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Abstract
As it has been recently shown, Parikh images of languages of nondeterministic one-register automata
are rational (but not semilinear in general), but it is still open if the property extends to all register
automata. We identify a subclass of nondeterministic register automata, called hierarchical register
automata (HRA), with the following two properties: every rational language is recognised by a HRA;
and Parikh image of the language of every HRA is rational. In consequence, these two properties
make HRA an automata-theoretic characterisation of languages of nondeterministic register automata
with rational Parikh images.
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1 Introduction

Register automata, also know as finite-memory automata, introduced over 25 years ago by
Francez and Kaminski [14], are nondeterministic finite-state devices recognising languages
over infinite alphabets. They are equipped with a finite number of registers that can store
data values (atoms) from an infinite data domain. A register automaton inputs a string
of data values (a data word) and compares each consecutive input to its registers; based
on this comparison and on the current control state, it chooses a next control state and
possibly stores the input value in one of its registers. The only allowed comparisons of data
values considered in this paper are equality and inequaltiy tests. An automaton can also
guess a fresh data value different from the ones seen currently in the input or stored in
registers, and store it in some register (we thus consider nondeterministic register automata
with guessing [24]). Likewise one may define register context-free grammars [6], [1, Sect.5].

Register automata lack most of the good properties of finite automata, like determinisation
or closure properties. In particular, no satisfactory characterisation in terms of rational
(regular) expressions is known. Indeed, all known generalisations of Kleene’s theorem for
register automata either apply to a restricted subclass of the model [17], or introduce an
involved syntax significantly extending the concept of rational expressions [19, 18], or rely on
a richer algebraic structure than the free monoid of data words [3].

Register automata are expressively equivalent to orbit-finite automata [5, 6], a natural
extension of finite automata where input alphabets and state spaces are possibly infinite, but
finite up to permutation of the data domain (such sets are called orbit-finite). Along these
lines, we focus on a natural extension of rational expressions, which differ from the classical
ones just by allowing for orbit-finite unions instead of only finite ones. In other words, we
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50:2 Parikh Images of Register Automata

consider the class of rational languages, defined as the smallest class of languages containing
all single-word languages, and closed under concatenation, star, and orbit-finite unions. In
particular, the class contains the empty language, all finite and all orbit-finite languages.

Languages of register automata are not rational in general, even in case of deterministic
one-register automata. Kleene theorem may be however recovered, at least in case of automata
with one register, when commutative images (Parikh images) are considered: the language of
every one-register automaton is Parikh-equivalent to (i.e., has the same Parikh image as) a
rational language [16]. An analogous result holds for one-register context-free grammars [16].

▶ Example 1. Fix the data domain Atoms = {0, 1, 2, . . .}. As a working example we will
use the language L1 consisting of all nonempty words over Atoms of length divisible by 3,
where every three consecutive letters are pairwise different (we write ̸=(a, b, c) as a shorthand
for a ̸= b ̸= c ̸= a, to concisely express pairwise inequality of three atoms):

L1 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a2, a3, a4), ̸=(a3, a4, a5), . . .}.

The language is recognised by a deterministic two-register automaton but it is not rational
(cf. Section 3). It is however Parikh-equivalent to a larger language L2, where the pairwise
inequality constraint is imposed at consecutive disjoint triples of positions only:

L2 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a4, a5, a6), . . .},

which is defined by the following rational (regular) expression

L2 =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

abc
)∗

(1)

and is thus rational. The formal definition of rational languages will be given in Section 3;
here we note that the union is indexed by the set Atoms(3) = {⟨abc⟩ ∈ Atoms3 : ̸=(a, b, c)}
of all triples of pairwise-distinct atoms, which is infinite but orbit-finite, i.e., finite up to
permutations of Atoms (in fact, it is one orbit).

The language L1 is Parikh-equivalent to L2 as every w = a1a2 . . . a3n ∈ L2 can be
transformed, by swapping letters, to a word in w′ ∈ L1.

Indeed, consider the first two triples (a1, a2, a3) and (a4, a5, a6) in w. We keep the first
triple in w′. For the fourth position of w′, we choose a letter from {a4, a5, a6} − {a2, a3}, say
a6. For the fifth position we choose {a4, a5} − {a3}, say a4. We note that both the choices
are possible due to pigeon-hole principle. Finally, at the sixth position of w′ we place the
remaining letter a5. Then we consider next two triples, (a5, a4, a6) and (a7, a8, a9), and treat
them analogously by swapping a7, a8 and a9 accordingly. Continuing in this way we finally
arrive at a word in w′ ∈ L1. ⌟

Contribution. We contribute to understanding of expressive power of nondeterministic
register automata (NRA), by investigating sets of data vectors obtainable as commutative
images (Parikh images) of their languages. Parikh images of rational languages we call
rational as well. Here are our contributions:
(1) We identify a syntactic subclass of NRA, called hierarchical register automata (HRA).
(2) We show that every rational language is recognised by a HRA.
(3) We show that Parikh images of HRA languages are rational (as a set of data vectors).
(4) As a corollary, we deduce that an NRA has rational Parikh image if, and only if it is

Parikh-equivalent to some HRA (with, possibly, more registers).
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These results are a step towards the ultimate (but still unreachable) goal: generalise
the main result of [16], namely rationality of Parikh images of nondeterministic 1-register
automata, to all NRA. Point (3) is an extension from 1-NRA to all HRA. In consequence of
(4), the ultimate goal can be equivalently achieved by proving that every nondeterministic
register automaton is Parikh-equivalent to a hierarchical one. Finally, we believe that the
subclass of HRA (1) is interesting on its own, as it seems to be equally well-behaved as
one-register automata.

Related research. Register automata have been intensively studied with respect to their
foundational properties [14, 23, 17, 21]. Following the seminal paper of Francez and Kamin-
ski [14], subsequent extensions of the model allow for comparing data values with respect
to some fixed relations such as a total order, or introduce alternation, variations on the
allowed form of nondeterminism, etc. The model is well known to satisfy almost no semantic
equivalences that hold for classical finite automata, in particular register automata admit no
satisfactory characterizations in terms of regular expressions [19, 18] or logic [21, 10]. There
just are few positive results: simulation of two-way nondeterministic automata by one-way
alternating automata with guessing [1]; Myhill-Nerode-style characterisation of languages of
deterministic automata [15, 5, 6]; and the well-behaved class of languages definable by orbit-
finite monoids [2], characterised in terms of logic [9] and a syntactic subclass of deterministic
register automata [8]. Register automata have been also intensively studied with respect to
their applications to XML databases and logics [12, 21, 10, 24].

Other extensions of finite-state machines to infinite alphabets include: abstract refor-
mulation or register automata, known as orbit-finite automata, or nominal automata, or
automata over atoms) [5, 6, 1]; symbolic automata [11]; pebble automata [20]; and data
automata [4, 7] (the list is illustrative).

2 Orbit-finite sets

Sets with atoms. Our definitions rely on basic notions and results of the theory of sets
with atoms [1], also known as nominal sets [22]. In this section we recall, following [16],
what is necessary for understanding of our arguments. This paper is a part of a uniform
abstract approach to register automata in the realm of orbit-finite sets with atoms, developed
in [5, 6, 1].

Fix a countably infinite set Atoms, whose elements we call atoms. Informally speaking, a
set with atoms is a set that can have atoms, or other sets with atoms, as elements. Formally,
we define the universe of sets with atoms by a suitably adapted cumulative hierarchy of
sets, by transfinite induction: the only set of rank 0 is the empty set; and for a cardinal γ,
a set of rank γ may contain, as elements, sets of rank smaller than γ as well as atoms. In
particular, nonempty subsets X ⊆ Atoms have rank 1. Sets containing no atoms, whose
elements contain no atoms, and so on, we call pure (or atomless).

Denote by Perm the group of all permutations of Atoms. Atom permutations π :
Atoms → Atoms act on sets with atoms by consistently renaming all atoms in a given set.
Formally, by another transfinite induction we define π(X) = {π(x) : x ∈ X}. Via standard
set-theoretic encodings of pairs or finite sequences we obtain, in particular, the pointwise
action on pairs π(x, y) = (π(x), π(y)), and likewise on finite sequences. For pure sets X,
π(X) = X for every π ∈ Perm.

We restrict to sets with atoms that only depend on finitely many atoms, in the following
sense. A support of x is any set S ⊆ Atoms such that the following implication holds for
all π ∈ Perm: if π(s) = s for all s ∈ S, then π(x) = x. An element (or set) x is finitely
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supported if it has some finite support; in this case x has the least support, denoted supp(x),
called the support of x (cf. [1, Sect. 6]), [22, Prop. 2.3], [6, Cor. 9.4]). Sets supported by ∅ we
call equivariant. For instance, given a, b ∈ Atoms, the support of the set

Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a, an = b}

is {a, b}; every pure set is equivariant; the support of a sequence ⟨a1 . . . an⟩ ∈ Atoms∗,
encoded as a set in a standard way, is the set of atoms {a1, . . . , an} appearing in it; and the
support of a function f : Atoms → N such that dom(f) = {a ∈ Atoms : f(a) > 0} is finite,
is exactly dom(f).

From now on, we shall only consider sets with atoms that are hereditarily finitely supported
(called briefly legal), i.e., ones that are finitely supported, whose every element is finitely
supported, and so on.

Orbit-finite sets. Two (elements of) sets with atoms x, y are in the same orbit if π(x) = y

for some π ∈ Perm. This equivalence relation splits every set with atoms X into equivalence
classes, which we call orbits in X. A (legal) set is orbit-finite if it splits into finitely many
orbits. Examples of orbit-finite sets are: Atoms (1 orbit); Atoms−{a} for some a ∈ Atoms
(1 orbit); Atoms2 (2 orbits: diagonal {⟨a, b⟩ : a = b} and non-diagonal {⟨a, b⟩ : a ̸= b});
Atoms3 (5 orbits, corresponding to equality types of triples); {1, . . . , n} × Atoms (n orbits,
as π(i) = i for every i ∈ N and π ∈ Perm, since {1, . . . , n} is pure); the set of non-repeating
n-tuples of atoms Atoms(n) = {a1 . . . an ∈ Atomsn : ai ̸= aj for every 1 ≤ i < j ≤ n} (1
orbit). On the other hand, the set Atoms∗ is an example of an orbit-infinite set.

A finer equivalence relation is defined using S-atom permutations, i.e., permutations that
fix a finite set S ⊆ Atoms. Each orbit splits into finitely many S-orbits (cf. [1, Sect. 3.2]).
For instance, for every a ∈ Atoms, the set Atoms2 splits into four {a}-orbits: {⟨a, a⟩},
{⟨a, b⟩ : b ̸= a}, {⟨b, a⟩ : b ̸= a}, {⟨b, c⟩ : b, c ̸= a}.

Given a family (Xi)i∈I of sets indexed by an orbit-finite set I, the union
⋃

i∈I Xi we call
orbit-finite union of sets Xi. (Formally, not only each set Xi is assumed to be legal, but also
the indexing function i 7→ Xi.) As an example, consider (Lab)b∈Atoms. The indexing function
b 7→ Lab is supported by {a}, and so is the union:⋃

b∈Atoms
Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a}.

Orbit-finite sets are closed under Cartesian products, subsets, and orbit-finite unions: if each
of Xi is orbit-finite, their union

⋃
i∈I Xi is orbit-finite too [1, Sect. 3].

3 Rational sets

In this section we recall the definition of rational sets of data words and data vectors
introduced in [16], and state and prove its useful closure properties.

Data words and vectors. By a finite multiset over a set (an alphabet) Σ we mean any
function v : Σ → N such that v(α) = 0 for all α ∈ Σ except finitely many. We define the
domain of v as dom(v) = {α ∈ Σ : v(α) > 0}, and its size as |v| =

∑
α∈dom(v) v(α) (the

same notation is used for the size of a set, and for the length of a word). The Parikh image
(commutative image) of a word w ∈ Σ∗ is the multiset Par(w) : Σ → N, where Par(w)(α) is
the number of appearances of a letter α ∈ Σ in w. For a language L ⊆ Σ∗, its Parikh image
is Par(L) = {Par(w) : w ∈ L}. Two languages L,L′ ⊆ Σ∗ are Parikh-equivalent if they
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have the same Parikh images: Par(L) = Par(L′). Overloading the notation, we write |w|
for the length of a word w, and hence |Par(w)| = |w|. We order multisets pointwise: v ⊑ v′

if v(α) ≤ v′(α) for all α ∈ Σ. The zero (empty) multiset 0 satisfies 0(α) = 0 for every α ∈ Σ.
Thus 0 = Par(ε). A singleton {α} that maps α to 1 and all other letters to 0, is written as
α, omitting brackets {}. Addition of multisets is pointwise: (v + v′)(α) = v(α) + v′(α) for
every α ∈ Σ; likewise subtraction v − v′, for v′ ⊑ v.

When Σ is an orbit-finite alphabet, words w ∈ Σ∗ are traditionally called data words,
languages L ⊆ Σ∗ are called data languages, and finite multisets v : Σ → N are called data
vectors.

Orbit-finite unions. Consider a family of sets X . We say that X is closed under orbit-finite
unions if for every family (Xi)i∈I of sets Xi ∈ X indexed by an orbit-finite set I, the union⋃

i∈I Xi belongs to X . We instantiate below this abstract definition to families X of sets of
data words and data vectors.

Rational data languages. We consider data languages over a fixed orbit-finite alphabet
Σ. As usual, we define concatenation of two data languages LL′ = {ww′ : w ∈ L,w′ ∈ L′},
and the Kleene star (iteration): L∗ = {w1 . . . wn : n ≥ 0, w1, . . . , wn ∈ L}. Let rational data
languages be the smallest class of data languages that contains that contains {ε}, all singleton
languages {σ} containing a single one-letter word σ ∈ Σ, and is closed under concatenation,
iteration, and orbit-finite unions. In particular the empty language, all finite languages and
all orbit-finite ones are rational. For finite Σ we obtain the classical rational (regular) sets.
As expected, without the Kleene star we obtain exactly sets of words of bounded length, or
equivalently (cf. [16, Lemma 1]) orbit-finite languages.

When convenient, we may speak of a rational expression, by which we mean a formal
derivation of a rational language according to the closure rules listed above, in the form of
well-founded tree. Concretely, a derivation of

⋃
i∈I Li is the function mapping every i ∈ I to

a derivation of Li (a node in a tree whose children are labeled by I), a derivation of LL′ is a
pair of derivations of L and L′ (a binary node), a derivation of L∗ is just a derivation of L
(a unary node), and a derivation of {ε} or {σ} is a leaf node.

▶ Example 2. Continuing Example 1, the language L2 is rational, as it can be presented by
a rational expression:

L2 =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

{a}{b}{c}
)∗
.

For readability, in the sequel we omit brackets {} when denoting singletons, as in (1). On the
other hand, one easily shows that the language L1 is not rational (e.g., using Proposition 12
from Section 4 and Theorem 13 from Section 5).

Rational sets of data vectors. We consider sets of data vectors over a fixed orbit-finite
alphabet Σ. Let addition of two sets X,Y of data vectors be defined by Minkowski sum

X + Y = {x+ y : x ∈ X, y ∈ Y },

and let the additive star X∗ contain all finite sums of elements of X:

X∗ = {x1 + . . .+ xn : n ≥ 0, x1, . . . , xn ∈ X}.
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50:6 Parikh Images of Register Automata

We define rational sets of data vectors as the smallest class of sets of data vectors that
contains {0}, all singletons {σ} where σ stands for the ’unit’ data vector over Σ that maps
σ to 1 and all other letters to 0, and is closed under addition, additive star, and orbit-finite
unions. In particular, the empty set, all finite sets and all orbit-finite sets of data vectors are
rational.

▶ Example 3. Continuing Example 2, the Parikh image of L1 (and L2) is rational (for
readability we keep omitting brackets {}):

Par(L1) =
( ⋃

a,b,c∈Atoms, ̸=(a,b,c)

a+ b+ c
)∗
.

▷ Claim 4. (1) Rational sets of data vectors are exactly Parikh images of rational data
languages. (2) Par(L) is rational if, and only if, L is Parikh-equivalent to a rational data
language.

▶ Remark 5. The classical notion of rational sets in an arbitrary monoid ([13, Chapter
VII]) can be generalised along the same lines as above to sets with atoms, by considering
orbit-finite unions instead of finite ones. In this paper we stick to monoids of data words and
data vectors, over an orbit-finite alphabet.

Closure properties. As tools to be used later, we prove that rationality of a language is
preserved by the restriction to a subset of its alphabet, as well as by substitution by rational
languages. The same preservation property holds for languages with rational Parikh images.

▶ Lemma 6. If a language L ⊆ Σ∗ has rational Parikh image (resp. is rational) and Γ ⊆ Σ
then the restriction L ∩ Γ∗ has also rational Parikh image (resp. is rational).

Proof. Intuitively speaking, it is enough to syntactically remove, in the rational expression
defining Par(L), every appearance of a letter σ ∈ Σ − Γ.

Formally, we proceed by induction on a derivation of L. By Claim 4(2) we assume,
w.l.o.g., that the language L is rational.

The induction base: when L = {σ} is a singleton, σ ∈ Σ, then

L ∩ Γ∗ =
{
L if σ ∈ Γ,
∅ otherwise,

and in each case L ∩ Γ∗ is rational. The induction step follows immediately as restriction
commutes with all the operations involved:

(LK)∩Γ∗ = (L∩Γ∗)(K∩Γ∗) L∗∩Γ∗ = (L∩Γ∗)∗ ( ⋃
i∈I

Li

)
∩Γ∗ =

( ⋃
i∈I

Li∩Γ∗)
. ◀

Consider a language L over an orbit-finite alphabet Σ and a (legal) family of languages
K = (Kσ)σ∈Σ over an alphabet Γ, indexed by Σ. We use the anonymous function notation

σ 7→ Kσ.

The substitution L(K) is the language over Γ containing all words obtained from some word
σ1σ2 . . . σn ∈ L, by replacing every letter σi by some word from Kσi :

L(K) =
⋃

σ1σ2...σn∈L

Kσ1Kσ2 . . .Kσn
.
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▶ Example 7. As usual, let L+ = L∗L. Consider the language L1 from Example 1 and
Σ = Γ = Atoms. By the equivariant substitution Ka = a+, or a 7→ a+, we obtain the
language L1(K) ⊆ Atoms∗ containing words, where each three consecutive maximal constant
infixes use three distinct letters (each two consecutive maximal constant infixes use two
distinct letters by the very definition), and the total number of these infixes is divisible by 3.

▶ Lemma 8 ([16], Lemma 5). If L and all languages Kσ have rational Parikh images (resp. are
rational) then the substitution L(K) has also rational Parikh image (resp. is rational).

4 Register automata

We define the model of nondeterministic register automata, and its syntactic subclass of
hierarchical automata.

Nondeterministic register automata (NRA). From now on we mostly consider input
alphabets of the form Σ = H × Atoms, where H is a finite pure (atomless) set.

Let k ≥ 1. In the sequel we consistently use variables xi, x
′
i, for 1 ≤ i ≤ k, to represent

the value of ith register at the start (pre-value) and at the end (post-value) of a transition,
respectively. We also consistently use the variable y to represent an input atom. A non-
deterministic k-register automaton (k-NRA) A consists of: a finite set H (finite component of
the alphabet), a finite set of control locations Q, subsets I, F ⊆ Q of initial resp. accepting
locations, and a finite set ∆ of transition rules of the form

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k)) (2)

where q, q′ ∈ Q, h ∈ H, and the transition constraint φ(x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k) is a

Boolean combination of equalities involving the variables x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k. The

constraint specifies possible relation between the register pre-values (x1, x2 . . . xk), input
atom (y), and register post-values (x′

1, x
′
2 . . . x

′
k) resulting from a transition. If φ entails the

equality xi = x′
i, we say that the ith register is preserved by the transition rule.

A configuration ⟨q, (a1a2 . . . ak)⟩ ∈ Q × Atoms(k) of A, written briefly q(a1a2 . . . ak),
consists of a control location q ∈ Q and (pairwise distinct1) register values ai ∈ Atoms, for
1 ≤ i ≤ k. We note that different registers can not store the same value. For each tuple
r = a1a2 . . . ak ∈ Atoms(k), atom b ∈ Atoms, and tuple r′ = a′

1a
′
2 . . . a

′
k ∈ Atoms(k) that

satisfy the transition constraint, i.e., (a1a2 . . . ak, b, a
′
1a

′
2 . . . a

′
k) |= φ, a rule (2) induces a

transition

q(a1a2 . . . ak) ⟨h,b⟩−−−→ q′(a′
1a

′
2 . . . a

′
k)

labeled by ⟨h, b⟩ from the configuration q(a1a2 . . . ak) to the configuration q′(a′
1a

′
2 . . . a

′
k).

The semantics of k-NRA is defined as in case of classical NFA, with configurations considered
as states and Σ = H × Atoms as an alphabet. A run of A over a data word w =
⟨h1, b1⟩⟨h2, b2⟩ . . . ⟨hn, bn⟩ ∈ Σ∗ is any sequence of configurations q0(r0), q1(r1), . . . , qn(rn),
related by transitions labeled by consecutive letters of w:

q0(r0) ⟨h1,b1⟩−−−−→ q1(r1) ⟨h2,b2⟩−−−−→ . . .
⟨hn,bn⟩−−−−−→ qn(rn), (3)

1 Distinctness of register values is not relevant for expressiveness of register automata.
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50:8 Parikh Images of Register Automata

where q0(r0) is an initial configuration (i.e., q0 ∈ I). A run is accepting if the ending
configuration qn(rn) is accepting (i.e., qn ∈ F ). A data word w is accepted by A if A has an
accepting run over w.

Let Lq(r) q′(r′)(A) be the set of data words having an accepting run (3) that starts in
q0(r0) = q(r) and ends in qn(rn) = q′(r′). The language L(A) recognised by A is defined as:

L(A) =
⋃

q∈I,q′∈F,r,r′∈Atoms(k)

Lq(r) q′(r′)(A). (4)

▶ Remark 9. The above definition allows for guessing, i.e., an automaton may nondetermin-
istically choose, and store in its register, an atom not yet seen in the input (cf. [24]). In
particular, the initial register values are guessed nondeterministically.
▶ Remark 10. An alphabet H × Atoms and configurations Q× Atoms(k) are orbit-finite.
The model of NRA is a special case of the abstract notion of orbit-finite automata (cf. [1,
Sect. 5.2]), where alphabets and state spaces may be arbitrary orbit-finite sets. For alphabet
of the form Σ = H × Atoms, where H is pure and finite, NRA are expressively equivalent to
orbit-finite automata [1, Sect. 5.2].

Hierarchical register automata (HRA). We define a syntactical subclass of NRA by re-
stricting transition constraints. The idea is to update registers in a hierarchical manner: if a
transition rule does not preserve ith register, pre- and post-values of every larger register
(jth register, for j > i) are unspecified. Formally, a HRA is a NRA where each transition
constraint φ has the following form:

φ ≡ ψ(x1, x2, . . . , xi, y, x
′
i) ∧

∧
1≤j<i

xj = x′
j , (5)

for some i ∈ {1, . . . , k}. The sub-formula ψ describes how the post-value of ith register (x′
i)

depends on the relation between the input atom (y) and the pre-values of ith register and
smaller ones (x1, x2, . . . , xi). Note that all smaller registers are preserved, and larger ones are
not mentioned in φ (and hence their pre- and post-values are unspecified, which means that
any pre- and post-values are allowed). Note also that the constraint φ allows for updating
ith register (according to the sub-constraint ψ) as well as every larger register (arbitrarily);
the former we call specified update, and the latter one we call unspecified one. The number
i we call the level of the transition constraint, or of the transition (rule) it appears in. As
extreme examples, the following all-registers-preserving constraint∧

1≤j≤k

xj = x′
j ̸= y, (6)

as well as the most liberal constraint true satisfied by any pre- and post-values of registers
and any input atom, both are in the syntactic form (5), at level k and 1, respectively.

Intuitively speaking a HRA, when restricted to transition rules of some fixed level i,
resembles a NRA with just one (ith) register, with all larger registers removed, and all smaller
registers frozen to some fixed values. For i ≤ k and a tuple of atoms r ∈ Atoms(i), we may
define a refined semantics of a k-HRA A as the language of words accepted by a run where
the values of the first (smallest) i registers are continuously r and hence never change. We
denote the so defined language by Lr(A).

W.l.o.g. we may assume that a HRA is orbitized, i.e., its every transition constraint
φ(x1, . . . , xi, y, x

′
1, . . . , x

′
i) at level i defines one orbit (one equality type) in Atoms2i+1. For

instance, the constraint (6) defines one orbit, while true does not.
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▶ Example 11. Let H be a singleton, omitted below; we thus consider Atoms as an alphabet.
The following 2-HRA recognises the language L2 from Example 1. The control locations are
Q = {q1, q2, q3}, with single initial and accepting one I = F = {q3}. The automaton has the
following three transition rules:

(q3(x1, x2), y, x1 = x′
1 ̸= y ∧ x2 = x′

2 ̸= y, q2(x′
1, x

′
2)),

(q2(x1, x2), y, x1 = x′
1 ∧ x2 = x′

2 = y, q1(x′
1, x

′
2)),

(q1(x1, x2), y, x1 = y, q3(x′
1, x

′
2)).

the first two at level 2 and the last one at level 1. The post-value x′
2 of the second register

is unspecified in the last two rules. Moreover, the post-value x′
1 of the first register is also

unspecified in the last rule, and therefore the automaton is not orbitized. It can be easily
made orbitized by replacing this last rule with the following ones:

(q1(x1, x2), y, x1 = y = x′
1, q0(x′

1, x
′
2)),

(q1(x1, x2), y, x1 = y ̸= x′
1, q0(x′

1, x
′
2)).

It is not difficult to show that in terms of expressiveness HRA are a strict subclass of
NRA:

▶ Proposition 12. The language L1 from Example 1 is not recognised by any HRA.

Proof. Towards contradiction, suppose L1 is recognised by a k-HRA A. Consider a word
w = a1a2 . . . ak+2 ∈ Atoms∗ of length k+2 in which all letters are pairwise different (ai ̸= aj

for i ̸= j) and an accepting run π of A over w. Let ri be the valuation of registers in π after
reading ai.

We observe that each letter ai, for i < k+ 2, must be stored in a register in the considered
run π: ai it is the value of some register in ri. Indeed, suppose contrarily that ai is not the
value of any register in ri. By replacing this letter in w with ai+1 we obtain a word w′ where
two consecutive letters are equal, and hence w′ /∈ L1. On the other hand the run π is also an
accepting run over w′, and hence w′ ∈ L(A) – a contradiction.

Therefore we know that ai is the value of some ℓith register in ri, for every i = 1, . . . , k+1.
Note that this register with value ai is unique, and that it gets its value either by the
specified or unspecified update. We claim that ℓi < ℓi+1 for every i = 1, . . . , k. Indeed,
suppose ℓi ≥ ℓi+1 for some i. The inequality implies that either the value ai stored in ℓith
register is overwritten by the specified update (when ℓi = ℓi+1), or may be overwritten by an
unspecified one (when ℓi > ℓi+1). By replacing ai in w with ai+2 we obtain a word w′′ /∈ L1.
On the other hand the run π is easily modified into an accepting run over w′′ by replacing ai

with ai+2 in ri. In consequence, w′′ ∈ L(A) – a contradiction, similarly as before.
We have thus an increasing sequence 1 ≤ ℓ1 < ℓ2 < . . . < ℓk+1 ≤ k, thus yielding a

contradiction. ◀

As an intermediate corollary of Proposition 12 and Theorem 13 (cf. Section 5) we deduce
that L1 is not rational either.

5 Parikh-equivalence of HRA and rational languages

As our main contribution, we prove that Parikh images of rational languages (rational sets
of data vectors) coincide with Parikh images of HRA (cf. Corollary 22). This is split into two
parts: on one side we prove that rational data languages are recognised by HRA, and on the
other side Parikh images of HRA languages are rational (as sets of data vectors):

FSTTCS 2021
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▶ Theorem 13. Rational data languages are recognised by HRA.

▶ Theorem 14. Parikh images of HRA languages are rational.

Proof of Theorem 13. We proceed by induction on derivation of a rational language. For
convenience we assume, w.l.o.g., that each orbit-finite sum is indexed by a subset of I ⊆
Atoms(n) of non-repeating n-tuples of atoms, for some n ∈ N. Indeed, every orbit-finite
union can be split into a finite union of single-orbit unions, and every single-orbit set J is
the image of an equivariant function f from such a set I (cf. [1, Sect. 3.2]), J = f(I), hence⋃

j∈J

Lj =
⋃
i∈I

Lf(i) =
⋃
i∈I

Ki

where Ki = Lf(i). Under this simplifying assumption we prove, by induction on derivation
of a rational language, the following claim (we say that a tuple s ∈ Atoms(n) supports x if
the set of n atoms appearing in s does so):

▷ Claim 15. For every rational language L over an alphabet of the form Σ = H × Atoms,
and every tuple s supporting its derivation, there is a HRA A such that Ls(A) = L.

We emphasise that we consider supports of derivations of rational languages, defined as
well-founded trees (cf. Section 3), instead of supports of languages themselves. Clearly, a
tuple supporting a derivation of a language also support the language itself.

The induction base, for L = {ε} or L = {σ} where σ ∈ Σ, is straightforward. The
induction step splits into three cases.

Case 1: L = L1 L2 Let s be a tuple of atoms supporting the derivation of L, and hence
also the derivations of L1 and L2. Let A1 and A2 be the HRA which, due to the induction
assumption, recognize Ls(A1) = L1 and Ls(A2) = L2. Let the automaton A initially run
A1, and from each accepting location of A1 nondeterministically choose either to continue
inside A1, or to run A2. We have Ls(A) = L, as required.

Case 2: L = K∗ This case is dealt with similarly to the previous one.

Case 3: L =
⋃

i∈I Li Let s be a tuple of atoms supporting the derivation of L, and hence
also the set I and the mapping i 7→ Li. Thus the concatenated tuple si supports Li (recall
that i is assumed for convenience to be a tuple of atoms). For an s-orbit J in I, let

LJ =
⋃
j∈J

Lj ⊆ L.

Consider an arbitrary s-orbit J in I (each orbit is treated separately). Fix an arbitrary
element i ∈ J and an automaton B such that, due to the induction assumption, recognizes
Lsi(B) = Li. Therefore, for every j = π(i) ∈ J , where π is an s-automorphism, the same
automaton B recognizes Lsj(B) = Lj . Let the automaton AJ initially guess i ∈ J and put it
into the smallest registers not occupied by s, and then run B. We have Ls(AJ) = LJ . The
language L is the union of finitely many languages LJ , and hence L is recognized by a HRA
that initially chooses an s-orbit J in I and then runs AJ . ◀

Proof of Theorem 14. We now focus on showing that Parikh images of languages of HRA
are rational. The proof proceeds by induction on the number of registers.



S. Lasota and M. Pattathurajan 50:11

Induction base. The induction base, i.e., rationality of Parikh images of 1-HRA languages,
follows immediately by the following result of [16]:

▶ Lemma 16 ([16], Theorem 6). Parikh images of 1-NRA languages are rational.

Altering paths. Before proceeding to the induction step we recall an immediate corollary of
another results of [16] (cf. Lemma 17 below). Given a k-HRA A = ⟨H,Q, I, F,∆⟩, we define
the language PA over the alphabet2 (Q× Atoms ×Q) ∪ (H × Atoms) containing words of
the form:

⟨q1, a1, p1⟩⟨h1, b1⟩⟨q2, a2, p2⟩⟨h2, b2⟩ . . . ⟨qn−1, an−1, pn−1⟩⟨hn−1, bn−1⟩⟨qn, an, pn⟩ (7)

(n ≥ 1) such that, for i = 1, . . . , n− 1, it holds ai ̸= ai+1 and

pi(air) ⟨hi,bi⟩−−−−→ qi+1(ai+1r′) (8)

is a transition of A at level 1 for some tuples r, r′ ∈ Atoms(k−1), and such that q1 ∈ I and
pn ∈ F . The atoms ai and ai+1 are here pre- and post-values of the first register, and r, r′

are pre- and post-values of the remaining k− 1 registers. Words in P are called altering paths.
Intutively, a letter ⟨q, a, p⟩ represents a run of A starting from a configuration q(ar′) and
ending in p(ar), for some r, r′ ∈ Atoms(k−1), such that the first register contains a and is
preserved along the run until the automaton reaches the configuration p(ar), from which the
automaton finally updates the first register. Along this run other registers may be updated.
As an immediate consequence3 of [16, Lemma 17] we get:

▶ Lemma 17. The altering path language PA of a 1-HRA A has rational Parikh image.

We observe that the altering path language of a k-HRA A is the same as the altering path
language of a 1-HRA A′ obtained from A by removing all registers except the first (smallest)
one, and all transition rules of level greater than 1. Therefore, as an immediate corollary of
Lemma 17 we get:

▷ Claim 18. For every k ≥ 1, the altering path language PA of k-HRA A has rational Parikh
image.

Induction step. We now proceed to the induction step. To this aim we fix k > 1 and
assume that languages of HRA with less than k registers have rational Parikh images. We
consider a fixed k-HRA A = ⟨H,Q, I, F,∆⟩ and aim at showing that Parikh image of L(A)
is rational. W.l.o.g. we assume that A is orbitized. Let Σ = H × Atoms denote the input
alphabet.

We construct a k-HRA Aqp by removing from A all transition rules that update (i.e., do
not preserve) the first register, and by taking q as the only initial location and p as the only
accepting one. Intuitively speaking, the first register is frozen in Aqp, in the sense that it is
never updated and thus keeps its initial value a along the whole run. For a ∈ Atoms, we
denote by

La(Aqp) =
⋃

r,s∈Atoms(k−1)

Lq(ar) p(as)(Aqp) ⊆ L(Aqp)

2 This is the unique place where we consider reacher alphabets than H × Atoms, for finite H.
3 Altering path languages considered in Lemma 17 in [16] start and end in fixed locations. The language

PA is thus a finite union of these languages.
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the subset of L(Aqp) consisting of words accepted by Aqp by a run where the value of the
first register is (continuously) a. We need to deduce from the induction assumption the
following claim:

▷ Claim 19. The languages La(Aqp) have rational Parikh images.

Before proving the above claim we use it to complete the proof Theorem 14. Consider the
language K = PA(S) obtained by applying the following substitution S to the language PA:

⟨q, a, p⟩ 7→ La(Aqp) ⟨h, b⟩ 7→ {⟨h, b⟩}.

In words, triples ⟨q, a, p⟩ are replaced by any word accepted by Aqp by a run where the value
of the first register is continuously a, while pairs ⟨h, b⟩ are preserved.

▷ Claim 20. L(A) = K.

We argue that both inclusions hold. The inclusion L(A) ⊆ K is shown by factorising each
accepting run of A by transitions that update the first register, of the form (8), so that each
word w ∈ L(A) factorizes into:

w = w1 ⟨h1, b1⟩w2 ⟨h2, b2⟩ . . . wn−1 ⟨hn−1, bn−1⟩wn, (9)

for wi ∈ Lai
(Aqipi

) for some atom ai and control locations qi, pi, and therefore w ∈ K. For
the reverse inclusion K ⊆ L(A) consider a word w ∈ K, necessarily of the form (9), due to an
altering path as in (7) and accepting runs πi of Aqipi

over words wi, where the first register
is continuously equal ai along πi. By concatenating these runs (considered as sequences of
configurations) one gets an accepting run π = π1π2 . . . πn of A over the word w, as required.
The transitions (8) confirm that π is a run since A is hierarchical: all these transitions are
all at level 1 and may perform (unspecified) updates of all other registers.

Having Claims 18, 19 and 20 one easily completes the proof of Theorem 14. Indeed,
Parikh image of K = PA(S) is rational due to Lemma 8, as Parikh images of PA and all
languages La(Aqp) are so due to Claim 18 and 19, respectively, and therefore the same holds
for L(A), due to Claim 20.

Proof of Claim 19. For every q, p ∈ Q we define a new (k− 1)-HRA A′
qp that behaves exactly

as Aqp except that the first register is removed. The removal of the register is compensated by
an additional bit in the finite component of the alphabet of A′

qp that informs the automaton
whether the input atom is equal to the (removed) first register or not.

Formally, the new automaton is A′
qp = ⟨{=, ̸=} ×H,Q, {q}, {p},∆′⟩, where the transition

rules ∆′ are defined as follows. Due to the assumption that A is orbitized (and hence so are
all automata Aqp), its every transition constraint (5) at level i, say, either entails the equality
y = x1, or the inequality y ̸= x1. The transition rules ∆′ are obtained from the transition
rules of Aqp (i.e., from transition rules of A at level greater than 1) by transforming each
transition rule

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k))

of Aqp to the following one:

(q(x1, x2 . . . xk), ⟨(∼, h), y⟩, φ′, q′(x′
1, x

′
2 . . . x

′
k))

where ∼∈ {=, ̸=} is chosen so that φ entails y ∼ x1, and φ′ is obtained from φ by removing
all (in)equalities referring to the first register.
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By induction assumption we know that Parikh image of A′
qp is rational, for every q, p ∈ Q.

For a ∈ Atoms, consider the following sub-alphabet (that fixes, intuitively, the value of the
first register to be a):

Σa = {⟨(=, h), a⟩ : h ∈ H} ∪ {⟨(̸=, h), b⟩ : h ∈ H, b ∈ Atoms − {a}} ⊆ Σ,

and define the languages Lqap as the restriction of L(A′
qp) to the sub-alphabet Σa:

Lqap := L(A′
qp) ∩ (Σa)∗.

By Lemma 6 we have:

▷ Claim 21. Parikh images of the languages Lqap are rational.

Finally, we observe that La(Aqp) is obtained from Lqap by applying the substitution (actually,
the projection):

⟨(∼, h), b⟩ 7→ {⟨h, b⟩}

and therefore also has rational Parikh image, as required. This completes the proof of
Claim 19, and hence also the proof of Theorem 14. ◁

◀

▶ Corollary 22. Parikh images of HRA languages and of rational languages coincide.

▶ Corollary 23. An NRA has rational Parikh image if, and only if, it is Parikh-equivalent to
some HRA.
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