibrating plate was estimated with reference to the inductance and 

resistance values of the branches of the shunts. In the second, voltage drops across 

the piezoelectric patches and current flows through the shunt circuits were measured 

with respect to the inductance and the resistance values of the branches. With the help 

of these measurements, the evolution of both total flexural kinetic energy and 

absorbed electrical power with respect to the inductance and resistance implemented 

in the branches of the shunts was visualized on surface plots as in the previous 

section. In this way the flexural kinetic energy minimisation and shunt electric power 

maximisation was demonstrated experimentally. The optimal RLC parameters for the 



 

 

 

branches of the shunts were then derived using the algorithm proposed in the 

previous section. 

5.7  EXPERIMENTAL SETUP 

Figure 5.11 (a) shows the experimental setup used in this study, which is composed 

of a thin rectangular panel clamped on Perspex box. The panel is made of aluminium 

and has thickness of 1 𝑚𝑚 and dimensions of 414 × 314 𝑚𝑚. Five hexagonal 

piezoelectric patches are bonded on the bottom side of the panel as depicted in  

Figure 5.11 (b). The dimensions, positions and physical properties of the panel and 

piezoelectric patches are summarised in Table 5.2 panel is excited at position  

𝑥𝑝 = 85 mm, 𝑦𝑝 = 110 mm by a point random disturbance generated by the shaker 

located in the Perspex box. The flexural response of the panel was measured with a 

scanning laser vibrometer, while the electrical response of the shunt circuits was 

acquired with the ABACUS Data Physics acquisition system. 

 

 

Figure 5.11 (a) Experimental setup. (b) Perspex box showing the five patches. (c) 

Hexagonal piezoelectric patch.  
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Table 5.2. Dimensions and physical properties of the panel and piezoelectric patches. 

Parameter Plate Piezoelectric patches 

Dimensions 𝑙𝑥𝑝 × 𝑙𝑦𝑝 = 414 × 314 𝑚𝑚 𝑙𝑥𝑝𝑒 × 𝑙𝑦𝑝𝑒 = 80 × 80 𝑚𝑚 

Thickness ℎ𝑝 = 1 𝑚𝑚 ℎ𝑝𝑒 = 1 𝑚𝑚 

Density 𝜌𝑝 = 2700 𝑘𝑔/𝑚3 𝜌𝑝𝑒 = 7600 𝑘𝑔/𝑚3 

Young’s modulus 𝑌𝑝 = 7 × 1010 𝑁/𝑚2 𝑌𝑝𝑒 = 5 × 1010 𝑁/𝑚2 

Poisson ratio 𝜐𝑝 = 0.33 𝜈𝑝𝑒 = 0.275 

Modal damping ratio 𝜁𝑝 = 0.02 𝜁𝑝𝑒 = 0.02 

Strain / charge constants  𝑑31
0 = −190 × 10−12 𝑚/𝑉 

𝑑32
0 = −190 × 10−12 𝑚/𝑉 

Capacitance  𝐶𝑝𝑒 = 5.3 × 10−8 𝐹 

Centre position patch 1  𝑥𝑝𝑒1 = 𝑙𝑥𝑝/2 ,  𝑦𝑝𝑒1 = 𝑙𝑦𝑝/2 

Centre position patch j=2-5  
𝑥𝑝𝑒𝑗 =

𝑙𝑥𝑝

2
± 60 𝑚𝑚, 

 𝑦𝑝𝑒𝑗 =
𝑙𝑥𝑝

2
± 60 𝑚𝑚 

Shaker, excitation force position 𝑥𝑓 =  𝑦𝑓 = 85.11𝑚𝑚  

 

To facilitate the implementation of the multi-resonant shunts and thus to overcome a 

possible issue due to excessive values of RLC branch components, the multi-resonant 

shunts were synthesised digitally in a multi-channel dSPACE digital platform.  

To obtain the designed analogue multi-resonant shunt effect, the dSPACE platform 

was connected to the piezoelectric patches via ad hoc interface circuits specifically 

designed to produce the multi-resonant impedance load digitally programmed in the 

platform. Considering a single piezoelectric patch, the circuitry used to implement 

the desired shunt impedance load is illustrated in Figure 5.12 (a). In this figure, a 

piezoelectric transducer is connected to the dSPACE platform through an operational 

amplifier characterised by high input impedance. This amplifier is used to deliver a 

voltage signal from the piezo to the platform, without affecting the current flow.  

Also, the output signal from dSPACE platform is connected to an operational 

amplifier such that there is no current flow in the in dSPACE platform. In this way 

the ratio between the voltage and current at the patch terminals is indeed the desired 

impedance load. 

The synthesis of the multi-resonating shunt circuits is carried out digitally in the 

dSPACE system according to the following formulation for the electric response of 

the interface circuit. 



 

 

 

 

Figure 5.12 (a) Electrical implementation of the synthetic shunt impedances in 

dSPACE platform. (b) An equivalent electrical circuit. 

 

 

Figure 5.13 (a) Multi-resonant, current flowing shunt circuit. (b) Simplified current 

flowing shunt circuit. 

 

Considering the electrical scheme depicted in Figure 5.12 (a), the following relations 

can be written: 

 𝑣𝐴𝐷𝐶 = 𝑣𝑠 , (5.63) 

 𝑣𝐷𝐴𝐶 = 𝐺𝐷𝑆𝑃𝑣𝐴𝐷𝐶 , (5.64) 

 𝑣𝑠 − 𝑣𝐷𝐴𝐶 = 𝑅𝑖𝑠 . (5.65) 

In Eqs. (5.4)-(5.66), 𝑣𝐴𝐷𝐶 is the potential difference at the terminals of the piezoelectric 

patch, 𝑣𝐷𝐴𝐶 is the voltage at the output of the control system, 𝐺𝐷𝑆𝑃 is the transfer 

function to be implemented in the dSPACE platform, 𝑅 is the reference resistor and 

𝑖𝑠 is the current flowing through the piezoelectric patch terminal. Also, according to 

the electrical scheme in Figure 5.12 (b). 

 𝑣𝑠 = 𝑍𝑠𝑖𝑠 , (5.66) 
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where 𝑍𝑠 is the desired shunt impedance. Combining Eqs (5.4)-(5.66) gives the 

following expressions for the impedance and the digital platform transfer function 

 𝑍𝑠 =
𝑣𝑠

𝑖𝑠
=

𝑅

1−𝐺𝐷𝑆𝑃
 , (5.67) 

 𝐺𝐷𝑆𝑃 =
𝑣𝐷𝐴𝐶

𝑣𝐴𝐷𝐶
= 1 − 𝑍𝑠𝑅 . (5.68) 

As discussed in Section 5.3.1, the complex admittance of the simplified multi-resonant 

shunt depicted in Figure 5.13 (b) is given by the following summation of second order 

terms: 

 
𝑌𝑠 = ∑

1

𝐿𝑏𝑖

𝑗𝜔

−𝜔2+𝑗𝜔(
𝑅𝑏𝑖
𝐿𝑏𝑖

)+
1

𝐶𝑓𝑖𝐿𝑏𝑖

𝑁
𝑖=1  . 

(5.69) 

Substituting Eq. (5.70)(5.69) to Eq. (5.68) gives the transfer function, that should be 

implemented in the dSPACE platform to generate the desired multi-resonance 

impedance load. 

 𝐺𝐷𝑆𝑃 =
𝑣𝐷𝐴𝐶

𝑣𝐴𝐷𝐶
= 1 − 𝑌𝑠

−1𝑅 . (5.70) 

Indeed, implementing this transfer function in the digital platform connected to the 

piezoelectric patch via the interface circuit shown in Figure 6.2(a) produces indirectly 

the desired multi-resonant shunt load presented in Figure 6.3 on the piezoelectric 

patch. 

5.8  KINETIC ENERGY AND POWER ABSORPTION MEASU REMENTS 

This section discusses the effects produced when the incremental method of multi-

resonant shunt tuning presented in the above simulation study is applied in practice. 

First of all, it is important to note, that in this practical investigation all the patches 

are tuned jointly, i.e. at every step of the incremental procedure all transducers are 

connected to identical RLC shunts. Although this approach differs from the one 

described in Section 5.4.2, which considers individual tuning of each piezoelectric 

patch, it constitutes a reasonable way to simplify the optimization process and 

shorten the otherwise lengthy measurements of the kinetic energy and electrical 

power cost functions. Second, the branch capacitances were chosen to be 𝐶𝑓𝑖 = 0.1𝐶𝑝𝑒 

and the investigated frequency range was set between 40 and 150Hz. For the purpose 

of this study, the inductances of the shunts were varied using the formula  

𝐿𝑏𝑖 =
𝐶𝑓𝑖+𝐶𝑝𝑒

𝜔𝑏
2𝐶𝑓𝑖𝐶𝑝𝑒

 to provide incremental changers of the branches resonance frequencies 



 

 

 

of 5 Hz starting from 40Hz up to 150Hz. Also, the shunt resistances were 

progressively raised in the range of 3.5𝑘Ω − 8𝑘Ω with increments of 500Ω for each 

combination of branch parameters i.e. (𝑓𝑏𝑖, 𝑅𝑏𝑖), and for the given three branches, a 

set of measurements was taken including:  

 

• velocity-excitation force transfer functions measurements at a 3 × 3 grid 

points located on the surface of the plate, performed by the laser scanning 

vibrometer. 

 

• current-excitation force and voltage-excitation force transfer functions 

measurements of at the terminals of the five piezoelectric patches.  

 

The total flexural kinetic energy per unit force and total electrical power absorbed by 

five shunts per unit force were obtained from the measurements for each combination 

of branch parameters (𝑓𝑏𝑖, 𝑅𝑏𝑖). Based on these results, two-dimensional maps with 

the evolution of the flexural kinetic energy and electric power absorption with 

reference to the shunt inductance and resistance parameters were created to 

experimentally validate the method proposed in Section 5.4.2. The experimental 

results for the incremental effects produced by the three branches in the five shunts 

are summarized in Figure 5.14 and Figure 5.15. Considering first Figure 5.14, when 

all five piezoelectric patches are connected to the first branches of the shunts, plots (a) 

and (b) in the first row are characterised by a sequence of four local troughs and four 

local crests respectively. In line with the findings presented in Section 5.4.2. the 

minima of the kinetic energy troughs and the maxima of the electric power crests of 

the measured cost functions occur for very similar values of the inductances and 

resistances: 𝐿𝑏1, 𝑅𝑠1. Thus, by setting the first branches such that 𝐿𝑏1 = 𝐿𝑜𝑝𝑡1 and 

𝑅𝑠1 = 𝑅𝑜𝑝𝑡1, where 𝐿𝑜𝑝𝑡1, 𝑅𝑜𝑝𝑡1 are the optimal shunt parameters for the maximum of 

the third crest of the electric power measured cost function, the shunts resonate in 

correspondence to third resonance of the plate. When the second RLC branch is added 

to the shunts, plot (a) in the second row of Figure 5.14 shows only two troughs of the 

kinetic energy cost function, which can be used to tune inductances 𝐿𝑏2 and 

resistances 𝑅𝑠2 of the second branches of the shunts to minimise the kinetic energy of 

the plate with respect to the first and second resonance of the plate. There is no third 

trough, since the first branches of the shunts are indeed tuned at the third resonance 

and thus the kinetic energy of the plate in correspondence to the third resonance 

mode is already minimised. In contrary, plot (b) shows four crests of the measured 



 

 

141 

electrical power cost function, which can be utilised to tune inductances 𝐿𝑏2 and 

resistances 𝑅𝑠2 of the second branches of the shunts to maximise the electric power 

absorption of the shunts due to the first, second, third and fourth resonances of the 

plate. The presence of the third crest at around 𝑓𝑏2 = 120 Hz; 𝐿𝑏2 = 365 is indicting 

that the tuning of the first branches can be improved, since the previously adopted 

values 𝐿𝑏1 = 𝐿𝑜𝑝𝑡1, 𝑅𝑠1 = 𝑅𝑜𝑝𝑡1 are now slightly offset. Now, by setting inductances 

and resistances of the second branches such as 𝐿𝑏2 = 𝐿𝑜𝑝𝑡2 and 𝑅𝑠2 = 𝑅𝑜𝑝𝑡2, where 

𝐿𝑜𝑝𝑡2 and 𝑅𝑜𝑝𝑡2 are the optimal shunt parameters for the maximum of the second crest 

of the electric power measured cost function, the shunts resonate in correspondence 

to the second and third resonances of the plate. When the third RLC branch is 

implemented to the shunts, plots (a) and (b) in the third row of Figure 5.14 show only  

 

 

Figure 5.14 (a) The flexural kinetic energy per unit force of the smart plate structure. 

(b) The electrical power absorbed by five identical shunts illustrated in plot (c).  
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two troughs and two crests, respectively which are in correspondence to the first and 

fourth resonances of the plate. As for the previous cases the inductances 𝐿𝑏3 and 

resistances 𝑅𝑠3 of the third branches can now be set to maximise the electric power 

absorption associated with the first resonance mode of the plate, i.e. 𝐿𝑏3 = 𝐿𝑜𝑝𝑡3 and 

𝑅𝑠3 = 𝑅𝑜𝑝𝑡3. As a result of this iterative procedure, the spectra in column (a) of  

Figure 5.15 show, that every time the optimal branch is introduced, the flexural 

kinetic energy (solid blue and red lines) of the plate is brought down at the targeted 

resonance frequencies. Meanwhile, the absorbed electric power by the shunt circuits 

(dotted black lines) is maximised at these frequencies. 

 

 

Figure 5.15 (a) The flexural kinetic energy per unit force (solid blue line - shunts in 

open loop; solid red line - optimal shunts) and power absorbed per unit force by five 

optimal shunts (dotted black line). (b) Configurations of the optimal multi-resonant 

shunt circuits. 

 

Plot (a) in the second row of Figure 5.15 confirms also that indeed, the values 

associated with the third mode of the plate: 𝐿𝑏1 = 𝐿𝑜𝑝𝑡1, 𝑅𝑠1 = 𝑅𝑜𝑝𝑡1 are not optimal 

due to the small shift of the vibration absorption effect towards higher frequencies. 

This is rather caused by environmental factors affecting the system over very long 

measurement sequences lasting several days.  
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Although the mistuning of existing branches of the shunt circuits can indeed be 

caused by the addition of a next one, it applies more to branches whose resonance 

frequencies are not very apart, which is not the case here  

5.9  CONCLUDING REMARKS  

This chapter has first presented a simulation study on the implementation of multi-

resonant shunts connected to piezoelectric patches bonded on a plate, which produce 

multi-resonant vibration absorption effects. The study has shown that the RLC 

branches that form the shunts can be tuned to globally minimise the resonant 

response of given modes of the structure by locally maximising the electric power 

absorbed by each shunt. A simple tuning algorithm based on Newton’s method has 

therefore been proposed to tune on-line the branches in each shunt. The multi-

resonant shunts composed of three RLC current flowing branches on five 

piezoelectric patches was then studied experimentally by utilising shunt impedances 

synthetized in a dSPACE paltform. The experimental study confirmed simulation 

predictions, that is the reduction of the total flexural kinetic energy of the plate and 

electrical power absorbed by the multi-resonant shunts with reference to the 

resistance and inductance parameters in a branch of the shunt is characterised by a 

sequence of minima and sequence of maxima. The corresponding minima and 

maxima respectively coincide, which indicates that the branch RL components that 

would minimise the resonant response of low order flexural modes of the smart plate 

also maximise the electric power absorbed by the shunts. This effect of the RLC 

branch gives the opportunity to sequentially tune three branches in such a way as to 

maximise the electric power absorbed by five shunts, and thus to minimise the smart 

plate flexural kinetic energy in correspondence to given first resonance frequencies. 

Although the simulation studies have shown that there is no need for a tuning update 

every time a branch is added to a shunt, the practical implementation showed that 

small adjustments may be required to track changes in the dynamic response due to 

the environmental changes during the long periods of operation.  

 

 

 



 

 

 

6  
C O N C L U S I O N S  

The research presented in this dissertation is focused on the theoretical and 

experimental investigations concerning the control of flexural vibrations in beams 

and plates equipped with arrays of periodic inclusions. Considering that this type of 

systems can be implemented in a wide variety of applications, the dissertation 

investigated not only the physical phenomena of vibration absorption effects 

generated by the arrays of inclusions, but also proposed a practical method of 

vibration suppression through multi-resonant shunts connected to piezoelectric 

patch vibration absorbers. 

 

Chapter 2 of the thesis investigated the wave propagation in an infinite one-

dimensional Euler-Bernoulli beam equipped with periodic grids formed by point 

masses, spring-mass vibration absorbers and piezoelectric patch transducers 

connected to single and multi-resonant shunt circuits in such a way to constitute 

single and multi-resonant vibration absorbers. The main purpose of this chapter was 

to characterize the stop band phenomena resulting from each type of the inclusions. 

The study has shown the existence of two types of stop band effects occurring for the 

beam with aforementioned inclusions. The first type, also known as the interference 

stop band effect, can be observed in beams equipped with periodic grid of masses 

when the spatial period of the traveling wave is equal twice the distance between 

masses. This type of effect is characterised by rather small attenuation, and its 

frequency is closely related to the distance between masses. The effect can be 

extended only towards lower frequencies by increasing the weight of the point 

masses, in which case, the stop band effects can achieve significant bandwidth. In 

contrast, the resonance stop band effects generated by spring-mass vibration 

absorbers and shunted piezoelectric patch transducers are characterised by the high 

attenuation amplitude and rather narrow frequency band. These effects do not 

depend upon the spatial organization of the unit cells, on the contrary they depend 

on the cell resonance frequency, and thus can be tuned by changing the physical 

properties of the resonant inclusions. It has also been shown that the bandwidth of 
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resonance stop band effect can be broadened when an energy dissipation mechanism 

is introduced into resonant inclusions (i.e. mechanical damping in the spring-mass 

system and electrical resistance in a shunt circuit connected to piezoelectric patch).  

 

The studies on the beam structure with a one-dimensional grid of inclusions in in 

Chapter 2 were continued in Chapter 3, which considers the wave propagation in an 

infinite plate equipped with two-dimensional arrays of point masses, spring-mass 

vibration absorbers, and shunted piezoelectric patch vibration absorbers. The focus 

in this chapter was devoted to the characterisation of the interference and resonance 

stop band phenomena for two-dimensional arrays of inclusions. This study 

confirmed that the interference effect associated with the periodic point masses is 

related to the standing wave behaviour and therefore related to the geometry of the 

array. As in the case of an infinite beam, the interference stop band generated by the 

arrays of point masses can be widened only towards lower frequencies by increasing 

the weight of point masses. Again, large mass inclusions are required to achieve the 

effect in a wide frequency range. Resonant stop band effects have been achieved both 

with spring-mass vibration absorbers and the shunted piezoelectric patch vibration 

absorbers. In the case of vibration absorbers, the effect is generated at the resonance 

frequency of the absorbers but cannot be maintained above dimensionless frequency 

1. This is related to the point-like modelling of vibration absorbers, which occur to be 

in modal positions at the dimensionless frequencies higher than 1. The use of shunted 

piezoelectric patch transducers partially overcome this issue and creates resonance 

effects for certain propagation directions above the dimensionless frequencies above 

1. This is possible due to the spatial distribution of the piezoelectric patches on the 

surface of the plate, which allows them to avoid nodal positions.  

 

In Chapter 4 the stop band effects generated by point masses, spring-mass vibration 

absorbers and shunted piezoelectric patch vibration absorbers were investigated for 

a finite rectangular plate. For the purpose of this work, two mathematical models 

were introduced for the response of the finite plate with arrays of periodic inclusions. 

The mobility-impedance model was used to simulate stop band effects generated by 

point masses and spring-mass vibration absorbers, whereas a fully coupled modal 

model based on Hamilton’s principle was employed to simulate stop band effects of 

shunted piezoelectric patch vibration absorbers. In these studies evolutions of the 

power spectral density functions of the total kinetic energy of the plate was utilised 

to characterize the stop band phenomena. Simulation results confirmed that both 



 

 

 

interference and resonance stop band effects can be effectively generated in finite thin 

plates. The obtained evolutions of the power spectral density functions of the total 

kinetic energy of the plate equipped with arrays of inclusions revealed two-

dimensional patterns of the stop band distributions as found in Chapter 3, and 

confirmed the observations made for infinite plates are valid also for finite plates.  

To conclude this chapter a multi-resonant shunt was implemented to demonstrate 

multiple resonance stop band effect in a finite structure.  

 

Chapter 5 has proposed a practical algorithm for the on-line tuning of multi-resonant 

shunts connected to piezoelectric patches that are bonded on thin structures to reduce 

the effects of flexural vibrations over a wide frequency band. The study first 

considered the implementation of a classical single branch RL shunt on a single 

piezoelectric patch and analysed how the time averaged total flexural kinetic energy 

of the smart plate and the time averaged total electrical power absorbed by the shunt 

vary with reference to the shunt RL components. Simulation results showed that the 

function of the total flexural kinetic energy is characterised by a sequence of troughs 

whereas the function of the total electrical power absorbed by the shunt is 

characterised by a mirror surface with a sequence of crests, whose respective minima 

and maxima coincide and occurs for optimal values of the shunt RL components that 

would minimise the resonant response of low order flexural modes of the smart plate. 

This is a rather important result since it shows that the shunt RL components can be 

conveniently tuned with reference to the total electrical power absorbed by the shunt, 

which is a local quantity that can be easily measured in the shunt circuit.  

The implementation of a RLC current-flowing shunt on a single piezoelectric patch 

was then considered. This shunt produces two effects, which can be described by 

seeing the inductance as the sum of two components in series. The first component 

couples with the capacitance in the shunt to produce a resonance and thus a filtering 

effect at a specific frequency. The second component couples with the shunt 

capacitance to generate the vibration absorption effect via the piezoelectric patch.  

The filtering effect narrows the troughs and crests respectively of the flexural kinetic 

energy and electric power functions so that they assume stretched two-dimensional 

reverse and conventional bell shapes with principal axes parallel to the inductance 

(which is the stretching direction) and resistance components. In this way the maxima 

of the power crests can be conveniently found with a two-stage search, which first 

finds the optimal shunt inductance with reference to a fixed small shunt resistance 

and then finds the optimal resistance with reference to the optimal shunt inductance. 
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The implementation of multi-resonant shunts composed of multiple RLC current 

flowing branches on multiple piezoelectric patches was finally investigated. In this 

case the filtering effects of the multiple RLC branches give the opportunity to tune 

sequentially each branch in such a way as to maximise the electric power absorbed 

by the shunt, and thus to minimise the smart plate flexural kinetic energy, relative to 

a sequence of resonant flexural modes of the smart plate. The chapter therefore 

proposed a simple procedure that sequentially find the optimal values of the RL 

components in each branch of a shunt with a two-stage search algorithm, which is 

based on finite difference approximation of the electric power absorbed by the shunt 

amplitude, first derivative and second derivative with reference to either branch 

inductance and branch resistance incremental variations. This procedure is carried 

out sequentially in each shunted patch. The simulation results have shown that there 

is no need for a tuning updating every time a branch is added to a shunt. However, 

in many practical applications it may be preferable to keep on-line the iterative tuning 

such that the RL components in each branch may be continuously updated to track 

changes in the dynamic response of the smart plate due, for example, to temperature 

variations or tensioning effects during operation conditions. The work was concluded 

with an overview simulation study of the smart plate total flexural kinetic PSD when 

the plate is equipped with an increasingly larger number of piezoelectric patches 

connected to the multi-resonant shunts whose RL components are tuned with the 

procedure proposed in this chapter. The study showed that, as the number of shunts 

and the number of branches is augmented, increasingly greater reductions of the 

smart plate flexural response are obtained with reductions comprised between 5 and 

10 dB over a wider frequency band. These results are obtained considering shunts 

composed of classical branches with passive RLC components. Thus, it is likely that, 

if active circuits are used to synthesise the shunts, and thus they can be equipped with 

negative capacitors that reduce the inherent capacitance of the piezoelectric patches, 

the vibration control effects can be significantly increased.  

It is worth mentioning that, alongside to a classical modal formulation of the coupled 

flexural response of the plate and piezoelectric patches, this chapter introduced an 

original modal formulation for the electrical response of the multiple RLC branches 

in the shunts, which allowed the derivation of the time averaged total flexural kinetic 

energy and time averaged total electric power with a simple matrix expression.  

The experimental validation of the sequential multi-resonant shunt tuning was also 

presented. In these investigations, the multi-resonant shunt circuits composed of 

three RLC current flowing branches were synthetized in dSPACE system and 



 

 

 

connected with five piezoelectric patches bonded to a thin rectangular panel.  

The shunts were then tuned, according to the proposed incremental method.  

The experimental studies confirmed simulation predictions, that is the flexural 

response of the vibrating plate at the target resonant modes can be minimised, by 

maximising the electrical power absorption of the shunts. Indeed, the experimentally 

obtained the two-dimensional patterns of the total flexural kinetic energy of the plate 

and the total electric power absorbed by the shunt circuits indicate sequences of local 

minima and maxima, respectively. These local extrema occur for very similar values 

of the shunt circuit components and thus, gave confirmed the practicality of the 

proposed control method. 

 

Bearing in mind future work in this topic, the following activities are suggested: 

 

• Experimental evaluation of the ability of the shunted piezoelectric patches to 

generate multiple stop band effects in the mid and high-frequency range. 

 

• Experimental validation of the proposed method of sequential tuning of 

multi-resonant shunts in the mid and high-frequency range. 

 

• Implementation of the synthetic negative capacitances into multi-resonant 

shunt circuits to reduce the inherent capacitances of the piezoelectric patches 

and thus to enhance the vibration absorption effects of the shunted 

piezoelectric patches. 

 

In addition, following ideas emerged as a natural extension of the current research 

 

• Substitution of the resistance components in the shunts with energy-

harvesting circuits and implementation of the power maximisation 

algorithm.  

 

• Further investigation on self-powered autonomous platform, where 

harvested energy by certain shunted piezoelectric patches is redistributed to 

power up the semi-active vibration control of the other units.  
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