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Figure 1: We propose MOTSynth, a large and diverse dataset for pedestrian detection, re-identification and multi-object
tracking. Due to high diversity, we are able to obtain state-of-the art performance by training models solely on synthetic data.

Abstract

Deep learning-based methods for video pedestrian de-
tection and tracking require large volumes of training data
to achieve good performance. However, data acquisition in
crowded public environments raises data privacy concerns
– we are not allowed to simply record and store data with-
out the explicit consent of all participants. Furthermore,
the annotation of such data for computer vision applica-
tions usually requires a substantial amount of manual ef-
fort, especially in the video domain. Labeling instances of
pedestrians in highly crowded scenarios can be challenging
even for human annotators and may introduce errors in the
training data. In this paper, we study how we can advance
different aspects of multi-person tracking using solely syn-
thetic data. To this end, we generate MOTSynth, a large,
highly diverse synthetic dataset for object detection and
tracking using a rendering game engine. Our experiments
show that MOTSynth can be used as a replacement for real
data on tasks such as pedestrian detection, re-identification,
segmentation, and tracking.

1. Introduction

Object detection and tracking in crowded real-world sce-
narios are challenging and difficult problems with long-

standing research history, with applications ranging from
autonomous driving to visual surveillance. Since the ad-
vent of deep learning, the community has been investigating
how to effectively leverage neural networks [47, 51, 61, 78,
16, 74, 48, 29, 84, 8, 12, 89, 91, 44] to advance the field.
However, all these approaches are data-hungry, and data
collection and labeling are notoriously difficult and expen-
sive. Moreover, dataset collection in public environments1

raises privacy concerns. In fact, European Union already
passed privacy-protecting laws such as General Data Pro-
tection Regulations (GDPR [4]) to protect the privacy of its
citizens that prohibit the acquisition of personal visual data
without authorization; ethical issues regarding privacy are
also critical in the US, where datasets for training person re-
identification modules such as DukeMTMC [71] were taken
offline due to privacy concerns [38].

A possible solution for the aforementioned issues is to
employ virtual worlds. The community has already recog-
nized the potential of synthetic data, successfully used for
benchmarking [50] or to compensate for the lack of training
data [5, 11]. To the best of our knowledge, so far, synthetic
data could fully replace recorded data only for low-level
tasks such as optical flow estimation [24]. For higher-level
tasks, such as object detection, tracking and segmentation,

1Crowded public scenes are especially difficult to record during the
COVID-19 pandemic.
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existing methods usually need mixed synthetic and real data
and employ alternate training scheme [5] or domain adap-
tation [11] and randomization [81] techniques.

In this paper, we aim to answer a challenging question:
Can we advance state-of-the-art methods in pedestrian de-
tection and tracking using only synthetic data? To this end,
we created MOTSynth, a large synthetic dataset for pedes-
trian detection, tracking, and segmentation, designed to re-
place recorded data. MOTSynth comes in a bundle with
temporally consistent bounding boxes and instance segmen-
tation labels, pose occlusion information, and depth maps.
As shown in the field of robot reinforcement learning [81]
and vision [82], synthetic datasets should significantly vary
in terms of lighting, pose, and textures to ensure that the
neural network learns all invariances present in the real
world. Based on these insights, we generate a large and
diverse dataset that varies in terms of environments, camera
viewpoints, object textures, lighting conditions, weather,
seasonal changes, and object identities (see Fig. 1). Our ex-
perimental evaluation confirms that diversity plays a pivotal
role in bridging the synthetic-to-real gap.

The main focus of our study is on how MOTSynth can
help us to advance pedestrian detection, re-identification,
and tracking by studying how different aspects of these
tasks can benefit from our data. To this end, we first
train several state-of-the-art models for pedestrian detec-
tion, segmentation, re-identification, frame-to-frame regres-
sion and association on synthetic data and evaluate their
performance on the real-world pedestrian tracking dataset
MOTChallenge [21]. Our experiments show that mod-
els, trained on synthetic data are on-par with state-of-the-
art on MOTChallenge MOT17&MOT20, while extremely
crowded MOT20 still require fine-tuning. Second, we show
that prior synthetic datasets [27, 49] are not suitable for
bridging the synth-to-real gap for the task of pedestrian de-
tection and tracking. Moreover, we confirm that the diver-
sity in MOTSynth is a key for bridging this gap – and is far
more important than the sheer amount of data. In addition to
a thorough experimental analysis, MOTSynth also opens the
door to future research on how different components, such
as depth and human pose, can be used to advance multi-
object tracking in a well-controlled environment.

To summarize, the main contributions of this paper are
the following: (i) we open source the largest synthetic
dataset for pedestrian detection and tracking with more than
1.3 million densely annotated frames and 40 million pedes-
trian instances; (ii) we show that such a diverse dataset can
be a complete substitute for real-world data for high-level
tasks such as pedestrian detection and tracking in several
scenarios, as well as re-identification and tracking with seg-
mentation; (iii) we provide a comprehensive analysis on
how such synthetic worlds can be used to advance the state-
of-the-art in pedestrian tracking and detection.

2. Related Work

Advances in computer vision have been driven by the
constant growth of available datasets and benchmarks,
such as Pascal VOC [25], ImageNet [73], COCO [56],
CityScapes [18] and MOTChallenge [21].

Multi-object tracking (MOT). In terms of autonomous
driving, the pioneering MOT benchmark is the KITTI
benchmark [32] that provides labels for object detection
and tracking in the form of bounding boxes and segmen-
tation masks [84]. However, sequences were collected in
a single city in clear weather conditions from a camera
mounted on a car. The recently proposed BDD100k [92]
covers over 100K videos with high geographic, environ-
mental, and weather diversity. Several recent automotive
tracking datasets and benchmarks are LiDAR-centric, pro-
viding labels in form of 3D bounding boxes [14, 65, 79].
The recently proposed TAO dataset [20] provides bounding
box labels for over 800 object classes.

Visual surveillance centric datasets focus on crowded
scenarios where pedestrians are interacting and often oc-
cluding each other. MOTChallenge [21] benchmark suite
played a pivotal role in benchmarking multi-object tracking
methods and providing consistently labeled crowded track-
ing sequences. In particular, MOT17 [61] provides chal-
lenging sequences of crowded urban scenes, capturing se-
vere occlusions and scale variations. MOTS [84] The latest
release, MOT20 [22] pushes the limits by providing labeled
sequences captured in extremely dense scenarios. In terms
of car surveillance, UA-DETRAC [87] consists of 100 se-
quences recorded from a high viewpoint with the goal of
vehicle tracking.

Object tracking is deeply entwined with person re-
identification (ReID), as several state-of-the-art tracking
methods [8, 12] rely on learned ReID features. Since
DukeMTMC dataset was taken offline due to privacy con-
cerns [38], the most commonly used ReID datasets are Mar-
ket1501 [97] and CUHK03 [53]. With this work, we aim
to replace recorded data for training object detection, re-
identification, and tracking with synthetic data.

Synthetic datasets. Data collection usually demands a
tremendous amount of manual work. As more data is con-
stantly required to train ever-growing models, the cost of
labeling such datasets is becoming prohibitive. This bur-
den can either limit the quality or the quantity of avail-
able data and hinder progress. A possible solution to
the aforementioned problems is to employ virtual worlds.
Such simulated environments have been successfully ap-
plied to low-level tasks, such as feature descriptor com-
putation [46], visual odometry [35, 37, 96, 69], optical
flow estimation [7, 13, 69, 59, 50, 60] and depth esti-
mation [50, 60]. Simulated worlds have also been re-
cently utilized for higher-level tasks like semantic segmen-



(a) Bounding boxes and pose (b) Segmentation masks (c) Depth maps

Figure 2: MOTSynth labels. From left to right: bounding boxes and pose, instance segmentation masks, and depth. Best
viewed on screen.

tation [83, 36, 72, 43, 69, 50, 70, 49], multi-object track-
ing [31, 27, 80, 42], hand tracking [76], human pose estima-
tion [77, 27, 34, 26], pedestrian and car detection [58, 5, 45],
and as virtual environments for robot reinforcement learn-
ing [81]. The aforementioned works mainly leverage syn-
thetic data for evaluation in scenarios where precise ground-
truth data is difficult to obtain [50] or as means for pre-
training data-hungry deep learning models. However, apart
from optical flow [24], none of those attempts of using
simulated environments was able to replace manually la-
beled data completely. In contrast, we focus on bridging
the synth-to-real gap for pedestrian detection, ReID, and
tracking and perform a thorough analysis of the effect of
the amount of training data vs. diversity.

3. MOTSynth Dataset
MOTSynth is a large, synthetic dataset specifically de-

signed for training models for pedestrian detection, track-
ing and segmentation. In the following, we detail the
dataset generation process (Sec. 3.1) and perform statistical
analysis and comparison to other real-world and synthetic
datasets (Sec. 3.2).

3.1. Dataset Generation

To generate MOTSynth, we follow prior work [69, 49,
27] and we utilize Grand Theft Auto V (GTA-V) video-
game, which simulates a city and its inhabitants in a three-
dimensional world. More precisely, we utilized Script Hook
V library [2]

Setting up screenplays. The first part of recording gener-
ation is the scenario (scene) creation. To this end, we man-
ually explored 130km2 (about an eighth of Los Angeles
County) of the GTA-V virtual world. To generate screen-
plays, we manually placed camera viewpoints to selected
scenarios and set people behavior-related settings, such as
the number of pedestrians per scenario, performed actions
(such as standing, sitting or running), and paths traveled. In
order to simulate dynamics specific to the most crowded ar-
eas, we manually pre-planned pedestrian flows by defining
a set of trajectories that groups of pedestrians have to follow.

We relied on the collision avoidance algorithm to obtain
natural pedestrian behavior for each agent. For this step,
we utilized the mod proposed in [27] in order to optimize
the process. The screenplay generation was the only man-
ual procedure in the creation of MOTSynth and took in total
only 16 hours. To obtain diverse actors, we randomly varied
generative attributes of 579 pedestrian models, provided by
the GTA-V game, e.g., different clothes, backpacks, bags,
masks, hair and beard styles, yielding over 9, 519 unique
pedestrian identities in total. Thus, our generated pedestri-
ans are suitable for training ReID models. We manually set
256 screenplays and combined them with 128 screenplays
from [27]2, totalling 384 screenplays.

Rendering. After setting up screenplays, we can simulate
virtual world dynamics and render different views of the
simulated environments. To obtain as diverse renderings
as possible, we randomized weather conditions and day-
time of the recordings. Weather conditions captured on our
dataset are clear, extra sunny, cloudy, overcast, rainy, thun-
der, smog, foggy, and blizzard. We recorded each screen-
play twice, one during the day and one during the night,
totaling 768 generated diverse sequences.

Label generation. Every clip comes with a precise 3D
annotation of visible and occluded body parts, temporally
consistent 2D bounding boxes and segmentation mask la-
bels for pedestrians, and depth maps (see Fig. 2). While we
do not exploit depth maps in this work, these are cues often
used in MOT [52, 64, 42, 57]. Hence, we believe they can be
used to further advance the field. In terms of completeness,
MOTSynth exceeds any other dataset in terms of scenario
variability, number of entities, and types of annotations.

3.2. Statistical Analysis

MOTSynth sequences were rendered as a Full HD video
at 25 FPS. Each video sequence contains 29.5 people per
frame on average, with a maximum of 125 people, totaling
more than 40M bounding boxes over 1.3M densely anno-
tated frames. The distance of the actors from the camera

2We thank the authors of [27] for sharing their screenplays.



Dataset #Frames #Inst. 3D Pose Segm. Depth

PoseTrack [6] 46k 276k ✓
MOTS [84] 2k 26k ✓
MOT-17 [61] 11k 292k
MOT-20 [22] 13k 1,652k

VIPER [49] 254k 2,750k ✓ ✓
GTA [50] 250k 3,875k ✓ ✓
JTA [27] 460k 15,341k ✓ ✓

MOTSynth 1,382k 40,780k ✓ ✓ ✓ ✓

Table 1: Overview of the publicly available datasets for
pedestrian detection and tracking. For each dataset, we re-
port the numbers of annotated frames and instances, as well
as the availability of different labels.

ranges between 0 and 101 meters, resulting in (projected)
bounding boxes heights between 0 and 1, 080 pixels.

We split MOTSynth into training and validation sets, con-
taining 576 and 192 clips, respectively. We ensured that
these splits were roughly balanced in terms of weather con-
ditions, daytime, and density and that no unique person
identity appears across these splits.

In Tab 1, we summarize MOTSynth statistics in relation
to other real and synthetic datasets. In terms of size, the
number of instances and labels, MOTSynth is superior to all
the previously proposed datasets. For a detailed compari-
son, we refer to the supplementary material.

In contrast to VIPER [49] and GTA [50], MOTSynth fo-
cuses on crowded pedestrian scenarios. It is larger than
pedestrian-focused JTA [27] and additionally provides in-
stance segmentation and scene depth information. The key
difference between JTA and MOTSynth lies in the volume
of data, diversity of scenarios, and people variability that,
as we experimentally show, allows us to bridge the synth-
to-real gap.

MOTSynth contains 40M bounding boxes with track-
ing and segmentation mask labels, one to three orders of
magnitude more compared to manually labeled MOTChal-
lenge dataset suite (containing 292, 733 bounding boxes
in MOT17, 1, 652, 040 bounding boxes in MOT20, and
26, 894 segmentation masks in MOTS20 dataset). This dif-
ference is most prominent in the case of MOTS20, where
pixel-precise labels for pedestrians are hard to obtain, even
with semi-automated tools [84].

4. Experimental Evaluation

In this section, we experimentally validate whether
MOTSynth can be used as a full proxy for (i) pedestrian
detection (Sec. 4.2), (ii) pedestrian re-identification (ReID)
(Sec. 4.3), (iii) multi-object tracking (Sec. 4.4), and (iv)
multi-object tracking and segmentation (Sec. 4.6).

4.1. Experimental Setting

We evaluate all trained models on the MOTChallenge
evaluation suite. To evaluate pedestrian detection and track-
ing, we use MOT17 [21] and MOT20 [22] datasets. We
evaluate our ReID models on MOT17. Finally, we evalu-
ate multi-object tracking and segmentation using MOTS20
dataset [84].

To understand how well the performance of models
trained using synthetic data transfers to the real scenes of
MOTChallenge, we train the models using the following
datasets for comparison. We make a controlled study using
the large-scale COCO dataset [56] for detection and track-
ing, and CrowdHuman [75] for tracking. For ReID, we em-
ployed two real-world ReID datasets Market1501 [97] and
CUHK03 [53].

We further compare training on MOTSynth with other
synthetic datasets depicting humans, namely, JTA [27] and
VIPER [69]. To perform a fine-grained evaluation of
MOTSynth-to-MOTChallenge transfer capabilities, we split
MOTSynth into four (inclusive) subsets of 72, 144, 288 and
576 sequences, named MOTSynth-1 to MOTSynth-4. This
also allows us to study the effect of the amount of data nec-
essary to bridge the synth-to-real gap. For all experiments
reported in this paper, we initialize the networks with Ima-
geNet [23] pre-trained weights.

4.2. People Detection

To understand how training on MOTSynth compares to
large-scale real-world datasets, we perform a series of ex-
periments involving four heterogeneous object detectors:
Faster RCNN [68] and Mask RCNN [39] as two-stage de-
tectors, YOLOv3 [67] and CenterNet [99] as single-stage
detectors. For each detector, we compare MOTSynth train-
ing against COCO training by testing on MOTChallenge.

We report the results in terms of average precision (AP),
multi-object detection accuracy (MODA [9]), and the false-
positive ratio measured by the number of false alarms per
frame (FAF). In addition, we report precision, recall, and
the absolute number of true positives (TP), false positives
(FP), and false negatives (FN). For implementation details
on these experiments, we refer to the supplementary. We
will focus the discussion on AP as this is the most widely
used detection metric.

Synth-to-real transfer. As can be seen in Tab. 2, by train-
ing the models on MOTSynth, we consistently outperform
models trained on COCO. When evaluating these models on
MOT17, we observe +2.49AP improvement for YOLOv3
with MOTSynth–4 compared to COCO, +3.48AP with Cen-
terNet, +2.3AP with Faster R-CNN, and +1.87AP with
Mask R-CNN. We conclude that the improvements are con-
sistent across different object detectors.

These differences are further accentuated on MOT20,



Dataset AP ↑ MODA ↑ FAF ↓ TP ↑ FP ↓ FN ↓ Rec. ↑ Pr. ↑

M
O

T
17

Y
O

L
O

v3

COCO 69.76 62.02 1.25 47824 6650 18569 72.03 87.79
MOTSynth–1 62.66 52.36 1.43 42378 7613 24015 63.83 84.77
MOTSynth–2 63.08 56.67 1.22 44116 6489 22277 66.45 87.18
MOTSynth–3 63.13 60.60 1.13 46264 6029 20129 69.68 88.47
MOTSynth–4 71.90 64.51 1.07 48500 5673 17893 73.05 89.53

C
en

te
rN

et

COCO 67.01 44.38 3.37 47398 17935 18995 71.39 72.55
MOTSynth–1 61.82 49.34 2.04 43626 10866 22767 65.71 80.06
MOTSynth–2 62.32 54.90 1.66 45269 8820 21124 68.18 83.69
MOTSynth–3 62.45 55.82 1.72 46177 9117 20216 69.55 83.51
MOTSynth–4 70.68 57.39 1.81 47748 9646 18645 71.92 83.19

Fa
st

er
R

-C
N

N COCO 76.68 53.86 3.45 54127 18364 12266 81.52 74.67
MOTSynth–1 76.80 39.02 5.19 53507 27603 12886 80.59 65.97
MOTSynth–2 77.47 50.62 3.82 53893 20287 12500 81.17 72.65
MOTSynth–3 78.31 49.75 4.22 55474 22441 10919 83.55 71.20
MOTSynth–4 78.98 54.96 3.51 55121 18634 11272 83.02 74.74

M
as

k
R

-C
N

N COCO 76.96 55.55 3.31 54502 17620 11891 82.09 75.57
MOTSynth–1 77.58 38.43 5.51 54817 29299 11576 82.56 65.17
MOTSynth–2 77.88 50.01 4.09 54930 21724 11463 82.73 71.66
MOTSynth–3 78.08 49.85 4.14 55096 21998 11297 82.98 71.47
MOTSynth–4 78.83 56.61 3.17 54461 16874 11932 82.03 76.35

Dataset AP ↑ MODA ↑ FAF ↓ TP ↑ FP ↓ FN ↓ Rec. ↑ Pr. ↑

M
O

T
20

Y
O

L
O

v3

COCO 42.42 35.10 6.88 381635 61446 530602 41.84 86.13
MOTSynth–1 35.83 31.15 2.57 307127 22956 605110 33.67 93.05
MOTSynth–2 44.49 38.01 3.25 375739 29033 536498 41.19 92.83
MOTSynth–3 44.68 42.89 3.56 423029 31797 489208 46.37 93.01
MOTSynth–4 53.69 48.87 2.87 471395 25621 440842 51.67 94.85

C
en

te
rN

et

COCO 39.39 28.75 12.38 372835 110537 539402 40.87 77.13
MOTSynth–1 43.35 30.84 16.21 426095 144781 486142 46.71 74.64
MOTSynth–2 43.76 40.23 7.27 431932 64971 480305 47.35 86.92
MOTSynth–3 34.08 24.29 6.72 281596 60002 630641 30.87 82.43
MOTSynth–4 51.70 42.18 9.72 471592 86787 440645 51.70 84.46

Fa
st

er
R

-C
N

N COCO 43.67 40.55 5.90 422649 52698 489588 46.33 88.91
MOTSynth–1 52.96 46.72 8.80 504790 78575 407447 55.34 86.53
MOTSynth–2 52.56 46.96 7.91 498967 70609 413270 54.70 87.60
MOTSynth–3 53.37 51.38 6.36 525547 56799 386690 57.61 90.25
MOTSynth–4 53.90 56.03 3.724 544416 33259 367821 59.67 94.25

M
as

k
R

-C
N

N COCO 43.73 41.99 6.39 440081 57046 472156 48.24 88.52
MOTSynth–1 52.75 44.98 10.28 502154 91819 410483 55.05 84.54
MOTSynth–2 53.13 50.17 6.63 516896 59225 395341 56.66 89.72
MOTSynth–3 53.51 52.27 5.76 528230 51408 384007 57.90 91.13
MOTSynth–4 54.03 55.69 4.11 544703 36715 367534 59.71 93.69

Table 2: To perform synth-to-real control experiment, we train several object detector models on COCO dataset and on four
MOTSynth subsets. We evaluate all models on MOTChallenge MOT17 (left) and MOT20 (right) detection datasets. We
observe a clear trend with all object detectors: by purely training on synthetic data, we obtain better performance compared
to training on a real-world dataset.

Dataset AP ↑ MODA ↑ FAF ↓ TP ↑ FP ↓ FN ↓ Rec. ↑ Pr. ↑

Y
O

L
O

v3

VIPER 26.65 22.02 0.16 15447 838 50910 23.28 94.85
JTA 53.18 48.77 0.79 36578 4200 29815 55.09 89.70
MOTSynth–256 62.99 62.31 0.58 44458 3090 21935 66.96 93.50
MOTSynth-full 71.90 64.51 1.07 48500 5673 17893 73.05 89.53

C
en

te
rN

et

VIPER 44.58 36.92 1.24 31122 6611 35271 46.88 82.48
JTA 60.15 45.38 2.32 42435 12308 23958 63.91 77.52
MOTSynth–256 61.82 50.11 2.03 44067 10795 22326 66.37 80.32
MOTSynth-full 70.49 55.25 2.11 47883 11204 18510 72.12 81.04

Fa
st

er
R

-C
N

N VIPER 60.93 42.87 2.87 43707 15241 10593 65.82 74.14
JTA 69.69 38.38 5.12 52726 27242 13667 65.93 79.41
MOTSynth–256 78.61 58.65 3.10 55441 16504 10952 83.50 77.06
MOTSynth-full 78.98 54.96 3.51 55121 18634 11272 83.02 74.74

Table 3: Comparison on MOT17 against synthetic datasets.

where we observe a consistent and remarkable improve-
ment of +10.97AP and +12.31AP on YOLOv3 and Cen-
terNet, respectively, and +10.23AP (Faster R-CNN) and
+10.3AP (Mask R-CNN).

We observe that for both MOT17 and MOT20, single-
stage detectors benefit from the full MOTSynth dataset,
while two-stage detectors improve marginally from MOT-
Synth–1 to MOTSynth–4 (+0.12 and +0.62 improvement
on MOT17 and +0.94 and +1.28 improvement on MOT20
in terms of AP with Faster R-CNN and Mask R-CNN, re-
spectively). A possible explanation is that single-stage de-
tectors have to learn a more complex function than two-
stage detectors, splitting the problem into two simpler tasks
and consequently requiring more data to train effectively.

Data volume vs. diversity. To understand the impact of
increasing dataset diversity versus increasing the amount of
training data, we perform the following experiment. We
keep the number of training images fixed and sample im-
ages from sequences using two different sampling rates
(1/60 and 1/10). The higher the sampling rate, the more
images we sample from a given sequence, and vice versa.

Thus, by decreasing the sampling rates, we increase the di-
versity as we sample images from a larger number of dif-
ferent sequences. When evaluating on the smallest MOT-
Synth–1 subset, we observe a clear trend: diversity matters.
When sampling with 1/10 rate, we reach 76.8AP and match
the COCO model’s performance (76.69AP). However, with
denser and therefore less diverse sampling, this is not the
case (70AP). We report detailed results for different object
detectors in the supplementary.

Comparison of synthetic datasets. As demonstrated, we
were able to bridge the synth-to-real gap using MOTSynth.
Is this also the case for other synthetic datasets? To answer
this question, we conduct a similar experiment by training
models on VIPER [49] and JTA [27] datasets. As can be
seen in Tab. 3, MOTSynth-based training clearly outper-
forms alternative synthetic datasets consistently. In par-
ticular, YOLOv3 trained on MOTSynth-full outperforms
VIPER-trained models by +45.25AP and JTA trained mod-
els by +18.72AP. We observe a similar trend with Center-
Net. We obtain +25.91AP improvement with MOTSynth-
full-trained models over the VIPER model and +10.34AP
improvement over the JTA model. Finally, with Faster R-
CNN, we observe +18.05 improvement over the VIPER
model and +18.29 over the JTA model.

These observations beg the following question: What is
the advantage of MOTSynth over pedestrian-oriented JTA –
is it the diversity or sheer amount of data? To answer this
question, we conduct the following experiment. We train
each detector using the subset of MOTSynth, MOTSynth–
256 (i.e., MOTSynth–1), containing only 256 sequences,
generated from the 128 screenplays provided by the au-
thors of [27]. The only difference between JTA and MOT-
Synth–256 is in people appearance variation – high per-



Dataset AP ↑ MODA ↑ FAF ↓ TP ↑ FP ↓ FN ↓ Rec. ↑ Pr. ↑

M
O

T
17

ZIZOM [54] 0.81 72.0 2.2 95414 12990 19139 83.3 88.0
SDP [90] 0.81 76.9 1.3 95699 7599 18865 83.5 92.6
DPM [30] 0.61 31.2 7.1 78007 42308 36557 68.1 64.8
FRCNN [68] 0.72 68.5 1.7 88601 10081 25963 77.3 89.8
FRCNN MOTSynth 0.80 66.7 3.7 98164 21748 16400 81.9 83.7
FRCNN MOTSynth + FT 0.80 71.0 3.5 102341 20989 12223 89.3 83.0

M
O

T
20

GNN SDT [86] 0.81 79.3 7.1 304236 31677 39288 88.6 90.6
VIPeD20 [17] 0.80 46.0 31.1 297101 139111 46277 86.5 68.1
FRCNN MOTSynth 0.62 52.0 6.3 206902 28202 136622 60.2 88.0
FRCNN MOTSynth + FT 0.72 63.3 5.2 241056 23465 102468 70.2 91.1

Table 4: We train Faster R-CNN on MOTSynth with
and without fine-tuning and evaluate on MOTChallenge
MOT17 and MOT20 pedestrian detection test sets.

son appearance variety was one of the key goals when
generating MOTSynth sequences. As can be seen, with
YOLOv3 and Faster R-CNN MOTSynth–256 models, we
obtain +9.81AP and +8.92AP improvements over JTA
trained models. This confirms that the MOTSynth diversity
in terms of people appearance is a crucial ingredient for
bridging the domain gap.

Benchmark results. Finally, we evaluate our MOTSynth-
trained detection models’ generalization capability by sub-
mitting our results to the MOTChallenge MOT17&MOT20
benchmarks. We evaluate two variants: no fine-tuning, i.e.,
trained only on MOTSynth, and with fine-tuning (+ FT) on
the respective MOTChallenge dataset. We summarize our
results in Tab. 4. As can be seen, on MOT17, we outperform
(FRCNN MOTSynth, 0.8AP) the baseline Faster R-CNN
(FRCNN, 0.72AP) by +0.08AP. Interestingly, fine-tuning
on the MOTChallenge training set does not significantly im-
pact the MOTSynth model in terms of AP. It does, however,
improve in terms of MODA (66.7 vs. 71 MODA after fine-
tuning), for which a specific threshold needs to be selected.
During the experiments, we kept the original threshold. It
is important to note that more recent object detectors, ZI-
ZOM [54] and SDP [90] only marginally improve over our
MOTSynth-trained Faster R-CNN models (+0.01AP ).

Unlike MOT17, fine-tuning has a significant effect on
MOT20 (+0.1AP ): we assume this is because in MOT-
Synth we do not have the extremely crowded scenes that
are the focus of MOT20. Generating denser synthetic se-
quences could further help to bridge the gap on MOT20 and
remains our future work. Finally, we note that detectors spe-
cialized in pedestrian detection in crowded scenes [17, 86]
outperform our fine-tuned MOTSynth Faster R-CNN model
by only +0.08AP .

4.3. Person Re-Identification

To evaluate the re-identification (ReID) model per-
formance, we train three models, (i) trained on Mar-
ket1501 [97], (ii) trained on Market1501 [97] and
CUHK03 [53] and, finally, trained only on four subsets
MOTSynth. We evaluate all three models out-of-the-box
(without fine-tuning) on the MOTChallenge MOT17 dataset

Dataset Split mAP Rank1

R
ea

l Market1501 [97] – 64.6 91.9
Market1501 [97] + CUHK03 [53] – 69.1 91.9

Sy
nt

he
tic

MOTSynth

1 71.3 91.4
2 73.1 91.8
3 74.2 92.6
4 75.2 92.8

Table 5: Person ReID experiments on MOT17.

by treating each sequence as a separate dataset. To do so,
we randomly select one ground truth box per track to ob-
tain a query set and use the remaining set of boxes, sampled
at 10 FPS, as a gallery set. We compute standard ReID
metrics for every sequence: mean average precision (mAP)
and Rank-1 accuracy, and report their average overall se-
quences. All models are trained with a ResNet-50 back-
bone, followed by a fully connected layer and a standard
cross-entropy loss. For implementation details, we refer to
the supplementary.

As can be seen in Tab. 5, by training purely on MOTSynth
data using the first split, we already outperform models
trained on real data in terms of mAP (+6.9 for Market1501
and +2.5 for combined datasets). In terms of Rank1, we
obtain +1.6 relative to the Market1501-only model. How-
ever, when training on MOTSynth using the first two splits
(50% of total data), we notice an improvement of +8.6 and
+4.2 in terms of mAP and +3.5 and +1 in terms of Rank1,
respectively. This suggests synthetic datasets can be used
as a full replacement for ReID datasets, which are often a
subject of controversy [38].

4.4. Multi-object Tracking

In this section, we analyze the value of MOTSynth for the
task of pedestrian multi-object tracking. We report CLEAR-
MOT [9] and IDF1 [71] metrics and focus the analysis on
the most widely used Multiple Object Tracking Accuracy
(MOTA) and Identity F1 Score (IDF1). We experiment
with two different trackers, Tracktor [8] and recently pro-
posed CenterTrack [98]. We evaluate all our models on the
most widely used pedestrian tracking dataset, MOTChal-
lenge MOT17 [21], with and without fine-tuning (FT) on
the MOT17 training set. Following the CenterTrack valida-
tion scheme, we fine-tune the networks using only the first
half of MOT17 sequences and validate on the second half.

Tracktor. We train detection/tracking [8] model on (i)
COCO dataset [56] and (ii) full MOTSynth dataset. We
note that for Tracktor, we do not need to do any training
on sequences, as this method leverages bounding box re-
gression functionality to follow targets. Tracktor also relies
on the ReID models to bridge trajectory gaps. To this end,
we experiment with two ReID models, one trained on real
data (Market1501) and one trained on synthetic data (MOT-
Synth).



Dataset FT ReID MOTA ↑ MOTP ↑ IDF1 ↑ TP ↑ FP ↓ FN ↓ IDS ↓

Tr
ac

kt
or

[8
]

COCO ✗ ✗ 43.5 0.192 49.6 26783 2816 27259 467
COCO ✗ Market1501 44.0 0.192 55.1 26783 2816 27259 179
COCO ✓ Market1501 48.3 0.193 58.1 29218 27259 24824 185
MOTSynth ✗ ✗ 45.0 0.197 51.2 28749 3992 25293 458
MOTSynth ✗ Market1501 45.5 0.197 56.8 28749 3992 25293 161
MOTSynth ✗ MOTSynth 45.5 0.197 56.8 28749 3992 25293 160
MOTSynth ✓ ✗ 49.8 0.199 53.8 30588 3264 23454 411
MOTSynth ✓ Market1501 50.3 0.199 59.8 30588 3264 23454 167
MOTSynth ✓ MOTSynth 50.3 0.199 59.9 30588 3264 23454 165

C
en

te
rT

r.
[9

8] ImageNet ✓ – 60.7 0.190 62.7 35443 2179 18447 564
CrowdHuman ✗ – 52.2 0.218 53.8 32486 3604 21404 728
CrowdHuman ✓ – 66.1 0.179 64.2 38604 2442 15286 528
MOTSynth ✗ – 54.3 0.205 57.7 33504 3601 20386 666
MOTSynth ✓ – 67.9 0.179 66.5 38681 1606 15209 508

Table 6: Multi-object tracking results performed on MOT17
training set.

CenterTrack. For CenterTrack [98] we report the results
from the paper. In particular, we report (i) CenterTrack
model trained on MOT17 directly, the model trained on (ii)
the CrowdHuman dataset [75] using a static-image train-
ing scheme, and finally, we (iii) report the results we obtain
with CenterTrack trained on MOTSynth instead of Crowd-
Human. We train only on the MOTSynth–1 subset using
full sequences (every frame). In this case, we train for four
epochs using the same train/eval hyperparameters from the
CenterTrack paper.

Fine-tuning. We also evaluate how fine-tuning on
MOTChallenge affects the final performance of each model.
In the case of CenterTrack, we employ a slightly modified
pre-training scheme to fully utilize the scene diversity of
MOTSynth. Instead of training only on MOTSynth–1 subset,
we train on all MOTSynth sequences. However, due to com-
putational constraints, we only use a subset of frames (1/8
of each video) within each sequence. This way, we increase
the scene diversity while keeping the training time reason-
able. After training with this subset of MOTSynth for 10
epochs, we fine-tune our network on MOT17 sequences for
28 epochs. Throughout fine-tuning and validation, we use
the same training and evaluation hyper-parameters as re-
ported in [98, 8]. While [98] reports performing 70 epochs
on the CrowdHuman dataset, we stopped training on MOT-
Synth earlier as we observed our model started over-fitting.
For further implementation details of these experiments, we
refer to the supplementary.

Results. We report our findings in Tab. 6. First, we an-
alyze Tracktor performance. When not performing any
fine-tuning or using ReID model, we obtain 45.0 MOTA
and 51.2 IDF1 with our MOTSynth trained model, yielding
+3.5 MOTA and +1.6 IDF1 improvement over the COCO-
trained model (43.5 MOTA and 49.6 IDF1). After we fine-
tune both models on MOT17, the MOTSynth-trained model
(49.8 MOTA, 53.8 IDF1) improves by +4.8 in terms of
MOTA and +2.6 in terms of IDF1. Similarly, the fine-tuned
COCO trained model (48.3 MOTA, 58.1 IDF1) improves
by +4.8 MOTA and +8.5 IDF1. After fine-tuning, the
improvement of MOTSynth over COCO increases by +1.5

Dataset sMOTSA ↑ MOTSA ↑ MOTSP ↑ IDF1 ↑ TP ↑ FP ↓ FN ↓ IDS ↓

[8
4] Several 52.74 66.90 80.16 51.19 19202 894 7692 315

[8
]

COCO 55.58 68.80 81.93 63.24 19677 1016 7217 159
MOTSynth 55.54 68.73 81.93 63.09 19626 987 7268 155
MOTSynth † 56.10 69.52 81.67 67.53 19690 850 7204 143

[4
1] COCO 53.59 67.53 81.52 73.31 20279 2026 6615 92

MOTSynth 54.09 68.07 81.49 73.48 20304 1912 6590 86

[9
8] COCO 53.93 67.49 81.68 58.4 19919 1488 6975 279

MOTSynth 53.88 67.37 81.74 58.19 19876 1497 7018 260

[1
2] COCO 48.50 62.41 81.34 69.03 20061 3177 6833 99

MOTSynth 49.17 63.03 81.44 69.40 20079 3047 6815 82

Table 7: Multi-object tracking and segmentation. Masks
were generated using Mask R-CNN model, trained on
COCO and MOTSynth. Baselines: Track R-CNN [84],
Tracktor [8], Lift T [41], CenterNet [98], MPNTrack [12]

MOTA and +4.3 IDF1, suggesting that MOTSynth is more
suitable for pre-training pedestrian detection and tracking
models compared to COCO dataset.

When using ReID models, we observe consistent im-
provements on both MOTSynth and COCO models. In par-
ticular, we observe a consistent improvement in terms of
MOTA, which we attribute to a significant reduction (∼250)
in the number of IDS. Interestingly, we observe identical
improvements with both ReID models, trained on MOT-
Synth and Market1501, and conclude that the ReID model,
trained on MOTSynth is an adequate replacement for mod-
els trained on the real data.

CenterTrack reports 60.7 MOTA and 62.7 IDF1 when
training directly on MOT17, and 52.2 MOTA and 53.8
IDF1 on MOT17 when training on CrowdHuman using
the static-image training scheme and evaluating directly on
MOT17. We obtain notably better results when training on
MOTSynth and evaluating on MOT17: 54.3 MOTA (+2.1)
and 57.7 IDF1 (+3.9). After fine-tuning the CrowdHuman
model on MOT17, we obtain 66.1 MOTA and 64.2 IDF1,
and even better performance when fine-tuning MOTSynth
model: 67.9 MOTA and 66.5 IDF1.

Overall, synthetic training always performs favorably,
indicating that MOTSynth can completely replace manually
annotated datasets while increasing performance.

4.5. Multi-object Tracking and Segmentation

In this section, we analyze multi-object tracking and
segmentation (MOTS) [84]. We report CLEARMOT met-
rics [9], adapted for MOTS as proposed in [84]. Different
from MOT, object tracks are localized with segmentation
masks instead of bounding boxes.

For these experiments, we first take the tracking out-
puts of several state-of-the-art MOT methods that use pub-
lic SDP [90] detector and predict segmentation masks with
a Mask R-CNN, trained either on COCO or MOTSynth. We
perform the experiments on the MOTS20 train set and per-
form no fine-tuning on these sequences. In particular, we
analyze Tracktor [8], Lift T [41], CenterNet [98], and MP-



NTrack [12]. For Tracktor, we perform an additional exper-
iment. We turn Mask R-CNN trained on MOTSynth into a
Tracktor that directly produces pixel-precise tracking out-
put (denoted with †). For reference, we also report TrackR-
CNN [84], trained on COCO [56], Mapillary Vistas [63]
and MOTS20.

We report our findings in Tab. 7. Comparing COCO
and MOTSynth models, we observe 0.5 point increase in
sMOTSA, MOTSA, and IDF1 for Lif T and MPNTrack
in favor of MOTSynth. However, for CenterTrack and
Tracktor, we observe a minimal drop in performance (−0.1
points). Interestingly, Mask R-CNN Tracktor (†), trained
directly on MOTSynth outperforms Tracktor v2++ for +4
IDF1, +0.5 sMOTSA and +0.7 MOTSA. This is our best-
performing entry on MOTS20. It is important to note that
this model is trained only on synthetic data, whereas other
methods reported were trained using MOTChallenge, or
several datasets in the case of TrackR-CNN. We report im-
plementation details for these experiments in the supple-
mentary.

4.6. Benchmark Results

Finally, we evaluate our models on MOTChallenge
MOT17, MOT20, and MOTS20 test sets using the public
benchmark.

MOT17. As shown in Tab. 14, we obtain highly compet-
itive results when solely training using synthetic data. In
fact, on MOT17, Tracktor–MOTSynth outperforms Track-
tor, trained on COCO, and fine-tuned on MOT17 by +3.4
MOTA and +4.6 IDF1! Fine-tuning on MOT17 further im-
proves metrics by +2.2 MOTA and +1.9 IDF1. Similarly,
CenterTrack trained only on synthetic data achieves com-
petitive results (59.7 MOTA, 52.0 IDF1). The model, fine-
tuned on MOT17, further improves performance, establish-
ing a new state of the art with 65.1 MOTA and 57.9 IDF1.

MOT20. On MOT20, Tracktor and CenterTrack trained
solely on MOTSynth are not yet on-par with state-of-the-
art. However, when fine-tuned on MOT20, these models
surpass Tracktorv2 by +3.9 MOTA and +0.1 IDF1.

MOTS20. We show MOTS20 benchmark results3 in
Tab. 9. Our Tracktor† Mask R-CNN trained only on syn-
thetic data significantly outperforms TrackR-CNN [84], that
is trained on COCO, Mapillary Vistas [63] and MOTS20
training set. In particular, we improve sMOTSA for
+14.45, MOTSA for +15.04, MOTSP for +3, 47 and IDF1
for +21.47. This confirms our intuition that MOTSynth is
especially beneficial in the scarce data regime, as is the case
for the MOTS task.

These experiments confirm that top-ranked MOTChal-
lenge models can be trained purely on synthetic data on the

3In the time of submission, there is only one published entry in
MOTS20 benchmark.

Method MOTA ↑ MOTP ↑ IDF1 ↑ FP ↓ FN ↓ IDS ↓

M
O

T
17

Tracktor-MOTSynth 56.9 78.0 56.9 20852 220273 2012
Tracktor-MOTSynth + FT 59.1 79.3 58.8 22231 206062 2323
Tracktor [8] 53.5 78.0 52.3 12201 248047 2072
Tracktorv2 [8] 56.3 78.8 55.1 8866 235449 1987
CenterTrack-MOTSynth 59.7 77.4 52.0 39707 181471 6035
CenterTrack-MOTSynth + FT 65.1 79.9 57.9 11521 180901 4377
CenterTrack [98] 61.5 78.9 59.6 14076 200672 2583
Lif T [41] 60.5 78.3 65.6 14966 206619 1189
LPC [19] 59.0 78.0 66.8 23102 206948 1122
MPNTrack [12] 58.8 78.6 61.7 17413 213594 1185

M
O

T
20

Tracktor-MOTSynth 43.7 75.1 39.7 15933 271814 3467
Tracktor-MOTSynth + FT 56.5 78.8 52.8 11377 211772 1995
Tracktorv2 [8] 52.6 79.9 52.7 6930 236680 1648
CenterTrack-MOTSynth 39.7 72.9 37.2 47066 259274 5872
CenterTrack-MOTSynth + FT 41.9 80.2 38.2 36594 258874 5313
MPNTrack [12] 57.6 79.0 59.1 16953 201384 1210
LPC [19] 56.3 79.7 62.5 11726 213056 1562
SORT20 [10] 42.7 78.5 45.1 27521 264694 4470

Table 8: Benchmark results on MOT17 and MOT20. We
refer to supplementary for the full version.

Method sMOTSA ↑ MOTSA ↑ MOTSP ↑ IDF1 ↑ TP ↑ FP ↓ FN ↓ IDS ↓

Tracktor†-MOTSynth 55.1 70.2 79.6 63.9 23994 1128 8275 200
TrackRCNN [84] 40.6 55.2 76.1 42.4 19628 1261 12641 567

Table 9: Benchmark results on MOTS20 dataset.

MOT17 and MOTS datasets to achieve state-of-the-art re-
sults. However, on the MOT20 dataset, fine-tuning is still
needed to reach state-of-the-art results. We assume that this
is due to the fact that synthetic sequences more closely re-
semble MOT17 sequences than extremely crowded MOT20
sequences. This hints that MOTSynth has future potential
in closing this gap by simulating similarly dense environ-
ments.

5. Conclusion

We presented MOTSynth, a massive synthetic dataset for
pedestrian detection and tracking in urban scenarios. We
experimentally demonstrated that synthetic data could com-
pletely substitute real data for high-level in-the-wild scenar-
ios, such as pedestrian detection, re-identification tracking,
and segmentation. Remarkably, we obtained state-of-the-
art results on the MOTChallenge MOT17 dataset by train-
ing recent methods using solely synthetic data. We believe
this paper will pave the road for future efforts in replacing
costly data collection with synth in other domains.
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Supplementary Material
A. Overview

In this supplementary, we provide (i) extended version of the
Tab. 1 (dataset comparison), provided in the main paper (Sec. B);
(ii) additional dataset visualizations and statistics (Sec. C); (iii)
additional experiments on trade-offs on data volume vs. diversity
(Sec. D); (iv) implementation details for all experiments, provided
in the main paper (Sec. E); (v) MOT20 benchmark results for each
sequence (Sec. F).

B. Dataset Comparison
Tab. 10 extends Tab. 1 from the main paper. In the table the

most widely used publicly available datasets that contain annota-
tion for the people class are reported. Compared to real world
urban surveillance dataset, MOTSynth has one order of magnitude
more clips, annotated frames and annotated instances. Besides
JTA [28], MOTSynth is the only available dataset that provides 3D
pose annotations. Additionally, MOTSynth also provides instance
segmentation labels and depth maps. It is important to note that
for autonomous driving datasets [32, 14, 94, 79] and TAO [20] the
number of instances is relative to all the classes;

C. Dataset Visualizatons and Statistics
In Fig. 3 we show examples from the MOTSynth dataset to

demonstrate its variation in terms of weather conditions, lighting
conditions, viewpoints, and pedestrian density. We recorded se-
quences exhibiting nine different types of weather: clear, extra
sunny, cloudy, overcast, rainy, thunder, smog, foggy, and blizzard.

In addition, MOTSynth varies in terms of: (i) lighting condi-
tions, resembling different day-time conditions, such as sunrise,
sunset, evening, dawn and night; (ii) the camera viewpoint, rang-
ing from ground plane position to bird’s-eye view, and (iii) density,
ranging from few pedestrians to hundreds of pedestrians.

We present a more detailed analysis of MOTSynth in Fig 4.
In Fig. 4a we plot the distribution of the bounding box heights
expressed in pixels. As can be seen, 50% of the bounding boxes
are between 0 and 95 pixels. Only 2% of them are higher than
613 pixel. This clearly shows that MOTSynth has been designed
specifically for surveillance applications.

In Fig. 4b we show the distribution of the number of bound-
ing boxes per frame, ranging between 0 and 125 with a mean of
29.50 and a standard deviation of 17.12. The distribution is well
balanced as peak values hardly reach a frequency of 2.5%.

In Fig. 4c, we plot the distance distribution of each pedestrian
computed as the distance between the camera and the head joint
expressed in meters. The average camera distance is 28.49 meters,
while the standard deviation is 20.33 meters. Half of the annota-
tions appear in 23m range from the camera. Again, the peaks of
the distribution never exceed 3% showing good data balance.

In Fig. 4d, we plot pedestrian visibility distribution. It is cal-
culated by counting the number of not occluded body joints, i.e.,
joints that are not obstructed by objects or other pedestrians and
that are thus completely visible. MOTSynth provide the annota-
tion for 22 body joint, thus, a person is completely visible only

if all his 22 joints are not occluded. The plot clearly shows that
MOTSynth is highly crowded as the percentage of completely vis-
ible pedestrians is less than 20%.

D. Data Volume and Diversity
In the main paper, we discussed the impact of the data sampling

rate based on the Faster R-CNN detector [68]. Here, we provide
this analysis for all object detectors we experiment with in Tab. 11.

YOLOv3 requires 104k images to perform favourably w.r.t.
COCO. Moreover, higher sampling rate is always beneficial both
in term of AP and MODA. For CenterNet, the sampling rate does
not impact the AP. For MODA, on the other hand, higher data vol-
ume seems to be beneficial.

It is interesting to note that CenterNet is able to surpass COCO
training with only 17k images. Moreover, it is clear that visual
diversity is crucial as split 4 with 1/60 sampling rate (17k images)
surpasses the split 3 with 1/10 sampling rate (52k images).

Results on Faster R-CNN are even more evident. With only
9k images we obtain higher AP w.r.t. real data training. However,
results seem to saturate with bigger splits. For both YOLOv3 and
Faster R-CNN, split 2 with 1/10 sampling rate (24k frames) and
split 3 and 4 with 1/60 sampling rate (9k and 17k frames respec-
tively) obtain similar performance.

This shows that volume and diversity are equally important.
In general, visual diversity and data volume are equally important
to achieve competitive results as the best performance is always
obtained when diversity and volume are maximized.

E. Implementation Details
E.1. Object Detection Experiments

YOLOv3. For YOLOv3, we used Darknet backbone [66]. We
trained our model on MOTSynth for 200, 000 iterations using the
batch-size of 16. We resize input images to 608 × 608. We used
the Ultralytics implementation [3] with default hyperparameters.
For the evaluation, we used a confidence threshold of 0.4 when
testing on MOT17 and MOT20.

CenterNet. For CenterNet, we used DLA-34 backbone [93]
and used used the official implementation of CenterNet [1]. We
trained on MOTSynth for 100, 000 iterations using batch size 32
(we used two GPUs). During the inference, we used a confidence
threshold of 0.3 when testing on MOT17 and a confidence thresh-
old of 0.1 when testing on MOT20.

Faster R-CNN and Mask R-CNN. For Faster R-CNN, we
use a ResNet50 [40] backbone with FPN [55] (Detectron2 [33]
implementation). We train models on MOTSynth for 35, 000 it-
erations and use default Detectron2 hyperparameters. To avoid
overfitting, we freeze all the backbone blocks except for the last
one. For fine-tuning, we follow [8] and train our models for 30
additional epochs on the respective dataset. Similarly, we follow
the same training scheme and use the same hyperparameters for
Mask R-CNN.



Dataset #Clips #Frames #Instances 3D Occl. Pose Est. Inst. Segm. Depth Est. Type

KITTI [32] 50 22,000 160,000 ✓ ✓ ✓ AD
nuSCENES [14] 1,000 40,000 280,000 ✓ AD
BDD100k-MOTS [94] 70 14,000 129,000 ✓ ✓ AD
BDD100k-MOT [94] 1,600 100,000 3,300,000 ✓ AD
Waymo Open [79] 1,150 230,000 2,700,000 ✓ AD

TAO [20] 2,907 148,235 175,723 DV
PoseTrack [6] 1,356 46,000 276,000 ✓ DV
MOTS [84] 4 2,862 26,894 ✓ ✓ US
MOT-17 [62] 14 11,235 292,733 ✓ US
MOT-20 [22] 8 13,410 1,652,040 ✓ US

VIPER [49] 187 254,064 2,750,000 ✓ ✓ ✓ AD
GTA [50] - 250,000 3,875,000 ✓ ✓ DV
JTA [27] 512 460,800 15,341,242 ✓ ✓ ✓ US

MOTSynth 768 1,382,400 40,780,800 ✓ ✓ ✓ ✓ ✓ US

Table 10: Overview of the publicly available datasets for pedestrian detection and tracking. For each dataset, we report the
numbers of clips, annotated frames and instances. We also report the presence of 3D data and occlusion information, as well
as the availability of labels for pose estimation, instance segmentation, and depth estimation. The last column shows the data
type: autonomous driving (AD), diverse (DV) or urban surveillance (US).

Figure 3: Examples from the MOTSynth dataset showing data variety in terms of weather conditions (first row), lighting
condition (second row), viewpoints (third row) and number of people (fourth row). Best viewed on screen.

E.2. Person Re-Identification Experiments

For ReID, we follow [15]: we freeze all CNN layers and pre-
train the fully connected layers for 5 epochs. We then train our
entire models for 55 additional epochs using Adam optimizer (ci-
tation needed) and a learning rate of 0.004. We resize images to
128x56 and use random cropping and flipping data augmentation
techniques.

E.3. Multi-Object Tracking Experiments

MOT. For CenterTrack [98], we follow the training schemes
explained in Section 4.4 of the main paper. We fine-tune our net-
work for 30 epochs for MOT17 and 70 epochs for the MOT20
dataset for the fine-tuning experiments. We train and evaluate our
models using the same hyperparameters as reported by [98]. For
Tracktor [8], we follow the setting described for Faster R-CNN
and ReID, as no additional training is required: Tracktor leverages



p2% p50% p98%

 bboxes height  [px]

[%]
mean:  137.81

std:  136.17

22 95 613

(a) Distribution of the bounding box heights over
Full HD images

p2% p50% p98%

 number of visible bounding boxes per frame

[%]
mean:  29.50

std:  17.12

4 27 72

(b) Distribution of the number of bounding boxes
per frame.

p2% p50% p98%

 camera distance - “head-top” joint [meters]

[%]
mean:  28.49

std:  20.33

3 23 87

(c) Camera distance distribution of every annotated
pedestrian relative to the head joint.

number of visible joints

[%]

(d) Visibility distribution of every annotated pedes-
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Figure 4: Additional statistics of the MOTSynth dataset. Each distribution is calculated considering all pedestrians with at
least one visible joint.

bounding box regression head of Faster R-CNN detector, trained
on static images.

MOTS. We adapt our Mask R-CNN model, trained on MOT-
Synth, by using bounding box regression mechanism for tracking
and mask segmentation head provides segmentation masks (Mask
R-CNN Tracktor (†)). For all experiments and the benchmark sub-
mission, we use the same ReID network and hyperparameters as
reported in [8].

F. Detailed Benchmark Results
In Tab. 12 we present the detailed MOT20 benchmark re-

sults for each sequence and analyze how Tracktor and Center-
Track (trained only on MOTSynth) compare with the state-of-the-
art trackers in extremely crowded scenes. In addition to published
models, we train and evaluate CenterTrack on MOT20 (denoted
with ‡), following the training procedure of [98].We are interested
in comparing existing models trained on different datasets. There-
fore, we use the default CenterTrack hyperparameters.

We observe that in sequence MOT20-04, Tracktor-MOTSynth
and CenterTrack-MOTSynth are not on-par with Tracktorv2, MP-
NTrack and LPC. This is likely because the sequences with near-
bird’s-eye viewpoints (similar to MOT20-04) are rare in MOT-
Synth dataset. However, in all other MOT20 sequences, Tracktor
and CenterTrack only trained on synthetic data outperform Track-

torv2 with a significant margin and are on-par with the state-of-
the-art. Fine-tuning these models on MOT20 further improves
their performance, as reported in Section 4.6 of the paper. These
experiments indicate that top-performing tracking models can be
trained on synthetic data even in extremely dense scenarios.



Dataset Split Sampling rate frames AP MODA

Y
O

L
O

v3

COCO – – 118k 69.76 62.02

MOTSynth

1 1:60 2k 51.15 45.71
1:10 13k 62.66 52.36

2 1:60 4k 53.86 47.49
1:10 24k 63.08 56.67

3 1:60 9k 62.10 51.20
1:10 52k 63.13 60.60

4 1:60 17k 62.59 58.66
1:10 104k 71.90 64.51

C
en

te
rN

et

COCO – – 118k 67.01 44.38

MOTSynth

1 1:60 2k 61.18 39.06
1:10 13k 61.82 49.34

2 1:60 4k 61.45 44.54
1:10 24k 62.32 54.90

3 1:60 9k 62.22 53.04
1:10 52k 62.45 55.82

4 1:60 17k 70.15 51.75
1:10 104k 70.68 57.39

Fa
st

er
R

-C
N

N

COCO – – 118k 76.68 53.86

MOTSynth

1 1:60 2k 70.00 42.90
1:10 13k 76.80 39.02

2 1:60 4k 70.27 44.54
1:10 24k 77.47 50.62

3 1:60 9k 77.32 51.46
1:10 52k 78.30 49.75

4 1:60 17k 77.78 53.72
1:10 194k 78.98 54.96

Table 11: The effect of the density of sampled data. Sparser
sampling increases the diversity. As can be seen, we can
bridge the gap syn-to-real even when using smaller MOT-
Synth subsets if we ensure that training images are diverse.

Method MOTA ↑ MOTP ↑ IDF1 ↑ FP ↓ FN ↓ IDS ↓

M
O

T
20

-0
4

Tracktor-MOTSynth 50.7 75.5 42.6 7383 125803 1963
CenterTrack-MOTSynth 41.7 74.5 38.7 15154 142557 2152
CenterTrack‡ [98] 54.9 81.1 43.7 2187 118918 2641
Tracktorv2 [8] 72.7 80.1 65.4 2855 71164 739
MPNTrack [12] 77.0 79.6 71.2 7459 55204 506
LPC [19] 75.7 80.6 75.7 4180 61864 648
SORT20 [10] 59.5 81.0 56.7 3206 106117 1643

M
O

T
20

-0
6

Tracktor-MOTSynth 35.5 73.9 33.7 4594 80171 871
CenterTrack-MOTSynth 40.8 71.8 35.3 12448 64330 1748
CenterTrack‡ [98] 26.4 75.9 29.0 17481 78371 1881
Tracktorv2 [8] 30.1 78.8 33.2 1745 90509 512
MPNTrack [12] 36.0 77.1 39.8 4831 79649 425
LPC [19] 35.3 77.7 43.2 3503 81891 499
SORT20 [10] 23.7 73.1 29.5 12309 87352 1640

M
O

T
20

-0
7

Tracktor-MOTSynth 52.5 77.5 50.9 509 15009 194
CenterTrack-MOTSynth 53.5 74.6 46.3 3082 11785 539
CenterTrack‡ [98] 45.2 80.9 41.9 1101 16728 303
Tracktorv2 [8] 50.1 81.1 49.6 252 16127 146
MPNTrack [12] 57.4 79.5 59.9 906 13061 120
LPC [19] 50.8 79.3 58.9 229 15921 124
SORT20 [10] 48.5 77.6 47.3 1032 15666 360

M
O

T
20

-0
8

Tracktor-MOTSynth 29.4 73.2 33.5 3447 50831 439
CenterTrack-MOTSynth 24.6 68.7 31.4 16382 40602 1433
CenterTrack‡ [98] 9.0 73.9 25.8 19736 49828 948
Tracktorv2 [8] 21.0 78.8 27.2 2078 58880 251
MPNTrack [12] 25.9 77.3 36.1 3757 53470 159
LPC [19] 25.8 76.3 37.4 3814 53380 291
SORT20 [10] 13.1 70.9 24.2 10974 55559 827

Table 12: Per-sequence benchmark results on MOT20.

Method MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDS ↓

Pu
bl

ic

Tracktor-MOTSynth 56.9 56.9 20852 220273 2012
Tracktor-MOTSynth + FT 59.1 58.8 22231 206062 2323
Tracktor [8] 53.5 52.3 12201 248047 2072
Tracktorv2 [8] 56.3 55.1 8866 235449 1987
CenterTrack-MOTSynth 59.7 52.0 39707 181471 6035
CenterTrack-MOTSynth + FT 65.1 57.9 11521 180901 4377
CenterTrack [98] 61.5 59.6 14076 200672 2583
Lif T [41] 60.5 65.6 14966 206619 1189
LPC [19] 59.0 66.8 23102 206948 1122
MPNTrack [12] 58.8 61.7 17413 213594 1185

Pr
iv

at
e CorrTracker [85] 76.5 73.6 29808 99510 3369

FairMOTv2 [95] 73.7 72.3 27507 117477 3303
TraDeS [88] 69.1 63.9 20892 150060 3555

Table 13: Detailed Benchmark results on MOT17.

Method MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDS ↓

Pu
bl

ic

Tracktor-MOTSynth 43.7 39.7 15933 271814 3467
Tracktor-MOTSynth + FT 56.5 52.8 11377 211772 1995
Tracktorv2 [8] 52.6 52.7 6930 236680 1648
CenterTrack-MOTSynth 39.7 37.2 47066 259274 5872
CenterTrack-MOTSynth + FT 41.9 38.2 36594 258874 5313
MPNTrack [12] 57.6 59.1 16953 201384 1210
LPC [19] 56.3 62.5 11726 213056 1562
SORT20 [10] 42.7 45.1 27521 264694 4470

Pr
iv

at
e JDMOTGNN [86] 67.1 67.5 31913 135409 3131

CorrTracker [85] 65.2 69.1 79429 95855 5183
FairMOTv2 [95] 61.8 67.3 103440 88901 5243

Table 14: Detailed Benchmark results on MOT20.


