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Abstract. In the setting of the modal logic that characterizes modal re-
finement over modal transition systems, Boudol and Larsen showed that
the formulae for which model checking can be reduced to preorder check-
ing, that is, the characteristic formulae, are exactly the consistent and
prime ones. This paper presents general, sufficient conditions guaran-
teeing that characteristic formulae are exactly the consistent and prime
ones. It is shown that the given conditions apply to the logics character-
izing all the semantics in van Glabbeek’s branching-time spectrum.

1 Introduction

Model checking and equivalence/preorder checking are the two main approaches
to the computer-aided verification of reactive systems [3, 6]. In model check-
ing, one typically describes the behaviour of a computing system using a state-
transition model, such as a labelled transition system [11], and specifications
of properties systems should exhibit are expressed using some modal or tempo-
ral logic. In this approach, system verification amounts to checking whether a
system is a model of the formulae describing a given specification. When using
equivalence/preorder checking instead, systems and their specifications are both
expressed in the same state-machine-based formalism. In this approach, check-
ing whether a system correctly implements its specification amounts to verifying
whether the state machines describing them are related by some suitable no-
tion of behavioural equivalence/preorder. (See [8, 9] for taxonomic studies of
the plethora of behavioural relations that have been considered in the field of
concurrency theory.)

A bridge between model checking and equivalence/preorder checking is pro-
vided by the notion of characteristic formula [10, 13]. Intuitively, a characteristic
formula provides a complete logical characterization of the behaviour of a pro-
cess modulo some notion of behavioural equivalence or preorder. At least for
finite labelled transition systems, such formulae can be used to reduce equiva-
lence/preorder checking to model checking effectively, and, as argued in [7], this
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approach has better complexity than known algorithms for preorder checking. A
natural question to ask is for what kinds of logical specifications model checking
can be reduced to establishing a behavioural relation between an implementa-
tion and a labelled transition system that suitably encodes the specification.
To the best of our knowledge, this question was first addressed by Boudol and
Larsen, who showed in [5] that, in the context of the modal logic that charac-
terizes modal refinement over modal transition systems, the formulae that are
“graphically representable” (that is, the ones that are characteristic for some
process) are exactly the consistent and prime ones. (A formula is prime if when-
ever it implies a disjunction of two formulae, it implies one of the disjuncts.)
A similar result is given in [2] in the setting of covariant-contravariant simula-
tion. Moreover, each formula in the logics considered in [2, 5] can be “graphically
represented” by a (possibly empty) finite set of processes.

To our mind, those are very pleasing results that show the very close connec-
tion between logical and behavioural approaches to verification in two specific
settings. But, how general are they? Do similar results hold for the plethora
of other process semantics and their modal characterizations studied in the lit-
erature? And, if so, are there general sufficient conditions guaranteeing that
characteristic formulae are exactly the consistent and prime ones? The aim of
this article is to provide answers to those questions.

From a methodological perspective, we follow a purely logical approach to-
wards the characterization of process semantics, which allows us to work in an
abstract and very general setting (described in Section 2): instead of investigat-
ing each behavioural semantics separately, we define a process semantics as the
preorder induced by some logic, i.e. a process p is smaller than a process q if the
set of logical properties of p is strictly included in that of q. By investigating
preorders defined in this way, we can identify common properties for all logically
characterized preorders, and thus we are able to give a general recipe to logically
characterize processes by means of consistent and prime formulae (characteri-
zation by primality). The first piece of our characterization by primality result
consists in showing that characteristic formulae are always consistent and prime
(Theorem 1). This result was already proven for specific semantics [2, 5], and
we generalise it here to every logically characterized preorder. The converse is
not true in general. Therefore our main technical contribution is to provide suf-
ficiently general conditions guaranteeing that consistent and prime formulae are
characteristic formulae for some process.

In Section 3, we introduce the notion of decomposable logic and show that,
for such logics, consistent and prime formulae are characteristic for some process
(Theorem 2). (Intuitively, a logic is decomposable if, for each formula, the set
of processes satisfying it includes the set of processes satisfying a characteristic
formula and the logic is sufficiently expressive to witness this inclusion.) We then
proceed to identify features that make a logic decomposable, thus paving the way
to showing the decomposability of a number of logical formalisms (Section 3.1).
In particular, we prove that if the set of formulae satisfied by each process can
be finitely characterized in a suitable technical sense (see Definition 4), then,
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under some mild assumptions, the logic is decomposable (Corollary 2). Moreover,
such finitely characterized logics can express the characteristic formula for each
process (Proposition 6(ii)).

In order to show the applicability of our general framework, we use it in
Sections 4–5 to show that, for a variety of logical characterizations of process
semantics, characteristic formulae are exactly the consistent and prime ones. In
particular, this applies to all the semantics in van Glabbeek’s branching-time
spectrum. In all these cases, there is a perfect match between the behavioural
and logical view of processes: not only do the logics characterize processes up
to the chosen notion of behavioural relation, but processes represent all the
consistent and prime formulae in the logics.

Proofs of most of the technical results can be found in [1].

2 Process semantics defined logically

We assume that L is a language interpreted over a non-empty set P , which we
refer to as a set of processes. Thus, L is equipped with a semantic function
J·KL : L → P(P ) (where P(P ) denotes the powerset of P ), and we say that
p ∈ P satisfies φ ∈ L whenever p ∈ JφKL. For all p, q ∈ P , we define the following
notions:
• L(p) = {φ ∈ L | p ∈ JφKL}: the set of formulae in L that p satisfies; we

assume L(p) 6= ∅, for each p ∈ P ;
• p↑L = {p′ ∈ P | L(p) ⊆ L(p′)}: the upwards closure of p (with respect to L);
• p and q are logically equivalent if L(p) = L(q);
• p and q are incomparable (with respect to L) iff neither L(p) ⊆ L(q) nor
L(q) ⊆ L(p) holds.

We say that a formula φ ∈ L is consistent iff JφKL 6= ∅. Formulae φ, ψ ∈ L are
said to be logically equivalent (or simply equivalent) iff JφKL = JψKL. When it is
clear from the context, we omit the logic L in the subscript (and in the text). For
example, we write JφK and p↑ instead of JφKL and p↑L . We note that L(p) ⊆ L(q)
defines a preorder between processes, which we refer to as the logical preorder
characterized by L. We say that a preorder over P is logically characterized or
simply logical if it is characterized by some logic L.

For a subset S ⊆ P we say that:
• S is upwards closed iff p↑ ⊆ S for all p ∈ S;
• p ∈ S is minimal in S iff for each q ∈ S, if L(q) ⊆ L(p) then L(q) = L(p);
• p ∈ S is a least element in S iff L(p) ⊆ L(q) for each q ∈ S.

Clearly, if p is a least element in a set S, then p is also minimal in S. Notice
that, if a set S contains a least element, then it is the unique minimal element
in S, up to logical equivalence.

2.1 Characteristic and prime formulae

We introduce here the crucial notion of characteristic formula for a process [3,
10, 13] and the one of prime formula [2, 5], in the setting of logical preorders over
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processes. Our aim in this study is to investigate when these notions coincide,
thus providing a characterization of logically defined processes by means of prime
formulae, which sometimes we will refer to as characterization by primality.
To begin with, in this section we study such a connection in a very general
setting. As it turns out, for logically characterized preorders, the property of
being characteristic always implies primality (Theorem 1). The main focus of this
paper becomes therefore to investigate under what conditions a consistent and
prime formula is characteristic for some process in a logical preorder (Section 3).

Definition 1 (Characteristic formula). A formula φ ∈ L is characteristic
for p ∈ P iff for all q ∈ P it holds that q ∈ JφK if and only if L(p) ⊆ L(q).

The following simple properties related to characteristic formulae will be useful
in what follows.

Proposition 1. The following properties hold for all p, q ∈ P and φ ∈ L:
(i) φ is characteristic for p if and only if JφK = p↑ ;

(ii) a characteristic formula for p, if it exists, is unique up to logical equivalence
(and can therefore be referred to as χ(p));

(iii) if the characteristic formulae for p and q, namely χ(p) and χ(q), exist then
Jχ(p)K ⊆ Jχ(q)K if and only if L(q) ⊆ L(p).

Next we state two useful properties.

Proposition 2. The following properties hold: (i) for each φ ∈ L, JφK is up-
wards closed, and (ii) if p ∈ JφK ⊆ Jχ(p)K, then JφK = Jχ(p)K.

We now define what it means for a formula to be prime.

Definition 2 (Prime formula). We say that φ ∈ L is prime iff for each non-
empty, finite subset of formulae Ψ ⊆ L it holds that JφK ⊆

⋃
ψ∈Ψ JψK implies

JφK ⊆ JψK for some ψ ∈ Ψ .

Observe that our definition is a semantic version of the one given in [5]. This
serves our purpose to keep the discussion as abstract as possible. In this per-
spective, we want to abstract (at least at this point of the discussion) from
the syntactic details of the logical formalism, while the classic definition tacitly
applies only to languages that feature at least the Boolean connective ∨.

We provide here the first piece of our characterization by primality, by show-
ing that the property of being characteristic implies primality without any extra
assumption on the language L or its interpretation.

Theorem 1. Let φ ∈ L. If φ is a characteristic formula for some p ∈ P , then
φ is prime and consistent.

Proof. The formula φ is obviously consistent because p ∈ Jχ(p)K = JφK. Towards
proving that χ(p) is prime, we assume that Jχ(p)K ⊆

⋃
i∈IJψiK, where I is finite

and non-empty. By our assumption, since p ∈ Jχ(p)K, then for some i ∈ I, p ∈
JψiK holds. As, by Proposition 2(i), JψiK is upwards closed, using Proposition 1(i)
we can conclude that Jχ(p)K = p↑ ⊆ JψiK as we wanted to prove. ut
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Notice that the converse is not true in general, that is, there exist formulae
that are consistent and prime but not characteristic. To see this, let P = Q,
L = R and JφK = {p ∈ Q | φ ≤ p}. Clearly, all formulae are consistent. Then,
L(p) = {φ ∈ R | φ ≤ p} which implies that L(p) ⊆ L(q) iff p ≤ q iff q ∈ JpK.
This means that, for each p ∈ Q, φ = p is characteristic for p and therefore the
characteristic formula is well-defined for all p ∈ P . Furthermore JφK∪JψK = {p ∈
Q | min{φ, ψ} ≤ p} for all φ, ψ ∈ L, which implies that all formulae are prime.
On the other hand φ =

√
2 6∈ Q cannot be characteristic for any process as J

√
2K

does not have a least element.

3 Characterization by primality for logical preorders

In this section we introduce sufficient conditions under which the converse of
Theorem 1 is also true for logical preorders, that is, conditions guaranteeing
that every consistent, prime formula is characteristic.

As a first step, we introduce the notion of decomposable logic. We show that
if a logic is decomposable, then we have a logical characterization of processes by
primality. Some of the results involve the Boolean connectives ∧ and ∨, whose
intended semantics is the standard one.

Definition 3 (Decomposability). We say that a formula φ ∈ L is decompos-
able iff JφK = Jχ(p)K ∪ JψpK for some p ∈ P and ψp ∈ L, with p 6∈ JψpK. We say
that L is decomposable iff all consistent formulae φ ∈ L are either decomposable
or characteristic for some p ∈ P .

The following theorem allows us to reduce the problem of relating the no-
tions of prime and characteristic formulae in a given logic to the problem of
establishing the decomposability property for that logic. This provides us with
a very general setting towards characterization by primality.

Theorem 2. If L is decomposable then every formula that is consistent and
prime is also characteristic for some p ∈ P .

3.1 Paths to decomposability

The aim of this section is to identify features that make a logic decomposable,
thus paving the way towards showing the decomposability of a number of logical
formalisms in the next sections. First, we observe that if a characteristic formula
χ(p) exists for every p ∈ P , then what we are left to do is to define, for each φ ∈ L,
a formula ψp, for some p ∈ P , with the properties mentioned in Definition 3, as
captured by the following proposition.

Proposition 3. Let L be a logic such that (i) χ(p) exists for each p ∈ P , and
(ii) for each consistent formula φ there exist p ∈ JφK and ψp ∈ L such that
p /∈ JψpK and JφK \ Jχ(p)K ⊆ JψpK ⊆ JφK. Then L is decomposable.
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Clearly, when dealing with formalisms featuring at least the Boolean opera-
tors ¬ and ∧, as it is the case with the logic for the bisimulation semantics in
Section 5, such a formula ψp is easily defined as ¬χ(p)∧ φ. This is stated in the
following corollary.

Corollary 1. Let L be a logic that features at least the Boolean connective ∧
and such that, for each p ∈ P , the formula χ(p) exists and there is some for-
mula χ̄(p) ∈ L where Jχ̄(p)K = Jχ(p)Kc (the complement of Jχ(p)K). Then L is
decomposable.

The situation is more complicated when it comes to the other logics for the
semantics in the branching-time spectrum (which we consider in Section 5) as
negation is in general not expressible in these logics, not even for characteristic
formulae. Therefore, instead we will prove a slightly stronger statement than
the one in Corollary 1 by identifying a weaker condition than the existence of a
negation of the characteristic formulae (that we assume to exist) that also leads
to decomposability of the logic. This is described in the following proposition.

Proposition 4. Let φ ∈ L, p be a minimal element in JφK such that χ(p) exists
in L, and let χ̄(p) be a formula in L such that {q ∈ P | L(q) 6⊆ L(p)} ⊆ Jχ̄(p)K.
Then, JφK \ Jχ(p)K ⊆ Jχ̄(p)K holds.

In the next proposition, we build on the above result, and establish some con-
ditions, which are met by the logics we consider in Section 5 (apart for the one
for bisimulation semantics), and which immediately lead to decomposability.

Proposition 5. Let L be a logic that features at least the Boolean connective ∧
and such that:

(i) χ(p) exists for each p ∈ P ,
(ii) for each consistent φ, the set JφK has a minimal element, and

(iii) for each p ∈ P , there exists a formula χ̄(p) such that p /∈ Jχ̄(p)K and
{q ∈ P | L(q) 6⊆ L(p)} ⊆ Jχ̄(p)K.

Then, L is decomposable.

In order to apply the above result to prove decomposability for a logic L, we now
develop a general framework ensuring conditions (i) and (ii) in Proposition 5. To
this end, we exhibit a finite characterization of the (possibly) infinite set L(p) of
true facts associated with every p ∈ P . (In order to ensure condition (iii) of the
proposition, we will actually construct the formula χ̄(p) in each of the languages
considered in Section 5.)

Definition 4 (Characterization). We say that the logic L is characterized by
a function B : P → P(L) iff for each p ∈ P , B(p) ⊆ L(p) and for each φ ∈ L(p)
there exists a non-empty Ψ ⊆ B(p) such that

⋂
ψ∈Ψ JψK ⊆ JφK. We say that L is

finitely characterized by B iff L is characterized by a function B such that B(p)
is finite for each p ∈ P . Finally, we say that B is monotonic iff L(p) ⊆ L(q)
implies B(p) ⊆ B(q) for all p, q ∈ P .
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In what follows, we show that if a logic L features at least the Boolean
connective ∧ and it is finitely characterized by B, for some monotonic B, then it
fulfils conditions (i) and (ii) in Proposition 5.

Proposition 6. The following statements hold.
(i) If L is characterized by B, then for each p, q ∈ P , B(p) ⊆ B(q) implies
L(p) ⊆ L(q).

(ii) If L features at least the Boolean connective ∧ and is finitely characterized
by B, then each p ∈ P has a characteristic formula in L given by χ(p) =∧
φ∈B(p) φ.

(iii) If L is finitely characterized by B, for some monotonic B, then for each
consistent φ ∈ L, the set JφK has a minimal element.

It is worth pointing out that the Boolean connective ∧ plays a minor role in (the
proof of) Proposition 6(ii). Indeed, it is applied to formulae in B(p) only. Thus,
such a result can be used also to deal with logics that allow for a limited use of
such a connective, such as the logics for trace equivalence and other linear-time
semantics [9].

Finally, we can summarize the results in this section in the following corollary.

Corollary 2. Let L be a logic that features at least the Boolean connective ∧
and such that:

(i) L is finitely characterized by B, for some monotonic B, and
(ii) for each χ(p), there exists a formula χ̄(p) such that either

– Jχ̄(p)K = Jχ(p)Kc, or
– p /∈ Jχ̄(p)K and {q ∈ P | L(q) 6⊆ L(p)} ⊆ Jχ̄(p)K.

Then, L is decomposable.

In the remainder of the paper, we will present some applications of our general
results.

4 Application to finitely many processes

As a first application, we investigate the case when the set P is finite and the
logic L features at least the Boolean connectives ∧ and ∨. Note that although P
itself is finite, it can contain processes with infinite behaviours, e.g., when p ∈ P
represents a labelled transition system with loops. If P is finite, so is L, up to
logical equivalence. Let Lfin be a set of representatives of the equivalence classes
of L modulo logical equivalence, and define Bfin(p) = Lfin(p) = L(p)∩Lfin, for
each p ∈ P . It is easy to see that L is finitely characterized by Bfin, according
to Definition 4. Moreover, Bfin is clearly monotonic. Thus, by Proposition 6(ii),
χ(p) is well-defined for each p as

∧
ψ∈Bfin(p) ψ.

In order to show that L is decomposable, let us consider a consistent formula
φ ∈ Lfin, and let p be minimal in JφK (the existence of such a p is guaranteed
by the finiteness of P ). Now, either JφK = Jχ(p)K (in this case we are done), or
JφK \ Jχ(p)K 6= ∅, and thus, the set S = {q ∈ P | q ∈ JφK,Lfin(p) 6= Lfin(q)} is
not empty. In this second case it is easy to see that ψp =

∨
q∈S χ(q) fulfils the

requirements of Definition 3. This can be summarized in the following theorem.
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Semantic relation Definition

simulation p .S q ⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .S q
′;

(S)

complete simulation p .CS q⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .CS q
′,

(CS) and I(p) = ∅ iff I(q) = ∅;

ready simulation p .RS q⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .RS q
′,

(RS) and I(p) = I(q);

trace simulation p .TS q⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .TS q
′,

(TS) and traces(p) = traces(q);

2-nested simulation p .2S q ⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .2S q
′,

(2S) and q .S p;

bisimulation p .BS q⇔ for all p
a→ p′ there exists q

a→ q′ such that p′ .BS q
′,

(BS) and for all q
a→ q′ there exists p

a→ p′ such that p′ .BS q
′.

Table 1. Semantic relations in van Glabbeek’s branching-time spectrum.

Theorem 3 (Characterization by primality). Let L be a logic interpreted
over a finite set P that features at least the Boolean connectives ∧ and ∨. Then,
each formula φ ∈ L is consistent and prime if and only if φ is characteristic for
some p ∈ P .

5 Application to semantics in van Glabbeek’s spectrum

Our next task is to apply the result described in Corollary 2 to the semantics
in the branching-time spectrum, over finite trees and with finite set of actions.
All those semantics have been shown to be characterized by specific logics and
therefore inherit all the properties of logically defined preorders. We reason about
characterization by primality (Theorem 5) by showing that each logic is finitely
characterized by some monotonic B, and by building, for each characteristic
formula χ(p), a formula χ̄(p) with the properties specified in Proposition 5(iii).

The logics we focus on are the ones for the semantics in van Glabbeek’s
branching-time spectrum [8, 9], namely simulation (S), complete simulation (CS),
ready simulation (RS), trace simulation (TS), 2-nested simulation (2S), and
bisimulation (BS). Their syntax and semantics are briefly described in what fol-
lows. For a comprehensive overview, we refer the reader to the corresponding lit-
erature. In the rest of this section spectrum denotes the set {S,CS,RS,TS, 2S,BS}
and we let X ∈ spectrum.

Syntax for processes. The set of processes P over a finite set of actions Act
is given by the following grammar:

p ::= 0 | ap | p+ p,
where a ∈ Act. Given a process p, we say that p can perform the action a and
evolve into p′, denoted p

a→ p′, iff (i) p = ap′ or (ii) p = p1 + p2 and either

p1
a→ p′ or p2

a→ p′ holds. Note that every process denotes a finite loop-free
labelled transition system.



9

We define the set of initials of p, denoted I(p), as the set {a ∈ Act | p a→ p′

for some p′ ∈ P}. We write p
a→ if a ∈ I(p), and we write p 6 a→ if a 6∈ I(p). We

define traces(p) as follows:

traces(p) = {ε} ∪ {aτ | ∃a ∈ Act ∃p′ ∈ P . p
a→ p′ and τ ∈ traces(p′)}.

For each trace τ = a1 . . . an, we write p
τ→ p′ for p

a1→ p1
a2→ p2 . . . pn−1

an→ p′.
Finally, for each p ∈ P , dep(p) is the length of the longest trace in traces(p).

Behavioural preorders. The semantics of processes is expressed by preorder
relations, which, intuitively, classify processes according to their possible be-
haviours. Roughly speaking, a process follows another in the preorder (or it is
above it) if it exhibits at least the same behaviours as the latter. The semantic
relations in van Glabbeek’s branching-time spectrum are defined as follows.

Definition 5. For each p, q ∈ P and each X ∈ spectrum, .X is the largest
relation satisfying the corresponding condition in Table 1.

It is well-known that .BS ( .2S ( .TS ( .RS ( .CS ( .S [8, 9].

Syntax for logics. Table 2 provides the definition of the syntax of the logics
that capture exactly the above mentioned process semantic relations. We treat
formulae of the form 0 and [a]ψ as syntactic shorthand for

∧
a∈Act[a]ff and

¬〈a〉¬ψ, respectively. The languages of the different logics yield the following
chain of strict inclusions: LS ( LCS ( LRS ( LTS ( L2S ( LBS, corresponding
to formalisms with strictly increasing expressive power. Notice that, as it will
become clear after the definition of the satisfaction relation below, some of the
languages present some redundancy, in the sense that they could be replaced
with smaller ones, without any loss in expressiveness. For instance, a disjunction
is expressible in LBS using conjunction and negation, and suitably replacing tt
with ff and vice versa. We followed this approach because we find it helpful to
have syntactically larger languages corresponding to more expressive semantics.

Roughly speaking, each language consists of an “existential” and a “univer-
sal” sub-language, as highlighted by the definitions in the second and the fourth
column of Table 2 (φX ::= φ∃X | φ∀X for each X ∈ spectrum apart from simula-
tion). The “existential” sub-language (formulae derivable from the non-terminal
φ∃X) is common to all the logics and so is its definition (bottom line of Table 2).
The “universal” sub-language (formulae derivable from the non-terminal φ∀X) is
what actually distinguishes the several languages: its definition is provided for
each logic in the corresponding row of Table 2 (see [1] for further explanations
and expanded definitions).

Satisfaction relation. We give here the semantics of the logics, by describing
the satisfaction relation for the most expressive one, namely LBS, corresponding
to bisimulation semantics. The semantics for the other logics can be obtained by
considering the corresponding subset of clauses.
– p ∈ JttK and p /∈ JffK, for every p ∈ P ,
– p ∈ Jφ1 ∧ φ2K iff p ∈ Jφ1K and p ∈ Jφ2K,
– p ∈ Jφ1 ∨ φ2K iff p ∈ Jφ1K or p ∈ Jφ2K,
– p ∈ J〈a〉φK iff p′ ∈ JφK for some p′ ∈ P such that p

a→ p′,
– p ∈ J¬φK iff p /∈ JφK.
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Semantics Syntax Semantics Syntax

S φS ::= φ∃
S TS

φTS ::= φ∃
TS | φ∀

TS

φ∀
TS ::= ff | [a]φ∀

TS

CS
φCS ::= φ∃

CS | φ∀
CS

φ∀
CS ::= 0

2S
φ2S ::= φ∃

2S | φ∀
2S

φ∀
2S ::= ¬φS

RS
φRS ::= φ∃

RS | φ∀
RS

φ∀
RS ::= [a]ff

BS
φBS ::= φ∃

BS | φ∀
BS

φ∀
BS ::= ¬φBS

φ∃
X ::= tt | ff | φX ∧ φX | φX ∨ φX | 〈a〉φX ∀X ∈ {S,CS,RS,TS, 2S,BS}

Table 2. Syntax of the logics in van Glabbeek’s branching-time spectrum. For every
X ∈ {S,CS,RS,TS, 2S,BS}, the language of LX is generated by the grammar rooted
in the non-terminal φX .

The following well-known theorem states the relationship between logics and
process semantics that allows us to use our general results about logically char-
acterized semantics.

Theorem 4 (Logical characterization [8, 9]). For each X ∈ spectrum and
for all p, q ∈ P , p .X q iff LX(p) ⊆ LX(q).

We observe that all the logics we consider feature the Boolean connective
∧, as required by one of the assumptions of Corollary 2. In what follows, we
show that every logic meets also the other conditions of the corollary, that is,
it is finitely characterized by some monotonic B, and for each χ(p) there exists
a formula χ̄(p) such that p /∈ Jχ̄(p)K and {q ∈ P | L(q) 6⊆ L(p)} ⊆ Jχ̄(p)K. We
provide here proof details for the illustrative case of ready simulation (RS) [4, 9,
12] only, and refer the interested reader to [1] for further details. We recall the
“expanded” syntax of the corresponding logic LRS:

φRS ::= tt | ff | φRS ∧ φRS | φRS ∨ φRS | 〈a〉φRS | [a]ff .

5.1 Finite characterization

We prove here that logics in van Glabbeek’s branching-time spectrum are finitely
characterized by some monotonic B (condition (i) in Corollary 2).

Lemma 1. Let X ∈ spectrum. LX is finitely characterized by B, for some mono-
tonic B.

Proof. We detail the case of ready simulation only. For this relation, the function
B is defined as B+(p) ∪ B−(p), where

– B+(p) = {tt} ∪ {〈a〉ϕ | ϕ =
∧
ψ∈Ψ ψ, Ψ ⊆ B(p′) and p

a→ p′}, and

– B−(p) = {[a]ff | p ∈ J[a]ffK, a ∈ Act}.
We have to show that, for each p ∈ P , (i) B(p) ⊆ L(p), (ii) B(p) is finite,

(iii) for each φ ∈ L(p) there exists a non-empty Ψ such that Ψ ⊆ B(p) and⋂
ψ∈Ψ JψK ⊆ JφK, and (iv) for each q ∈ P , if L(p) ⊆ L(q) then B(p) ⊆ B(q).



11

Here we only deal with properties (iii) and (iv). The proof of property (iii)
is by induction on the structure of formulae. The cases φ = tt, φ = [a]ff ,
φ = ϕ1 ∨ ϕ2, and φ = ϕ1 ∧ ϕ2 are simple, and are omitted. Assume that φ =
〈a〉ϕ. By definition we have that ϕ ∈ L(p′) for some p

a→ p′. By the inductive
hypothesis, there exist formulae ψ1, . . . , ψn ∈ B(p′) (with n ≥ 1) such that⋂
i∈{1,...n}JψiK ⊆ JϕK. We define ψ = 〈a〉

∧
i ψi. Clearly, ψ belongs to B+(p) (by

construction) and JψK ⊆ JφK (because
⋂
i∈{1,...n}JψiK ⊆ JϕK).

Finally, we show that B(p) is monotonic (property (iv)). Consider p, q ∈ P ,
with L(p) ⊆ L(q). We want to show that φ ∈ B(p) implies φ ∈ B(q), for each
φ. Firstly, we observe that, by L(p) ⊆ L(q) and Theorem 4, p .RS q holds.

Thus, we have that I(p) = I(q) and, for each a ∈ Act and p′ ∈ P with p
a→ p′,

there exists q′ ∈ P such that q
a→ q′, and p′ .RS q

′. Since I(p) = I(q), clearly
B−(p) = B−(q). In order to show that B+(p) ⊆ B+(q), we proceed by induction
on the depth of p. If I(p) = ∅, then I(q) = ∅ as well. Thus, we have that
B+(p) = B+(q) = {tt}, and the thesis follows. Otherwise (I(p) 6= ∅), let us
consider a formula φ = 〈a〉ϕ ∈ B+(p) (the case when ψ = tt is trivial). By

definition of B+, there exist p′ ∈ P , with p
a→ p′, and Ψ ⊆ B(p′) such that

ϕ =
∧
ψ∈Ψ ψ. This implies the existence of q′ ∈ P such that q

a→ q′ and p′ .RS q
′

(and therefore L(p′) ⊆ L(q′)). By the inductive hypothesis, B(p′) ⊆ B(q′) holds
as well, which means that Ψ ⊆ B(q′). Hence, we have that 〈a〉ϕ ∈ B+(q). ut

5.2 Existence of χ̄(·)

In what follows, we show that it is possible to build, for each χ(p), a formula
χ̄(p), with the properties described in Corollary 2(ii).

Lemma 2. Let X ∈ spectrum. For each χ(p) ∈ LX there exists a formula in
LX , denoted χ̄(p), such that (i) p 6∈ Jχ̄(p)K and (ii) {p′ ∈ P | p′ 6. p} ⊆ Jχ̄(p)K.

Proof (sketch). We deal with the case of ready simulation only. The formula χ̄(p)
is defined as follows: χ̄(p) =

∨
a/∈I(p)〈a〉tt∨

∨
a∈I(p)[a]ff∨

∨
a∈I(p)〈a〉

∧
p

a→p′ χ̄(p′).

Both properties can be easily proved by induction on the depth of p. ut

Finally, the following theorem states our main result of this section.

Theorem 5 (Characterization by primality). Let X ∈ spectrum and let
φ ∈ LX . Then, φ is consistent and prime if and only if φ is characteristic for
some p ∈ P .

6 Conclusions

In this paper, we have provided general sufficient conditions guaranteeing that
formulae for which model checking can be reduced to equivalence/preorder check-
ing are exactly the consistent and prime ones. We have applied our framework to
show that characteristic formulae are exactly the consistent and prime ones when
the set of processes is finite, as well as for all the semantics in van Glabbeek’s
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branching-time spectrum. Our results indicate that the “characterization by pri-
mality result” first proved by Boudol and Larsen [5] in the context of the modal
logic that characterizes modal refinement over modal transition systems holds
in a wide variety of settings in concurrency theory. We feel, therefore, that this
study reinforces the view that there is a very close connection between the be-
havioural and logical view of processes: not only do the logics characterize pro-
cesses up to the chosen notion of behavioural relation, but processes characterize
all the prime and consistent formulae.

In this paper, we have presented applications of our general framework to
branching-time semantics. However, ongoing, preliminary investigations indicate
that our framework can also be applied to obtain characterization by primality
results for the logics for the linear-time semantics in van Glabbeek’s spectrum [9].
By way of example, we mention here that we have already obtained such char-
acterizations for trace, complete trace, failures, readiness, possible futures, and
impossible futures semantics. We leave the study of further applications and of
possible generalizations of our results for future work.
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