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Abstract

Due to the current high availability of omics, data-driven biology has greatly
expanded, and several papers have reviewed state-of-the-art technologies.
Nowadays, two main types of investigation are available for a multi-omics
dataset: extraction of relevant features for a meaningful biological interpre-
tation and clustering of the samples. In the latter case, a few reviews refer
to some outdated or no longer available methods, whereas others lack the
description of relevant clustering metrics to compare the main approaches.
This work provides a general overview of the major techniques in this area,
divided into four groups: graph, dimensionality reduction, statistical and
neural-based. Besides, eight tools have been tested both on a synthetic and
a real biological dataset. An extensive performance comparison has been
provided using four clustering evaluation scores: Peak Signal-to-Noise Ra-
tio (PSNR), Davies–Bouldin(DB) index, Silhouette value and the harmonic
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mean of cluster purity and efficiency. The best results were obtained by using
the dimensionality reduction, either explicitly or implicitly, as in the neural
architecture.
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1. Introduction

Recently, the decrease in cost in next-generation sequencing (NGS) tech-
niques has enabled the availability of a huge amount of biological data [1,
2, 3, 4, 5, 6, 7]. In particular, various types of omics can be obtained from
the same sample [8]. The term omics refers to a particular type of molecular
data providing a specific perspective of a biological phenomenon; indeed, it
derives from the suffix of the type of investigation (e.g. genomics, proteomics,
transcriptomics, epigenomics) [9, 10, 11, 12, 13]. Each of these omics car-
ries partial information of the biological problem. Then, integrating several
omics can provide a systemic approach for biological problem investigation.
However, despite its informative potential, omic integration is still an open
challenge [14].

Although a single-omic study can identify molecules and biomarkers of
the main pathologies, it can provide only partial information; nowadays,
multi-omics data is fundamental to gain a more accurate insight and more
effective predictions [15, 16, 17]. The greater availability of data has allowed
many multi-omics studies [18, 19, 20, 21, 22, 23, 24] and fostered the expan-
sion and construction of public databases to ensemble the greatest amount
of data in standardized file formats and user-friendly interfaces. Examples
of such projects are the Ensemble Genome Project and the Human Pro-
teome Project, which aim at collecting the major genes and proteins under-
lying the main biological processes in the cell [25, 26]. Other important data
repositories are the Genomic Data Commons (GDC), the Clinical Proteomics
Tumor Analysis Consortium, and the International Cancer Genomics Con-
sortium [27, 28, 29, 30, 31]. In such repositories, the main multi-omics data
are RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV, DNA methylation, pro-
teomics, whole genome sequencing, and the genomic variations data (somatic
and germline mutation).

In the last decade, the availability of such an amount of data and infor-
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mation has led to various methodologies and algorithms for their analysis
[32, 33, 34, 35, 36, 37, 38]. Concerning single-omic dataset processing, the
two most common types of analysis are:

1. Extraction of the most relevant features for the detection of new bio-
logical signatures or pathways.

2. Classification and clustering of samples (typically patients) to create
predictive models for a pathology or discover new molecular subtypes.

In a multi-omics scenario, these two approaches are still valid, but the algo-
rithms used to integrate and analyze the data need to be properly modified
and optimized.

This work presents the state-of-the-art about multi-omics data integra-
tion, especially concerning the classification and clustering of samples.

Several papers reviewed the state-of-the-art for multi-omics integration
[39, 40, 41]; however, some of these refer to outdated methods or, sometimes,
no longer available [42]. More recent reviews [43, 44] are complete about
the sample clustering problem, but they lack the description of some rele-
vant metrics to realize which method is more suitable in a specific context.
Therefore, in this survey, specific clustering metrics (Peak Signal-to-Noise
Ratio (PSNR), Davies–Bouldin (DB) index and cluster Silhouette value (S)
are used to compare the various methods.

For simplicity and readability, the various multi-omics methods will be
grouped into four major categories:

1. Graph based. Based on the description of samples such as graphs or
similarity matrices (see Sec. 2).

2. Dimensionality reduction based. The integration is given by the joint
reduction of the dimensionality among the various omics (see Sec. 3).

3. Statistical based. The prevailing approach for the integration is based
on statistics, including Bayesian models (see Sec. 4).

4. Neural Networks based. Techniques based on the creation of artificial
neural networks, and, in particular, deep learning methods to integrate
multi-omics data (see Sec. 5).

An algorithm may belong to more than one of the above categories; in
this sense, each method is placed in the most representative one. Sec. 6
provides a comparison among the most popular multi-omics data clustering
algorithms, while Sec. 7 reports the final considerations in the multi-omics
clustering domain.
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Table 1: Summary of multi-omic data integration methods.

Method Family Core methodology Optimization objective Limitations
SNF Graph Iterative consensus algorithm Similarity matrix Same examples required
MultiSpC Graph Spectral clustering Cluster quality scores Same examples required
NEMO Graph Spectral clustering Cluster quality scores Euclidean distance metric
PIN-SPlus Graph Clustering Connectivity matrix User dependent
JIVE Dimensionality reduction Matrix factorization Min residuals Linearity assumption
RGCCA Dimensionality reduction Matrix factorization Max correlation Linearity assumption
tICA Dimensionality reduction Matrix factorization Max correlation Latent variables independence
MOFA Dimensionality reduction Matrix factorization Max evidence lower bound Linearity assumption
MSFA Dimensionality reduction Matrix factorization Max evidence lower bound Normality assumption
intNMF Dimensionality reduction Matrix factorization Min distance Linearity assumption
MCIA Dimensionality reduction Matrix factorization Max covariance Linearity assumption
iCluster Statistical K-means Min variance Linearity assumption
PARADIGM Statistical Hierarchical clustering Max centroid distance Known pathways only
LRAcluster Statistical K-means Min variance Linearity assumption
CCA Neural Multi Layer Perceptron Max uncorrelation Uncorrelation of embeddings
Split-AE Neural Auto Encoder Min reconstruction error Infinite equivalent latent spaces
DCCAE Neural Auto Encoder Min reconstruction error Infinite equivalent latent spaces
NGL-F Neural Multi Layer Perceptron Min reconstruction error Euclidean distance metric

Table 1 summarizes the methods discussed in the following sections for
integrating multi-omic data.

2. Graph Based

The first group of techniques of the proposed taxonomy deals with those
methods based on the construction of a graph from a similarity matrix: the
nodes are the samples, while the edges represent their relationship intensity,
measured as the distance (Euclidean or correlation-based) between the sam-
ples. Various approaches can be followed to generate a consensus from these
similarity matrices. In the following, the major algorithms are presented.

2.1. SNF

The Similarity Network Fusion (SNF) [45] starts from the similarity ma-
trices of the original data and creates a consensus through an iterative al-
gorithm: at each step, the matrices from individual omics are updated,
accounting for relevant contributions from the others. This approach has
outperformed single-omic studies in some problems such as identification of
cancer subtypes and prediction of survival rates when combining mRNA ex-
pression, DNA methylation and miRNA expression. The method is simple
and fast but requires to have the same samples across all omics.

2.2. MultiSpC

Multi-view spectral clustering (MultiSpC) [46, 47, 48, 49, 50] is a gen-
eralization of the spectral clustering technique [51] to the multi-omics case.
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It is based on graphs in which the samples are the nodes and the distances
between samples are the arcs. The generalization is based on the Minimizing
Disagreement (M-D) algorithm, where samples in two (or more) omics should
cluster the data in order to reduce the disagreement between the clustering.
As per SNF, the algorithm needs to have the same samples across all omics,
while the number of features may differ.

2.3. NEMO

Neighborhood-based multi-omics (NEMO) [52] clustering is a graph-based
approach which computes, for each omic, a patient similarity matrix using
the Euclidean distance. The similarity matrices are merged into a single
matrix, which it is fed to the spectral clustering algorithm to determine, for
each sample, the corresponding cluster. This approach is quite efficient be-
cause a high-dimensional problem is reduced to a lower one by computing
the Euclidean distances among samples (the amount of data is some order of
magnitude smaller than the number of features). Its main strength consists
of the potential in dealing with partial datasets, where the data related to a
patient can be available only for a subset of omics. Also, NEMO can perform
data clustering without performing data imputation, and it proved to reach
comparable results to state-of-the-art algorithms, which by contrast, work
only on complete datasets. However, its major limitation resides in the use
of Euclidean distance metric: in a high-dimensional space, samples are more
spaced (large inter distances), thus disrupting the meaningful signal inside
the dataset. A potential solution could be the use of other distance measures,
such as L1-Minkowski and correlation-based distances.

2.4. PINSPlus

Perturbation clustering for data integration and disease subtyping (PIN-
SPlus) [53, 54] exploits a similarity-based algorithm to merge the connectivity
among samples across all omics. Patient connectivity data are stored in a
graph where samples are nodes and distance measures are edges. The nov-
elty of this approach consists in the stability of the clusters, which are tested
under three conditions: 1) perturbing the input data, 2) selecting different
omics at a time, 3) changing the clustering algorithm. Samples are then
grouped together according to the stability across these perturbations using
a hierarchical structure search. Although this method is really flexible (the
user can select the preferred clustering methods), some biological relation-
ships can be clear only with some clustering methods and not with others
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according to the input data distribution. In this sense, the role of the user
is important in obtaining significant results.

3. Dimensionality reduction based

Another approach, called Joint Dimensionality Reduction (jDR), consists
in applying dimensionality reduction techniques on the input space, account-
ing for the features of the different omics. This is achieved through several
algorithms aimed at extending to multiple input datasets the dimensionality
reduction techniques applied to single matrix processing.

The goal is the projection of the high dimensional omics into a low dimen-
sional space. This is achieved by decomposing the matrices representing each
of the L different omic matrices Mi with i = 1, ..., L, each of size ni×m (where
m is the number of samples and ni the number of features) into the product
of a ki × m factor matrix (F ) and ni × ki omics-specific weight/projection
matrices (Ai).
There are many methods based on different mathematical formulations. Here
are the most representative ones:

3.1. JIVE

Joint and Individual Variation Explained (JIVE) [55] is an extension of
the Principal Component Analysis (PCA) [56, 57, 58, 59] to multi-omics
data. PCA seeks to describe the data with a reduced number of meta-
features obtained by linear combination under the condition that the new
meta-features are orthogonal and variance is maximized. JIVE decomposes
each omic matrix into a joint factor matrix U, an omic-specific factor matrix
A and residual noise E: Xi = UiS + Ai + Ei for i = 1, ..., L. S is the score
matrix explaining variability across multiple types of data. Ei, Ai and U i

are (n x k) matrices. The objective function ||E||2 is minimized with E =
[E1, ..., EL]T .

3.2. RGCCA

Regularized Generalized Canonical Correlation Analysis (RGCCA) [60]
is a generalization to multi-omics data of the Canonical Correlation Analysis
(CCA) [61, 62], a method looking for a linear combination of two matrices
with the greatest correlation. RGCCA determines a factorization of the same
form as JIVE but maximizes the correlation between omic specific factors by
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finding projection vectors ui such that the correlation between projected data
is maximized: argmax

i,j
(Corr(Xiui, Xj, uj)) for all i, j = 1, ..., L.

3.3. tICA

Tensorial Independent Component Analysis (tICA) [63] is an extension
of tensor-based dimensionality reduction methods. In particular, it aims to
overcome the limitation of such methods to share both samples and features.
It starts from the correlation matrix, whose rows and columns are the samples
common to all omics, while its elements (i,j) yield the correlation of sample
i with sample j. Then, tICA solves the following equation:

X = S
L⊗
i=1

Ωi (1)

where X represents the multi-omics data organized into a tensor ; S is a tensor
with the same dimension of X, composed of S1, ..., SL mutually statistically
independent random variables with E[S1, ..., SL] = 0 and Var[S1, ..., SL] = 1
; and

⊗
represents the tensor contraction operation. Since tICA searches

for independent signals, the deconvolution of complex mixtures is improved;
thus, it better identifies biological functions and pathways underlying the
multi-omics data.

3.4. MOFA

Multi-Omics Factor Analysis (MOFA)[64] is an extension of factor anal-
ysis, which solves a joint latent variable model composed of a system of
equations of the form Mi = AiF + Ei , for i = 1, ..., L. Here, F represents
the latent matrix variable, Ai is the omic-specific weight matrix, and Ei is
an error term. A prior distribution is placed on all unobserved variables:
a standard normal prior is used for the factors Z, while sparsity priors are
used for the weight matrices; finally, various noise models are supported for
the error term. The model is then solved by maximising the evidence lower
bound (ELBO).

3.5. MSFA

Multi-Study Factor Analysis (MSFA) [65] is a generalization of factor
analysis by means of modelling the omic matrices through the following sum:
Xi = ΦFi+Λi+Ei for i = 1, ..., L, where omic specific factors are multivariate
normal.
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3.6. intNMF

Integrative NMF (intNMF) [66] is an approach based on Non-negative
Matrix Factorization, where a matrix A is factorized into two matrices under
the assumption that all three matrices are non-negative. The matrix from
each omic Xi is factorized into the product of a common factor matrix W
and a non-negative, omic-specific matrix Hi, by minimizing the objective
function Q = minWH

∑P
i=1 Θi||Xi −WHi||. Once the W and Hi matrices

have been computed, samples are assigned to the cluster in which they have
the highest weight according to W.

3.7. MCIA

Multiple Co-Inertia Analysis (MCIA) [67] is an extension of Co-Inertia
analysis (CIA) to more than two omics. MCIA factorizes each matrix into
omic-specific factors Xi = AiFi + Ei for i = 1, ..., L, by separately applying
the PCA to each omic matrix Xi and then maximizing the sum of the squared
covariance between the scores of each factor, which corresponds to the global
PCA projection:

argmaxq11 ...q
p
1

L∑
k1

cov2(X i
kq

i
k, X

i, qi) with qi (2)

3.8. Scikit-fusion

Matrix tri-factorization (aka scikit-fusion) [68] computes a matrix R (say
relation matrix), which encodes the relations inferred between features of
different omics, and a matrix C (say constraint matrix), which links features
of the same omic. Then, it factorizes all the R matrices by applying matrix
tri-factorization under the constraints given by C. R and C matrices are
block-matrices, with element Ri containing a relation between the elements
of the i-th omic and those of the j-th; in this sense, the matrix tri-factorization
is applied separately to each block.

4. Statistical based

Statistical methods are some of the most common and widely used clus-
tering algorithms for multi-omics data integration. The adoption of probabil-
ity distributions to model variable factors or the underlying data generation
process is the distinguishing factor of statistical approaches [69].
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The success of statistical-based methodologies is mainly due to their in-
trinsic interpretability and straightforward implementation. The possibility
of incorporating biological knowledge in model architectures makes these ap-
proaches interpretable by design [70]. As interpretability is often a manda-
tory requirement in many research areas and especially in biology and health-
care, statistical-based techniques have been successfully adopted for multi-
omics data integration [43].

If their elementary structure and the possibility of choosing prior distribu-
tions are the main reasons for their success, they are also the main limitations
of statistical methods [71]. Indeed, these approaches heavily depend on the
right choice of both variable factors and prior distributions to converge prop-
erly. When prior domain knowledge is scarce or the underlying biological
process is highly complex, the correct design and statistical models might
be challenging. In the following, some of the most relevant statistical-based
methods are presented.

4.1. iCluster

Integrative Clustering (iCluster) [72, 73, 74] is a statistical-based method
for dimensionality reduction. iCluster assumes the observable data distribu-
tion is generated from a fixed linear combination of latent factors. Compared
to other dimensionality reduction techniques, iCluster explicitly considers a
normally distributed noise matrix as an additional element in the model, ac-
counting for all unobservable and uncertainty factors. Both the expectation-
maximization algorithm [75] and Bayesian optimization procedures [76] have
been used to optimize the model parameters. Finally, a k-means clustering
[77] is performed over the estimated lower-dimensional representation.

4.2. PARADIGM

PAthway Recognition Algorithm using Data Integration on Genomic Mod-
els (PARADIGM2) [78] is a statistical-based algorithm for the analysis of cel-
lular processes through the integration of multiple data sources. PARADIGM
integrates the information coming from different omics through factor graphs
representing known biological pathways [79]. For each biological entity in the
factor graph, PARADIGM provides an estimate of each patient activity. The
activity scores are used to find the final clusters using hierarchical clustering

2http://paradigm.five3genomics.com/
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with centroid linkage [80]. The state of non-measured biological entities in
the factor graph is estimated using the expectation-maximization algorithm
[75].

4.3. LRAcluster

Low-Rank Approximation based multi-omics data clustering LRAcluster
[81, 82] is a probabilistic approach for dimensionality reduction. The method-
ology was originally developed to integrate four high-dimensional omic data
for the identification of different cancer subtypes. LRAcluster aims at es-
timating a low-rank ultrahigh-dimensional parameter matrix Θ in order to
extract a common low-dimensional subspace for all the omics. The maximum
rank of Θ depends on a user-defined parameter r. Once Θ is estimated, LR-
Acluster computes the singular value decomposition of Θ = V ΣV T [83].
The common low-dimensional subspace corresponds to the first r columns
of ΣV T . The final clusters are estimated, on the reduced subspace, using
k-means [84], whose number of clusters k is evaluated employing Silhouette
values [85].

4.4. Fuzzy integration

One of the most substantial assumptions behind multi-omics data inte-
gration is that the information is consistent across multiple data sources.
Several statistical-based techniques [86, 87, 88] have been proposed to relax
this assumption, providing multiple clustering labels for each sample so that
samples are allowed to be grouped in different clusters for different omics.
To this aim, each omic variable’s contribution to the final clusters is treated
as a random variable itself, whose prior is described using a Dirichlet process
[89].

5. Neural Networks based

In the very last years, neural networks and, more specifically, deep neural
networks have been applied in the context of data fusion due to the incredible
success they have obtained in the single-omic learning tasks [90]. Neural
networks are particularly suitable for this application. First of all, as a
parametric method, they do not require training data at test time. Secondly,
they can deal with both structured data, like gene or protein expressions [91],
and unstructured data, such as medical images [92, 93]. Furthermore, they
are thought to be trained and process a large amount of heterogeneous and
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noisy data [94]. All the above has paved the way to deep neural network
adoption in bioinformatics [95], e.g. for transcription factor binding sites
prediction [96, 97, 98, 99] or DNA/RNA motif mining [100, 101, 102, 103].
However, since lots of training data are not always available, particularly in
the medical field, this is also the main weakness of this type of algorithm [104,
105]. Finally, in the medical/biological context, the data fusion task has also
been referred to as multi-view learning [106]. The difference between the two
terms is that while the first only refers to combining the information coming
from different data types, the second always includes their employment in a
unique supervised/unsupervised learning task.

In the following, we will refer to tasks where only two inputs (X, Y ) are
given, but all of the reported methods can be extended to the case of many
inputs.

Deep architectures. Different types of deep architecture are generally avail-
able for unsupervised learning. In the field of multi-view learning, the most
commonly used architectures are feedforward neural networks and Auto-
Encoders (AE) [107, 106]. Neural networks are either trained to maximize
the Canonical Correlation [108] or Clustering indices [109].

5.1. Deep-CCA (DCCA)

The Canonical Correlation Analysis (CCA) and kernel variants [110, 111]
have been extensively employed in the field of multi-view feature learning
and dimensionality reduction [112, 113]. CCA allows learning an embedding
in which features are maximally uncorrelated. Feature correlation can be cal-
culated by dealing with the features learned either from each view or among
views. Imposing uncorrelation among views allows learning complementary
features from each view. Many works attempted to learn a CCA-like neu-
ral network model [110] but only in [114] a full DNN extension has been
proposed, named Deep CCA (DCCA). In DCCA, two deep neural networks
f and g are learned to extract a single non-linear representation from each
input view. Then, the canonical correlation among the extracted feature
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representations f(X) and g(Y ) is maximized:

f, g := max
Wf ,Wg ,U,V

1

N
tr(UTf(X)g(Y )TV )

s.t. UT (
1

N
f(X)f(X)T + rxI)U = I,

V T (
1

N
g(Y )g(Y )T + ryI)V = I,

uTi f(X)g(Y )Tvj = 0, for i 6= j,

(3)

where W is the set of learnable weights of each neural network, tr() is the
trace function, U and V are the CCA eigenvectors that project the encoding
of each network, rx,y is the regularization parameter, and N is the number
of training examples. From a theoretical perspective, the DCCA objective
cannot be directly optimized since it needs to be calculated over all the input
samples. However, stochastic gradient descent (SGD) methods may still
be employed, as reported in [115], provided that the mini-batch on which
gradients are estimated are sufficiently large and representative of all the
population. At last, as shown in [106], DCCA may also work when only one
input source is available at test time, with UTf() being the projection used
for testing.

5.2. Split Auto-Encoders (Split-AE)

AutoEncoders (AEs) [116, 117] are generally trained to find a compact
representation of the input data that best allows their reconstruction. AEs
are composed of two fully connected neural networks: the first one E(x)
(generally referred to as encoder) maps the input data x into a compact la-
tent space. This representation is given as input to another network D (E(x))
(also called decoder), which projects it back to the original input space. Both
networks are trained in such a way that the reconstructed data x̂ = D(E(x))
is as close as possible to the original data x. Therefore, the trained encoder
E(x) projects input data into a reduced space by maximally preserving rel-
evant information (as recently demonstrated in [118]). Split-AutoEncoders
[107] (Split-AEs) shift this idea to the multi-view domain. An AE is created
for each view with each encoder projecting the input domain to a common
latent space and each decoder projecting the data back to the starting input
space. All AEs, however, share a common latent space: each decoding func-
tion D receives as input the output of all the encoding function E. Taking
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Figure 1: Visualization of the learnt representations in the task of reconstructing videos
and audio of people pronouncing words. Image taken from [107].

into consideration again the previous two-view example, the error function
for a Split-AE is as follow:

Ex,y, Dx,y := min
WE ,WD

N∑
i=1

||xi−Dx(Ex(xi), Ey(yi))||2+||yi−Dy(Ex(xi), Ey(yi))||2,

(4)
where x, y correspond to the features of the same sample in each input

space, Ex, Dx, Ey, Dy are, respectively, the encoders and decoders for the first
and second view, and N is the number of training data. The encoding of each
view is concatenated in order to create a shared representation. For instance,
in [107] Split-AEs are used to combine audio and visual information. More
precisely, they train a Split-AE to reconstruct videos of people pronouncing
certain words (e.g. digits) when also the corresponding audio is available. In
Figure 1 the learnt representations in terms of the most strongly correlated
input features in both domains are reported for two samples. Also in this
case, Split-AE works even if only one input view is available at test time:
a single encoder may be used to represent all the sufficient information to
reconstruct input data in all views. At last SGD, or other gradient-based
method, may be employed to optimize Eq. 4, weighing more some of the
terms according to the final goal.

5.3. Deep canonically correlated autoencoders (DCCAE)

Inspired by previous works [114, 107], Deep canonically correlated autoen-
coders (DCCAE) [106] combines the maximization of the canonical correla-
tion among the representations extracted from each view with a reconstruc-
tion error of SplitAE. More precisely, DCCAE employs the same structure
as in [107] and adds to the autoencoder optimization problem a CCA regu-
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larization term on the learned representations:

Ex,y, Dx,y := max
WE ,WD,U,V

N∑
i=1

||xi −Dx(Ex(xi), Ey(yi))||2

+ ||yi −Dy(Ex(xi), Ey(yi))||2

− λ 1

N
tr(UTEx(X)Ey(Y )TV )+

s.t. same constraints as in 3,

(5)

where λ is a weight parameter, which balances the contribute of the CCA in
the overall optimization. From the information theory point of view [119], by
minimizing the reconstruction error, the autoencoder maximizes the mutual
information between the inputs and their projections into the common la-
tent space [120], while the CCA maximizes the mutual information between
the view projections [121]. The DCCAE loss function aims at finding the
equilibrium between the information captured in the input-projection map-
ping within each view and the information collected in the projections among
views.

5.4. Neural Graph Learning for data-Fusion (NGL-F) neural network

The Neural Graph Learning for data Fusion (NGL-F) is a gradient-based
clustering neural network [109, 122], which uncovers topological sample-to-
sample relationships using multiple data sources. The output of NGL-F is
a set of graphs. For each input set, NGL-F aims at finding a graph where
nodes represent cluster centroids while edges represent cluster topological
properties. The learned topology described by such graphs is used to create
the sample adjacency matrix (S). The information contained in the matrix
represents all datasets.

NGL-F is composed of a set of dual multi-layer perceptrons (MLPs) [109],
one for each dataset. Unlike other previous works, however, each network
works on the transpose of the input matrix [122], which allows employing
many hidden layers, preserving, at the same time, data topology. For in-
stance, by working on the transpose of the data matrix, the input space is
maintained through the network layers. Each MLP provides as output a set
of vectors wi ∈ Rd representing cluster centroids for the input data. The
architecture of each network can be customized according to the complexity
of its own dataset.

14



The loss function of NGL-F takes into account, at the same time, the
quality of clusters found by each MLP and their underlying topology. The
relationships among clusters are modeled using an adjacency matrix E, where
E(i, j) represents the number of samples for which wi and wj are the two
closest centroids. The higher E(i, j), the more their respective clusters are
related. The loss function for each view is composed of three terms taking into
account inter- and intra-cluster distances, quantization error, and parsimony
in representing the underlying topology:

Lz =
maxk dintra(Ck)

maxi,j dinter(Ci, Cj)
+Q+ ||E|| (6)

where dintra(Ck) is the intra-cluster distance, dinter(Ci, Cj) the inter-cluster
distance, and Q the quantization error. The NGL-F loss function is the linear
combination of the loss function in the different views: L =

∑
z Lz.

Once all networks terminate the training procedure, the resulting clusters
are analyzed. For each input set, two samples are considered near each other
if they belong to the same cluster, far from each other, if they belong to
different clusters. A sample adjacency matrix S is then computed as follow:
S(i, j) =

∑n
d=1 neard(i, j), where neard(i, j) is a boolean function calculating

the proximity of the samples as previously explained and n is the number
of datasets taken into consideration. This matrix is the result of the fusion
process.

6. Benchmarks for performance evaluation and comparison

The multi-omics paradigm has been investigated to assess the clustering
capabilities of state-of-the-art techniques. To this purpose, eight methods
have been selected, and their performance compared on standard quality
indices. Two datasets have been employed as benchmarks, one synthetic and
the other biological.

Two datasets have been employed as benchmarks, one synthetic and the
other biological. The synthetic dataset has been chosen to control specific
conditions in the data (e.g., the number and the density of the clusters and
the number of samples). Data in the synthetic dataset are very well clustered.
Thus, this dataset is ideal for testing the tool performances in a controlled
condition but does not fully represent the biological variation in the data.
Therefore, a biological dataset has been employed, which by contrast is not
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controllable in terms of parameters, but it represents the typical multi-omics
dataset.

In the synthetic dataset, three omics have been generated in R using the
InterSIM package [123]: the mRNA raw count gene expression values (131
features), the methylation values (367 attributes), and the relative protein
expressions (165 variables). Each omic is composed of 500 samples, grouped
in five clusters.

The biological dataset has been downloaded from the NIH Genomic Data
Commons portal [124]. The dataset is composed of two omics: mRNA and
miRNA transcriptome profiling matrices of lung samples. The former is
composed of raw counts gene expression values (17683 features) [125]; higher
values correlate with a higher protein production rate. The second omic
consists of raw counts of miRNA values (1665 features) [126]; higher values
indicate a reduction in mRNA-translated protein as miRNA inhibits mRNA
translation. Both datasets consist of 1250 samples extracted from either
cancerous or healthy lung tissues. The data have been collected from four
different projects: TCGA-LUAD [127] and CPTAC-3, with samples from
Lung Adenocarcinoma (LUAD) patients; TCGA-LUSC, with samples from
Lung Squamous cells Carcinoma (LUSC); and TCGA-MESO from Mesothe-
lial neoplasm (MESO). Usually, healthy samples have been taken from non-
tumoral tissues adjacent to the tumor. From the above metadata, seven
different labels have been generated to check the quality of the clusters pre-
dicted by each method:

• TCGA-LUAD healthy

• TCGA-LUAD tumoral

• TCGA-LUSC healthy

• TCGA-LUSC tumoral

• CPTAC-3 healthy

• CPTAC-3 tumoral

• TCGA-MESO tumoral

Table 2 reports the eight clustering algorithms compared in the experi-
ments. Only techniques with publicly available software and clear documen-
tation were selected. The first two algorithms, SNF and MultiSpC, belong
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Method Type Source Reference

SNF Graph based
https://cran.r-project.org/web/
packages/SNFtool/index.html

[128]

MultiSpC Graph based
https://it.mathworks.com/help/
stats/spectralcluster.html

[50]

JIVE
Dimensionality
reduction based

https://cran.r-project.org/web/
packages/r.jive/index.html

[55]

RGCCA
Dimensionality
reduction based

https://cran.r-project.org/web/
packages/RGCCA/index.html

[60]

tICA
Dimensionality
reduction based

https://cran.r-project.org/web/
packages/tensorBSS/index.html

[63]

MOFA
Dimensionality
reduction based

https://www.bioconductor.org/
packages/release/bioc/html/MOFA.html

[64]

iCluster Statistical based
https://cran.r-project.org/web/
packages/iCluster/index.html

[72]

NGL-F
Neural network
based

https://github.com/
pietrobarbiero/cola/blob/
82f05f639bb14bdb3e65a0008f9447
ffc88bb204/fexin/ fexin.py

[122, 129]

Table 2: Summary of the methods selected for benchmark comparison.

to the graph-based group described in Sec. 2. Among the dimensionality
reduction methods (see Sec. 3), JIVE, RGCCA, tICA, MOFA were selected.
Finally, the iCluster and NGL-F techniques were tested for the statistical
(Sec. 4) and neural network (Sec. 5) categories, respectively.

6.1. Quality indices

In order to compare clustering algorithms, we selected a set of metrics that
are not directly related to a specific biological problem in order to provide a
fair comparison among the different techniques.

The first index used for assessing the clustering performances is the Peak
Signal-to-Noise Ratio (PSNR) [130], which is one of the most famous and
widely used measures of the fidelity of a representation (i.e., a clustering)
w.r.t. the original signal. The PSNR is defined as:

PSNR = 10 log10

(
MAX2

l

MSE

)
(7)

17



where MAX2
l is the squared Euclidean norm of the vector connecting the

two most distant samples in the input distribution, and MSE is the mean
squared error between each centroid weight vector and its associated data.
The higher the PSNR value, the better the clustering.

PSNR measures only the intra-cluster compactness, but it does not take
into account the inter-cluster separation. To this end, the Davies–Bouldin
index (DB) [131] has been employed as it considers both aspects:

DB =
1

N

N∑
i=0

max
j 6=i

RMSEi +RMSEj

Di,j

(8)

where RMSEi is the Root Mean Squared Error [132] for the ith cluster Di,j

is the Euclidean distance between the ith and jth cluster centroids, and N
is the number of clusters. Lower DB values indicate better clustering.

The third quality measure used in the experiments is the cluster Silhou-
ette value (S) [85]. As the DB index, it considers both the inter-cluster and
intra-cluster distances and is defined as:

S =
1

C

C∑
i=1

b(i)− a(i)

max(a(i), b(i))
(9)

where a(i) is the average distance of the ith sample from the samples in
the same cluster, b(i) is the minimum among the mean distances of the ith
sample from the samples in the other clusters, and C is the cardinality of
the current dataset. While DB checks compactness and cluster separation,
the S index estimates if, on average, samples are correctly assigned to the
nearest neighbouring cluster [130]. Because of Eq. 9, S ∈ [−1, 1], where a
high value indicates a good clustering.

The last metric used in the experiments was the harmonic mean (PE )
between cluster efficiency and purity [130]. The two metrics were computed,
averaging their scores obtained for each predicted cluster and for each ground-
truth label. The efficiency is the ratio between the number of samples with
the same ground-truth label i in the same cluster over the overall number of
samples labeled as i. The purity is the ratio between the number of samples
with the most common ground-truth label j in the same cluster over the
overall number of samples of the cluster.

The selected metrics have been chosen primarily because they are among
the most used to assess clustering algorithms and also because they are com-
plementary to each other. In fact, they can be used to efficiently summarize
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a wide range of information such as: the amount of information retained
by cluster centroids (PNSR), clusters’ compactness (DB), distance among
different clusters (DB), closeness to the nearest centroid (Silhouette), the
class-homogeneity of clusters (purity, PE), and the scattering of samples of
the same class across different clusters (efficiency, PE).

6.2. Synthetic dataset

The first benchmark deals with data drawn from the 500 samples syn-
thetic dataset. The output matrix of each of the eight algorithms has been
clustered using k-means [84] with a number of target centroids equal to the
number of expected clusters, i.e., five, to perform a fair comparison.

(a) PSNR (b) Davies–Bouldin

Figure 2: Quality indices for the synthetic dataset: (a) PSNR (the higher the better) and
(b) Davies–Bouldin (the lower the better). Each column yields the index value for the
corresponding technique.

The PSNR has been computed for the output matrix of each omic (see
Fig. 2a) in order to evaluate the amount of information retained by cluster
centroids. The two graph-based methods behave in opposite ways. The
SNF clustering is quite poor (≈ 3dB), while MultiSpC performs well (≈
25dB). The dimensionality reduction group exhibits a common trend (17−
20dB) with the exception of JIVE, which has the highest PSNR value (≈
42dB) among all techniques. Statistical and neural-based approaches show a
similar clustering performance (27− 30dB) in identifying meaningful cluster
centroids, slightly higher than MultiSpC but still much lower than JIVE.

The Davies-Bouldin index has been computed by concatenating all the
three omics (i.e., TS ). Fig. 2b illustrate the results in considering the com-
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pactness and the distance between different clusters. Conversely to the pre-
vious metric, six out of eight techniques show about the same performance
(DB = 1.1). SNF obtains a slightly higher value (DB = 1.8), while Multi-
SpC clusters are significant worse (≈ 13).

(a) SNF (b) MultiSpC (c) JIVE

(d) RGCCA (e) tICA (f) MOFA

(g) iCluster (h) NGL-F

Figure 3: Silhouette index for the synthetic dataset computed for each cluster (Y-axis):
graph-based (SNF and MultiSpC), dimensionality reduction based (JIVE, RGCCA, tICA
and MOFA), statistical-based (iCluster) and neural network based (NGL-F). Values close
to 1 are related to good clustering, while negative values imply a poor clustering quality.

Silhouette scores are reported in Fig. 3 for each method and measures
for each sample the closeness to the nearest centroid. As per the DB, this
index has been computed on the concatenated omics. SNF (see Fig. 3a)
groups properly the first and the fourth clusters (S > 0.6); the third clus-
ter has a lower but still good Silhouette score (≈ 0.4), while SNF was not
able to detect the two remaining groups. According to the Silhouette score,
MultiSpC was not able to identify correctly the clusters, as shown in Fig.
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3b. Dimensionality reduction based approaches performed better than the
previous category. With the exception of tICA (see Fig. 3e), the other three
algorithms - JIVE (Fig. 3c), RGCCA (Fig. 3d), and MOFA (Fig. 3f) -
obtained a high S score (≈ 0.7) for all clusters. Similar results have been
obtained by iCluster (see Fig. 3g). Finally, the quality of NGL-F clusters
(see Fig. 3h) was similar, on average, to tICA (≈ 0.5).

The last comparison for the synthetic dataset has been done by means of
the harmonic mean PE of each cluster purity and efficiency. Fig. 4 shows
algorithm performances (colors identify clusters). Six out of eight methods
yielded a perfect clustering in terms of purity and efficiency for all classes.
SNF scores were slightly worse, while MultiSpC clustering quality was the
lowest.

Figure 4: PE quality indices for the synthetic dataset. Each bar (the higher the better)
yields the index value for the corresponding technique and cluster (identified by colors).

In conclusion, it can be stated that JIVE is the best technique, w.r.t to the
proposed metrics, in clustering the synthetic dataset. The second-best option
is iCluster, followed by NGL-F and the remaining dimensionality reduction
methods. SNF exhibits a moderate ability to cluster this benchmark, while
the worst performance is shown by MultiSpC.

6.3. Lung dataset

The second benchmark consisted of data extracted from the NIH Genomic
Data Commons lung dataset. Genes with an expression value of zero across
all the samples were removed from the analysis. The mRNA matrix was
normalized using a variance stabilizing transformation [133]. The miRNA
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matrix was scaled by taking the log2(exprV alue+ 1) [134] over the normal-
ized values obtained with the DESeq2 algorithm [135]. The output matrix
of each of the eight algorithms has been clustered using k-means [84] with
a number of target centroids equal to the cardinality of the label set, i.e.,
seven. Then, PSNR, DB, Silhouette and PE indices are computed. Their
meaning is summarized at the and of subsection 6.1. The PSNR has been
computed between each multi-omics output matrix and the corresponding k-
means closest centroid, see Fig. 5a. The two graph-based methods obtained
opposite results. SNF clustering was quite poor (≈ 3dB), while MultiSpC
obtained the best results overall (PSNR = 29dB). The dimensionality re-
duction group yielded similar results (≈ 24dB) with the exception of MOFA,
whose PSNR (28.8dB) was close to MultiSpC. NGL-F showed a similar clus-
tering performance, slightly lower than MOFA (≈ 26dB). Finally, iCluster
obtained the worst results overall (PSNR = 17dB).

(a) PSNR (b) Davies–Bouldin

Figure 5: Quality indices for the lung dataset: (a) PSNR (the higher the better) and
(b) Davies–Bouldin (the lower the better). Each column yields the index value for the
corresponding technique.

The Davies-Bouldin index has been computed by concatenating the three
omics and the k-means Voronoi sets. Fig. 5b illustrates the results. The DB
score varied significantly among the different algorithms without coherence
within each category. The tICA technique obtained the lowest score overall
(DB = 1.1), followed by JIVE (DB = 2.5), RGCCA (DB = 4.1), and
MOFA (DB = 9). In the graph-based group SNF clusters obtained a result
slightly above RGCCA (DB = 4.4), while MultiSpC had the worst Davies-
Bouldin score overall (DB = 9.2). The statistical-based algorithm (iCluster)
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performance was slightly better (DB = 3.4) than SNF and RGCCA but
worse than JIVE and tICA. Finally, NGL-F score was quite high (DB = 5).

(a) SNF (b) MultiSpC (c) JIVE

(d) RGCCA (e) tICA (f) MOFA

(g) iCluster (h) NGL-F

Figure 6: Silhouette index for the lung dataset computed for each cluster (Y-axis): graph-
based (SNF and MultiSpC), dimensionality reduction based (JIVE, RGCCA, tICA and
MOFA), statistical-based (iCluster) and neural network based (NGL-F). Values close to 1
are related to good clustering, while negative values imply a poor clustering quality.

Fig. 6 illustrates the Silhouette scores for each method. This index has
been computed by concatenating the three omics and the k-means Voronoi
sets. Based on this metric, SNF (see Fig. 6a) was able to properly identify
only the sixth cluster (S ≈ 0.6), while the remaining ones were not appropri-
ately learned by the technique. MultiSpC was not able to identify any cluster,
as shown in Fig. 6b. Dimensionality reduction approaches performed much
better than the previous category. Both JIVE (see Fig. 6c) and tICA (see
Fig. 6e) were able to identify the first three clusters. In addition, JIVE de-
tected the fourth group, while tICA was able to model the remaining three

23



clusters. RGCCA results were similar to SNF (see Fig. 6d), while MOFA
(see Fig. 6f) was able to detect the third cluster only. The statistical-based
approach (shown in Fig. 6g) found the third and sixth clusters (S > 0.6)
and only partially the first one. Finally, NGL-F obtained a good score only
for the sixth (S ≈ 0.8) and the fifth clusters (S ≈ 0.4), as reported in Fig.
6h.

The last comparison for the lung dataset has been done according to the
harmonic mean PE of purity and efficiency for each cluster. Fig. 7 shows
algorithm performances (colors identify clusters). SNF obtained a good re-
sult for five out of seven clusters (PE > 0.5), while MultiSpC scores were
very low for all groups, with the exception of the seventh one. Among di-
mensionality reduction techniques, JIVE and RGCCA obtained good results
for all groups, while tICA and MOFA received lower scores for some clusters.
Finally, iCluster and NGL-F had a similar clustering performance, slightly
worse than dimensionality reduction methods but better than graph-based
ones.

Figure 7: PE quality indices for the lung dataset. Each bar (the higher the better) yields
the index value for the corresponding technique and cluster (identified by colors).

The algorithms with the best PSNR, i.e., MultiSpC, MOFA, and NGL-F,
obtained the worst DB score. This result is confirmed by their silhouettes.
DB and S classify the algorithms in a very similar way, with tICA, JIVE
and iCluster among the best techniques and MOFA and MultiSpC as the
worst ones. Finally, according to the PE ranking, RGCCA looked like the
best approach, followed by JIVE and tICA, while graph-based techniques
obtained the worst performance.

In conclusion, the above results showed how JIVE and tICA were among
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the best algorithms in clustering the lung dataset with regard to the pro-
posed metrics. The second-best option was iCluster, followed by NGL-F and
the remaining dimensionality reduction methods. The lowest scores were
obtained by SNF and MultiSpC.

6.4. Discussion

In this section, two experiments have been conducted to compare the
quality of some of the most common algorithms for multi-omics clustering.
These techniques were uniformly selected among the classes identified in Secs.
2, 3, 4 and 5.

Overall, the performance of all the algorithms that explicitly implemented
multi-omics clustering was good. Only MultiSpC consistently reported lower
results in all quality indices on both datasets. The data fusion step in Mul-
tiSpC only consists of the concatenation of the input matrices. Sometimes,
this straightforward approach is not sufficient to correctly combine highly
different input datasets, as reported in the experiments. The highest perfor-
mance has been obtained by dimensionality reduction-based methods (JIVE
and MOFA on the synthetic dataset, tICA and JIVE on the lung dataset).

To get deeper insights on the above analysis, two lung omics manifolds
have been studied to estimate their corresponding intrinsic dimensionality3.

At first, a linear manifold was assumed, and PCA was used to obtain a
lower-dimensional representation. A cumulative explained variance greater
than 90% was considered as a good indicator for assessing the size of the
lower-dimensional subspace. The number of principal components required
to explain the 90% of the variance (i.e. the intrinsic dimensionality δ) was
equal to 459 and 494 for mRNA and miRNA datasets, respectively.

The linear analysis was used only to have an initial value for the intrinsic
dimensionality δ. From this starting point, a more complex non-linear tech-
nique, the Curvilinear Component Analysis [136, 137], was used to refine this
estimation. The Curvilinear Component Analysis is a self-organizing neural
network for data projection, which maintains the input topology by means of
local distance preservation. In this sense, it can be used to reduce the num-
ber of input variables without altering the shape of the original manifold.

3The notion of intrinsic dimensionality refers to the fact that any low-dimensional data
space can trivially be turned into a higher-dimensional space by adding redundant or
randomized dimensions, and, in turn, many high-dimensional datasets can be reduced to
lower-dimensional ones without significant information loss.
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(a) miRNA (b) mRNA

Figure 8: The dy-dx diagrams for miRNA (left) and mRNA (right) omics: blue points are
the in-between neuron distances, red line indicates the bisector.

A fundamental tool associated with this neural technique is the dx-dy dia-
gram, where the in-between neuron distances in the projected space (dy) are
plotted against their corresponding ones in the input space (dx ). The projec-
tion results for the miRNA (λ = 50, projDim = 80, epochs = 200, α0 = 0.5)
and the mRNA (λ = 280, projDim = 100, epochs = 100, α0 = 0.5) omics are
shown in Fig. 8a and Fig. 8b, respectively. Because blue points are aligned
along the bisector, the input topology was preserved by the projection in
both cases. This analysis suggests that the intrinsic dimensionality of the
mRNA and miRNA dataset lies between 80 and 100, respectively. This can
explain why multi-omics approaches reducing the input dimensionality were
able to properly cluster input data.

The dimensions of the input space of the lung dataset, as well as the
dimensionality obtained by applying the methods used for the experiments,
are reported in Table 3. The dimension of the input space refers to the sum
of the dimensions over all the omics. Therefore, this measure is identical for
all the methods and it is ∼ 20000. All the selected methods allow the user
to define a priori the dimension of the output space, except for RGCCA and
tICA. For these methods, the output dimension has been set to 10 since this
value has been optimized for the problem at hand [138].

All the reported methods generate a low-dimensional representation of
the data from each omic, except for MultiSpC. RGCCA aims at maximizing
the Canonical Correlation, while tICA optimizes the Independent Correla-
tion and JIVE performs a variant of the PCA. Both MOFA and iCluster
adopt different variants of the Factor Analysis. SNF does not perform a
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Method Type
Dimension of the

input space

Dimension after
applying the

selected method
SNF Graph based ≈ 20000 1250

MultiSpC Graph based ≈ 20000 5

JIVE
Dimensionality
reduction based

≈ 20000 400

RGCCA
Dimensionality
reduction based

≈ 20000 10

tICA
Dimensionality
reduction based

≈ 20000 10

MOFA
Dimensionality
reduction based

≈ 20000 1

iCluster Statistical based ≈ 20000 200

NGL-F
Neural network

based
≈ 20000 1250

Table 3: Summary of the dimension space before and after applying the selected methods.

dimensionality reduction technique directly, but it exploits the sample simi-
larity matrices, thus working in the sample space instead of the feature space
(the sample space is usually at least 10 orders of magnitude smaller than the
feature space). NGL-F implicitly performs a projection of the input data for
each omic in the hidden layers, similarly as an encoder.

The choice of the best multi-omics clustering algorithm depends on data
topology. If the clusters are not embedded in lower-dimensional subspaces,
dimensionality reduction-based methods may lose their advantage. Other
considerations can be drawn about the choice of the metrics. As the di-
mensionality increases, the difference between points that are close or far
disappears [139] (two arbitrary vectors become orthogonal [140]). As a con-
sequence, all nearest neighbor strategies (like k-means) may struggle. In
this case, a possible solution consists in using fractional Minkowski distances
[139]. All previous considerations are out of the scope of this survey. This
work addresses the taxonomy of existing algorithms and compares a few rep-
resentative techniques on challenging benchmarks, whose dimensionality still
allows the use of Euclidean metrics.
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7. Conclusions

This paper aims at providing a general overview of the major techniques
for biological sample clustering, which can be divided into four groups, ac-
cording to the underlying approach: graph, dimensionality reduction, statis-
tics and neural network. The most meaningful algorithms have been tested,
both on a synthetic and a real biological dataset, and their performance has
been compared using four clustering evaluation scores (PSNR, DB, S and
PE ).

In both experiments, the dimensionality reduction-based approach seems
to be the best way to tackle multi-omics clustering. On the contrary, graph-
based algorithms are not able to properly deal with this kind of problem.
Finally, statistical and neural network-based methods have promising perfor-
mance and may deserve further improvement. As a further investigation, it
would be interesting to test multi-omics approaches for controlled databases,
i.e., changing the topological and statistical properties. This paradigm would
address questions like finding the best method in the case of non-separable
clusters, increasing noise or dimensionality, different inter-distances, so on
and so forth. This analysis will be our future line of research.
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