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Simple Summary: Honeybees are vital pollinators for the human food chain. Colony depopulation is
a serious threat to Apis mellifera populations and unfortunately it is also one of the most elusive and
difficult to study. This research deals with the problem at its foundation: population imbalances. The
proposed method allows to discriminate, with remarkably good performances, precocious foragers
from proper aged ones using SDS-PAGE patterns of haemolymph proteins. Implications and future
perspectives are discussed.

Abstract: Honeybees, as social insects, live in highly organised colonies where tasks reflect the age of
individuals. As is widely known, in this context, emergent properties arise from interactions between
them. The accelerated maturation of nurses into foragers, stimulated by many negative factors,
may disrupt this complex equilibrium. This complexity needs a paradigm shift: from the study
of a single stressor to the study of the effects exerted by multiple stressors on colony homeostasis.
The aim of this research is, therefore, to study colony population disturbances by discriminating
overaged nurses from proper aged nurses and precocious foragers from proper aged foragers using
SDS-PAGE patterns of haemolymph proteins and a machine-learning algorithm. The KNN (K
Nearest Neighbours) model fitted on the forager dataset showed remarkably good performances
(accuracy 0.93, sensitivity 0.88, specificity 1.00) in discriminating precocious foragers from proper
aged ones. The main strength of this innovative approach lies in the possibility of it being deployed as
a preventive tool. Depopulation is an elusive syndrome in bee pathology and early detection with the
method described could shed more light on the phenomenon. In addition, it enables countermeasures
to revert this vicious circle.

Keywords: Apis mellifera; nurses; foragers; colony depopulation; haemolymph proteins

1. Introduction

The effect of the recently reported decline in insects [1] and particularly wild pollina-
tors [2] is alarming due to the dependence of agriculture and wild plants on pollination
services. Moreover, the same drivers of the abovementioned insects decline also affect
managed Apis mellifera colonies [3]. Given the multifactorial nature of the phenomenon [4],
a traditional reductionist approach could face difficulties in tackling and preventing the
issue. Thus, an innovative and holistic perspective to objectively evaluate the health sta-
tus could overcome these limits and give operators some perspective about the current
situation and prognosis of the colonies.

Honeybees are social insects, living in colonies often referred to as superorganisms in
order to highlight the high level of organisation achieved. A superorganism is a collection of
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individuals that are mutually dependent and together possess the functional organisation of
an organism. The strengths of this level of organisation are the emergent properties arising
from the interactions between individual members of the colony, such as thermoregulation,
comb construction or foraging behaviour [5].

The adult members of the colony are mainly represented by female workers, charac-
terised by three different phenotypes: nurse bees, foragers and diutinus workers [6]. While
the latter are reared in peculiar conditions, naturally occurring in autumn (in temperate
climates) or artificially obtained during the active season through brood interruption [6–9],
the first two phenotypes are age-related (so called “age polyethism”). Workers act as nurse
bees within 3–4 days of emergence [10]. They have hypertrophic hypopharyngeal glands
and fat bodies for royal jelly production and brood caring. In addition, nurse bees have
a high number of circulating haemocytes [11].

Nurse bees eventually become foragers [12], responsible for the nutrient supply to the
colony. Contrary to nurse bees, foragers are characterised by atrophy of hypopharyngeal
glands and fat body [11] and by a lower cellular immunity due to haemocyte apoptosis [13].
The transition from nurse to forager is not direct, since other tasks are performed by the
bees after feeding larvae but prior to explore the outside of the hive. In this paper, we refer
to “hive bees” to indicate bees performing tasks inside the hive.

The transition from hive bees to foragers is socially regulated trough a feedback loop
between vitellogenin and juvenile hormone, key proteins in foraging regulation [14,15].
The timing of this transition is not fixed and can be anticipated or postponed following
the colony needs [16,17]. The accelerated maturation of hive bees into precocious for-
agers is favoured by many stimuli: undernutrition, wax deprivation, lack of pollen and
forager loss [18–21]. However, some detrimental effects can occur, such as lower flight
performances that have been reported in precocious foragers compared to normal aged
foragers [22]. Interestingly, the action of pathogens can also trigger this behaviour: both
Nosema spp. and Varroa destructor have been proven to cause precocious foraging [23,24].
Moreover, a recent research [25] identified a common host response to different pathogens
(including Nosema spp. and Varroa, Israeli Acute Paralysis Virus, Black Queen Cell Virus
and Deformed Wing Virus), including a decrease in the expression of vitellogenin.

This evidence may suggest the presence of a common pathway of colony depopulation,
as recently proposed by Perry et al. [26], and therefore, the usefulness of a paradigm shift:
from the study of a single stressor to the study of the effects exerted by multiple stressors
to the colony homeostasis. To date, only Aluax et al. [27] proposed a method to study
demographic alterations in the colony, based on the estimation of biological age trough
gene expression of vitellogenin and adipokinetic hormone receptor. However, a more
comprehensive approach is needed. Proteomics enables separation and identification of
a selected set of proteins, e.g., haemolymph proteins, and can provide important informa-
tion about its complexity and variations.

The aim of this research is to study colony population unbalance by discriminating
overaged nurses from proper aged nurses and precocious foragers from proper aged
foragers through the study of the electrophoretic pattern of haemolymph proteins and
a machine-learning algorithm. Machine learning is a supervised learning approach where
an algorithm is trained on a dataset consisting of predictors and dependent variables in
order to formulate prediction rules. These rules are then exploited to predict the dependent
variables knowing only the predictors. In this case, the predictors are represented by
the intensities of the protein bands, found at specific migration distances on the gel; the
dependent variable is a categorical binary outcome: precocious forager and proper aged
forager or overaged nurse and proper aged nurse.

2. Materials and Methods
2.1. Single Cohort Colonies Setup and Sample Collection

This research used “single cohort colonies” (SCCs). These colonies consist of a variable
number of same aged workers, obtained by controlled eclosion in an incubator, and a fertile
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queen. In these colonies, 8 to 10 days after eclosion, some workers start foraging (precocious
foragers) and some others initiate brood caring (proper aged nurses); 21 days after eclosion,
foragers of proper age start foraging while brood caring relies on overaged nurses [28].

Two trials with SCCs were conducted in June–July and in September–October. The
reason behind the different timing in the two replicates is to collect data from different
physiological moments of the colonies, and thus, to better generalise the results. Both
experiments took place in a dedicated apiary at the Department of Veterinary Medical
Sciences of the University of Bologna, Italy.

To obtain workers of the same age to populate the SCCs, the following protocol was
employed:

• On day −21, four mated sister queens were caged on four different combs, drawn
from organic-certified residue free wax, and placed inside four fully developed and
healthy colonies;

• On day −19 the queens were removed from the cages, in order to have a maximum
difference of 48 h among the brood laid;

• On day +1, newly eclosed workers were gently brushed from the combs, mixed to
eliminate the mother colony factor and used to prepare the two SCCs. Each SCCs
was made with 250 g of Apis mellifera ligustica bees (equivalent to approximately
2500 individuals), one queen (of the same subspecies) and two combs drawn from
the same wax mentioned above: one empty and one with plenty of honey and pollen.
The SCCs were kept closed in a protected and shaded environment to allow complete
maturation of the workers;

• On day +3, 3 days post-eclosion, the SCCs were moved to the outdoor apiary.

With this setup, four categories of bees were obtained: precocious foragers (n = 28)
and proper aged nurses (n = 35) sampled on days +8 to +10, and overaged nurses (n = 36)
and proper aged foragers (n = 35) sampled on day +21. The queens were added on day
+1 through an introduction cage, sealed on one end with candy. It took a couple days to
the workers to free her so that, on day +21, no newly eclosed bees were present in the hive
potentially hindering the sampling process. In order to increase the specificity of sampling,
only bees displaying the behaviour of feeding larvae were sampled as nurses and only
bees leaving the hive (caught with a home-made apparatus hanging in front of the flight
entrance) outside the central hours of the day, when orientation flights usually take place,
were sampled as foragers.

2.2. Haemolymph Collection and SDS-PAGE Electrophoresis

Two microliters of haemolymph were drawn from each bee with a graduated glass
microcapillary according to Cabbri et al. (2018) [8] and stored at −80 ◦C. For each of the
134 samples analysed, 3 µg of proteins were loaded and separated with 4–12% gradient
gels, in MOPS buffer (NuPAGE, Thermo Fisher Scientific, Waltham, MA, USA). The gels
were stained with Coomassie G250 compatible with mass spectrometry analysis, digitalised
by ChemiDoc™MP (BioRad, Hercules, CA, USA) and the pherograms were obtained using
the ImageLab 5.2.1 software (BioRad, Hercules, CA, USA). Protein identification by mass
spectrometry was carried out according to Cabbri et al. (2018) [7].

2.3. Data Preparation

Gel images were imported in Fiji, a software based on ImageJ 1.52i [29], coupled
with the Bioformats 6.0.0 plugins in order to read the proprietary .scn files. The lanes of
each gel were manually delimited drawing a segmented line through the centre (from the
loading well to the end of the gel), adding it as a ROI (Region of Interest) and specifying
the width. Afterwards, the electropherograms were plotted using the Multi-plot command
and exported to an Excel spreadsheet. In this file, columns represent the samples, rows
represent the distances from the loading well. The intersection of the two contains the
intensities of the pixels in that area of the gel. The data of each gel were collected in
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a comprehensive database and analysed with the statistical software R 3.6.0 [30] and the
RStudio IDE [31].

The distance variable was binned in order to reduce the complexity, and thus, the com-
putation time of the dataset. One hundred intervals were created, and the corresponding
intensities were averaged. The distance variable was created using the median value of
every interval. After this processing, the resolution was about 650 µm.

To compensate for the differences in migration patterns of the various gels, the
GCalignR [32] library was used. The areas of the pherograms below 5000 µm and ex-
ceeding 45,000 µm of migration distance were excluded from the alignment in order to
avoid high noise zones. The aligned data matrix was used for the subsequent analysis.

2.4. Statistical Analysis

Two different datasets were prepared, one containing the nurses’ data and the other
containing the foragers’ data. Each dataset was randomly split in a training set (75% of the
cases) and a test set (25% of the cases).

Recursive feature elimination (RFE) with random forests function was used to select
relevant variables in the foragers’ and nurses’ datasets, separately (selection made with
rknn 1.2-1 package). A conservative approach based on the empirical “one in ten rule” was
used to choose the maximum number of features to retain. Considering a number of cases
in the train set of approximately 50, the maximum number was set to 5.

To avoid selection bias, the external validation was achieved through 10-fold cross-
validation [33]. Considering the deviation of data from normality (Shapiro–Wilk normality
test), non-parametric algorithms were chosen. Three different models based on three
different algorithms were fit using the train dataset: Support Vector Machines with Linear
Kernel (SVM), k-Nearest Neighbours (KNN) and Random Forest (RF). Cross-validation
and model fitting was achieved with caret 6.0-78 package [34].

The performances of the models were evaluated by repeating 10 times a 10-fold
cross-validation considering as parameters the AUC (Area Under the Curve), Sensitivity
and Specificity; differences were computed, then a t-test was used to evaluate the null
hypothesis that there is no difference between models.

The generalisation error was then assessed on the test set by building a confusion
matrix and computing again the AUC, Accuracy (with 95% CI), Sensitivity and Specificity
for each model. The null Accuracy was compared with the obtained Accuracy and a p-
value was computed to know if the classifier is significantly better than a random classifier.
A p-value < 0.05 was considered as significant.

3. Results
3.1. Nurses

The results obtained on the nurses’ dataset showed a negligible improvement in accu-
racy with a number of variables exceeding three (Figure 1A; Table S1) in the
1:5 range chosen to limit overfitting. For this reason, the first three variables were chosen
to build the models. Those with the highest ranking were: X23,040, X24,336 and X38,014
(Figure 1B). Performances obtained through resampling the training dataset are sum-
marised in Table 1. The differences in mean AUCs were not statistically significant, while
the mean sensitivity achieved through the KNN model was significantly higher (p < 0.05)
than the sensitivity of the SVM model. Regarding mean specificity, the value of the KNN
model is significantly lower (p < 0.05) than that of the other models. The best overall
performance is obtained with the RF model. Performances calculated on the test set for the
RF model are summarised in Table 2 and in the ROC curve (Figure 1C). However, the model
on the test set was not able to discriminate the two categories, as shown in the four-fold plot
(Figure 1D).
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Figure 1. Nurses’ data. (A) Relation between the mean Accuracy of the model obtained with the nurse training dataset
(assessed through Repeated Cross-Validation) and the number of variables used. (B) Three-dimensional plot showing the
relation between the intensity values of the three most informative variables and the nurse category in the training dataset.
(C) ROC curve computed with the prediction of the RF model on the nurse test dataset. (D) Four-fold plot showing the
results of the confusion matrix produced with the prediction of the RF model on the nurse test dataset.

Table 1. Performances of the models assessed through resampling on the training dataset.

Nurses Foragers

Model AUC Sensitivity Specificity AUC Sensitivity Specificity

SVM 0.87 (a) 0.76 (a) 0.83 (a) 0.98 (a) 0.96 (a) 0.86 (a)
KNN 0.83 (a) 0.9 (b) 0.67 (b) 0.98 (a) 0.96 (a) 0.87 (a)

RF 0.82 (a) 0.82 (ab) 0.75 (ab) 0.96 (a) 0.89 (b) 0.90 (a)

Different lowercase letters between rows within a column indicate statistically significant (p < 0.05) difference.
Support Vector Machines with Linear Kernel (SVM), k-Nearest Neighbours (KNN) and Random Forest (RF); area
under curve (AUC).

Table 2. Performances of the selected model on the test set.

Nurses Foragers

RF KNN

Accuracy 0.53 0.93
Accuracy Lower 0.28 0.68
Accuracy Upper 0.77 1
Accuracy Null 0.53 0.53

Accuracy p-Value 0.6 0.00113
Sensitivity 0.5 0.88
Specificity 0.56 1

AUC 0.57 0.95

3.2. Foragers

The results obtained on the foragers’ dataset showed a negligible improvement in
accuracy with a number of variables exceeding a value of 3 (Figure 2A), so the first
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three variables were chosen to build the models. Those with the highest ranking were:
X22,392, X23,040 and X23,690 (Figure 2B). Performances obtained through resampling on
the training dataset are summarised in Table 1. The differences in mean AUCs were not
statistically significant, while the mean sensitivity achieved through the RF model was
significantly lower (p < 0.05) than the sensitivity obtained by the other models. Regarding
the mean specificity, no significant differences were found between models. The best
overall performances were obtained with SVM and KNN, the latter was preferred as it was
less computationally intensive.

Figure 2. Foragers’ data. (A) Relation between the mean Accuracy of the model obtained with the forager training dataset
(assessed through Repeated Cross-Validation) and the number of variables used. (B) Three-dimensional plot showing
the relation between the intensity values of the three most informative variables and the category of the foragers in the
train dataset. (C) ROC curve computed with the prediction of the RF model on the forager test dataset. (D) Four-fold plot
showing the results of the confusion matrix produced with the prediction of the RF model on the forager test dataset.

Performances calculated on the test set for the KNN model are summarised in Table 2
and in the ROC curve (Figure 2C). The model on the test dataset was able to discriminate
the two categories with 100% prediction accuracy in discriminating precocious foragers
(Figure 2D).

The features chosen for the foragers model correspond to three contiguous zones of
the gel, comprising 22,064–24,015 µm of the migration distance, containing a well-defined
protein band with an apparent molecular mass of 75 kDa (Figure 3). This band was cut
from the gel and proteins were identified using mass spectrometry. The search in the
UniProt database resulted in the identification of three proteins (Table 3): the highest
score and number of matches were obtained for apolipophorin, followed by leucine-rich
repeat-containing protein 15 (LRRC15) and transferrin.
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Figure 3. From left to right: molecular weight marker; representative lane of a gel; pherogram of the
same lane as acquired through Fiji software; lane with inverted colours as needed for image analysis.
The line highlights the zone of the gel, comprising a range of 22,064–24,015 µm, including the band
cut for mass identification.

Table 3. Identification table.

Accession 1 Description Mass
(kD) 2 Score 3 Pep 4 Pep (sig) 5 Seq 6 Seq (sig) 7 Protein

Homologous 8 % Identity 9 Species 10

A0A088AS56 Uncharacterised
protein 369 3848 410 224 48 35 Apolipophorins 91.8 Apis cerana

A0A088AQB0 Uncharacterised
protein 76 1001 98 59 19 13

Leucine-rich
repeat-

containing
protein 15

98.4 Apis cerana

A0A088AFH7 Transferrin 80 340 55 24 19 9 100 Apis
mellifera

1 Protein entry name from the UniProt knowledge database. 2 Theoretical protein molecular mass. 3 The highest scores obtained with
the Mascot search engine. 4 Peptides: total number of peptides matching the identified proteins. 5 Significant peptides: total number of
significant peptides matching the identified proteins. 6 Sequences: total number of distinct sequences matching the identified proteins.
7 Significant sequences: total number of significant distinct sequences matching the identified proteins. 8 Protein homologous after BLAST
searching in the Uniprot knowledge database. 9 Percentage of identical sequences between the identified and the homologous protein as
reported after BLAST searching in the Uniprot knowledge database. 10 Species of the homologous protein.

4. Discussion

The timing of nurse to forager maturation is of capital importance in determining
the longevity of honeybees [28]. A wide variety of stress factors exert an influence on
this timing, and thus, greatly impact the colony population dynamics, possibly leading to
colony depopulation [26]. For this reason, a machine learning method was developed with
the aim of discriminating bees whose age matches the role held in the colony from bees
whose age does not. In this study, a proteomic fingerprinting approach to gel analysis was
chosen to explore the overall contribution of the main haemolymph proteins, without the
bias related to an a priori selection.

Overaged nurses are not functionally equivalent to the proper aged ones; in fact,
the degeneration of mandibular glands, which occurs in old nurses, leads to phenotypic
differences in the reared workers, which exhibit higher ovary development [35]. Higher
ovary development in workers was linked to a suboptimal foraging behaviour, determining
an overall decrease in the performance of the colony [36]. Therefore, it is possible that
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workers reared by overaged nurses become less competent foragers. The RF algorithm
indicated the variables X23,040, X24,336 and X38,014 as the most relevant to discriminate
overaged nurses from proper aged ones. The maximum accuracy was achieved with all
60 variables, but in the range 1:5, which was chosen to avoid overfitting the model, no
significant improvement of accuracy was achieved using a number of predictors exceeding
three. Despite the good performances exhibited in the train dataset, a conspicuous generali-
sation error affected the chosen RF model as shown by the poor predictive performance on
the test dataset. The accuracy obtained is not significantly different from the null accuracy
and this model has no predictive power nor practical use.

Better results were obtained with the foragers’ dataset. The RF algorithm indicated
the variables X23,690, X23,040 and X22,392 as the most relevant to discriminate the
two categories. The excellent performances of the KNN model in the training dataset
were confirmed in the test dataset. As seen in the four-fold plot, the model was able to
discriminate with 100% accuracy (7/7) the precocious foragers in the test set.

The features chosen for the foragers model correspond to three contiguous zones
of the gel, comprising 22,064–24,015 µm of the migration distance, containing a band of
an apparent molecular mass of 75 kDa. The proteins identified in this band using mass
spectrometry were apolipophorin, leucine-rich repeat-containing protein 15 (LRRC15)
and transferrin.

Apolipophorins are the major lipoproteins in insects and their presence in haemolymph
is closely related to lipid mobilisation [37]. An apolipophorin showing this unusually low
molecular mass has been described as apolipophorin II (ApoLp-II) in Manduca sexta [38].
Apolipophorin I (ApoLp-I) and Apolipophorin II (ApoLp-II) are produced from a post-
translational cleavage of a precursor protein, apolipophorin II/I (ApoLp-II/I) [39]. To
date, no studies deal with the specific function of ApoLp-II in A. mellifera. However, Wen
et al. [40] recently demonstrated an upregulation of Ap-apoLp-II/I gene expression in
response to bacterial challenge and a novel role for Ap-apoLp-II/I in regulating the prophe-
noloxidase activation system in Antheraea pernyi. The identification of a putative ApoLp-II
in haemolymph of forager honeybees is intriguing and its involvement in the immune
response can also be hypothesised in A. mellifera.

The LRRC15 protein belongs to a ubiquitous protein superfamily characterised by the
presence of leucine-rich repeats (LRR). LRR proteins are involved in a wide variety of bio-
logical processes, from signal transduction to disease resistance and immune response [41].
In particular, in Drosophila melanogaster, LRR proteins contribute to the response to insecti-
cides and regulate the immune response and the NF-kB signalling pathway. Additionally,
in honeybees, it has been reported that exposure to sub-lethal doses of the neonicotinoid
clothianidin enhances the transcription of the gene encoding an LRR protein, reduces
immune defences and promotes the proliferation of the deformed wing virus [42].

Transferrins (Tsfs) are monomeric iron-binding proteins ubiquitous in metazoans.
There are three transferrin homologs in Drosophila: Tsf1, Tsf2 and Tsf3. Tsf1 is considered
the insect counterpart of mammalian serum transferrin. This protein is synthesised in the
fat body, secreted into the haemolymph and involved in trafficking iron from the gut to the
fat body where the metal is stored bound to ferritin [43]. The role of Tsf1 seems not limited
to iron homeostasis. Recently, Iatsenko et al. [44] reported that infections determined
a hypoferremic response in D. melanogaster due to iron withdrawal from the haemolymph
and storage in the fat body, suggesting that Tsf1 mediates the nutritional immunity in
the fly.

Overall, in addition to their specific biological tasks, ApoLp-II, LRRC15 protein and
transferrin identified in the haemolymph of foragers could be involved in the activity of
the immune system, suggesting a possible involvement of the immune response in the
complex and still little explored mechanisms related to precocious foraging, bee health
decline and subsequent colony unbalance. In eusocial insects, the immune system plays
an important role in ensuring colony survival and the transition between nurses and
foragers is a crucial step to maintain colony homeostasis. A recent study demonstrated that
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honeybee foragers exhibit greater expression of genes associated with the immune response
than do nurse bees, suggesting that these genes are involved in the first line of defence
against pathogens [45]. In addition to minor foraging experience, less immunocompetent
precocious foragers could transfer pathogens within the hive leading to an increased risk
of colony decline or mortality.

5. Conclusions

This work deals with the often-neglected problem of demographic alterations in hon-
eybee colonies. The KNN model fitted on the foragers’ dataset showed a remarkably good
predictive accuracy, making it an interesting candidate to monitor population imbalances
in the colony. Given the experimental setup, a trial on fully developed colonies artificially
deprived of foragers is needed to further validate this tool. Moreover, the study of a pro-
tocol using a pool of bees instead of single insects would be useful to reach an affordable
solution for beekeepers and veterinarians operating in this field.

The main strength of this approach lies in the possibility of it being deployed as
a preventive tool. Depopulation is an elusive syndrome in bee pathology because it leaves
behind no bees to sample. Early detection with the method described herein could enable
countermeasures to revert the vicious circle.

At the moment, the main weaknesses are the need of trained personnel for haemolymph
collection and the high processing time required. Research on haemolymph collection
methods could unravel easier and more convenient techniques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11061823/s1. Table S1: Mean accuracy and standard deviation (SD) of the model obtained
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