
Out of the Box:
Embodied Navigation in the Real World

Roberto Bigazzi, Federico Landi, Marcella Cornia
Silvia Cascianelli, Lorenzo Baraldi, and Rita Cucchiara

University of Modena and Reggio Emilia, Modena, Italy
{name.surname}@unimore.it

Abstract. The research field of Embodied AI has witnessed substantial
progress in visual navigation and exploration thanks to powerful simulat-
ing platforms and the availability of 3D data of indoor and photorealistic
environments. These two factors have opened the doors to a new gener-
ation of intelligent agents capable of achieving nearly perfect PointGoal
Navigation. However, such architectures are commonly trained with mil-
lions, if not billions, of frames and tested in simulation. Together with
great enthusiasm, these results yield a question: how many researchers
will effectively benefit from these advances? In this work, we detail how
to transfer the knowledge acquired in simulation into the real world. To
that end, we describe the architectural discrepancies that damage the
Sim2Real adaptation ability of models trained on the Habitat simulator
and propose a novel solution tailored towards the deployment in real-
world scenarios. We then deploy our models on a LoCoBot, a Low-Cost
Robot equipped with a single Intel RealSense camera. Different from
previous work, our testing scene is unavailable to the agent in simula-
tion. The environment is also inaccessible to the agent beforehand, so it
cannot count on scene-specific semantic priors. In this way, we reproduce
a setting in which a research group (potentially from other fields) needs
to employ the agent visual navigation capabilities as-a-Service. Our ex-
periments indicate that it is possible to achieve satisfying results when
deploying the obtained model in the real world. Our code and models
are available at https://github.com/aimagelab/LoCoNav.

Keywords: Embodied AI · Sim2Real · Visual Navigation.

1 Introduction

Embodied AI has recently attracted a lot of attention from the vision and learn-
ing communities. This ambitious research field strives for the creation of intelli-
gent agents that can interact with the surrounding environment. Smart interac-
tions, however, require fine-grained perception and effective planning abilities.
For this reason, current research focuses on the creation of rich and complex ar-
chitectures that are trained in simulation with a large amount of data. Thanks
to powerful simulating platforms [7,15,19], the Embodied AI community could
achieve nearly perfect results on the PointGoal Navigation task (PointNav) [18].

https://github.com/aimagelab/LoCoNav


2 R. Bigazzi et al.

However, current research is still in the first mile of the race for the creation of
intelligent and autonomous agents. Naturally, the next milestones involve bridg-
ing the gap between simulated platforms (in which the training takes place) and
the real world [8]. In this work, we aim to design a robot that can navigate in
unknown, real-world environments [2].

We ask ourselves a simple research question: can the agent transfer the skills
acquired in simulation to a more realistic setting? To answer this question, we
devise a new experimental setup in which models learned in simulation are de-
ployed on a LoCoBot [10]. Previous work on Sim2Real adaptability from the
Habitat simulator [15] has focused on a setting where the real-world environment
was matched with a corresponding simulated environment to test the Sim2Real
metric gap. To that end, Kadian et al. [8] carry on a 3D acquisition of the en-
vironment specifically built for robotic experiments. Here, we assume a setting
in which the final user cannot count on the technology/expertise required to
make a 3D scan. This experimental setup is more challenging for the agent, as
it cannot count on semantic priors on the environment acquired in simulation.
Moreover, while [8] employs large boxes as obstacles, our testing scene contains
real-life objects with complicated shapes such as desks, office chairs, and doors.

Our agent builds on a recent model proposed by Ramakrishnan et al. [12]
for the PointNav task. As a first step, we research the optimal setup to train
the agent in simulation. We find out that default options (tailored for simulated
tasks) are not optimal for real-world deployment: for instance, the simulated
agents often exploit imperfections in the simulator physics to slide along the
walls. As a consequence, deployed agents tend to get stuck when trying to repli-
cate the same sliding dynamic. By enforcing a more strict interaction with the
environment, it is possible to avoid such shortcomings in the locomotor policy.
Secondly, we employ the software library PyRobot [11] to create a transparent
interface with the LoCoBot: thanks to PyRobot, the code used in simulation can
be seamlessly deployed on the real-world agent by changing only a few lines of
code. Finally, we test the navigation capabilities of the trained model on a real
scene: we create a set of navigation episodes in which goals are defined using
relative coordinates. While previous tests were mainly made in robot-friendly
scenarios (often consisting of a single room), we test our model, which we call
LoCoNav, in a more realistic environment with multiple rooms and typical of-
fice furniture (Fig.1). Thanks to our experiments, we show that models trained
in simulation can adapt to real unseen environments. By making our code and
models publicly available, we hope to motivate further research on Sim2Real
adaptability and deployment in the real world of agents trained on the Habitat
simulator.

2 Related Work

There is a broad area of recent research that focuses on designing autonomous
agents with different abilities. Among these, a vast line of work concentrates on
embodied exploration and navigation [3,5,9,12,13]. In this setting, the agent’s



Out of the Box: Embodied Navigation in the Real World 3

RGB-D Observation Third-Person View
Egocentric Map

Global Map

Fig. 1. We deploy a state-of-art navigation architecture on a LoCoBot and test it in a
realistic, office-like environment. Our model exploits egocentric and global occupancy
maps to plan a route towards the goal.

goal is to explore a new environment in the shortest amount of time. Architec-
tures trained for this task usually employ reinforcement learning to maximize
coverage (the area seen during a single episode) [3], surprisal [1], or a reward
based on the novelty of explored areas [13]. Usually, this is done by creating
internal map representations to keep track of the exploration progress and at
the same time help the agent plan for future destinations [3,5,12]. The main ad-
vantage of these approaches is their ability to adapt to downstream tasks, such
as PointGoal [12] or ObjectGoal [4] navigation. In PointGoal navigation, the
target destination is specified using relative coordinates w.r.t. the agent’s ini-
tial position and heading [15]. Using simulation and impressive computational
power, Wijmans et al. [18] achieve nearly perfect results. However, their model is
trained using 2.5 billion frames and requires experience acquired over more than
half a year of GPU time. Unfortunately, models tend to learn simulator-specific
tricks to circumvent navigation difficulties [8]. Since such shortcuts do not work
in the real world, there is a significant Sim2Real performance gap.

Recent work has studied how to deploy models trained on simulation to the
real world [7,8,14]. In their work, Kadian et al. [8] make a 3D acquisition of a
real-world scene and study the Sim2Real gap for various setups and metrics.
However, their environment is very simple as obstacles are large boxes, the floor
has an even and regular surface in order to facilitate the actuation system, and
there are no doors or other navigation bottlenecks. In this work, instead, we focus
on a more realistic type of environment: obstacles are represented by common
office furniture such as desks, chairs, cupboards; the floor is uneven as there are
gaps between floor tiles that make actuation noisy and very position-dependent,
and there are multiple rooms that must be accessed through doorways.

3 Real-World Navigation with Habitat

In this section, we describe our out-of-the-box navigation robot. First, we de-
scribe the baseline architecture and its training procedure that takes place in the
Habitat simulator [15]. Then we present our LoCoNav agent, which builds upon
the baseline and implements various modules to enable real-world navigation.



4 R. Bigazzi et al.

3.1 Baseline Architecture

We draw inspiration from the occupancy anticipation agent [12] to design our
baseline architecture. The model consists of three main parts: a mapper, a pose
estimator, and a hierarchical policy, that we describe in the following.
Mapper. The mapper is responsible for producing an occupancy map of the
environment, which is then employed by the agent as an auxiliary representation
during navigation. We use two different types of map at each time step t: the
agent-centric map vt that depicts the portion of the environment immediately
in front of the agent, and the global map mt that captures the area of the
environment already visited by the agent. The global map of the environment mt

is blank at t = 0 and it is built in an incremental way. Each map has two channels,
identifying the free/occupied and the explored/unexplored space, respectively;
each pixel contains the state of a 5cm × 5cm area. The mapper module takes
as input the RGB and depth observations (ort , o

d
t ) at time t and produces the

agent-centric map vt ∈ [0, 1]2×V×V . The RGB observation is encoded to a feature
representation ōrt with the first two layers of a pretrained ResNet-18 followed by
a three-layered CNN. Instead, the depth observation is used to create a point-
cloud and reprojected to form a preliminary map ōdt . The resulting agent-centric
map vt is computed by combining ōrt and ōdt with a U-Net. Then, vt is registered
to the global map mt ∈ [0, 1]2×W×W , with W > V , using the agent’s position
and heading in the environment (xt, yt, θt).
Pose Estimator. While the agent navigates towards the goal, the interactions
with the environment are subject to noise and errors, so that, for instance,
the action go forward 25cm might not result in a real displacement of 25cm.
That could happen for a variety of reasons: bumping into an obstacle, slipping
on the terrain, or simple actuation noise. The pose estimator is responsible of
avoiding such positioning mistakes and keeps track of the agent pose in the
environment at each time step t. This module computes the relative displacement
(∆xt, ∆yt, ∆θt) caused by the action selected by the agent at time t. It takes
as input the RGB-D observations (ort , o

d
t ) and (ort−1, o

d
t−1) retrieved at time t

and t − 1, and the egocentric maps vt and vt−1. Each modality is considered
separately to obtain a first estimate of the displacement:

gi = W1max(W2 ?+b2, 0) + b1, (1)

The final output of the pose estimator is the weighted sum of the three displace-
ment vectors gi:

(∆xt, ∆yt, ∆θt) =

2∑
i=0

αi · gi, αi = softmax(MLPi([ō
r
t , ō

d
t , v̄t])), (2)

where MLP is a three-layered fully-connected network, (ōrt , ōdt , v̄t) are the inputs
encoded by a CNN and [·, ·, ·] denotes tensor concatenation. The estimated pose
of the agent at time t is given by (xt, yt, θt) = (xt−1, yt−1, θt−1)+(∆xt, ∆yt, ∆θt).
Hierarchical Policy. Following a current trend in Embodied AI [3,5,12], we
employ a hierarchical policy in our baseline navigator. The highest-level com-
ponent of our policy is the global policy. The global policy selects a long-term



Out of the Box: Embodied Navigation in the Real World 5

goal on the global map, that we call global goal. The input of the global policy
at time t is a 4-channel enriched global map m+

t ∈ [0, 1]4×W×W obtained as
the concatenation of the global map mt with a spatial representation of visited
states and a one-hot representation of the agent position at time t. Finally, we
compute an 8-channel input of shape G ×G for the global policy. To that end,
we concatenate a cropped and a max-pooled version of m+

t . The global policy
outputs a probability distribution over the G×G action space. The global goal
is sampled from this distribution and is then converted to (x, y) coordinates on
the global map. A new global goal is sampled every N time steps during training
and is set to the navigation goal during deployment and test. The middle-level
component of our hierarchical policy is the planner. After the global goal is set,
an A* planner decodes the next local goal within 0.25m from the agent and on
the trajectory towards the global goal. A new local goal is sampled if at least
one of the following three conditions verifies: a new global goal is sampled by the
global policy, the previous local goal is reached, or the local goal is known to be
in an occupied area. Finally, the local policy performs the low-level navigation
and decodes the series of actions to perform. The actions available to the agents
are go forwards 25cm and turn 15°. The local policy samples an atomic action
at at each time step t.

3.2 Training in Simulation

The baseline architecture described in the previous lines is trained in simulation
using Habitat [15] and 3D scans from the Gibson dataset of spaces [19]. The
mapper is trained with a binary cross-entropy loss using the ground-truth occu-
pancy maps of the environment, obtained as described in [12]. The navigation
policy is trained using reinforcement learning. We choose PPO [16] as training
algorithm. The global policy receives a reward signal equal to the increase in
terms of anticipated map accuracy [12]:

Rglob
t = Accuracy(mt, m̂)−Accuracy(mt−1, m̂), (3)

where mt and mt−1 represent the global occupancy maps computed at time t
and t − 1 respectively, and m̂ ∈ [0, 1]2×W×W is the ground-truth global map.
The map accuracy is defined as:

Accuracy(m, m̂) =

W 2∑
i=1

2∑
j=1

1[mij = m̂ij ], (4)

where 1[·] is an indicator function that returns one if the condition [·] is true and
zero otherwise. The local policy is trained using a reward that encourages the
decrease in the euclidean distance between the agent and the local goal while
penalizing collisions with obstacles:

rlocalt = dt − dt−1 − α ∗ bumpt, (5)



6 R. Bigazzi et al.

where dt and dt−1 are the euclidean distances to the local goal at times t and t−1,
bumpt ∈ {0, 1} identifies a collision at time t and α regulates the contributions
of the collision penalty. The training procedure described in this section exploits
the experience collected throughout 6.5 million exploration frames.

3.3 LoCoNav: Adapting for Real World

The baseline architecture described above is trained in simulation and achieves
state-of-art results on embodied exploration and navigation [12]. The reality,
however, poses some major challenges that need to be addressed to achieve
good real-world performances. For instance, uneven ground might give rise to
errors and noise in the actuation phase. To overcome this and other discrepancies
between simulated and real environments, we design LoCoNav: an agent that
leverages the availability of powerful simulating platforms during training but is
tailored for real-world use. In this section, we describe the main characteristics
of the LoCoNav design. We deploy our architecture on a LoCoBot [10] and use
PyRobot [11] for seamless code integration.
Prevent your Agent from Learning Tricks. All simulations are imperfect.
One of the main objectives when training an agent for real-world use in simula-
tion is to prevent it from learning simulator-specific tricks instead of the basic
navigation skills. During training, we observed that the agent tends to hit the
obstacles instead of avoiding them. This behavior is given by the fact that the
simulator allows the agent to slide towards its direction even if it is in contact
with an obstacle as if there were no friction at all. Unfortunately, this ideal situ-
ation does not fit the real world, as the agent needs to actively rotate and head
towards a free direction every time it bumps into an obstacle. To replicate the
realistic sticky behavior of surfaces, we check the bumpt flag before every step.
If a collision is detected, we prevent the agent from moving forward. As a result,
our final agent is more cautious about any form of collision.
Sensor and Actuation Noise. Another important discrepancy between sim-
ulation and real-world is the difference in the sensor and actuation systems.
Luckily, the Habitat simulator allows for great customization of input-output
dynamics, thus being very convenient for our goal. In order to train a model
that is more resilient to the camera noise, we apply a Gaussian Noise Model
on the RGB observations and a Redwood Noise Model [6] on the depth ob-
servations. Unfortunately, the LoCoBot RealSense camera still presents various
artifacts and regions with missing depth values. For that reason, we need to
restore the observation retrieved from the depth camera before using it in our
architecture. To that end, we apply the hole filling algorithm described in [17],
followed by the application of a median filter.

Table 1. List of hyperparameters changes for Sim2Real transfer.

Height RGB FoV Depth FoV Depth Range Obst. Height Thresh.

Default for Simulation 1.25 H: 90, V: 90 H: 90, V: 90 [0.0, 10.0] [0.2, 1.5]
LoCoNav (ours) 0.60 H: 70, V: 90 H: 57, V: 86 [0.0, 5.00] [0.3, 0.6]



Out of the Box: Embodied Navigation in the Real World 7

Regarding the actuation noise, we find out that the use of the incremental
pose estimator (employed in the occupancy anticipation model and described
in our baseline architecture) is not optimal, especially when combined with the
actuation noise typical of real-world scenarios. Luckily, we can count on more
precise and reliable information coming from the LoCoBot actuation system.
By checking the actual rotation of each wheel at every time step, the robot can
update its position step by step. We adapt the odometry sensor of the LoCoBot
platform to be compliant with our architecture. To that end, the pose returned by
the sensor is converted by resetting it with respect to its state at the beginning
of the episode. We name χ0 = (x0, y0, θ0) the coordinate triplet given by the
odometry sensor at t = 0. We then define:

A =

(
R0 t0
0 1

)
=

cos θ0 − sin θ0 x0
sin θ0 cos θ0 y0

0 0 1

 . (6)

Let us define xt as the augmented position vector (xt, yt, 1) containing the agent
position at each step t. We compute the relative position of the robot as:

x̃t = A−1xt, θ̃t = θt − θ0 (7)

where x̃t = (x̃t, ỹt, 1) contains the agent position after the conversion to episode
coordinates. The relative position and heading is given by χ̃t = (x̃t, ỹt, θ̃t). Note
that, for t = 0, χ̃0 = (x̃0, ỹ0, θ̃0) = (0, 0, 0).
Hyperparameters. Finally, we noticed that typical hyperparameters employed
in simulation do not match the real robot characteristics. For instance, the cam-
era height is set to 1.25m in previous works, but the RealSense camera on the
LoCoBot is placed only 0.6m from the floor. During the adaptation to the real-
world robot, we change some hyperparameters to align the observation charac-
teristics of the simulated and the real world and to match real robot constraints.
These parameters are listed in Table 1.

4 Experiments

Testing Setup. We run multiple episodes in the real environment, in which
the agent needs to navigate from a starting point A to a destination B. The
goal is specified by using relative coordinates (in meters) with respect to the
agent’s starting position and heading. Although the agent knows the position
of its destination, it has no prior knowledge of the surrounding environment.
Because of this, it cannot immediately plan a direct route to the goal and must
check for obstacles and walls before stepping ahead. After each run, we reset the
agent memory so that it cannot retain any information from previous episodes.
We design five different navigation episodes that take place in three different
office rooms and the corridor connecting them (Fig. 2a). For each episode, we
run different trials with different configurations: obstacles are added/moved, or
people are sitting/standing in the room. In total, we run 50 different experiments,
resulting in more than 10 hours of real-world testing.



8 R. Bigazzi et al.

A B

C D E

(a)

Path Length(m) Time(s) # Step

A 3.80 124 23
B 6.75 239 45
C 5.95 223 43
D 6.55 217 42
E 4.20 227 33

(b)

Fig. 2. Layout of the navigation episodes (a). Path-specific information, as obtained
with human supervision (b).

Evaluation Protocol. An episode is considered successful if the agent sends
a specific stop signal within 0.2m from the goal. This threshold corresponds to
the radius of the robot base. For every navigation episode, we also track the
number of steps and the time required to reach the goal. Since the absolute
number of steps is not comparable among different episodes, we ask human
users to control the LoCoBot and complete each navigation path via a remote
interface (we report human performance in Fig 2b). We then normalize these
measures using this information so that results close to 1.00 indicate human-like
performances. We provide absolute and normalized length and time for each
episode, as well as the popular SPL metric (Success rate weighted by inverse
Path Length). We employ a slightly modified version of the SPL, in which the
normalization is made basing on the number of steps and not on the effective
path length to penalize purposeless rotations. Additionally, we set a boolean flag
for each episode that signals whether the robot has bumped into an obstacle,
and we report the average Bump Rate (BR). We also report the Hard Failure
Rate (HFR) as the fraction of episodes terminated if the agent gets stuck and
cannot proceed, or if the episode length exceeds the limit of 300 steps.
Real-world Navigation. In this experiment, we test our robot on five different
realistic navigation paths (Fig. 2a). We report the numerical results for these
experiments in Table 2, and we plot the main metrics in Fig. 3 to allow for a
better visualization of navigation results across different episodes. When a path
is contained in a single room (A), the agent achieves optimal results, as it always
stops within the success threshold from the goal. The number of steps is slightly
higher than the minimum required by the episode (33 instead of 23), but this
overhead is necessary as the agent must rotate and “look around” to build a
decent map of the surrounding before planning a route to the goal. Paths that
involve going outside the room and navigating different spaces (B, C, D, E) are
fairly complicated, but the agent can generally terminate the episode without
hard failures. When the shortest path to the goal leads to a wall or a dead-end,
the agent needs to find an alternative way to circumvent this obstacle (e.g. a
door). This leads to a higher episode length because the robot must dedicate
some time to general exploration of the surroundings. Finally, we find out that



Out of the Box: Embodied Navigation in the Real World 9

Table 2. Navigation results. Numbers after ± denote the standard error of the mean.

Path SR ↑ SPL ↑ HFR ↓ BR ↓ Abs. Steps Norm. Steps ↑ Abs. Time Norm. Time ↑

A 1.0 0.718 0.0 0.30 32.70±1.73 0.717±0.033 176.11±10.39 0.718±0.031
B 0.8 0.711 0.10 0.22 51.67±1.72 0.880±0.027 273.70±8.24 0.879±0.030
C 0.5 0.205 0.10 0.78 123.44±10.66 0.374±0.034 631.15±50.09 0.372±0.036
D 0.5 0.318 0.10 0.89 65.67±3.90 0.645±0.037 344.00±20.08 0.657±0.038
E 0.2 0.060 0.40 1.00 135.17±29.97 0.290±0.049 722.76±162.01 0.38±0.066

Overall 0.6 0.402 0.14 0.60 - 0.608±0.036 - 0.617±0.034

A B C D E
Episodes

0.0

0.2

0.4

0.6

0.8

1.0
SR SPL BR Norm. Steps Norm. Time

Fig. 3. Comparison of the main navigation metrics on different episodes.

the most challenging scenario for our LoCoNav is when reaching the goal requires
to get out of a room and then enter a door immediately after, on the same side
of the corridor (as in E). Since the robot sticks to the shortest path, the low
parallax prevents it from identifying the second door correctly. Even in these
cases, a bit of general exploration helps to solve the problem.
Discussion and Failure Cases. Overall, our experimental setup provides a
challenging test-bed for real-world robots. We find out that failures are due to
two main issues. First, when the agent must navigate to a different room, it
has no access to a map representing the general layout of the environment. This
prevents the robot from computing a general plan to reach the long-term goal
and forces it to explore the environment before proceeding. If a map was given
to the agent, this problem would have been greatly alleviated. A second problem
arises when the goal is close in terms (x, y) coordinates but is physically placed
in an adjacent room. To solve this problem, one could decompose the navigation
between rooms in a multi-goal problem where neighboring nodes are closer. In
this way, it is possible to reduce a complex navigation episode in simpler sub-
episodes (like A or B), in which our agent has proved to be successful.

5 Conclusion

We have presented LoCoNav, an out-of-the-box architecture for embodied nav-
igation in the real world. Our model takes advantage of two main elements:
state-of-art simulating platforms, together with a large number of 3D spaces,
for efficient and fast training, and a series of techniques specifically designed
for real-world deployment. Experiments are conducted in reality on challenging
navigation paths and in a realistic office-like environment. Results demonstrate
the validity of our approach and encourage further research in this direction.



10 R. Bigazzi et al.

Acknowledgment

This work has been supported by “Fondazione di Modena” under the project “AI
for Digital Humanities” and by the national project “IDEHA” (PON ARS01 00421),
cofunded by the Italian Ministry of University and Research.

References

1. Bigazzi, R., Landi, F., Cornia, M., Cascianelli, S., Baraldi, L., Cucchiara, R.: Ex-
plore and Explain: Self-supervised Navigation and Recounting. In: ICPR (2020)

2. Cascianelli, S., Costante, G., Bellocchio, E., Valigi, P., Fravolini, M.L., Ciarfuglia,
T.A.: A robust semi-semantic approach for visual localization in urban environ-
ment. In: ISC2 (2016)

3. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning To
Explore Using Active Neural SLAM. In: ICLR (2019)

4. Chaplot, D.S., Gandhi, D.P., Gupta, A., Salakhutdinov, R.R.: Object Goal Navi-
gation using Goal-Oriented Semantic Exploration. In: NeurIPS (2020)

5. Chen, T., Gupta, S., Gupta, A.: Learning Exploration Policies for Navigation. In:
ICLR (2019)

6. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: CVPR
(2015)

7. Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., Mottaghi, R., Salvador,
J., Schwenk, D., VanderBilt, E., Wallingford, M., et al.: RoboTHOR: An Open
Simulation-to-Real Embodied AI Platform. In: CVPR (2020)

8. Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., Savva, M.,
Chernova, S., Batra, D.: Sim2Real Predictivity: Does evaluation in simulation pre-
dict real-world performance? IEEE Robot. Autom. Letters 5(4), 6670–6677 (2020)

9. Landi, F., Baraldi, L., Cornia, M., Corsini, M., Cucchiara, R.: Multimodal Atten-
tion Networks for Low-Level Vision-and-Language Navigation. CVIU (2021)

10. LoCoBot: An Open Source Low Cost Robot. https://locobot-website.netlify.com
11. Murali, A., Chen, T., Alwala, K.V., Gandhi, D., Pinto, L., Gupta, S., Gupta, A.:

PyRobot: An Open-source Robotics Framework for Research and Benchmarking.
arXiv preprint arXiv:1906.08236 (2019)

12. Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Occupancy Anticipation for Ef-
ficient Exploration and Navigation. In: ECCV (2020)

13. Ramakrishnan, S.K., Jayaraman, D., Grauman, K.: An Exploration of Embodied
Visual Exploration. IJCV pp. 1–34 (2021)

14. Rosano, M., Furnari, A., Gulino, L., Farinella, G.M.: On Embodied Visual Navi-
gation in Real Environments Through Habitat. In: ICPR (2020)

15. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub,
J., Liu, J., Koltun, V., Malik, J., et al.: Habitat: A Platform for Embodied AI
Research. In: ICCV (2019)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

17. Telea, A.: An image inpainting technique based on the fast marching method. J.
of Graphics Tools 9(1), 23–34 (2004)

18. Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M.,
Batra, D.: DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion
Frames. In: ICLR (2019)

19. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson Env: Real-
world perception for embodied agents. In: CVPR (2018)

https://locobot-website.netlify.com

	Out of the Box:Embodied Navigation in the Real World

