
UNIVERSITÀ DEGLI STUDI DELL’INSUBRIA - VARESE

DiSTA
Dipartimento di Scienze Teoriche e Applicate

P H D T H E S I S
to obtain the title of

Doctor of Science

Specialty : Computer Science

Defended by

Anh-Tu Hoang

PRIVACY-PRESERVING
PUBLISHING OF KNOWLEDGE

GRAPHS

Advisor: Prof. Barbara Carminati

Advisor: Prof. Elena Ferrari

defended on December 03, 2020

To my wonderful mother and father.

Thank you for raising me to be who I am today. Without your love and encour-
agement, I will not have enough confidence and freedom to do all the things I want in my
life.

Acknowledgments

First of all, I would like to express my deep and sincere gratitude to my advisers, Professor
Elena Ferrari and Professor Barbara Carminati, for their invaluable guidance and support.
Their immense knowledge, vision, patience, and sincerity greatly enrich my research skills
and motivate me to finish this study. It is a great honour for me to work and study under
their guidance.

Furthermore, I would like to thank the reviewers of my thesis, i.e., Professor Dan Lin
and Professor Xukai Zou. Their detail comments and hard questions enrich my knowledge
and widen my research from various perspectives.

Last but not least, I would like to give my thanks to all of my laboratory members:
Pietro Colombo, Gökhan Sağırlar, Bikash Chandra Singh, Zulfikar Alom, Christian Ron-
danini, Engin Deniz Tümer, Federico Daidone, Ha Xuan Son, Ahmed Lekssays, Mauro
Santabarbara, and Roberta Viola. They helped me to get used to life in Italy and sup-
ported my research throughout these years. We have passed great moments together.
Without them, my PhD life would not be so enjoyable and memorable.

2

Abstract

Online social networks (OSNs) attract a huge number of users sharing their data every
day. These data can be shared with third parties for various usage purposes, such as data
analytics and machine learning [26]. Unfortunately, adversaries can exploit shared data
to infer users’ sensitive information [49]. Various anonymization solutions [26] have been
presented to anonymize shared data such that it is harder for adversaries to infer users’
personal information. Whereas OSNs contain both users’ attributes and relationships,
previous work only consider anonymizing either attributes, illustrated in relational data
[33,36,49,53] or relationships, represented in directed graphs [10,60].

To cope with this issue, in this thesis, we consider the research challenge of anonymizing
knowledge graphs (KGs), due to their flexibility in representing both attributes’ values
and relationships of users. The anonymization of KGs is not trivial since adversaries can
exploit both attributes and relationships of their victims [45–47]. In the era of big data,
these solutions are significant as they allow data providers to share attributes’ values and
relationships together. Over the last three years, we have done important research efforts
which has resulted in the definition of different anonymization solutions for KGs for many
relevant scenarios, i.e., anonymization of static KGs, sequential anonymization of KGs, and
personalized anonymization of KGs.

Since KGs are directed graphs, we started our research by investigating anonymization
solutions for directed graphs [10,60]. As anonymization algorithms proposed in the litera-
ture (i.e., [10, 60]) cannot always anonymize graphs, we first presented the Cluster-Based
Directed Graph Anonymization Algorithm (CDGA). We proved that CDGA can always
generate anonymized directed graphs. We analyzed an attacking scenario where an adver-
sary can exploit attributes’ values and relationships of his/her victims to re-identify these
victims in anonymized KGs. To protect users in this scenario, we presented the k-Attribute
Degree (k-ad) protection model to ensure that users cannot be re-identified with a confi-
dence higher than 1

k . We proposed the Cluster-Based Knowledge Graph Anonymization
Algorithm (CKGA) to anonymize KGs for this scenario. CKGA has been designed for
a scenario where KGs are statically anonymized. Unfortunately, the adversary can still
re-identify his/her victims if he/she has access to many versions of the anonymized KG.
To cope with this issue, we further presented the kw-Time-Varying Attribute Degree to
give users the same protection of k-ad even if the adversary gains access to w continu-
ous anonymized KGs. In addition, we proposed the Cluster-based Time-Varying Knowl-
edge Graph Anonymization Algorithm to anonymize KGs while allowing data providers

3

4

to insert/re-insert/remove/update nodes and edges of their KGs. However, users are not
allowed to specify their privacy preferences which are crucial to for those users requiring
strong privacy protection, such as influencers [54,59]. To this end, we proposed the Person-
alized k-Attribute Degree to allow users to specify their own value of k. The effectiveness
of the proposed algorithms has been tested with experiments on real-life datasets.

Contents

1 Introduction 10
1.1 Contributions . 12

1.1.1 Anonymization of Directed Graphs 13
1.1.2 Anonymization of Knowledge Graphs 13
1.1.3 Sequential Anonymization of Knowledge Graphs 14
1.1.4 Personalized Anonymization of Knowledge Graphs 15

1.2 Thesis Organization . 15
1.3 Related Publications . 16

2 Related Work 18
2.1 Introduction . 18
2.2 Anonymization of Relational Data . 18
2.3 Anonymization of Graphs . 22
2.4 De-anonymization of Knowledge Graphs . 26
2.5 Sequential Anonymization of Released Datasets 27
2.6 Personalized Anonymization . 30

3 Anonymization of Directed Graphs 32
3.1 Introduction . 32
3.2 Anonymizing Directed Graphs . 33

3.2.1 Adversaries’ Background Knowledge 33
3.2.2 Anonymity of Directed Graphs . 34

3.3 Cluster-based Anonymization . 35
3.3.1 Overview . 35
3.3.2 Information Loss Metric . 35
3.3.3 Algorithms . 37

3.4 Experiments . 43
3.4.1 Datasets . 44
3.4.2 Tuning CDGA . 44
3.4.3 Evaluating the Degree Decrement . 45
3.4.4 Comparative Analysis . 46

5

CONTENTS 6

4 Anonymization of Knowledge Graphs 49
4.1 Introduction . 49
4.2 Anonymizing Knowledge Graphs . 51

4.2.1 Adversary Background Knowledge 51
4.2.2 Anonymity of Knowledge Graphs . 52

4.3 Information Loss Metrics . 53
4.3.1 Attribute and Degree Information Loss 53
4.3.2 The Attribute Truthfulness Information Loss 56

4.4 Cluster-Based Knowledge Graph Anonymization 58
4.4.1 Users’ Points Generation . 58
4.4.2 Clusters Generation . 58
4.4.3 Knowledge Graph Generalization . 61

4.5 Experiments . 62
4.5.1 Datasets . 62
4.5.2 Evaluating Users’ Points . 62
4.5.3 Tuning CKGA . 63
4.5.4 Evaluating the Truthfulness of Anonymized KGs 65
4.5.5 Comparative Analysis . 66

5 Sequential Anonymization of Knowledge Graphs 68
5.1 Introduction . 68
5.2 Identity Protection in Sequential Publishing of Knowledge Graphs 71

5.2.1 Adversary Background Knowledge 71
5.2.2 Protection Model . 73

5.3 Algorithm . 74
5.3.1 Overview . 74
5.3.2 Attribute Degree Sequence Table . 75
5.3.3 Clusters Generation . 76
5.3.4 Privacy Analysis . 79

5.4 Experiments . 82
5.4.1 Datasets and Settings . 82
5.4.2 Tuning CTKGA . 82
5.4.3 Performance Evaluation . 84
5.4.4 Comparative Evaluation . 85

6 Conclusion and Future Work 87
6.1 Conclusion . 87
6.2 Future work . 88

6.2.1 Personalized Anonymization of Knowledge Graphs 88
6.2.2 Other Research Directions . 90

Appendices 97

CONTENTS 7

A Notations and abbreviations 98
A.1 Abbreviations . 98
A.2 Notations . 98

B Datasets 100

C Publications 102

List of Figures

1.1 An example of knowledge graph. 12
1.2 Graphical representation of key contributions of this thesis. 13

2.1 Taxonomy tree of Job attribute. 21

3.1 An example of directed graph and its anonymized versions 33
3.2 Changed edges by varying k and ω. 44
3.3 Changed edges by varying k and τ . 45
3.4 Details on the changes of graphs on varying k. 46
3.5 Intersection Edges of DGA and CDGA. 46
3.6 Edges Addition of DGA and CDGA. 47
3.7 ACC of CDGA and DSNDG-KIODA. 47

4.1 Knowledge graphs satisfying Paired k-degree and k-ad. 50
4.2 Average information loss of users with varying clustering algorithms and

IR/KP strategies. 64
4.3 Ratio of untruthful associations by using ADM and ATDM 65
4.4 Ratio of fake edges of anonymized graphs returned by DGA, CDGA, and

our algorithm on varying values of k. 66

5.1 Different snapshots of a KG at time t = 0, 1, 2. 69
5.2 2-ad anonymized versions of G0, G1, and G2. 70
5.3 23-tad versions of G1 and G2 (G0 = G

′
0). 70

5.4 The ADS-Table corresponding to G0, G1, and G2 (w = 2). 75
5.5 Information loss by varying w. 83
5.6 Information loss by varying k. 84
5.7 Performance of our algorithm on varying values of k and w. 85
5.8 Average information loss of anonymized KGs returned from our algorithm

(CTKGA) and CKGA. 86
5.9 Ratio of fake edges of anonymized KGs returned from our algorithm

(CTKGA) and CKGA, CDGA, and DGA. 86

8

List of Tables

2.1 Analysis of existing graph anonymization work. (UG=Undirected
Graph, DG=Directed Graph, Iden=Identity, Attr=Attribute, Deg=Degree,
Neg=Neighborhood, Subg=Subgraph, HubFig=Hub Fingerprint, EA=Edge
Addition, ED=Edge Deletion, NA=Node Addition, ND=Node Deletion) . . 26

2.2 Analysis of existing approaches for sequentially anonymization of
graphs. (UG=Undirected Graph, DG=Directed Graph, Iden=Identity,
Attr=Attribute, Deg=Degree, EA=Edge Addition, ED=Edge Deletion,
NA=Node Addition, ND=Node Deletion) 30

3.1 Adversaries’ background knowledge . 34

4.1 The mean (± standard deviation) of the differences between the Euclidean
distance of the learned points and the ADM of the corresponding users. . . 63

4.2 Accuracy of the indicator R (%). 65
4.3 Performance of our algorithm (CKGA) and CDGA on varying values of k

(seconds). 66

B.1 Properties of datasets used for experiments. 101

9

Chapter 1

Introduction

Due to the popularity of online social networks (OSNs), many people share their infor-
mation through these networks. For instance, 30% of internet users use Facebook more
than once a day, generating 4 petabytes of data per day.1 These data contain not only
users’ attributes (e.g., education, birthday), but also their relationships (e.g., follows). Even
though the data contain sensitive information, OSNs’ providers (e.g., Twitter, Facebook)
sell or share them with other companies or researchers, and this may result in serious
privacy breaches (e.g., Cambridge Analytica, Gnip)2.

A typical data sharing scenario starts with a data provider publishing the data of the
users it manages to a data recipient. There are two paradigms for how the data is released:
interactive and non-interactive. In interactive setting, the provider receives queries from
the recipient and returns users’ data satisfying these queries. According to this paradigm,
the provider can monitor what type of data the recipient requests and modify the returned
data such as to protect users’ sensitive information. Unfortunately, this paradigm requires
huge effort from the providers, and therefore most of them do not support such option. For
instance, most popular data sharing repositories (i.e., UCI Machine Learning Repository3,
Stanford SNAP4, and Kaggle5) only allow users to download their datasets directly from
their websites. Twitter also provides APIs to allow data recipients to download its users’
public data. In these APIs, Twitter does not modify the data to protect its users’ privacy
but let the users decide which data are public. Therefore, non-interactive settings in which
the provider modifies data to hide users’ sensitive information and sends the modified data
to the recipient is more popular.

The most straightforward way to hide users’ sensitive information is to remove users’
identities from the published data. However, in 2002, Sweeney et al. [49] proved that
adversaries can still infer users’ sensitive information from them. She showed that 87% of

1https://www.brandwatch.com/blog/facebook-statistics/
2https://www.forbes.com/sites/kalevleetaru/2018/12/15/what-does-it-mean-for-social-media-

platforms-to-sell-our-data/
3http://archive.ics.uci.edu/ml/index.php
4http://snap.stanford.edu/data/index.html
5https://www.kaggle.com/datasets

10

CHAPTER 1. INTRODUCTION 11

the population in the United States has unique values for attributes: ZIP, gender, and date
of birth and these attributes can be associated with healthcare data to infer users’ diseases
even though the data do not contain users’ identities. In 2008, Narayanan et al. [41] re-
identified users in the Netflix Prize dataset even though Netflix removed identities of their
users in the dataset. For this reason, data providers must find a better way to anonymize
their data such that users’ sensitive information is undiscoverable.

Sweeney et al. [49] presented the first protection model, namely k-anonymity, to pre-
vent users in an anonymized relational dataset from being re-identified with a confidence
higher than 1

k , where k is a positive integer provided by data providers. By increasing
or decreasing values of k, the providers can increase or decrease the protection level of
their users’ privacy. Since [49], different extensions of k-anonymity, such as l-diversity [36]
and t-closeness [33] have been proposed to protect users’ sensitive information from dif-
ferent attacks and background knowledge. Unfortunately, these work only consider users’
attributes.

Since the target of this thesis is protecting data shared on social networks, we need
to focus on anonymization models also considering users’ relationships. In general, there
are two types of user-to-user relationships: undirected (e.g., friendship) and directed (e.g.,
follow) relationships. These relationships can be represented in undirected and directed
graphs, respectively.

Many k-anonymity extensions [12, 34, 61, 64] have been presented to anonymize undi-
rected graphs. However, due to the popularity of directed relationships in OSNs, they
are not efficient enough to protect users in OSNs. Recently, the Paired k-degree [10] and
the K-In&Out-Degree Anonymity [60] have been proposed to anonymize directed graphs.
Similar to k-anonymity [49], both of them ensure that users in the anonymized directed
graphs cannot be re-identified with a confidence higher than 1

k , where k is a positive num-
ber provided by data providers. Unfortunately, adversaries can still infer users’ sensitive
information if they have access to many versions of the anonymized data [7, 39].

Privacy preserving sequential publishing has been widely addressed in the context of
relational data (e.g., [3, 7, 55, 63]). Anonymization solutions for sequentially publishing
of undirected [37, 39, 50] and directed [60] graphs have also been presented. However,
since the work do not anonymize attributes’ values and relationships together, a sequential
anonymization solution for KGs is still missing.

Another issue of the previous work is that they have ignored a significant fact, that is,
different users may have different privacy protection requirements [59]. Many anonymiza-
tion solutions for relational data [35, 54, 56] have been extended to allow users to specify
their own level of privacy protection. Similarly, various personalized anonymization so-
lutions for undirected graphs have been presented in [27, 59]. Nevertheless, there are no
anonymization solutions for directed graphs and KGs.

The key limitation of the previous anonymization work [3,7,10,12,33–37,39,49,50,54–
56, 59–61, 63, 64] is related to the data model they support. Neither relational data nor
graphs can illustrate both attributes’ values and relationships together. As a result, the
work cannot anonymize both users’ attributes and their relationships.

Recently, after the announcement of Google Knowledge Graph in 2012, knowledge

CHAPTER 1. INTRODUCTION 12

Figure 1.1: An example of knowledge graph.

graphs (KGs) are taking a huge consideration from many big companies, such as Wikipedia,
Amazon, and Microsoft. The huge popularity of KGs comes from their flexibility in mod-
elling users’ data. A KG is a directed graph which models two types of users’ information:
attributes’ values and relationships. Figure. 1.1 illustrates an example of using a KG to
model attributes (e.g., age and job) and relationships (e.g., follows) of four users (e.g.,
Ken, Henry, Mary, and Tom). By using KGs, data providers can represent and share
both types of their users’ information together. However, as KGs contain much more
information compared to relational data and traditional graphs, users’ sensitive informa-
tion in anonymized KGs is more vulnerable to attacks [45–47]. Unfortunately, previous
work [10, 12, 33, 34, 36, 49, 60, 61, 64] cannot be used to anonymize KGs as they do not
consider both users’ attributes and their relationships at the same time. Consequently,
the providers still need new anonymization approaches for KGs that protect their users
by considering both their attributes and relationships and this is the overall goal of the
research work described in this thesis.

This thesis presents our efforts on preserving users’ privacy in anonymized KGs. At
this purpose, this thesis considers three scenarios: static publishing of anonymized KGs,
sequentially publishing of anonymized KGs, and personalized anonymization of KGs. The
first scenario allows data providers to publish their anonymized KGs once. The second one
extends the first to allow the providers to insert/re-insert/update/delete their data and
publish new anonymized versions of their KGs. The final one let users specify their own
privacy protection levels and anonymize KGs such that all users are protected under their
own levels.

1.1 Contributions

This thesis aims at presenting anonymization solutions for KGs. Figure. 1.2 illustrates the
associations between the main research contributions of this thesis, which are summarized
in what follows.

CHAPTER 1. INTRODUCTION 13

Chapter 3. Anonymization of Directed Graphs

Chapter 4. Anonymization of Knowledge Graphs

Chapter 5. Sequential Anonymization of Knowledge Graphs Section 6.2.1. Personalized Anonymization of Knowledge Graphs

Figure 1.2: Graphical representation of key contributions of this thesis.

1.1.1 Anonymization of Directed Graphs

Since KGs are directed graphs, we first focused on previously defined protection mod-
els tailored for these graphs, namely the Paired k-degree [10] and the K-In&Out-Degree
Anonymity [60]. While these models are sound, the proposed anonymization algorithms
cannot always generate anonymized graphs (see Chapter 3 for more details). Thus, in Chap-
ter 3, as a first step, we focused on proposing a more reliable anonymization algorithm,
i.e., the Cluster-Based Directed Graph Anonymization Algorithm (CDGA), to generate
anonymized directed graphs satisfying the requirements of both the Paired k-degree and
the K-In&Out-Degree Anonymity. The intuition of the algorithm is to gather users into
clusters that have at least k users and add/remove users’ relationships to make the out-
/in-degree of users in the same cluster identical. To prevent our algorithm from modifying
too many relationships, we defined the Degree Information Loss Metric (DM) to measure
the amount of information users lose when their out-/in-degree are identical. Then, our
algorithm inserts users into clusters such that the loss of their information calculated by
DM is minimized. To show the effectiveness of our algorithm, we tested it on three real-life
datasets. The results of this work have been published in [21] and will be presented in
Chapter 3.

1.1.2 Anonymization of Knowledge Graphs

After dealing with directed graphs, we shift our research to anonymize KGs containing both
types of users’ information: attributes’ values and relationships. Adversaries can re-identify
users in anonymized KGs by combining both information types of their victims [45–47].
Unfortunately, previously mentioned protection models, i.e., the Paired k-degree [10], and
the K-In&Out-Degree Anonymity [60], cannot be applied as they only anonymize one
relationship type of these users.

To cope with this issue, we proposed k-Attribute Degree (k-ad), an extension of k-
anonymity [49], the Paired k-degree [10], and the K-In&Out-Degree Anonymity [60], to
protect users’ identities in anonymized KGs. k-ad prevents users in anonymized KGs
from being re-identified with a confidence higher than 1

k even if adversaries exploit both
attributes’ values and relationships of these users, where k is a positive integer provided by

CHAPTER 1. INTRODUCTION 14

data providers. The higher k is, the harder is for adversaries to re-identify users. However,
it also makes the anonymized KG lose its information.

To measure the loss of users’ information in anonymized KGs, we presented two infor-
mation loss metrics. The first one is the Attribute Information Loss Metric (AM) that
measures the amount of information users lose when we anonymize their attributes’ values.
However, AM does not consider the truthfulness of these values. Indeed, by adding fake
user-to-attribute edges for data anonymization, user attributes’ values can be untruthful.
As an example, when anonymizing attributes’ values of a user whose age is 18, we can
accidentally add a fake edge which models his/her job as Professor. Since the user whose
age is 18 is not likely to be a Professor, an adversary can infer that either age or job of
the user is fake and try to remove them to infer his/her real attributes’ values. To address
this issue, we present the second metric, namely the Attribute Truthfulness Information
Loss Metric (ATM), to measure how truthful attributes’ values of a user are. ATM uses an
indicator to decide whether two attributes’ values are truthful when a user has these values
at the same time. We trained the indicator by using a dataset of truthful and untruthful
attributes’ values. To generate the dataset, we follow the Closed World Assumption [29]
which states that two attributes’ values are untruthful if the original KG does not contain
any user that have these values at the same time. If data providers do not have access
to the indicator, they can use AM to measure users’ information loss. In addition, we
combine AM and ATM with DM to measure the loss of not only attributes’ values but
also relationships of users in anonymized KGs.

Moreover, we designed the Cluster-Based Knowledge Graph Anonymization Algorithm
(CKGA) to anonymize KGs, according to the proposed k-Attribute Degree (k-ad) protec-
tion model. To allow for more flexibility, we aimed at allowing data providers to specify
which clustering algorithm they want to use to generate clusters. To reach this goal, our
algorithm performs an additional step that generates data points for users in the given
KG such that the Euclidean distance of two points is almost equal to the information
loss of making the attributes’ values and out-/in-degrees of users corresponding to these
points identical. Since most state-of-the-art clustering algorithms (e.g., k-means [14], HDB-
SCAN [9]) can take as input these points [14], our algorithm allows data providers to use
most clustering algorithms to generate clusters. To prevent the generated clusters from
having less than k users, we proposed the k-Means Partition Algorithm (KP) to ensure
that all of the generated clusters have from k to 2 × k − 1 users. The carried out ex-
periments on five real-life datasets showed that CKGA outperforms previous algorithms
(i.e., [10,21,60]). We have published results of this work in [22] and they will be described
in Chapter 4.

1.1.3 Sequential Anonymization of Knowledge Graphs

Although k-ad prevents adversaries from re-identifying users in an anonymized KG, they
can still re-identify these users if they exploit many versions of the anonymized KG. There-
fore, we developed the kw-Time-Varying Attribute Degree (kw-tad) protection model, to
protect identities of users appearing at least once in w continuous anonymized KGs, where

CHAPTER 1. INTRODUCTION 15

w and k are two positive numbers provided by data providers. The providers can use w to
control how many continuous anonymized KGs to monitor and k to control the confidence
of re-identifying their users in these KGs. Moreover, we proposed the Cluster-based Time-
Varying Knowledge Graph Anonymization Algorithm (CTKGA) to generate anonymized
KGs satisfying requirements of kw-tad even if the providers insert, re-insert, update, and
delete the users in their KGs. Different from CKGA, CTKGA removes the need of gener-
ating data points for users in anonymized KGs. More precisely, given an information loss
metric measuring the amount of information two users lose when making their attributes’
values and out-/in-degrees identical (i.e., AM , DM , ATM), CTKGA generates the dis-
tance matrix whose distance between two users are calculated using the information loss
metric. Then, CTKGA can use any clustering algorithm that supports distance matrix to
generate the clusters. To prove the efficiency of our algorithm, we compared it to previous
work (i.e., [10,21,22]) by running experiments on six real-life datasets (see Appendix B for
these datasets’ description). The results of this work have been accepted to be published
in [23] and will be presented in Chapter 5.

1.1.4 Personalized Anonymization of Knowledge Graphs

While each user may have different concerns on the privacy protection level [54, 59], k-
ad applies the same protection level for all users in the anonymized KGs. Therefore, in
this ongoing work, we plan to present the Personalized k-Attribute Degree (p-k-ad), an
extension of k-ad, to protect users with their own values of k. However, anonymizing users
whose k value is too high with those whose k value is too low can result in high information
loss. The following example demonstrates this scenario.

Example 1. Let Ken and Laura be two users in the original KG. Suppose Ken’s k
is 20, thus he requires to have at least 19 other users have the same attributes’ values
and out-/in-degrees with him. Suppose that k value of Laura is only 2. She thus only
requires another user to have the same attributes’ values and out-/in-degrees with her. If
we make their attributes and out-/in-degrees identical, Laura will lose a huge amount of
information. The reason is that instead of anonymizing her attributes and relationships
with those of another user, we must anonymize hers with those of 19 other users.

To remedy this problem, we are working on a cluster-based anonymization algorithm
which considers different k values of users. We will present the intuitive idea of the algo-
rithm in Section 6.2.1.

1.2 Thesis Organization

This thesis contains seven chapters and three appendices whose content is briefly described
in what follows:

• Chapter 2. We review advantages and disadvantages of state-of-the-art anonymiza-
tion approaches for relational data and undirected/directed graphs in this chapter.
Moreover, we review recent attacking models to infer users’ sensitive information in

CHAPTER 1. INTRODUCTION 16

KGs. Related work related to sequential and personalized anonymization of data are
also presented in this chapter.

• Chapter 3. In this chapter, we first show the limitation of previous work [10,60] on
anonymizing directed graphs. Then, we present the Cluster-Based Directed Graph
Anonymization Algorithm (CDGA) to ensure that users’ relationships modelled in
directed graphs can always be anonymized.

• Chapter 4. This chapter describes k-Attribute Degree (k-ad), a protection model
which protects users’ identities in anonymized KGs even if adversaries take advantages
of not only attributes’ values but also relationships of these users. In addition, we
present the Cluster-Based Knowledge Graph Anonymization Algorithm (CKGA), an
extension of CDGA described in Chapter 3, to anonymize both attributes’ values and
relationships of users such that the anonymized KGs satisfy k-ad.

• Chapter 5. In this chapter, we demonstrate kw-Time-Varying Attribute Degree
(kw-tad), an extension of k-ad, that we have developed to ensure that adversaries
cannot re-identify users even if they exploit w continuous versions of the anonymized
KG. Furthermore, we present the Cluster-Based Time-Varying Knowledge Graph
Anonymization Algorithm (CTKGA) which generates anonymized KGs satisfying
kw-tad even though data providers insert/re-insert/update/delete users of their KGs.

• Chapter 6. This chapter summarizes the results of the research described in this
thesis and presents our future work (i.e., the personalized anonymization solution
and other research directions).

• Appendix A. In this appendix, we describe abbreviations and notations that we
used in this thesis.

• Appendix B. This appendix contains the description of real-life datasets that we
used in all of our experiments.

• Appendix C. We summarize our publications and their abstract in this appendix.

1.3 Related Publications

Results of research activities described in this thesis brought to the following publications
(see Appendix C for more details about these publications):

• Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Clusters-Based Anonymiza-
tion of Directed Graphs”. Proceedings of the IEEE International Conference on
Collaboration and Internet Computing, 2019.

• Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Clusters-Based Anonymiza-
tion of Knowledge Graphs”. Proceedings of the International Conference on Applied
Cryptography and Network Security, 2020.

CHAPTER 1. INTRODUCTION 17

• Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Privacy-Preserving Sequen-
tially Publishing of Knowledge Graphs”. Proceedings of the IEEE International
Conference on Data Engineering, accepted, 2021.

• Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Personalized Anonymization
of Knowledge Graphs”. Under preparation.

Chapter 2

Related Work

2.1 Introduction

As described in the introduction, a KG is a directed graph that models two information
types of users (i.e., attributes’ values and relationships) by using its edges. Figure. 1.1 re-
ports a sample KG illustrating attributes (e.g., age, job) and relationships (e.g., follows) of
four people (e.g., Ken, Henry, Mary, and Tom). By using KGs, a data provider can share
both types of information together. Although the information KGs convey can leverage
the development of many data-driven applications, such as machine learning, adversaries
can exploit both information types to infer sensitive information of their victims.

Our research has mainly focused on proposing models for protecting users’ identities in
anonymized KGs and anonymization algorithms for generating these KGs. As KGs contain
two types of users’ information, we need to consider previous proposals for anonymizing
both of them. Therefore, in this chapter, we first review anonymization approaches for
users’ attributes, which have been proposed for relational data (Section 2.2). Then, in
Section 2.3, we review the main approaches proposed so far for anonymizing relationships
in graphs. To the best of our knowledge, we are the first aiming at preserving users’ privacy
in published KGs. We therefore survey in Section 2.4 different attacks on users’ privacy
that can be done by using information on KGs.

Since the thesis also addresses privacy issues arising from the sequential publishing of
KGs, Section 2.5 is devoted to a review of the techniques proposed in the literature to
deal with this issue, for both relational data and graphs. Finally, we analyze personalized
anonymization solutions for relational data and graphs in Section 2.6.

2.2 Anonymization of Relational Data

Relational data organize attributes’ values of users as a table of rows and columns. Each
column models an attribute and a row represents attributes’ values of a user. When tables
contain personal information, attributes can be classified into four types: explicit identifiers,
quasi-identifiers, sensitive attributes, and non-sensitive attributes. Explicit identifiers (e.g.,

18

CHAPTER 2. RELATED WORK 19

name) model information that can explicitly identify the real-life identity of users. Quasi-
identifiers (QIDs) (e.g., age, job) are attributes that adversaries can exploit to re-identify
users. Sensitive attributes (e.g., salary, disease) model users’ sensitive information. Non-
sensitive attributes are attributes that do not belong to any of the other types. To share
users’ attributes, data providers often remove explicit identifiers of users from the table.
However, in 2002, Sweeney et al. [49] showed that even though explicit identifiers of patients
in a health insurance dataset were removed, she can re-identify some these patients. Her
re-identification is done by linking the health insurance dataset with a twenty-dollar voter
registration list using three QIDs: age, birthdate, and sex. By using these QIDs, she
reported that she can identify rows of the voters in the health insurance dataset and infer
the disease of these voters.

k-anonymity [49] is the first model that protects users in anonymized relational data
from being re-identified even if adversaries exploit QIDs of these users. The model requires
that the original data must be modified such that the QIDs’ values of each user are in-
distinguishable from those of k − 1 other users, where k is a parameter. Therefore, the
adversaries cannot re-identify any user with a confidence higher than 1

k even if they exploit
these QIDs. Such modifications downgrade the quality of anonymized data satisfying re-
quirements of k-anonymity. The higher value of k is, the more the data lose their quality.
Therefore, anonymization algorithms must preserve the quality of k-anonymous relational
data as much as possible.

Many anonymization algorithms [1,15,31,44,52] have been presented to generate high-
quality k-anonymous relational data. Unfortunately, the complexity of searching for the
highest quality k-anonymous data is NP-hard [15,52]. To cope with this issue, all of these
algorithms use different heuristics to balance between the quality of anonymized data and
their utility. For instance, LeFevre et al. [31] presented a practical framework for im-
plementing k-anonymity anonymization algorithms. Then, Aggrawal et al. [44] proposed
an O(k)-approximation anonymization algorithm which was further improved to O(log k)
in [1]. In addition, Wang et al. [52] presented the Bottom-Up Generalization Algorithm
(BUG) which adapts interactive bottom-up generalization from data mining to anonymize
relational data. Then, Fung et al. [15] proposed the Top-Down Specialization (TDS) Al-
gorithm which extends BUG to handle both categorical and continuous QIDs. Hoang et
al. [20] further presented the Indexed Bottom-Up Generalization Algorithm to improve
performance of BUG and TDS. To obtain k-anonymized relational data, the above men-
tioned algorithms use different heuristics to keep anonymizing the original data until for
every user, his/her QIDs’ values are identical to those of other k − 1 other users. A seri-
ous weakness of these algorithms, however, is that they anonymize relational data in the
same way without considering the data’s distribution [42]. They can generate good quality
anonymized data for some data and bad quality one for other data. As a result, data
providers must have knowledge of all anonymization algorithms to choose the appropriate
algorithm for their data or keep trying different algorithms until the anonymized data are
good enough and this is a quite difficult task.

This led [2, 6, 11, 42] to use cluster-based approaches to generate k-anonymized re-
lational data. Their key idea is to tailor existing clustering algorithms (i.e., k-means,

CHAPTER 2. RELATED WORK 20

DBSCAN [14]) to generate clusters that have at least k users. Then, these algorithms
modify the original data such that QIDs’ values of users in the same clusters are identical.
These algorithms use the information loss of modifying QIDs’ values of two users as the
distance between these users. The higher information these users lose, the higher their
distance. Since the clustering algorithms gather users whose distance is close to the same
cluster, these anonymization algorithms can minimize the information loss of users in the
anonymized data. [2, 6, 42] developed extensions of the traditional clustering algorithm,
i.e., k-means [14], to anonymize relational data. An extended version of DBSCAN [14]
for anonymizing relational data is proposed in [11]. Not only k-means and DBSCAN [14]
but also more recent clustering algorithms can be easily tailored to anonymize data. Since
these algorithms rely on clustering algorithms, data providers can choose the appropriate
anonymization algorithm based on their knowledge of clustering algorithms. For instance,
if the providers know that k-means is good to perform clustering on their dataset, they can
choose the k-means based anonymization algorithms to generate the anonymized version of
the dataset. Moreover, this approach is flexible because it allows data providers to change
the distance metric to generate high quality anonymized data.

All anonymization algorithms achieving k-anonymity generalize QIDs’ values to gen-
erate anonymized relational data. Generalization replaces the original values with more
general ones, by leveraging a user-defined taxonomy tree to map values of categorical QIDs
with their more general versions. A taxonomy tree for a QID is a tree where all values
of the QID are its leaf nodes and their parent nodes illustrate their more general values.
Figure. 2.1a shows a user-defined taxonomy tree for Job. In this figure, Professor and
Engineer can be generalized to Professional. For continuous QIDs, exact values can be
generalized with an interval that covers these values. For instance, value 18 of age can
be generalized to [18, 25]. If taxonomy trees for these continuous QIDs are provided, the
generalization of their values is similar to that of the categorical ones. In case these tax-
onomy trees are missing, [15] analyzes the original data to generate the taxonomy trees
for continuous QIDs at runtime. The biggest issue of generalization is that data providers
must specify a taxonomy tree for each categorical QID in their original data. Furthermore,
designing taxonomy trees that fit different usage purposes of data recipients is hard. To
cope with these limitations, Nergiz et al. [42] presented the Natural Domain Generaliza-
tion Hierarchy (NDGH). NDGH automatically generates a taxonomy tree for each QID
by searching for all values of that QID in the original data and combining these values
together. Figure. 2.1 illustrates a user-defined taxonomy tree and NDGH for Job. The
main difference between these trees is that each leaf node in NDGH can have multiple par-
ent nodes. As a result, anonymization algorithms using NDGH can choose different ways
to generalize QIDs’ values of users. Therefore, they are more flexible and their resulting
anonymized data can fit many different usage purposes.

k-anonymity [49] fails to prevent adversaries from inferring users’ sensitive values in
particular settings. In particular, let an equivalence class be a set of users whose QIDs’
values are identical. If an anonymized table satisfies k-anonymity, each user in the table
belongs to an equivalence class that have at least k users. However, if all users in an
equivalence class have the same value for their sensitive attributes, the adversaries can

CHAPTER 2. RELATED WORK 21

Student Professor Engineer

Professional

Any Job

(a) User-Defined Taxonomy Tree

Student Professor Engineer

[Student,Professor] [Student,Engineer] [Professor,Engineer]

[Student,Professor,Engineer]

(b) Natural Domain Generalization Hierarchy

Figure 2.1: Taxonomy tree of Job attribute.

easily infer the sensitive values of these users. This attack, known as Homogeneity Attack,
led Machanavajjhala et al. [36] to develop l-diversity to protect users’ sensitive values.
To this end, l-diversity requires that for every equivalence class in an anonymized table,
it contains at least l distinct values for each sensitive attribute, where l is a positive
number provided by data providers, with l ≤ k. As a result, adversaries cannot infer users’
sensitive values with a confidence higher than 1

l . Here, l is always less than or equal to
k. [36] also introduced the Entropy l-diversity and Recursive (c − l)-diversity to protect
the sensitive values when the adversaries exploit the entropy and frequency of these values.
Unfortunately, l-diversity cannot prevent adversaries from inferring users’ sensitive values
if these values are skewed or semantically similar [33]. For instance, if sensitive values of
an equivalence class are in Stomach diseases category, the adversaries can infer that all
users in the equivalence class have stomach related diseases even though they do not know
users’ real disease. t-closeness [33] addressed this limitation by ensuring that, for every
equivalence class, the distance between the distribution of its sensitive values and that of
the whole data is no more than t, where t is a positive number provided by data providers.
A similar protection model was presented in [53], namely (α, k)-anonymity, which requires
that every equivalence class has at least k users and the relative frequency of its sensitive
values is less than or equal to α, where α is a positive number provided by the providers.
These models prevent the adversaries from exploiting the distribution of sensitive values.

The quality of an anonymized relational dataset is evaluated based on its usage purposes
(e.g., data mining, classification). For instance, if the data is used to train a classifier,
[4, 15, 25, 52] evaluate its quality by measuring the difference between the Classification
Error (CE) of classifiers trained by using it and its original version. Unfortunately, data
recipients can use the data in many other ways such as clustering, data analysis. In these
situations, CE cannot evaluate the quality of anonymized data. Therefore, most of previous
work use the General Information Loss Metric (LM) [25] to evaluate the quality of their
anonymized relational data or use both LM and CE at the same time. The intuition of LM
is that the higher users’ generalized value is in the taxonomy tree, the more information
they lose.

Also, the Ambiguity Metric (AM’) is presented in [42] for general-purpose anonymiza-

CHAPTER 2. RELATED WORK 22

tion but it considers the number of tuples whose attributes’ values are equal to those of a
generalized tuple. The higher the number of tuples is, the more information the anonymized
data loses. Unfortunately, LM and AM are not good enough if data providers know the us-
age purpose of their anonymized data [25]. Therefore, the Classification Metric (CM) [25]
has been presented to improve the quality of anonymized data for training a classifier.
CM penalizes a tuple if its class is different from the majority class of tuples in its group.
Similarly, Bayardo et al. [4] presented the Discernibility Metric (DM) for anonymizing re-
lational data for training usage but DM penalizes a tuple based on how many tuples in
the anonymized data are indistinguishable from it. The data providers thus can choose an
appropriate information loss metric based on the usage purpose of their anonymized data.

Although k-anonymity and its variants can protect different types of users’ sensitive
information, it cannot be applied if data providers cannot identify QIDs. In practice, it is
hard for data providers to specify QIDs because the background knowledge of adversaries
is unknown. Choosing too many attributes as QIDs results in high information loss of
anonymized data, whereas too few QIDs can compromise users’ privacy [15]. Dwork et
al. [13] presented ε-Differential Privacy (ε-DP) to remedy this limitation, where ε is a
positive real number provided by the data providers. Consider a table and an algorithm
that analyzes the table and generates statistical outputs about it. ε-DP protects a user’s
privacy by ensuring that whether or not he/she is in the table, the output of the algorithm
is pretty similar. The similarity between these outputs are controlled by ε. The lower the
value of ε, the more indistinguishable the outputs. Data providers can decrease ε if they
want to increase the privacy protection of users. While k-anonymity protects users based
on the assumption about the background knowledge of adversaries about the users, ε-DP
does it by assuming what type of analysis these adversaries can use. Therefore, ε-DP is
good for interactive paradigm since data providers can restrict supported analysis types
which satisfy requirements of ε-DP. However, it cannot protect anonymized data in non-
interactive settings, because after releasing the data, the providers lose their control on
how the data are analyzed. Since we focus on KGs, which are new and there are many
types of analysis that can be performed over there (e.g., graph analysis, deep learning), this
limitation can prevent researchers from developing data-driven applications. As a result, in
this thesis, we focus on using k-anonymity to anonymize KGs and leave the DP approach
for KGs for future work.

2.3 Anonymization of Graphs

Graphs use nodes and edges to represent users and their relationships, respectively. Unfor-
tunately, protecting users’ privacy in these graphs is more challenging than the protection
of relational data, because adversaries can exploit not only victims’ information but also
information about those having relationships with the victims.

Liu et al. [34] was among the first to present a protection model, namely k-degree (k-
da), to protect users’ identities in undirected graphs against degree attack. Degree attack
assumes that adversaries can know the number of relationships their victim has. Thus,

CHAPTER 2. RELATED WORK 23

by comparing the number of relationships with degrees (i.e., the number of edges that
are incident to a node) of nodes in the anonymized graphs, they can identify which node
represents their victim. To this end, k-da ensures that for every node in the anonymized
graph, its degree is indistinguishable from that of k − 1 other nodes.

Another protection model, i.e. k-neighborhood (k-na), was presented in [61] to prevent
users from being re-identified by neighborhood attack. A Neighborhood attack assumes
that adversaries know neighbors of their victim. These adversaries then can compare the
neighbors of their victim and neighbors of nodes in the anonymized graph to re-identify
which node is their victim. k-na prevents this attack by ensuring that for every node in
the anonymized graph, its neighbors are indistinguishable from those of k− 1 other nodes.

Moreover, Hay et al. [18] presented their anonymization solution against subgraph attack
and hub fingerprint attack. Subgraph attack assumes that adversaries can use any subgraph
containing the node of their victim to re-identify the victim. Hub fingerprint attack relies
on the hub fingerprint of the victim. A hub is a node that has high degree and high
betweenness centrality (e.g., the proportion of shortest paths in the network that include
the node). As it is hard for adversaries to collect neighbors’ information of many users, [18]
stated that a node can only reach a hub if the distance between them is less than the
maximum distance. Then, a hub fingerprint of a node is the shortest path length from the
node to a set of reachable hubs. To resist these attacks, [18] splits nodes into partitions
and generates the anonymized graph which contains super nodes, one for each partition,
and super edges representing relationships between these super nodes.

All the above mentioned work [18,34,61] led Zou et al. [64] to develop k-automorphism
(k-auto) which protects users’ identities in undirected graphs against degree attack [34],
neighborhood attack [61], subgraph attack [18], and hub fingerprint attack [18]. A similar
work is presented in [12], namely k-isomorphism. Their intuition is that for every node
in the anonymized graph, its structural information should be isomorphic with that of at
least k − 1 other nodes in the graph.

Recently, [10] presented the Paired k-degree, an extension of k-da, to protect users’
identities in directed graphs from degree attack. This attack relies on the background
knowledge about the number of outgoing and incoming relationships to re-identify the
victim. Then, by comparing the number of outgoing and incoming relationships of the
victim with the out- and in-degree (i.e., the number of outgoing and incoming edges,
respectively) of nodes in an anonymized directed graph, adversaries can re-identify the
victim’s node. The Paired k-degree prevents this attack by requiring that for every node in
an anonymized graph, its out- and in-degree are indistinguishable from those of k−1 other
nodes in the graph. Zhang et al. [60] developed the K-In&Out-Degree Anonymity (K-
IODA) whose requirement is identical to that of the Paired k-degree. Similar to relational
data, these models also require anonymization algorithms to modify the original graph’s
structure to change out- and in-degree of its nodes.

Different anonymization algorithms have been presented to generate anonymized undi-
rected [34, 61, 64] and directed [10, 60] graphs satisfying requirements of the protection
models described above. Liu et al. [34] proposed a two-step anonymization algorithm for
k-da [34]. The algorithm first finds the sequence of nodes’ degrees in the original undirected

CHAPTER 2. RELATED WORK 24

graph. Then, it modifies the generated sequence such that for every degree in the sequence,
there are at least k−1 other identical degrees. Finally, it adds and removes edges to ensure
the degrees of nodes in the graph are identical to those in the sequence. Unfortunately,
this algorithm does not always generate anonymized graphs satisfying k-da [34].

Another two-step anonymization algorithm for k-na is presented in [61]. Its first step
extract neighborhoods of nodes in the original graph. Since each neighborhood is a sub-
graph of the original one, the algorithm represents it by using a code, i.e., the set of edges
in the subgraph. The code is generated such that nodes whose neighborhood are identical
have the same code. Then, the second step gathers users that have similar code to the
same group until all groups have at least k users and adds fake edges to ensure all users in
the same group have the same code.

The anonymization algorithm of k-auto [64] ensures that for every user, his/her neigh-
borhood is isomorphic with the neighborhood of at least k − 1 other users. To this end, it
first partitions the original graph into blocks and gather these blocks into groups such that
each group has at least k blocks. Then, for each group, it adds fake edges to make blocks
in the same group isomorphic.

There are a few other approaches [40, 48] to anonymize graphs. Stokes et al. [48] ex-
tended k-means [14] to anonymize undirected graphs. A random walk based anonymization
algorithm has been presented in [40]. It randomly modifies edges of nodes to hide their
real edges. Nevertheless, these algorithms only support undirected graphs.

There are two proposals we are aware of dealing with the anonymization of directed
graphs. Casas et al. [10] presented the Directed Graph Anonymization Algorithm (DGA),
an extension of the algorithm in [34], to anonymize directed graphs satisfying Paired k-
da [10]. As the Paired k-da considers both out-degree and in-degree, DGA generated
two degree sequences for out-degree and in-degree, respectively. To increase the chances
of generating anonymized directed graphs, DGA extended edge addition/switch from [34]
and presented their new technique, i.e. edge extension. [60] proposed DSNDG-KIODA, to
anonymize directed graphs satisfying the requirements of K-IODA [60]. To preserve the
community structure of anonymized graphs, DSNDG-KIODA only adds fake edges and
nodes to anonymize the graphs. Unfortunately, as showed in Chapter 3, both DGA and
DSNDG-KIODA cannot always generate anonymized directed graphs.

The difference between the structural properties of anonymized graphs and their original
versions are used to measure the quality of anonymized graphs. The higher the difference
is, the lower the quality of these graphs is. The most fundamental property is degree
distribution. This property is measured by using the Total Degree Difference [12, 34, 64]
(i.e., the sum of the difference between degrees of users in anonymized graphs and their
original versions), the number of added fake edges [61], and the number of intersection
edges [10] (i.e., the number of edges existed in both a directed graph and its anonymized
version). If anonymization algorithms add fake users, the number of added fake users [60]
are often used. Then, other properties of graphs such as Clustering Coefficient, Path Length
are also used to measure the quality of anonymized graphs. These properties are measured
by using metrics like the Average Clustering Coefficient, which is used to measure the
average of local clustering coefficient of nodes, and the Average Path Length, which is the

CHAPTER 2. RELATED WORK 25

average number of steps along the shortest paths for all possible pairs of network nodes,
are used to measure the quality of anonymized graphs in [10,12,34,60,64].

Even though many metrics have been used to evaluate the quality of anonymized graphs,
most of the previous work [10, 12, 34, 61, 64] use the difference between degrees of users in
anonymized and original graphs as the information loss of these users. To minimize the
difference, [10, 34] use the difference as a cost function to generate the degree sequence.
Other work [12, 60, 61, 64] use different heuristics to minimize these differences. Zou et
al. [64] uses graph partitioning and block alignment, to reduce the number of edges they
need to copy in the last step of their algorithm.

Data providers often assign a label for each node to illustrate the sensitive value (e.g.,
spammer, salary, disease) of its corresponding user. These node-labelled graphs are
often used in graph analysis applications such as spammer detection and disease analysis.
However, the above mentioned work [10, 18, 34, 60, 61, 64] cannot protect users’ labels. To
cope with this issue, Yuan et al. [58] presented k-degree-l-diversity (k-da-l-diver) to generate
anonymized undirected graphs satisfying both k-da [34] and l-diversity [36]. k-da-l-diver
ensures that for every node in the anonymized graph, there exist at least k− 1 other nodes
having the same degree in the anonymized graph and the nodes having the same degree
contain at least l distinct labels. [58] anonymizes undirected graphs in two steps. In the
first step, it generates a sequence of pairs of degree and label of nodes such that for every
pair, its degree is indistinguishable from that of other k − 1 other pairs, and pairs having
the same degree contain at least l distinct labels. The second step adds fake edges to ensure
that the degree of every node in the anonymized graph is equal to that of the node in the
generated sequence.

We will show in Chapter 3 that our Cluster-Based Anonymization Algorithm (CDGA)
always generated anonymized directed graphs satisfying both the Paired k-da [10] and K-
In&Out-Degree Anonymity [60]. Different from DGA [10], we present a new technique,
the Degree Decrement, to decrease the out- or in-degree of users in the anonymized graph.
Also, we prove that our algorithm can always generate an anonymized graph satisfying
both the Paired k-da [10] and K-IODA [60].

Table. 2.1 summarizes the graph anonymization proposals we have reviewed so far.

CHAPTER 2. RELATED WORK 26

Table 2.1: Analysis of existing graph anonymization work. (UG=Undirected Graph,
DG=Directed Graph, Iden=Identity, Attr=Attribute, Deg=Degree, Neg=Neighborhood,

Subg=Subgraph, HubFig=Hub Fingerprint, EA=Edge Addition, ED=Edge Deletion,
NA=Node Addition, ND=Node Deletion)

Type Proctection Background Knowledge Generalization

UG DG Iden Attr Deg Neg SubG HubFig EA ED NA ND

k-da [34] X X X X X
k-na [61] X X X X
Hay et al. [18] X X X X X
k-iso [12] X X X X X X X
k-auto [64] X X X X X X X
Stokes et al. [48] X X X X X
Paired k-da [10] X X X X
K-IODA [60] X X X X X
k-da-l-diver [58] X X X X X X X

2.4 De-anonymization of Knowledge Graphs

Many work [45–47, 51, 62] have focused on investigating attacks to the privacy of users in
KGs. These proposals showed that adversaries can re-identify users in naive-anonymized
KGs generated by removing users’ identities. Qian et al. [47] presented their two-step
attack on KGs to re-identify and infer sensitive values of users in KGs. In this work, they
aimed at re-identifying users in the KGs by exploiting two information types of the users
(i.e., attributes’ values and relationships). To this end, they presented the Node Similarity
Metric that measures the similarity between two users based on their nodes’ attributes and
relationships. Then, they exploit the metric to find the similarity between their victims
and users in the KGs. If the similarity is greater than the specified threshold, the user is
the match of the victim in the anonymized KG. In the first step, they pick a random victim
and find a matched user in the anonymized KG. Then, for each neighbor of the victim,
they find his/her matched user by looking into the neighbors of the matched user. They
keep doing these steps until all victims are matched. At this time, they can re-identify all
of their victims. [45] extended this attack to improve its accuracy. The extension improves
the algorithm to match neighbors of the victim. Furthermore, in [46], they investigated the
correlation between the accuracy of their algorithm and the amount of information about
the victims. Their conducted experiments revealed that the accuracy of de-anonymization
is not necessarily monotone increasing with the amount of information about the victims.

In addition, DeepLink [62] leveraged deep learning techniques to link users of two KGs.
One KG contains users’ information (e.g., attributes and relationships) in an OSN and the
other consists of the information of these users in another OSN. First, DeepLink learns
a function to generate a vector for each user based on their information. Then, it learns
another function to decide whether two vectors belong to the same user. These learned
functions help DeepLink to generate vectors of unseen users based on their attributes’ val-

CHAPTER 2. RELATED WORK 27

ues and relationships. Then, by using these generated vectors, DeepLink decides whether
two users are the same person. A similar work is presented in [51], namely DeepMatch.
DeepMatch first defines a set of pre-defined users in a KG. Then, for every pre-defined user,
it finds his/her corresponding user in other KG by using the same approach of DeepLink.
For each pair of a user and his/her corresponding one, DeepMatch finds the corresponding
users of these users’ neighbors by checking neighbors of the user with those of its corre-
sponding one. Since users often have the same neighbors when they use different OSNs,
DeepMatch can increase the probability of re-identifying these neighbors instead of naive
checking for all pairs of users in DeepLink [51].

Unfortunately, previous anonymization work for relational data [1, 15, 42, 44, 49, 52]
and graphs [10, 12, 34, 60, 61, 64] cannot be applied as they are to anonymize KGs, since
KGs consist of both users’ attributes and relationships. Chapter 4 shows in details our
anonymization approach for KGs. Our approach prevents adversaries from re-identifying
users by exploiting attributes’ values and relationships of the users.

2.5 Sequential Anonymization of Released Datasets

All of the work we have revised so far allow data providers to publish an anonymized version
of their data. However, if they update their original data and publish the anonymized
version of the updated dataset, adversaries can exploit these published versions to attack
users’ privacy. For instance, let us assume that a data provider publishes two anonymized
datasets that satisfy 3-anonymity at time 1 and 2. The provider publishes the anonymized
dataset at time 2 after updating information of its users. If adversaries know that a user, say
Ken, is in both datasets and they only have access to one of them, they cannot re-identify
Ken with a confidence higher than 1

3 . However, if they have access to both anonymized
datasets and know that Ken has just changed his job from Student to Engineer, they
can look into these datasets to check how many users have the same change of their job.
Ken can be the only user who changes his Job. In this situation, the adversaries can re-
identify Ken in both datasets. Furthermore, adversaries can exploit not only update but
also insertion, deletion, and re-insertion operations, as we will describe in more details in
Chapter 5.

There is some work addressing this issue for relational data. Byun et al. [8] was among
the first to protect users’ identities and sensitive values when data providers insert new
users into their original relational data and publish the anonymized version of the updated
data. This work is an extension of k-anonymity [49] and l-diversity [36]. First, they add
new users to equivalence classes of the previous anonymized data if QIDs’ values of these
users are equal to those of these classes. If they cannot find any equivalence class that can
contain these users, they create a new equivalence class for these users. Then, they split
equivalence classes that have more than 2× l distinct sensitive values. Finally, they modify
the updated data to ensure that users in the same equivalence class have the same QIDs’
values. Unfortunately, this work only allows data providers to insert new tuples.

To cope with this issue, m-invariance [55] was presented to allow the providers to insert

CHAPTER 2. RELATED WORK 28

and remove users from their data, where m is a positive integer provided by data providers.
Here, k and m have the same meaning. Both of them are used to control the maximum
confidence that adversaries can re-identify users in anonymized data. Let the signature of
an equivalence class be the set of sensitive values of users in the class. The signature of a
user is the signature of his/her equivalence class. This work assumes that adversaries can
have access to previous anonymized tables and they can exploit their victims’ signatures.
Then, an anonymized table is m-unique if each equivalence class has at least m users and
all of these users have different sensitive values. Furthermore, a sequence of anonymized
versions of a table is m-invariant if all of these versions satisfy m-uniqueness and for every
user existing at least once in these versions, his/her signature in all the published versions
is identical. This work generates anonymized tables in four steps: division, balancing,
assignment, and split. Division step splits users in the original table into buckets containing
users whose signature is identical. Balancing step ensures that all buckets are balanced,
i.e. having the same number of users for each of their sensitive values. If they cannot find
users to add to these buckets, they add fake users to these buckets. Assignment step adds
the remaining users to these buckets if these buckets are still balanced after adding these
users. Finally, split step splits these buckets to ensure that the resulting buckets have only
m users. This work ensures that adversaries cannot re-identify any user and infer his/her
sensitive values with a confidence higher than 1

m when the adversaries know QIDs’ values
of users in all published data. However, [55] does not consider the re-insertion scenario,
that is, when a data provider re-inserts deleted users.

Anjum et al. [3] remedy this issue by proposing τ -safety to ensure that adversaries
cannot infer the sensitive values of any user with a confidence higher than 1

m even though
they know the event list τ of their victim. Here, τ describes the victim’s events (i.e.,
inserted, re-inserted, updated, deleted) in the published datasets. τ -safety gives the same
privacy protection of m-invariance even though data providers insert/update/delete/re-
insert tuples on their data. They address the limitation of m-invariance by monitoring
not only current users but also removed users. Then, when the providers re-insert a user,
they ensure that his/her signature is identical to that of him/her when he/she is deleted.
Unfortunately, Zhu et al. [63] showed that when the providers update the sensitive value
of their users, the updated values change the signatures of these users. The same situation
can happen when the providers re-insert users whose sensitive value is different from that
of them when they are deleted. Since τ -safety requires users’ signatures to be identical
in all published data, these users’ data cannot be published. Therefore, they presented
τ -safe (l, k)-diversity [63] to cope with this problem, where l, k are two positive integers
provided by data providers such that l is less than or equal to k. A series of anonymized
tables satisfies τ -safe (l, k)-diversity if all of its table satisfies (l, k)-diversity (i.e., satisfying
k-anonymity and l-diversity) and for every user existing at least once in the series, the
intersection of all of his/her signatures in these tables are empty. Then, Zhu et al. [63]
showed that τ -safe (l, k)-diversity can give the same privacy protection with τ -safety [3]
and m-invariance [55] even in the new scenario.

The issue of dynamic release of anonymized data has also been addressed for undirected
[37, 39, 50] and directed graphs [60]. Medforth et al. [39] presented the degree-trail attack

CHAPTER 2. RELATED WORK 29

that helps adversaries to re-identify users in anonymized undirected graphs by monitoring
users’ degrees in these graphs and proposed their protection solution against this attack.
They assume that a provider inserts new nodes to their graph and adversaries can have
access to all anonymized graphs. By combining these graphs, the adversaries can re-identify
their victims. To protect anonymized graphs from this attack, they propose to randomly
add m edges and remove m-edges from the original graph, where m is a positive integer
provided by data providers. However, randomly adding edges can accidentally add removed
edges of the previous graph. Similarly, removing edges randomly can remove added edges
of the previous one. Then, the adversaries can compare the current anonymized graph and
its previous version to infer removed real edges and added fake ones. To address these
issues, this work ensures that they only add and remove edges which do not exist in the
previous graphs. Since the random edges modifies users’ degrees, adversaries cannot re-
identify their victims. However, this work does not formalize the underlying protection
model.

Tai et al. [50] proposed the kw-SDA model to protect users from being re-identified
when adversaries monitor users’ degrees in w continuous anonymized undirected graphs.
They assume that data providers can insert new nodes and edges to their new graph and
each user can have many labels which illustrates multiple values of his/her attribute. For
instance, a user can have two labels: flu and SARS at the same time. First, they define a
k-shielding consistent group in w continuous anonymized graphs as the group consisting of
at least k users whose degree is identical and the intersection of its users’ labels has at least
k distinct values. Then, their algorithm adds fake edges and nodes to generate anonymized
undirected graphs such that all users appearing in w continuous anonymized graphs are in
a k-shielding consistent group.

Macwan et al. [37] extended [50] to allow users to have many attributes. This work
assumes that each node has a label representing its attributes’ values. For instance, the
label < 21,M,US > models that age, birthday, and location of a user are 21, M , and
US, respectively. They ensure that there are at least k nodes having the same label. Their
algorithm first partitions the original graph into clusters, such that each cluster has at least
k nodes and a label. If there are more than k new nodes, it creates a new cluster for them.
Then, it merges clusters that have less than k users or add fake nodes to ensure that all
resulting clusters have at least k users. Unfortunately, this work only protects users’ labels
and does not prevent adversaries from re-identifying these users [34]. Furthermore, this
work does not consider anonymizing directed graphs.

Recently, Zhang et al. [60] presented the Dynamic Social Network Directed Graph K-
In&Out-Degree Anonymity Model (DSNDG K-IODA) to protect users’ identities when
the adversaries gain access to continuous anonymized directed graphs. Similar to [10], this
work first partitions the original graph into clusters that have at least k nodes. Then, it
adds fake nodes and fake edges to ensure that the out-/in-degrees of users in the same
clusters are identical. However, this work does not allow nodes to have attributes.

The above mentioned work [8, 37, 39, 50, 55, 60] cannot protect users in anonymized
KGs. The first issue is that none of the work considers anonymizing two information types:
attributes’ values and relationship types at the same time. Furthermore, anonymization

CHAPTER 2. RELATED WORK 30

solutions for undirected [37, 39, 50] and directed [60] graphs only support the impractical
scenario where data providers only add new edges and nodes to their graphs. Table. 2.2
summarizes the sequentially anonymization solutions for graphs we have discussed so far.

Table 2.2: Analysis of existing approaches for sequentially anonymization of graphs.
(UG=Undirected Graph, DG=Directed Graph, Iden=Identity, Attr=Attribute,

Deg=Degree, EA=Edge Addition, ED=Edge Deletion, NA=Node Addition, ND=Node
Deletion)

Type Proctection Background Knowledge Generalization

UG DG Iden Attr Degree Attr EA ED NA ND

Medforth et al. [39] X X X X
Tai et al. [50] X X X X X X X
Macwan et al. [37] X X X X X X
Zhang et al. [60] X X X X X

We present a solution to cope with these issues in Chapter 5.

2.6 Personalized Anonymization

Users can have different privacy protection requirements [54]. For example, a famous
user may require high level of privacy protection. In contrast, a normal one who does
not know technologies may not care about his/her privacy and he/she may choose to
have low levels of protection. However, all of the anonymization solutions that have been
discussed before [3, 10, 12, 33, 34, 36, 49, 55, 60, 61, 63, 64] apply the same protection level to
all users in their data. This limitation does not allow data providers to protect users who
require strong privacy protection levels, without taking the risks of generating low-quality
anonymized data. The low-quality data are generated by setting strong protection levels
for all users in their data.

Xiao et al. [54] presented the first personalized anonymization approach for relational
data. This work allows users to specify a guarding value for their sensitive values. A
guarding value is an intermediate node in the taxonomy tree of a sensitive attribute. They
ensure that the anonymized sensitive value of a user cannot be the successors of his/her
guarding value. For example, with reference to Figure Figure. 2.1a if a user choose his/her
guarding value as Professonal, his/her anonymized sensitive value cannot be Professor
or Engineer. Anonymized data are generated such that all users’ sensitive values are not
the successors of their guarding values. Next, Ye et al. [56] proposed the personalized
version of (α, k)-privacy [53] to allow users to specify their own values of α and k. Then,
Liu et al. [35] combined solutions in [54] and [56] to allow users to specify not only the
guarding value for their sensitive values but also their values of k and l.

The first personalized anonymization approach for undirected graphs has been presented
in [59]. This work allows users to specify one of three supported protection levels. Level 1
for users who want to protect their identities when adversaries know their attributes’ values.

CHAPTER 2. RELATED WORK 31

Users whose level is 2 want to be protected from being re-identified when adversaries know
both their attributes’ values and degree. The final level, i.e. level 3, is for those who
want to protect their identities when adversaries know their attributes’ values, degree,
and edges adjacent to their nodes. To anonymize the data, this work firstly applies k-
anonymity [49] to protect users who requires protection level 1. Then, k-da [34] is used to
anonymized users’ relationships based on anonymized results from k-anonymity. Finally,
it provides an additional protection for level 3 by modifying results of k-da. Unfortunately,
this work anonymizes relationships based on anonymized attributes’ values. This limitation
results in a huge amount of information loss for users’ relationships. In addition, Jian et
al. [27] presented the personalized version of k-da-l-diver [58] to allow users to specify their
values of k and l. Unfortunately, all the work [27, 59] only support one type of undirected
relationships. Therefore, this work cannot be used to anonymize KGs.

In Section 6.2.1, we show our personalized anonymization approach for KGs.

Chapter 3

Anonymization of Directed Graphs

3.1 Introduction

Many protection models (e.g., k-degree [34], k-na [61], and k-auto [64]) have been presented
to protect users’ identities in anonymized undirected graphs. These models ensure that
even if adversaries know structural information (e.g., nodes’ degrees) of any user in the
anonymized graph, the confidence of their prediction will be less than 1

k , where k is a
positive integer provided by data providers. However, these models only protect undirected
graphs, while most of the popular relationships in social networks are directed. For example,
Twitter, Facebook, and Instagram users have directed relationships (e.g., follow).

Recently, few protection models (e.g., the Paired k-degree [10] and K-in&out-Degree
anonymity [60]) have been presented to protect users in directed graphs. Different from
undirected graphs, the directed ones contain not only the outgoing but also the incoming
edges. Therefore, these models require that the out- and in-degree of any user in the
anonymized graph are indistinguishable from those of k − 1 other users. Then, they can
ensure that adversaries cannot discover the identities of any user in the anonymized graphs
with the confidence higher than 1

k even if they know the out- and in-degree of the target
users.

Although the Paired k-degree [10] and K-in&out-Degree anonymity [60] have the same
privacy requirements, their authors propose different algorithms to anonymize the graphs.
The Directed Graph Anonymization Algorithm (DGA) [10] modifies edges until the result-
ing graph satisfies the Paired k-degree [10] property. The Dynamic Social Network Di-
rected Graph K-In&Out-Degree Anonymity Algorithm (DSNDG-KIODA) [60] adds fake
edges and nodes to make the resulting graph satisfying the K-in&out-degree anonymity.
Nevertheless, this approach decreases the quality of the anonymized graphs as the graphs
contain not only fake edges but also fake nodes. Furthermore, none of them can prove that
their algorithms always generate an anonymized graph satisfying the proposed privacy
models [10,60].

To cope with this issue, we present the Cluster-based Directed Graph Anonymiza-
tion (CDGA) algorithm and prove that, with the appropriate parameters, our algorithm

32

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 33

can generate anonymized directed graphs satisfying both the Paired k-degree [10] and K-
In&Out-Degree Anonymity [60]. CDGA groups users into clusters that have at least k
users and modifies the original graphs in such a way that all users in the same cluster have
the same out- and in-degree. We also present an additional modification technique, namely
the Degree Decrement technique, to decrease the users’ out- or in-degrees. We prove that
CDGA always generates anonymized graphs satisfying both the Paired k-degree [10] and
K-in&out-degree anonymity [60].

The remainder of this chapter is organized as follows. Section 3.2 illustrates the con-
sidered protection models for anonymizing directed graphs, whereas Section 3.3 describes
our anonymization algorithm. Finally, we report the experimental results in Section 3.4.

3.2 Anonymizing Directed Graphs

In this chapter, we focus on anonymizing directed graphs representing users’ relationships.
Figure. 3.1a shows an example of directed graph. Let G(V,E) be a directed graph, where V
is a set of nodes and E is a set of edges connecting these nodes. Each node in V represents
a user. Each directed edge in E is a pair (u, v), u, v ∈ V , indicating that user u has a
relationship with user v. Appendix A summarizes notations used in this chapter.

Ken

Tom

Mary

Peter

Evan

(a) Directed graph G

0

2

1

3

4

(b) Directed graph G1

0

2

1

3

4

(c) Directed graph G2

Figure 3.1: An example of directed graph and its anonymized versions

3.2.1 Adversaries’ Background Knowledge

Let G(V,E) be a directed graph and G(V ,E) be its anonymized version. Similar to [10],
we assume that the adversary background knowledge contains both the users’ out- and
in-degrees in the anonymized graph. The out-degree of a user refers to the number of
edges outgoing from his/her node, whereas his/her in-degree represents the number of
edges incoming to his/her node. More precisely, let u be a user in V , we denote as
do(G, u) = |{(u, v) ∈ E}| and di(G, u) = |{(v, u) ∈ E}| the user u’s out- and in-degree

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 34

Table 3.1: Adversaries’ background knowledge

G G1 G2
NodeID Name do di do di do di

0 Ken 3 0 3 0 2 2
1 Mary 2 2 2 2 2 2
2 Tom 1 2 1 2 2 2
3 Peter 1 1 1 1 2 2
4 Evan 0 2 0 2 2 2

in the anonymized graph G, respectively. More formally, we define the background knowl-
edge as follows:

Definition 1 (Adversaries’ Background Knowledge [10]). Let G(V ,E) be an anonymized
directed graph and u be a user in V . The background knowledge that adversaries use to
re-identity u is Id(G, u) = (do(G, u), di(G, u)), where do(G, u) and di(G, u) are the user u’s
out- and in-degree extracted from the anonymized graph G.

Example 2. Figure. 3.1 and Table. 3.1 illustrate two anonymized graphs: G1, G2 and
the out- and in-degrees of all users in these graphs as well as in the original graph G. To
generate G1, we only remove users’ identities from G. Then, we generate G2 by modifying
edges of G1 such that the out- and in-degree of all users in G2 are indistinguishable. G2
satisfies the Paired 5-degree. Here, the adversaries can re-identify each user in G1 as the
background knowledge extracted from their structural data is unique. For instance, if the
adversaries know Ken’s out- and in-degree, they can identify his node as 0.

3.2.2 Anonymity of Directed Graphs

As the adversaries know the out- and in-degree of the victim, we need to consider both
the degrees to protect users in the anonymized graphs. The Paired k-degree [10] and K-
In&Out-Degree Anonymity [60] have been proposed to protect users from the knowledge
of both the degrees. As their properties are identical, we only present the Paired k-degree
as it is the first one being published.

Definition 2 (Paired k-degree). Let G(V ,E) be an anonymized directed graph. G satisfies
the Paired k-degree if and only if for every user u in V , there exists a set of users in V ,

denoted ζG(u), such that: ζG(u) = {v ∈ V |IGd (v) = IGd (u)} and |ζG(u)| ≥ k.

The intuitive idea of the Paired k-degree is that the out- and in-degrees, i.e., IG , of all
users in the anonymized directed graph G are indistinguishable from those of at least k− 1
other whose information also appears in G.

Example 3. As showed in Example 2, even though G1 does not contain any users’
identifiers (e.g., name), the adversary can re-identify all the users. However, adversaries

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 35

cannot re-identify any user in G2 with confidence higher than 1
5 , since all of the users have

the same out- and in-degrees in G2.

3.3 Cluster-based Anonymization

In this section, we first introduce the intuition of our Cluster-Based Directed Graph
Anonymization Algorithm (CDGA), before presenting it in details.

3.3.1 Overview

We design CDGA to generate anonymized directed graphs satisfying the Paired k-degree
while maximizing their quality. More precisely, given a directed graph G(V,E) and the
positive number k, CDGA generates its Paired k-degree anonymized version G(V ,E) by
modifying the structure of G. Our algorithm has two main steps:

1. Clusters generation. The aim of this step is to generate a set of user clusters
CG = {c ⊂ V ||c| ≥ k}. Our algorithm maximizes the quality of the generated
clusters according to an information loss metric that will be discussed in details in
Section 3.3.2.

2. Directed graph generalization. The goal of this step is to add and remove edges
in G such that all users in the same cluster have the same out- and in-degree. More
precisely, given the set of clusters CG generated in the previous step, we generate
G(V ,E), such that V =

⋃
c∈CG

c and E satisfies the condition that ∀c ∈ CG , ∀u, v ∈ c:

Id(G, u) = Id(G, v).

After performing these steps, we obtain G’s Paired k-degree anonymized version G. In
what follows, we first discuss the information loss metric we use to evaluate the quality of
the anonymized graphs.

3.3.2 Information Loss Metric

To evaluate the loss of information on a user u, we measure the difference between his/her
degree in the original and anonymized graph. Different from previous work [10, 60], we
define two information loss metrics, namely DM ′o and DM ′i , to evaluate the differences be-
tween the users’ out- and in-degrees in the anonymized and original graphs. This approach
allows us to control the contributions of both the out- and in-degree information losses to
the overall information loss DM .

More precisely, given a user u, DM ′o measures his/her out-degree information loss by
calculating the difference between his/her out-degree in the original graph G and the
anonymized one G. As the highest out-degree of user u is |V |, the maximum difference
is also |V |. The metric then normalizes the difference to the range [0, 1], by dividing it by
the maximum difference. We define DM ′o as follows:

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 36

Definition 3 (DM ′o). Let G(V,E) be a directed graph, G(V ,E) be its anonymized version,
and u be a user in V . The out-degree loss metric (DM ′o) of anonymizing user u is:

DM ′
G
o (u) =

|do(G, u)− do(G, u)|
|V |

Similarly, we define DM ′i as follows:

Definition 4 (DM ′i). Let G(V,E) be a directed graph, G(V ,E) be its anonymized version,
and u be a user in V . The in-degree loss metric (DM ′i) of anonymizing user u is:

DM ′
G
i (u) =

|di(G, u)− di(G, u)|
|V |

Since we aim to exploit these metrics to evaluate the information loss of making the
out- and in-degree of two users identical, we introduce this further definition:

Definition 5 (DM). Let G be a directed graph, G be its anonymized version, and u, v be
two users in V . The Out- and In-degree Information Loss Metric (DM) of making u and
v having the same out- and in-degree is:

DMG(u, v) = α×DMGo (u, v) + (1− α)×DMGi (u, v)

where:

DMGo (u, v) =
DM ′Go (u) +DM ′Go (v)

2

DMGi (u, v) =
DM ′Gi (u) +DM ′Gi (v)

2

and α is a number between 0 and 1 to control the contribution of out- and in-degree
information losses.

While some directed graph analysis techniques (e.g., spam detection) rely on either out-
going or incoming edges, anonymizing the graph changes both users’ out- and in-degrees.
For example, as spammers follow as many users as they can to access the users’ infor-
mation [24], their out-degree is higher than those of regular users. Changing too many
outgoing edges decreases the accuracy of the spam detection technique. Therefore, by us-
ing a parameter α, we allow data providers to control the changes of the users’ out- and
in-degree. If the providers want to prioritize preserving the out-degree, they can assign α
to a value larger than 0.5. On the other hand, they can set it a value less than 0.5 if they
want to prioritize minimizing the differences of the users’ in-degrees. As we do not assume
how the anonymized graphs generated by our algorithm will be used, we assign α to 0.5 to
balance the out- and in-degree information losses.

Example 4. Let us assume α = 0.5, and the anonymized graph G2 illustrated in
Figure. 3.1c. Here, we have |V | = 5. The out-degree information loss of user 0 and user 1

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 37

are DM ′G2o (0) = |2−3|
5 = 0.2, DM ′G2o (1) = |2−2|

5 = 0. Their in-degree information loss are

DM ′G2i (0) = |2−0|
5 = 0.4, DM ′G2i (1) = |2−2|

5 = 0. Then, the out- and in-degree information

loss of anonymizing users 0, 1 together is DMG2o (0, 1) = 0.2+0
2 = 0.1, DMG2i (0, 1) = 0.4+0

2 =

0.2; DMG2(0, 1) = 0.5× 0.1 + (1− 0.5)× 0.2 = 0.15.

3.3.3 Algorithms

In the following, we present the algorithms for cluster generation and directed graph gen-
eralization.

Clusters generation

Given a directed graph G, storing users’ relationships and a positive number k, we aim at
generating a set of clusters that have at least k users. Initially, the algorithm assigns each
user to a separate cluster. Then, in each iteration, it merges a cluster that has less than k
users with another one. This technique allows us to increase the number of users in each
cluster. Consequently, the algorithm reduces the number of invalid clusters (i.e., containing
less than k users) after each iteration. Our algorithm terminates when all clusters are valid,
or it cannot merge clusters anymore. Finally, the algorithm only returns the set of valid
clusters.

In general, the more clusters we merge, the more information we lost and the farther
the clusters are, the more information the anonymized graphs lose after merging them.
Therefore, by merging the closest clusters, our algorithm minimizes the information loss
of the anonymized graphs. We calculate the distance between two clusters c1 and c2 as
follows:

DG(c1, c2) = max{DM G(u, v)|∀u, v, u ∈ c1 ∧ v ∈ c2} (3.1)

This distance metric measures the maximum information loss between all pairs of users
in two clusters. We can minimize the information loss by merging only clusters that are not
too far from each other. Thus, we can impose some threshold on the maximum information
loss a merge operation might bring. Our algorithm restricts the maximum information
loss of merging two clusters to a threshold τ . Then, our algorithm would not merge the
clusters whose distances are greater than τ . This parameter gives a good trade-off between
the quality and the anonymity of the anonymized graphs. Small values of τ prevent our
algorithm from generating the anonymized graphs with high values of k; it, however, allows
the algorithm to generate high-quality anonymized graphs.

If clusters have too many users, merging them will require us to add more edges to make
their out- and in-degrees identical. Therefore, we limit the maximum number of users in
each resulting cluster to ε. We will not merge clusters if the resulting one has more than ε
users.

The algorithm aims at reducing the number of invalid clusters in each iteration by
merging an invalid cluster with its nearest one. The naive approach generates all pairs

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 38

of one invalid cluster and its closest one and merges the pair whose distance is minimum.
The complexity of this step is O(m× n), where m is the number of invalid clusters and n
is the number of all clusters. We improve the performance of this step by only considering
ω percentage of the invalid clusters in each iteration. As ω’s values go from 0 to 1, the
algorithm only considers ω ×m invalid clusters in each iteration. Thus, we can limit the
complexity to O(ω×m× n). By using small values of ω, we can improve the performance
of our algorithm, as our experiments will show.

Algorithm 1 Clusters Generation (G, k, τ, ω, ε)

Input: Graph G(V,E); positive number k; parameters τ , ω, and ε.

Output: A set of clusters CG .

1: Let s be the set of clusters containing a single user in V
2: ks ← min{|c||∀c ∈ s}
3: while ks < k do
4: snext ← find next clusters(s, k, τ, ω, ε)
5: if snext = ∅ then
6: break
7: else
8: s← snext
9: end if

10: ks ← min{|c||∀c ∈ s}
11: end while
12: CG ← {c|c ∈ s ∧ |c| ≥ k}
13: return CG

Algorithm 1 takes as input the directed graph G, a positive number k, the threshold τ ,
the percentage of invalid clusters ω to be considered at each iteration, and the maximum
size of clusters ε. At the beginning, it initializes the set of clusters s by inserting each
user in V as a distinct cluster (line 1). We denote as ks the anonymity level of s, as the
minimum cardinality among clusters in s (line 2). Then, the algorithm evaluates whether
the anonymity level of s is less than k (line 3). If this is the case, Algorithm 1 calls function
find next clusters() (line 4) to find a new set of clusters, i.e., snext. This is computed by
merging clusters in s as it will be described in the following. Then, Algorithm 1 checks
whether snext is empty (line 5). If this is the case, the algorithm cannot merge clusters
anymore. Therefore, it exits from the while loop (line 6). Otherwise, the algorithm assigns
snext to s (line 8) and updates ks (line 10). Then, it goes to the next iteration till s does
not contain any cluster that has less than k users or no more merge operations are possible.
Finally, the algorithm adds the valid clusters in s to the final set CG (line 12).

Function find next clusters(). Given a set of clusters s, a positive number k, a
threshold τ , the percentage of invalid clusters ω, and the maximum size of the merged
cluster ε, the function finds a new set of clusters by merging two closest clusters, whose

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 39

Function 1 find next clusters (s, k, τ, ω, ε)

1: ψinvalid ← {c|c ∈ s ∧ |c| < k}
2: ψω ← ω × |ψinvalid|randomly selected clusters in ψinvalid

3: ψ ← {(c1, c2)|c1 ∈ ψω ∧ c2 ∈ s ∧ |c1|+ |c2| ≤ ε}
4: score← +∞
5: for each c′1, c

′
2 ∈ ψ do

6: score’← DG(c′1, c
′
2)

7: if score’ ≤ τ and score’ < score then
8: score← score′

9: c1 selected, c2 selected ← c′1, c
′
2

10: end if
11: end for
12: if score 6= +∞ then
13: c← c1 selected ∪ c2 selected

14: snext ← (s \ c1) \ c2
15: snext ← snext ∪ {c}
16: else
17: snext ← ∅
18: end if
19: return snext

distance is smaller than or equal to τ . Moreover, the size of the resulting cluster must be
less than or equal to ε. The function first forms the set of ω× |ψinvalid| clusters, randomly
selected in the set ψinvalid of invalid clusters (lines 1-2). Then, the function creates the set
ψ by finding all pairs consisting of an invalid cluster c1 ∈ ψω and a cluster c2 ∈ s, such
that the size of the merged cluster is less than or equal to ε (line 3). Then, for each pair
c′1, c

′
2 in ψ, it assigns score′ based on the distance between c′1, c

′
2, calculated by using the

distance metric DG(c′1, c
′
2) (line 6). Next, it checks whether the distance score′ is less than

or equal to τ and less than score (which is initialized in line 4 as the largest positive number
+∞). If this is the case, the function updates score with score′ (lines 7-10) and saves the
two clusters with minimum score in c1 selected, c2 selected. The loop terminates when all the
pairs in ψ have been checked. Then, the function checks whether at least one pair c1 selected,
c2 selected is found. If this is the case, the new set of clusters snext is created by removing
c1 selected, c2 selected from s and adding the merged cluster c = c1 selected ∪ c2 selected to snext
(lines 13-15). Otherwise, the function sets snew empty (line 17).

In the following example, we illustrate how Algorithm 1 generates clusters.

Example 5. Suppose that we use Algorithm 1 to generate clusters of users in the original
directed graph G (Figure. 3.1a) with the following parameters ω, k, ε, τ are equal to 0.5, 2, 4,
0.4, respectively. Initially, Algorithm 1 generates 5 clusters: {0}, {1}, {2}, {3}, {4}. Then,
since there are 5 invalid clusters that have less than 2 users, Function find next clusters()
randomly selects ω×5 = 0.5×5 ≈ 3: {0}, {2}, {4} invalid clusters. The function returns the

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 40

pair of clusters: ({2}, {4}) since the distance between {2}, {4} is the smallest among all of
the considered pairs (i.e., ({0}, {1}), ({0}, {2}), ({0}, {3}), ({0}, {4}), ({2}, {1}), ({2}, {3}),
({2}, {4}), ({4}, {1}), ({4}, {3})) and the algorithm merges them to generate the cluster
{2, 4}. In the second iteration, the function randomly chooses 2 invalid clusters: {0}, {3}.
Next, it can find the pair of two closest clusters: {1}, {3}. The algorithm merges the
clusters and generates the cluster {1, 3}. The cluster {0} cannot be merged to {1, 3} and
{2, 4} since its distances to these clusters are higher than τ = 0.4. Finally, the final set of

clusters CG is {{1, 3}, {2, 4}}.
It is straightforward to show that, given a directed graph and denoting with CG the set

of clusters returned by Algorithm 1, executed with a positive number k, all clusters in CG

have at least k users. Indeed, let c be an arbitrary cluster in CG . Suppose that c has less
than k users. As Algorithm 1 removes all clusters that have less than k users from CG (see

line 12), CG cannot contain c.

Graph generalization

Given a directed graph G and the set of clusters CG generated by Algorithm 1, this step
generates the anonymized graph G by adding and removing edges in G such that all users
in the same cluster have the same out and in-degrees. Here, all users whose cluster is in
CG are included in the set of the anonymized users V .

Let c be a cluster in CG . According to Definition 2, to generalize G, we need to make
the anonymized out- and in-degrees of all users in c identical. We denote as =Go (c) and
=Gi (c) the biggest out- and in-degree among all users in c, respectively. We modify the set
of edges in the graph to make the out- and in-degree of all users in c identical to the biggest
out- and in-degree of users in c. In particular, let u be a user in the cluster c, we denote as
δo(u) = =Go (c) − do(G, u) and δi(u) = =Gi (c) − di(G, u) the difference between the user u’s
out- and in-degree in G and the biggest out- and in-degree of all users in c, respectively. If
δo(u) and δi(u) are zero, user u’s out- and in-degree are equal to =Go (c) and =Gi (c).

To anonymize all users u in V , we aim at adding/removing edges until δo(u) and δi(u)
are equal to zero. Let Γo = {u|u ∈ V ∧ δo(u) > 0} and Γi = {u|u ∈ V ∧ δi(u) > 0} be the
sets of users whose out- and in-degree are less than the biggest out- and in-degree among
those of other users in the same cluster. If Γo and Γi are empty, the out- and in-degree of
all users are the biggest out- and in-degree of their clusters. In the other words, all users
in the same clusters have the same out- and in-degree. Therefore, the obtained G satisfies
the Paired k-degree [10].

The Directed Graph Anonymization Algorithm (DGA) [10] modifies edges to reduce
the number of users in Γo and Γi until they are empty by using three techniques: Edge
addition, Edge switch, and Edge extension. We formalize these techniques as follows:

1. Edge addition adds edges (u, v) satisfying the constraint u ∈ Γo ∧ v ∈ Γi ∧ u 6=
v ∧ (u, v) /∈ E. This technique reduces δo(u) and δi(v).

2. Edge switch adds edges (u, v′), (u′, v) and removes edges (u′, v′) satisfying the
constraint u ∈ Γo ∧ v ∈ Γi ∧ u 6= v ∧ (u, v), (u′, v′) ∈ E ∧ (u′, v), (u, v′) /∈ E. This

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 41

technique reduces δo(u) and δi(v) while preserving IGo (u′) and IGi (v′).

3. Edge extension adds edges (u′, u), (u, v′) and removes edges (u′, v′) satisfying the
constraint u ∈ Γo ∧u ∈ Γi ∧(u′, v′) ∈ E ∧(u′, u), (u, v′) /∈ E. This technique reduces

δo(u) and δi(u) while keeping IGo (u′) and IGi (v′) the same.

As these techniques require that both Γo and Γi are not empty, it cannot generate
anonymized directed graphs when one of them is empty. To cope with this situation, we
propose the Degree Decrement technique to decrease the highest out-degree (in-degree,
respectively) of users when Γo (Γi, respectively) is empty. Our technique removes edges to
reduce the number of outgoing or incoming edges. It chooses a cluster where the number
of outgoing or incoming edges we need to add is highest among that of other ones. Then,
it removes edges of all users whose out- or in-degree is highest among that of the remaining
ones in the chosen cluster (see Function 2). After that, we can continue generalizing G by
using the previously explained technique.

Algorithm 2 Graph generalization (G, CG)

Input: A directed graph G(V,E); the set of clusters CG .
Output: An anonymized directed graph G(V ,E).

1: V ←
⋃

c∈CG
c

2: E ← E
3: Initializes G(V ,E)
4: Let Γo and Γi be the set of users who need to increase their out- and in-degrees
5: while |Γo| > 0 or |Γi| > 0 do

6: G ← modify edges by DGA(G, CG)

7: G ← decrease cluster degree(G, CG)
8: Update Γo and Γi

9: end while
10: return G

Algorithm 2 illustrates our graph generalization approach. First, we calculate the set
of users in the anonymized graph G as the union of all clusters in CG (line 1). Also, we
initialize the set of anonymized edges E with the set of original ones E (line 2). Then, we
initialize the anonymized graph G with E and V (line 3). The algorithm keeps generalizing
by calling DGA [10] (line 6) and the Degree Decrement technique (line 7). It terminates
when |Γo| = 0 and |Γi| = 0. Finally, the algorithm returns the anonymized graph G (line
10).

Function decrease cluster degree(). The function starts by initializing δo and δi for

all users in V (line 1). Then, it initializes ∆o and ∆i for all clusters c in CG , where ∆o(c)
and ∆i(c) are the number of outgoing and incoming edges we need to add to anonymize

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 42

all users in cluster c (lines 2-5). Next, it finds the clusters whose ∆o and ∆i are highest: co
and ci (lines 6-7). If ∆o(co) is higher than ∆i(ci), we will decrease the highest out-degree
of the cluster co by one (lines 8-15). To decrease the highest out-degree of the cluster co,

we find the highest out-degree of all users in co: =Go (c0). Then, for every user u in co, if

the user u’s out-degree (i.e., do(G, u)) is equal to =Go (c0), we randomly remove an outgoing
edge of u to decrease his/her out-degree (lines 10-15). Similarly, we use the same approach
to decrease the highest in-degree of the cluster ci by one (lines 17-25). Finally, the function
returns the anonymized graph G.

Function 2 decrease cluster degree (G(V ,E), CG)

1: Initializes δo and δi for all users in V
2: for c ∈ CG do
3: ∆o(c)←

∑c
u δo(u)

4: ∆i(c)←
∑c

u δi(u)
5: end for
6: co ← arg maxCG

c ∆o(c)

7: ci ← arg maxCG
c ∆i(c)

8: if ∆o(co) > ∆i(ci) then

9: =Go (co)← maxco
u do(G, u)

10: for u ∈ co do
11: if do(G, u) = =Go (co) then
12: v ← randomly find v : (u, v) ∈ E
13: E ← E \ {(u, v)}
14: end if
15: end for
16: else
17: if ∆i(ci) > 0 then

18: =Gi (ci)← maxci
u di(G, u)

19: for u ∈ ci do
20: if di(G, u) = =Gi (ci) then
21: v ← randomly find v : (v, u) ∈ E
22: E ← E \ {(v, u)}
23: end if
24: end for
25: end if
26: end if
27: return G

We illustrate Algorithm 2 in the following example.

Example 6. Suppose that we use Algorithm 2 to generate anonymized graph from the
generated clusters in Example 5, i.e., {1, 3}, {2, 4}. Since Γo = {3, 4} and Γi = ∅, DGA

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 43

cannot add, switch, or extend edges. Then, Function decrease cluster degree() calculates
∆o({1, 3}) = 1, ∆o({2, 4}) = 1, ∆i({1, 3}) = 0, ∆o({2, 4}) = 0 and co = {1, 3} and
ci = {2, 4}. As ∆o({1, 3}) > ∆i({2, 4}), the function removes two edges (3, 2) and (1, 3).
Finally, the algorithm can use DGA to add two fake edges (3, 2) and (4, 3) and the out-
/in-degrees of users 1, 3 are identical. Similarly, those of user 2 are equal to those of user
4.

Algorithm 2 terminates when both set Γo and Γi are empty. In this case, all users in
the same cluster have the same out- and in-degree.

Theorem 1. Let G be a directed graph, G be its anonymized version generated by Algo-
rithm 2, and CG be the set of clusters. If |Γo| = 0 and |Γi| = 0, then, for every cluster c in

CG , for every user u, v in c, do(G, u) = do(G, v) and di(G, u) = di(G, v).

Proof. Let c be an arbitrary cluster in CG and u, v be two arbitrary users in c. Suppose
do(G, u) 6= do(G, v) or di(G, u) 6= di(G, v). Then, do(G, u) < =Go (c) or do(G, v) 6= =Go (v) or

di(G, u) 6= =Gi (c) or di(G, v) 6= =Gi (v). Thus, δo(u) > 0 or δo(v) > 0 or δi(u) > 0 or δi(v) > 0.
Then, |Γo| > 0 or |Γi| > 0. As c, u, and v were arbitrary, we can conclude that if |Γo| = 0

and |Γi| = 0 then for every cluster c in CG , for every user u, v in c, do(G, u) = do(G, v) and
di(G, u) = di(G, v). �

Theorem 2. Let G be a directed graph, G be its anonymized version generated by Al-
gorithm 2, and CG be the set of clusters. For all clusters c in CG , for all users u, v in c,
Id(G, u) = Id(G, v).

Proof. Let c be an arbitrary cluster in CG and u, v be two arbitrary users in c. When
Algorithm 2 terminates, |Γo| = 0 and |Γi| = 0 (see Algorithm 2, line 5). According to
Theorem 1, do(G, u) = do(G, v) and di(G, u) = di(G, v). Then, according to Definition 1,
Id(G, u) = Id(G, v). As c, u, and v are arbitrary, we can conclude that for all clusters c in

CG , for all users u, v in c, Id(G, u) = Id(G, v). �

Theorem 3. Let G(V,E) be a directed graph, G(V ,E) be its anonymized version created
by Algorithm 2, and k be an integer number. G satisfies the Paired k-degree [10] and
K-In&Out-Degree Anonymity [60].

Proof. Let CG be the set of clusters generated by Algorithm 1 and CG(u) be the cluster in

CG containing the user u. For every user u in V , |CG(u)| ≥ k. Moreover, as G is generated
by Algorithm 2, according to Theorem 2, for every user u, v in V , if u and v are in the same
cluster CG(u) then Id(G, u) = Id(G, v). Then, for every user u in V , there are at least k− 1
other users having the same out- and in-degrees, i.e., Id, to u. Therefore, we can conclude
that G satisfies the Paired k-degree. G also satisfies K-In&Out-Degree Anonymity as its
requirements are identical to those of the Paired k-degree. �

3.4 Experiments

In this section, we evaluate the quality of the anonymized directed graphs generated by our
algorithm by varying the requested parameters (k, ω, and τ) and compare our algorithm

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 44

CDGA with previous proposals, namely DGA [10], and DSNDG-KIODA [60]. All exper-
iments in this thesis were conducted on a Debian GNU/Linux server with 64 dual-core
2.00-GHz Intel(R) Xeon(R) processors and 128-GB RAM.

3.4.1 Datasets

We use three real-life networks to evaluate our algorithm: (1) Email-temp (986 users) [43],
(2) Bitcoin Alpha (3,783 users) [30], and (3) DBLP (12,591 users) [32]. Appendix B
summarizes properties of these datasets.

3.4.2 Tuning CDGA

This experiment evaluates the impact of our parameters k, ω, and τ on the quality of the

anonymized graphs generated by our algorithm. We denote as changed edges = |E\E|+|E\E|
|E|×|E|

the number of edges that are added or removed to generate the anonymized graph. We
normalize it by |E| × |E|, as it is the maximum number of added and removed edges. The
more changes we make, the lower the quality the anonymized graph is.

1 102 3 4 5 6 7 8 9
k

0.000

0.002

0.004

0.006

0.008

Ch
an

ge
d

ed
ge

s (
%

)

0.01
0.05
0.1

(a) Email-temp

1 2 3 4 5 6 7 8 9
k

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Ch
an

ge
d

ed
ge

s (
%

)

0.01
0.05
0.1

(b) Bitcoin Alpha

Figure 3.2: Changed edges by varying k and ω.

Effects of ω. CDGA merges an invalid cluster, which has less than k users with
the nearest one. We use ω to control how many invalid clusters CDGA checks in each
iteration. Figure. 3.2 illustrates the ratio of changes made to the original graph to generate
its anonymized version on Email-temp (Figure. 3.2a) and Bitcoin Alpha (Figure. 3.2b). We
assign τ to 1.0. Here, in all datasets, we achieve good quality anonymized graphs even with
ω = 0.01. Furthermore, the differences in the ratio of changes in the anonymized graphs
by varying ω is also small. The maximum differences is about 0.001 in Email-temp and
0.0002 in Bitcoin Alpha. Therefore, we do not need to specify a high value of ω to obtain
good quality anonymized graphs.

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 45

1 2 3 4 5 6 7 8 9 10
k

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ch
an

ge
d

ed
ge

s (
%

)

0.25
0.5
0.75
1.0

(a) Email-temp

1 2 3 4 5 6 7 8 9 10
k

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ch
an

ge
d

ed
ge

s (
%

)

0.25
0.5
0.75
1.0

(b) Bitcoin Alpha

Figure 3.3: Changed edges by varying k and τ .

Effects of τ . We use τ to specify the maximum distance between the chosen clusters.
Figure. 3.3 shows the ratio of changes made to the original graph to generate its anonymized
version on Email-temp (Figure. 3.3a) and Bitcoin Alpha (Figure. 3.3b). If the distances of
all clusters are higher than τ , the algorithm will not merge clusters any more. τ allows us
to control the trade-off between the quality and the anonymity of the anonymized graphs.
In both datasets, with τ = 0.25 and τ = 0.5, we can only anonymize graphs satisfying the
Paired 2-degree. With τ = 0.75 and τ = 1.0, we can obtain the anonymized graphs with k
from 2 to 10. If we want CDGA to always generate the anonymized graphs satisfying the
Paired k-degree [10] and K-In&Out-Degree Anonymity [60], we should assign τ with 1.0.
Otherwise, we can keep decreasing τ until the resulting graphs reach the expected quality
while ensuring a certain degree of anonymity.

Effects of k. As showed in the previous experiments (Figure. 3.2-3.3), the quality of
the anonymized graph decreases by increasing k.

3.4.3 Evaluating the Degree Decrement

In this experiment, we further evaluate the effectiveness of the Degree Decrement technique.
Figure. 3.4 illustrates the ratio of edges addition and removal to anonymize graphs on
Email-temp (Figure. 3.4a) and Bitcoin Alpha (Figure. 3.4b), respectively. We only need
to remove a small number of edges to generate anonymized graphs satisfying the Paired
k-degree. More precisely, we only need to modify a small number of edges (0.006 of edges
in Email-temp and 0.001 of edges in Bitcoin Alpha) to generate the anonymized graphs.
Moreover, the number of removed edges is smaller than the number of added edges in all
datasets.

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 46

1 2 3 4 5 6 7 8 9 10
k

0.000

0.002

0.004

0.006

0.008

C
ha

ng
es

 e
dg

es
 (%

)

removed
added

(a) Email-temp

1 2 3 4 5 6 7 8 9 10
k

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

ra
tio

 o
f c

ha
ng

es
 (%

)

removed
added

(b) Bitcoin Alpha

Figure 3.4: Details on the changes of graphs on varying k.

1 2 3 4 5 6 7 8 9 10
k

0.88

0.90

0.92

0.94

0.96

0.98

1.00

E
dg

e
in

te
rs

ec
tio

n
(%

)

algo
dga
cdga

(a) DBLP

1 2 3 104 5 6 7 8 9
k

0.96

0.97

0.98

0.99

1.00

E
dg

e
in

te
rs

ec
tio

n
(%

)

algo
dga
cdga

(b) Email-temp

1 2 103 4 5 6 7 8 9
k

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

E
dg

e
in

te
rs

ec
tio

n
(%

)

algo
dga
cdga

(c) Bitcoin Alpha

Figure 3.5: Intersection Edges of DGA and CDGA.

3.4.4 Comparative Analysis

In this experiment, we compare the quality of the anonymized graphs generated by our
algorithm (CDGA) and those generated by DGA [10] and DSNDG-KIODA [60].

To compare with DGA [10], we use metrics that Casa et al. [10] used to evaluate DGA:
the added edges and the intersection edges. The added edges are the number of edges
added to the original graphs to generate their anonymized versions. The intersection edges
are edges that exist in both the original and anonymized graphs. Casa et al. [10] normalize
both of them by the number of edges in the original graphs. Figure. 3.5 and 3.6 illustrate
the intersection and added edges on the three datasets, namely DBLP (Figure. 3.6a),
Email-temp (Figure. 3.6b), and Bitcoin Alpha (Figure. 3.6c), respectively. Only the results
of DGA on DBLP are obtained from their paper [10]. We used their software to obtain
the results on the remaining datasets: Email-temp and Bitcoin Alpha. Here, the number
of edges added by CDGA is similar to that of DGA on all datasets. However, in DBLP,
DGA needs to remove more edges. When k = 10, CDGA preserves more than 0.08 of edges

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 47

1 2 3 4 5 6 7 8 9 10
k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
dg

e
ad

di
tio

n
(%

)

algo
dga
cdga

(a) DBLP

1 2 3 104 5 6 7 8 9
k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

E
dg

e
ad

di
tio

n
(%

)

algo
dga
cdga

(b) Email-temp

1 2 103 4 5 6 7 8 9
k

0.0

0.1

0.2

0.3

0.4

E
dg

e
ad

di
tio

n
(%

)

algo
dga
cdga

(c) Bitcoin Alpha

Figure 3.6: Edges Addition of DGA and CDGA.

comparing to DGA. These results show that DGA does not always generate the anonymized
graphs satisfying the Paired k-degree. The maximum k that DGA can generate is 3 on
Email-temp and 2 on Bitcoin Alpha.

To compare the results of CDGA with DSNDG-KIODA [60], we use the average clus-
tering coefficient (ACC) differences between the anonymized and the original graphs as it is
used to evaluate the quality of the resulting graphs generated by DSNDG-KIODA in [60].
Here, we denote as ACC(G) the average clustering coefficient of a directed graph G. Then,
the average clustering coefficient differences between the anonymized graph G and its orig-

inal version G is ACC = |ACC(G)−ACC(G)|
ACC(G) . We obtain the results of DSNDG-KIODA from

their paper [60].

10 20 30 40 50
k

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ac
c

(%
)

algo
DSNDG-KIODA
cdga

Figure 3.7: ACC of CDGA and DSNDG-KIODA.

Figure. 3.7 illustrates the quality of the anonymized graphs generated by CDGA and
DSNDG-KIODA on Email-temp, respectively. Here, we only evaluate Email-temp as we
do not have access to their software. When k = 10 and 20, our ACC is less than theirs 0.03
at k = 10 and 0.005 at k = 20. Although our results are worse than theirs 0.035 at k = 30,
0.06 at k = 40, and 0.08 at k = 50, DSNDG-KIODA requires adding both fake edges
and nodes to generate the anonymized graphs. This requirement makes their anonymized

CHAPTER 3. ANONYMIZATION OF DIRECTED GRAPHS 48

graphs useless to the modern machine learning applications (e.g., spam detection) as these
applications need to be trained with real-life nodes. Here, CDGA only needs to modify
edges of the graphs to anonymize them. Therefore, data providers should use CDGA to
anonymize their graphs if they want to preserve all of the original nodes.

Chapter 4

Anonymization of Knowledge
Graphs

4.1 Introduction

The Paired k-degree [10] and K-In&Out-Degree Anonymity [60] described in Section 2.3
protect users’ identities in anonymized directed graphs. Unfortunately, these models are
insufficient to protect users in KGs as adversaries can exploit both users’ attributes and
different types of relationships [45,46] as the following example shows.

Example 7. Let G1 in Figure. 4.1a be a KG anonymized according to the Paired k-
degree. For all types of relationships (e.g., follows, is tutor), user:0 and user:1 ’s out-
and in-degrees are equal to those of user:2 and user:3, respectively. Therefore, G1 satisfies
the Paired 2-degree. However, as the values of nodes (e.g., 18, 19, Student) representing
attributes’ values are not replaced by random numbers, adversaries can re-identify users
by their attributes.

In this chapter, we present k-Attribute Degree (k-ad). Different from previous models,
k-ad requires that, for each user, his/her attributes and the out-/in-degree of any type
of his/her relationships are indistinguishable from those of k − 1 other users. Therefore,
an adversary cannot re-identify any user in k-ad KGs with a confidence higher than 1

k .
Figure. 4.1b illustrates the 2-ad version of G1. As we add fake edges to make both the
attributes (e.g., age, job) and the relationships out-/in-degree (e.g., follows, is tutor) of
user:0 and user:1 equal to those of user:2 and user:3, respectively, all of them cannot be
re-identified with a confidence higher than 1

2 .
The modifications performed to generate k-ad KGs decrease the amount of information

the anonymized KGs have. To cope with this, we present the Attribute and Degree Infor-
mation Loss (ADM) to measure the information loss of anonymized KGs. Moreover, as
k-ad requires modifying values of users’ attributes, we have to consider whether the new
values are truthful or not. As an example, we cannot associate to age attribute the value
18 if user’s job is Professor, because an adversary can easily detect these untruthful asso-
ciations and try to remove them to infer real values. For instance, the adversary can figure

49

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 50

user:0 user:1
follows

18

age

55

age

Student

job

Professor

job

user:3

age job

19

user:2

agejob

40

is_tutor

follows

is_tutor

(a) Paired 2-degree Knowledge Graph G1

user:0 user:1
follows

18

age

55

age

Student

job

Professor

job

user:3

age
job

19

user:2

agejob

40

is_tutor

follows

is_tutor

age

age
age

age

(b) 2-ad Knowledge Graph G2

Figure 4.1: Knowledge graphs satisfying Paired k-degree and k-ad.

out that either the user’ age or job is fake. As such, we have to measure the truthfulness
of attributes’ values in anonymized KGs. To estimate this, we propose to consider how
truthful are associations between attributes’ values. Indeed, according to the Closed-World
Assumption [29], an association between two attributes’ values is untruthful if the original
KG does not contain any user that have these values at the same time.1

Then, by using this information, we can measure the truthfulness of the values of
users’ attributes, through the Attribute Truthfulness Information Loss (ATM). Moreover,
since verifying the existence of an association in KGs is time consuming, we use bilinear
functions to learn an indicator deciding whether an association is truthful. We exploit
this indicator to measure how many untruthful associations a user has after anonymizing
his/her attributes. The more untruthful associations a user has, the higher his/her ATM
is. Then, by minimizing the number of these untruthful associations, we can maximize the
truthfulness of users’ attributes.

We present a Cluster-Based Knowledge Graph Anonymization Algorithm (CKGA)
allowing data providers to use any type of clustering algorithm (e.g., k-means [14]) to
anonymize KGs. First, we turn users into data points in Euclidean space such that their
information loss is almost equal to the Euclidean distance of their corresponding points.
By minimizing the distances between points in the same cluster, we minimize the infor-
mation loss of users in these clusters. Also, we present strategies to make the sizes of the
generated clusters in between k and 2×k−1. Finally, we extend the Directed Graph Gen-
eralization Algorithm (DGG) (Algorithm 2) in Chapter 3 to make the attributes’ values
and out-/in-degrees of users in the same cluster identical. We conduct experiments on five
real-life datasets to evaluate the quality of anonymized KGs generated by our algorithm
and compare it with our anonymization algorithm for directed graphs (Chapter 3) and the
previous work [10].

The remaining sections of this chapter are organized as follows. Section 4.2 illustrates

1In case the truthful associations are absent in the original KG, our work can be extended easily by
checking whether these associations exist in completed KGs containing more truthful data.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 51

the adversaries’ attack model. We introduce our information loss metrics in Section 4.3
and our algorithms in Section 4.4. Finally, in Section 4.5, we evaluate the efficiency of our
approach.

4.2 Anonymizing Knowledge Graphs

We model a knowledge graph (KG) as a graph G(V,E,R), where V is the set of nodes, E is
the set of edges connecting these nodes, and R is the set of relationship types. Figure. 4.1
shows an example of using KGs to model users’ data. Since a node can be used to represent a
user or the value of an attribute, there are two subsets of nodes: the set V U ⊆ V , modelling
users (e.g., user:0, user:1), and the set V A ⊆ V , representing attributes’ values (e.g., 18,
Student). Thus, V = V U ∪V A. Different from previous work [10,60], users can have more
than one value for each attribute.

Relationship types in R are categorized into two subsets: user-to-user relationship types
RUU , representing users’ relationships (e.g., follows), and user-to-attribute relationship
types RUA, modelling users’ attributes (e.g., age, gender, job). Then, R = RUU ∪ RUA.
Each edge e ∈ E is defined as a triple (u, r, v), where u, v ∈ V and r ∈ R. We denote with
EUA ⊆ E those e = (u, ra, va), such that ra ∈ RUA. Similarly, we denote with EUU those
e = (u, ru, vu), such that ru ∈ RUU . Appendix A illustrates notations used in this chapter.

4.2.1 Adversary Background Knowledge

Let G(V,E,R) be a KG and G(V ,E,R) be an anonymized version of G created by mod-

ifying V , E, and R. Let u be a user in V
U

. As KGs contain values of many attributes,
adversaries can re-identify u by using all of his/her attributes’ values in G, denoted as

Ia(G, u) = {(ra, va)|(u, ra, va) ∈ E
UA}. Additionally, adversaries can also re-identify u

if they know his/her out- and in-degree. However, as G represents many types of rela-
tionships, adversaries can exploit the out- and in-degree from any type of these relation-

ships to re-identify u. More precisely, given a relationship type ru ∈ R
UU

, we denote

with do(G, ru, u) = |{(u, ru, vu) ∈ EUU}| and di(G, ru, u) = |{(vu, ru, u) ∈ EUU}| the u’s
out- and in-degree of the relationship type ru, respectively. Then, the out- and in-degree

from all relationship types of u in G are Io(G, u) = {(ru, do(G, ru, u))|ru ∈ R
UU} and

Ii(G, u) = {(ru, di(G, ru, u))|ru ∈ R
UU}, respectively.

An adversary who has access to G can re-identify a user u ∈ V
U

by combining his
background knowledge that he/she knows about u and the extracted attributes’ values
and out-/in-degrees of u in G. More formally, we define the background knowledge of the
adversary as follows:

Definition 6 (Adversary Knowledge on a KG). Let G be an anonymized KG. The knowl-
edge that an adversary can use to re-identify a user u ∈ G contains:

• The background knowledge that the adversary knows about u: BK(u).

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 52

• Attributes’ values and out-/in-degrees of relationships of user u in G: I(G, u) =
(Ia(G, u), Io(G, u), Ii(G, u)).

Example 8. In Figure. 4.1b, the attributes, out-, and in-degrees about user user:0 that
can be extracted from the anonymized KG G2 is Ia(G2, user:0) = {(age, 18), (age, 19),
(job, Student)}; Io(G2, user:0) = {(follows, 1), (is tutor, 0)}; Ii(G2, user:0) = {(follows,
0), (is tutor, 1)}. Thus, the knowledge about user:0 that an adversary can extract from
G2 is I(G2, user:0) = ({(age, 18), (age, 19), (job, Student)}, {(follows, 1), (is tutor,
0)}, {(follows, 0), (is tutor, 1)}).

An adversary can use the above knowledge to re-identify his/her victim u by using an
attacking mechanism TG to identify if a user v ∈ G is the representation of u. We formally
define the attacking mechanism as follows:

Definition 7 (Attacking Mechanism to a KG). Let G be an anonymized KG, u be the
user that an adversary wants to re-identify, and v be an arbitrary user in G. The attacking
mechanism TG is represented as

TG(BK(u), I(G, v)) =

{
1, if u, v is the same user.

0, otherwise.

We define the risk of re-identifying any user in G under the attacking mechanism TG
as follows:

Definition 8 (Privacy Disclosure Risk in a KG). Let G be an anonymized KG that a data
provider has published, and u be a user that an adversary want to re-identify. The Privacy
Disclosure Risk of u is the confidence that the adversary can re-identify u by using his/her
background knowledge about u and the attacking mechanism TG:

risk(TG, G, u) =
1∑

v∈V U

TG(BK(u), I(G, v))

4.2.2 Anonymity of Knowledge Graphs

We present k-Attribute Degree (k-ad), a privacy protection model to protect users in
anonymized KGs. In particular, let G(V ,E,R) be an anonymized version of G. For each

user u in V
U

, we have to ensure that his attributes’ values, out-, and in-degrees extracted

from G are indistinguishable from those of at least k− 1 other ones in V
U

. More formally,
k-Attribute Degree (k-ad) is defined as follows:

Definition 9 (k-Attribute Degree). Let G(V ,E,R) be an anonymized KG. G satisfies

k-Attribute Degree (k-ad), if and only if, for every user u in V
U

, there exists a set of

users, denoted C(G, u), such that C(G, u) = {v ∈ V
U |Ia(G, u) = Ia(G, v) ∧ Io(G, u) =

Io(G, v) ∧ Ii(G, u) = Ii(G, v)} and |C(G, u)| ≥ k.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 53

If an anonymized KG G satisfies k-ad, the Privacy Disclosure Risk of all users in G is
less than or equal to 1

k .

Theorem 4. Let G be an anonymized KG that an adversary has access to and TG be
an attacking mechanism that he/she uses to re-identify users in G. If G satisfies k-ad, for
every user u ∈ G, risk(TG, G, u) ≤ 1

k .

Proof. Suppose G satisfies k-ad. Let u be an arbitrary user in G. According to Definition

9, there is a set C(G, u) = {v ∈ V U |I(G, u) = I(G, v)} and |C(G, u)| ≥ k. Then, for every
user v ∈ C(G, u), TG(BK(u), I(G, v)) = 1. Thus, risk(TG, G, u) = 1∑

v∈V U
TG(BK(u),I(G,u))

≤ 1
k .

Since u is arbitrary, we can conclude that if G satisfies k-ad, for every user u ∈ V
U

,
risk(TG, G, u) ≤ 1

k . �
As the values of all attributes and the out- and-in degree of all relationship types of

every user in the k-ad anonymized KGs are indistinguishable from those of k − 1 other
users, it can be easily proved that these KGs also satisfy the previous protection models:
k-anonymity [26], the Paired k-degree [10], and K-In&Out-Degree Anonymity [60].

Theorem 5. Let G(V ,E,R) be an anonymized KG. If G satisfies k-ad, G satisfies k-
anonymity, the Paired k-degree, and K-In&Out-Degree Anonymity.

Proof. Suppose G(V ,E,R) satisfies k-ad. Then, according to Definition 6, for every user

u ∈ V U
, |C(G, u)| ≥ k. Suppose that G does not satisfy k-anonymity, the Paired k-degree,

or K-In&Out-Degree Anonymity. Then, there is at least one user u ∈ V U
, such that there

are less than k − 1 other users whose values of all attributes (i.e., Ia), out-, and in-degree
of all types of relationships (i.e., Io and Ii, respectively) are identical to those of u. Thus,

|C(G, u)| < k. But, this contradicts the fact that |C(G, u)| ≥ k for every user u ∈ V
U

.
Thus, we can conclude that if G satisfies k-ad, it also satisfies k-anonymity, the Paired
k-degree, and K-In&Out-Degree Anonymity. �

4.3 Information Loss Metrics

In what follows, we describe the information loss metrics we use to evaluate the quality of
anonymized KGs.

4.3.1 Attribute and Degree Information Loss

As KGs contain both users’ attributes and relationships, our information loss metrics con-
sider the loss on all of these types of information. We present the Attribute Information
Loss Metric (AM ′) to evaluate the loss of attributes’ information on a user in anonymized
KGs. In what follows, we denote with G(V,E,R) and with G(V ,E,R) the original KG
and one of its anonymized version. Let u be a user in G and ra be an attribute in RUA. We

denote with Ia(G, ra, u) = {va|(u, ra, va) ∈ EUA} and Ia(G, ra, u) = {va|(u, ra, va) ∈ EUA}
the values of attribute ra of user u in G and G, respectively. If ra is a categori-
cal attribute, AM ′ measures the differences of values of u’s ra attribute in G and G:

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 54

Ia(G, ra, u) \ Ia(G, ra, u). In contrast, if ra is a numerical attribute, the value of u’s at-
tribute ra in G and G can be represented as a range [min Ia(G, ra, u),max Ia(G, ra, u)]
and [min Ia(G, ra, u),max Ia(G, ra, u)], respectively. Then, AM ′ measures the changes of
these ranges: |min Ia(G, ra, u) − min Ia(G, ra, u)| + |max Ia(G, ra, u) − max Ia(G, ra, u)|.
Therefore, we define AM ′ as follows:

Definition 10 (AM ′). Let u be a user in G. The Attribute Information Loss Metric (AM’)
of anonymizing user u in G is:

AM ′Gc (u, ra) =
|Ia(G, ra, u) \ Ia(G, ra, u)|

|doma(G, ra) \ Ia(G, ra, u)|+ 1

AM ′Gn (u, ra) =
|min Ia(G, ra, u)−min Ia(G, ra, u)|+ |max Ia(G, ra, u)−max Ia(G, ra, u)|

|min doma(G, ra)−min Ia(G, ra, u)|+ |max doma(G, ra)−max Ia(G, ra, u)|+ 1

AM ′G(u) =
1

|RUA|
×

RUA∑
ra

{
AM ′Gc (u, ra), if ra is a categorical attribute

AM ′Gn (u, ra), if ra is a numerical attribute

where doma(G, ra) = {va|(u, ra, va) ∈ EUA}.

Then, we exploit this metric to evaluate the information loss of making identical the
attributes’ values of two users by introducing this further definition:

Definition 11 (AM). Let u, v be two users in G. The Attribute Information Loss (AM)
of making u and v having the same values for all of their attributes in G is:

AMG(u, v) =
AM ′G(u) +AM ′G(v)

2

Example 9. Let G2 be the KG showed in Fig.4.1b and G be its original version.
RUA = {age, job}, doma(G, age) = {18, 19, 40, 50} and doma(G, job) = {Student,
Professor}. Let assume we make the values of all attributes of user:0 and user:2 identi-
cal, Ia(G2 , age, user:0) = Ia(G2, age, user:2) = {18, 19}, and Ia(G2, job, user:0) = Ia(G2,
job, user:2) = {Student}. The information loss of anonymizing user:0’s job and age

are AM ′G2
c (user:0, job) = |{Student}\{Student}|

|{Student,Professor}\{Student}|+1 = 0
2 = 0, AM ′G2

n (user:0, age) =
|min{18,19}−min{18}|+|max{18,19}−max{18}|}|

|min{18,19,40,50}−min{18}|+|max{18,19,40,50}−max{18}|}|+1 = 0+1
0+32+1 = 0.03. The information

loss of anonymizing user:2 ’s job is AM ′G2
c (user:2, job) = 0

2 = 0, AM ′G2
n (user:2, age) =

1+0
1+31+1 = 0.03. The information loss of anonymizing all attributes of user:0 and user:2

are: AM ′G2(user:0) = AM ′G2(user:2) = 0+0.03
2 = 0.015. The information loss of mak-

ing user:0 and user:2 having the same values for their attributes is: AMG2(user:0,
user:2) = 0.015+0.015

2 = 0.015.
To measure the loss of out- and in-degree information on a user u, we calculate the

difference between the out- and in-degree of u in the original and anonymized KG. At this
purpose, we extend metrics described in Chapter 3 to consider also multiple relationship
types.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 55

Definition 12 (DM ′o). Let u be a user in G. The out-degree loss metric (DM ′o) of
anonymizing user u in G is:

DM ′
G
o (u) =

1

|RUU |
×

RUU∑
r

do(G, r, u)− do(G, r, u)

|V U |

where do(G, r, u) and do(G, r, u) are the out-degree of the relationship type r ∈ RUU of user
u in G and G, respectively.

Similarly, we define the in-degree information loss (DM ′i) of anonymizing a user u in
KG as follows:

Definition 13 (DM ′i). Let u be a user in G. The in-degree loss metric (DM ′i) of anonymiz-
ing user u in G is:

DM ′
G
i (u) =

1

|RUU |
×

RUU∑
r

di(G, r, u)− di(G, r, u)

|V U |

where di(G, r, u) and di(G, r, u) are the in-degree of the relationship type r ∈ RUU of user
u in G and G, resp.

By exploiting these metrics, we define the Out- and In-Degree Information Loss (DM)
of making identical the out- and in-degree on all types of relationships of two users.

Definition 14. Let u, v be two users in G. The Out- and In-Degree Information Loss Met-
ric (DM) of making u and v having the same out- and in-degree on all types of relationships
in G is defined as follows:

DMG(u, v) =
DM ′Go (u) +DM ′Go (v) +DM ′Gi (u) +DM ′Gi (v)

4

Example 10. Let G2 be the KG showed in Fig.4.1b and G be its original version. RUU =
{follows, is tutor} and |V U | = 4. If we make user:0 and user:2 have the same out- and
in-degree on all types of relationships: do(G2, follows, user:0) = do(G2, follows, user:2)
= 1, do(G2, is tutor, user:0) = do(G2, is tutor, user:2) = 0; di(G2, follows, user:0) =
di(G2, follows, user:2) = 0, di(G2, is tutor, user:0) = di(G2, is tutor, user:2) = 1. Then,

DM ′G2
o (user:0) = 1

2×(1−14 + 0−0
4) = 0 and DM ′G2

i (user:0) = 1
2×(0−04 + 1−0

4) = 0.125. Simi-

larly, DM ′G2
o (user:2) = 1

2×(1−04 + 0−0
4) = 0.125 and DM ′G2

i (user:2) = 1
2×(0−04 + 1−1

4) = 0.

Out- and In-Degree Information Loss of anonymizing user:0 and user:2 is DMG2(user:0,
user:2) = 0+0.125+0.125+0

4 = 0.0615.
Finally, we combine AM and DM in the Attribute and Degree Information Loss Metric

(ADM).

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 56

Definition 15 (ADM). Let u, v be two users in G. The Attribute and Degree Information
Loss Metric (ADM) of making u and v having the same values on all attributes, and the
same out- and in-degree on all types of relationships in G is as follows:

ADMG(u, v) = αAM ×AMG(u, v) + (1− αAM)×DMG(u, v)

where αAM is a number between 0 and 1.

As anonymizing KGs modifies both users’ attributes and relationships, we use αAM to
control the information loss on these two categories of information. If data providers want
to preserve users’ attributes more than their relationships, they can assign αAM a value
greater than 0.5. They can also assign αAM a values less than 0.5 if they want to preserve
more users’ relationships. Otherwise, they can assign αAM to 0.5.

Example 11. With αAM = 0.5, the information loss of making values of all at-
tributes and the out- and in-degrees of all types of relationships of user:0 and user:2 in
G2 (Fig.4.1b) identical is: ADMG2(user:0, user:2) = αAM × AMG2(user:0, user:2) + (1 −
αAM)×DMG2(user:0, user:2) = 0.5× 0.015 + (1− 0.5)× 0.0615 = 0.03825.

4.3.2 The Attribute Truthfulness Information Loss

AM measures the information loss of users’ attribute independently, whereas it does not
consider the associations between values of different attributes. In particular, let u be a
user. We denote with h↔ t, where h, t ∈ Ia(G, u), the association between his/her values
in G. These associations can be extracted by finding all combinations of size 2 in Ia(G, u).
By using the original KG G as the knowledge base, we assume an association is truthful if
it can be extracted from the attributes of any user in G. In addition, if two associations
h1 ↔ t1 and h2 ↔ t2 are truthful, h1 ↔ t2 and h2 ↔ t1 are truthful as well. Conversely,
any association that cannot be extracted from G is untruthful. Then, the truthfulness of
u’s attributes in G can be measured as the number of truthful associations that can be
extracted from Ia(G, u).

Example 12. Let G2 be the KG showed in Fig.4.1b and G be its original version.
Ia(G, user:0) = {(job, Student), (age, 18)}, Ia(G, user:2) = {(job, Student), (age, 19)}. As
we make values of user:0 and user:2 ’s attributes in G2 identical, Ia(G2, user:0) = Ia(G2,
user:2) = {(job, Student), (age, 18), (age, 19)}. We can extract the following associ-
ations (job, Student) ↔ (age, 18), (job, Student) ↔ (age, 19), (age, 19) ↔ (age, 18).
(job, Student) ↔ (age, 18) and (job, Student) ↔ (age, 19) are truthful as they can be
extracted from Ia(G, user:0) and Ia(G, user:2) while (age, 18) ↔ (age, 19) is truthful as
(job, Student)↔ (age, 18) and (job, Student) ↔ (age, 19) are truthful.

Let D+ and D− be the set of truthful and untruthful associations, respectively. The
naive solution to check whether an association (ra, va) ↔ (r′a, v

′
a) is truthful or not is to

check if it exists in D+ or D−. However, this solution is time consuming and impractical due
to the high number of associations in D+ and D−. Therefore, we implement a bilinear func-
tion f((ra, va), (r′a, v

′
a)) to measure the probability that the association (ra, va) ↔ (r′a, v

′
a)

is truthful. We define f as follows:

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 57

g(ra, va) = tanh(era ∗Wg ∗ eva + bg)

f((ra, va), (r′a, v
′
a)) = sigmoid(g(ra, va) ∗Wf ∗ g(r′a, v

′
a) + bf)

where era , eva ∈ Rd1 are d1-dimensional vectors illustrating ra, va. Wg ∈ Rd1×d1×d1 , Wf ∈
Rd1×d1 , bg, bf ∈ Rd1 are the parameters of f and g. Here, we use tanh and sigmoid to
normalize the outputs of g and f to [−1, 1] and [0, 1], respectively, as they are showed to
achieve good results in previous work [17].

We train f in the set of all associations D = D+ ∪D−. Each association h↔ t ∈ D is
assigned a positive label y = 1, if h ↔ t ∈ D+, and y = 0, otherwise. Let θ be the set of
all parameters of f and g. We learn f by minimizing the Cross Entropy Loss function:

J1(θ) = −
D∑
x

y log(f(h, t)) + (1− y) log(1− f(h, t)) (4.1)

By using the learned function f , we implement an indicator R deciding whether the
association h↔ t is truthful or not as follows:

R(h, t) =

{
1, if f(h, t) ≥ 0.5

0, otherwise

We therefore introduce the Attribute Truthfulness Information Loss Metric (ATM) to
minimize the number of untruthful associations in the anonymized KGs.

Definition 16 (ATM). Let u, v be two users in G, and R be the indicator deciding whether
an association is truthful. ATM is defined as follows:

ATM ′
G

(u) =
1

|Ia(G, u)|2

Ia(G,u)∑
(r,v)

Ia(G,u)∑
(r′,v′)

1−R((ra, va), (r′a, v
′
a))

ATMG(u, v) =
ATM ′G(u) +ATM ′G(v)

2

Furthermore, we define the Attribute Truthfulness and Degree Information Loss Metric
(ATDM) by combining ATM and DM to minimize the untruthfulness of users’ attributes
and the degree information loss:

Definition 17 (ATDM). Let u, v be two users in G. The Attribute Truthfulness and Degree
Information Loss (ATDM) of making u and v having the same values on all attributes,
and the same out- and in-degree on all types of relationships in G identical is:

ATDMG(u, v) = αATM ×ATMG(u, v) + (1− αATM)×DMG(u, v)

where αATM is a number between 0 and 1.

Similar to ADM , ATDM uses αATM to control the contribution of ATM and DM to
ATDM .

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 58

4.4 Cluster-Based Knowledge Graph Anonymization

Our Cluster-Based Knowledge Graph Anonymization Algorithm (CKGA) is designed to
modify the structure of the original KG such that users’ identities in the anonymized KG
are protected according to k-ad while maximizing its quality. Given a KG G(V,E,R) and
a positive number k, CKGA generates G’s k-ad anonymized version G(V ,E,R) according
to three main steps:

1. Users’ points generation. This step generates a point eu ∈ Rd2 for each user
u ∈ V U such that the Euclidean distance between two points eu, ev is nearly equal to
the information loss, measured by using ADM and ATDM , of their corresponding
users u, v.2

2. Clusters generation. The goal of this step is to construct a set of user clusters

CG = {c ⊆ V U ||c| >= k} that minimizes the Euclidean distances between the points
of users who are in the same cluster.

3. Knowledge graph generalization. In this step, we add and remove edges such
that all users in the same cluster have the same values for all of their attributes and
the same out- and in-degrees for all relationships.

4.4.1 Users’ Points Generation

Given a KG G and a positive number d2. We denote with InfoLoss(u, v) the information
loss of two users u, v in V U , measured by using either ADM or ATDM . To generate users’
points, we first generate a random point eu ∈ Rd2 for every user u ∈ V U . Then, given two
users u, v ∈ V U , we calculate the Squared Euclidean distance between their points eu, ev:
d2(eu, ev) =

∑d2
i=1(eu[i]− ev[i])2.

Then, for every pair of users u, v in V U , we minimize the differences between the squared
information loss of u, v: InfoLoss(u, v)2 and the Squared Euclidean distance between their
corresponding points eu, ev: d2(u, v) by using the Mean Squared Error loss function:

J2(θ) =
∑

u,v∈V U×V U

(d2(eu, ev)− InfoLoss(u, v)2)2 (4.2)

After minimizing J2, we obtain points such that for every pair of users u, v ∈ V U , their
squared InfoLoss(u, v)2 is almost equal to the Squared Euclidean distance between their
points eu, ev:d2(eu, ev). In other words, InfoLoss(u, v) is almost equal to d(eu, ev).

4.4.2 Clusters Generation

Given a KG G, a positive number k, the generated points U representing users in G, and a
clustering algorithm A, we aim at generating a set of clusters that have at least k users such

2Although we use ADM and ATDM , our algorithm can be easily extended by using other information
loss metrics as well.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 59

Algorithm 3 k-Means Partition(C,U , k, τ)

Input: C: the set of clusters generated by the clustering algorithm A; U : points of users;
k: a positive number; and τ : a number in [0, 1].

Output: The set of clusters CG.

1: Let ∆ be the set of users whose clusters have less than k users.
2: CG ← {c|c ∈ C ∧ |c| ≥ k}
3: assign new clusters(∆, CG,U , k, τ)

4: while CG 6= ∅ do
5: Let c be the first cluster in C
6: if |c| ≥ 2 ∗ k then

7: CG ← CG \ {c}
8: Let Uc be the points in U representing users in c.
9: Cnew = run balanced kmeans(Uc, |c|/k)

10: CG ← CG ∪ Cnew

11: end if
12: end while
13: return CG

that the average Euclidean distances between the points of the users in the same cluster
are minimized. As we represent users by using points in Euclidean space, most of the
state-of-the-art clustering algorithms (e.g., k-means, DBSCAN [14], and HDBSCAN [9])
can be used.

As the clustering algorithm A can generate clusters that have less than k users, we
use two strategies to make all clusters having at least k users. The first one is the Invalid
Removal strategy (IR), which removes all clusters that have less than k users. However,
this approach can remove too many users since some clustering algorithms (e.g., k-means)
do not consider how many users each cluster has. Furthermore, as showed in Chapter 3,
the more users each cluster has, the more information we lose. To cope with these issues,
we present the k-Means Partition strategy (KP). Instead of removing users whose clusters
have less than k users, KP adds these users to their nearest clusters that have at least k
users. To prevent the resulting clusters from having too many users, KP splits clusters
that have at least 2×k users such that the number of users in all of these clusters is between
k and 2× k − 1.

However, adding all users whose clusters have less than k users to new clusters can
make the resulting clusters containing outliers whose distances to remaining users in the
merged clusters are too big. Therefore, our algorithm uses a parameter τ ∈ [0, 1] to prevent
merging these outliers. We denote with dmin, dmax the minimum and maximum Euclidean
distance between all users’ points in U . Then, τd = τ × (dmax − dmin) + dmin. We only
merge a user to a cluster if the maximum distance between this user and all users in the
cluster is less than or equal to τd.

Algorithm 3 takes as input the clusters of users generated by the selected clustering

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 60

Procedure 1 assign new clusters (∆, CG,U , k, τ)

1: Let dmax, dmin be the maximum and minimum distance between all users’ points in U .
2: τd = τ × (dmax − dmin) + dmin.
3: for u ∈ ∆ do
4: Let eu ∈ U be the point of user u.
5: dcmin ← +∞
6: for c ∈ CG do
7: dc ← 0
8: for v ∈ c do
9: Let ev ∈ U be the point of user v.

10: dc ← max{dc, d(eu, ev)}
11: end for
12: if dc < dcmin and dc ≤ τd then
13: dcmin ← dc
14: cselected ← c
15: end if
16: end for
17: if dcmin 6= +∞ then
18: cselected ← cselected ∪ {u}
19: end if
20: end for

algorithm A, C, the set of points representing users U , a positive number k, and the
threshold τ . At the beginning, it finds the set of users ∆ whose clusters have less than k
users (line 1) and the set CG containing clusters that have at least k users (line 2). Then,

it calls function assign new clusters() to assign a cluster in CG to each user in ∆ (line 3).

Then, for each cluster c ∈ CG that has more than 2× k users, it removes this cluster from
CG (line 7), finds points Uc corresponding to users in c (line 8), and uses the Balanced
k-Means algorithm [38] to split c to |c|/k smaller clusters Cnew which have at least k users
(line 9). This algorithm finds |c|/k centers, each of which represents a cluster in Cnew.
Then, it assigns users in c to these clusters such that all clusters in Cnew have at least
k users and the average squared Euclidean distances of user’s points the same cluster is
minimized. Cnew is then added to CG (line 10). Finally, it returns CG (line 13).

Procedure assign new clusters(). Given a set of users ∆, a set of clusters CG, a set

of users’ points U , a positive number k, and the parameter τ , it assigns a cluster in CG for
each user in ∆. At the beginning it calculates τd (line 2). Then, for each user u in ∆, it
finds u’s point: eu and calculates the maximum Euclidean distance between eu and points
of users in c: dc (lines 7-11). If dc is less than dcmin and less than or equal to τd, it updates
dcmin and cselected with dc and c, respectively (lines 13-14). Next, if dcmin is not equal to
+∞, it adds u to cselected (line 18).

It is straightforward to show that, given a set of clusters C and denoting with CG

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 61

Algorithm 4 Attributes Generalization (G,CG)

Input: Graph G(V,E,R); clusters of users CG.

Output: The set of edges representing users’ attributes E
UA

.

1: E
UA ← ∅

2: for c ∈ CG do
3: =G

c ←
⋃

u∈c Ia(G, u)
4: for u ∈ c do
5: for (ra, va) ∈ =G

c do

6: E
UA ← E

UA ∪ {(u, ra, va)}
7: end for
8: end for
9: end for

10: return E
UA

the set of clusters returned by Algorithm 3, executed with a positive number k and the
parameter τ , all clusters in CG have at least k users. Indeed, let c be an arbitrary cluster
in CG. Suppose that c has less than k users. As Algorithm 3 only adds clusters that have
at least k users to CG (lines 2 and 10), CG cannot contain c.

4.4.3 Knowledge Graph Generalization

Given a KG G(V,E,R) and the set of clusters CG returned by Algorithm 3, we aim at
generating the anonymized KG G(V ,E,R) such that all users in the same cluster have the

same information (i.e., IG). At this purpose, we present the Knowledge Graph Generaliza-
tion algorithm (KGG) to add and remove edges such that the values of all attributes and
the out- and in-degree of all types of relationships of users in the same cluster are identi-
cal. KGG contains two steps: 1) Attributes generalization. The goal of this step is to
generate values of users’ attributes such that all users in the same cluster have the same
values for all of their attributes. Formally, ∀c ∈ CG ∧ ∀u, v ∈ c ∧ Ia(G, u) = Ia(G, v); 2)
Out- and in-degree generalization. In this step, we aim at adding and removing users’
relationships such that every user in the same cluster has the same out- and in-degree
for all types of his/her relationships. More precisely, ∀c ∈ CG ∧ ∀u, v ∈ c ∧ Io(G, u) =
Io(G, v) ∧ Ii(G, u) = Ii(G, v).

For step 1, we have defined Algorithm 4. It takes as input the original KG G and the
set of clusters CG generated by Algorithm 3. First, the algorithm initializes empty the

set of edges describing users’ attributes E
UA

(line 1). Then, for every cluster c in CG, it
calculates the union of attributes’ values in G (i.e., Ia) of all users u ∈ c: =G

c (line 3). For
each user u in c, it adds edge (u, ra, va) to represent that u has value va for attribute ra

for all pairs (ra, va) in =G
c (line 6). Finally, it returns E

UA
(line 10). Therefore, attributes’

values of users in the same clusters are identical.

Theorem 6. Given a KG G and the set of clusters CG generated by Algorithm 3. Let

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 62

E
UA

be set of edges representing users’ attributes in G created by Algorithm 4. For every
cluster c in CG, for every user u and v in c, Ia(G, u) = Ia(G, v).

Proof. Suppose that there is a cluster c ∈ CG containing two users u, v such that
Ia(G, u) 6= Ia(G, v). However, if u, v are in the same cluster c, Ia(G, u) = Ia(G, v) as

Algorithm 4 initializes E
UA

to the empty set (line 1) and adds the same attributes’ values

to u and v (lines 4-8). Therefore, we can conclude that, for every cluster c in CG, for every
user u and v in c, Ia(G, u) = Ia(G, v). �

The Out- and In-Degree Generalization algorithm takes as input the original KG G
and the set of clusters CG. For every relationship type ru ∈ RUU , it uses the Directed
Graph Generalization algorithm (DGG) in Chapter 3 to make the out- and in-degree for
ru of all users in the same cluster identical. Therefore, the out- and in-degrees for every
relationship types of users in the same cluster are identical.

As attributes’ values and out- and in-degrees in the anonymized KG G of users in the
same cluster are identical, G satisfy k-ad.

Theorem 7. Given a KG G(V,E,R) and the set of clusters CG created by Algorithm
3. Let G(V ,E,R) be the anonymized version of G created by the Knowledge Graph
Generalization algorithm. G satisfies k-ad.

Proof. As CG is generated by Algorithm 3, all clusters in CG have at least k users.
Then, for every user, there is a cluster C(G, u) ∈ CG such that |C(G, u)| ≥ k. Additionally,

for every user u, v ∈ V U
, if u and v are in the same cluster, Ia(G, u) = Ia(G, v) (according

to Theorem 6), Io(G, u) = Io(G, v), and Ii(G, u) = Ii(G, v) (according to Theorem 2).

Then, for every user u ∈ V
U

, there is a set of users C(G, u) = {v|v ∈ V
U ∧ Ia(G, u) =

Ia(G, v) ∧ Io(G, u) = Io(G, v) ∧ Ii(G, u) = Ii(G, v)} and |C(G, u)| ≥ k. Therefore, we can
conclude that G satisfies k-ad. �

4.5 Experiments

In this section, we evaluate the quality of anonymized KGs generated by the proposed
anonymization algorithm.

4.5.1 Datasets

Due to the flexibility of KGs in illustrating users’ data, we use different kinds of real-world
datasets to evaluate the capabilities of the proposed technique, namely Email-Eu-core,
Google+, and Freebase datasets. Also, we use Email-temp and DBLP to compare our work
with previous algorithms: DGA [10] and CDGA in Chapter 3. Appendix B describes these
datasets and shows their properties in details.

4.5.2 Evaluating Users’ Points

In this experiment, we evaluate the impact of d2 to the difference of the Euclidean dis-
tance between data points in Euclidean space representing users and the information loss

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 63

of making their information identical. We generate these points by minimizing the loss
function J2 (equation 4.2) until the mean of these differences has stopped decreasing for
50 epochs. The initial learning rate is 0.1 and we decrease it by multiplying it with 0.5 if
the mean of these differences does not decrease for 10 epochs. We implement this step by
using PyTorch.

Table. 4.1 illustrates mean and standard deviation of the differences between ADM of
users and the Euclidean distance of their points in all datasets. Here, we use ADM with
αADM = 0.5 and αDM = 0.5. In all datasets, the higher d2 is, the lower the differences
are. In Email-Eu-core, by increasing d2 from 2 to 50, the mean and standard deviation of
these differences decreases from 0.0046 to 0.0005 and from 0.0038 to 0.0009, respectively.
At d2 = 50, these differences are very small in all datasets.

Therefore, our approach is efficient enough to find points representing users such that
the differences between the Euclidean distances of these points are almost similar to the
information loss of their corresponding users.

4.5.3 Tuning CKGA

In this experiment, we aim at evaluating the effects of the adopted clustering algorithm A;
of the strategies IR, KP ; and k to the average information loss. The average information
loss is calculated by taking the average of the loss of users’ attributes (i.e., AM ′G), the

out- and in-degrees (i.e., DM ′Go , and DM ′Gi).
Effects of A. Figure. 4.2 shows the average information loss in two datasets: Email-

Eu-core and Freebase, where k-means [14] and HDBSCAN [9] are chosen. We choose
these algorithms as they are the state-of-the-art algorithms of two most popular clustering
approaches: centroid-based and density-based clustering. With k-means, we assign the

number of resulting clusters to |V U |
k . Also, we assign the minimum size of all resulting

clusters to k, when running HDBSCAN. We keep default values for all of the remaining
parameters of these algorithms. Also, we use IR to show the effects of A as it only
removes clusters that have less than k users. k-means returns anonymized KGs with the
information loss lower than those returned from HDBSCAN in both datasets (about 0.06 at
k = 10). The reason is that HDBSCAN’s clusters have more users than those of k-means.
At k = 10, the average number of users in clusters returned from HDBSCAN and k-
means are 36.89 and 22.33 in Email-Eu-core, and 76.40 and 21.17 in Freebase, respectively.

Table 4.1: The mean (± standard deviation) of the differences between the Euclidean
distance of the learned points and the ADM of the corresponding users.

Dataset d2 = 2 d2 = 10 d2 = 50

Email-Eu-core 0.0046 (±0.0038) 0.0012 (±0.0015) 0.0005 (±0.0009)
Google+ 0.0099 (±0.0083) 0.0054 (±0.0040) 0.0008 (±0.0012)
Freebase 0.0072 (±0.0073) 0.0036 (±0.0032) 0.0003 (±0.0010)
Email-temp 0.0030 (±0.0030) 0.0019 (±0.0012) 0.0001 (±0.0002)
DBLP 0.0073 (±0.0021) 0.0031 (±0.0011) 0.0002 (±0.0001)

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 64

2 3 4 5 6 7 8 9 10
k

0.02

0.04

0.06

0.08

0.10

av
er

ag
e

in
fo

rm
at

io
n

lo
ss

hdbscan~KP~0.0
hdbscan~KP~0.25
hdbscan~KP~0.5
hdbscan~KP~0.75
hdbscan~KP~1.0
hdbscan~IR

kmeans~KP~0.0
kmeans~KP~0.25
kmeans~KP~0.5
kmeans~KP~0.75
kmeans~KP~1.0
kmeans~IR

(a) Email-Eu-core

2 3 4 5 6 7 8 9 10
k

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

av
er

ag
e

in
fo

rm
at

io
n

lo
ss

hdbscan~KP~0.0
hdbscan~KP~0.25
hdbscan~KP~0.5
hdbscan~KP~0.75
hdbscan~KP~1.0
hdbscan~IR

kmeans~KP~0.0
kmeans~KP~0.25
kmeans~KP~0.5
kmeans~KP~0.75
kmeans~KP~1.0
kmeans~IR

(b) Freebase

Figure 4.2: Average information loss of users with varying clustering algorithms and
IR/KP strategies.

However, IR removes about 30% and 25% of users returned from HDBSCAN and k-means,
respectively, in the Email-Eu-core dataset, whereas about 20% and 27% of users returned
from HDBSCAN and k-means, respectively, are removed by IR in the Freebase dataset.
IR only removes users returned from k-means as all clusters returned from HDBSCAN
have at least k users. Therefore, k-means is better than HDBSCAN as it returns clusters
that have less users than those returned from HDBSCAN.

Effects of IR and KP. KP ensures that the resulting clusters have a number of users
from k to 2×k−1. Thus, we can decrease the average information loss of anonymized KGs
returned from HDBSCAN by 0.06 and 0.07 in the Email-Eu-core and Freebase dataset,
respectively. Although we increase the average information loss of the anonymized KGs re-
turned from k-means by at least 0.02 in Email-Eu-core, we preserve at least 22% more users
than those generated by IR. KP decreases the average information loss of the anonymized
KGs returned from HDBSCAN more than those returned from k-means because HDB-
SCAN generates clusters that have more users than k-means’ clusters. At k = 10, by
increasing τ from 0 to 1.0, we decrease the average information loss of the anonymized
KGs returned from k-means from 0.08 to 0.05 and increase the ratio of remaining users
from about 74% to 100% in both datasets. Here, τ does not affect the ratio of remaining
users of the anonymized KGs returned from HDBSCAN as HDBSCAN does not return
any cluster that have less than k users. The anonymized KGs executed with HDBSCAN
and KP have lower average information loss than those executed with k-means in both
datasets as they contain less users than the other ones. Therefore, KP is more effective
than IR in improving the quality of anonymized KGs.

Effects of k. The results of these experiments show that the quality of the anonymized
KGs decreases by increasing k in all datasets.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 65

Table 4.2: Accuracy of the indicator R (%).

Dataset d1 = 2 d1 = 10 d1 = 50

Google+ 97.91 99.43 99.91
Freebase 95.7 95.7 96.9

2 3 4 5 6 7 8 9 10
k

0.00

0.02

0.04

0.06

0.08

ra
tio

 o
f u

nt
ru

th
fu

l a
ss

oc
ia

tio
ns

 (%
)

info loss
atdm
adm

(a) Google+

2 3 4 5 6 7 8 9 10
k

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

ra
tio

 o
f u

nt
ru

th
fu

l a
ss

oc
ia

tio
ns

 (%
)

info loss
atdm
adm

(b) Freebase

Figure 4.3: Ratio of untruthful associations by using ADM and ATDM .

4.5.4 Evaluating the Truthfulness of Anonymized KGs

In this experiment, we investigate the impact of using ADM and ATDM on minimizing
the number of untruthful associations.

We first analyze the impact of d1 on the accuracy of the indicator R. The accuracy
is evaluated in truthful/untruthful associations extracted from the Google+ and Freebase
datasets. We optimize J1 (equation 4.1) as in the previous experiment in Section 4.5.2.
Table 4.2 shows the accuracy of the trained models on varying values of d1. The accuracy
is higher than 95%. In both datasets, the accuracy is increased by increasing d1 from 5 to
50 (2% in Google+ and 1.2% in Freebase). We achieve the highest accuracy with d = 50
on both the Google+ and Freebase datasets.

We use the trained models with d1 = 50 to evaluate the impacts of ATDM and ADM
on the ratio of the untruthful associations in anonymized KGs. We normalize the number of
untruthful associations by the number of maximum untruthful associations in the original

KG: D+(G)\D+(G)
D−(G)

. Figure. 4.3 illustrates the ratio of untruthful associations of anonymized

KGs by considering with ADM and ATDM in: Google+ (Figure. 4.3a) and Freebase
(Figure. 4.3b). We use k-means and KP strategy with τ = 1.0 to generate the anonymized
KGs in this experiment. The anonymized KGs generated by using ATDM contain less
untruthful associations than those generated by using ADM in both datasets. At k = 10,
ATDM decreases the ratio of untruthful associations by 0.04% compared to those generated
by ADM in the Google+ dataset. We achieve similar results for the Freebase dataset. The

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 66

Table 4.3: Performance of our algorithm (CKGA) and CDGA on varying values of k
(seconds).

Email-temp DBLP

k CDGA CKGA CDGA CKGA

2 680.8 6.5 91,855.4 607.9
3 825.7 4.4 111,181.6 420.4
4 893.3 3.2 118,269.7 629.9
5 929.7 2.7 122,246.1 581.5
6 950.4 2.3 124,145.7 540.3
7 977.4 1.9 126,542.7 483.3
8 987.9 1.8 127,343.4 474.9
9 1,000.7 1.5 128,254.3 457.6
10 1,007.1 1.5 128,727.9 398.9

anonymized KGs of Freebase contain less untruthful associations than those of Google+ as
Freebase contains less untruthful associations than Google+ does. Therefore, ATDM is
better than ADM in making users’ attributes truthful.

4.5.5 Comparative Analysis

In this experiment, we compare the quality of anonymized KGs generated by our algorithm
and those generated by DGA [10] and CDGA (in Chapter 3) on two datasets: DBLP and
Email-temp. Furthermore, we compare the efficiency of our algorithm and CDGA as we
have their implementation. We generate users’ points with d2 = 50 and use A = k-means
and KP strategy with τ = 0.5 to anonymize both datasets.

102 3 4 5 6 7 8 9
k

0.05

0.10

0.15

0.20

0.25

Fa
ke

 e
dg

es
 (%

)

key
kmeans~KP~0.5
cdga
dga

(a) Email-temp

3 5 6 8 9 102 74
k

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fa
ke

 e
dg

es
 (%

)

key
kmeans~KP~0.5
cdga
dga

(b) DBLP

Figure 4.4: Ratio of fake edges of anonymized graphs returned by DGA, CDGA, and our
algorithm on varying values of k.

CHAPTER 4. ANONYMIZATION OF KNOWLEDGE GRAPHS 67

As our algorithm removes some users to reduce the number of fake edges of the
anonymized KGs, we use the number of fake edges of the remaining users in the anonymized
KGs to compare our work with DGA and CDGA. Figure. 4.4 illustrates the results. We
take results of DGA and CDGA from the respective papers [10, 21]. For both datasets,
the anonymized KGs returned by our algorithm contain a number of fake edges similar to
that of those returned from CDGA and DGA while preserving more than 99% of users in
the original KG. Furthermore, the execution time of our algorithm is extremely lower than
that of CDGA. Although our algorithm needs 408 and 40,415 seconds to train users’ points
for the Email-temp and DBLP datasets, the trained points can be reused to anonymize
users at any values of k as well as tune the quality of anonymized KGs under different
values of our parameters. After obtaining the trained points, it only needs 1.5 seconds and
398.9 seconds to anonymize KGs that have at least k = 10 users for the Email-temp and
DBLP datasets, respectively, while CDGA needs 1007.1 and 128,727.9 seconds. Therefore,
data providers can use our algorithm to anonymize directed graphs satisfying the Paired
k-degree [10] and K-In&Out-Degree Anonymity [60] and achieve good quality anonymized
graphs.

Chapter 5

Sequential Anonymization of
Knowledge Graphs

5.1 Introduction

In Chapter 4, we described k-Attribute Degree (k-ad), the first model that protects users
in a KG from being re-identified. Due to the flexibility of k-ad, it protects users’ identities
not only in anonymized KGs but also in anonymized directed graphs and relational data.
However, k-ad cannot protect users if data providers periodically publish new versions of
the anonymized KG. The following example shows how adversaries can re-identify users in
anonymized KGs satisfying k-ad.

Example 13. Figure. 5.1 and Figure. 5.2 illustrate the original KGs and their 2-ad
anonymized versions at time: 0, 1, 2. As G

′
0, G

′
1, and G

′
2 satisfy 2-ad, adversaries cannot

re-identify any user in these KGs if they gain access to only one of them. However, by
associating G

′
0, G

′
1, and G

′
2, they can re-identify user:0, user:1, user:2, user:3, and user:4.

First, if they know that Jane exists in G
′
1 and does not exist in G

′
0, they can identify that

user:4 is Jane, as she is the only new user. Moreover, they can also identify that user:0 in
G
′
1 is Ken, if they know that Ken has just changed his job from Student to Engineer at

time 1. In addition, they can detect that user:3 in G
′
1 is Tom, as he is the only one who

has been removed in G
′
1. Finally, they can figure out that user:3 in G

′
2 is Tom, as there is

only one user who has been re-inserted in G
′
2.

In Chapter 2, we showed that the previous anonymization solutions for relational data
[3,8,55,63], undirected graphs [28,37,39,50] and directed graphs [60] cannot protect users’
sensitive information when adversaries have access to different versions of anonymized KGs.
To cope with this issue, in this chapter, we present the kw-Time-Varying Attribute Degree
(kw-tad), an extension of k-ad, to protect users from being re-identified even if adversaries
gain access to w continuous anonymized KGs. We extend k-ad because it is the only
protection model that can protect users’ identities in anonymized KGs. In particular, we
assume that adversaries can know if a victim is in an anonymized KG and also his/her
attributes’ values and relationships’ out/in-degrees in these KGs. kw-tad protects any user

68

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 69

(a) G0 (b) G1

Ken

21

age

Student

job

Engineer19

Maryclassmate of

job age

Jane

job

Henry
follows

age

job

55

job

40

age

Tom

(c) G2

Figure 5.1: Different snapshots of a KG at time t = 0, 1, 2.

appearing at least once in w continuous anonymized KGs by ensuring that the series of
his/her attributes’ values and relationships’ out-/in-degree in these KGs is indistinguishable
from that of k − 1 other users who also appear at least once in these KGs. Then, the
adversaries cannot infer the users’ identities with a confidence higher than 1

k even if they
gain access to w continuous anonymized KGs.

Example 14. Figure. 5.3 illustrates the 23-tad anonymized versions of G0, G1, and G2

presented in Figure. 5.1. Here G0 is identical to G
′
0 (Figure. 5.2a), as G0 is the first version

of the original KG. By adding the fake user fake:0 to G1 and make its job and out-degree
of classmate of relationship identical to those of user:4, adversaries cannot identify which
node is Jane. Moreover, as job of both user:0 and user:1 in G1 is Student or Engineer, the
adversaries cannot detect which node is Ken. Because age, job, and in-degree of follows
relationship in G0 of user:2 and user:3 are identical, and both of them are removed in G1,
the adversaries also cannot identify which node is Tom in G1. Furthermore, as both of
them are re-inserted in G2, the adversaries cannot identify which node is Tom in G2. For
each user appearing at least once in G0, G1, and G2, the series of his/her attributes’ values
and out-/in-degrees of relationships in these KGs is indistinguishable from that of another
user who also appear in these KGs. Then, the adversaries cannot re-identify any user with
a confidence higher than 1

2 .
Moreover, we present the Cluster-based Time-Varying Knowledge Graph Anonymiza-

tion Algorithm (CTKGA) to anonymize the current version of the original KG such that
the series of the current and w − 1 previous anonymized KGs satisfies kw-tad. First, the
proposed algorithm splits users in the original KG to clusters such that the series of at-
tributes’ values and relationships’ out-/in-degrees in w − 1 previous anonymized KGs of

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 70

user:0 user:2
follows

21

age

55

age

Student

job

Engineer

job

user:3

job

19

user:1

40

agejob age
age

age

age

age

follows

(a) G
′
0

user:0

21

age

Student

job

Engineer19

user:1

classmate of

job

age

user:4

job

user:2
follows

age

job

55

classmate of

age
age

follows

age

(b) G
′
1

(c) G
′
2

Figure 5.2: 2-ad anonymized versions of G0, G1, and G2.

users who are in the same clusters is identical and all of these clusters have at least k users.
Also, it adds fake users to ensure that all inserted users, who exist in the current original
KG but do not exist in previous anonymized KGs, are in clusters that have at least k users.
Furthermore, it deletes some users to ensure that for each deleted user, who exists in pre-
vious anonymized KGs and does not exist in the current original KG, the series of his/her
attributes’ values and relationships’ out-/in-degrees in w − 1 previous anonymized KGs is
indistinguishable from that of k − 1 other deleted users. Also, our algorithm ensures that
all of the resulting clusters have from k to 2×k−1 users by splitting those that have more
than 2×k−1 users. Finally, we use the Knowledge Graph Generalization Algorithm (KGG)
(Chapter 4) to make the attributes’ values and relationships’ out-/in-degrees of users who
are in the same cluster identical. Additionally, we prove that even if data providers update
their original KG by inserting, re-inserting, and deleting users or updating edges of their

user:0

21

age

Student

job

Engineer19

user:1

job

age

user:4

job
classmate of

age

job

fake:0

age

job

classmate of

job

(a) G1

user:0

21

age

Student

job

Engineer19

user:1classmate of

job age

user:4

job

user:2
follows

age

job

55

job

40

age

user:3

fake:0

follows

age

job

age age

age

classmate of

job
job

(b) G2

Figure 5.3: 23-tad versions of G1 and G2 (G0 = G
′
0).

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 71

users, our algorithm can anonymize the original KG such that the series of w continuous
anonymized KGs always satisfies kw-tad.

As our algorithm requires to know attributes’ values and relationships’ out-/in-degrees
of users appearing at least once in w − 1 previous anonymized KGs, the running time of
our algorithm will increase as w increases. Therefore, we propose the Attribute Degree
Sequence Table, an extension of the Cluster Sequence Table [50], to store not only degrees
of a single relationship type, but also attributes’ values and out-/in-degrees of many re-
lationship types in w − 1 continuous anonymized KGs. We conduct experiments on six
real-life datasets to evaluate the quality of anonymized KGs generated by our algorithm
and compare our work with previous algorithms in Chapter 3, Chapter 4, and [10].

The remaining sections of this chapter are organized as follows. Section 5.2 illustrates
our privacy protection model. Then, Section 5.3 presents our anonymization algorithm. In
Section 5.4, we evaluate the efficiency of our approach.

5.2 Identity Protection in Sequential Publishing of Knowl-
edge Graphs

As users’ data change over time, a data provider may hold many versions of their data.
We model each version as a distinct knowledge graph (KG). Since Chapter 4 does not
consider timestamp of each KG, we reformalize notations for a KG at a specific timestamp.
Specifically, we model a KG generated at time t as Gt(Vt, Et, Rt), where Vt is the set of
nodes, Et is the set of edges connecting these nodes, and Rt is the set of relationship types
at time t. As a node in a KG illustrates either a user or an attribute’ value, the set Vt
contains two subsets: the set V U

t ⊆ Vt, modelling users (e.g., user:0, user:1), and the set
V A
t ⊆ Vt, representing attributes’ values (e.g., 18, Student). Similarly, the set Rt contains

two subsets: the set of user-to-user relationship types RUU
t , representing users’ relationships

(e.g., follows), and the set of user-to-attribute relationship types RUA
t , modelling users’

attributes (e.g., age, job). Each edge e ∈ Et is defined as a triple (u, r, v), where u, v ∈ Vt
and r ∈ Rt. We denote with EUA

t ⊆ Et those e = (u, ra, va), such that ra ∈ RUA
t . Similarly,

we denote with EUU
t those e = (u, ru, vu), such that ru ∈ RUU

t .
Let u be a user in Gt. We denote with Ia(Gt, u) = {(ra, va)|(u, ra, va) ∈ EUA

t }
the values of u’s attributes in Gt. Let do(Gt, ru, u) = |{(u, ru, v) ∈ EUU

t }| and
di(Gt, ru, u) = |{(v, ru, u) ∈ EUU

t }| be the out- and in-degree of relationship type
ru ∈ RUU

t of u. We denote with Io(Gt, u) = {(ru, do(Gt, ru, u))|ru ∈ RUU
t }, and

Ii(Gt, u) = {(ru, di(Gt, ru, u))|ru ∈ RUU
t } the out- and in-degrees of u in Gt, respectively.

Then, we denote with I(Gt, u) = (Ia(Gt, u), Io(Gt, u), Ii(Gt, u)) the information of u in Gt.
Appendix A summarizes the main notations used in the paper.

5.2.1 Adversary Background Knowledge

At each publication time t, a data provider releases a KG Gt that evolves from Gt−1 by
adding/removing some of its edges/nodes. The data provider anonymizes Gt and publishes

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 72

its anonymized version Gt(V t, Et, Rt).
In Chapter 4, we use k-ad to protect the identity of any user u in Gt. In particular, we

denote with BKt(u) the background knowledge at time t about u of an adversary. BKt(u)
contains all of the attributes’ values and relationships at time t that the adversary knows
about user u in real-life. We proved that the adversary is not able to re-identify user u by
using the background knowledge about u at time t (e.g., BKt(u)) and the attributes’ values
and out-/in-degrees extracted from Gt (e.g., I(Gt, v)) with a confidence higher than 1

k , in
Chapter 4. We illustrate the attributes’ values and relationships’ out-/in-degrees that the
adversary can extract from an anonymized KG in the following example.

Example 15. By using G
′
0 (Figure. 5.2a), adversaries can extract the following infor-

mation about user:2 and user:3 : their attributes’ values Ia(G
′
0, user:2) = Ia(G

′
0, user:3)

= {(age, 40), (age, 55), (job, Engineer)}, out-degree information Io(G
′
0, user:2) =

Io(G
′
0, user:3) = {(follows, 0)}, and in-degree information Ii(G

′
0, user:2) = Ii(G

′
0, user:3)

= {(follows, 1)}. Then, I(G
′
0, user:2) = I(G

′
0, user:3) = ({(age, 40), (age, 55), (job,

Engineer)}, {(follows, 0)}, {(follows, 1)}).
Unfortunately, if an adversary gains access not only to Gt but also to the w−1 previous

anonymized KGs Gt−w+1, . . . , Gt−1, he/she can potentially re-identify any user u appearing
at least once in these KGs. We formally define these users as follows:

Definition 18 (Historical Users Set). Let gwt = (Gt−w+1, Gt−w+2, . . . , Gt) be a series
of w continuous k-ad anonymized KGs that a data provider has published. The Historical
Users Set of gwt , denoted as U(gwt), is the set of users appearing at least once in these KGs.
Formally:

U(gwt) =
⋃

t−w+1≤i≤t
V

U
i

Example 16. Let g32 = (G0, G1, G2) be the series of anonymized KGs, shown in
Figure. 5.3. The Historical Users Set of the series is: U(g32) = {user:0, user:1, user:2,
user:3, user:4, fake:0}.

An adversary can re-identify a user u in U(gwt) by combining the background knowledge
that he/she knows about u from times t−w+1,t−w+2,. . . ,t and the series of u’s attributes’
values and relationships’ out-/in-degrees that he/she can extract from anonymized KGs in
gwt . We formally define the adversary knowledge as follows:

Definition 19 (Adversary Knowledge on a series of KGs). Let gwt = (Gt−w+1, Gt−w+2, . . . ,
Gt) be a series of w continuous k-ad anonymized KGs that a data provider has published.
The knowledge that an adversary can use to re-identify a user u ∈ U(gwt) contains:

• The series of background knowledge that the adversary knows about user u: BKw
t (u)

= (BKt−w+1(u), BKt−w+2(u),. . . , BKt(u)).

• The series of attributes’ values and relationships’ out-/in-degrees that the adversary
can extract from gwt : I(gwt , u) = (I(Gt−w+1, u), I(Gt−w+2, u), . . . , I(Gt, u)).

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 73

Example 17. The adversary can extract the series of attributes’ values and out-/in-

degrees in g′
3
2 (Figure. 5.2), g32 (Figure. 5.3) of user:3 as: I(g′

3
2, user:3) = (({(age, 40),

(age, 55), (job, Engineer)}, {(follows, 0)}, {(follows, 1)}), (∅, ∅, ∅), ({(age, 21), (age,
40), (age, 55), (job, Engineer)}, {(follows, 0)}, {(follows, 0)})), I(g32, user:3) = (({(age,
40), (age, 55), (job, Engineer)}, {(follows, 0)}, {(follows, 1)}), (∅, ∅, ∅), ({(age, 40),
(age, 55), (job, Engineer)}, {(follows, 0)}, {(follows, 1)})).

Based on the above knowledge, an adversary can re-identify his/her victim u by using
an attacking mechanism Tg to identify if a user v ∈ U(gwt) is the representation of u. We
formally define the attacking mechanism as follows:

Definition 20 (Attacking Mechanism to a series of KGs). Let gwt = (Gt−w+1, Gt−w+2, . . . ,
Gt) be a series of w continuous k-ad anonymized KGs that a data provider has published,
u ∈ U(gwt) be the user that an adversary wants to re-identify, and v be an arbitrary user in
U(gwt). The attacking mechanism Tg is represented as

Tg(BKw
t (u), I(gwt , v)) =

{
1, if u, v is the same user.

0, otherwise.

We define the Privacy Disclosure Risk based on the attacking mechanism Tg as follows:

Definition 21 (Privacy Disclosure Risk in a series of KGs). Let gwt = (Gt−w+1, Gt−w+2,
. . . , Gt) be a series of w continuous k-ad anonymized KGs that a data provider has pub-
lished, and u ∈ U(gwt) be the user that an adversary want to re-identify. The Privacy
Disclosure Risk of u is the confidence that an adversary can re-identify u by using his/her
background knowledge and attacking mechanism Tg:

risk(Tg, gwt , u) =
1∑

v∈U(gwt)

Tg(BKw
t (u), I(gwt , v))

Example 18. Let assume that an adversary has access to g′
3
2 (Figure. 5.2). As the series

of user:0 ’s attributes’ values and out-/in-degrees in g′
3
2: I(g′

3
2, user:0) is unique, the Privacy

Disclosure Risk of Ken is risk(T , g′32,Ken) = 1
1 = 1. Similarly, the Privacy Disclosure Risk

of all remaining users in U(g′
3
2) is 1.

5.2.2 Protection Model

We present kw-Time-Varying Attribute Degree (kw-tad) to protect users from being re-
identified with a confidence higher than 1

k even if an adversary combines attributes’ values
and out-/in-degrees of these users in w continuous anonymized KGs. Specifically, let gwt be
a series of w continuous k-ad anonymized KGs. We ensure that, for every user u ∈ U(gwt),
there are at least k − 1 other users v ∈ U(gwt) whose series of attributes’ values and out-
/in-degrees in gwt (e.g., I(gwt , v)) is equal to that of u (e.g., I(gwt , u)). Then, for all users
u ∈ U(gwt), the Privacy Disclosure Risk of u is at most 1

k . We formally define kw-tad as
follows:

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 74

Definition 22 (kw-Time-Varying Attribute Degree). Let gwt be a series of w continuous
k-ad anonymized KGs that a data provider has published. gwt satisfies kw-Time-Varying
Attribute Degree (kw-ad), if and only if, for every user u ∈ U(gwt), there exists a subset of
users in U(gwt), denoted as C(gwt , u), such that C(gwt , u) = {v ∈ U(gwt)|I(gwt , u) = I(gwt ,
v)} and |C(gwt , u)| ≥ k.

Example 19. We have C(g32, user:0) = C(g32, user:1) = {user:0, user:1}, C(g32, user:2) =
C(g32, user:3) = {user:2, user:3}, and C(g32, user:4) = C(g32, fake:0) = {user:4, fake:0}. As
for every user u ∈ U(g32), |C(g32, u)| ≥ 2, g32 satisfies 23-tad.

If a series of KGs gwt satisfies kw-tad, the Privacy Disclosure Risk of all users in U(gwt)
is at most 1

k .

Theorem 8. Let gwt be a series of w continuous k-ad anonymized KGs that an adversary
has access to and Tg be an attacking mechanism that he/she uses to re-identify users in
U(gwt). If gwt satisfies kw-tad, for every user u ∈ U(gwt), risk(Tg, gwt , u) ≤ 1

k .

Proof. Suppose gwt satisfies kw-tad. Let u be an arbitrary user in U(gwt). According to
Definition 22, there is a set C(gwt , u) = {v ∈ U(gwt)|I(gwt , u) = I(gwt , v)} and |C(gwt , u)| ≥ k.
Then, for every user v ∈ C(gwt , u), Tg(BKw

t (u), I(gwt , v)) = 1. Thus, risk(Tg, gwt , u) =
1∑

v∈U(gwt)

Tg(BKw
t (u),I(gwt ,u)) ≤

1
k . Since u is arbitrary, we can conclude that if gwt satisfies

kw-tad, for every user u ∈ U(gwt), risk(Tg, gwt , u) ≤ 1
k . �

For instance, with reference to Example 19, the Privacy Disclosure Risk of all
users in U(g32) is risk(Tg, g32, user:0) = risk(Tg, g32, user:1) = risk(Tg, g32, user:2) =
risk(Tg, g32, user:3) = risk(Tg, g32, user:4) = risk(Tg, g32, fake:0) = 1

2 .

5.3 Algorithm

5.3.1 Overview

Our Cluster-based Time-Varying Knowledge Graph Anonymization Algorithm (CTKGA)
aims at modifying the structure of the original KG such that users’ identities in its
anonymized version are protected according to kw-tad. The algorithm relies on two global
parameters, that is, k,w. More precisely, let gw−1t−1 = (Gt−w+1, . . . , Gt−1) be the series of
w−1 previous anonymized KGs, generated by CTKGA. Given a KG Gt at time t, CTKGA
generates the anonymized version of Gt: Gt according to three main steps:

1. Clusters generation. This step aims at generating a set of clusters Ct containing
users in Gt such that all of these clusters have at least k users and the series of
attributes’ values and relationships’ out-/in-degrees in all KGs in gw−1t−1 of users who
are in the same cluster is identical. Moreover, it deletes some users to ensure that for
each deleted user who is not in Ct but was in U(gw−1t−1), there are at least k − 1 other

deleted users, that is, users who also are not in Ct but were in U(gw−1t−1) such that their

series of attributes’ values and relationships’ out-/in-degrees in gw−1t−1 is identical. In
case Ct contains new users, this step also adds fake users to ensure that there are

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 75

id information

user:0 I(G0, user:0)

user:1 I(G0, user:1)

user:2 I(G0, user:2)

user:3 I(G0, user:3)

(a) H2
0

id information

user:0 I(G0, user:0) I(G1, user:0)

user:1 I(G0, user:1) I(G1, user:1)

user:2 I(G0, user:2) ∅
user:3 I(G0, user:3) ∅
user:4 ∅ I(G1, user:4)

fake:0 ∅ I(G1, fake:0)

(b) H2
1

id information

user:0 I(G1, user:0) I(G2, user:0)

user:1 I(G1, user:1) I(G2, user:1)

user:2 ∅ I(G2, user:2)

user:3 ∅ I(G2, user:3)

user:4 I(G1, user:4) I(G2, user:4)

fake:0 I(G1, fake:0) I(G2, fake:0)

(c) H2
2

Figure 5.4: The ADS-Table corresponding to G0, G1, and G2 (w = 2).

at least k new/fake users who are in Ct but were not in U(gw−1t−1). Therefore, these
new/fake users are in clusters that have at least k new/fake users. To improve the
performance of this step, we leverage on a data structure, called Attribute Degree
Sequence Table (ADS-Table) (see Section 5.3.2 for more details), to efficiently retrieve
attributes’ values and relationships’ out-/in-degrees of users in U(gw−1t−1).

2. Knowledge graph generalization. In this step, we use KGG, the Knowl-
edge Graph Generalization Algorithm described in Chapter 4, to generate Gt, the
anonymized version of Gt, by adding and removing edges in Gt such that attributes’
values and relationships’ out-/in-degrees of users in Gt who are in the same cluster
are identical.

3. ADS-Table update. Our algorithm extracts attributes’ values and relationships’
out-/in-degrees of users in the resulting anonymized KG Gt to update the current
content of the ADS-Table.

We present the Attribute Degree Sequence Table in Section 5.3.2 and clusters generation
in Section 5.3.3. We refer the interested reader to Chapter 4 for more details on knowledge
graph generalization.

5.3.2 Attribute Degree Sequence Table

The Attribute Degree Sequence Table (ADS-Table), denoted Hw
t , is a table containing two

columns: user id, containing ids of users in U(gwt), and information, consisting of the array
of attributes’ values and degrees of users in these KGs, that is, I(gwt , u), ∀u ∈ U(gwt).

ADS-Table Hw
t increases the performance of our algorithm by allowing it to effi-

ciently extract information on attributes’ values and out-/in-degrees of users in w previous

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 76

anonymized KGs, using their ids. Moreover, we can generate an ADS-Table Hw
t from Gt

and Hw
t−1 instead of extracting users’ attributes’ values and relationships’ out-/in-degrees

in w − 1 previous anonymized KGs. Figure. 5.4 illustrates the ADS-Tables H2
0, H2

1, and
H2

2 corresponding to anonymized KGs G0, G1, G2 in Figure. 5.3.

5.3.3 Clusters Generation

All clustering algorithms relies on a notion of distance between users, to group users into
clusters such that closer users are grouped into the same cluster. As our algorithm makes
attributes’ values and relationships’ out-/in-degrees of users in the same clusters identical
in the next step, we must minimize the information loss of making the attributes’ values and
relationships’ out-/in-degrees of users in the same cluster. Therefore, as distance between
users, we make use of an information loss metric which measures information loss of making
the attributes’ values and relationships’ out-/in-degrees of two users identical. To be as
general as possible, our algorithm allows data providers to use any information loss metric,
such as the Attribute and Degree Information Loss Metric (ADM) (Definition 15), or the
Attribute Truthfulness and Degree Information Loss Metric (Definition 17) to calculate the
distance between pairs of users in their KGs.

We use a distance matrix Dt to store the distance between pairs of users in V U
t , which

is given as a parameter to our cluster generation algorithm.
Moreover, to increase the generality of our approach, our algorithm allows data

providers to use any clustering algorithm A that supports distance matrix to generate
clusters. However, clusters returned from A can have less than k users, which violates
kw-tad, or too many users, which decreases the quality of the anonymized KG.

To cope with this issue, we present the k-Medoids Partition strategy (KP) (see Algo-
rithm 6). The strategy exploits k-Medoids [14] to split clusters that have more than or
equal to 2×k users such that the number of users in all of the resulting clusters is between
k and 2× k − 1. Moreover, it assigns users in clusters that have less than k users to their
nearest clusters that have at least k users.

Given a KG Gt at time t, the distance matrix Dt containing the distance between pairs
of users in Gt, the ADS-Table Hw−1

t−1 ; a clustering algorithm A, and two positive numbers:
k,w, we aim at generating a set of clusters that have at least k users and such that users in
the same cluster have the same attributes’ values and out-/in-degrees for all relationships
in w − 1 previous anonymized KGs.

Our cluster generation approach is described by Algorithm 5. The algorithm takes as
input the original KG Gt at time t, two positive integers: k,w, the clustering algorithm
A, the distance matrix Dt, and the ADS Table Hw−1

t−1 . At the beginning, it initializes
Uw−1 with the set of users who existed in any of the w − 1 previous anonymized KGs
Gt−w+2, . . . , Gt−1(line 1). Then, it generates the set of users who existed in both V U

t and
any of the w− 1 previous anonymized KGs, denoted as Uw (line 2). Next, it calls function
generate clusters() to find clusters of users in Uw, denoted as Cw, such that the series of
attributes’ values and relationships’ out-/in-degrees in gw−1t−1 of those in the same clusters

is identical (line 3). This function puts new users who are in V U
t but were not in U(gw−1t−1)

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 77

Algorithm 5 Clusters Generation(Gt,Dt,Hw−1
t−1 ,A, k, w)

Input: Gt: the original KG at time t; Dt: the distance matrix of users in Gt; Hw−1
t−1 : the

ADS-Table at time t− 1; A: the clustering algorithm; k,w: two positive numbers.
Output: The set of clusters Ct.
1: Uw−1 ← U(gw−1t−1)
2: Uw ← V U

t ∪ Uw−1

3: Cw ← generate clusters(Hw−1
t−1 ,Uw)

4: Ct ← ∅
5: for c ∈ Cw do
6: Uc ← c ∩ V U

t

7: Ud ← c \ V U
t

8: Cc ← ∅
9: if 0 < |Ud| < k then

10: remove users(Uc, k − |Ud|)
11: end if
12: if |Uc| ≥ k then
13: Cc ← run clustering algorithm A with Dt and Uc
14: Cc ← run KP strategy with Dt and Cc
15: else
16: if c is the cluster of new users then
17: Cc ← add fake users(Uc, k − |Uc|)
18: end if
19: end if
20: Ct ← Ct ∪ Cc
21: end for
22: return Ct

in the same cluster. It then initializes the set of clusters Ct with the empty set (line 4).
Next, for each cluster c in Cw, it finds the set of users who exist in both c and V U

t , denoted
as Uc, (line 6), and the set of users in c who have been removed from Gt, denoted as Ud
(line 7). It then initializes the set of clusters Cc with the empty set (line 8). If Ud has from
1 to k − 1 users, it calls function remove users() to randomly remove k − |Ud| users in Uc
(line 10). In this way, we can ensure that for each deleted user who is not in V U

t but was
in U(gw−1t−1), his/her series of attributes’ values and relationships’ out-/in-degrees in gw−1t−1
is indistinguishable from that of k − 1 other deleted users. If Uc has at least k users, it
uses the clustering algorithm A to split users in Uc into clusters and assign these clusters
to Cc(line 13). Our algorithm calls Algorithm 6 to split clusters in Cc into clusters that
have from k to 2 × k − 1 users (line 14). If Uc has less than k users and c is the group of
new users, it calls function add fake users() to generate Cc by adding k − |Uc| fake users
to Uc (line 17). The function generates fake users by assigning a unique id to each fake
user. Then, it generates a cluster containing these fake users and users in Uc and adds the

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 78

Function 3 generate clusters (Hw−1
t−1 ,Uw)

1: Let H be an empty hash table.
2: for u ∈ Uw do
3: I(gw−1t−1 , u)← get user info(Hw−1

t−1 , u)

4: K ← hash(I(gw−1t−1 , u))
5: if K /∈ H then
6: c(K)← ∅
7: append cluster(H,K, c(K))
8: else
9: c(K)← get by key(H,K)

10: end if
11: c(K)← c(K) ∪ {u}
12: end for
13: return get values(H)

cluster to Cc. We only add fake users when c is the cluster of new users because both fake
and new users do not have any information in gw−1t−1 . By doing this, we can ensure that for
each new/fake user, there are at least k − 1 other new/fake users that were not present in
gw−1t−1 and are now in the same cluster. The generated clusters Cc are then added to Ct (line
20). Finally, our algorithm returns the set of clusters Ct (line 22).

Function generate clusters(). Given an ADS-Table Hw−1
t−1 and the set of users Uw, this

function assigns to the same cluster users whose series of attributes’ values and relation-
ships’ out-/in-degrees in Hw−1

t−1 , is identical. It exploits a hash table which maps the series
of attributes’ values and relationships’ out-/in-degrees to the cluster of users who have that
series. Furthermore, to improve the performance of finding the cluster by the series, we use
MD5 hash function to calculate a unique hash value for each series. Then, instead of using
the series, we use its hash to associate the series with the clusters of users who have it in
Hw−1

t−1 . In particular, this function first initializes an empty hash table H (line 1). Then,
for each user u in Uw, it retrieves u’s attributes’ values and relationships’ out-/in-degrees
in gw−1t−1 , denoted as I(gw−1t−1 , u), by looking for u’s id in Hw−1

t−1 (line 3). It then uses MD5

to generate the hash of I(gw−1t−1 , u), denoted as K (line 4). If K is not in H, it generates an
empty cluster, denoted as c(K), (line 6) and adds c(K) to H (line 7). Otherwise, it gets the
cluster c(K) in H by using the key K (line 9). Then, it adds u to c(K) (line11). Finally, it
returns the clusters in H (line 13).

Algorithm 6 implements our strategy to split clusters. At the beginning, it finds the set
of users whose clusters have less than k users, denoted as U , (line 1) and clusters that have
at least k users, denoted as Cvalid (line 2). Then, it calls function assign new clusters()
to assign each user in U to his/her nearest cluster in Cvalid (line 3). Next, it initializes the
set of final clusters Cfinal to the empty set (line 4). For each cluster c in Cvalid, if c has
at least 2 × k users, it uses the Same Size k-Medoids algorithm to split users in c into a
set of |c|/k clusters that have from k to 2× k − 1 users, denoted as Cc (line 7). We create

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 79

Algorithm 6 k-Medoids Partition strategy(Dt, Cc, k)

Input: Dt: the distance matrix of users in Gt; Cc: a set of clusters; k: a positive number.
Output: The set of clusters Ct.
1: Let U be the set of users in Cc whose cluster has less than k users.
2: Cvalid ← {c ∈ Cc||c| ≥ k}
3: assign new clusters(D, Cvalid, U)
4: Cfinal ← ∅
5: for c ∈ Cvalid do
6: if |c| ≥ 2× k then
7: Cc ← run same size kmedoids(Dt, c, |c|/k)
8: Cfinal ← Cfinal ∪ Cc

9: else
10: Cfinal ← Cfinal ∪ {c}
11: end if
12: end for
13: return Cfinal

the Same Size k-Medoids algorithm by modifying the Balanced k-Means algorithm [38], in
such a way that it uses k-Medoids instead of k-Means. Then, Cc is added to Cfinal (line
8). If c has from k to 2× k − 1, Algorithm 6 adds c to Cfinal (line 10). Finally, it returns
Cfinal (line 13).

Procedure assign new clusters(). Given a distance matrix Dt, a set of clusters Cvalid,
each of which contains at least k users, and a set of users U , this procedure assigns each user
u in U to his/her closest cluster in Cvalid. The procedure initializes the smallest distance,
denoted as dmin, with +∞ (line 2) and the selected cluster, denoted as cselected, with ∅
(line 3). Then, for each cluster c in Cvalid, it calculates the distance between user u and
cluster c, denoted as dc, (line 5). If dc is less than dmin, it assigns dc to dmin (line 7) and
c to cselected (line 8). Then, it adds u to the found closest cluster cselected (line 11).

5.3.4 Privacy Analysis

Given a series of anonymized KGs gw−1t−1 satisfying kw−1-tad, a KG Gt generated by
adding/removing edges and nodes of Gt−1, and the set of clusters Ct generated by our
algorithm, we want to prove that: (A) inserted users in Gt are in clusters that have at least
k users (see Theorem 9); (B) updated users also are in clusters that have at least k users
and all users in the same cluster have the same series of attributes’ values and relationships’
out-/in-degrees in gw−1t−1 (see Theorem 10); (C) deleted users are not in clusters in Ct and
for every deleted user, his/her series of attributes’ values and relationships’ out-/in-degrees
is indistinguishable from that of k − 1 other deleted users (see Theorem 11). In addition,
if the data providers re-insert in Gt some users who have been previously deleted in gw−1t−1 ,

these users are in clusters that have at least k users since they are in both U(gw−1t−1) and Gt

(according to Theorem 10). Additionally, if these users have been deleted in anonymized

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 80

Procedure 2 assign new clusters (Dt, Cvalid, U)

1: for u ∈ U do
2: dmin ← +∞
3: cselected ← ∅
4: for c ∈ Cvalid do
5: dc ← max{Dt(u, v)|v ∈ c}
6: if dc < dmin then
7: dmin ← dc
8: cselected ← c
9: end if

10: end for
11: cselected ← cselected ∪ {u}
12: end for

KGs that have been published earlier than those in gw−1t−1 , they also are in clusters that

have at least k users because they are in Gt but not in U(gw−1t−1) (according to Theorem 12.
In Theorem 9, we prove the assertion (A).

Theorem 9. Given a KG Gt and an ADS-Table Hw−1
t−1 storing users’ information in gw−1t−1 .

Let Ct be the set of clusters returned from Algorithm 5, executed with two positive numbers:

k,w. Let V
U
t = ∪c∈Ctc be the set of users in Ct and U i

t = V
U
t \ U(gw−1t−1) be the set of new

and fake users of Ct. For every user u ∈ U i
t , u is in a cluster in Ct, denoted cu, such that cu

has at least k users.

Proof. Let u be an arbitrary user in U i
t and cu be u’s cluster in Ct. Suppose cu has less

than k users. If U i
t has at least k users, cu also has at least k users that are real users as it

is returned from Algorithm 6 which only returns clusters that have at least k users (lines 3,
10, Algorithm6). Otherwise, cu also has at least k users that are both fake/real users (line
17, Algorithm 5). Therefore, cu always has at least k users. But this contradicts to the
fact that cu has less than k users. Therefore, we can conclude that for every user u ∈ U i

t ,
u is in a cluster in Ct, denoted cu, such that cu has at least k users. �

Theorem 10 proves assertion (B).

Theorem 10. Given a KG Gt and an ADS-Table Hw−1
t−1 storing users’ information in

gw−1t−1 . Let Ct be the set of clusters returned from Algorithm 5, executed with two positive

numbers: k,w. Let V
U
t = ∪c∈Ctc be the set of users in Ct and Uu

t = V
U
t ∩ U(gw−1t−1) be the

set of users existing in both V
U
t and U(gw−1t−1). If gw−1t−1 satisfies kw−1-tad, for every user u

in Uu
t , u is in a cluster in Ct, denoted cu, such that cu has at least k users and ∀u′, v′ ∈ cu,

I(gw−1t−1 , u
′) = I(gw−1t−1 , v

′).

Proof. Suppose gw−1t−1 satisfies kw−1-tad. Let u be an arbitrary user in Uu
t and cu be

its cluster in Ct. Suppose cu has less than k users or there are two user u′, v′ ∈ cu such
that I(gw−1t−1 , u

′) 6= I(gw−1t−1 , v
′). Let c be one of the clusters returned by Function 3 and

c contains u. As gw−1t−1 satisfies kw−1-tad, c also has at least k users. c consists of users

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 81

whose information in gw−1t−1 is identical (line 11, Function 3). If c has less than k real users,
Algorithm 5 does not add it to Ct (line 12, Algorithm 5). In this case, real users in c are
protected with deleted users (according to Theorem 11). If c has at least k real users,
Algorithm 5 uses Algorithm 6, executed real users in c, to generate cu. cu has at least
k users as it is returned by Algorithm 6 which only returns clusters that have from k to
2× k − 1 users (lines 3,10, Algorithm 6). Moreover, ∀u′, v′ ∈ cu, I(gw−1t−1 , u

′) = I(gw−1t−1 , v
′)

as cu is a subset of c. But this contradicts the fact that cu has less than k users or there
are two user u′, v′ ∈ cu such that I(gw−1t−1 , u

′) 6= I(gw−1t−1 , v
′). Therefore, we can conclude

that if gw−1t−1 satisfies kw−1-tad, for every user u in Uu
t , u is in a cluster in Ct, denoted cu,

such that cu has at least k users and ∀u′, v′ ∈ cu, I(gw−1t−1 , u
′) = I(gw−1t−1 , v

′). �
Theorem 11 proves the assertion (C).

Theorem 11. Given a KG Gt and an ADS-Table Hw−1
t−1 storing users’ information in

gw−1t−1 . Let Ct be the set of clusters returned from Algorithm 5, executed with two positive

numbers: k,w. Let V
U
t = ∪c∈Ctc be the set of users in Ct and Ud

t = U(gw−1t−1) \ V U
t be

the set of deleted users. If gw−1t−1 satisfies kw−1-tad, for every user u ∈ Ud
t , there is a set

Cdt (u) = {v ∈ Ud
t |I(gw−1t−1 , u) = I(gw−1t−1 , v)} such that |Cdt (u)| ≥ k.

Proof. Suppose gw−1t−1 satisfies kw−1-tad and there is a user u ∈ Ud
t such that |Cdt (u)| < k.

Let c be one of the clusters returned by Function 3 and c contains u. c consists of users
whose information in gw−1t−1 is identical (line 11, Function 3). As gw−1t−1 satisfies kw−1-tad,

c also has at least k users. Let Ud = Ud
t ∩ c be the set users in c who are in V

U
t and c.

Here, Ud contains u as he/she is in both c and Ud
t . Ud has at least k users as Algorithm

5 will remove real users in c if c has from 1 to k − 1 deleted users (line 10, Algorithm
5). Moreover, ∀u′, v′ ∈ Ud, I(gw−1t−1 , u

′) = I(gw−1t−1 , v
′). Therefore, |Cdt (u)| ≥ k. But this

contradicts the fact that |Cdt (u)| < k. Therefore, if gw−1t−1 satisfies kw−1-tad, for every user
u in Ud

t , |Cdt (u)| ≥ k. �
In Theorem 12, we prove that if gw−1t−1 satisfies kw−1-tad, gwt satisfies kw-tad.

Theorem 12. Given a series of w continuous KGs gwt , if all Gt ∈ gwt are generated by our
algorithm, then gwt satisfies kw-tad.

Proof. We prove this theorem by induction on t. At time t = 0, the set of clusters Ct
returned from Algorithm 5 consists of new users. Then, all clusters in Ct have at least k
users (according to Theorem 9). By using the Knowledge Graph Generalization Algorithm
(KGG) (see Chapter 4) to generate the first anonymized KG G0, we make the attributes’
values and relationships’ out-/in-degrees of users in the same clusters identical. Then, for
every user u in U(gw0), |C(gw0 , u)| ≥ k. Therefore, at time t = 0, gw0 satisfies kw-tad.

In the following paragraphs, we prove the induction step. Suppose gw−1t−1 satisfies kw−1-
tad and gwt does not satisfy kw-tad.

The set of users in Gt, V
U
t , consists of all of inserted/re-inserted/updated users. More-

over, these users are in clusters in Ct that have at least k users and users in the same
clusters have the same series of attributes’ values and relationships’ out-/in-degrees in
gw−1t−1 (according to Theorem 9 and 10). Then, let c be an arbitrary cluster in Ct and u, v

be two arbitrary users in c. c has at least k users and I(gw−1t−1 , u) = I(gw−1t−1 , v). As we

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 82

use KGG to make attributes’ values and relationships’ out-/in-degrees of users in the same
clusters identical in Gt, I(Gt, u) = I(Gt, v). Thus, I(gwt , u) = I(gwt , v). As u, v are arbi-
trary, for every users u, v ∈ c, I(gwt , u) = I(gwt , v). Since c is arbitrary, for every cluster
c ∈ Ct, c has at least k users and all users in c has the same series of attributes’ values

and relationships’ out-/in-degrees in gwt . Then, for every user u ∈ V U
t , there is a subset

C(gwt , u) = {v ∈ V U
t |I(gwt , u) = I(gwt , v)} and |C(gwt , u)| ≥ k.

Let Ud
t = gw−1t−1 \V

U
t be the set of deleted users in Gt. Let u be an arbitrary user in Ud

t .

According to Theorem 11, there is a set C(gw−1t−1 , u) = {v ∈ Ud
t |I(gw−1t−1 , u) = I(gw−1t−1 , v)} and

|C(gw−1t−1 , u)| ≥ k. Because users in C(gw−1t−1 , u) are not in Gt, for every user v ∈ C(gw−1t−1 , u),

I(Gt, u) = I(Gt, v). Then, the set C(gwt , u) = {v ∈ Ud
t |I(gwt , u) = I(gwt , v)} also has at

least k users. As u is arbitrary, for every user u in Ud
t , C(gwt , u) ≥ k.

Because U(gwt) = Ud
t ∪ V

U
t , for every user u in U(gwt), there is a set C(gwt , u) = {v ∈

U(gwt)|I(gwt , u) = I(gwt , v)} such that |C(gwt , u)| ≥ k. Therefore, gwt satisfies kw-tad. But
this contradicts the fact that gwt does not satisfy kw-tad. Then, we can conclude that if
gw−1t−1 satisfies kw−1-tad, gwt also satisfies kw-tad.

Therefore, we can conclude that if all Gt ∈ gwt generated by our algorithm, then gwt
satisfies kw-tad. �

5.4 Experiments

In this section, we evaluate the quality of anonymized KGs generated by our anonymization
algorithm.

5.4.1 Datasets and Settings

As KGs can illustrate many types of graphs, we use six real-life datasets to evaluate the
effectiveness of our algorithm, namely: Email-Eu-core [57], ICEWS [16], Yago [16], Email-
temp [43], Freebase [5], and DBLP [32]. Appendix B illustrates properties of these datasets.

In Chapter 4, we use many clustering algorithms to evaluate the quality of anonymized
KGs generated by their Cluster-Based Knowledge Graph Anonymization (CKGA) and
shows that k-means [14] gives best results. However, k-means does not support distance
matrix. Therefore, we use a version of k-means, k-Medoids [14] which supports distance
matrix, to run all of our experiments.

5.4.2 Tuning CTKGA

In this experiment, we aim at evaluating the effects of parameters: k,w to the average
information loss of users in the anonymized KGs. The average information loss is calculated
by taking the average of the information loss of users by using the Attribute and Degree
Information Loss Metric (ADM) (Definition 15). ADM measures the amount of information
a user loses on both his/her attributes and relationships by comparing his/her attributes’

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 83

values and relationships’ out-/in-degrees in the anonymized KG with those in the original
one.

0 10 20 30 40 50
t

0.000

0.001

0.002

0.003

0.004

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss

w
1
2
4
6
8

(a) Email-temp

0 10 20 30 40 50
t

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss

w
1
2
4
6
8

(b) ICEWS

0 10 20 30 40 50
t

0.00032

0.00034

0.00036

0.00038

0.00040

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss

w
1
2
4
6
8

(c) Yago

Figure 5.5: Information loss by varying w.

Effects of w. We first fix k = 2 to study the impact of w. Figure. 5.5 shows the average
information loss of anonymized KGs generated by CTKGA by varying values of w in three
datasets: Email-temp (Figure. 5.5a), ICEWS (Figure. 5.5b), and Yago (Figure. 5.5c). We
observe that higher values of w generally lead to high information loss while the running
time is not increased. In particular, when we increase w from 1 to 2, the average information
loss of the last anonymized KG increases 0.0017 in Email-temp, 2.77× 10−5 in ICEWS,
and 1.58× 10−5 in Yago. However, if w is high enough, the increment of the average
information loss is very small. When we increase w from 4 to 6, the average information
loss of the last anonymized KG increases 0.0003 in Email-temp, 8.89× 10−7 in ICEWS,
and 1.13× 10−6 Yago. Furthermore, the higher MCE is, the more w affects the average
information loss of anonymized KGs. Indeed, Email-temp’s anonymized KGs lose more
information than those of ICEWS and Yago because the amount of modified information
of users in Email-temp (MCE = 0.9) is higher than that of ICEWS (MCE = 0.2) and
Yago (MCE = 0.04).

Effects of k. We select w = 4 for Email-temp, and w = 2 for ICEWS and Yago to
observe the impact of k on the average information loss of anonymized KGs. Figure. 5.6
illustrates our results by varying k on three datasets: Email-temp (Figure. 5.6a), ICEWS
(Figure. 5.6b), and Yago (Figure. 5.6c). Different from w, increasing k always makes the

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 84

0 10 20 30 40 50
t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Av

er
ag

e
In

fo
rm

at
io

n
Lo

ss
k
2
4
6
8
10

(a) Email-temp (w = 4)

0 10 20 30 40 50
t

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss

k
2
4
6
8
10

(b) ICEWS (w = 2)

0 10 20 30 40 50
t

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss

k
2
4
6
8
10

(c) Yago (w = 2)

Figure 5.6: Information loss by varying k.

average information loss increase. By increasing k from 2 to 4, the average information
loss increases 0.0053 in Email-temp, 0.0004 in ICEWS, and 0.0008 in Yago. Similarly, the
average information loss increases 0.0015 in Email-temp, 0.0004 in ICEWS, and 0.0008 in
Yago, when we increase k from 8 to 10. The Coefficient of Variation of these increments,
calculated by dividing their standard deviation by their mean, is 0.26 when we increase k
from 2 to 10 in Email-temp, 0.04 in ICEWS and 0.03 in Yago. Then, the more users a
KG has, the less k affects the quality of its anonymized version (Email-temp, ICEWS, and
Yago have 986, 2,617, 8,918, respectively).

These experiments allow us to learn relevant insights that might be useful for prop-
erly setting our anonymized algorithm. Indeed, the experiment on w suggests that data
providers can set w based on MCE of their KGs and the number of continuous KGs they
want to consider. For instance, if we select w ≥ 4 for Email-temp, w ≥ 2 for ICEWS, and
Yago the average information loss increment is very small. Additionally, the experiment
on k suggests that data providers should choose k based on the number of users their KGs
have and the Privacy Disclosure Risk they want.

5.4.3 Performance Evaluation

In this experiment, we evaluate the impact of w, k to performance of our Clusters Genera-
tion Algorithm (Algorithm 5). Figure. 5.7 illustrates the average running time of algorithm

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 85

on all snapshots of two datasets: ICEWS (Figure. 5.7a) and Yago (Figure. 5.7b).
The running time that our algorithm needs to generate clusters for Yago is higher than

the one for ICEWS as Yago has more users than ICEWS (ICEWS and Yago have 2,617,
8,918, respectively). Moreover, the higher values of w are, the algorithm needs less time in
all datasets because of two reasons. First, the series of users’ attributes and relationships’
out-/in-degrees in previous anonymized KGs is extracted from ADS-Table. Secondly, while
our algorithm needs almost the same time to run on the first snapshot, it can save time
by relying on clusters generated in the previous snapshot, which have at least k users.
Thus, our algorithm does not need too much time to split these clusters. At w = 1, our
algorithm always needs to split a big cluster containing all users in the current snapshot;
therefore, its running time is higher than that of those running with w > 1. Furthermore,
with w = 1, the running time of our algorithm decreases when increasing k because the
resulting clusters have more users and it does not need to split these clusters too much.
Additionally, w affects to the performance of our algorithm on ICEWS more than on Yago
as MCE of Yago (MCE = 0.04) is less than that of ICEWS (MCE = 0.2). Therefore,
ADS-Table is effective to improve the performance of our algorithm and data providers
can specify w, k based on the MCE of their KGs. We can also conclude that time needed
to generate the clusters is negligible, considering that this task is performed only once per
data publishing.

2 4 6 8 10
k

4

5

6

7

8

tim
e

(s
ec

on
ds

) w
1
2
4
6
8

(a) ICEWS

2 4 6 8 10
k

300

400

500

600

700

tim
e

(s
ec

on
ds

)

w
1
2
4
6
8

(b) Yago

Figure 5.7: Performance of our algorithm on varying values of k and w.

5.4.4 Comparative Evaluation

In this experiment, we compare the quality of anonymized KGs returned from our algorithm
(CTKGA) with those returned from CKGA (Chapter 4), CDGA (Chapter 3), and DGA [10]
on four datasets: Email-Eu-core, Freebase, Email-temp, and DBLP.

Figure. 5.8 illustrates the average information loss of users in anonymized KGs re-
turned from our algorithm and CKGA on two datasets: Email-Eu-core(Figure. 5.8a) and
Freebase(Figure. 5.8b). Our algorithm returns anonymized KGs that lose less information
than those returned from CKGA for both datasets.

CHAPTER 5. SEQUENTIAL ANONYMIZATION OF KNOWLEDGE GRAPHS 86

1 2 3 4 5 6 7 8 9 10
k

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

in
fo

rm
at

io
n

lo
ss

algo
ctkga
ckga

(a) Email-Eu-core

1 2 3 4 5 6 7 8 9 10
k

0.000

0.002

0.004

0.006

0.008

0.010

Av
er

ag
e

in
fo

rm
at

io
n

lo
ss

algo
ctkga
ckga

(b) Freebase

Figure 5.8: Average information loss of anonymized KGs returned from our algorithm
(CTKGA) and CKGA.

Similar to Chapter 4, to compare CTKGA with CDGA and DGA, we have considered
the ratio of fake edges instead of information loss. Figure. 5.9 shows the ratio of fake
edges of anonymized graphs returned from our algorithm and CKGA, CDGA, and DGA
for two datasets: Email-temp(Figure. 5.9a) and DBLP(Figure. 5.9b). In both datasets, in
most values of k, our algorithm adds less fake edges to generate anonymized graphs than
CKGA. At k = 7 in Email-temp dataset, we need to add more fake edges than CKGA
but the difference is very small (0.01%). The number of fake edges in anonymized graphs
returned from our algorithm is similar to that of CDGA and DGA.

Therefore, our algorithm is effective enough to generate not only anonymized KGs but
also anonymized directed graphs.

1 2 3 4 5 6 7 8 9 10
k

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ke

 e
dg

es
 (%

)

algo
cdga
ckga
ctkga
dga

(a) Email-temp

1 2 3 4 5 6 7 8 9 10
k

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fa
ke

 e
dg

es
 (%

)

algo
cdga
ckga
ctkga
dga

(b) DBLP

Figure 5.9: Ratio of fake edges of anonymized KGs returned from our algorithm
(CTKGA) and CKGA, CDGA, and DGA.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the era of big data, data sharing is crucial and protecting users’ sensitive information in
these data is as important as analyzing them [26]. Many companies start using knowledge
graphs (KGs) to share their data due to their flexibility in modelling both attributes’
values and relationships, Even though many work [26] have been presented to generate
anonymized data (cfr. Chapter 2), they cannot be applied to anonymize KGs. Only
either users’ attributes or their relationships are anonymized. Therefore, in this thesis, we
focus on presenting anonymization solutions for KGs containing both users’ attributes and
relationships.

Since KGs are directed graphs, in Chapter 2, we reviewed anonymization solutions [10,
60] for directed graphs. Although these solutions can protect users from being re-identified,
their anonymization algorithms do not always generate anonymized graphs satisfying the
requirements of their protection models. To cope with this issue, in Chapter 3, we presented
our anonymization algorithm for directed graphs, i.e. the Cluster-Based Directed Graph
Anonymization Algorithm (CDGA), and proved that CDGA always generates anonymized
directed graphs satisfying constraints of protection models in [10, 60]. In addition, we
proposed the Degree Information Loss (DM) to minimize the information loss made by
anonymizing these graphs.

Then, in Chapter 4, we addressed the problem of anonymizing KGs containing both at-
tributes’ values and relationships. We firstly analyzed attacking scenario that an adversary
can use to re-identify users in anonymized KGs and proposed k-Attribute Degree (k-ad) to
protect users in this scenario. To minimize the loss of users’ attributes in KGs, we firstly
presented the Attribute Information Loss Metric (AM). Since AM does not consider the
truthfulness of attributes’ values of users, we further presented the Attribute Truthfulness
Information Loss Metric (ATM) to minimize the untruthfulness of these values. By com-
bining AM and ATM with DM in Chapter 3, we can minimize the loss of both users’
attributes and their relationships. Furthermore, we presented the Cluster-Based Knowl-
edge Graph Anonymization Algorithm (CKGA) to anonymize KGs. CKGA extends CDGA

87

CHAPTER 6. CONCLUSION AND FUTURE WORK 88

to anonymize not only users’ relationships but also their attributes. Different from CDGA
and other previous cluster-based anonymization algorithms [2, 6, 11, 42, 48], CKGA allows
data providers to specify any clustering algorithm, that supports Euclidean distance, to
anonymize KGs.

In Chapter 5, we further extended the work in Chapter 4 to allow data providers to pub-
lish newer versions of their anonymized KGs after inserting/updating/re-inserting/deleting
nodes and edges in their original KG. We investigated the attacking scenario when an ad-
versary exploits many versions of anonymized KGs to re-identify users. Then, we presented
the kw-Time-Varying Attribute Degree (kw-tad) to ensure that users are not re-identified
with a confidence higher than 1

k even if adversaries have access to w continuous anonymized
KGs. We proposed the Cluster-Based Time-Varying Knowledge Graph Anonymization Al-
gorithm (CTKGA) to generate anonymized KGs satisfying requirements of kw-tad.

The conducted experiments on real-life datasets showed that our anonymized solutions
for KGs are good enough to generate anonymized KGs. Furthermore, we compared our
solutions with those in [10, 60] to show that ours can also generate high quality directed
graphs.

6.2 Future work

We plan to extend the solutions presented in this thesis in many directions. In Section 6.2.1,
we present the Personalized k-Attribute Degree, the personalized version of k-Attribute
Degree. We plan to develop a personalized anonymization algorithm for the Personalized
k-Attribute Degree and conduct experiments to evaluate the effectiveness of the developed
algorithm. Then, we discuss other research directions of our work in Section 6.2.2.

6.2.1 Personalized Anonymization of Knowledge Graphs

In Chapter 4, we introduced k-Attribute Degree (k-ad) to protect users when the adver-
saries exploit both users’ attributes and degrees of their relationships. k-ad prevents the
adversaries from re-identifying any user in the anonymized KG with a confidence higher
than 1

k when they know the attributes’ values and out-/in-degree of all relationship types
of the user. However, k-ad, as many other protection models (e.g., k-anonymity [49], the
Paired k-degree [10], the K-in&out-Degree Anonymity [10]) is not able to protect different
users with different protection levels [54].

Unfortunately, as showed in Chapter 2, the personalized anonymization solutions for
directed graphs and KGs are still missing. In this chapter, we start to fill in this void by
presenting the Personalized k-Attribute Degree (p-k-ad), an extension of k-ad, to allow
users specifying their own values of k. The p-k-ad ensures that for every user u, attributes’
values and out-/in-degrees of him/her are indistinguishable from those of other ku−1 users,
where ku is the specified k value of u.

Furthermore, we introduce the idea of how to generate anonymized KGs satisfying
requirements of p-k-ad. To allow data providers to use their own clustering algorithm, we
use the same approach of Chapter 4 to generate data points for users in the original KG

CHAPTER 6. CONCLUSION AND FUTURE WORK 89

such that the Euclidean distance between two points is almost equal to the information loss
of making attributes’ values and out-/in-degree of these users identical. The information
loss of users is measured by using the Attribute and Degree Information Loss (ADM) and
the Attribute Truthfulness and Degree Information Loss (ATDM) described in Chapter 4.
However, since the provided clustering algorithm can be not aware of the minimum number
of users in the generated clusters, we need to modify the clusters. Such modifications must
ensure that each user is in a cluster whose size is greater than or equal to his/her specified k
value. Finally, we use the Knowledge Graph Generalization Algorithm (KGG) introduced
in Chapter 4 to ensure that users in the same clusters having the same attributes’ values
and out-/in-degrees for all types of their relationships. The anonymization solution in this
chapter is in progress. We are implementing the anonymization algorithm based on the
above intuitive idea. Then, we will conduct experiments to evaluate the effectiveness of
this anonymization solution.

In what follows, we will describe p-k-ad and the intuitive idea of our anonymization
algorithm for p-k-ad.

Personalized Anonymization of Knowledge Graphs

Let G be a KG and G be its anonymized version. By using the extracted information, ac-
cording to Definition 7, an adversary can use the attacking mechanism TG(BK(u), I(G, u))
to re-identify his/her victim u. The risk that u can be re-identified is risk(TG, G, u) =

1∑
v∈V U

TG(BK(u),I(G,v))
(according to Definition 8).

In this section, we present the Personalized k-Attribute Degree (p-k-ad) to allow each
user to specify their own value of k. More formally, p-k-ad is defined as follows:

Definition 23 (Personalized k-Attribute Degree). Let G(V ,E,R) be an anonymized KG.

G satisfies the Personalized k-Attribute Degree (p-k-ad) if and only if for every user in V
U

,
there is a set C(G, u) such that C(G, u) = {v ∈ V U |I(G, u) = I(G, v)} and |C(G, u)| ≥ ku,
where ku is a positive integer number specified by u.

If an anonymized KG G satisfies p-k-ad, data providers allows all users in G to control
their risk of being re-identified by specifying their own values of k. The risk that any user
u in G can be re-identified is at most 1

ku
, where ku is specified by u.

Overview of the Personalized Anonymization Approach

To generate anonymized KGs satisfying requirements of p-k-ad, we are working on a cluster-
based anonymization algorithm, which will leverage on algorithms we have previously de-
fined in Chapter 4. The algorithm will take as input a KG G(V,E,R) and a set of positive
numbers K, where each positive number ku ∈ K models the privacy protection level of a
user u ∈ V U . It then will generate the anonymized version of G, i.e., G, according to three
main steps:

CHAPTER 6. CONCLUSION AND FUTURE WORK 90

1. Users’ points generation. This step aims at generating a point eu ∈ Rd2 for each
user u ∈ V U such that the Euclidean distance between two points eu, ev is almost
similar to the information loss of making attributes’ values and out-/in-degrees of
two users u, v ∈ V U identical. We use the same approach in Chapter 4 to generate
these points.

2. Clusters generation. The goal of this step is to generate a set of clusters CG =
{c ⊆ V U ||c| ≥ maxu∈c ku} such that the Euclidean distance between points of users
in the same cluster are minimized.

3. Knowledge graph generalization. This step takes as input the set of clusters
generated from the previous step and modifies G to generate G such that attributes’
values and out-/in-degrees of users in the same cluster identical. At this purpose, we
plan to use the Knowledge Graph Generalization Algorithm in Chapter 4 to perform
this step.

6.2.2 Other Research Directions

We are going to extend our work to protect not only users’ identities but also their sensitive
values. This extension requires us to investigate new attacking methods, protection models,
and anonymization algorithms for the scenarios presented in Chapters 4 and 5. Then, we
plan to extend the techniques presented in Chapter 4 to support distributed scenarios where
multiple parties collaborate to generate a single anonymized KG without disclosing users’
sensitive information to other parties. Finally, we plan to study how to apply Differential
Privacy [13] to anonymize KGs.

Bibliography

[1] Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Pan-
igrahy, Dilys Thomas, and An Zhu. Approximation algorithms for k-anonymity. Jour-
nal of Privacy Technology (JOPT), 2005.

[2] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kentha-
padi, Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans.
Algorithms, 2010.

[3] Adeel Anjum, Guillaume Raschia, Marc Gelgon, Abid Khan, Naveed Ahmad, Mansoor
Ahmed, Sabah Suhail, M Masoom Alam, et al. τ -safety: A privacy model for sequential
publication with arbitrary updates. Computers & Security, pages 20–39, 2017.

[4] R. J. Bayardo and Rakesh Agrawal. Data privacy through optimal k-anonymization. In
21st International Conference on Data Engineering (ICDE’05), pages 217–228, 2005.

[5] Kurt Bollacker, Colin Evans, et al. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, pages 1247–1250. Association for
Computing Machinery, 2008.

[6] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. Efficient k-anonymization
using clustering techniques. In Proceedings of the 12th International Conference on
Database Systems for Advanced Applications, page 188–200. Springer-Verlag, 2007.

[7] Ji-Won Byun, Yonglak Sohn, Elisa Bertino, and Ninghui Li. Secure anonymization for
incremental datasets. In Workshop on secure data management, pages 48–63. Springer,
2006.

[8] Ji Won Byun, Yonglak Sohn, Elisa Bertino, and Ninghui Li. Secure anonymization
for incremental datasets. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
4165 LNCS, pages 48–63, 2006.

[9] Ricardo JGB Campello, Davoud Moulavi, et al. Hierarchical density estimates for
data clustering, visualization, and outlier detection. ACM Transactions on Knowledge
Discovery from Data (TKDD), pages 1–51, 2015.

91

BIBLIOGRAPHY 92

[10] Jordi Casas-Roma, Julián Salas, Fragkiskos D Malliaros, and Michalis Vazirgiannis.
k-degree anonymity on directed networks. Knowledge and Information Systems, pages
1743–1768, 2019.

[11] Zhi-Guo Chen, Ho-Seok Kang, et al. An efficient privacy protection in mobility social
network services with novel clustering-based anonymization. EURASIP Journal on
Wireless Communications and Networking, page 275, 2016.

[12] James Cheng, Ada Wai-chee Fu, and Jia Liu. K-isomorphism: privacy preserving net-
work publication against structural attacks. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 459–470, 2010.

[13] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming,
pages 1–12. Springer Berlin Heidelberg, 2006.

[14] A. Fahad, N. Alshatri, et al. A survey of clustering algorithms for big data: Taxonomy
and empirical analysis. IEEE Transactions on Emerging Topics in Computing, pages
267–279, 2014.

[15] Benjamin CM Fung, Ke Wang, and Philip S Yu. Top-down specialization for infor-
mation and privacy preservation. In 21st international conference on data engineering
(ICDE’05), pages 205–216. IEEE, 2005.

[16] Alberto Garćıa-Durán, Sebastijan Dumancic, and Mathias Niepert. Learning sequence
encoders for temporal knowledge graph completion. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 4816–4821, 2018.

[17] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, pages 78–94, 2018.

[18] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis. Resist-
ing structural re-identification in anonymized social networks. Proc. VLDB Endow.,
1(1):102–114, August 2008.

[19] Tiantian He and Keith CC Chan. Discovering fuzzy structural patterns for graph
analytics. IEEE Transactions on Fuzzy Systems, 26(5):2785–2796, 2018.

[20] A. Hoang, M. Tran, A. Duong, and I. Echizen. An indexed bottom-up approach for
publishing anonymized data. In 2012 Eighth International Conference on Computa-
tional Intelligence and Security, pages 641–645, 2012.

[21] Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. Cluster-based anonymization
of directed graphs. In 2019 IEEE 5th International Conference on Collaboration and
Internet Computing (CIC), pages 91–100, 2019.

[22] Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. Cluster-based anonymization
of knowledge graphs. In 18th International Conference on Applied Cryptography and
Network Security, 2020.

BIBLIOGRAPHY 93

[23] Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. Privacy-preserving sequentially
publishing of knowledge graphs. In 37th IEEE International Conference on Data
Engineering, 2021.

[24] Xia Hu, Jiliang Tang, Yanchao Zhang, and Huan Liu. Social spammer detection in
microblogging. In Twenty-Third International Joint Conference on Artificial Intelli-
gence, 2013.

[25] Vijay S Iyengar. Transforming data to satisfy privacy constraints. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 279–288, 2002.

[26] S. Ji, P. Mittal, et al. Graph data anonymization, de-anonymization attacks, and de-
anonymizability quantification: A survey. IEEE Communications Surveys Tutorials,
pages 1305–1326, 2017.

[27] Jia Jiao, Peng Liu, and Xianxian Li. A personalized privacy preserving method for
publishing social network data. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8402 LNCS, pages 141–157. Springer Verlag, 2014.

[28] Vadisala Jyothi and V. Valli Kumari. Privacy preserving in dynamic social networks.
In Proceedings of the International Conference on Informatics and Analytics, pages
1–8, 2016.

[29] C. Maria Keet. Closed world assumption. In Encyclopedia of Systems Biology, pages
415–415. Springer New York, 2013.

[30] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. Rev2: Fraudulent user prediction in rating platforms. In Proceed-
ings of the Eleventh ACM International Conference on Web Search and Data Mining,
pages 333–341. ACM, 2018.

[31] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 49–60, 2005.

[32] Michael Ley. The dblp computer science bibliography: Evolution, research issues, per-
spectives. In International symposium on string processing and information retrieval,
pages 1–10. Springer, 2002.

[33] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. In 2007 IEEE 23rd International Conference on Data Engineering,
pages 106–115, 2007.

[34] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management of data,
pages 93–106, 2008.

BIBLIOGRAPHY 94

[35] Xiangwen Liu, Qingqing Xie, and Liangmin Wang. Personalized extended (α, k)-
anonymity model for privacy-preserving data publishing. Concurrency Computation,
29:1–18, 2017.

[36] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. L-diversity:
privacy beyond k-anonymity. In 22nd International Conference on Data Engineering
(ICDE’06), pages 24–24, 2006.

[37] Kamalkumar Macwan and Sankita Patel. Privacy preserving approach in dynamic
social network data publishing. In International Conference on Information Security
Practice and Experience, pages 381–398. Springer, 2019.

[38] Mikko I Malinen and Pasi Fränti. Balanced k-means for clustering. In Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 32–41, 2014.

[39] Nigel Medforth and Ke Wang. Privacy risk in graph stream publishing for social
network data. In IEEE 11th International Conference on Data Mining, pages 437–
446. IEEE, 2011.

[40] Prateek Mittal, Charalampos Papamanthou, and Dawn Xiaodong Song. Preserving
link privacy in social network based systems. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February 24-
27, 2013, 2013.

[41] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111–125.
IEEE, 2008.

[42] M Ercan Nergiz and Chris Clifton. Thoughts on k-anonymization. Data & Knowledge
Engineering, pages 622–645, 2007.

[43] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks.
In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pages 601–610, 2017.

[44] Hyoungmin Park and Kyuseok Shim. Approximate algorithms for k-anonymity. In
Proceedings of the 2007 ACM SIGMOD international conference on Management of
data, pages 67–78, 2007.

[45] Jianwei Qian, Xiang-Yang Li, et al. Social network de-anonymization and privacy
inference with knowledge graph model. IEEE Transactions on Dependable and Secure
Computing, pages 679–692, 2017.

[46] Jianwei Qian, Xiang-Yang Li, et al. Social network de-anonymization: More adversar-
ial knowledge, more users re-identified? ACM Transactions on Internet Technology
(TOIT), pages 1–22, 2019.

BIBLIOGRAPHY 95

[47] Jianwei Qian, Xiang Yang Li, Chunhong Zhang, and Linlin Chen. De-anonymizing
social networks and inferring private attributes using knowledge graphs. In Proceedings
- IEEE INFOCOM, pages 1–9. IEEE, 2016.

[48] Klara Stokes. Graph k-anonymity through k-means and as modular decomposition.
In Nordic Conference on Secure IT Systems, pages 263–278, 2013.

[49] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[50] Chih-Hua Tai, Peng-Jui Tseng, S Yu Philip, and Ming-Syan Chen. Identity protection
in sequential releases of dynamic networks. IEEE transactions on Knowledge and Data
Engineering, 26(3):635–651, 2013.

[51] Chenxu Wang, Zhiyuan Zhao, et al. Deepmatching: A structural seed identification
framework for social network alignment. In IEEE 38th International Conference on
Distributed Computing Systems, pages 600–610, 2018.

[52] Ke Wang, Philip S Yu, and Sourav Chakraborty. Bottom-up generalization: A data
mining solution to privacy protection. In Fourth IEEE International Conference on
Data Mining (ICDM’04), pages 249–256. IEEE, 2004.

[53] Raymond Chi-Wing Wong, Jiuyong Li, Ada Wai-Chee Fu, and Ke Wang. (α, k)-
anonymity: an enhanced k-anonymity model for privacy preserving data publishing.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, page 754–759. Association for Computing Ma-
chinery, 2006.

[54] Xiaokui Xiao and Yufei Tao. Personalized privacy preservation. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data, pages 229–240,
2006.

[55] Xiaokui Xiao and Yufei Tao. M-invariance: towards privacy preserving re-publication
of dynamic datasets. In Proceedings of the 2007 ACM SIGMOD international confer-
ence on Management of data, pages 689–700, 2007.

[56] Xiaojun Ye, Yawei Zhang, and Ming Liu. A personalized (α, k)-anonymity model.
In Proceedings - The 9th International Conference on Web-Age Information Manage-
ment, WAIM 2008, pages 341–348, 2008.

[57] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order
graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 555–564, 2017.

[58] Mingxuan Yuan, Lei Chen, S Yu Philip, and Ting Yu. Protecting sensitive labels
in social network data anonymization. IEEE Transactions on Knowledge and Data
Engineering, 25(3):633–647, 2011.

BIBLIOGRAPHY 96

[59] Mingxuan Yuan, Lei Chen, and Philip S. Yu. Personalized privacy protection in social
networks. Proceedings of the VLDB Endowment, 4(2):141–150, 2010.

[60] Xiaolin Zhang, Jiao Liu, Jian Li, and Lixin Liu. Large-scale dynamic social network
directed graph k-in&out-degree anonymity algorithm for protecting community struc-
ture. IEEE Access, pages 108371–108383, 2019.

[61] Bin Zhou and Jian Pei. Preserving privacy in social networks against neighborhood
attacks. In 2008 IEEE 24th International Conference on Data Engineering, pages
506–515. IEEE, 2008.

[62] Fan Zhou, Lei Liu, et al. Deeplink: A deep learning approach for user identity linkage.
In IEEE Conference on Computer Communications, pages 1313–1321, 2018.

[63] Hui Zhu, Hong-Bin Liang, Lian Zhao, Dai-Yuan Peng, and Ling Xiong. τ -safe (l,
k)-diversity privacy model for sequential publication with high utility. IEEE Access,
7:687–701, 2018.

[64] Lei Zou, Lei Chen, and M Tamer Özsu. K-automorphism: A general framework for
privacy preserving network publication. pages 946–957. VLDB Endowment, 2009.

Appendices

97

Appendix A

Notations and abbreviations

A.1 Abbreviations

Abbreviation Meaning

AM The Attribute Information Loss Metric
ATM The Attribute Truthfulness Information Metric
ADM The Attribute And Degree Information Loss Metric
ATDM The Attribute Truthfulness and Degree Information Loss Metric
CDGA The Cluster-Based Directed Graph Anonymization Algorithm
CKGA The Cluster-Based Knowledge Graph Anonymization Algorithm
CTKGA The Cluster-based Time-Varying Knowledge Graph Anonymization

Algorithm
DM The Out-and In-degree Information Loss Metric
k-ad The k-Attribute Degree
kw-tad The kw-Time-Varying Attribute Degree
KG Knowledge Graph
OSN Online Social Network
p-k-ad The Personalized k-Attribute Degree

A.2 Notations

98

APPENDIX A. NOTATIONS AND ABBREVIATIONS 99

Symbol Meaning

G, G the original and anonymized directed graph

G, G the original and anonymized KG

Gt, Gt the original and anonymized KG at time t
gwt , gwt the series of w original and anonymized KGs from time t −

w + 1 to t

V , V the set of nodes in the original and anonymized KG

E, E the set of edges in the original and anonymized KG

R, R the set of relations in the original and anonymized KG

V U , V
U

the set of users in the original and anonymized KG

V A, V
A

the set of attributes’ values in the original and anonymized
KG

EUA, E
UA

the set of edges modelling attributes’ values in the original
and anonymized KG

EUU , E
UU

the set of edges modelling users’ relationships in the original
and anonymized KG

RUA, R
UA

the set of attributes in the original and anonymized KG

RUU , R
UU

the set of relationship types in the original and anonymized
KG

Vt, V t the set of nodes in Gt and Gt

V U
t , V

U
t the set of users in Gt and Gt

Et, Et the set of edges in Gt and Gt

Rt, Rt the set of relations in Gt and Gt

do(G, u) out-degrees of user u in G
di(G, u) in-degrees of user u in G
Id(G, u) out-/in-degrees of user u in G
do(G, ru, u),di(G, ru, u) out- and in-degree of relationship type ru of user u in G
Ia(G, ra, u) values of attribute ra of user u in G
Ia(G, u),Io(G, u),Ii(G, u) attribute, out- and in-relationship of user u in G

I(G, u) attributes’ values and out-/in-degrees of user u in G
I(gwt , u) the series of attributes’ values and out-/in-degrees in

anonymized KGs of gwt
BK(u) the background knowledge that the adversary knows about

user u
BKt(u) the background knowledge about user u at time t
BKw

t (u) the series of background knowledge about user u from time
t− w + 1 to t

U(gwt) the set of users appearing at least once in gwt
TG the attacking mechanism to re-identify a user in a KG
Tg the attacking mechanism to re-identify a user in a series of

KGs

Appendix B

Datasets

In this thesis, we use 8 real-life datasets to perfom experiments: Email-Eu-core [57],
Google+ [19], Freebase [5], Email-temp [43], Bitcoin Alpha [30], DBLP [32], Yago [16],
and ICEWS [16]. Email-temp [43] is an dynamic directed graph which contains emails
sent between members of a research institution and their timestamps. Each member is a
node and each edge models an email sent from a member to another. Bitcoin Alpha [30]
contains data of users who trade using Bitcoin on Bitcoin Alpha1. Each node of this
dataset represents a user. These users rate other members in a scale of -10 (total distrust)
to +10 (total trust) and these ratings are modelled using edges between nodes. DBLP [32]
illustrates citation networks of publications in DBLP. Each node is a publication and each
edge describes a citation of a publication by another one. Similar to Email-temp, Email-
Eu-core [57] also contains email data from a large European research institution. However,
each user in this dataset belongs to a department and its edges do not consist of times-
tamps. Google+ [19] contains attributes’ values and a relationship type (i.e., follow) of
Google+ users. Its nodes model either users or attributes’ values and its edges represent
attributes’ values or the relationships of these users. Freebase [5] is a KG which contains
attributes’ values (e.g., nationality, location) and relationships (e.g., spouse, parent) of
famous people (e.g., the film director Anthony Asquith). Each node models either a user
or a attribute’s value while each edge represents either the attribute’s value of a user or
a relationship between two users. ICEWS [16] is a dynamic KG consisting of political
events with a specific timestamp. Yago [16] is a dynamic KG containing information and
its timestamp derived from Wikipedia, WordNet, and other data sources.

Table. B.1 illustrates properties of these datasets. |V U | and |V A| denote the num-
ber of users and attributes’ values of each dataset, respectively. The number of user-to-
attribute and user-to-user relationship types are represented in columns |RUA| and |RUU ,
respectively. |EUA| and |EUU | show the number of edges modelling user-to-attribute and
user-to-user relationships, respectively. Since, in Chapter 5, we need to evaluate the ef-
fectiveness of our sequential anonymization solution for KGs on anonymized snapshots of
dynamic KGs, we use two columns, i.e., |T | and MCE, to show how these graphs change.

1http://www.btcalpha.com/

100

APPENDIX B. DATASETS 101

While |T | demonstrates the number of timestamps these datasets have, MCE is the Mean
Changed Edges of graph snapshots. MCE is measured as follows:

MCE(gwt) =
1

|T | × |U(gwt)|
∑

u∈U(gwt)

∑
t∈T

ni(Gt, u) + nd(Gt, u)

where ni(Gt, u) and nd(Gt, u) are the number of inserted and deleted edges of a user u in
Gt, respectively. If a user is deleted, all of his/her edges are calculated as deleted edges.
Similarly, if he/she is inserted, his/her edges are considered as inserted edges. Therefore,
MCE can measure how nodes and edges are inserted/deleted. The higher the values of
MCE is, the more the user data changes.

Table B.1: Properties of datasets used for experiments.

Dataset |VU| |VA| |RUA| |RUU| |EUA| |EUU| |T| MCE

Email-temp [43] 986 4 1 1 791,758 332,334 207,880 0.9
ICEWS [16] 2,617 1,870 187 144 19,814 12,807 365 0.2
Yago [16] 8,918 4,084 18 5 10,382,538 242,095 151 0.04
Email-Eu-core [57] 1,005 42 1 1 1,005 25,571 1 0
Freebase [5] 5,000 4,016 10 3 41,067 2,713 1 0
Google+ [19] 7,805 1,962 6 1 20,780 321,268 1 0
Bitcoin Alpha [30] 3,783 0 0 1 0 24,186 1 0
DBLP [32] 12,591 0 0 1 0 49,743 1 0

Three of the datasets illustrated in Table B.1, namely Email-temp, ICEWS, and Yago),
have been used to conduct experiments which evaluate the effectiveness of our sequential
anonymization for KGs (cfr. Chapter 5). These datasets are organized in snapshots with a
different number of edges and nodes. Each snapshot is generated by adding and removing
nodes/edges of its previous snapshot. However, some snapshots of these datasets have
very few edges and it is impractical that a data provider will publish a new version of
their dataset which contains very few edges. Therefore, we assume that the data provider
will publish the new version of their dataset every time the number of edges their dataset
has reached a specific threshold and the threshold will be the same for generating all of
the snapshots. Then, we generate 50 snapshots for each dataset by merging continuous
raw snapshots such that the standard deviation of the number of edges of the generated
snapshots is minimized. So, all snapshots have a similar number of edges.

Since KGs can also illustrate directed graphs, we use three directed graphs (i.e., Email-
temp, Bitcoin Alpha, and DBLP) to evaluate the effectiveness of our anonymization so-
lutions (Chapters 3, 4, and 5) comparing to those for directed graphs in [10, 60]. Email-
Eu-core, Google+, and Freebase have been used to evaluate our anonymization solutions
for KGs (Chapters 4 and 5). Finally, we used Email-temp, ICEWS, and Yago to perform
experiments on our sequential anonymization solution (Chapter 5).

Appendix C

Publications

1. Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Clusters-Based Anonymiza-
tion of Directed Graphs”. Proceedings of the IEEE International Conference on
Collaboration and Internet Computing, 2019.

Abstract: Social network providers anonymize graphs storing users’ relationships to
protect users from being re-identified. Despite the fact that most of the relationships
are directed (e.g., follows), few work (e.g., the Paired k-degree [10] and K-In&Out-
Degree Anonymity [60]) have been designed to work with directed graphs. In this pa-
per, we show that given a graph, DGA [10] and DSNDG-KIODA [60] are not always
able to generate its anonymized version. We overcome this limitation by present-
ing the Cluster-based Directed Graph Anonymization Algorithm (CDGA) and prove
that, by choosing the appropriate parameters, CDGA can generate an anonymized
graph satisfying both the Paired k-degree [10] and K-In&Out-Degree Anonymity [60].
Also, we present the Out- and In-Degree Information Loss Metric to minimize the
number of changes made to anonymize the graph. We conduct extensive experiments
on three real-life datasets to evaluate the effectiveness of CDGA and compare the
quality of the graphs anonymized by CDGA, DGA, and DSNDG-KIODA. The ex-
perimental results show that we can generate anonymized graphs, by modifying less
than 0.007% of edges in the original graph.

2. Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Clusters-Based Anonymiza-
tion of Knowledge Graphs”. Proceedings of the International Conference on Applied
Cryptography and Network Security, 2020.

Abstract: While knowledge graphs (KGs) are getting popular as they can formalize
many types of users’ data in social networks, sharing these data may reveal users’
identities. Although many protection models have been presented to protect users in
anonymized data, they are unsuitable to protect the users in KGs. To cope with this
problem, we propose k-Attribute Degree (k-ad), a model to protect users’ identities in
anonymized KGs. We further present information loss metrics tailored to KGs and a
cluster-based anonymization algorithm to generate anonymized KGs satisfying k-ad.

102

APPENDIX C. PUBLICATIONS 103

Finally, we conduct experiments on five real-life datasets to evaluate our algorithm
and compare it with previous work.

3. Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari. ”Privacy-Preserving Sequen-
tially Publishing of Knowledge Graphs”. Proceedings of the IEEE International
Conference on Data Engineering, accepted, 2021.

Abstract: Knowledge graphs (KGs) are widely shared because they can model both
users’ attributes as well as their relationships. Unfortunately, adversaries can re-
identify their victims in these KGs by using a rich background knowledge about
not only the victims’ attributes but also their relationships. A preliminary work to
deal with this issue has been proposed in [22] which anonymizes both user attributes
and relationships, but this is not enough. Indeed, adversaries can still re-identify
target users if data providers publish new versions of their anonymized KGs. We
remedy this problem by presenting the kw-Time-Varying Attribute Degree (kw-tad)
principle that prevents adversaries from re-identifying any user appearing in w contin-
uous anonymized KGs with a confidence higher than 1

k . Moreover, we introduce the
Cluster-based Time-Varying Knowledge Graph Anonymization Algorithm to generate
anonymized KGs satisfying kw-tad. Finally, we report the results of the experiments
we have done on six real-life datasets to evaluate our algorithm and compare it with
previous work.

	Introduction
	Contributions
	Anonymization of Directed Graphs
	Anonymization of Knowledge Graphs
	Sequential Anonymization of Knowledge Graphs
	Personalized Anonymization of Knowledge Graphs

	Thesis Organization
	Related Publications

	Related Work
	Introduction
	Anonymization of Relational Data
	Anonymization of Graphs
	De-anonymization of Knowledge Graphs
	Sequential Anonymization of Released Datasets
	Personalized Anonymization

	Anonymization of Directed Graphs
	Introduction
	Anonymizing Directed Graphs
	Adversaries' Background Knowledge
	Anonymity of Directed Graphs

	Cluster-based Anonymization
	Overview
	Information Loss Metric
	Algorithms

	Experiments
	Datasets
	Tuning CDGA
	Evaluating the Degree Decrement
	Comparative Analysis

	Anonymization of Knowledge Graphs
	Introduction
	Anonymizing Knowledge Graphs
	Adversary Background Knowledge
	Anonymity of Knowledge Graphs

	Information Loss Metrics
	Attribute and Degree Information Loss
	The Attribute Truthfulness Information Loss

	Cluster-Based Knowledge Graph Anonymization
	Users' Points Generation
	Clusters Generation
	Knowledge Graph Generalization

	Experiments
	Datasets
	Evaluating Users' Points
	Tuning CKGA
	Evaluating the Truthfulness of Anonymized KGs
	Comparative Analysis

	Sequential Anonymization of Knowledge Graphs
	Introduction
	Identity Protection in Sequential Publishing of Knowledge Graphs
	Adversary Background Knowledge
	Protection Model

	Algorithm
	Overview
	Attribute Degree Sequence Table
	Clusters Generation
	Privacy Analysis

	Experiments
	Datasets and Settings
	Tuning CTKGA
	Performance Evaluation
	Comparative Evaluation

	Conclusion and Future Work
	Conclusion
	Future work
	Personalized Anonymization of Knowledge Graphs
	Other Research Directions

	Appendices
	Notations and abbreviations
	Abbreviations
	Notations

	Datasets
	Publications

