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Abstract Given a constant k > 1, let Z be the family of round spheres of radius artanh(k~1)
in the hyperbolic space H?, so that any sphere in Z has mean curvature k. We prove a crucial
nondegeneracy result involving the manifold Z. As an application, we provide sufficient conditions
on a prescribed function ¢ on H?, which ensure the existence of a C!-curve, parametrized by € ~ 0,

of embedded spheres in H? having mean curvature k + £¢ at each point.
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1 Introduction

Let K be a given function on the hyperbolic space H?3. The K-bubble problem consists in finding
a K -bubble, which is an immersed surface u : S — H® having mean curvature K at each point.
Besides its independent interest, the significance of the K-bubble problem is due to its connection
with the Plateau problem for disk-type parametric surfaces having prescribed mean curvature
K and contour I, see for instance [1,13]. In the Euclidean case, the impact of K-bubbles on
nonexistence and lack of compactness phenomena in the Plateau problem has been investigated
in [5,8,9].

To look for K-bubbles in the hyperbolic setting one can model H? via the Poincaré upper
half-space (R3, p3 25hj) and consider the elliptic system

Au — 2uz ' G(Vu) = 2uz ' K (u) Opu A dyu (1.1)
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for functions u = (uy, ug, u3) € C?(S?, H3). Here we used the stereographic projection to introduce

local coordinates on S? = R? U {oco} and put

3
1 1
G¢(Vu) := Vus - Vuy — §|Vu|2543 =—gus Z F,fj(u)Vuh -Vu;, €=1,2,3, (1.2)
h,j=1
where I ,fj are the Christoffel symbols. Any nonconstant solution u to (1.1) is a generalized K-
bubble in H? (see Lemma A.2 in the Appendix and [14, Chapter 2]), that is, u is a conformal
parametrization of a surface having mean curvature K (u), apart from a finite number of branch
points. Once found a solution to (1.1), the next step should concern the study of the geometric

regularity of the surface u, which might have self-intersections and branch points.

A remarkable feature of (1.1) is its variational structure, which means that its solutions are
critical points of a certain energy functional F, see the Appendix for details. Because of their
underlying geometrical meaning, both (1.1) and E are invariant with respect to the action of
Mobius transformations. This produces some lack of compactness phenomena, similar to those
observed in the largely studied K-bubble problem, raised by S.T. Yau [22], for surfaces in R?
(see for instance [7,10,12,20] and references therein; see also the pioneering paper [23] by R. Ye
and [3,6,19,21] for related problems). However, the hyperbolic K-bubble problem is definitively
more challenging, due to the homogeneity properties that characterize the hyperbolic-area and
the hyperbolic-volume functionals.

The main differences between the Euclidean and the hyperbolic case are already evident
when the prescribed curvature is a constant k > 0 (the case k < 0 is recovered by a change
of orientation). Any round sphere of radius 1/k in R? can be parameterized by an embedded

k-bubble, which minimizes the energy functional

1 2k

Egyel(u) = 3 / |Vul?dz + 3 /u -0zu A Oyudz
R2 R2

on the Nehari manifold {u # const. | Ef, (v)u = 0}, see [7, Remark 2.6]. In contrast, no

immersed hyperbolic k-bubble exists if k € (0, 1], see for instance [16, Theorem 10.1.3]. If k£ > 1,

then any sphere in H? of radius

1. k41
Pk :zartanh;:ilnki_l

can be parameterized by an embedding U : S — H?, which solves
Au —2uz'G(Vu) = 2uz 'k d,u A dyu on R?, (Po)

and which is a critical point of the energy functional

1
Eryp(u) = §/u§2|Vu|2dz—k/u§263~8zu/\8yudz. (1.3)

R2 R2
As in the Euclidean case, the functional Eyyp, is unbounded from below (see Remark A.1).

Therefore U does not minimize the energy FEyy, on the Nehari manifold, which in fact fills

{u # const. }.
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Besides their invariance with respect to Mobius transformations, both system (Py) and the
related energy Eiy, are invariant with respect to the 3-dimensional group of hyperbolic transla-
tions as well. Thus, any k-bubble generates a smooth 9-dimensional manifold Z of solutions to
(Po). We explicitly describe the tangent space 1;Z at U € Z in formula (3.5).

As a further consequence of the invariances of problem (Py), any tangent direction ¢ € Tj;Z

solves the elliptic system
Ap —2U; G/ (VU)V = —U; o3 AU + 2U5 k(900 A 0,U + 0,U A Oyp) (1.4)

which is obtained by linearizing (Py) at U.

The next one is the main result of the present paper.

Theorem 1.1 (Nondegeneracy) Let U € Z. If ¢ € C*(S®,R3) solves the linear system (1.4),
then ¢ € TyZ.

Different proofs of the nondegeneracy in the Euclidean case can be found in [11,15,17]. The
proof of Theorem 1.1 (see Section 3), is considerably more involved. It requires the choice of a
suitable orthogonal frame for functions in C?(S?, R3) and the complete classification of solutions of
two systems of linear elliptic differential equations, which might have an independent geometrical
interest (see Lemmata 3.3, 3.4).

As an application of Theorem 1.1, we provide sufficient conditions on a prescribed smooth
function ¢ : H® — R that ensure the existence of embedded surfaces S? — H? having nonconstant
mean curvature k + e¢. Our existence results involve the notion of stable critical point already
used in [18] and inspired from [2, Chapter 2] (see Subsection 2.2). The main tool is a Lyapunov-
Schmidt reduction technique combined with variational arguments, in the spirit of [2].

Theorem 1.2 Let k > 1 and ¢ € C(H?) be given. Assume that the function

FP(q) = / ¢(p)dHS , F?:H® - R (1.5)
BE (q)

has a stable critical point in an open set A € H>. For every ¢ € R close enough to 0 there
exist a point ¢° € A, a conformal parametrization Uz of a sphere of radius py about ¢°, and a
conformally embedded (k + e¢)-bubble u®, such that ||u® — Uy ||c2 = O(e) as e — 0.

Moreover, any sequence €, — 0 has a subsequence €p,; such that q°"i converges to a critical
point for F,f In particular, if ¢ € A is the unique critical point for F,f in A, then u® — U; in
C%(S%, H3).

Theorem 1.3 Assume that ¢ € C*(H?) has a stable critical point in an open set A € H3. Then
there exists kg > 1 such that for any k > ko and for every € close enough to 0, there exists a
conformally embedded (k + e¢)-bubble.

In Section 4 we first show that the existence of a critical point for F,f (¢) is a necessary

condition in Theorem 1.2. Then we perform the dimension reduction and prove Theorems 1.2,
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1.3. With respect to correspondent Euclidean results in [7], a different choice of the functional
setting allows us to weaken the regularity assumption on ¢ (from C? to C1).

We conclude the paper with an Appendix in which we collect some partially known results
about the variational approach to (1.1) and prove a nonexistence result for (1.1) which, in

particular, justifies the assumption on the existence of a critical point for ¢ in Theorem 1.3.

2 Notation and preliminaries

The vector space R™ is endowed with the Euclidean scalar product &-¢" and norm |£]|. We denote
by {e1, ez, e3} the canonical basis and by A the exterior product in R3.

We will often identify the complex number z = z + iy with the vector z = (z,y) € R%. Thus,
iz = (—y,x), 22 = (22 — 92, 22y) and 27! = |2|72(x, —y) if z £ 0.

In local coordinates induced by the stereographic projections from the north and the south
poles, the round metric on the sphere S? is given by Jhj = u25hj, dS? = p’dz, where

2

N(Z):W-

We identify the compactified plane R? = R2 U {oc} with the sphere S? through the inverse of
the stereographic projection from the north pole, which is explicitly given by

w(a,y) = (p, py, 1 — p). (2.1)
The identity |w|? = 1 trivially gives w-d,w = 0, w-d,w = 0. We also notice that w is a conformal
(inward-pointing) parametrization of the unit sphere and satisfies
Aw =20,w A Oyw , —Aw =2p w
Ozw - Oyw =0
|Op]? = 0yw]? = 5|Vw]® = 2.

OpwAw=0yw, wAIw=20w, OwAdw=—pw.

2.1 The Poincaré half-space model

We adopt as model for the three dimensional hyperbolic space H? the upper half-space R3 =
{(p1,p2,p3) € R? | p3 > 0} endowed with the Riemannian metric gn; = p3 2y -
The hyperbolic distance dg(p,q) in H? is related to the Euclidean one by
p —qf?
2p3qs3
and the hyperbolic ball BEI(p) centered at p = (p1,p2,ps3) is the Euclidean ball of center

coshdy(p,q) =1+

(p1, p2, p3 cosh p) and radius ps sinh p.

If F: H?® — R is a differentiable function, then VEF(p) = paVF(p), where Vi, V are the
hyperbolic and the Euclidean gradients, respectively. In particular, V! F(p) = 0 if and only if
VF(p) = 0. The hyperbolic volume form is related to the Euclidean one by dH;’, = pg?’dp.
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2.2 Stable critical points

Let X € C}(H?) and let £2 € H? be open. We say that X has a stable critical point in {2 if there
exists r > 0 such that any function G € C'(£2) satisfying |G — X|l¢1 () < has a critical point
in £2.

As noticed in [18], conditions to have the existence of a stable critical point p € 2 for X
are easily given via elementary calculus. For instance, one can use Browder’s topological degree
theory or can assume that

minX >min X or maxX < maxJX.
o0 2 o2 2

Finally, if X is of class C? and {2 contains a nondegenerate critical point po (i.e. the Hessian
matrix of X at pg is invertible), then pq is stable.

2.3 Function spaces

Any function f on R? is identified with f o w™!, which is a function on S2. If no confusion can

arise, from now on we write f instead of f ow™!.

The Hilbertian norm on L?(R?,R") = L?(S?,R") is given by

18 = [ 1917 sz < .
Let m > 0. We endow
" (R%,R) = {u € C"(R%,R™) | u(:~}) € C™(R%,R™) } = C™(S%, R")

with the standard Banach space structure (we agree that C™(R? R") = clmlm—1lml(R2 R") if
m is not an integer). If m is an integer, a norm in C™(R? R") is given by

m

lullem =Y e Voo - (2.3)
j=0
Since we adopt the upper half-space model for H?, we are allowed to write
C™(R%,H?) =C™(R%,RY) = {u € C"(R%,R?) | uz > 0},
so that C™(R2,H?) is an open subset of C™(R? R3).
If ¢, € C1(R2,R?) and 7 € R?, we put
Vi - Vo = 0,1 Opp + 0ytp - Oy, TV = 110, + 120y

(notice that 7Vp(z) = dyp(z)7 for any z € R?). For instance, we have

0. ifh=0 0, if h=0
thgo = o¥ ' , ithLp = y? !
r0rp +yOyp ifh=1 —yOpp+ 20y ifh=1.
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For future convenience we notice, without proof, that the next identities hold:

Opw = €] —wiw —ea Aw Oyw = ez —waw + €1 Aw
2Vw = e3 — waw izVw = ez Aw, (2.4)
22Vw = —(e1 — wiw + e Aw) i2°Vw = €9 — wow — e1 Aw.

The monograph [4] is our reference text for the theory of Sobolev spaces on Riemannian

manifolds. In view of our purposes, it is important to notice that

H'(R*R") = {u € H(R*R") | [Vu| + |ul p € L*(R?) } = H'(S*,R").

We simply write L2(R?), C™(R?) and H*(R?) instead of L?(R?, R), C™(R?,R) and H'(R? R),
respectively.

2.4 Mobius transformations and hyperbolic translations

Transformations in PGL(2,C) are obtained by composing translations, dilations, rotations and

complex inversion. Its Lie algebra admits as a basis the transforms

z—=1, 21, 2wz, 21z, z>—>z2, z > iz2.

Therefore, for any u € C'(R?, H?), the functions
2V, 2"V, h=0,1,2,
span the tangent space to the manifold {uog | g € PGL(2,C) } at u.

Hyperbolic translations are obtained by composing a horizontal (Euclidean) translation p —
p + aey + bes, a,b € R with an Euclidean homothety p — tp, t > 0. Therefore, for any u €
C™(R2,H?), the functions

€1, €2, u,

span the tangent space to the manifold {u, | ¢ € H*} at u, where

Ug i=qzu+q—(q-eses. (2.5)

3 Nondegeneracy of hyperbolic k-bubbles

The proof of Theorem 1.1 needs some preliminary work. We put
. 1 1
U = ng(w + keg), 1 :=sinhpy = Ecosh,o;€ = T
where w is given by (2.1). Since U is a conformal parametrization of the Euclidean sphere of
radius 7, about krges, which coincides with the hyperbolic sphere of radius pg about ez, then U

has curvature k and in fact it solves (Py). Accordingly with (2.5), we put

Uy =aU+q—(g-es)es (3.1)



Bubbles with constant mean curvature, and almost constant mean curvature, in the hyperbolic space 7

(notice that U., = U), and introduce the 9-dimensional manifold

Z={U,og|ge PGL(2,C), g H*}. (3.2)
Remark 3.1 Any surface U € Z is an embedding and solves (Py). Conversely, let Ue C*(R?, H?)
be an embedding. If U solves (Py), then it is a k-bubble by Lemma A.2 and, thanks to an Alexan-
drov’ type argument (see for instance [16, Corollary 10.3.2]) it parametrizes a sphere of hyperbolic
radius py and Euclidean radius . Since U is conformal, then AU = 2rk_15'mU NOyU. Therefore

U € Z by the uniqueness result in [5].

By the remarks in Subsection 2.4 and since VUj is proportional to Vw, we have that T, Z =
TyZ for any g € H?, and

TUZ = <{thw , izhvw | h = 0, 1,2}> ©® <61,€2, U> (33)

Moreover, any tangent direction 7 € T(Z solves (1.4).

It is convenient to split C"™(R?,R?) in the direct sum of its closed subspaces
(Wgm ={p € C™"(RAR?) | p-w=00nR?}, (Wem:={nw|neC™(R?}. (3.4)

Since THZ = (TvZ N {(w)gz) ® (THZ N (w)c2), from (2.4) we infer another useful description of the

tangent space, that is
TZ={s—(swwt+trw|steR}a{(a(kw+es))w|aecR®}. (3.5)
We now introduce the differential operator
Jo(u) = —div(uz *Vu) — uz 3| Vul?ez + 2kuz 20pu A Oyu.

Notice that Z C {Jy = 0}. Further, let I(z) = 27! Since Jy(u o I) = |z|™*Jy(u) o I for any
u € C2T™(R2, H?), m > 0, then Jy is a C! map

Jo : C*T™(R? H3) — C™(R?,R?).
We denote by Jj(u) : C2T™(R?,R3) — C™(R?,R?) its differential at u.
Finally, Jo(U;og) = 0 for any g € PGL(2,C), q € H3, that implies TZ C ker J}(U). In order

to prove Theorem 1.1 it suffices to show that

ker J{(U) C THZ .
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Main computations
Recall that U = n,(w + kes) solves Jo(U) = 0 to check that

JH(U)p = —div(U3°Ve)
1
+2U3%[G/(VU)Vyp — VU3V — 5#34U + k(920 A 9y U + 0, U A Ay0)]
where G is given by (1.2). Since Vws = —Vu = u?z, thanks to (2.2) we have

2 Iy (U)p = —div((ws + k) "2V)

(3.6)
+2(ws + k) P [(G'(Vw) Ve — 122V ) + p 3w + k(Dpp A Oyw + 0w A Oyp)]
G'(Vw)V — 1122V = VsVw — (Ve - Vw)es . (3.7)
To rewrite (3.6) in a less obscure form, we decompose any ¢ € C™(R? R?), m > 0, as
p=Pot(p ww, Po=g—(p ww=p2((¢ 0w)dw+ (¢ 0w)dyw),  (3.8)

compare with (3.4). Accordingly, for ¢ € C?(R?,R3) we have
Jo(U)p =P (Jo(U)e) + (Jo(U)e - w)w ,

so that we can reconstruct Jj(U)p € C°(R?,R?) by providing explicit expressions for P (J(U)yp)
and J}(U)yp - w, separately. This will be done in the next Lemma.

Lemma 3.1 Let ¢ € C?(R?,R3). Then

, . VPyp 242 , 242
T]?'P(JO(U)QO) = P(— d1v<(w3 T k)2>) + (s - F)° (izVPp) ANw — 7@3 Th)? Po, (3.9)
2/ 1 _ . V(QD'W) 2k ,L"Z
R2(JL(U)g) - w = —dw((wg - k)2) o ) (3.10)

Proof We introduce the differential operator L = —div((ws + k) ™2V ) and start to prove (3.10)
by noticing that

Lo w=L{p-w)+2(ws + k) "*[(ws + k) Ve - Vw — ¢ - (2Vw) — p*(ws + k) (p - w)] . (3.11)
Recalling that w is pointwise orthogonal to 0w, dyw, from (3.7) we obtain
(G'(Vw)Vyp — 1?2V ) -w = —(V - Vw)ws .
Further, by (2.2) we have (0,9 A Oyw + Oyw A Oy) - w = —V - Vw. Finally, we obtain
RIHU)G) - w = Ll - w) — 2w + k)22 [0+ (2Vw) — 5 + (w5 + k)9 w)]
and (3.10) follows, because ez = z2Vw + wsw, see (2.4).

Next, using the equivalent formulation

U3J(U)p = —Ap +2(ws + k) 7 [G'(Vw) Ve + pPwips + k(0o A Oyw + pw A D)
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we find that, for ¢ = nw, n € C3(R?), it holds
U3 J5(U) (nw) - o = U3 J(U) (nw) - dyw = 0,

whence we infer

P(J5(U)(@ —Py)) =0, for every p € C*(R* R?). (3.12)

Thanks to (3.10) and (3.12) we get P(J}(U)p) = J§(U)(Pyp), thus to conclude the proof we
can assume that ¢ = Py. Since ¢ is pointwise orthogonal to w, we trivially have

Orp-w=—p-0,w, Oyp w=—@- Oyw.

We start to handle (3.7). From e3 = 2Vw + w3w we get

(G'(Vw)Vo — 1122V ) + w3(Ve - Vw)w = Vs Vw — (Ve - Vw)2zVw
= (0203 — 2(V - Vw))Opw + (9yp3 — y(V - Vw))dyw .

Further,

Orps — (V- Vw) = 0,0 - (2Vw + wsw) — (Ve - Vw)
= (0 (2Vw) —2(Ve - Vw)) — w3 - Opw = —(i2Vp) - Oyw — wsp - pw .

In a similar way one can check that dyps — y(Ve - Vw) = (i2Ve) - Opw — w3y - Oyw, thus
G'(Vw)Vo — 122V = 1% (i2V @) Aw — w3(Ve - Vw)w — plwsp.
Next, using (2.2) we can compute

Opp N Oyw = 0pp N (Ogw Aw) = — (¢ - Opw)Opw — (Do - Opw)w
Opw A\ Oyp = (w A Oyw) A Oy = —(p - Oyw)Oyw — (O - Oyw)w,

which give the identity
Do N Oyw + Oy A Oyp = —pp — (Vi - Vw)w, (3.13)

that holds for any ¢ € (W)&n-
Putting together the above informations we arrive at
2 2

2u . 2u 2
o (i2Ve) Aw— n
(w3 + k)3 (12Ve) A (ws + k277 (s 1 k)

12 Jo(U)e = L + 3 (113 — (w3 + k)Ve - Vw]w.

Using (3.11) and ¢3 = ¢ - (2Vw), we conclude the proof. O
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Thanks to Lemma 3.1 we can study the system J§(U)p = 0 separately, on (w)z. first, and
on (w)em later. In fact, ¢ € ker J)(U) if and only if the pair of functions

¢ :=Ppe(we CCERLRY), n:=pwel* (R,
solves
P( - le((wg n k)2>) + (s + F)° (izVY) Nw = st h)2 P, (3.14a)
. VN 2kp?
_dlv((W3 T k)2> = (s t B n. (3.14b)

We begin by facing problem (3.14a). Firstly, we show that the quadratic form associated to
the differential operator J{(U) is nonnegative on (w)z.

Lemma 3.2 Let ¢ € (w)z. Then

2/ (Dot - ot = - ) + (ath - Dy + I - Bpw)*
12 (w3 + k)2 :

[ 30y vas =g

R2 R2
Proof Since J§(U)y - = P(J5(U)¢) - ¥ and Pyp = 1), formula (3.9) gives
r,%/J(’)(U)szwdzf/( |w|2 i +2/w (i2V) Aw 2dz2/(|w|22u2dz.

ws + k)3 ws + k)
R2 R2

Now we prove the identity

Y- (2VY)Aw 4, /M / ks 2
/ (o5 T ) pdz =2 (s + )7 dz+ e pdz . (3.15)
R? 2

We use polar coordinates p,# on R? and notice that dpyp = i2zVip. From pu? = 0,ws we get

21

/d@/ Y- Ogtp Aw)d,(ws + k)2 dp
0

w - (r“)pw/\(r“)ﬁ/} P - 8pw/\89¢ pg’(/) wAY
/ (w3 + k)2 a6+ / / (w3 +k)? @

(=)

8

/dp/w O N Doty — - 8pw/\89wd9 / /w a,ﬂ/)/\a@zp Y- ”d’Aaewde.

(w;g + k’) LU3 + k’)
0 0

Using the elementary identity d,ac A 098 = p(Oyx A 9y 3), we see that

Bw=2/w amwwywd _/w waawarazwAaw)dz
(W3+k w3_|-k;)

)

R2

and (3.15) follows from (3.13) (with ¢ replaced by ).
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Thanks to (3.15), we have the identity

V|2 + 2w - 010 A Oytp — p |2

R2 R2

so that we only need to handle the function
by = |V + 2w - Op1h A Oyrh — 1]

We decompose 0,9 and 9,1 accordingly with (3.8), to obtain

M2azw = (02 - Opw)wy + (049 - Oyw)wy — ,u2(1/) “Ow)w,

H2ay1/} = (Oy¥ - Opw)wy + (Ot - Oyw)wy — 12 (- Oyw)w,
respectively. Since |V¢|? = [0,9|? + |0,|?, we infer

ﬂ2(|v¢|2 - ﬂ2|w|2) = ((%d) : 31(.0)2 + (aﬂ/} : ayw)z =+ (5@;10 : amw)z + (83;"/) : ayw)z .

Writing pw = —0,w A Gyw, see (2.2), we get

(2w - (0ph A Oyth) = — (041 - Opw) (9 - Oyw) + (0pt) - Dyw) (Fyrl - Opw)

from which it readily follows that p?by = (959 - Opw — Oytp - Oyw)? + (01 - Dyw + Oyt - Opw)*.

The proof is complete.

Lemma 3.3 Let ¢ € C3(R?,R?) be a solution to (3.14a). There exist s,t € R® such that

Yv=s— (s wwt+tAw,

and thus ¥ € TWZ N(w)g: = {s— (s ww+tAw | s,t e R3}.

O

Proof From (3.14a) it immediately follows that ¢ is pointwise orthogonal to w, which implies

¥ € (w)ge. Since Py = ¢, then Jj(U)y = 0 by (3.9) and (3.10), hence

029 - Opw — Oy - Oyw = 0
029 - Oyw + Oy - Ogw =0
by Lemma 3.2. Since ¢ € (9,w, d,w) pointwise on R?, we can write

Y = fVw, where f:=pu (¢ 0,w,v - 9yw) € C*(R* R?).

(3.16)

We identify f with a complex valued function. A direct computation based on (2.2) shows that
1 solves (3.16) if and only if f solves 0, f + 9, f = 0 on R?. In polar coordinates we have that

pO,f +ipf = 0.

For every p > 0 we expand the periodic function f(p,-) in Fourier series,

2m

£:0) = S (0™ (o) = 5= [ 1(6.0)e o,

hez 3

(3.17)
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The coefficients v, are complex-valued functions on the half-line R and solve
P)/;l - h’yh = 07

because of (3.17). Thus for every h € Z there exists aj, € C such that vy, (p) = app". Now recall
that py € L?(R?,R3). Since

/u2|w|2dz:/u4\f|2dz > 2w/ u4pm|2dp:ai/u4|z\2hdz, Vhez,
0

R2 R2 R2

2 2

we infer that v, = 0 for every h # 0,1,2. Thus f(z) = > anz", that is ¢ = > ap2"Vw, and in
h=0 h=0

particular the space of solutions of (3.14a) has (real) dimension 6. The conclusion of the proof

follows from the relations (2.4). O

Lemma 3.4 Let ) € C?(R?) be a solution to (3.14b). There exists a € R3 such that
n=ca-(kw+es),
and thus nw € ToZ N (w)ez = { (- (kw +e3))w | @ € R3 }.

Proof First of all, we notice that « - (kw + e3) solves (3.14b) for any a € R3.
By the Hilbert—Schmidt theorem, the eigenvalue problem

i Vn Y ) s
dlv((w3+k)2> T ws k)3 on R, n€C(RY), (3.18)

has a non decreasing, divergent sequence (Ay)p>o of eigenvalues which correspond to critical

/ VP,
— = Az
2 (w3 + k)2

levels of the quotient

H'(R?)\ {0}

Clearly, A\g = 0 is simple, and its eigenfunctions are constant functions. We claim that the next
eigenvalue is 2k, and that its eigenspace has dimension 3, which concludes the proof.

To this goal, we use the functional change

=+ CLz cp = eft =4/ ——.
n(z)_u(ckz)@(k )’ k

By a direct computation involving the identity (ws3(z) + k)u(cpz) = (kK — 1)u(z) and integration
by parts, one gets

|V |2dz — 2 / |®|? p2dz
R

. . 2
AL = inf R(n) =2k + inf R 5
nec?(®2)\ (0} 2ec?(®2)\ (0} / || 2
P A o P dz=0 — uaz
jl@ (w3 +k)3 0 1R2 R2 (k — LU3)
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On the other hand, it is well known that

/ |VP|2dz

. 2

min JR2

dcC2(R2)\{0} 2 92

Jp2 Pudz=0 / |¢| udz
R2

is the first nontrivial eigenvalue for the Laplace-Beltrami operator on the sphere and that its

=2

eigenspace has dimension 3, see for instance [4]. The proof is complete. O

Remark 3.2 The third eigenvalue Ao of (3.18) verifies Ay > 2k by Lemma 8.4, and

o U o, [ nlkw;+858) 5, -
R2 R2

Proof of Theorem 1.1 In fact, we only have to sum up the argument. Let U € Z. Thanks to
(3.2), U = U, o g for some ¢q € H?, g € PGL(2,C). Since

To,oZ =TiZog, kerJi(Ujog)=kerJ)(U)og, foreveryqeH?, g€ PGL(2,C),
it suffices to consider the case U = U.

If ¢ € C2(R2,R?) solves (1.4) then J;(U)yp = 0, which means P (J}(U)g) = 0 and (J5(U)p) -
w = 0. From Lemma 3.1 we infer that Py solves (3.14a) and that ¢ -w solves (3.14b). Therefore,
Lemmata 3.3, 3.4 give the existence of s,t,a € R? such that

Po=s—(s-wwt+tAhw, ¢ -w=a-(kvw+es).

Thus ¢ = Py + (¢ - w)w € TyZ by (3.5), which concludes the proof. O

3.1 Further results on the operator J}(U)

To shorten notation we put
H' = H'(R?* R?).
Since integration by parts gives
. Vo V- Vi 22 ™3
7dlv<7)' dz:/idz, ;e C* (R, R?),
R2 R2
the quadratic form

(,9) / (U)o dz (3.19)
RQ

can be extended to a continuous bilinear form H! x H' — R via a density argument. It can
be checked by direct computation (see also Remark 4.2) that the quadratic form in (3.19) is
self-adjoint on H', that is,

/J()(U)@ pdz = /J(’)(U)w ~pdz for any ¢, € H'. (3.20)
R2 R2
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Since Ti;Z is a subspace of L?(R?, R3) = L?(S?,R?), we are allowed to put

Tzt ::{feLQ(E2,IR{3) ’ /f~T,u2dz:0, vTeTUZ}.
RZ

Moreover, we introduce on L?(R? R?) the equivalent scalar product

_ [ Pf-Py 4 (f-w)@-w) ,
(f,l/))*—/mudZ—F/Wudz
R2

RQ

and the subspaces

Tzt ={fe L*(R:R% | (f,7). =0, VT € TZ },
N, ::<W>*L = {f € LQ(R27R3) | (faw)* = 0}

We are in position to state the main result of this section.
Lemma 3.5 Let ¢ € H3. For any v € TyZ*, there exists v, € H' N TyZ+ N N, such that
Jo(Uy)py = v i on R?. (3.21)
If in addition v € C™(R2,R?) for some m € (0,1), then ¢, € C**™(R% R?).
In view of Lemma 3.1, we split the proof of Lemma 3.5 in few steps.

Lemma 3.6 Let v € TyZ+ be such that v-w = 0 on R2. There exists ¢ € H' N TyZ+ such that
p-w=0 onR? and
JH(U) = v i on R?. (3.22)

Proof We introduce
X={¢veH" |y -w=0 onR*} NTZ;,

which is a closed subspace of H'. Notice that ¢ = P for any 1 € X and moreover

y _ [Vi|? (¢ -izVp) Aw |92
/JO(U)qp cpdz = / (s B2 dz + 2/ ( RS e k)2) p2dz
R2 R2 R2

use (3.9) and a density argument. Next we put

/ TH(UY - dz
RQ

A= inﬁ( ,
€ _
v / (s + k) 2|7 e

R2

and notice that A > 0 by Lemma 3.2. On the other hand, X\ is achieved by Rellich theorem. Thus
A > 0, because of Lemma 3.3. It follows that the energy functional I : X — R,

10) =5 [ vz [op iz,
R2

R2
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is weakly lower semicontinuous and coercive. Thus its infimum is achieved by a function ¢ € X

which satisfies

/J(’)(U)g0~wdz:/v~1/)u2dz, VipeX. (3.23)

R2 R2
If ¢ € H' we write
=Py +PYt) +nw,

where n = ¢ - w, PY" € TyZ = ker J)(U) is the orthogonal projection of Py = b — nw onto
T4Z in the scalar product (-,-), and Pyt =1 — PypT —nw € X. We use (3.20) and (3.10) to
compute

/Jé(U)MM dz = /J(;(U)Pw pdz =0,

R2
V(g -w)-Vn / (p-wn
)dz = 7(1 -2k | ————= udz =
/JO () dz = / (w3 + k)2 (ws + k)3 pdz=0,
R2

because ¢ - w = 0. Therefore, (3.23) gives
/J{)(U)cpw/)dz:/Jé(U)wPi/JLdz:/fwaLuZdz: /v»q/z;ﬂdz,
R2 R2 R2 R2

as v is orthogonal to TZ > Py and to nw in L?(R?,R3). We showed that ¢ solves (3.22), and
thus the proof is complete. O

Lemma 3.7 Let f € H*(R?) be such that fw € ThZ*. There exists n € H'(R?) such that
nw e H' NTHZ+ N N, and
Jy(U)(w) = fwpu?®  on R?, (3.24)

Proof We introduce the space
Y::{ c H'(R? ‘/L 2 :/M M2 =0,V eTZ},
n (R?) J (w3+k)3ﬂz J (w3+k‘)3'uz T U

so that nw € H' NTyZ- N N, for any n € Y, and the energy functional I : Y — R,

1
1) = 5 [ (U)) - () d - / o vz
R2
L[ P LI
—2/(w3+k k‘/ oy + k) nfudz,
R2 R2

compare with (3.10). The functional I is weakly lower semicontinuous with respect to the H*(R?)
topology and coercive by Remark 3.2. Thus its infimum is achieved by a function n € Y. To
conclude, argue as in the proof of Lemma 3.6 to show that 7 solves (3.24). g
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Proof of Lemma 3.5. Since J}(U,) = q3 > J4(U), we can assume that ¢ = e3, that is, U, = U. We
take any v € THZ+, and write
v=Pv+ (v ww,

where Pv = v — (v - w)w, as before. Since Pv € T;Z1, by Lemma 3.6 there exists a unique
¢ € H' NTHZ+ such that ¢ - w =0 on R? and

/Jé(U)gb-wdz z/’Pv-qudz, for any ¢ € H'.
R2

R2

Next, notice that (v - w)w € TyZ*, so we can use Lemma 3.7 to find n € H'(R?) such that
nw € H' N THZ+ N N, solves

/Jé(U)(nw)~1/1dz:/(v~w)(z/)'w)p2dz, for any ¢ € H'.

R2 R2
The function ¢, = ¢ + nw solves (3.21).
To conclude the proof we have to show that if v € C™(R2,R3) then ¢, € C?*™(R2 R3). Since
w € C®(R?,R?) and w3 + k is bounded and bounded away from zero, ¢, solves a linear system

of the form
—Ap, = A(z)py + B(2)Ve, + HQ(W?) + k)QUa
for certain smooth matrices on R?. A standard bootstrap argument and Schauder regularity

theory plainly imply that ¢, € C2T™(R? R3). The function z — ¢,(z~") satisfies a linear

loc

system of the same kind, hence ¢, € C?t™(R2,R?), as desired. O

4 The perturbed problem

In this Section we perform the finite dimensional reduction and prove Theorems 1.2, 1.3. By the
results in the Appendix, any critical point of the C2-functional E. : C2(R? H?) — R,

2
R2

1
E.(u):== /1&52|Vu|2 dz — k/u;Qeg - 0pu A Oyudz 4 2e Vi (u) = Eo(u) + 2¢ Vy(u)
R2
(notice that Ey = Eyyp, compare with (1.3)), solves
Au —2uz 'G(Vu) = 2uzt(k + ep(u)) dpu A Oyu on R? (P:)

and has mean curvature (k + £¢), apart from a finite set of branch points.
Due to the action of the Mobius transformations and of the hyperbolic translations, for any
u € C?(R?,H?) we have the identities

EL(u)(2"Vu) =0, E.(u)(iz"Vu)=0, forh=0,1,2, ¢ €R, (4.1)
El(u)e; =0, E\(u)ea=0, Ej(u)u=0. (4.2)
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Now we prove that

where F,f’ is the Melnikov-type function in (1.5). The above mentioned invariances give Ey(U,) =
Ey(U). Since the hyperbolic ball Bﬁﬂk (¢) coincides with the Euclidean ball of radius gsn, about
the point ¢* := (q1, g, kmxqs), the divergence theorem gives

Fl(q) = / o(p) dH) = / p32p(p)dp = / Qs(p) - vp -
Bp]%c(’I) Bq3m(qk) any“k(qk)

Here Q, € C*(R%,R3) is any vectorfield such that divQy(p) = p§3¢(p) and v, is the outer normal
to OBy,n, (¢%) at p. The function U, in (3.1) parameterizes the Euclidean sphere Bgsn;(¢*). Since
0. U, A 0y Uy is inward-pointing, we have

FE@) == [ Qulp) 0,0, 10,V dz = V(U (4.4
R2

and (4.3) is proved. Before going further, let us show that the existence of critical points for F,f
is a necessary condition for the conclusion in Theorem 1.2.

Theorem 4.1 Let k > 1, ¢ € CL(H?). Assume that there exist sequences e, C R\ {0}, e, — 0,
ul € C?(R?,H?) and a point ¢ € H? such that uy, solves (P.,), and u" — U, in C'(R? H?).
Then q is a stationary point for F,f

Proof The function u” is a stationary point for the energy functional E., = Ey + 2epVy. From
(4.2) we have Vj(u")e; = 0 for j = 1,2 and Vj(u")u" = 0. We can plainly pass to the limit
to obtain V(Uj)e; = 0 for j = 1,2 and Vj(U;)U; = 0. To conclude, use (4.4) and recall that
94, Uy =ej for j = 1,2, and 9, U, = U = ¢5 (U, — qre1 — gaea). O

Now we fix m € (0,1). The operator .J, : C2*™(R2,H3) — C™(R?,R?) defined by
Je(u) = —div(uz *Vu) — u3®|Vul?es + 2(k + ed)uz *0u A Oyu
is related to the differential of F. via the identity

El(u)p = /Js(u) cpdz, ueC™R:LH?, pcC™(R%R?). (4.5)

R2

Remark 4.2 Since E. is of class C* and
Bl = [ T pdz,
then the quadratic form in the right hand side is a self-adjoint form on H'.

We are in position to state and prove the next Lemma, which is the main step towards the

proofs of Theorems 1.2, 1.3.
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Lemma 4.1 (Dimension reduction) Let 2 € H? be an open set. There exist ¢ > 0 and a
unique Ct-map

[—£,6] x 2 = C*T (R HE?),  (e,q) = uf,
such that the following facts hold:

i) ug parameterizes an embedded S?-type surface, and ug =U,,
i) u — Uy € ToZ+ NC*™(R?,R?) and EL(uf)e = 0 for any ¢ € TvZ* NCO(R?,R?) ;
iii) for any € € [—€,€], the manifold {u | ¢ € 2} is a natural constraint for E., that is, if
ViEe(uge) = 0 for some ¢° € {2, then ug. is a (k + Eqb)-bﬁbble ;
i) || Ee(ug) — EE(Uq)Hcl(ﬁ) = o(e) as € = 0, uniformly on (2.

Proof To shorten the notation, we put C™ := C™(R?,R?). For s > 0 and § > 0 we write
Qs ={pc W |dist(p,2) <s}, and Us:={v € C*™ | |v(z)] < for every z € R*}.

We fix s and 6 = §(s) such that 2o C H? and (U, +v) - e3 > 0 for q € (295, v € Us.
We define

T1 = coOw, T3 := cpV/22Vw, T5:= coz’Vw,
1= o 3 o\f. 5 i= coz ~ = 2¢o(kw + €3) , (4.6)
T 1= CoOyw , T4 i= coV2izVw, 16 1= cpiz?Vw,

where ¢ := |/ 5% is a normalization constant. Thanks to (3.3), (3.5), we have
TZ = (11,...76)® {(a-7)w|aecR?}.

Trivially, 7; -w = 0 on R2. Elementary computations give

/Ti'Tju2d225ij, /th;ﬂdz:o ifh#4¢,

R2 R2

fori,j e {1,...,6}, h,£ € {1,2,3}, and moreover

/’yf,uZdz:/’y%,quz:kQ, /7§u2dz:k2+3.

R2 R2 R2

Construction of ug satisfying %), if). By our choices of s and ¢, the functions
6
File,gv,&0) = p 2 L (Ug+v) = Y & — (a-7)w €C™,
j=1

fg(a,q;u,f,a)::(/V-TlMde,...,/V-Tg,quz; /’y(l/-o.))/.LQdZ) € R® x R?,

R2 R? R2

are well defined and continuously differentiable on R x 25, x Us x (RS x R?). Thus

F = (F1,7) : R x 5 x Us x (R® x R®) — C™ x (R® x R?)
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is of class C! on its domain. Notice that F(0, ¢;0,0,0) = 0 for every g € {225 because Jo(U,) = 0.
Now we solve the equation F(e, q;v, &, ) = 0 in a neighborhood of (0, ¢;0,0,0) via the implicit
function theorem. Let

L:=(Ly,Ls):C*T™ x (R® x R3) = €™ x (RS x R?)

given by
L1(5¢,B8) = p2J4(U, Zcm

La(#3¢,5) 1152(@):(/90'71 uzdzw--,/w-na pdz /7(@0~w) ude),

R2 R2 R2
so that £ = (L4, L) is the differential of F(0,q;-,-,) evaluated in (v,&,a) = (0,0,0).
To prove that £ is injective we assume that L(¢, (,5) = 0 and put
v=p"2J5(U)p € THZ.

From (3.20) we find

/ [of? %z = / (5205 (Un)) v i = [ Tj(U)o v dz = [ S0 dz =0,

R2 R2

which implies J§(U,)p = 0, that is, ¢ € TsZ. On the other hand, ¢ € THZ+ because La(p) = 0.
Thus ¢ = 0 and therefore also 5 = { = 0.

To prove that £ is surjective fix v € C™ and (0,b) € RS x R3. We have to find ¢ € C?>T™
and (¢, ) € R® x R3 such that £;(p;(, 8) = v and La(p) = (,b). To this goal we introduce the

minimal distance projection
PT:L*(R%LR3 - ThZ, ww Plw

so that L£2(w) is uniquely determined by P 'w, and vice-versa. We find ¢; and 3 so that

6
Y G+ (By)w=—Po.
j=1

Then, we use Lemma 3.5 to find ¢ € C>*™ N TyZ+ N N, such that

Jo(Ug)@ = (v = Plo) u°
Finally, we take the unique tangent direction ¢ € TyZ such that La(¢ ") = (6,b) — L2(P). The
triple (¢! + &; ¢, B) satisfies L(p! + @;¢, B) = (v;6,b) and surjectivity is proved. We are in the
position to apply the implicit function theorem to F, for any fixed ¢ € {25,. In fact, thanks to

a standard compactness argument, we get that there exist ¢/ > 0 and uniquely determined C!

functions
v:(—€',€) x 2y — Us a:(—¢,e)x N, — R
v:(e,q) = v, a:(g,q) = a(q)

(—€',e') x 2, — R®

:
§:(e,9) = & (q)
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such that

vg=0, a’(¢=0, &q)=0,  Fle,qv,£(q),0(q) =0. (4.7)

By (4.7), the C! function (—¢’,¢’) x 2, — C**™(R? H?),

(e,q) = ug:=U;+v, = (QBU +qier + QQ€2) + vy,

satisfies i), if €’ is small enough. Further, using (4.5) (see also Lemma A.1) we rewrite the last
identity in (4.7) as

B(ui)e = [ JU(U, + ) - pds
R2
6
:Zfi(q)/n-s& u2d2+/(of(tJ) ) (w-p) pdz Ve el (4.8)
Jj=1 R2 R2
/I/;-Tj prdz=0, Vjie{l,...,6}, /w(ué-w) pidz =0, Vee{1,2,3}.
R2 R2

In particular, claim 4i) holds true.

Proof of iii). As a straightforward consequence of (4.8) we have that

/aquZ'Tj pdz =0, /w (Og;vq - w) pXdz =0,
R? R2

hence E_(u)0,,v; = 0 for any i = 1,2,3. We infer the identities

8111'E€(u2) = Eé(u;)(el + 861@'1/;) = E;(”Z)el , 1=1,2,
gy B(u5) = BL(u5)(U + 04,8) = EL(uE)U

q3%q q

(4.9)

Now, from (2.4), (4.6) and (4.8) we find

2c0e1 =71 — 75 + kT Iyiw, 2c0es =0+ 76+ kT yw, 20U = k‘rk(\/ﬁrg + k7 yaw)
El(ug)ry =&(q),  BEl(ug)(vew) = (k* + 30e3) g (q) ,
forany j=1,...,6, ¢=1,2,3. Thus by (4.9) we get
2c0Vy Ee(ug) = My&®(q) + Ora®(q) (4.10)

where M} and @ are constant matrices, namely

10 0 0-10 ko0 0
My=101 0 00 -1, O©r=|0k 0
00+v2kr,0 0 0 00 (k2 + 3)ry

On the other hand, from (4.1) and using VU, = r,g3Vw we obtain

=37 &5 (q) = EL(ug)(75(q)) (4.11)
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where, in the spirit of (4.6), we have putted
75 (q) = coduvy , 75(0) = coV22Vg, 75(q) = o2’ Vg,
75(q) == codyvg , i (q) == cox/iiZVVg , 76(q) == 60122v1/q .

Notice that

/|T;( 12z < 2/|v vl pdz <2 ||u€||cl/u dz = o(1), (4.12)
RQ

R2

as € — 0, uniformly on (2, see (2.3).
For the sake of clarity, we make now some explicit computations. We denote by oy, the entries
of the 3 x 6 constant matrix @k_le, and introduce the 6 x 6 matrix A®(q) = (ajh(q))jﬁ:l,“,ﬁ,

whose entries are given by

a5 (q) :/Th'T 2dZ_ZU£h/'YZ (w-75(q) pidz.

]R2

Since 75 — 0 in L?(R?,R?) by (4.12), then A° — 0 uniformly on compact subsets of
(—¢',e") x 2. In particular, if & € (0,¢’) is small enough, then the determinant of the 6 x 6
matrix (A%(q) + g3rxld) is uniformly bounded away from 0 on [—£, ] x £2.

Assume that V, E.(uz.) = 0 for some ¢ € [—£,€], ¢° € 2. From (4.10) we obtain a®(¢%) =
—O0; ' M€ (¢F). Thus (4.8) and (4.11) give
—a5re §°(q°7) = A%(¢)€7 (),

and hence £°(¢°) = 0, because the matrix (A°(¢°) + ¢5r,Id) is invertible. But then (4.10) and
VyEe(ug:) = 0 imply that a®(¢°) = 0 as well, hence E'(ui.) = 0 by (4.8).

Proof of iv). The function (e, q) — v is of class C', and in particular .1 is uniformly bounded

in C? for (e, q) € [~4,€] x £2. Thus Taylor expansion formula for
e Ee(ug) — E(Uy) = Eo(ug) — Eo(Uy) + 22 (Vi (ug) — Vo (Uy))

gives E.(u5) — E-(Uy) = o(€) as &€ — 0, uniformly on £2.

Now we estimate V,(FE.(uj) — E:(U;)). We use (4.2), (4.9) to obtain, for j = 1,2,

an (EE(UJZ) - Ee(Uq)) = (E(/)(u ) EO ) +2 ( ¢g - Vé(Uq)ej)
= 2e(V(u; e, V¢ Jej) = o(e),

because [[ug — Ugllc2+m = o(1) and Vy is a C'-functional.

To handle the derivative with respect to g3 we first argue as before to get

0gy (Ee(ug) — Be(Uy)) = (Eg(ug)U — E5(Ug)U) + 26(Vi(ug)U — V(T,)U)
= Eg(ug)U + o(e) ,
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uniformly on £2. Next, from ¢3U = ug — (qe1 + gze2) — v and (4.2) we obtain

43 (ug)U =Eq (ug) (ug — (qrex + qaez) — vg)

= — Ey(ug)vy = —EL(ug)v 4 2eVi(ug vy = 2V (ug)v;

because of (4.8). Since v5 — 0 in C**™ we infer that Ej(uf)us = o(¢) uniformly on £ as ¢ — 0,

which concludes the proof. O

Proof of Theorem 1.2. Take an open set 2 € R containing the closure of A, let ug be the
function given by Lemma 4.1 and notice that, by (4.4), E.(Uy) = Eo(U;) — QEFZ)((]). Thus for

€ € [—£,€],e # 0 we can estimate

1

= B ) = Be(Up)llea ) = 01).

H?IE(EE(UZ) _EO(UQ)) +F]f(q) c1(A) 2|5|

uniformly on §2 by iv) in Lemma 4.1. Recalling the definition of stable critical point presented
in Subsection 2.2, we infer that for any e ~ 0 the function 5 (E- (ug) — Eo(Uy)) has a critical
point ¢° € A, to which corresponds the embedded (k + e¢)-bubble u® := ug. by iii) in Lemma
4.1. The continuity of (g, q) = u gives the continuity of & > u®.

The last conclusion in Theorem 1.2 follows via a simple compactness argument and thanks

to Theorem 4.1. O

Proof of Theorem 1.3. Recalling that ¢* := (q1, g2, kmeq3), we write

F(q) = /(p3+km)‘3¢(q3p+q’“)dp~

B, (0)

Since 7, — 0 and kry, = k(k>—1)"%/2 — 1 as k — oo, we infer that ¢® — ¢ uniformly on compact

sets of Ri and
3

F? — as k — oo,
dmrp F ¢

uniformly on £2. Next, we easily compute

0a, FY (9) = / (ps + k) 20y, ¢(qsp + ¢")dp,  j=1,2,
B, (0)
04, F (q) = / (ps + k) "*V(gsp + ¢") - (p+ kries) dp,
By, (0)
and thus we obtain, by the same argument,

3
471'7’,3

VF,?—)V(;S as k — oo,

uniformly on £2. It follows that for k& large enough, F]f’ has a stable critical point in 2 € H3,
since having a stable critical point is a C'-open condition. Hence Theorem 1.1 applies and gives

the conclusion of the proof. O
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Appendix

Let K € CO(H?). Take any vectorfield Qx € C'(R%,R?) such that divQ (p) = p3 > K (p) for any
p € R3 (here div =) ; 0 is the Euclidean divergence). The functional

Vi (u) := /QK(u) -0zu A Oyudz, u € CH(R?, H?),
R2

measures the signed (hyperbolic) volume enclosed by the surface u, with respect to the weight
K. In fact, if u parameterizes the boundary of a smooth open set 2 & R‘i and if Oyu A Oyu is

inward-pointing, then the divergence theorem gives
Vi (u) = —/QK(u) vdu = —/p3_3de: f/Kd]HI3.
a0 2 0

Clearly, the functional Vi does not depend on the choice of the vectorfield ). Notice that if
K =k is constant, then

k _
Vie(u) = 75/11,3_263 COpu A Oyudz , weCH(R?H?).
R2
In the next Lemma we collect few simple remarks about the energy functional

1
Bu) =, / w32Vl dz + 2Vic(u) (A1)
]RZ

Lemma A.1 Let K € CO(H?).
i) The functional E : C*(R?, H?) — R is of class C', and its differential is given by
E'(u)p = /(u§2Vu Vi —uz | Vul?es - ) dz + 2 / uz K (u)p - Opu A dyudz ;
R2 R?
i) If u € C2(R%, H?), then E'(u) extends to a continuous form on C°(R2,R3), namely
E'(u)p = /(—div(u3_2Vu) —uz?|Vul?es + 2uz * K (u)0,u A 9yu) - pdz ;
R2
iii) If K € CY(H?), then E is of class C* on C*(R? H3).
In the next Lemma we show that critical points for E are in fact hyperbolic K-bubbles.

Lemma A.2 Let K € CO(H?) and let v € C?>(R%,H?) be a nonconstant critical point for E.

Then u is conformal, that is,
|0zu| = |Oyu|, Ozu-0yu=0,

hence it parameterizes an S type surface in H?, having mean curvature K, apart from a finite

number of branch points.
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Proof Put = $u3?(|0,ul? — |0ul?), B = —u3?0u - Ogu, ¢ = a + i and notice that [p| <
cu|Vul? € L (R?). By direct computation we find

(Opx — 0y Bl = uz0uu - Au — (|0gu)?® — |Ogul|?) gz — 2(0gu - Oyu)Oyus (A.2)
Oy + 0, B)ul = —uz0yu - Au — (|0gu]? — [Oyu|?)Ogus + 2(Dau - Dyu)Dgus - .
Since u solves (1.1), it holds that
uzdgu - Au = 2G(Vu) - O = 2(0qu - Oyu)Oyus + (|0zul® — |0yul®)Ogus (A3)

uzdyu - Au = 2G(Vau) - Oqu = 2(9u - Oyu) gz — (|0gu)® — |0gul?)Oyus -

Putting together (A.2) and (A.3) we obtain d,a — 98 = Oya + 0,8 = 0, namely, ¢ is an
holomorphic function. Since ¢ is bounded and vanishes at infinity then ¢ = 0 on R2, hence u is
conformal.

The last conclusion follows from Proposition 2.4 and Example 2.5(4) in [14]. O

Remark A.1 Here we take K = k constant and point out two simple facts about the energy
functional Epy, in (1.3).
By (4.2), the Nehari manifold contains any nonconstant function. Secondly, Epy, is un-

bounded from below. In fact, for t > 1 we have

kt—1 Kk t+4+1

1
Ehyp(w + tes) = 5/(w3 + )72 M2d2+k/(W3 + 1) 2wy pidz = dm( — o + §lnt— 1).

R2 R2

Notice that w + teg approaches a horosphere ast — 1, and that }m% Epyp(w + tez) = —oo.
—

Remark A.2 Differently from the Fuclidean case, see for instance [5], the geometric and com-
pactness properties of the energy functional E are far from being understood (also in the case of
a constant curvature), and would deserve a careful analysis.

We conclude the paper by pointing out a necessary condition for the existence of embedded
K bubbles.

Let K € C'(H?) be given, and let u € C2(R?,H?) be an embedded solution to (1.1). By
Lemma A.2, u is a conformal parametrization of the open set 2 C ]Ri, which is the bounded
connected component of R3 \ u(S?). We can assume that the nowhere vanishing normal vector
Ozu A Oyu is inward pointing. Since u is a critical point of the energy functional in (A.1), then
for j = 1,2 we have that

0=FE'(u)e; = Vi(u)e; = /u;g’K(u)ej - Opu A\ Oyudz = —/div(p53K(p)ej) dp
R2 2
by the divergence theorem. Thus

/p§35ij(p) dp = 0.
2
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In a similar way, from E'(u)u = 0 and since div(p3 K (p)p) = p3 *V K (p) - p, one gets

/pESVK(p) -pdp = 0.
2

In particular, 9y, K, 0, K and the radial derivative of K can not have constant sign in (2. We

infer the next nonexistence result (see [7, Proposition 4.1] for the Euclidean case).

Theorem A.3 Assume that K € C*(H?) satisfies one of the following conditions,

i) K(p) = f(v-p) for some direction v orthogonal ez, where f is strictly monotone;
ii) K(p) = f(|p|), where f is strictly monotone.

Then (1.1) has no embedded solution u € C*(R? H3).
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