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1 Introduction

Baxter Q-operators play an important role in the theory of integrable spin chains [1],
in 2D integrable quantum field theory and sigma models [2], in integrable examples of
higher dimensional CFTs, such as QCD in BFKL limit [3–5], N = 4 super Yang-Mills
theory and ABJM theory [6] where Q-functional approach has led to the elegant description
of spectrum of the systems in terms of the quantum spectral curve (QSC) [7, 8], the
ODE/IM correspondence [9], the fermionic basis [10], stochastic processes [11, 12] and
pure mathematics [13]. In particular, they provide a natural formulation for the Bethe
ansatz equations (BAE) whose solutions (Bethe roots) yield the spectrum of energy for
the Heisenberg-type spin chains and are at the heart of Sklyanin’s separation of variables
(SoV) construction [14]. They also allow for natural representations of transfer matrices
(T-operators), encoding all quantum conserved charges of the system.

All these operators, T and Q, commute due to the underlying integrable structure,
so that on a given eigenstate we can operate with their eigenvalues — the functions of
a spectral parameter: T (x) and Q(x). For A-type spin chains all these operators can be
built within the framework of the quantum inverse scattering method [15] from solutions
of the Yang-Baxter equation. The transfer matrices are built from Lax matrices of finite
dimension while, as noted in [2, 16, 17], the construction of Q-operators is related to an
infinite-dimensional Hilbert space. These methods were further developed in [18–27]. For us
the most relevant articles are [28–30] for Q-operators of A-type spin chains and the recent
generalisation to some Q-operators of D-type spin chains [31]. An alternative approach,
based on the formalism of co-derivatives [32], was proposed in [33] and further developed
in [34] in relation to the interplay between quantum and classical integrability of A-type
spin chains.

T-functions represent a quantum generalisation of the characters for the symmetry
algebra of the spin chain. They depend on the representation f in the auxiliary space
and, generically, on the twist τ — a group element introduced into the spin chain in
the form of twisted, quasi-periodic boundary conditions or, alternatively, as generalized
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Figure 1. Hasse diagram for A2.

“magnetic” fields. That is why we will denote the T-functions as T (τ)
f .1 Generally, one

has an infinite number of different T-functions since there exists an infinite number of
inequivalent representations. However, most of them are not independent quantities. The
most constructive way to see that is to represent T-functions in terms of Baxter Q-functions
since the latter always form a finite variety. Say, for Ar algebra, the 2r+1 Q-functions are
usually labeled by subsets of integers I ⊂ {1, 2, . . . , r, r + 1} where r is the rank of the
algebra (for instance I = {1, 3, 4} ⊂ {1, 2, 3, 4, 5}). This QQ-system2 can be conveniently
depicted as a Hasse diagram in the shape of an r + 1-dimensional hypercube with the
vertices labeling the corresponding Q-functions [35], see figure 1 for the example of A2.

As we will see, in Dr algebra the labeling is similar but slightly different. Moreover,
only r + 1 Q-functions are algebraically independent as in the Ar case [19, 36–38], see also
the supersymmetric generalisation [8, 35, 39, 40]. The system of all Q-functions, which
we will call here QQ-system, is endowed with a Graßmannian structure. The remaining
Q-functions can thus be expressed through a chosen basis of r + 1 Q’s by various Plücker
QQ-relations, often in the form of Wronskian determinants (Casoratians).

For the Heisenberg spin chains with Ar symmetry, the most traditional representa-
tion of T-functions is given in terms of the basis of Q-functions of the type Q{1}, Q{1,2},
Q{1,2,3}, . . . , Q{1,2,...,r+1} (or different re-labelings of the same basis), cf. figure 1. The
same functions enter into the formulation of the standard nested system of BAE’s. The
T-functions in this basis are usually represented by the so-called tableaux formulas which
are direct generalizations of Schur polynomials for characters [37, 41, 42].

The other well-known, so-called Cherednik-Bazhanov-Reshetikhin (CBR), formulas for
T-functions in an arbitrary finite dimensional representation `, are given in terms of deter-
minants of T-functions in the simplest symmetric or antisymmetric representations [43, 44].

1Though the explicit τ dependence will often be omitted.
2We decided to call it QQ-system, to avoid the confusion with the “Q-system” established in the

mathematical literature to denote the quadratic, Hirota-type relations for characters of “rectangular”
representations. This hints on Plücker QQ-relations or on “Quantum Q”-relations.
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They have been proven in [32], including the supersymmetric Ar|s algebra. They represent
the quantum generalization of the Jacobi-Trudi formulas for characters. For the Dr algebra
the corresponding determinant representations have been found in [45]. For both algebras,
the CBR type formulas appear to be solutions [46], with appropriate boundary conditions,
of Hirota finite difference equations for T-functions [42, 47, 48] (TT-system).

The most natural representation of T-functions in terms of Q-functions, using the
basis of the single-index Q’s, {Q{1}, Q{2}, . . . , Q{r+1}}, was constructed only for the Ar
algebra [8, 19, 29, 35, 36, 40, 49–52]. Irreducible representations of Ar are labelled by
highest weights (λ1, · · · , λr) ∈ Nr such that λ1 > λ2 > . . . > λr and, assuming Q∅(x) = 1,
the T-functions read

T
(τ)
λ (x) = Q{1,...,r+1}(x)

det
16i,j6r+1

Q{i}(x+ µj)

det
16i,j6r+1

Q{i}(x+ r + 1− j) ≡ Q{1,...,r+1}(x)

∣∣∣Q[2µj ]
{i}

∣∣∣
r+1∣∣∣Q[2(r+1−j)]

{i}

∣∣∣
r+1

.

(1.1)
Here we introduced the shifted weights µj = λj + r− j + 1 for j = 1, . . . , r and µr+1 = 0 as
well as the twist matrix diag(τ1, τ2, . . . , τr+1). We set

∏
i τi = 1 to restrict to SL(r + 1). In

order to shorten the formulas we shall use the following notations throughout the article:
|Mi,j |p ≡ det

16i,j6p
Mi,j and M [k] ≡ M(x + k

2 ), where x is the spectral parameter. The
single-index Q-functions in (1.1) are polynomials up to an exponential prefactor:

Q{i}(x) = (τi)x
(
xmi + Ci,mi−1 x

mi−1 + · · ·+ Ci,0
)
. (1.2)

The representation (1.1) is the direct generalization of Weyl’s formula for characters:

χ
SL(r+1)
λ (τ) = |τµji |r+1

|τ r+1−j
i |r+1

. (1.3)

It is clear that (1.1) behaves as Q{1,...,r+1}(x)χSL(r+1)
λ (τ) in the “classical” limit x→∞.

The goal of this article is to construct a similar QQ-system, together with a similar
Weyl-type representation for T-matrices, for the Dr algebra. The standard Weyl formula
for Dr characters is

χ
SO(2r)
f (τ) = |τ

`j
i + τ

−`j
i |r + |τ `ji − τ

−`j
i |r

|τ r−ji + τ−r+ji |r
, (1.4)

see e.g. [53–56], with `j = fj + r − j and the highest weights f1 > f2 > · · · > fr−1 > |fr|
are all integers or all half-integers (the last one can also be negative).

However, in general, the situation for Dr is more complicated than for Ar algebra.
The representations of the Lie algebra do not “quantize” trivially, i.e. cannot be lifted to
the Yangian algebra (apart from the symmetric and spinorial representations), see [57]
and [58] for an instructive example. Instead, in order to construct the T-functions, one has
to introduce the representations acting in the so-called Kirillov-Reshetikhin modules [59].
Such modules are known only for rectangular representations (a, s), see appendix A. These
representations have highest weights f1 = f2 = · · · = fa = s and fa+1 = . . . = fr = 0
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for a 6 r − 2 and f1 = . . . = fr−1 = ±fr = s/2 for a = ±. The Kirillov-Reshetikhin
characters are linear combinations of the above mentioned Weyl characters. The symmetric
and spinorial characters in Kirillov-Reshetikhin representation are not different from the
Weyl characters (1.4) but in other representations they do differ.

The generating function for characters in symmetric representations reads

Ks(t, {τi}) = 1− t2∏r
i=1 (1− t(τi + 1/τi) + t2) =

∞∑
k=0

tk χk(τ) (1.5)

so that they coincide with standard Weyl characters (1.4). On the contrary, the KR-
characters for totally antisymmetric representations already differ from usual Dr Weyl
characters (1.4). The generating function of KR characters for these representations reads

Ka(t, {τi}) =
∏r
i=1

(
1− t(τi + 1/τi) + t2

)
1− t2 =

r−2∑
k=0

tk Ψk(τ) + . . . (1.6)

where only the coefficients of tk, up to tr−2 term, give the KR type antisymmetric characters
Ψa=k(τ).

In this work, we propose a QQ-system, appropriate for the Dr algebra, and discuss
the corresponding Hasse diagram. We will also introduce new QQ′-type conditions. From
either the QQ-system or these QQ′-type conditions, one can derive new Weyl-type formulas
for T-functions in the symmetric and antisymmetric representations of Kirillov-Reshetikhin
modules: T-functions are then given in terms of ratios of determinants involving a basic
set of r + 1 Q-functions, generalizing the classical Weyl-type formulas (1.5) and (1.6). In
particular, we will show that these Weyl-type formulas are consistent with the tableau sum
formulas for T-functions. The QQ-relations and QQ′-type conditions were checked using
explicit expressions for T and Q-operators found in [31] at small lengths of the spin chain.

Note added. Shortly after this preprint appeared on the arXiv, the preprint [60] with
partially overlapping results on QQ-systems for Dr algebra was posted on the arXiv.

2 Lax matrix construction and eigenvalues of T-operators

We start by introducing the fundamental R-matrix of so(2r) which was written down in [61].
It is a matrix of size (2r)2 × (2r)2 and it reads

R(x) = x(x+ κ)I + (x+ κ)P− xQ . (2.1)

Here κ = r − 1, the letter I denotes the identity matrix while the permutation P and the
trace operator Q are defined by

P =
2r∑

i,j=1
Eij ⊗ Eji , Q =

2r∑
i,j=1

Ei,j ⊗ Ei′,j′ . (2.2)

The elementary 2r×2r matrices Eij obey the standard relations EijEkl = δjkEil. We use the
notation i′ = 2r−i+1. The R-matrix in (2.1) is related by a similarity transformation to the
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one originally obtained in [61], cf. [31], and generates the extended Yangian X(so(2r)) [62].
It is invariant under transformations

[R(x), B ⊗B] = 0 , (2.3)

if B satisfies the orthogonality condition BB′ = θI with θ ∈ C and B′ij ≡ Bj′i′ .

2.1 Transfer matrix construction for first fundamental

In the following we focus on spin chains of length N with the defining representation at
each site. The quantum space of the spin chain is

V = C2r ⊗ . . .⊗ C2r . (2.4)

The R-matrix (2.1) allows to construct the fundamental transfer matrix T = T1,1, i.e. with
the defining representation in auxiliary space, which contains the Hamiltonian of the spin
chain. It is also convenient to introduce the symmetric generalisations T1,s at this point.
The required Lax matrix was given in [63]. It reads

L(x) = x2I + x
2r∑

i,j=1
Jij ⊗ Eji +

2r∑
i,j=1

Gij ⊗ Eji . (2.5)

with

Gij = 1
2

2r∑
k=1

JkjJik + κ

2Jij −
1
4
(
(κ− 1)2 + 2κs+ s2

)
δij . (2.6)

Here we introduce the generators Jij of so(2r) obeying the commutation relations

[Jij , Jkl] = δjkJil − δi′kJj′l − δjl′Jik′ + δilJj′k′ , (2.7)

with Jij = −Jj′i′ . We stress that the formula for the Lax matrix only holds for symmetric
representations with generators acting on the highest weight state |hws〉 as follows

Jij |hws〉 = 0 , for i < j , Jii|hws〉 = sδ1i|hws〉 (2.8)

where s ∈ N for finite dimensional representations. The generators in such representation
satisfy the characteristic identity

2r∑
j,k=1

(Jij − δij) (Jjk + sδjk)(Jkl − (s+ 2κ)δkl) = 0 , (2.9)

which is needed in order to satisfy the Yang-Baxter equation, see also [64] for a recent
discussion of such constraints. A realisation of the generators Jij for general s in terms of
oscillators can be found in [31]. The defining representation s = 1 can be realised via

Jij = Eij − Ej′i′ . (2.10)

We recover the R-matrix L(x) = R(x− κ
2 ).

– 5 –
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The first space in (2.5) with generators Jij serves as our auxiliary space and the
quantum space is built from N copies of the second one with matrix elements Eij . The
transfer matrix constructed from this monodromy is defined via

T1,s(x) = trDL1(x)L2(x) · · · LN (x) (2.11)

where Li(x) denotes the Lax matrix acting non-trivially on the ith spin chain site and
the trace is taken over the representation with generators Jij . We further introduced a
diagonal twist

D =
r∏

k=1
τJkkk , (2.12)

with the parameters τ ∈ Cr that we already encountered in the definition of characters.
Some symmetries of the transfer matrix constructed via (2.11) can be found in appendix C.1.

The Hamiltonian of the spin chain is obtained from the fundamental transfer matrix T

by taking the logarithmic derivative at the permutation point

H = ∂

∂x
lnT (x)

∣∣∣∣
x=κ

2

=
N∑
i=1
Hi,i+1 . (2.13)

The Hamiltonian density is obtained from the logarithmic derivative of the R-matrix at the
permutation point and it reads

Hi,i+1 = κ−1 (I−Q + κP)i,i+1 (2.14)

and DN the twist (2.12) at site N enters via HN,N+1 = DNHN,1D−1
N . We also remind the

reader that κ = r − 1.

2.2 Diagonalisation of fundamental transfer matrix

As discussed at the end of the previous section, the fundamental transfer matrix T = T1,1
with s = 1 contains the nearest-neighbour Hamiltonian and higher local charges. It has
been diagonalised in [63, 65] using the algebraic Bethe ansatz, see also [66] for a different
nesting procedure and [67] for the trigonometric case. One of the key observations is that
the transfer matrix can be written as

T (x) = T+(x) + T−(x) (2.15)

where the two terms are related via

T t±(−x)|τi→τ−1
i

= T∓(x) . (2.16)

We note that the twist only slightly modifies the derivation of the spectrum of the trans-
fer matrix in [63, 65]. Following the same logic as in the references above we find the
contributions of T± to the eigenvalues of the transfer matrix

T±(x) = q
[1−r]
0 q

[r−1]
0

r∑
k=1

τ∓1
k

q
[±(k−r+2)]
k−1

q
[±(k−r)]
k−1

q
[±(k−r−1)]
k

q
[±(k−r+1)]
k

. (2.17)
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with the notation q[k] ≡ q(x+ k
2 ). In (2.17) above we introduced the Q-functions along the

tail of the Dynkin diagram, cf. figure 2. This equation is valid on the level of operators.
In the diagonal form the Q-functions are written in terms of the Bethe roots x(j)

i at level
j ∈ {1, 2, . . . , r − 2,+,−} corresponding to the nodes of the Dynkin diagram as given in
figure 2. The index i takes values i ∈ {1, 2, . . . ,mj}. Here mj denotes the magnon numbers
~m = (m1, . . . ,mr−2,m+,m−). They are determined for a given state labelled by weight
vector ~n via

~n =



2m1 −m0 −m2
...

2mr−3 −mr−4 −mr−2
2mr−2 −mr−3 −m+ −m−

2m+ −mr−2
2m− −mr−2


(2.18)

where m0 = N is the length of the spin chain, see [63] and ni = fi − fi+1 for 1 6 i < r

and nr = fr−1 + fr. The first Q-functions along the tail of the Dynkin diagram are then
given by

q0(x) = xN , qi(x) =
mi∏
j=1

(x− x(i)
j ) , 1 6 i 6 r − 2 . (2.19)

Here q0 does not depend on any Bethe roots and plays a role similar to that of the A-type
full set Q-function. The last two Q-functions factorise:

qr−1 = s+s− , qr = s
[+1]
+ s

[−1]
+ , (2.20)

where s± are the Q-functions that correspond to the spinorial nodes. They are polynomials
of degree m± in the spectral parameter

s±(x) =
m±∏
i=1

(x− x(±)
i ) . (2.21)

It immediately follows that the last term in (2.17) reduces to the more familiar form

q
[±2]
r−1

q
[0]
r−1

q
[∓1]
r

q
[±1]
r

=
s

[±2]
− s

[∓2]
+

s−s+
. (2.22)

From the definition of the Hamiltonian (2.13) and the eigenvalue equation (2.15) of
the transfer matrix we obtain the energy formula. The eigenvalues of the Hamiltonian are
parametrised by the Bethe roots and read

E = r

r − 1N +
q′1

(
−1

2

)
q1
(
−1

2

) − q′1

(
1
2

)
q1
(

1
2

) = r

r − 1N −
m1∑
k=1

 1
x

(1)
k + 1

2

− 1
x

(1)
k −

1
2

 , (2.23)

cf. [63]. As for the first fundamental representation of A-type, the energy eigenvalues only
depend on the Bethe roots at the first nesting level.
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Dr :

1 2 r − 2 +

−

Figure 2. Dynkin diagram for Dr Lie algebra.

3 QQ-relations from Bethe ansatz equations

The Bethe equations can be read off from the eigenvalue equation of the transfer matrix

T (x) = q
[1−r]
0 q

[r−1]
0

r∑
k=1

τ−1
k

q
[k−r+2]
k−1

q
[k−r]
k−1

q
[k−r−1]
k

q
[k−r+1]
k

+ τk
q

[r−k−2]
k−1

q
[r−k]
k−1

q
[r−k+1]
k

q
[r−k−1]
k

 , (3.1)

which is obtained by combining (2.15) and (2.17). When demanding that the transfer
matrix is regular and Bethe roots are distinct the Bethe equations arise as pole cancellation
conditions. They are conveniently written in terms of Q-functions as

−τk+1
τk

=

q[−1]
k−1

q
[+1]
k−1

q
[+2]
k

q
[−2]
k

q
[−1]
k+1

q
[+1]
k+1


k

, (k = 1, 2, . . . , r − 3)

−τr−1
τr−2

=

q[−1]
r−3

q
[+1]
r−3

q
[+2]
r−2

q
[−2]
r−2

s
[−1]
+

s
[+1]
+

s
[−1]
−

s
[+1]
−


r−2

,

− 1
τr−1τr

=

q[−1]
r−2

q
[+1]
r−2

s
[+2]
+

s
[−2]
+


+

,

− τr
τr−1

=

q[−1]
r−2

q
[+1]
r−2

s
[+2]
−

s
[−2]
−


−

, (3.2)

where (. . . )k with 1 6 k 6 r − 2 indicates that the expression is taken at a root of qk and
(. . . )± at a root of s±.

Along the tail of the Dynkin diagram, cf. figure 2, we induce the standard An type
Plücker QQ-relation

τk − τk+1√
τkτk+1

qk−1qk+1 =
√

τk
τk+1

q+
k q̃
−
k −

√
τk+1
τk

q−k q̃
+
k (3.3)

where qk and q̃k are two different Q-functions at the same level of the Hasse diagram, see
section 5 for that details. The form of the eigenvalue equation (3.1) is unchanged by such
transformation. The Bethe ansatz equations can be restored by shifting the argument of
the QQ-relation by ±1/2, evaluating it at a root of qk and dividing one of the resulting
equations by the other. At the fork of the Dynkin diagram, (r− 2)th node, the QQ-relation
takes the form

τr−2 − τr−1√
τr−2τr−1

qr−3 s+ s− =
√
τr−2
τr−1

q+
r−2q̃

−
r−2 −

√
τr−1
τr−2

q−r−2q̃
+
r−2 . (3.4)
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At the spinorial nodes ±, the QQ-relations are

τr−1τr − 1
√
τr−1τr

qr−2 = √τr−1τrs
+
+ s̃
−
+ −

1
√
τr−1τr

s−+ s̃
+
+ , (3.5)

τr−1 − τr√
τr−1τr

qr−2 =
√
τr−1
τr

s+
− s̃
−
− −

√
τr
τr−1

s−− s̃
+
− . (3.6)

These QQ-relations for spinorial nodes have appeared in [68] in relation to the ODE/IM
correspodence [9] and recently in [69]. In section 5 we propose a more general version of
the QQ-relations.

4 Basic (extremal) Q-functions

A construction of the Q-operators corresponding to the extremal nodes of the Dynkin
diagram, cf. figure 2, was recently proposed in [31]. The latter construction was inspired by
the isomorphism A3 ' D3, admits the expected asympotic behavior (2.18) and has been
checked by showing some functional relations of r = 4 in some examples of finite length. All
functional relations in the following sections are consistent with the proposed Q-operators
and have been verified explicitly for several examples of finite length.

4.1 Q-operator construction for first fundamental

We construct 2r Q-operators Qi with 1 6 i 6 2r corresponding to the first fundamental
node. The Lax matrix needed is of the size 2r× 2r with oscillators as entries and its leading
order in the spectral parameter is quadratic. It reads

L(z) =



z2 + z(2− r − w̄w) + 1
4w̄Jw̄twtJw zw̄− 1

2w̄Jw̄twtJ −1
2w̄Jw̄t

−zw + 1
2Jw̄twtJw zI− Jw̄twtJ −Jw̄t

−1
2wtJw wtJ 1


. (4.1)

The Lax matrix above contains 2(r − 1) oscillators arranged into the vectors w̄ and w as
follows

w̄ = (ā2, . . . , ār, ār′ , . . . , ā2′) , w = (a2, . . . , ar,ar′ , . . . , a2′)t . (4.2)

They obey the standard commutation relations

[ai, āj ] = δij . (4.3)

The matrix J is given in (C.2). The Q-operator Q1 is defined as the regularised trace over
the monodromy of the Lax matrices (4.1) which is constructed by taking the N -fold tensor
product in the matrix space and multiplying in the auxiliary oscillator space:

Q1(x) = τx1 t̂r
[
DL[−1] ⊗ L[−1] ⊗ . . .⊗ L[−1]

]
. (4.4)
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The twist matrix D in the auxiliary space depends on the parameters τi, cf. (2.12) for the
transfer matrix. In the case of the Q-operator Q1 it reads

D =
r∏
i=2

(
τiτ
−1
1

)Ni
(
τ−1
i τ−1

1

)Ni′
, (4.5)

with the number operator Ni = āiai. The trace is defined as

t̂r(DX) = tr(DX)
tr(D) . (4.6)

By construction of the Q-operators, Q1 commutes with the transfer matrices defined
previously. The Q-operator for the case N = 1 is spelled out explicitly in appendix B.

From Q1 we define the remaining 2r − 1 Q-operators at the first fundamental node.
For that we introduce the transformation

B̃ij =
r∑

k=1
k 6=i,j

(Ek′,k′ + Ek,k) + Ei′,j′ + Ej′,i′ + Ei,j + Ej,i , (4.7)

with 1 6 i 6= j 6 r. It belongs to the class of transformations discussed in (2.3) and
commutes with the R-matrix. It follows that the Q-operators defined via

Qi(x) = (B̃1,i ⊗ . . .⊗ B̃1,i)Q1(x)(B̃1,i ⊗ . . .⊗ B̃1,i)
∣∣∣
τ1↔τi

, i = 2, . . . , r (4.8)

and
Qi(x) = (J⊗ . . .⊗ J)Qi′(x) (J⊗ . . .⊗ J)|τi→τ−1

i
, i = r + 1, . . . , 2r (4.9)

also belong to the family of commuting operators. This defines 2r Q-operators

{Q1, Q2, . . . , Q2r} . (4.10)

Up to the exponential prefactor, we identify the q-function q1 with the eigenvalues of the
Q-operator Q1. Here we could have chosen any other single-index Q.

4.2 Q-operator construction for spinor representations

Similarly we proceed for the Q-operators corresponding to the spinorial nodes ± of the
Dynkin diagram in figure 2. Here the Lax matrix is a 2× 2 block matrix with block size
r × r. It reads

Ľ(x) =

 x I + ĀA Ā

A I

 , (4.11)

and contains r(r−1)
2 pairs of oscillators [ai,j , āk,l] = δilδjk. The submatrices Ā and A are of

the form

Ā =


ā1,r′ · · · ā1,2′ 0
... . .

.
0 −ā1,2′

ār−1,r′ 0 . .
. ...

0 −ār−1,r′ · · · −ā1,r′

 , A =


−ar′,1 · · · −ar′,r−1 0
... . .

.
0 ar′,r−1

−a2′,1 0 . .
. ...

0 a2′,1 · · · ar′,1

 . (4.12)
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Similar as before we define the Q-operator as the trace of the monodromy built out of the
Lax matrix Ľ above as

S(x) = (τ1 · · · τr)
x
2 t̂r

[
Ď Ľ[1−r] ⊗ Ľ[1−r] ⊗ . . .⊗ Ľ[1−r]

]
. (4.13)

Here we introduced the twist in the auxiliary space via

Ď =
∏

16i<j6r
(τiτj)āi,j′aj′,i . (4.14)

The remaining Q-operators at the spinorial nodes are obtained through the similarity
transformation

B(~α) = 1
2

r∑
i=1

(
(1 + αi)(Ei′,i′ + Ei,i) + (1− αi)(Ei′,i + Ei,i′)

)
, (4.15)

with αi = ±1, that commutes with the R-matrix, cf. (2.3), and subsequently inverting the
twist parameters. For αi = 1 the matrix B(~α) reduces to the identity. We define

S~α(x) = (B(~α)⊗ . . .⊗B(~α))S(x)(B(~α)⊗ . . .⊗B(~α))|τi→ταii , (4.16)

labelled by ~α = (α1, . . . , αr) with αi = ±1. By construction the 2r operators S~α commute
with one another. We choose to identify s± with S(+1,...,+1,±1) up to the exponential
prefactor.

5 The QQ-system for Dr

In this section we introduce the QQ-system. It has been verified at small finite length
using the construction [31] that was reviewed in section 4. In total we have 3r − 2r−1r + 2
Q-functions, see figure 4 and figure 5 for r = 3, 4 examples.

The QQ-relations along the tail of the Dynkin diagram have a structure similar to those
for Ar but the labeling of single-index functions is different. We shall say that a subset I of
{1, . . . , 2r} is acceptable if for all 1 6 k 6 r, the integers k and k′ = 2r− k + 1 do not both
belong to I. In particular, an acceptable set cannot have more than r elements: |I| 6 r. A
Q-function QI is associated to each acceptable I and these functions satisfy the relations

Q
[+1]
J∪{i}Q

[−1]
J∪{j} −Q

[−1]
J∪{i}Q

[+1]
J∪{j} = τi − τj√

τiτj
QJQJ∪{i,j} (5.1)

where τi = τ−1
i′ for i > r, {i, i′}∩{j, j′} = ∅, J is acceptable of order at most r− 2 and does

not contain i, i′, j or j′. We have excluded here the case where k and k′ are contained in
the same set as the Q-functions defined this way would not have the expected asymptotic
behavior. For the Dr spin chains under consideration, the Q-operator of the empty set can
be conveniently fixed as

Q∅(x) = xN , (5.2)

though such a choice for a generic Dr QQ-system can be changed by a gauge transformation,
see below in this section.
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Q{i1,i2}

Q{i1}

Q{i1,i3}

Q{i2}

Q{i2,i3}

Q{i3}

Q∅

Q{i1,i2,i3}

Figure 3. Directed Hasse diagram for D3.

As discussed at the end of the section 2, the Q-operators QI with |I| = r− 1 or |I| = r

factorise into spinorial Q-functions. More precisely,

Q{i1,...,ir−1} = S{i1,...,ir−1,ir}S{i1,...,ir−1,i′r} , (5.3)

and
Q{i1,...,ir} = S

[+1]
{i1,...,ir}S

[−1]
{i1,...,ir} . (5.4)

The set notation for the Q-operators SI can be mapped to the notation S~α in the previous
subsection using ~α as follows: to an acceptable set I of order r we associate ~α such that,
for 1 6 i 6 r,

αi =
{

+1 if i ∈ I
−1 if i′ ∈ I

. (5.5)

We thus obtain a one-to-one correspondence between S{i1,...,ir} and S~α as defined in (4.16).
We further remark that the polynomial structure of the spinorial Q-functions allows to
determine them from the quadratic relations (5.3) and (5.4).

The QQ-relation (5.1) can be summarised in a Hasse diagram which recalls that of
the Ar case. The latter is exemplified for D3 in figure 3. However, the last two levels
are nontrivial: the level |I| = (r − 1) factorises according to (5.3) and the level |I| = r,
according to (5.4). In total, there are

2k
(
r

k

)
(5.6)

Q-funtions QI at level k. At the last two levels the Q-functions split according to (5.3)
and (5.4) such that (5.6) remains valid for 1 6 k 6 r−2 and 2 ·2r−1 spinorial Q-functions S~α
distinguished by

∏r
i=1 αi = ±1 are assigned to (r − 1)’th and r’th spinor node, respectively.

Let SI and SJ denote two Q-functions labelled by some acceptable sets I and J verifying
|I ∩ J | = r − 2, i.e.

I = {i1, . . . , ir−2, ir−1, ir} and J = {i1, . . . , ir−2, i
′
r−1, i

′
r} . (5.7)
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S+,+,+ S+,−,− S−,+,− S−,−,+ S+,+,− S+,−,+ S−,+,+ S−,−,−

Q1 Q2 Q3 Q3′ Q2′ Q1′

S+,∅ S−,∅

Q∅

Figure 4. Hasse diagram of mixed orientation for D3. In a particular gauge, the functions at the
first and last level nodes can be chosen as in (5.17).

It follows that they must belong to the same node of the Dynkin diagram. Among them we
have the QQ-relations

S
[+1]
I S

[−1]
J − S[−1]

I S
[+1]
J =

τir−1τir − 1
√
τir−1τir

QI∩J (5.8)

which relate the spinorial Q-functions to the last Q-functions on the tail of the Dynkin
diagram, i.e. at the r − 2’th node. Notice that for each level r − 2 Q-function there are two
ways to obtain them from spinorial Q-functions, e.g.: when r = 4, I ∩ J = {1, 3} can come
from I = {1, 3, 2, 4} and J = {1, 3, 7, 5} or from I = {1, 3, 2, 5} and J = {1, 3, 7, 4}. This
relation allows us to resolve the last two levels in the Dr Hasse diagram, cf. figure 4 and
figure 5 for the cases D3 and D4, respectively. A more detailed explanation of the elements
of the Hasse diagram can be found in appendix E. Let us note that the D3 Hasse diagram
of figure 4 is (up to a gauge transformation setting Q∅ to 1) the same as the A3 one, this is
not surprising since the two algebras are isomorphic. The D4 Hasse diagram, on the other
hand, is new and gives a clear idea of the higher rank picture. Here we used the directions
of the arrows in the Hasse diagram to distinguish from the QQ-relations (5.1) used for the
last nodes as depicted in figure 3.

Using the QQ-relations in (5.1) we can express all Q-functions QI in terms of Casoratian
determinants of single-index Q-functions. We find

Q{i1,...,ik} =
(√τi1 · · · τik) k−1∏
16a<b6k (τia − τib)

∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k∏k−1

l=1 Q
[k−2l]
∅

(5.9)

with ia 6= ib, ia 6= i′b and τi = τ−1
i′ for i > r. Similar formulas exist with spinorial

Q-functions: if I is an acceptable set of order k 6 r − 2 and ik+1, . . . , ir are such that
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12 13 14 23 24 34 14′ 13′ 12′ 24′ 23′ 21′ 34′ 32′ 31′ 43′ 42′ 41′ 4′3′ 4′2′ 4′1′ 3′2′ 3′1′ 2′1′

1 2 3 4 4′ 3′ 2′ 1′

+ + ++ + +−− +−+− +−−+ −+ +− −+−+ −−++ −−−− + + +− + +−+ +−++ +−−− −+ ++ −+−− −−+− −−−+

∅+ ∅−

∅

Figure 5. Hasse diagram of mixed orientation for D4. Here, the level 1 and level 2 Q-operators QI
are abbreviated by their index set I. The third level contains the spinorial Q-operators S~α which
are abbreviated by ~α. Finally, we have Q∅ (denoted by ∅) at the lowest level and S±,∅ (denoted by
∅±) at the highest level. These are proportional to the identity and can be fixed via (5.17).

Ir = I ∪ {ik+1, . . . , ir} is acceptable of order r then one has

QI =
(√τik+1 · · · τir) r−k−1∏
k+16a<b6r (τib − τia)

∣∣∣∣∣∣∣∣∣∣∣∣∣

S
[r−k−1]
I∪{i′

k+1,ik+2,...,ir} S
[r−k−3]
I∪{i′

k+1,ik+2,...,ir} · · · S
[1+k−r]
I∪{i′

k+1,ik+2,...,ir}

S
[r−k−1]
I∪{ik+1,i

′
k+2,...,ir}

S
[r−k−3]
I∪{ik+1,i

′
k+2,...,ir}

· · · S[1+k−r]
I∪{ik+1,i

′
k+2,...,ir}

...
...

. . .
...

S
[r−k−1]
I∪{ik+1,...,ir−1,i′r}

S
[r−k−3]
I∪{ik+1,...,ir−1,i′r}

· · · S[1+k−r]
I∪{ik+1,...,ir−1,i′r}

∣∣∣∣∣∣∣∣∣∣∣∣∣∏r−k−2
l=1 S

[r−k−1−2l]
Ir

.

(5.10)

Gauge transformation. The QQ-system as written above corresponds to a particular
choice of gauge. In order to describe this gauge freedom, we draw inspiration from the r = 3
case, see appendix D. One needs to introduce two new Q-functions S±,∅, (5.1) and (5.3)
remain unchanged while (5.4) and (5.8) become

QI = S
[+1]
I S

[−1]
I S−ε(I),∅ (5.11)

and
S

[+1]
I S

[−1]
J − S[−1]

I S
[+1]
J =

τir−1τir − 1
√
τir−1τir

QI∩J Sε(I),∅ (5.12)
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where I = {i1, . . . , ir} and J = {i1, . . . , ir−2, i
′
r−1, i

′
r} are acceptable sets of order r and we

define ε(I) =
∏r
i=1 αi = ε(~α) with ~α associated to I according to (5.5). These QQ-relations

remain unchanged if one applies the gauge transformation, depending on three arbitrary
functions g, g+ and g−, given by

S+,∅ 7→
g

[+3]
+ g

[−1]
−

g
[+1]
+ g

[−3]
−

S+,∅ , S−,∅ 7→
g

[+3]
− g

[−1]
+

g
[+1]
− g

[−3]
+

S−,∅ , (5.13)

S~α 7→
g

[+2]
+ g−

g+g
[−2]
−

gS~α , if ε(~α) = + , (5.14)

S~α 7→
g

[+2]
− g+

g−g
[−2]
+

gS~α , if ε(~α) = − , (5.15)

QI 7→
g

[|I|+3−r]
+ g

[|I|+3−r]
−

g
[r−3−|I|]
+ g

[r−3−|I|]
−

g[r−1−|I|]g[|I|+1−r]QI (5.16)

for I acceptable. In this paper we work in the “spin chain” gauge

Q∅(x) = xN , S±,∅(x) = 1 (5.17)

and the Q-functions are polynomials in the spectral parameter up to twist-dependent
exponential prefactors.

6 Transfer matrix in terms of fundamental Q’s

In section 2.2 we gave the transfer matrix in terms of one single Q-function for each nesting
level. We can use the Casoratian formula (5.9) to express the transfer matrix only in terms
of Q∅ and a half the number of fundamental Q-functions Q{i}. We will show in this section
that the transfer matrix is then given by

T = Q
[r−1]
∅ Q

[3−r]
∅

|Q[r+2−2b−2δb,r]
{ia} |r

|Q[r+2−2b]
{ia} |r

+Q
[1−r]
∅ Q

[r−3]
∅

|Q[2b−r−2+2δb,r]
{ia} |r

|Q[2b−r−2]
{ia} |r

(6.1)

with ia 6= ib and ia 6= i′b for all a 6= b.
This formula fulfills, at least for the fundamental T-function, one of the main purposes of

our paper – to derive the Weyl-type expressions for the transfer matrices of spin chains based
on Dr algebra, “quantizing” in this way the classical Weyl character determinant formula.
The latter can be restored in the classical limit x→∞. In that limit Q{j}(x) ∼

x→∞
τxj x

Jj+N

while the fundamental T behaves as x2N ∑r
j=1(τj + 1

τj
).

6.1 Induction

We can prove the formula (6.1) by expressing the transfer matrix in terms of the first r
fundamental Q-functions, as in (5.9), and inserting it into (2.17). We obtain

T± = Q
[±(r−1)]
∅ Q

[±(3−r)]
∅

r∑
k=1

∣∣∣Q[±(2k−r−2j+2)]
{i}

∣∣∣
k−1∣∣∣Q[±(2k−r−2j)]

{i}

∣∣∣
k−1

∣∣∣Q[±(2k−r−2j)]
{i}

∣∣∣
k∣∣∣Q[±(2k−r−2j+2)]

{i}

∣∣∣
k

(6.2)
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The desired expression (6.1) for the transfer matrix (in the case ia = a) follows from (6.2)
using the identity

r∑
k=1

∣∣∣Q[±(2k−r−2j+2)]
{i}

∣∣∣
k−1∣∣∣Q[±(2k−r−2j)]

{i}

∣∣∣
k−1

∣∣∣Q[±(2k−r−2j)]
{i}

∣∣∣
k∣∣∣Q[±(2k−r−2j+2)]

{i}

∣∣∣
k

=

∣∣∣Q[±(r+2−2j−2δj,r)]
{i}

∣∣∣
r∣∣∣Q[±(r+2−2j)]

{i}

∣∣∣
r

(6.3)

which can be shown by induction on r. It obviously holds true for r = 1. It remains to
show that∣∣∣Q[±(r+3−2j−2δj,r)]

{i}

∣∣∣
r+1∣∣∣Q[±(r+3−2j)]

{i}

∣∣∣
r+1

=

∣∣∣Q[±(r+1−2j−2δj,r)]
{i}

∣∣∣
r∣∣∣Q[±(r+1−2j)]

{i}

∣∣∣
r

+

∣∣∣Q[±(r−2j+3)]
{i}

∣∣∣
r∣∣∣Q[±(r−2j+1)]

{i}

∣∣∣
r

∣∣∣Q[±(r−2j+1)]
{i}

∣∣∣
r+1∣∣∣Q[±(r−2j+3)]

{i}

∣∣∣
r+1

, (6.4)

or equivalently (assuming the determinants are non-vanishing)

∣∣∣Q[∓(2j−1+2δj,r+1)]
{i}

∣∣∣
r+1

∣∣∣Q[∓(2j+1)]
{i}

∣∣∣
r

=
∣∣∣Q[∓(2j−1)]
{i}

∣∣∣
r+1

∣∣∣Q[∓(2j+1+2δj,r)]
{i}

∣∣∣
r

+
∣∣∣Q[∓(2j−1)]
{i}

∣∣∣
r

∣∣∣Q[∓(2j+1)]
{i}

∣∣∣
r+1

.
(6.5)

The latter identity can be proven as follows: one first expands each of the (r + 1)× (r + 1)
determinants with respect to the row involving Q{r+1}. Both sides become linear combination
of Q[∓(2j−1)]

{r+1} for 1 6 j 6 r + 2 and one just has to check that the coefficients on each side
are the same. For j ∈ {1, r + 1, r + 2} this is completely trivial whereas for j ∈ {2, . . . , r}
this becomes3

|C1, . . . , Cj−1, Cj+1, . . . , Cr, Cr+2||C2, . . . , Cr+1|
= |C1, . . . , Cj−1, Cj+1, . . . , Cr, Cr+1||C2, . . . , Cr, Cr+2|
− |C1, . . . , Cr||C2, . . . , Cj−1, Cj+1, . . . , Cr+2| (6.6)

where Cj is the transpose of the row vector
(
Q

[∓(2j−1)]
{1} , . . . , Q

[∓(2j−1)]
{r}

)
. This last equality is

a particular case of a Plücker identity (or Sylvester’s lemma): if M and N are two matrices
of the same size with columns M1, . . . ,Mr and N1, . . . , Nr respectively then the following
identity holds for any k ∈ {1, . . . , r},

detM detN =
r∑
l=1
|M1, . . . ,Mk−1, Nl,Mk+1, . . . ,Mr||N1, . . . , Nl−1,Mk, Nl+1, . . . , Nr| .

(6.7)
In our case M = (C1, . . . , Cj−1, Cj+1, . . . , Cr, Cr+2) and N = (C2, . . . , Cr+1) have many
columns in common so that if we decide to exchange Mr = Cr+2 only two terms survive in
the sum (when l = j − 1 or l = r) and they give exactly what we want.

3We use here another notation for determinants: if M is a p× p matrix with columns M1, . . . ,Mp, we
write detM = |M1, . . . ,Mp|.

– 16 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
3

6.2 Reshuffling Q-functions in the transfer matrix

Here we show that the expression for the transfer matrix (6.1) in terms of r fundamental
Q-functions is invariant under the replacement Qia 7→ Qi′a for any a. By obvious symmetry
with respect to permutations of the functions Qi, i ∈ {1, 2, . . . , r} it suffices to show that
the transfer matrix is invariant under Qir 7→ Qi′r . This is the case if

Q
[r−1]
∅ Q

[3−r]
∅

Q
[r−3]
∅ Q

[1−r]
∅

= −
Ť
{i1,...,ir}
− − Ť {i1,...,i

′
r}

−

Ť
{i1,...,ir}
+ − Ť {i1,...,i

′
r}

+
(6.8)

where we defined

Ť
{a1,...,ar}
± =

∣∣∣Q[∓(2j−r−2+2δj,r)]
{ai}

∣∣∣
r∣∣∣Q[∓(2j−r−2)]

{ai}

∣∣∣
r

. (6.9)

Using the Jacobi identity on determinants, one can rewrite the numerator and the denomi-
nator in the previous condition as

Ť
{i1,...,ir}
− − Ť {i1,...,i

′
r}

− = (−1)1+b r2 c
W

[−2]
i1,...,ir−1

Wi′r,i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,i′r

(6.10)

and

Ť
{i1,...,ir}
+ − Ť {i1,...,i

′
r}

+ = (−1)1+b r−1
2 c+r

W
[−2]
i1,...,ir−1

Wi′r,i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,i′r

(6.11)

with
Wi1,...,ik :=

∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k
. (6.12)

The condition (6.8) then reads

Q
[r−1]
∅ Q

[3−r]
∅

Q
[r−3]
∅ Q

[1−r]
∅

=
W

[−2]
i1,...,ir−1

W
[+1]
i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,i′r

W
[+2]
i1,...,ir−1

W
[−1]
i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,i′r

(6.13)

which is indeed satisfied due to the trivial relation

Q{i1,...,ir−1,ir}Q{i1,...,ir−1,i′r}

Q
[+1]
{i1,...,ir−1}Q

[−1]
{i1,...,ir−1}

= 1 , (6.14)

following immediately from the factorisation properties of the Q-functions (5.3) and (5.4).

7 Bethe ansatz equations of Wronskian type

We propose here a Wronskian relation on r + 1 Q-functions which could serve for finding
the Bethe roots and, eventually, the energy of the state. We call it the Wronskian BAE, in
analogy to the very useful Wronskian BAE for the Ar Heisenberg XXX spin chain which
has the form

|Qj(x+ r − 2k + 2)|r+1 = xN
∏

16i<j6r+1
(τi − τj) (7.1)
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where Q-functions have the form (1.2). Solving the Wronskian relation above is often more
efficient than solving the Bethe equations. This alternative method of finding Bethe roots
was proposed in [36] and further extended in [40, 70, 71].

A similar relation for D-type spin chain is not as simple. In the following, we propose
to use for this purpose the equation (5.10) when I = ∅:∣∣∣∣∣∣∣∣∣∣∣∣

S
[r−1]
{i′1,i2,...,ir}

S
[r−3]
{i′1,i2,...,ir}

· · · S
[1−r]
{i′1,i2,...,ir}

S
[r−1]
{i1,i′2,...,ir}

S
[r−3]
{i1,i′2,...,ir}

· · · S
[1−r]
{i1,i′2,...,ir}

...
...

. . .
...

S
[r−1]
{i1,...,ir−1,i′r}

S
[r−3]
{i1,...,ir−1,i′r}

· · · S[1−r]
{i1,...,ir−1,i′r}

∣∣∣∣∣∣∣∣∣∣∣∣
=
∏

16a<b6r (τib − τia)
(√τi1 · · · τir) r−1 Q∅

r−2∏
l=1

S
[r−1−2l]
Ir

(7.2)
where we recall that Ir = {i1, . . . , ir} ⊂ {1, . . . , 2r} is such that {ia, i′a} ∩ {ib, i′b} = ∅ for
all a 6= b. The spinorial Q-functions are polynomials up to a twist-dependent exponential
prefactor, their leading asymptotic behaviour is completely determined by the global charges
Ji = −Ji′ =

∑N
k=1 J

(k)
ii , it is given by

S{i1,...,ir}(x) ∼
x→∞

(
r∏

a=1
τia

)x
2

x
1
2 (
∑r

a=1 Jia+N) . (7.3)

The hope would be that, once the global charges are fixed, it suffices to solve equation (7.2)
for the unknowns that are the coefficients of the polynomial parts of the spinorial Q-functions.
In the Ar case, we thus get exactly all the eigenstates with such a weight. However, this
does not seem to be the case here. First of all, one should notice that there are 2r equations
of the type (7.2) (as many as there are spinorial Q-functions SIr). For a given choice of Ir,
the number of unknown coefficients can be easily computed to be N + r−1

2 (
∑r
a=1 Jia +N),

it thus seems natural to chose Ir such that
∑r
a=1 Jia is minimal. Nonetheless, since the

degree of the polynomials on each side of the equation is N + r−2
2 (

∑r
a=1 Jia +N), as soon

as
∑r
a=1 Jia > −N , there does not seem to be enough equations to fix all the coefficients.

This is understandable if one looks at the case r = 3: the proposed equation does not
coincide with (7.1), it is instead the expression of Q-functions with three indices in terms of
single-index Q-functions. A possible way to resolve this issue would be to solve (7.2) for
different choices of Ir and to look for common sets of solutions.

Once the Wronskian BAE has been solved, we have enough spinorial Q-functions to
recover r single-index Q-functions using (5.10). Any of them can be used to compute the
energy of the state through (2.23).

A Wronskian BAE for single-index Q-functions would be (6.14), which also reads

Q
[r−2]
∅ Q

[2−r]
∅

∣∣∣Q[r+1−2b]
{ia}

∣∣∣
r−1

∣∣∣Q[r−1−2b]
{ia}

∣∣∣
r−1

=
r−1∏
a=1

τia
(τia−τir)

(
τia−τi′r

) ∣∣∣Q[r+1−2b]
{ia}

∣∣∣
r

∣∣∣Q[r+1−2b]
{ja}

∣∣∣
r

(7.4)
where ja = ia for 1 6 a 6 r − 1 and jr = i′r and the asymptotic behaviour of the relevant
functions is given by

Q{i}(x) ∼
x→∞

τxi x
N+Ji . (7.5)

Once again there are 2r equations of this type but they are of higher order than (7.2).
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8 QQ′-type formulas for T-functions

In this section we first present QQ′-formulas for the symmetric and spinorial T-operators.
The reasoning behind our rather heuristic derivation is in analogy to [29] where the BGG
resolution [72] was used. Here we give arguments on the level of characters, see also [33],
which we take as hints to obtain the actual BGG-type relation for the fundamental and
spinorial transfer matrices. The final formulas have been checked in several examples for
small finite lengths. Further we provide a consistency check. Namely, we recover the Weyl-
type expression for the fundamental transfer matrix (6.1) by reducing there the number of
used single-index Q-functions from 2r to r. In the final subsection we introduce the Hirota
equation [73] and solve it using the QQ′-formulas for symmetric T-operators. This yields
QQ′-type formulas for any rectangular transfer matrix Ta,s.

8.1 Symmetric transfer matrices

In [31] it was argued that the product of Lax matrices can be brought to the form

L
(1)
i (x+ xi)L(2)

i′ (x− xi) = SiL
+,(1)
i (x)G(2)

i S−1
i (8.1)

where the Lax operator Li are defined via Li(x) = B̃1,i L(x) B̃1,i for i = 1, . . . , r and
Li(x) = JLi′(x)J for i = r + 1, . . . , 2r, see section 4.1. The superscripts (1, 2) indicate two
different families of oscillators. The letter Si denotes a similarity transformation in the
oscillators space and Gi a dummy matrix that does not depend on the spectral parameter
and commutes with the Lax matrix L+

i (x). Their precise form is given in [31]. We identify
the Lax matrix L+

i (x) as a realisation of (2.5). The parameter xi then plays the role of the
representation label. We stress that the term linear in the spectral parameter is given by the
generators Jij , cf. (2.5). In the case (8.1), the representation of so(2r) is infinite-dimensional
in the oscillators space and becomes reducible for certain values of the parameter xi. The
infinite-dimensional representation of so(2r) is characterised by its character. For example
for i = 1 the Cartan elements are of the form

J1,1 = 1− r + 2x1 −
2r−1∑
k=2

ākak , (8.2)

Ji,i = āiai − āi′ai′ , 2 6 i 6 r . (8.3)

The character can then be computed via

χ+
1 (x1) ≡ tr

r∏
i=1

τJiii = τ2x1
1

r∏
k=2

τ1
(τ1 − τk)(τ1 − τk′)

. (8.4)

We find similar formulas for the product of Lax matrices Li(x+xi)Li′(x−xi) by exchanging
τ1 ↔ τi and x1 → xi for 1 6 i 6 r and τj → τ−1

j , xi → xi′ for i > r, cf. section 4.1. The
twist dependent prefactor is invariant under τi → τ−1

i . We find

χ+
i (xi) =

τ
+2xi
i

∏
k 6=i

τi
(τi−τk)(τi−τk′ )

, 1 6 i 6 r

τ−2xi
i′

∏r
k 6=i′

τi′
(τi′−τk)(τi′−τk′ )

, r < i 6 2r
. (8.5)
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The finite dimensional characters are related to the one above by the sum formula

χs =
2r∑
i=1

χ+
i

(
s+ r − 1

2

)
=

r∑
i=1

∏
j 6=i

τi(
τi − τj′

)
(τi − τj)

(τ s+r−1
i + τ s+r−1

i′

)
. (8.6)

From our results for finite length and the discussion above we find that the formula can be
lifted to transfer matrices and Q-operators. It reads

T1,s(x) =
r∑
i=1

∏
j 6=i

τi(
τi − τj′

)
(τi − τj)

(Q[s+r−1]
{i} Q

[1−r−s]
{i′} +Q

[1−r−s]
{i} Q

[s+r−1]
{i′}

)
. (8.7)

Notice that in the limit x→∞ (8.7) becomes (8.6), as it should be.

8.2 Spinorial transfer matries

A similar factorisation formula as (8.1) exists for the spinorial Lax matrices (4.11). It reads

Ľ
(1)
~α (x+ x~α)Ľ(2)

−~α(x− x~α − κ) = Š~αĽ
+,(1)
~α (x)Ǧ(2)

~α Š−1
~α . (8.8)

Here we defined Ľ~α(x) = B(~α)Ľ(x)B(~α) and use a notation similar to that in (8.1). The
similarity transformation Š~α only depends on the oscillators and Ǧ~α is a matrix that is
independent of the spectral parameter and commutes with the Lax matrix Ľ+

~α . The latter
denotes an infinite-dimensional realisation of the spinorial Lax matrix

Ľ(x) = zI + Jij ⊗ Eji , (8.9)

where Jij denote the generators of a spinorial representation. Again the parameter x~α
in (8.8) has the role of the representation label. As before we compute the character of the
oscillator representation. In the case ~α = (+, . . . ,+) we find

χ(+,...,+) ≡ tr
r∏
i=1

τJiii =
r∏
i=1

τ
x(+,...,+)
i

∏
16j<k6r

τjτk
τjτk − 1 , (8.10)

where

Jii = x(+,...,+) −
r∑

j=i+1
āi,j′aj′,i −

i−1∑
j=1

āj,i′ai′,j , 1 6 i 6 r . (8.11)

The general formula can be obtained using the relations among the spinorial Lax matrices
as presented in section 4.2. We get

χ+
~α (x~α) =

r∏
i=1

ταix~αi

∏
16j<k6r

τ
αj
j ταkk

τ
αj
j ταkk − 1

, (8.12)

The characters of the finite-dimensional spinor representations with f=(s/2, . . . , s/2,±s/2)
can then be written as

χ±,s =
∑
{αi}±

χ+
~α

(
s

2

)
=

∑
{αi}±

r∏
i=1

τ
s
2αi
i

∏
16j<k6r

τ
αj
j ταkk

τ
αj
j ταkk − 1

. (8.13)

Here the sum is taken over all configurations {~α}± such that
∏
i α = ±1.
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On the level of monodromies, we propose the formula

T±,s =
∑
{αi}±

∏
16j<k6r

τ
αj
j ταkk

τ
αj
j ταkk − 1

r∏
i=1

τ
−κ2αi
i S

[r+s−1]
~α S

[1−s−r]
−~α . (8.14)

This formula has been verified for small finite lengths by comparing to the transfer matrices
directly constructed within the quantum inverse scattering method using the Lax matrices
in (8.9) for finite-dimensional spinor representations.

8.3 Derivation of Weyl-type formula for T1,1 from QQ′-relations

Let us write (8.7) as

T1,s =
2r∑
i=1

hiQ
[s+r−1]
{i} Q

[1−r−s]
{i′} (8.15)

where hi =
∏r
j( 6=i,i′)(ui − uj)−1 and uj = τj + 1/τj . We further assume that when s ∈

{1− r, . . . , 0} the identity is still verified if one sets

T1,0 = Q
[r−2]
∅ Q

[2−r]
∅ and T1,s = 0 for 1− r 6 s 6 −1 . (8.16)

We show here that the conditions (8.15) and (8.16) are enough to recover the expression (6.1)
giving T1,1 in terms of only r of the single-index Q-functions, and so are consistent with
it. We also show in appendix F.1 how to retrieve the Wronskian equation (7.4) from these
conditions.

One simply has to notice that (8.15) implies that there exist some Q-dependent
coefficients Cj,k′,k (defined for 0 6 k′ 6 k 6 r and 0 6 j 6 k − k′) such that

k∑
k′=0

k−k′∑
j=0

Cj,k′,kT
[2j+k′−k]
1,k′+1−r =

r∑
i=1

hi

∣∣∣∣∣∣∣∣∣∣∣

Q
[−k]
1 Q

[−k+2]
1 · · · Q[k]

1
...

...
...

Q
[−k]
k Q

[−k+2]
k · · · Q[k]

k

Q
[−k]
i Q

[−k+2]
i · · · Q[k]

i

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Q
[−k]
1 Q

[−k+2]
1 · · · Q[k]

1
...

...
...

Q
[−k]
k Q

[−k+2]
k · · · Q[k]

k

Q
[−k]
i′ Q

[−k+2]
i′ · · · Q[k]

i′

∣∣∣∣∣∣∣∣∣∣∣
(8.17)

It suffices indeed to expand the determinants with respect to their last row and perform
the sum over i. One has for instance

C0,k,k = (−1)k

∣∣∣∣∣∣∣∣∣
Q

[−k]
1 · · · Q[k−2]

1
...

...

Q
[−k]
k · · · Q[k−2]

k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Q

[−k+2]
1 · · · Q[k]

1
...

...

Q
[−k+2]
k · · · Q[k]

k

∣∣∣∣∣∣∣∣∣ . (8.18)

In particular, plugging the constraints (8.16) in the previous relation when k = r gives us

C0,r−1,rQ
[r−3]
∅ Q

[1−r]
∅ + C1,r−1,rQ

[r−1]
∅ Q

[3−r]
∅ + C0,r,rT1,1 = 0 . (8.19)

Since

C0,r−1,r = (−1)r+1
∣∣∣Q[−r+2j]

i

∣∣∣
r
×
∣∣∣Q[−r+2j−2+2δj,r]

i

∣∣∣
r

and C1,r−1,r = (−1)r+1
∣∣∣Q[−r+2j−2]

i

∣∣∣
r
×
∣∣∣Q[−r+2j−2δj,1]

i

∣∣∣
r

(8.20)

we recover (6.1) in the case ia = a. Notice that with this derivation, the symmetry under
Q{i} ↔ Q{i′} is immediate because the equations we started from were already symmetric.
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8.4 Transfer matrices for general rectangular representations

In this section we propose relatively simple formulas for T-functions in rectangular represen-
tations in terms of bi-linear expressions involving Wronskians of both types of single-index
Q-functions, Qi and Qi′ , where i = 1, 2, . . . , r. These formulas follow from (8.7) when
solving the Hirota equations [73] satisfied by the T-functions. These equations read as
follows (s ∈ N∗):

T [+1]
a,s T [−1]

a,s = Ta,s+1 Ta,s−1 + Ta−1,s Ta+1,s (8.21)

for 1 6 a 6 r − 3,

T
[+1]
r−2,s T

[−1]
r−2,s = Tr−2,s+1 Tr−2,s−1 + Tr−3,s T+,s T−,s , (8.22)

which can be written in the same form as the previous equation if one sets Tr−1,s = T+,sT−,s,
and

T
[+1]
±,s T

[−1]
±,s = T±,s+1 T±,s−1 + Tr−2,s . (8.23)

The boundary conditions are (0 6 a 6 r − 2, s ∈ N)

Ta,0 = Q
[r−a−1]
∅ Q

[a+1−r]
∅ , T0,s = Q

[r+s−1]
∅ Q

[1−r−s]
∅ , (8.24)

and
T±,0(x) = Q∅(x) . (8.25)

We shall determine here the QQ′-type relations for Ta,s for 1 6 a 6 r − 1, but not for
T±,s. For these spinorial transfer matrices, the spinorial Q-functions seem more suitable,
see equation (8.14). We start from

T
[+1]
1,s T

[−1]
1,s − T1,s−1T1,s+1 =

∑
16i1<i262r

hi1hi2

∣∣∣∣∣∣Q
[s+r]
{i1} Q

[s+r−2]
{i1}

Q
[s+r]
{i2} Q

[s+r−2]
{i2}

∣∣∣∣∣∣
∣∣∣∣∣∣Q

[2−s−r]
{i′1}

Q
[−s−r]
{i′1}

Q
[2−s−r]
{i′2}

Q
[−s−r]
{i′2}

∣∣∣∣∣∣ (8.26)

which can be also written, if the transfer matrices satisfy the Hirota equation (8.21) with
boundary conditions (8.24), as follows

T
[+1]
1,s T

[−1]
1,s − T1,s−1 T1,s+1 = T0,s T2,s = Q

[r+s−1]
∅ Q

[1−r−s]
∅ T2,s. (8.27)

Putting the two expressions together yields the following expression for the second row of
transfer matrices:

T2,s = 1
Q

[r+s−1]
∅ Q

[1−r−s]
∅

∑
16i1<i262r

hi1hi2

∣∣∣∣∣∣Q
[s+r]
{i1} Q

[s+r−2]
{i1}

Q
[s+r]
{i2} Q

[s+r−2]
{i2}

∣∣∣∣∣∣
∣∣∣∣∣∣Q

[2−s−r]
{i′1}

Q
[−s−r]
{i′1}

Q
[2−s−r]
{i′2}

Q
[−s−r]
{i′2}

∣∣∣∣∣∣ . (8.28)

This procedure can be continued for 1 6 a 6 r − 1, it yields

Ta,s = 1∏a−1
k=1Q

[r+s+2k−a−1]
∅ Q

[1+a−r−s−2k]
∅

∑
16i1<...<ia62r

hi1 · · ·hiaW
[s+r−1]
i1,...,ia

W
[1−s−r]
i′1,...,i

′
a
,

(8.29)
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where we recall that Wi1,...,ik =
∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k
. The proof of this formula, which we present

in appendix F.2, boils down to verifying the relation

1
2

∑
16i1<···<ia62r
16j1<···<ja62r

∣∣∣∣∣W
[s+r]
i1,...,ia

W
[s+r−2]
i1,...,ia

W
[s+r]
j1,...,ja

W
[s+r−2]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣W

[2−s−r]
i′1,...,i

′
a

W
[−s−r]
i′1,...,i

′
a

W
[2−s−r]
j′1,...,j

′
a
W

[−s−r]
j′1,...,j

′
a

∣∣∣∣∣
=

 ∑
16i1<···<ia−162r

W
[s+r−1]
i1,...,ia−1

W
[1−s−r]
i′1,...,i

′
a−1

 ∑
16i1<···<ia+162r

W
[s+r−1]
i1,...,ia+1

W
[1−s−r]
i′1,...,i

′
a+1

 . (8.30)

9 Weyl-type formulas for T-functions from tableaux representations

The tableaux sum formulas of [46] give expressions for the transfer matrices of any rectangular
representation Ta,s through the single terms in the sum of the transfer matrix (2.15) as
given in (2.17). In total there are 2r different terms (boxes), r for T+ and r for T−. Instead
of using the summands in the form (2.17) involving Q’s of different levels, we shall express
them either in terms of Q∅ and r single-index Q-functions as in (6.2) or in terms of r + 1
spinorial Q-functions. This will yield new expressions for totally symmetric T1,s and totally
antisymmetric Ta,1 T-functions.

We start from the expressions (6.2) for T± such that

T1,1 = T+ + T− =
2r∑
k=1

bk,r (9.1)

where bk,r denotes a box as given in [46] for Dr with index k. The expression above, in
the character limit x→∞, allows to identify bk,r in terms of the single-index Q-functions.
We get

bk,r = Q
[r−1]
∅ Q

[3−r]
∅

∣∣∣Q[2k−r−2j+2]
{i}

∣∣∣
k−1∣∣∣Q[2k−r−2j]

{i}

∣∣∣
k−1

∣∣∣Q[2k−r−2j]
{i}

∣∣∣
k∣∣∣Q[2k−r−2j+2]

{i}

∣∣∣
k

(9.2)

for 1 6 k 6 r and

bk,r = Q
[1−r]
∅ Q

[r−3]
∅

∣∣∣Q[r−2j−2]
{i}

∣∣∣
k′−1∣∣∣Q[r−2j]

{i}

∣∣∣
k′−1

∣∣∣Q[r+2−2j]
{i}

∣∣∣
k′∣∣∣Q[r−2j]

{i}

∣∣∣
k′

(9.3)

for r + 1 6 k 6 2r, and we recall that k′ = 2r − k + 1.
The simplest examples of the tableaux sum formulas beyond T1,1 are for T1,2 and T2,1.

They arise when writing

T−1,1T
+
1,1 =

 ∑
16i6j62r

b
[−1]
i,r b

[+1]
j,r

− b[−1]
r,r b

[+1]
r′,r

+

 ∑
16i<j62r

b
[+1]
i,r b

[−1]
j,r

+ b
[+1]
r′,r b

[−1]
r,r

 (9.4)

and identifying the terms in the brackets with T1,0T1,2 and T0,1T2,1 from the Hirota equa-
tion (8.21), so that

T1,2Q
[r−2]
∅ Q

[2−r]
∅ =

∑
16i6j62r

b
[−1]
i,r b

[+1]
j,r − b

[−1]
r,r b

[+1]
r′,r , (9.5)

– 23 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
3

and
T2,1Q

[+r]
∅ Q

[−r]
∅ =

∑
16i<j62r

b
[+1]
i,r b

[−1]
j,r + b

[+1]
r′,r b

[−1]
r,r . (9.6)

As we see, it is independent of the actual representation of the box terms bk,r. As we will
see in the following, substituting (9.2) and (9.3) will yield new expressions for the transfer
matrices that only depend on r single-index Q-functions and Q∅.

9.1 Symmetric representations

The transfer matrices for generic symmetric representations are given by [46]

T1,s = 1∏s−1
k=1Q

[r−s−2+2k]
∅ Q

[−(r−s−2+2k)]
∅

∑ ′

16i16···6is62r
b

[1−s]
i1,r
· · · b[s−1]

is,r
(9.7)

where the symbol
∑′ stands for a sum in which we do not allow for r and r + 1 to appear

at the same time. The denominator appears as a consequence of our boundary conditions
for the Hirota equation.

9.1.1 General symmetric sum

Let us define

b̃k =

∣∣∣Q[2k−2j+2]
{i}

∣∣∣
k−1∣∣∣Q[2k−2j]

{i}

∣∣∣
k−1

∣∣∣Q[2k−2j]
{i}

∣∣∣
k∣∣∣Q[2k−2j+2]

{i}

∣∣∣
k

(9.8)

for 1 6 k 6 r and

b̃k =

∣∣∣Q[−(2k′−2j+2)]
{i}

∣∣∣
k′−1∣∣∣Q[−(2k′−2j)]

{i}

∣∣∣
k′−1

∣∣∣Q[−(2k′−2j)]
{i}

∣∣∣
k′∣∣∣Q[−(2k′−2j+2)]

{i}

∣∣∣
k′

(9.9)

for r + 1 6 k 6 2r such that

bk,r = Q
[r−1]
∅ Q

[3−r]
∅ b̃

[−r]
k if k 6 r and bk,r = Q

[1−r]
∅ Q

[r−3]
∅ b̃

[r]
k if r + 1 6 k . (9.10)

For l > 1, one has

∑
16i16...6il6r

b̃
[−2l+1]
i1

· · · b̃[−1]
il

=

∣∣∣Q[2r+1−2j−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2r+1−2j]

{i}

∣∣∣
r

(9.11)

and ∑
r+16i16...6il62r

b̃
[1]
i1
· · · b̃[2l−1]

il
=

∣∣∣Q[−(2r+1−2j−2lδj,r)]
{i}

∣∣∣
r∣∣∣Q[−(2r+1−2j)]

{i}

∣∣∣
r

. (9.12)

The two identities are equivalent, so it is enough to prove the first one. We do it by
induction in r. It is trivial when r = 1. If it is true for some r0 > 1 then let us show by
induction on l that it is also true for r0 + 1: the case l = 1 has been proven earlier in
section 6.1 so we assume that the identity holds for some l0 > 1. We then write∑

16i16...6il0+16r0+1
b̃

[−2l0−1]
i1

· · · b̃[−1]
il0+1

=
∑

16i16...6il0+16r0

b̃
[−2l0−1]
i1

· · · b̃[−1]
il0+1

+ b̃
[−1]
r0+1

∑
16i16...6il06r0+1

b̃
[−2l0−1]
i1

· · · b̃[−3]
il0

. (9.13)
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Since we have assumed that the identity holds for r0 and any l, for (r0 + 1, l0) we can write

∑
16i16...6il0+16r0+1

b̃
[−2l0−1]
i1

· · · b̃[−1]
il+1

=

∣∣∣∣Q[2r0+1−2j−2(l0+1)δj,r0 ]
{i}

∣∣∣∣
r0∣∣∣Q[2r0+1−2j]

{i}

∣∣∣
r0

+

∣∣∣Q[2r0−2j+3]
{i}

∣∣∣
r0∣∣∣Q[2r0−2j+1]

{i}

∣∣∣
r0

∣∣∣∣Q[2r0+1−2j−2l0δj,r0+1]
{i}

∣∣∣∣
r0+1∣∣∣Q[2r0−2j+3]

{i}

∣∣∣
r0+1

. (9.14)

Consequently, for (9.11) to hold for (r0 + 1, l0 + 1), one only has to show that∣∣∣Q[−2j]
{i}

∣∣∣
r0

∣∣∣∣Q[2−2j−2(l0+1)δj,r0+1]
{i}

∣∣∣∣
r0+1

=
∣∣∣Q[2−2j]
{i}

∣∣∣
r0+1

∣∣∣∣Q[−2j−2(l0+1)δj,r0 ]
{i}

∣∣∣∣
r0

+
∣∣∣Q[2−2j]
{i}

∣∣∣
r0

∣∣∣∣Q[−2j−2l0δj,r0+1]
{i}

∣∣∣∣
r0+1

. (9.15)

This last relation can be proven in much the same way as (6.5) which itself corresponds to
the case l0 = 0.

9.1.2 Application to the computation of transfer matrices

In order to apply the summation formulas (9.11) and (9.12) we first rewrite equation (9.7) as

T1,s =
s∑
l=0

Q
[2j+r−s−2]
∅ Q

[2+2j−r−s]
∅

∑
16i16...6il6r

r+16il+16...6is62r

(
b̃

[1−s−r]
i1

· · · b̃[2l−s−r−1]
il

)

×
(
b̃

[2l−s+r+1]
il+1

· · · b̃[s+r−1]
is

)
−
s−1∑
l=1

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅ b̃[2l−s−r−1]

r b̃
[2l−s+r+1]
r+1

×
∑

16i16...6il−16r
r+16il+26...6is62r

(
b̃

[1−s−r]
i1

· · · b̃[2l−s−r−3]
il−1

) (
b̃

[2l−s+r+3]
il+2

· · · b̃[s+r−1]
is

)
. (9.16)

In virtue of (9.11) and (9.12), this gives

T1,s=
s∑
l=0

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s+1−2j−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

∣∣∣Q[−(r+s+1−2l−2j−2(s−l)δj,r)]
{i}

∣∣∣
r∣∣∣Q[−(r+s+1−2l−2j)]

{i}

∣∣∣
r

−
s−1∑
l=1

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s−1−2j−2(l−1)δj,r ]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

∣∣∣Q[−(r+s−1−2l−2j−2(s−1−l)δj,r)]
{i}

∣∣∣
r∣∣∣Q[−(r+s+1−2l−2j)]

{i}

∣∣∣
r

.

(9.17)

The terms for 1 6 l 6 s − 1 of each sum can be combined thanks to a Plücker identity,
to give an explicit and concise Weyl-type representation of symmetric T-functions for Dr

algebra

T1,s =
s∑
l=0

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s+1−2j+2(s−l)δj,1−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

. (9.18)
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Once again there are 2r formulas of this type depending on which set of r single-index
Q-functions we use in the right-hand side. Finally, let us mention that we also checked
that one can get the same formula starting from the conditions (8.15) and (8.16) using a
method similar to that of section 8.3 (or more directly for low ranks, see appendix G.1 for
the case r = 2).

9.2 Antisymmetric representations

The transfer matrices for generic antisymmetric representations are given by [46]

Ta,1 = 1∏a−1
k=1Q

[r−a+2k]
∅ Q

[−(r−a+2k)]
∅

∑
16i1<···<ik6r

r+16j1<···<jl62r
a−k−l∈2N

b
[a−1]
i1,r

· · · b[a+1−2k]
ik,r

× b[a−1−2k]
r+1,r b[a−3−2k]

r,r · · · b[2l+3−a]
r+1,r b[2l+1−a]

r,r b
[2l−a−1]
j1,r

· · · b[1−a]
jl,r

. (9.19)

As it happens, in order to obtain nice expressions for these transfer matrices involving
a reduced number of Q-functions, it is more convenient to turn to spinorial Q-functions. If,
in order to shorten the notations, we write

SIr = S{1,...,r} , Si = S{1,...,r−i,r+i,r−i+2,...,r} for i ∈ {1, . . . , r} (9.20)

then, according to (5.10), the boxes are also given by

bk,r = Q
[r−1]
∅ Q

[1−r]
∅

S
[−2]
Ir

SIr

∣∣∣S[−2j]
i

∣∣∣
r−k∣∣∣S[2−2j]

i

∣∣∣
r−k

∣∣∣S[4−2j]
i

∣∣∣
r+1−k∣∣∣S[2−2j]

i

∣∣∣
r+1−k

(9.21)

for 1 6 k 6 r and

bk,r = Q
[r−1]
∅ Q

[1−r]
∅

S
[+2]
Ir

SIr

∣∣∣S[2j]
i

∣∣∣
k−r−1∣∣∣S[2j−2]

i

∣∣∣
k−r−1

∣∣∣S[2j−4]
i

∣∣∣
k−r∣∣∣S[2j−2]

i

∣∣∣
k−r

(9.22)

for r + 1 6 k 6 2r. The relevant summation formulas read

∑
16i1<...<il6r

b
[−1]
i1,r
· · · b[1−2l]

il,r
=
S

[−1−2l]
Ir

S
[−1]
Ir

(
l∏

a=1
Q

[r−2l−2+2a]
∅ Q

[−r−2l+2a]
∅

) ∣∣∣S[1−2j+2θ(l−j))]
i

∣∣∣
r∣∣∣S[1−2j]

i

∣∣∣
r

(9.23)
and

∑
r+16i1<...<il62r

b
[2l−1]
i1,r

· · · b[1]
il,r

=
S

[2l+1]
Ir

S
[+1]
Ir

(
l∏

a=1
Q

[r−2+2a]
∅ Q

[−r+2a]
∅

) ∣∣∣S[2r−1−2j+2θ(r−l−j)]
i

∣∣∣
r∣∣∣S[2r+1−2j]

i

∣∣∣
r

(9.24)
where we used the Heaviside function θ that is 0 for negative arguments and 1 for non-
negative ones. These formulas can be proven in much the same way as (9.11) and (9.12).
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This permits us to write

Ta,1 =
Q

[r−a]
∅ Q

[a−r]
∅

S
[a−1]
Ir

S
[1−a]
Ir

∑
06k,l6a
a−k−l∈2N

S
[a+1−2k]
Ir

S
[2l−1−a]
Ir

∣∣∣S[a+1−2j+2θ(k−j)]
i

∣∣∣
r∣∣∣S[a+1−2j]

i

∣∣∣
r

×

∣∣∣S[2r−a−1−2j+2θ(r−l−j)]
i

∣∣∣
r∣∣∣S[2r−a+1−2j]

i

∣∣∣
r

. (9.25)

This equation should be compared with the much more complicated expression given in
appendix G.2 for the same quantity but in terms of single-index Q-functions. Similarly, the
expression for T1,s in terms of spinorial Q-functions is not as simple as (9.18).

In the particular case a = 1 the previous expression reads

T1,1 =
Q

[r−1]
∅ Q

[1−r]
∅

SIr

S[−2]
Ir

∣∣∣S[2−2j+2δ1,j ]
i

∣∣∣
r∣∣∣S[2−2j]

i

∣∣∣
r

+ S
[+2]
Ir

∣∣∣S[2r−2j−2δj,r]
i

∣∣∣
r∣∣∣S[2r−2j]

i

∣∣∣
r

 . (9.26)

It should be compared with (6.1). When a = r − 1, as expected from the fact that
Tr−1,1 = T+,1T−,1, there is a factorization:

Tr−1,1 = 1
S

[r−2]
Ir

S
[2−r]
Ir

Q
[+1]
∅ Q

[−1]
∅∣∣∣S[r+2−2j]

i

∣∣∣
r

∣∣∣S[r−2j]
i

∣∣∣
r

 r∑
k=0
k even

S
[r−2k]
Ir

∣∣∣S[r−2j+2θ(k−j)]
i

∣∣∣
r



×

 r∑
k=0
k odd

S
[r−2k]
Ir

∣∣∣S[r−2j+2θ(k−j)]
i

∣∣∣
r

 . (9.27)

9.3 Spinorial representations

Following [42] we express the spinorial T-functions T±,1 in terms of the Q-functions along a
nesting path, cf. section 2.2. One finds

T±,1 =
∑
|α|=±1

Q
[−α1]
∅

S[ρ+(~α)+1]
(+,...,+)

S
[ρ+(~α)−1]
(+,...,+)


αr−1+αr

2
S[ρ−(~α)+1]

(+,...,+,−)

S
[ρ−(~α)−1]
(+,...,+,−)


αr−1−αr

2 r−2∏
k=1

Q[ρk(~α)+1]
{1,...,k}

Q
[ρk(~α)−1]
{1,...,k}


αk−αk+1

2

(9.28)
where Q∅ = xN and the shifts are determined via

ρk(~α) = α1 + . . .+ αk−1 + αk − αk+1
2 for 1 ≤ k ≤ r − 2 ,

ρ±(~α) = α1 + . . .+ αr−2 + αr−1 ± αr
2 .

(9.29)

Expressing all Q-functions in terms of spinorial ones using (5.10) we obtain determinant
formulas for T±,1. We find

T+,1 =
(√τi1 · · · τir) r−1∏
16a<b6r (τib − τia)

1∏r−1
l=1 S

[r−2l]
Ir

r∑
k=0
k even

S
[r−2k]
Ir

∣∣∣S[2j−r−2θ(r−k−j)]
i

∣∣∣
r

(9.30)
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and

T−,1 =
(√τi1 · · · τir) r−1∏
16a<b6r (τib − τia)

1∏r−1
l=1 S

[r−2l]
Ir

r∑
k=0
k odd

S
[r−2k]
Ir

∣∣∣S[2j−r−2θ(r−k−j))]
i

∣∣∣
r

(9.31)

These expressions have been verified for r = 3, 4, 5 for a particular choice of Ir and we are
missing a generic proof. However, the formulas are consistent with the factorisation Tr−1,1 =
T+,1T−,1 in (9.27) expected from the Hirota relations. In principle, one can now generate,
from (9.25), (9.30) and (9.31) above, all transfer matrices of rectangular representations
using Cherednik-Bazhanov-Reshetikhin type formulas written for Dr symmetry in [42].

10 Discussion

In this work, we proposed the full system of Baxter Q-functions – the QQ-system – for the
spin chains with SO(2r) symmetry. This QQ-system is described by a novel type of Hasse
diagram presented for various ranks on figures 4, 5 and 9. We found Weyl-type formulas for
transfer matrices (T-functions) of symmetric and antisymmetric representations in terms
of sums of ratios of determinants of r basic Q-functions. We proposed QQ′-type formulas
expressing the T-functions through 2r basic single-index Q-functions. These could be a
powerful tool for the study of spin chains and sigma models with Dr symmetry. We also
reformulated the Bethe ansatz equations in the form of a single Wronskian relation on r+ 1
basic Q-functions. It is the analogue of a similar Wronskian relation for spin chains with
Ar symmetry. However, apart from the Bethe roots our equation contain extra solutions
whose role has yet to be clarified.

Our main assumptions in this article are the Plücker QQ-relations (5.1) and (5.8),
as well as the QQ′-relations (8.7) and (8.14). The QQ-relations are motivated by the
asymptotics of the Q-operators and the QQ′-type relations by the factorisation formulas for
the Lax matrices for Q-operators and the corresponding character formulas, as discussed in
section 8.1 and 8.2. Both relations remain to be proven but we have tested them explicitly
for several examples of small finite length T and Q-operators. The QQ-relations (5.1)
allow to express the fundamental transfer matrix, for which an expression in terms of one
Q-function of each level is known from the algebraic Bethe ansatz, in terms of r single-
index Q-functions and Q∅, cf. (6.1). This Weyl-type expression has been independently
obtained from the QQ′-type relations (8.7), see section 8.3. We take this as a consistency
check. The new formulas for Ta,s are obtained from the Hirota equation and the tableaux
formulas of [46].

Unlike the well understood QQ-system of A-type, in the D-type QQ-system there are
still many questions left and issues to be clarified. The questions exists already on the
operator level: the Yangian for SO(2r) spin chains is constructed only for “rectangular”
representations and the R-matrix – the main building block for Q and T-functions is known
only for the symmetric and spinorial representations [31, 63, 74]. A full classification of Lax
matrices including the ones for the Q-operators was recently given in [75] for A-type. This
may shed some light upon the transfer matrices for general rectangular representations and
beyond. It would be interesting, using the tableaux formulas (which look quite involved [76])
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to find the Weyl-type determinant formulas for the arbitrary rectangular representations,
generalizing our formulas for symmetric and antisymmetric representations. These could
also be interesting for the study of the Q-system and its relation to cluster algebras, see
e.g. [77, 78]. Moreover, a solid proof of our QQ-system and our Wronskian formulas
for T ’s in symmetric and antisymmetric representations is yet to be found on both the
analytic and operator level. It may be possible using the BGG resolution or the analogue
of coderivative method proposed in [32] and used for this purpose in [33], see also [79] for a
review. Unfortunately, we do not know yet a suitable analogue of Baxter TQ equations
(quantum spectral determinant) which appeared to be so useful for the spin chains with
Ar symmetry [1, 2], see [40] for the modern description in terms of forms as well as [80] in
terms of the quantum determinant. It is possible that the QQ′-type formulas for transfer
matrices proposed in this work can replace the Baxter equations for Dr algebra.

It would be interesting to generalize our approach to the study of spin chains with
open boundary conditions and to the non-compact, highest weight and principal series
representations of D algebras. For a much better studied case of these aspects in A-
type integrable system we refer the reader to [50, 81–84]. One encounters non-compact
representations in sigma models [85] and spin chains [86] with principal series representations
of the d-dimensional conformal group SO(2, d) [86]. They recently appeared in the study of
d-dimensional fishnet CFT [70, 87, 88] and the associated planar graphs (of the shape of
regular 2-dimensional lattice) [89]. While for the lowest, 4-dimensional conformal SO(2, 4)
symmetry one can use its isomorphism to the A type SU(2, 2) group to construct the suitable
QQ-system and Baxter TQ system for the efficient study of Fishnet CFT [90, 91], for d > 4
we have to find an alternative approach which can be based on the D-type QQ-system
constructed in this work. The structure of the QQ-system does not depend on the choice
of real section of the orthogonal group but the Wronskian, Weyl-type formulas for T do
depend. So one could try to construct the quantum spectral curve (QSC) formalism for
d > 4 fishnet CFT in analogy to the d = 4 case [92].

Finally, we hope that our methods can be generalized to B, C and exceptional types
of algebras and their deformations, as well as to superalgebras such as osp(m|2n) where
the QQ-system and T-functions are yet to be constructed. This includes the case relevant
for AdS4/CFT3 for which the QSC has recently been studied in [93–95]. A first step could
be the evaluation of the oscillators type Lax matrices for Q-operators using the results
of [96, 97] as done in [98] for type A.
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A Dr Kirillov-Reshetikhin modules and characters

The Kirillov-Reshetikhin modules form a family {Wa,s(x)|a ∈ {1, . . . , r − 2,+,−}, s ∈
N∗, x ∈ C} of modules of the Yangian Y (Dr) that were first introduced in [59]. When
restricted to Dr ⊂ Y (Dr) they decompose into irreducible representations of Dr according to

Wa,s(x) '
⊕
ni∈N

n1+n3+···+na=s

V(n1ω1 + n3ω3 + · · ·+ naωa) (A.1)

for odd a 6 r − 2,

Wa,s(x) '
⊕
ni∈N

n0+n2+···+na=s

V(n0ω0 + n2ω2 + · · ·+ naωa) (A.2)

for even a 6 r − 2,

W+,s(x) ' V(s ωr−1) and W−,s(x) ' V(s ωr) . (A.3)

Here ω0 = 0, while ω1, . . . , ωr are the fundamental weights of Dr, V(f) denotes the
irreducible Dr-module with highest weight f . Notice that the previous decompositions are
independent of the spectral parameter x. The characters are expressed in terms of weights
f1, . . . , fr that are related to the non-negative integers n1, . . . , nr (Dynkin labels) via

fa = na + · · ·+ nr−2 + 1
2 (nr−1 + nr) (A.4)

for 1 6 a 6 r − 2 and

fr−1 = 1
2 (nr−1 + nr) , fr = 1

2 (nr−1 − nr) . (A.5)

The finite-dimensional irreducible representations of SO(2r) are in one-to-one corre-
spondence with (f1, . . . , fr) such that

f1 > · · · > |fr| > 0 and
{
∀i ∈ {1, . . . , r}, fi ∈ Z
or ∀i ∈ {1, . . . , r}, fi ∈ 1

2 + Z
. (A.6)

The characters of these irreducible representations are given by (`j = fj + r − j)

χ
SO(2r)
f (τ) = |τ

`j
i + τ

−`j
i |r + |τ `ji − τ

−`j
i |r

|τ r−ji + τ−r+ji |r
= |τ `ji + τ

−`j
i |r + |τ `ji − τ

−`j
i |r

2
∏

16i<j6r(τi + τ−1
i − τi − τ

−1
j )

. (A.7)

One should notice that, when fr = 0, the second determinant in the numerator is 0 because
its last column vanishes.

Since the Kirillov-Reshetikhin modules for the symmetric representations (f1, . . . , fr) =
(s, 0, . . . , 0) coincide with the usual irreducible Dr modules, so do the characters. They are
given by

χs(τ) = hs(τ1, . . . , τr, τ
−1
1 , . . . , τ−1

r )− hs−2(τ1, . . . , τr, τ
−1
1 , . . . , τ−1

r ) (A.8)
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where h−2 =h−1 =0 and hs for s > 0 is the homogeneous symmetric polynomial defined by

hs(x1, . . . , xp) =
∑

16i16···6is6p
xi1 · · ·xis . (A.9)

We also have the following generating series:

+∞∑
s=0

tshs(x1, . . . , xp) = 1∏p
k=1(1− txk)

,
+∞∑
s=0

tsχs(τ) = 1− t2∏r
k=1(1− tτk)(1− tτ−1

k )
. (A.10)

B Q-function example: one site

For N = 1 the Q-operators are diagonal and we can read off the Q-functions. For Q1(x)
we find

(Q1(x))11 = τx1

[
x2 − x

r∑
k=2

(
1 + τk

τ1 − τk
+ τ−1

k

τ1 − τ−1
k

)

+
r∑

k=2

[
1

(τ1 − τk)(τ1 − τ−1
k )

+ τk
2(τ1 − τk)

+ τ−1
k

2(τ1 − τ−1
k )

]
+ 2r − 3

4

]
, (B.1)

(Q1(x))ii = τx1

[
x− 1

2 + τ−1
1

τ−1
1 − τi

]
, 1 < i ≤ r , (B.2)

(Q1(x))ii = τx1

[
x+ 1

2 −
τi′

τ1 − τi′

]
, r < i ≤ 2r − 1 , (B.3)

(Q1(x))2r2r = τx1 . (B.4)

C Crossing relations

C.1 Crossing symmetry of transfer matrix

The transfer matrix (2.11) satisfies the crossing relations

T1,s(x) = T t1,s(−x)
∣∣∣
τi→τ−1

i

(C.1)

We further note that when defining reflection matrix

J =


0 0 1

0 . .
.

0
1 0 0

 . (C.2)

the twist parameters of the transfer matrix exchange: JT1,s(x)J = T1,s(x)|τi→τ−1
i

. It thus
follows that

T1,s(x) = JT t1,s(−x)J = T ′1,s(−x) . (C.3)
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C.2 Crossing symmetry of single-index Q-operators

In this appendix we discuss the derivation of the crossing relation for the single-index
Q-operators. The corresponding Lax matrices satisfy

Lt(−z − 1)|p.h. = L(z)G . (C.4)

here t denotes the transpose in the matrix space and “p.h.” denotes the particle hole
transformation

(ai, āi)|p.h. = (−āi,ai) (C.5)

and G is the diagonal matrix

G =


1 0 0
0 −I 0
0 0 1

 . (C.6)

Using the symmetries of the twist in the Q-operator

D|τi→τ−1
i

=
(
τ−2

1

)r
D|p.h. (C.7)

we find that the normalised trace is independent of particle hole transformation. The extra
factor above drops. We obtain

Qt1(−x)
∣∣∣
τi→τ−1

i

= Q1(x) (G⊗ . . .⊗G) (C.8)

Such equation holds for any Qi. On the level of eigenvalues the transformation G⊗ . . .⊗G
only yields a possible sign, depending on the magnon number.

It further follows that

Q′1(−x) = (J⊗ . . .⊗ J)Qt1(−x) (J⊗ . . .⊗ J)
= (J⊗ . . .⊗ J) Q1(x)|τj→τ−1

j
(J⊗ . . .⊗ J) (G⊗ . . .⊗G)

= Q1′(x) (G⊗ . . .⊗G) .

(C.9)

D QQ-system of A3 ' D3

We show in this appendix that, as is expected from the isomorphism A3 ' D3, the known
QQ-system for A3 can be interpreted as the QQ-system for D3, albeit in a particular gauge.
We start with a reminder of the QQ-system for A3: in order to avoid confusion, we shall
denote QI for I ⊂ {1, 2, 3, 4} the Q-functions for A3 and the SL(4) twists will be z1, z2, z3
and z4 such that z1z2z3z4 = 1. The following relations hold (neither i nor j belongs to I):

Q[+1]
I∪{i}Q

[−1]
I∪{j} −Q

[−1]
I∪{i}Q

[+1]
I∪{j} = zi − zj√

zizj
QIQI∪{i,j} . (D.1)

From these relations, one can also deduce that∣∣∣∣∣∣∣∣
Q[−2]
{i,j} Q{i,j} Q

[+2]
{i,j}

Q[−2]
{i,k} Q{i,k} Q

[+2]
{i,k}

Q[−2]
{i,l} Q{i,l} Q

[+2]
{i,l}

∣∣∣∣∣∣∣∣ = (zj − zk)(zj − zl)(zk − zl)
zjzkzl

Q[−1]
{i} Q

[+1]
{i} Q{1,2,3,4} (D.2)
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and ∣∣∣∣∣∣∣∣
Q[−2]
{i,j} Q{i,j} Q

[+2]
{i,j}

Q[−2]
{j,k} Q{j,k} Q

[+2]
{j,k}

Q[−2]
{i,k} Q{i,k} Q

[+2]
{i,k}

∣∣∣∣∣∣∣∣ = (zj − zi)(zj − zk)(zi − zk)
zizjzk

Q[−1]
{i,j,k}Q

[+1]
{i,j,k}Q∅ . (D.3)

Both of these equations are identified with equation (5.11). More generally, both QQ-
systems are the same if one makes the following identification between the two sets of
Q-functions:

Q{1} = Q{1,2} , Q{2} = Q{1,3} , Q{3} = Q{1,4} , (D.4)
Q{1′} = Q{1,2} = Q{3,4} , Q{2′} = Q{2,4} , Q{3′} = Q{2,3} , (D.5)

S(+,+,+) = Q{1} , S(+,−,−) = Q{2} , S(−,+,−) = Q{3} , S(−,−,+) = Q{4} , (D.6)
S(−,−,−) = Q{2,3,4} , S(+,+,−) = Q{1,2,3} , S(+,−,+) = Q{1,2,4} , S(−,+,+) = Q{1,3,4} .

(D.7)

The twists are related via

τ1 = z1z2 = 1
z3z4

, τ2 = z1z3 = 1
z2z4

, τ3 = z1z4 = 1
z2z3

(D.8)

while the remaining Q-functions are

Q∅ = 1 , S+,∅ = Q∅ and S−,∅ = Q{1,2,3,4} . (D.9)

The previous equation shows that in identifying the two QQ-systems we had to partly fix
the gauge for D3. This explains why in the A3 QQ-system there are only two gauge degrees
of freedom [40] while there are three of them for the D3 one.

E Elements of the Hasse diagram

In this appendix we give a more detailed explanation of the Hasse diagrams in figure 4 and
figure 5.

QQ-relations along the tail. Along the tail of the Dynkin diagram the QQ-relations
are given in (5.1). They are depicted by the plaquette in figure 6.

QQ-relations at the spinor nodes. The QQ-relations for the spinorial nodes were
introduced in (5.8) and (5.12). We depict them as the QQ-relations along the tail by a
plaquette, see figure 7. Here we chose the opposite orientation of the arrows to avoid
confusion with plaquettes at the fork, cf. figure 8. Further depending on the spinor node,
we choose a blue or red color for the arrows.

– 33 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
3

QI∪{i}

QI∪{i}∪{j}

QI∪{j}

QI

Figure 6. Plaquette for QQ-relations along the tail depicted in green.

SI

S+,∅

SJ

QI∩J

SI

S−,∅

SJ

QI∩J

Figure 7. Spinorial QQ-relations for spinor nodes ± depicted in blue and red respectively.

QQ-relations at the fork. At the fork we have the QQ-relations (5.1) with |J | = r − 3.
In this case the Q-function at level r − 1 factorises into two spinorial Q-functions, see (5.3).
For J = {j1, . . . , jr−3} we can write the QQ-relations as

Q
[+1]
J∪{jr−2}Q

[−1]
J∪{jr−1} −Q

[−1]
J∪{jr−2}Q

[+1]
J∪{jr−1} =

τjr−2 − τjr−1√
τjr−2τjr−1

QJS{j1,...,jr−1,jr}S{j1,...,jr−1,j′r} ,

where S{j1,...,jr−1,jr} and S{j1,...,jr−1,j′r} belong to different spinor nodes. We denote these
relations by the “cat” shaped diagram in figure 8. To avoid confusion with the plaquettes
in figure 6 and figure 7 we chose all arrows to be ingoing at level r − 2.

F Details for the computations of section 8

F.1 Wronskian condition from QQ′-type constraints

Plugging the constraints (8.16) into equation (8.17) for k = r − 1 we get

C0,r−1,r−1Q
[r−2]
∅ Q

[2−r]
∅ = hr

∣∣∣∣∣∣∣∣∣∣∣

Q
[−r+1]
1 Q

[−r+3]
1 · · · Q[r−1]

1
...

...
...

Q
[−r+1]
r−1 Q

[−r+3]
r−1 · · · Q[r−1]

r−1
Q

[−r+1]
r Q

[−r+3]
r · · · Q[r−1]

r

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Q
[−r+1]
1 Q

[−r+3]
1 · · · Q[r−1]

1
...

...
...

Q
[−r+1]
r−1 Q

[−r+3]
r−1 · · · Q[r−1]

r−1
Q

[−r+1]
r′ Q

[−r+3]
r′ · · · Q[r−1]

r′

∣∣∣∣∣∣∣∣∣∣∣
.

(F.1)
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QJ∪{jr−2} QJ∪{jr−1}

S{j1,...,jr−1,jr} S{j1,...,jr−1,j′r}

QJ

Figure 8. QQ-relations at the fork. To avoid confusion with the plaquette we introduce a different
direction for the arrows pointing away from spinorial nodes.

Using the explicit expression of C0,r−1,r−1 gives

W
[−]
1,...,r−1W

[+]
1,...,r−1Q

[r−2]
∅ Q

[2−r]
∅ = 1∏r−1

j=1(uj − ur)
W1,...,r−1,rW1,...,r−1,r′ (F.2)

where we used the notation Wi1,...,ik =
∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k
. The derivation makes it clear that the

previous identity still holds if one exchanges some Q{i} with Q{i′} so that one may actually
write

W
[−]
i1,...,ir−1

W
[+]
i1,...,ir−1

Q
[r−2]
∅ Q

[2−r]
∅ = 1∏r

j 6=ir,i′r(uj − ur)
Wi1,...,ir−1,irWi1,...,ir−1,i′r . (F.3)

where we only assume that for all 1 6 a 6= b 6 r one has {ia, i′a} ∩ {ib, i′b} = ∅. This is
exactly equation (7.4).

F.2 Proof of equation (8.29)

We prove here the following claim: if Ta,s satisfy the Hirota equations and T1,s is given by
equation (8.15) then Ta,s for a 6 r − 1 is given by equation (8.29).

The proof is made by induction: the claim is true for a = 1 by assumption and we have
also shown, in the main text, that it is true for a = 2. For higher a, the claim is clearly
equivalent to equation (8.30) which is itself a particular case of the following identity:

1
2

∑
16i1<···<ia62r
16j1<···<ja62r

∣∣∣∣∣W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
=

 ∑
16i1<···<ia−162r

Wi1,...,ia−1W̃i1,...,ia−1

 ∑
16i1<···<ia+162r

Wi1,...,ia+1W̃i1,...,ia+1

 . (F.4)

where Wi1,...,ia =
∣∣∣Q[a+1−2k]

ij

∣∣∣
a

and W̃i1,...,ia =
∣∣∣P [a+1−2k]
ij

∣∣∣
a

for {Qi}16i62r and {Pi}16i62r
two sets of arbitrary functions. In this appendix, most of the summation indices run from 1
to 2r so we will not write these bounds under each summation symbols in the following.
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The only indices for which it will be different will be called m, n, m̃ or ñ, the values they
may take will be indicated each time.

We shall now prove (F.4). Let us start from the left-hand side, we expand each of
the determinants W and W̃ with respect to the columns with shifts ±a, for instance:
W

[+1]
i1,...,ia

=
∑a
m=1(−1)m+1Q

[a]
im
W
i1,...,îm,...ia

and W
[−1]
j1,...,ja

=
∑a
n=1(−1)n+aQ

[−a]
jn

W
j1,...,ĵn,...ja

where the hat over an index means that we omit it. We thus obtain

∑
i1<...<ia
j1<...<ja

∣∣∣∣∣W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
= 1

(a!)2

∑
i1,...,ia
j1,...,ja

∣∣∣∣∣W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
= 1

(a!)2

∑
i1,...,ia
j1,...,ja

16m,n,m̃,ñ6a

(−1)m+n+m̃+ñ
∣∣∣∣∣Q

[a]
im

Q
[−a]
im

Q
[a]
jn
Q

[−a]
jn

∣∣∣∣∣
∣∣∣∣∣P

[a]
im̃

P
[−a]
im̃

P
[a]
jñ

P
[−a]
jñ

∣∣∣∣∣
×W

i1,...,îm,...ia
W
j1,...,ĵn,...ja

W̃
i1,...,îm̃,...ia

W̃
j1,...,ĵñ,...ja

= L1 + L2 + L3 (F.5)

where we have split the sums over m, n, m̃ and ñ into three contributions L1, L2 and L3.
L1 contains all the terms with m = m̃ and n = ñ, L2 all the terms with m = m̃ and n 6= ñ

or m 6= m̃ and n = ñ while L3 contains all the terms with m 6= m̃ and n 6= ñ. In each of the
three cases the remaining sums (over i’s and j’s) do not depend on the actual values of m,
n, m̃ and ñ anymore so that we can perform the sums over these latter indices. We thus get

L1 =

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1

2∑
i,j

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
i P

[−a]
i

P
[a]
j P

[−a]
j

∣∣∣∣∣ , (F.6)

L2 = 2
(a− 2)!

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

− ∑
i,j,k,i1,...,ia−2

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
i P

[−a]
i

P
[a]
k P

[−a]
k

∣∣∣∣∣Wk,i1,...,ia−2W̃j,i1,...,ia−2

 , (F.7)

L3 = 1
((a− 2)!)2

∑
i1,...,ia−2
j1,...,ja−2
i,j,k,l

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,i1,...,ia−2Wl,j1,...,ja−2W̃i,i1,...,ia−2W̃j,j1,...,ja−2 . (F.8)

One can rewrite L3 using the Plücker identity (6.7). We first use it to write

Wk,i1,...,ia−2Wl,j1,...,ja−1 =Wl,i1,...,ia−2Wk,j1,...,ja−2 +
a−2∑
p=1

(−1)p−1W
k,l,i1,...,îp,...,ia−2

Wip,j1,...,ja−2

(F.9)
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which we then plug in the expression for L3, after some renaming of the indices this yields

L3 =− L3 + 1
(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1 . (F.10)

This means that

L3 = 1
2(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1 . (F.11)

We now apply again the Plücker identity:

W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1

= W̃i,j,i1,...,ia−3W̃j1,j2,...,ja−1 +
a−1∑
p=2

(−1)pW̃i,jp,i1,...,ia−3W̃j,j1,j2,...,ĵp,...,ja−1
(F.12)

so that

L3 = 1
2(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j,i1,...,ia−3W̃j1,...,ja−1 − (a− 2)L3 . (F.13)

Finally, we arrive at the following expression:

L3 = 1
2(a− 3)!

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

 ∑
i,j,k,l,i1,...,ia−3

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣Wk,l,i1,...,ia−3W̃i,j,i1,...,ia−3

 . (F.14)

In order to prove (F.4) we need to show that

L1 + L2 + L3
2 =

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

 1
(a+ 1)!

∑
i1,...,ia+1

Wi1,...,ia+1W̃i1,...,ia+1

 . (F.15)
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From expressions (F.6), (F.7) and (F.14) this is equivalent to showing that

(a+ 1)a
2

∑
i,j,i1,...,ia−1

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
i P

[−a]
i

P
[a]
j P

[−a]
j

∣∣∣∣∣Wi1,...,ia−1W̃i1,...,ia−1

− (a+ 1)a(a− 1)
∑

i,j,k,i1,...,ia−2

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣P

[a]
i P

[−a]
i

P
[a]
k P

[−a]
k

∣∣∣∣∣Wk,i1,...,ia−2W̃j,i1,...,ia−2

+ (a+ 1)a(a− 1)(a− 2)
4

∑
i,j,k,l,i1,...,ia−3

∣∣∣∣∣Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣
P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣Wk,l,i1,...,ia−3W̃i,j,i1,...,ia−3

=
∑

i1,...,ia+1

Wi1,...,ia+1W̃i1,...,ia+1 . (F.16)

This last identity is proven by expanding the determinants in the right-hand side with
respect to their first and last columns:

Wi1,...,ia+1 =
∑

16m<n6a+1
(−1)m+n+a

∣∣∣∣∣Q
[a]
im

Q
[−a]
im

Q
[a]
in
Q

[−a]
in

∣∣∣∣∣Wi1,...,îm,...,în,...,ia+1
(F.17)

and

W̃i1,...,ia+1 =
∑

16m̃<ñ6a+1
(−1)m̃+ñ+a

∣∣∣∣∣P
[a]
im̃

P
[−a]
im̃

P
[a]
iñ

P
[−a]
iñ

∣∣∣∣∣W̃i1,...,îm̃,...,îñ,...,ia+1
. (F.18)

We then once again group the terms depending on the values of m, n, m̃ and ñ and
recover exactly the identity (F.16). There are indeed (a+1)a

2 terms with (m,n) = (m̃, ñ),
(a + 1)a(a − 1) terms with m = m̃ and n 6= ñ or m 6= m̃ and n = ñ, and (a+1)a(a−1)(a−2)

4
terms with m 6= m̃ and n 6= ñ.

G More on Weyl-type formulas

G.1 From QQ′-relations to Weyl-type formulas for D2 ' A1 ⊕A1

Here we demonstrate for the examples of D2 spin chains how to use the QQ′-relations to
recover the Weyl-type formulas for T-functions. The Hasse diagram is depicted in figure 9.

From the two constraints
Q1Q1′ +Q2Q2′ = 0 , (G.1)

and
Q

[1]
1 Q

[−1]
1′ +Q

[−1]
1 Q

[1]
1′ +Q

[1]
2 Q

[−1]
2′ +Q

[−1]
2 Q

[1]
2′ = Q2

∅ , (G.2)

cf. (8.16), we obtain (
Q

[1]
1′

Q
[1]
2
−
Q

[−1]
1′

Q
[−1]
2

)
=
Q2
∅

W1
(G.3)

where Wn = Q
[n]
1 Q

[−n]
2 −Q[−n]

1 Q
[n]
2 .

Further on, excluding Q2′ from

T1,s = Q
[s+1]
1 Q

[−s−1]
1′ +Q

[−s−1]
1 Q

[s+1]
1′ +Q

[s+1]
2 Q

[−s−1]
2′ +Q

[−s−1]
2 Q

[s+1]
2′ (G.4)
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xN = Q∅ I = S∅,−I = S∅,+

Q1 = S+,+

Q2 = S−,−Q2′ = S+,−

Q1′ = S−,+

Figure 9. Hasse diagram for D2 ' A1 ⊕A1.

we get

T1,s =
(
Q

[s+1]
1′

Q
[s+1]
2

−
Q

[−s−1]
1′

Q
[−s−1]
2

)
Ws+1 . (G.5)

Excluding the difference in the first bracket in the r.h.s. using (G.3) we arrive at

T1,s = Ws+1

s∑
l=0

(Q[2l−s]
∅ )2

W
[2l−s]
1

. (G.6)

This coincides with the r = 2 case of the determinant formula (9.18).

G.2 Additional formulas in the general case

For the sake of completeness, we give here the Weyl-type formulas complementary to those
given in section 9, i.e. for T1,s in terms of spinorial Q-functions:

T1,s= Q
[r+s−2]
∅ Q

[2−r−s]
∅

×
(

s∑
l=0

S
[−s−1]
Ir

S
[s+1]
Ir

S
[2l−s−1]
Ir

S
[2l−s+1]
Ir

∣∣∣S[−(2r+s−1−2j−2lδj,r)]
i

∣∣∣
r∣∣∣S[−(2r+s−1−2j)]

i

∣∣∣
r

∣∣∣S[2r+s−1−2j−2(s−l)δj,r ]
i

∣∣∣
r∣∣∣S[2r+s−1−2j]

i

∣∣∣
r

(G.7)

−
s−1∑
l=1

S
[−s−1]
Ir

S
[s+1]
Ir

S
[2l−s−1]
Ir

S
[2l−s+1]
Ir

∣∣∣S[−(2r+s−1−2j−2(l−1)δj,r)]
i

∣∣∣
r∣∣∣S[−(2r+s−1−2j)]

i

∣∣∣
r

∣∣∣S[2r+s−1−2j−2(s−1−l)δj,r ]
i

∣∣∣
r∣∣∣S[2r+s−1−2j]

i

∣∣∣
r

)
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and for Ta,1 in terms of single-index Q-functions:

Ta,1 = 1∏a−1
k=1Q

[r−a+2k]
∅ Q

[−(r−a+2k)]
∅

∑
06k,l6a
a−k−l∈2N

(
k∏

m=1
Q

[r+a−2m]
∅ Q

[4+a−r−2m]
∅

)

×

∣∣∣Q[r+a+3−2k−2j−2θ(j+k−r−1)]
{i}

∣∣∣
r∣∣∣Q[r+a+3−2k−2j]

{i}

∣∣∣
r

a−k−l
2∏

m=1

(
Q

[r+a−2k−4m]
∅ Q

[4+a−r−2k−4m]
∅

)2

×

∣∣∣Q[r+a+1−2k−2j]
{i}

∣∣∣
r

∣∣∣Q[r+a−3−2k−2j]
{i}

∣∣∣2
r
· · ·
∣∣∣Q[2l+r+5−a−2j]
{i}

∣∣∣2
r

∣∣∣Q[2l+r+1−a−2j]
{i}

∣∣∣
r∣∣∣Q[r+a−1−2k−2j]

{i}

∣∣∣2
r
· · ·
∣∣∣Q[2l+r+3−a−2j]
{i}

∣∣∣2
r

×
(

l∏
m=1

Q
[2+2l−r−a−2m]
∅ Q

[2l+r−a−2m−2]
∅

) ∣∣∣Q[−(r+a+3−2l−2j−2θ(j+l−r−1))]
{i}

∣∣∣
r∣∣∣Q[−(r+a+3−2l−2j)]

{i}

∣∣∣
r

. (G.8)

Notice that the first formula, expressing T1,s in terms of spinorial Q-functions, is much
more complicated than the expression (9.18) in terms of fundamental Q-functions, whereas
the second formula expressing Ta,1 in terms of fundamental Q-functions, is more complicated
than (9.25) expressing it in terms of spinorial Q-functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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