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A B S T R A C T   

Landscape evolution is occurring at rapid rates in alpine areas in response to recent climate warming, also due to 
the susceptibility and the heterogeneity of these environments. Here we present a prediction model of surface 
displacements that takes into account both topographic and climatic variables. Observed points of surficial 
displacements have been associated to non-climatic (altitude, slope, solar radiation, till deposit type, deposit age, 
vegetation coverage) and climatic (days of snow permanence, ground surface temperature index, ground heating 
index, ground cooling index) variables through a general regression model in the European central Alps. 

The model output shows the importance of slope and ground heating index (GHI) – an estimation of the 
amount of energy transferred to the ground, to predict surface displacements independently from the type of 
considered processes. In particular, the general regression model shows that steep zones with high GHI are more 
susceptible to undergo periglacial and paraglacial processes producing surface displacements. As expected, slope 
is fundamental to trigger processes such as gravitation, nivation, solifluction and their interactions. The results of 
our model emphasize the key role of GHI, highlighting the importance of climate in controlling the surface 
displacement. Indeed, in areas in which GHI is higher, the ground can remain snow free for a longer time and 
snow melting can be faster, the former favoring more runoff and slopewash, and the latter promoting the 
saturation of the deposits consequent to a higher intensity of solifluction and/or mass movements processes. 

Within the study area, the sites with the largest displacements (>35 cm) were detected where permafrost 
degradation occurred since 1990. This permafrost degradation process could remain one of the main triggering 
factors of future surface displacements. Our results confirm that when movement involves material with coarse 
texture (pebbles and boulders) exceeding the rooting depth, only tolerant plant species can withstand the high 
movement rates. The areas where this can happen (like rock glaciers or screes) act as a physical barrier to 
grasslands species not adapted to surface displacements and trying to shift towards higher altitude in response to 
climate warming. However, plant species not considered as indicators of movement (such as graminoids), can 
develop also with large surface displacements in specific geomorphic conditions. Therefore, the combination of 
surface displacement type (deep vs surficial), material texture (fine vs coarse) and vegetation cover (high vs low) 
and floristic composition can be used as a valuable ecological indicator of movement. 

Our results suggest that both landscape degradation and vegetation displacement can be rapid especially 
where the air warming was strong as in the selected study area.   

1. Introduction 

Large parts of the middle latitude mountains are no longer glaciated 

(Diolaiuti et al., 2011; Oerlemans, 2005; Paul et al., 2007; Zemp et al., 
2008) and many others are rapidly becoming ice-free. In the frame of the 
current climate change scenario, the landscape is changing and 
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paraglacial and/or periglacial conditions are widespread. Despite an 
intuitive relation between climate and landscape changes, only few 
works have focused on the combined effects of climate change and 
landscape modelling (e.g., Coulthard, 2001; Tucker and Hancock, 
2010). In middle or low latitude mountain regions the spatial variability 
is very high mainly due to the topography (Becker and Bugmann, 1997) 
and therefore even small changes in climate drivers as air warming or 
solar radiation increase, but also the degree of snow permanence or 
wind speed could have important effects on the landscape changes and 
on the related ecosystems at different scales (Chapin et al., 2008; IPCC, 
2013). Moreover, land degradation at the micro-scale (from millimeters 
to decimeters) can exert an additional impact on ecosystems and on 
plant development. Indeed, land degradation, known also as “physical 
disturbance” or “disturbance”, (frost heave, frost creep or solifluction, 
rill erosion, pebble and boulder movements) has been known to cause 
species altitudinal shifts, changes in species composition, richness and 
productivity, and adaptations to surface movements (e.g. Cannone et al., 
2007; Virtanen et al., 2010; Burga et al., 2004; Cannone and Gerdol, 
2003). 

The monitoring of widescale geomorphic processes at the micro- 
scale in high mountain environments is undertaken infrequently or 
seldom undertaken (e.g., Ballantyne, 2013; Harris et al., 1998; Mat
suoka, 2006) and, in many cases, focuses on a single geomorphic pro
cess, such as: 1) solifluction (Ballantyne, 2013; Matsuoka, 2001a) and its 
relation to vegetation development (Draebing and Eichel, 2018), 2) 
needle ice (Grab, 2001; Nel and Boelhouwers, 2014; Ponti et al., 2018), 
3) frost wedging (Matsuoka, 2001b; Tharp, 1987), 4) rill erosion (Cai 
et al., 2004; Govers, 1992), and 5) nivation (Ballantyne, 1985; Thorn 
and Hall, 2002). In order to improve knowledge of the spatial variability 
of the land degradation and surface dynamics, many studies tried to 
focus on coupling remote-sensing with geographic information systems 
(GIS) (Arenson et al., 2016; Kääb et al., 2003, 2014; Micheletti et al., 
2015; Necsoiu et al., 2016; Westermann et al., 2015). In many cases, 
when coupled with a reliable data validation, the GIS approach provides 
a rapid solution for expanding the investigated area or generating 
models (Dymond et al., 2006; Lee, 2005; Marmion et al., 2008; Pradhan, 
2010). 

Several predictive/distribution models have been produced focusing 
on the susceptibility of certain areas to undergo slope processes (Bai 
et al., 2010; Brenning, 2005; Carrara et al., 2008; Das et al., 2010; 
Frattini et al., 2008; Komac, 2006; Messenzehl et al., 2017; Saito et al., 
2009) or on periglacial processes (Hjort, 2014; Luoto and Hjort, 2004, 
2005; Marmion et al., 2008). However, few of these studies integrate the 
models with climate (Aalto and Luoto, 2014; Fronzek et al., 2006; Hjort 
et al., 2007) or vegetation variables (Choudhary et al., 2017; Hjort, 
2014; Miao et al., 2012; Miller, 2013) and do not always include 
importance of snow distribution (Guglielmin et al., 2003; Randin et al., 
2009). Previous studies focused on the risk assessment but without a 
quantification of the physical processes within areas of potential slope- 
induced hazards (Pelletier, 2008; Baas, 2013). However, taking the 
quantification of the effects of slope displacement beyond just a prob
ability is important as it could be treated as a quantitative risk assess
ment especially in mountainous areas without anthropogenic influence. 
These areas have already been recognized as highly susceptible to the 
recent climate change concerning the vegetation shifts/colonizations 
(Cannone et al., 2007; Gottfried et al., 2012; Keller et al., 2000; The
urillat and Guisan, 2001; Walther et al., 2005). Therefore, the role of 
surficial dynamics modelling could also be implemented in vegetation 
distribution models (Mod et al., 2016; Pfeffer et al., 2003; Räsänen et al., 
2016; Zinko et al., 2005). 

This work aims to: 

i) produce a simple quantitative prediction model of surface displace
ment coupling/based on both the topographic and climatic infor
mation in an alpine area. For this aim, the dynamic prediction is not 
only treated as probability of occurrence, but also as numerical 

quantification, allowing the use of this model as predictor of surface 
displacements under future climatic scenarios;  

ii) compare the predicted displacement with the permafrost distribution 
and the occurrence of plant species, in order to understand their 
relation and assess whether warming of the surface temperature 
would allow the upslope advance of competitive species that might 
threaten the specially adapted species to unstable ground in a context 
of future landscape change in that area. 

2. Study area 

The study area is located around Stelvio Pass (46◦31′ N, 10◦25′ E; 
elevation 2230–3094 m above sea level) close to the border between 
Italy and Switzerland in the Central Alps (Fig. 1). 

The climate is characterized by a continental regime (Ceriani and 
Carelli, 2000), with highly variable values of precipitation due to the 
complex orography. Climate data for the period 1978–2015 from the 
nearest available meteorological station at Cancano (46◦31.03′ N, 
10◦19.24′ E, 1948  m a.s.l., 9 km to E-SE) indicate a mean annual air 
temperature (MAAT) of + 3.3 ± 0.75 ◦C, with January being the coldest 
and driest month (− 5.2 ± 1.8 ◦C; 38.9 mm) and July the warmest and 
wettest (12.2 ± 1.6 ◦C; 94.7 mm). Total mean annual precipitation is 
810 mm, 56% of which falls between May and September. Snow can fall 
at any time laying continuously for 6 months, from mid November to 
May and reaching a mean maximum depth of 133 cm. Despite the patchy 
and discontinuous permafrost distribution (Guglielmin and Siletto, 
2000; Guglielmin et al., 2001), at 3000 m the permafrost thickness ex
ceeds 200 m (Guglielmin, 2004; Guglielmin et al., 2018). 

The area is characterized by bedrock outcrops, as well as some 

Fig. 1. The investigated area and the location of the automatic weather stations 
(AWS) (yellow stars). The colored dots are the monitoring points for the 
observed movements (red = training set, yellow = validation set). The moni
toring locations are circled to indicate the landform type of the substrate: RG =
rock glacier, BS = block stream, SS = scree slope, SL = solifluction lobe, DF =
debris-flow. 
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Holocene till and talus deposits. 
The Holocene glacial evolution of this area is not very well known. 

The Scorluzzo Glacier disappeared between 1937 and 1956 (Pelfini, 
1992; Cannone et al., 2003). 

Despite its limited extent (ca. 3 km2), the area is rich in periglacial 
features including several types of patterned ground, solifluction lobes, 
scree slopes, protalus ramparts, block streams, debris-flows and at least 
two active rock glaciers (Guglielmin and Tellini, 1992). 

The vegetation is typical of the alpine and nival belts (Ellenberg, 
1988) and it was firstly mapped by Giacomini and Pignatti (1955) in 
1953, then by Cannone et al. (2007). In the alpine belt, the dominant 
communities are the climax continuous alpine grassland (Caricetum 
curvulae) and the snowbeds (Salicetum herbaceae). In the nival belt, the 
most representative pioneer communities colonizing scree slopes are 
Androsacetum alpinae, Oxyrietum digynae and Luzuletum spadiceae. 

At the elevations of the study area, the effects of anthropogenic land 
use change on vegetation are mostly negligible (Keller et al., 2005) with 
extensive summer pasturing being the only anthropogenic land use in 
our study area (Cannone et al., 2007; Malfasi and Cannone, 2020). 

3. Material and methods 

3.1. Surface data 

Topographic information were obtained from the digital elevation 
model (DEM) of the study area available of the two snow-free periods 
(2015 and 2016) (5 m of resolution; http://www.cartografia.servizirl.it/ 
arcgis/services/wms/DTM5_RL_wms/MapServer/WMSServer) in Arc
GIS 10.3, from which were developed the slope map and the solar ra
diation maps (through the Area Solar Radiation tool), subsequently 
averaged to produce a single mean solar radiation map. The elevation 
ranges between 2320 and 3094 m a.s.l., while slope ranges between 
0 and 72◦, with the steepest areas corresponding to the rockwalls. The 
cumulative solar radiation of the snow-free period ranges between 105 

to 1.2*106 Whm− 2, with the lower values occurring on the north-facing 
slopes, and the higher solar radiation on the south-facing slopes and 
almost flat areas, as expected. 

The new geological map by Montrasio et al. (2012) was re-classified 
for the deposit type and age rasterized with a resolution of 5 m. All the 
quaternary deposits are classified according to their age, in respect to the 
Little Ice Age (LIA), that occurred in this sector of the Central Alps 
sometime between 1580 and 1834 CE in this area (Guglielmin et al., 
2001, 2018; Cannone et al., 2003) (Table 1). The deposits Post-LIA are 
quite rare and completely free of any soil coverage, while in the LIA 
areas only discontinuous soil occurs, whereas in Pre-LIA areas soils are 
often well developed with spodosoils that can exceed 50 cm of thickness. 
The age of the deposits is a proxy of their weathering and of the stability 
of the surfaces, while their typology (glacial till, slope deposits etc.) 
gives an indication of their average grain size (till generally sandy vs. 
alluvial generally gravelly) and of their selection (alluvial well selected 
vs till massive). Among the different deposit typologies, till is the most 
widespread, while scree slopes are concentrated at the foot of the 
rockwalls. 

The vegetation map was obtained according the two previous 
vegetation maps existing for the area (Giacomini and Pignatti, 1955; 

Cannone et al., 2007). Continuous vegetation is abundant in flat areas at 
mid to low elevations, while it becomes discontinuous in proximity of 
streams or at the foot of scree slopes and at the higher elevations. 

To analyse the relations between surficial displacement and plant 
species was used 50 relevés performed in 2013 (Cannone et al., in prep.). 

The bedrock outcrops were not considered in the model because 
these areas are generally not vegetated. 

The measurements of surface displacements were added to the ana
lyses as point data that represent the maximum displacement (cm) of 
each ten-meter sector of longer painted lines transversal to the flow 
direction of the landforms. For this, the normal shift of painted clasts 
from their original position was measured between 06 and 11-2014 and 
06-11-2016. A total of 85 points spread on 2 rock glaciers, 3 scree slopes, 
3 block streams, 1 solifluction lobe and 1 debris-flow were selected. The 
outliers of the dataset were removed to obtain a training set (57 points) 
and a validation set (21 points). This method follows the “random 
partition” of Chung and Fabbri (2003), with the exception that the se
lection of the validation set was not done randomly but by choosing 2–3 
points placed at different altitudes on each landform to better represent 
all the landforms occurring in the modelled area. 

3.2. Climatic data 

Climatic data refers to air temperatures and snow distribution dur
ing the study period that was based on the availability of cloudless snow 
maps from 06 to 11-2014 to 06-11-2016. Not all the daily snow maps, 
derived from MODIS at a resolution of 250 m (Notarnicola et al., 2013a, 
2013b), were used for this study, but an average of one snow map per 
week was a good compromise to avoid cloudiness and maintain dy
namics of snow cover variations. Unfortunately, better resolution (30 m) 
images from Landsat have not been useful due to the high cloudiness of 
the images during the study period in the examined area. 

The first step was to build a detailed map of air temperature occur
ring at each pixel (5 × 5 m) of the DEM. Secondly, the periods of the 2- 
year study have been defined in terms of snow coverage as shown in 
Table 2, assuming that the snow presence insulates completely the 
ground from the air temperature fluctuations (although we are 
conscious that the snow pack should be at least 80 cm thick to exert this 
complete insulation, i.e., Guglielmin et al., 2003). 

The mean air temperature of the different periods was calculated 
from data series belonging to the 3 closest available automatic weather 
stations (SSB = 3000 m a.s.l., Itex = 2616 m a.s.l. and Oga = 2295 m a.s. 
l.). Subsequently, a linear regression was calculated between mean air 
temperatures for each defined period and the elevation of the corre
spondent stations allowing to extrapolate maps of mean air tempera
tures (all of them with R2 > 0.75 and p < 0.05) for each pixel of the 
examined area for all the defined periods. 

The third step was to generate the snow-free maps for each defined 
period: the sum of the snow-free days was computed for each pixel 
obtaining maps of the snow-free duration for each defined period. 
Finally, these snow-free maps were multiplied by the mean temperature 
of each correspondent defined period, thus obtaining the maps of 
Ground Surface Temperature Index (GSTI) expressed in ◦C day. 

Table 1 
Classification of the characteristics deriving from the geological and vegetation 
map. Classes are represented by the numbers at the first row. LIA refers to “Little 
Ice Age”.   

1 2 3 

Age of Deposits Post-LIA LIA Pre-LIA 
Deposit Type Glacial till Slope deposit Landslide deposit 
Vegetation 

Coverage 
Bare Ground 
(<5%) 

Discontinuous 
(5–50%) 

Continuous 
(>50%)  

Table 2 
Annual climatic division based on the snow presence and the mean daily air 
temperature. Each year was divided into four periods (Snow Cover, Melting, 
Freezing, Snow-free). Freezing period can occur also more than one time per 
year as happened in 2016 when both at the end of the snow cover (SCT) period 
and at the snow-free period (SFT) some days of freezing occurred.  

Periods Snow coverage (%) Mean daily air temperature (◦C) 

Snow cover (SCT) > 90 <0 
Melting (MT) < 90 >0 
Freezing (FT) < 90 <0 
Snow-free (SFT) < 10 >0  
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Moreover, thawing degree days (TDD) and freezing degree days (FDD) 
(Carter et al., 1991) were calculated for each period similarly to the air 
temperature. Mean TDD and FDD of the different periods have been 
calculated at the 3 weather stations and the linear regression (R2 > 0.75 
and p < 0.05) between elevation and TDD/FDD used to produce the 
corresponding maps. TDD and FDD values at each 5 m cell were mul
tiplied by the snow-free days for each period, thus obtaining the maps of 
Ground Heating Index (GHI = snow-free days * TDD) and of Ground 
Cooling Index (GCI = snow-free days * FDD). 

3.3. Statistical analyses 

All the map operations described above and the spatial analyses of 
the vegetation relevés were conducted using the raster calculator tool in 
ArcGIS 10.3 (ESRI, 2011) and the spatial analyst tool. 

From all the maps of the variables listed in Fig. 2, at each of the 57 
training points both categorical and continuous data were extracted and 
used to run a general regression model (GRM) (Hill et al., 2006) in order 
to select the dominant variables with a backward stepwise option 
through the software STATSOFT©. In order to satisfy the normal dis
tribution condition for the GRM input, all the continuous variables were 
square-root transformed. The GRM with backward stepwise option was 
applied to the training set considering all the values extracted at each 
point from the maps listed in Fig. 2 as independent variables and the 
observed values of surface displacement as dependent variables. 

Afterwards, the calibration and the validation of the observed vs. 
predicted displacements were tested with the statistical descriptors lis
ted in Willmott (1981). A flow-chart of the utilized variables is shown in 
Fig. 2. 

The statistical analysis conducted on the vegetation species 

associated to surface displacement (which was recorded in the field 
during the study period) were conducted in STATSOFT© by removing 
displacement outliers through a graphical representation in the non- 
parametric section. 

4. Results 

Snow persistence ranged between 159 and 262 days per year. In 
general, snow persistence lasted longer at higher elevations although 
sometimes at lower altitudes snow persistence was longer in depressed 
and shady areas. GSTI for FT (ranging from 5.7 to 98.7 ◦C day) shows 
low values for higher elevations, even though the minimum is not 
reached at the most elevated place. GSTI for MT (ranging between 0.6 
and 140 ◦C day) and SFT (ranging between 233 and 363 ◦C day) follows 
an inverse altitudinal pattern with the lowest values at higher elevations 
and north-facing slopes. 

The GHI and the GCI are also both strongly controlled by DEM, 
although the range of variability is much wider for GCI (between − 2.39 
106C day2 and − 0.56 105 ◦C day2) respect in to the GHI, that ranges 
between 1.24 106C day2 and 16 106 ◦C day2. 

The GRM provided a statistically significant and good result (R2 =

0.45; p < 0.001; F = 22.8). 
According to the GRM, Slope and GHI are the most important sta

tistically significant drivers of surface displacement (Table 3). Moreover, 
the model indicated that there is a direct linear relationship between 
Slope, GHI and Surface Displacement as expressed by the Eq. (1). 

√[Predicted Surface Displacement (cm) ]

= 2.02*√(Slope)+ 0.03*√(GHI) − 47.10 (1) 

Fig. 2. Flow chart representing the calculation conducted for the general regression analysis. Raster maps are represented with ellipsis while climatic data series with 
a square. In green are shown the data sources (Weather stations data series, MODIS images for snow distribution, DEM, Vegetation Cover and Geological Map). The 
maps derived by raster data sources are linked with dashed black lines; Solar radiation and Slope derived from a parental map calculation in ArcGIS, while Age of 
Deposits and Deposit type derived from a re-classification of the geological map by Montrasio et al. (2012), TDD /FDD and air temperature derived from DEM (see red 
arrows) and weather data series while the number of days with snow cover derived from MODIS snow distribution and DEM (see blue arrows). Finally, from the 
interactions of Snow days and Air temperature or TDD/FDD maps derived GSTI and GHI/GCI that are used as independent variables together with all the other maps 
linked with yellow arrows. The rhombus (surficial displacement record) indicates the dependent variable of the general regression analysis. 
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By applying the Eq. (1) at the whole study area (Fig. 3), we predicted 
a displacement ranging between 0 and 170 cm for the entire period of 
the two selected years, with an average of 17.1 cm. The model predicts 
as highly dynamic areas the zones at lower elevation (<2500 m a.s.l) 
where both slope and GHI are high, such as the northernmost part of the 
study area, where solifluction lobes, terraces, rock glaciers and scree 
slopes occur, while the most elevated part of the examined area shows 
the lowest values of surface displacement. Intermediate values occur at 
the steepest parts at the foot of the rockwalls where the finest sediments 
prevail in the scree slopes. 

The relatively low root mean square error (RMSE), the greatest part 
of which is systematic (RMSEs) and the d values close to 1 suggest a good 
predictability of the model (Table 4), while the model fitting (R2) does 
not show a very high value (0.42) but it is statistically significant. 

Concerning the relations between plant species and the modeled 
surficial displacements, in Fig. 4 it is possible to identify the ranges of 
tolerance for all the species directly affected by displaced clasts 
(displacement-tolerant species) during the study period, with the 
occurrence of two ecological clusters (0–35 and >35 cm). 

In the model area, 50 vegetation relevés were conducted in 2013 in 
the model area, of which 41 relevés were associated with a modelled 
surface displacement of 0–35 cm and the nine remaining with the >35 
cm class. The relevés associated with the largest displacements were 
representative of three different case conditions and different geomor
phic processes. I) Areas with surface displacement depth exceeding the 
root depth and fine material prevailing at the surface, such as on active 
rock glaciers: here the vegetation creates floating patches, and is char
acterized by high coverage and dominance of graminoids (Luzula alpino- 
pilosa (Chaix) Breistr., Poa alpina L., Carex curvula All., Anthoxanthum 
alpinum Honda, Agrostis alpine Scop.) (Fig. 5A). II) Areas with the surface 

displacement being deeper than the root zone, but with prevailing 
coarse material, such as on active rock glaciers or at the foot of screes. 
Here the vegetation is not able to create patches and a few species are 
able to withstand the high displacement rate, therefore the vegetation is 
characterized by low and discontinuous coverage and by the selection of 
species tolerant to high movement (such as Geum reptans L., Cerastium 
uniflorum Clairv., etc.) (Figs. 4 and 5B). III) Areas with surface 
displacement being surficial, as in the case of slope wash or frost creep 
(such as the apex of screes): the vegetation is characterized by small 
discontinuous patches with high cover and dominated by consolidator 
species (such as graminoids), creating small steps able to resist being 
buried by fine material (Fig. 5C). 

5. Discussion 

5.1. Model parameters 

Several models have been developed addressing single geomorphic 
processes in the periglacial environment (French, 2007), such as rock 
falls (e.g., Messenzehl et al., 2017), solifluction and cryoturbation (e.g., 
Hjort, 2014), palsa mires (e.g., Fronzek et al., 2006) and patterned 
grounds (e.g., Luoto and Hjort, 2004). Only in few cases have models (i. 
e. Aalto and Luoto, 2014) focused on different processes involved in 
surface disturbance. Our model confirms the results of Aalto and Luoto 
(2014) in which the importance of incorporating climate and local (soil, 
vegetation) predictors into models at the landscape level was under
lined. Moreover, in our case the combination of climate and local pre
dictors are useful to model the surficial displacement independently by 
the different types of processes or landforms considered. Among the 
factors that we took into account, it is remarkable that the grain size of 
the sediments apparently does not play an important role, probably due 
to the generally coarse size of the sediments occurring in the area (and, 
in particular, where the monitoring points are located). 

On the contrary, slope is a relevant parameter, as could be expected. 
Indeed, all the geomorphic processes that characterize the mountain belt 
depend on gravitational forces and, therefore, on slope (French, 2007; 
Harris et al., 2001; Harris and Smith, 2003; Matsuoka, 1998, 2001a). In 
particular, in the mountain areas of middle and low latitudes, slope 
processes could involve solifluction (Benedict, 1970; French, 2007; 

Table 3 
Statistically significant variables characteristics as outputs of the general 
regression analysis. β = standardized regression coefficient, F = ANOVA F-value.   

β F p-value 

Intercept   9.0  0.004 
Slope  0.57  31.9  < 0.001 
GHI  0.26  6.45  0.014  

Fig. 3. Graphic visualization of the final model derived (Surface Displacement, cm) from the general regression equation. a) stretched model; b) classified model: 1 
= 0–1 cm, 2 = 1–5 cm, 3 = 5–10 cm, 4 = 10–20 cm, 5 = 20–35 cm, 6 = >35 cm for the whole analysed period. Red dots indicate the training set, yellow dots indicate 
the validation set. 
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Goodfellow and Boelhouwers, 2013; Matsuoka, 2001a), gravitation 
(Luckman, 1976; Statham, 1976; van Steijn et al., 2002), nivation 
(Ballantyne, 1985; Thorn and Hall, 2002), periglacial and cryotic pro
cesses, and their interactions (Haeberli et al., 2006; Kääb et al., 1997; 
Pérez, 1993; Rixhon and Demoulin, 2013). 

The higher relevance of slope in our model in respect to other 
models, like for example in Aalto and Luoto (2014), is probably due to 
the main periglacial processes considered by the authors like solifluction 
or cryoturbation generally developing on lower slopes. 

Beyond slope, the second statistically significant factor is the GHI, 
showing a positive relation with the surface displacement. Therefore, 
the areas where snow is absent in combination with temperature >0 ◦C 
lasting for several days are characterized by a higher probability of 
surface displacement, possibly related with higher liquid precipitation, 
consequent runoff or slopewash (Thorn and Hall, 2002), infiltration in 
the soil, as well as evapotranspiration (desiccation) (van den Bergh 
et al., 2013; Wieser et al., 2008). Moreover, it is also possible that in 
these areas snow melting can occur faster inducing the saturation of the 
deposits, favoring the solifluction processes. 

In periglacial belts like the examined area we should take into ac
count permafrost occurrence in order to quantify its relation with land 
degradation. For the examined area we decided to use the only available 
permafrost map of the European Alps which includes the study area 
(Boeckli et al., 2012a, 2012b). Using this map we predicted a probable 
overestimation of the permafrost extent because it is based on climatic 
data referred to the period 1961–1990 and, therefore, does not take into 

account the more recent warming (Boeckli et al., 2012a). Indeed, the 
recent warming in the examined area is really strong, as demonstrated 
by Guglielmin et al. (2018) in correspondence of SSB (Fig. 1; 3000 m a.s. 
l.), where, between 1990 and 2011, an abrupt GST (ground surface 
temperature) warming exceeding >0.8 ◦C per decade was recorded. 
According to these data, it is reasonable that the permafrost areas 
mapped by Boeckli et al., 2012a, 2012b as “less probable” and “prob
able” could be actually permafrost-free or strongly degradated (Fig. 6a). 
The more unstable areas and the maximum recorded rates of displace
ments are located in the areas classified with “less probable” permafrost 
(classes 5 and 6, Fig. 6b and Table 5). Notably, the areas with the greater 
displacements classes (5 and 6) are all located below the − 1 ◦C isotherm 
(2622 m a.s.l.) for the period 1978–1990 (Fig. 6), in areas where 
permafrost could occur until 1990. These results suggest that the 
permafrost degradation occurred since 1990 (and probably still ongoing 
below the − 1 ◦C isotherm placed at 3000 m a.s.l. during the study 
period) and could be one of the main triggering factors of surface dis
placements. On the other hand, further investigations are needed to 
address this issue and assess where permafrost degradation is still 
ongoing or completed. 

5.2. Ecological implications 

Vegetation cover does not seem to be important as a model param
eter, however vegetation could be treated as an ecological indicator of 
the surface displacement with reference to specific processes, for 

Table 4 
Statistical descriptors useful to assess the quality of the model, both for the calibration (training) and the validation set. The descriptors follow what listed in Willmott 
(1981).   

R2 Slope Intercept Mean O Mean P So Sp RMSEs RMSEu RMSE d 

Calibration  0.42  0.27  9.67  20.48  15.27  28.77  12.19  21.37  9.22  23.27  0.64 
Validation  0.56  0.35  6.41  17.67  12.64  28.23  13.33  18.53  8.66  20.45  0.72  

Fig. 4. Plant species associated with each recorded surface displacement during the study period. The box and whisker plots show the tolerance of the species to the 
surface displacement in terms of mean and standard error (SE). It is noticeable that many species have similar means or ranges and that a clusterization is visible for 
displacements as 0–35 and > 35 cm. 
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instance, response to surface erosion (Miao et al., 2012; Stanchi et al., 
2013), predictor of landslides (Miller, 2013), indicator of landslide 
relative age, detachment patterns and recolonization patterns (Cannone 
et al., 2010). 

The use of vegetation cover did not produce good results in our 
modeling, due to different reasons. First of all, we used classes of 
coverage (Cannone et al., 2007) and not the spatial distribution of single 
plant species indicators of surface instability, such as Cerastium uni
florum, Geum reptans or Saxyfraga bryoides (Cannone and Gerdol, 2003; 

Fig. 5. Examples of the relations between vegetation and high surface displacements. A) high coverage vegetation floating patches/turve dominated by graminoids 
(Luzula alpino-pilosa, Poa alpina, Carex curvula, Anthoxanthum alpinum, Agrostis alpina) on an active rock glacier with the largest displacements exceeding the rooting 
depth and surficial fine material; B) discontinuous low coverage vegetation dominated by movement tolerant species such as Geum reptans and occurring where the 
displacement depth exceeds the rooting zone with coarse material such as at the foot of screes; C) small vegetation patches with high coverage of consolidator species 
(mainly graminoids) creating steps able to withstand the burial of fine material triggered by surface displacements, as in the case of the apex of screes. 

Fig. 6. Comparison between permafrost distribution (a) and the surface displacement model (b). Permafrost classes refer to: 1) present (blue), 2) probable (pink), 3) 
less probable (yellow) (Boeckli et al., 2012a). The two isolines indicate the elevation of the mean air temperature as isotherm − 1 ◦C (2622 m a.s.l.) for the period 
1978–1990 (solid line) (the closest available to Boeckli et al. (2012a) (1961–1990) and for the study period (dashed line) (3000 m a.s.l.). 

Table 5 
Percentage of pixels that match permafrost and displacement classes with gen
eral statistics of the modelled displacement.  

Displacement statistics (cm) 

Permafrost Max Mean Std 

Present 34.60 4.35 4.91 
Probable 45.26 4.09 5.59 
Less probable 85.31 14.42 16.80  
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Burga et al., 2004). 
This is mainly due to the difficulty to produce a vegetation map at the 

species level at the examined scale due to the scarcity of mono-specific 
detectable patches: indeed, even though species-specific distribution 
models have been developed, they mainly focused on the ecological 
requirements related to climate (e.g., Guisan and Thuiller, 2005; Guisan 
et al., 2006, 2013; Zimmermann and Kienast, 1999). 

However, the capability of vegetation as an ecological indicator of 
displacement depends on the type of process and on the depth of the 
displacement within the ground/soil and its interaction with the rooting 
zone. Our data confirm that the occurrence of single plant species (such 
as Geum reptans, Cerastium uniflorum, Veronica alpina) and/or the 
coverage of vegetation is a suitable indicator of displacement and of its 
intensity when the movement/displacement exceeds the rooting zone 
(up to 70 cm for Geum reptans, between 10 and 35 cm for the other two 
species) and involves coarse material, such as in the case of most the 
active rock glaciers, or at the foot of scree slopes (e.g., Burga et al., 2004; 
Cannone and Gerdol, 2003). For this specific condition, the species 
highlighted as indicators of surface displacement are reported in Fig. 4. 
Our data show that the mean surface displacement of the vegetation 
polygons (that are good representative of the vegetation relevés) is in a 
good relationship with the surface displacement modelled at the relevés 
locations for the 0–35 cm zone (R2 = 0.78, p < 0.001). 

In the areas with prevailing fine material and displacement depth 
exceeding the rooting zone depth, our data show that in this specific 
condition the occurrence of floating patches of continuous vegetation 
cover dominated by graminoids can be used as indicator of high deep 
displacements (such as for solifluction or creep processes). In this case, 
the patches/turves are mainly characterized by high total cover and by 
the dominance of graminoids (such as Luzula alpino-pilosa, Poa alpina, 
Carex curvula, Anthoxanthum alpinum, Agrostis alpina), creating a thick 
matrix of fasciculate roots, and/or by species able to perform clonal 
growth (Reisigl and Keller, 1990). 

The wide range of geomorphological processes triggering the dis
placements addressed by this study (e.g., solifluction, frost creep, 
permafrost creep, slope wash, rockfalls, frost heave and so on) and their 
different depths allow to explain why the good ecological validation of 
our model is independent of the total vegetation coverage. 

The total vegetation cover could be associated to the activity of 
specific landforms (Cannone and Gerdol, 2003), but, in case of broader 
areas, the interaction of many geomorphic processes and substrata 
produce a heterogeneous disturbance system even at similar coverages. 

Nevertheless, it is important to remark that the displacement- 
tolerant species found in this study are not exclusive of unstable sur
faces and thus they cannot be treated as the only ones to colonize dis
placing areas, rather they are able to grow also above disturbed surfaces. 

6. Conclusions 

A new simple topo-climatic model for predicting surficial dynamics 
in mountain regions was presented here showing that it is possible to 
develop and use linear models also for modeling the land evolution and 
degradation of alpine territories in the periglacial belt where permafrost 
is actually degrading. 

Our findings suggest that slope and GHI are the best predictors of 
surficial displacement in the examined alpine area. In particular, the 
general regression model shows that steep zones with high GHI are more 
susceptible to undergo periglacial and paraglacial processes. As ex
pected, slope is fundamental to trigger processes such as gravitation, 
nivation, solifluction and their interactions, but our model shows that 
GHI (that is the amount of energy transferred to the ground) is funda
mental too. GHI highlights the role of climate in controlling the surface 
displacement, because in areas where GHI is higher, the ground can stay 
snow-free for a longer time and therefore, can be affected by liquid 
precipitation and, consequently more runoff or slopewash (Thorn and 
Hall, 2002). Moreover, in the same areas a more rapid snow melting can 

result in saturated deposits and therefore solifluction or mass movement 
processes may occur. 

According to the available data for permafrost, we can confirm that 
in the periglacial belt the largest displacements were detected where 
permafrost degradation occurred since 1990 (and probably is still 
ongoing) and could remain one of the main triggering factors for future 
surface displacements. 

An ecological implication of the model is possible for surface dis
placements >35 cm especially where coarse material occurs on the 
surface, such as on coarse active rock glaciers and screes. Such areas may 
act as physical barriers to the grassland species not adapted to the sur
face displacement, which are trying to shift towards higher altitude in 
response to climate warming. Therefore, an increase of surface 
displacement can contribute to the loss of grassland species threatened 
by shrub encroachment from lower elevation sand by the increase of the 
surficial displacement in their potential refugial areas located at higher 
elevations. When the surficial material is fine, displacements deeper 
than the rooting zone allow the development of discontinuous vegeta
tion with high cover and dominated by graminoids forming patches 
floating above the displacement plane. When the displacement is surfi
cial, vegetation creates small discontinuous turves of consolidator spe
cies (such as graminoids) able to survive being buried by fine material. 
Plant species apparently not indicators of movement (such as grami
noids) in specific geomorphic conditions can develop also with large 
surface displacements and therefore the combination of surface 
displacement type (deep vs surficial), material texture (fine vs coarse) 
and vegetation cover (high vs low) and floristic composition can be used 
as a valuable ecological indicator of movement. 

Our results suggest that both landscape degradation and vegetation 
displacement can be very fast especially where the air warming has been 
notable as in the selected study area. Therefore, in order to predict 
future surface displacements, we suggest adopt a monitoring of the 
ground surface temperature (2 cm of depth) especially in the areas close 
to the lower altitudinal boundaries of permafrost distribution. Such 
monitoring is quite easily undertaken through the in situ placement of 
low cost dataloggers or with remote sensing technique (thermal imag
ing) or alternatively with the application of the model presented here. 
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Pérez, F.L., 1993. Talus movement in the high equatorial Andes: A synthesis of ten years 
of data. Permafrost Periglac. Process. 4, 199–215. https://doi.org/10.1002/ 
ppp.3430040303. 

Pfeffer, K., Pebesma, E.J., Burrough, P.A., 2003. Mapping alpine vegetation using 
vegetation observations and topographic attributes. Landscape Ecol. 18, 759–776. 
https://doi.org/10.1023/b:land.0000014471.78787.d0. 

Ponti, S., Cannone, N., Guglielmin, M., 2018. Needle ice formation, induced frost heave, 
and frost creep: A case study through photogrammetry at Stelvio Pass (Italian 
Central Alps). Catena. 164, 62–70. https://doi.org/10.1016/j.catena.2018.01.009. 

Pradhan, B., 2010. Remote sensing and GIS-based landslide hazard analysis and cross- 
validation using multivariate logistic regression model on three test areas in 
Malaysia. Adv. Space Res. 45, 1244–1256. https://doi.org/10.1016/j. 
asr.2010.01.006. 

Randin, C.F., Vuissoz, G., Liston, G.E., Vittoz, P., Guisan, A., 2009. Introduction of snow 
and geomorphic disturbance variables into predictive models of alpine plant 
distribution in the Western Swiss Alps. Arct. Antarct. Alp. Res. 41, 347–361. https:// 
doi.org/10.1657/1938-4246-41.3.347. 

Räsänen, A., Kuitunen, M., Hjort, J., Vaso, A., Kuitunen, T., Lensu, A., 2016. The role of 
landscape, topography, and geodiversity in explaining vascular plant species 
richness in a fragmented landscape. Boreal Environ. Res. 21, 53–70. 

Reisigl, H., Keller, R., 1990. Fiori e ambienti delle Alpi. Editrice Saturnia, Trento, p. 148. 
Rixhon, G., Demoulin, A., 2013. Evolution of slopes in a cold climate. Glacial and 

Periglacial Geomorphology, San Diego.  
Saito, H., Nakayama, D., Matsuyama, H., 2009. Comparison of landslide susceptibility 

based on a decision-tree model and actual landslide occurrence: The Akaishi 
Mountains Japan. Geomorphology 109, 108–121. https://doi.org/10.1016/j. 
geomorph.2009.02.026. 

Stanchi, S., Freppaz, M., Godone, D., Zanini, E., 2013. Assessing the susceptibility of 
alpine soils to erosion using soil physical and site indicators. Soil Use Manag. 29, 
586–596. https://doi.org/10.1111/sum.12063. 

Statham, I., 1976. A scree slope rockfall model. Earth Surf. Proc. Land. 1, 43–62. https:// 
doi.org/10.1002/esp.3290010106. 

Tharp, T.M., 1987. Conditions for crack propagation by frost wedging. Geol. Soc. Am. 
Bull. 99, 94–102. https://doi.org/10.1130/0016-7606(1987)99<94:cfcpbf>2.0.co; 
2. 

Theurillat, J.P., Guisan, A., 2001. Potential impact of climate change on vegetation in the 
European Alps: A review. Clim. Change 50, 77–109. https://doi.org/10.1023/a: 
1010632015572. 

Thorn, C.E., Hall, K., 2002. Nivation and cryoplanation: The case for scrutiny and 
integration. Prog. Phys. Geogr. 26, 533–550. https://doi.org/10.1191/0309133302 
pp351ra. 

Tucker, G.E., Hancock, G.R., 2010. Modelling landscape evolution. Earth Surf. Proc. 
Land. 35, 28–50. https://doi.org/10.1002/esp.1952. 

van den Bergh, T., Inauen, N., Hiltbrunner, E., Körner, C., 2013. Climate and plant cover 
co-determine the elevational reduction in evapotranspiration in the Swiss Alps. 
J. Hydrol. 500, 75–83. https://doi.org/10.1016/j.jhydrol.2013.07.013. 

van Steijn, H., Boelhouwers, J., Harris, S., Hétu, B., 2002. Recent research on the nature, 
origin and climatic relations of blocky and stratified slope deposits. Prog. Phys. 
Geogr. 26, 551–575. https://doi.org/10.1191/0309133302 pp352ra. 
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