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—— Abstract

A term rewriting system (TRS) is said to be sufficiently complete when each function yields some
value for any input. Proof methods for sufficient completeness of terminating TRSs have been well
studied. In this paper, we introduce a simple derivation system for proving sufficient completeness
of possibly non-terminating TRSs. The derivation system consists of rules to manipulate a set of
guarded terms, and sufficient completeness of a TRS holds if there exists a successful derivation for
each function symbol. We also show that variations of the derivation system are useful for proving
special cases of local sufficient completeness of TRSs, which is a generalised notion of sufficient
completeness.
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1 Introduction

This paper addresses a kind of reachability problem in transformation of labelled trees (i.e.
terms) by rules schematised as term rewriting systems (TRSs). The main concern is whether
all ground terms (i.e. terms without variables) can be transformed into terms consisting
only of special labels called constructors. When the problem is solved positively, the TRS
is said to be sufficiently complete. This property is useful in automated inductive theorem
proving of TRSs, and has largely been studied. One of the sufficient conditions for sufficient
completeness of a TRS is that it is terminating (strongly normalising) and quasi-reducible.
For terminating TRSs, various decision procedures of sufficient completeness have been
proposed [2, 9, 11].

On the other hand, only a few results [3, 4, 17] have been known about proof methods for
sufficient completeness of non-terminating TRSs. In recent work [10], the authors proposed
a framework for proving inductive theorems of possibly non-terminating TRSs. It is based
on a generalised notion of sufficient completeness, called local sufficient completeness, where
the problem concerns not all ground terms but only terms of specific form, specific sort, etc.
In [10], the authors introduced a derivation system for proving local sufficient completeness,
but it involves complicated notations and rules with complicated side conditions. In later
work [15], the authors gave a proof method based on a sufficient condition for local sufficient
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completeness. The method is applicable to some non-terminating TRSs for which the property
is difficult to show by the derivation system of [10]. However, the method of [15] works only
for TRSs that consist of functions on natural numbers and lists of natural numbers.

In the present paper, we introduce a simple derivation system for proving sufficient com-
pleteness of possibly non-terminating TRSs. The derivation system has rules to manipulate
a set of guarded terms, which are pairs of a term and a set of terms. Although the meaning
of a guarded term is not easy to grasp, we give its interpretation by introducing a notion
of well-founded induction schema. This notion plays an important role in the proof of the
correctness of our method based on the derivation system. It is easy to apply the method to
various non-terminating TRSs, and we give some examples of application of it.

We also introduce variations of the derivation system for proving two particular cases
of local sufficient completeness: local sufficient completeness with signature restriction and
local sufficient completeness with sort partition. Apart from the simplicity of the systems,
our method is different from the method of [10] in that a group of function symbols are
simultaneously tested for existence of successful derivations. In this respect, our proof method
can be seen as a natural extension of checking quasi-reducibility in the case of terminating
TRSs, i.e., it not only checks reducibility of f(¢y,...,t,) for each function symbol f but also
traces results of reduction to terms to which the induction hypothesis can be applied.

Related work. The notion of sufficient completeness was originally introduced in [6, 7].
Since then, numerous works have treated the property in the fields of algebraic specification
and term rewriting. In the literature, sufficient completeness has often been defined not w.r.t.
reduction but w.r.t. conversion. Sufficient completeness w.r.t. reduction, as in the present
paper, was introduced in [11]. In most cases, efforts have been devoted to TRSs consisting of
those functions for which transformations by reduction rules are always terminating.

In [17], Toyama studied sufficient completeness w.r.t. reduction in the light of a more
general notion of “reachability”. He also gave a proof method for reachability, and applied it
to some examples of left-linear non-terminating TRSs. Some of those examples are related
to local sufficient completeness with signature restriction in terms of the present paper.

In [3, 4], Gnaedig and Kirchner studied sufficient completeness w.r.t. reduction (called
C-reducibility) of possibly non-terminating TRSs. They treated only usual sufficient com-
pleteness, and did not address any kind of local sufficient completeness. Although their
system involves notions of abstract variables and narrowing, the process of proving sufficient
completeness has some similarity with ours. We give an example of a TRS for which the
method of [3, 4] does not work but our method works.

Organisation of the paper. The paper is organised as follows. In Section 2, we explain basic
notions and notations of term rewriting. In Section 3, we introduce a derivation system for
proving sufficient completeness of TRSs. In Section 4, we discuss local sufficient completeness
with signature restriction. In Section 5, we discuss local sufficient completeness with sort
partition. In Section 6, we conclude with suggestions for further work.

2 Preliminaries

In this section, we introduce some notations and notions from the field of term rewriting.
For detailed information about term rewriting, see, e.g. [1, 14, 16].

A many-sorted signature is given by a non-empty finite set S of sorts and a finite set F
of function symbols; each f € F is equipped with its sort declaration f: a3 X -+ X ay, —
where «g,...,a, €S (n>0). Wealso use f : a1 X+ X a, — ap to mean that f is equipped
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with the sort declaration, or to denote such a function symbol f itself. We use V to denote

the set of variables where F NV = () and each x € V has a unique sort o € S. The set of

variables with sort « is denoted by V<. Then the set T%(F, V) of terms of sort a is defined

inductively as follows:

1. If x € V* then x € T*(F,V).

22If feF, f:ra1x - xa, - aand t; € T*(F,V) for each i (1 < i < n) then
ft1, ... ty) € THF, V).

We define T'(F,V) = Uyes T(F, V), and sort(t) = a for each t € T*(F,V).

For a term t = f(t1,...,tn), its root symbol f is denoted by root(t). The set of variables
in a term t is denoted by V(t). A term ¢ is ground if V(t) = 0; the set of ground terms
is denoted by T'(F). We write f(Z) for a term f(z1,...,z,) where z1,...,x, are distinct
variables.

A context is a term C € T(FU{O |« € §},V) where FN{O* | « € S} = 0 and the
special symbol (0%, called a hole, is a term of sort . A context C with only one hole is
denoted by C[ ], and C[t] denotes the term obtained by filling the hole with a term ¢ of the
same sort. If s = C[¢] for some context C[ ], then ¢ is a subterm of s, denoted by ¢ < s.

A substitution is a mapping 6 : V — T'(F,V) such that sort(x) = sort(6(x)) for every
x €V, and dom(0) = {x € V | O(x) # x} is finite. A substitution 8 is ground if §(x) € T (F)
for every « € dom(f). The term obtained by applying a substitution  to a term ¢ is written
as tf. If 6, is a ground substitution and V(t) C dom(f,), the ground term t6, is called a
ground instance of t. We sometimes write f(t_> for a term f(#)0 where i is a sequence of
terms 16, ..., x,0.

A rewrite rule, written as [ — r, is an ordered pair of terms [ and r such that [ ¢ V,
V(r) C V(1) and sort(l) = sort(r). A term rewriting system (TRS, for short) is a finite set
of rewrite rules. For a TRS R, the binary relation —% on T'(F,V) is defined by s —x t iff
s = CIl0] and t = C|rd] for some | — r € R, some context C[ | and some substitution 6. The
reflexive transitive closure of —% is denoted by %. A term s is in normal form if s = t
for no term ¢. The set of terms in normal form is denoted by NF(R).

Let R be a TRS. The set D of defined symbols is given by D = {root(l) | | — r € R},
and the set C of constructors is given by C = F \ D. Terms in T'(C, V) are called constructor
terms, and terms in T'(C) are called ground constructor terms.

Now we define the notion of sufficient completeness w.r.t. reduction.

» Definition 1 (Sufficient completeness). A TRS R is sufficiently complete for a ground term
ty € T(F), denoted by SC(tg), if there exists a ground constructor term s, € T'(C) such that
tg R sq. R is (globally) sufficiently complete if SC(t,) for every ground term t, € T'(F).

Let R be a TRS. R is terminating if there exists no infinite sequence tg —x t1 > - .
R is quasi-reducible if f(t1,...,tn) ¢ NF(R) for every f(t1,...,t,) € T(F) with f € D and
t1,...,tn € T(C). The next proposition provides a criterion of sufficient completeness of R.
(For its proof, see, e.g. Proposition 2.4 of [10].)

» Proposition 2. Let R be a terminating TRS. Then, R is sufficiently complete if and only
if R is quasi-reducible.

In this paper we do not use the above proposition, but the proof method by applying our
derivation system can be seen as an extension of checking quasi-reducibility.

Next we introduce some notions on orders. A (strict) partial order is a binary relation
that is irreflexive and transitive. A partial order > on terms is monotonic if it is closed
under context, i.e. s > ¢ implies C[s] = C[t] for every context C] ]; it is stable if it is closed
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under substitution, i.e. s > t implies sf >~ tf for every substitution 0; it is well-founded if
there exists no infinite descending chain ty > t; > - - -; it has the subterm property if s <t
and s # ¢ imply ¢ > s.

A well-founded monotonic stable partial order with the subterm property is called a
simplification order, and many methods for constructing such an order are known (cf. [1, 16]).

3 A Simple Derivation System for Sufficient Completeness

In this section, we present a derivation system for proving sufficient completeness of TRSs.
We illustrate the proof method by applying it to some non-terminating TRSs.

In the following, we use a lexicographic path order as an order that is required to define
the derivation system.

» Definition 3 (Lexicographic path order). Let > be a partial order, called a precedence, on
the set F of function symbols. The lexicographic path order >y, on T'(F,V) induced by the
precedence > is defined inductively as follows: s >, ¢ iff
1. t e V(s) and s #t, or
2. s=f(s1,...y8m), t =g(t1,...,tn), and

a. there exists ¢ (1 < i <m) such that s; >, t or s, =t, or

b. f>gand s >, t; for every j (1 <j<n),or

c. f=g,5>pt; for every j (1 < j <n), and there exists ¢ (1 <i <m, i <n) such

that s1 =11, ..., si—1 = t;—1 and s; >y, ;.

Lexicographic path orders have the following properties.

» Proposition 4. Every lexicographic path order >, induced by any precedence > on F is
a simplification order. Furthermore, s >y, t implies V(t) C V(s) for every s,t € T(F,V).

» Lemma 5. Let > be a precedence on F such that f > g for every f € D and g € C. Then
the lexicographic path order >, induced by > satisfies sg >po ty for every sy € T(F)\T(C)
and ty € T(C).

Next we introduce the derivation system, which acts on a set of guarded terms.

» Definition 6 (Guarded term). A guarded term, denoted by t|H, consists of a term ¢ and a
set H of terms. We write HO for the set {uf | u € H}.

A derivation starts from a singleton set consisting of a guarded term of the form {t|{¢}}.
Intuitively, it means the premise of well-founded induction for ground instances of ¢ with
respect to the order >,,. Derivation rules subsequently transform the set of guarded terms?,

preserving the meaning of the well-founded induction schema (Definition 10).

» Definition 7 (Derivation). Let R be a TRS, and let >,, be a lexicographic path order
induced by some precedence > on F such that f > g for every f € D and g € C.
The derivation rules of the system are listed in Figure 1. It derives from a set of guarded
terms (given at the upper side) a set of guarded terms (given at the lower side) if the
side condition is satisfied.
For sets I', TV of guarded terms, we write I' ~ IV if IV is derived from I" by one of the
derivation rules. The reflexive transitive closure of ~~ is written as ~-.
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Decompose
Tu{t|H,... t,|H}

fec

Ezxpand
PUftlH}Y Ao} ={{z = f@)} | f €C, sort(z) = sort(f(T))}

T U{to;|Ho;}; where x € V(t) and & is a sequence of fresh variables

Simplify Delete

ru{t/H} ru{tH}
= t—= ————— Ju e H. t <o
TU {s|H} R S T u < <ipo U

Figure 1 Derivation rules for proving sufficient completeness.

The Fzxpand rule substitutes a variable in ¢ by each pattern with a constructor as its root
symbol, and yields the same number of guarded terms as the constructors. (The index i
ranges over a set isomorphic to {f € C | sort(xz) = sort(f(Z))}.) The Delete rule removes the
guarded term t|H if ¢ is less than some u € H with respect to >p,.

We have a lemma on preservation of variables occurring in guarded terms.

» Definition 8 (VP). For a set I' of guarded terms, VP(T') means that for every t|H € T
and every x € V(t), there exists w € H\ 'V such that x € V(u).

» Lemma 9. If "~ T” and VP(T') then VP(I').
The predicate about the well-founded induction schema is defined as follows.

» Definition 10 (WIS). For a set T of guarded terms, WIS(T') means that for every t|H € T
and every ground substitution o4, the following holds:

(Vu € H. Ywg <ipo uoy. SC(wy)) = SC(toy). (WIS1)
Now we prove a key lemma on the well-founded induction schema.
» Lemma 11. Let T ~~ IV and VP(T"). Then, WIS(I") implies WIS(T').
Proof. Let T ~» T” and VP(T'). We prove that if
(Yu € H'. Ywy <ipo uoy. SC(wy)) = SC(t'o,)
for every ¢'|H’ € I” and every ground substitution o,, then
(Vu € H. Ywy <ipo uoy. SC(wy)) = SC(toy)

for every t|H € I' and every ground substitution o,. The proof is by case analysis depending
on the rule used in the derivation step I" ~ I".

1 Actually, for any guarded term t|H in a derivation starting with the form {¢|{t}}, a singleton set H is
sufficient, but we prove lemmas in the general setting for future developments.
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(Decompose) Then I' = S U {f(t1,...,tn)|H'} and IV = Z U {t1]|H’, ..., t,|H'}, where f € C.
The case t|H € X follows directly from the hypothesis for IV. Thus, it remains to show the
case t|H = f(t1,...,tn)|H'. Let o4 be a ground substitution such that Vu € H. Yw, <y,
uog. SC(wy). Then, by the hypothesis for IV, we have SC(t;0,) for every i (1 < i < n).
Thus, since f € C, we have SC(f(t1,...,tn)0y).

(Ezpand) Then I' = SU{t'|H’} and IV = XU {t'0;|H'0;}i, where x € V(t'), & is a sequence of
fresh variables, and {o;};, = {{x — f(&)} | f € C, sort(x) = sort(f(Z))}. The case t|H € X
follows directly from the hypothesis for I. Thus, it remains to show the case t|H = t'|H’.
Let o4 be a ground substitution such that (8): Vu € H. Vwg <jpo uog. SC(wy). Our aim is
to show SC(to,). For this, we distinguish two cases.

1. Suppose that there exists an index ¢ such that to, = (tai)a; for some U;. Then, by
to;|Ho; € I, we know from the hypothesis for I' that if Vu € Ho;. Vwg <ipo uU;. SC(wyg)
then SC((to;)oy). Since to, = (to;)oy, it remains to show Yu € Hoy. Yw, <o uoy.
SC(wy). Suppose u € Ho; and wy <ipo ’LLU;. Then, there exists @t € H such that u = 1o;,
and we have wy <y, uoy = (0;)oy = o, Thus, SC(wy) holds by our assumption (3).

2. Otherwise. Then we have to, = (t0)o, for some 6 = {x — f()} with f € D. By VP(T')
and the subterm property of >,,, we have x <;,, u for some v € H, and so by the
stability of >,,, we have zo, <y, uoy for some u € H. Hence by our assumption (3),
we obtain SC(zoy). Then by the definition, we know there exists a ground constructor
term g(w,) € T(C) such that zo, “ g(#,). From g € C, there is an index i such
that 0; = {z +— g(¥)}. As 7 is fresh, we may assume zo, g g(,) = (wo;)oy,. Hence
tog B (toi)oy. Also, we have xa, >y, (v0;)0; by Lemma 5.

The reminder of the proof proceeds in a similar way to 1 except that to, —x (toi)ay,
instead of to, = (to;)oy. By to;|Ho; € ', we know from the hypothesis for I that
if Vu € Hoy. Ywy <ipo uoy. SC(wy) then SC((to;)oy,
tog g (tai)a;. Thus, it remains to show Yu € Ho;. Ywg <ipo uo;. SC(wy). Suppose
u € Ho; and wg <ipo ’U,O';. Then, there exists & € H such that u = 4o;, and we have
Wy <ipo uo’g = (ﬁoi)a’g <ipo U0y, where the last part follows from zogy >, (:vai)ag by
the monotonicity of >, (or (40;)oy = 10, if z ¢ V(4)). Hence SC(wy) holds by our
assumption (5).

), which implies SC(to,) since

(Simplify) Then I' = S U{t'|H'} and IV = X U {s'|H'}, where t’ —g s’. The case t|H € &
follows directly from the hypothesis for I. Thus, it remains to show the case t|H = t'|H’.
Let o4 be a ground substitution such that Yu € H. Yw, <y, uoy. SC(wy). Then, by the
hypothesis for I, we have SC(s'0,). Since to, = t'o, =g s'o4, SC(toy) clearly holds.

(Delete) Then I' =T U {t'|H'}, where t' <, u for some u € H'. The case t|H € I" follows
directly from the hypothesis for I'V. Thus, it remains to show the case t|H = t'|H’. Let oy
be a ground substitution such that Vu € H. Ywy <o uoy. SC(wy). Since t = t' <y, u for
some v € H' = H, we have toy <j, uoy for some v € H. Hence SC(to,) holds. <

Now we are ready to show the theorem on global sufficient completeness of a TRS. In
the following proof of the theorem, we use the fact that every ground term ¢, has the form
h(Z)04 for some h € F and some ground substitution 6.

» Theorem 12. Let R be a TRS, and let >y, be a lexicographic path order induced by some
precedence > on F such that f > g for every f € D and g € C. If {h(Z)|{h(Z)}} ~ {} for
every h € F, then R is sufficiently complete.
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Proof. Let {h(Z)|{h(Z)}} ~ {} for every h € F. We prove SC(h(Z)f,) for every h € F and
every ground instance h(Z)0, by induction on T'(F) with the lexicographic order >,,. Let
h € F and consider the derivation {h(Z)|{h(Z)}} ~= {}. Then by Lemma 9, VP(I') holds for

every I appearing in the derivation. Since WIS({ }) vacuously holds, we have by Lemma 11
WIS{n(Z){h(Z)}}), Le.,

(Vwg <ipo M(Z)8,. SC(wy)) = SC(h(Z)8,) (WIS 2)
for each ground instance h(Z)6,. To prove SC(h(Z)0,), it suffices to show Vwy <y h(Z)0,.
SC(wy). Let wy <jpo h(Z)8,. Since w, = f(¥)p,y for some f € F and some ground substitu-
tion pg, we have SC(w,) by the induction hypothesis. Hence Yw, <ppo h(Z)8,. SC(w,), and
we obtain SC(h(Z)0,). <
We give some examples of application of the theorem.

» Example 13 ([4, Example 8.1]). Consider a signature with S = {B} and

[ and:BxB—+ B, or:BxB—B,
"~ | not:B — B, 0: B, 1:B

where C = {0: B, 1: B}. Let R be the following TRS:

(1) and(1,x) -
(2) and(0,x) - 0
(3) or(l,z) - 1
Ri — (4) or(0,z) -
YY) (5) and(1,2) — not(not(and(1,z)))
(6) not(1) - 0
(7) not(0) - 1
(8) not(and(z,y)) — or(not(x),not(y))

Note that R; is not terminating since and(1,x) —x, not(not(and(1,x))) —x, not(not(not(
not(and(1,z))))) ==, ---. We show that R, is sufficiently complete, using Theorem 12. For
this, take a lexicographic path ordering >, induced by any precedence > such that f > g
for every f € D and g € C. In Figure 2, we give derivations of {h(Z)|{h(Z)}} ~ {} for h € D.
Also, we have {0]{0}} ~ {} and {1|{1}} ~ {} using Decompose. Thus by Theorem 12, Ry
is sufficiently complete. <

The next example shows that there exists a TRS for which the method of [3, 4] does not
work but our method works.

» Example 14. Let Ry be the TRS obtained from R; of Example 13 by deleting the rule (1).
Then R is still sufficiently complete. Indeed, derivations for defined symbols except and are
the same as those of Figure 2. For and, we have a derivation of {and(z1, z2)|{and(z1, z2)}} ~~
{} as shown in Figure 3. Note that the Simplify step using the rule (8) (the fifth row in the
figure) cannot be made by the abstract-narrow-based process of [3, 4] (cf. Appendix A). <«
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{ not )|{not(x)} }
~Bapand | not(0)[{not(0)}, not(1)|{not(1)} }
% Simplify { 1|{not )}, Ol{not(1)} }
> Decompose { }

{ or(zy, o) {or(z1,22)} }
~ Expand { or(0,2z2)|{or(0,22)}, or(1,z2)|{or(1,z2)} }
Ssimptiy 1 w2|{or(0,22)}, 1|{or(L,22)} }
~? Decompose { 2|{0r 0, ZCQ } }

~ Delete

=

{ and(z1, z2)|[{and(z1,22)} }
~ Bapand { and(0,z2)|{and(0,z2)}, and(1,z2)[{and(1,z2)} }
"i’Simplify { 0|{and 0 L2 }7 x2|{and(1 T2 } }

} zo|{and(1,22)} }

Decompose

~ Delete

Figure 2 Derivations for proving sufficient completeness of R1 in Example 13.

and( xl,xg ){and(z1,22)} }

and(0, z2)|{and(0, z2)}, and(1,z2)|{and(1,z2)} }
0/{and(0, z2)}, not(not(and(1,z2)))[{and(1,z2)} }
~ Decompose  { Not(not(and(1, z2)))[{and(1,z2)} }

{
{
{
{
~ Simplify } not(or(not(1), not(z2)))|{and(1, z2)} }
{
{
{

~* Expand

*
~ Simplify

% Simplify not(not(z2))|{and(1,z2)} }

~~ Bapand not(not(0))[{and(1,0)}, not(not(1))[{and(1,1)} }
% Simplify 0[{and(1,0)}, 1|{and(1,1)} }

“j;Decompose }

Figure 3 A derivation for proving sufficient completeness of Ro in Example 14.

The next example is a modification of [17, Example A.2].

» Example 15. Consider a signature with § = {N} and

7 - d: N —= N, if :NXNXxN — N,
"1l —:NxN—=N, 0:N, s:N—N

where C = {0: N, s: N — N}. Let R3 be the following TRS where d(n) computes the
double of a given natural number n:

(1) d(z) — if(2,0,s(s(d(—(z,5(0))))))
(2) if(0,y,2) -y
e _ ] ® @ o
4) —(0,y) — 0
(5) —(z,0) —
6) —(s(z),s(y) — —(z,9)

Note that Rz is not terminating by repeated application of the rule (1). We show that R is
sufficiently complete, using Theorem 12. For this, take a lexicographic path ordering >,
induced by any precedence > such that f > g for every f € D and g € C. In Figure 4,
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{ d@){d(= } f
~ Bapand { d(O)\{d d(s(z1)){d(s(z1))} }
“’"Szmplzfy { 0|{d (d( (s(z1),5(0)))) {d(s(z1))} }
M*Decompose { d( )))l{ (( ))} }
“simpliyy | d(@1) |{d }}
~ Delete { }

{ f(z1, x2, x3)|{if (21, T2, 23)} }

~ Bupand { (0,29, 3)|{if (0, x2, x3)}, if(s(xyg), 2, x3)|[{if(s(x4), 22, 23)} }
«Zsl-mplify { 2ol{if(0, z2, 23) }, z3|{if(s(z4), z2,2z3)} }
“:Delete { }

{ (@1, 22){~(x1,22)} }
~ Eapand { —(0,22)[{=(0,22)}, —(s(x3),z2)[{—(s(x3),22)} }
~simplify 1 O{—(0,22)}, —(( 3), 2)[{—(s(z3), 22)} }
~? Decompose { (S( ) ‘T2)|{ ) T2 } }
~ Espand { —(s(z3),0)[{~ (( 3),0)}, —(s(z3),s(z ))l{ (s(x3),s(x4))} }
“simptify  { s(@3){—(s(x3),0)}, —(ws, za)[{—(s(x3),s(x4))} }
“LDelete { }

Figure 4 Derivations for proving sufficient completeness of Rs in Example 15.

we give derivations of {h(Z)|{h(Z)}} ~ {} for h € D. Also, we have {0/{0}} ~ {} and
{s(x)|{s(x)}} ~ {} using Decompose and Delete. Thus by Theorem 12, R is sufficiently
complete. <

Without the rule (4), the above TRS Rj still has some kind of sufficient completeness,
which we discuss in the next section.

4 A Simple Derivation System for Local Sufficient Completeness with
Signature Restriction

In the remainder of the paper, we are concerned with local sufficient completeness [10], which
is a generalised notion of sufficient completeness. In this section, we consider local sufficient
completeness on the set of ground terms consisting of particular function symbols.

» Definition 16 (Local sufficient completeness with signature restriction). Let R be a TRS, and

let 7/ C F. Then R is locally sufficiently complete on T(F') if SC(t,) for every t, € T(F’).

The standard notion of sufficient completeness, as given in Definition 1, is the case of
local sufficient completeness on T'(F’) where F' = F. By the restriction to F’, we can talk
about sufficient completeness locally, e.g. on T'({d,s,0}) in Example 15 (cf. Example 25).

The notion of a derivation of the system in this section is defined as follows.

» Definition 17 (Derivation). Let R be a TRS, and let 7/ C F. Suppose that >, is a
lexicographic path order induced by some precedence > on F such that f > f' > g for every
feD\F, fe F/\C and g € C. The derivation rules of the system are the same as those
listed in Figure 1. We write ' ~», I if I is derived from T" by one of the derivation rules.

» Lemma 18. Let >y, be a lexicographic path order induced by a precedence > as above. If
s € T(F'UC) and sy >0 ty then ty € T(F UC).

49:9

FSTTCS 2021



49:10

Simple Derivation Systems for Proving Sufficient Completeness

As before, we have a lemma on preservation of variables occurring in guarded terms.
» Lemma 19. IfT ~,; TV and VP(T') then VP(I").
In addition, we have a lemma on preservation of function symbols of guarded terms.

» Definition 20 (SigP). For a set T' of guarded terms, SigP(T') means that for every t|H € T
and every u € H, u € T(F' UC,V).

» Lemma 21. IfT ~~; TV and SigP(T") then SigP(T").
The predicate about the well-founded induction schema is defined as follows.

» Definition 22 (WIS,). For a set T of guarded terms, WIS,(I') means that for every
t|H € T’ and every ground substitution og4 : V — T(F' UC), the following holds:

(Vu € H. Ywg <jpo uoy. SC(wy)) = SC(toy). (WIS 3)
» Lemma 23. Let T ~, IV, VP(T') and SigP(T"). Then, WIS,(I") implies WIS,(T).

Proof. The proof proceeds by case analysis in the same way as that of Lemma 11, except
that o : V — T(F'UC) is enforced on every ground substitution o appearing in the proof. <«

We are now ready to show the theorem on local sufficient completeness on T'(F").

» Theorem 24. Let R be a TRS, F' C F and >, be a lexicographic path order induced by
some precedence > on F such that f > f' > g for every f e D\F', f' € F'\C and g € C.
If {W(@)|{h(Z)}} ~¢ {} for every h € F', then R is locally sufficiently complete on T(F').

Proof. Let {h(Z)|{h(Z)}} ~¢ {} for every h € F'. (Using Decompose and Delete, we can
automatically have {h(Z)|{h(Z)}} ~~, { } for every h € C.) It suffices to prove SC(h(Z),) for
every h € F'UC and every ground instance h(Z)6, with 6, : V — T(F' UC) by induction on
T(F" UC) with respect to >y,,. This is shown by a similar argument to that of Theorem 12,
and we have that R is locally sufficiently complete on T'(F' UC) and thus on T(F"). <

Now we consider the example mentioned at the end of the previous section.

» Example 25. Let R4 be the TRS obtained from R3 of Example 15 by deleting the rule
(4). Then R4 is not globally sufficiently complete any more, since —(0,s(0)) € NF(R4) but
—(0,s(0)) ¢ T(C). However, it can be shown that R4 is locally sufficiently complete on T'(F")
where F' = {d,s,0}. Indeed, the derivation for the function symbol d € D shown in Figure 4
works where the rule (4) is not used in the Simplify steps. The precedence can be given as
if,— > d >s,0. Hence by Theorem 24, R, is locally sufficiently complete on T'(F"). <

5 A Simple Derivation System for Local Sufficient Completeness with
Sort Partition

In this section, we treat another type of local sufficient completeness than that discussed
in the previous section. Specifically, we consider local sufficient completeness on the set of
ground terms of particular sorts.

» Definition 26 (Conditions on the signature). We assume the following conditions S1-S4 on
the signature of R.
S1. § =8, WS;. (W stands for the disjoint union.)
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S2. The sets F; (i = 0,1) of function symbols are defined by
Fi={feF|f:a1x - Xa, —>a, a€S}

S3. The sets T; (i =0, 1) of ground terms are defined by
T; = {ty € T(F) | sort(ty) € S;}.

S4. For every g € FoNC,if g:a; X -+ X a, = a then aq,...,a, € Sp.

Our aim in this section is to show that the following holds under certain conditions.

» Definition 27 (Local sufficient completeness with sort partition). Let R be a TRS with
a signature satisfying the conditions S1-S4 of Definition 26. Then R is said to be locally
sufficiently complete on Ty if SC(t4) for every t, € Tp.

The next example illustrates the difference between global sufficient completeness and
local sufficient completeness on Tj.

» Example 28 ([15, Example 8]). Consider a signature with Sop = {N}, S; = {L} and

F _ sum: NxXxL—-N, +:NxN-—=N, from:N—1L,
1 0:N, s:N— N, []:L, 2 NxL—L

where C={0: N, s: N> N, [|: L, :: : N x L — L}. Let Ry be the following TRS where
sum(n, ts) computes the summation of the first n elements of a (possibly infinite) list ¢s of
natural numbers:

(1) sum(0, zs) — 0
(2) sum(s(z),[]) - 0
Rs — (3) sum(s(z),y::ys) — +(y,sum(z,ys))
(4) +(0,9) -y
(5) +(s(z),y) = s(+(z,y)
(6) from(x) —  x : from(s(x))

R is not terminating since from(0) —x 0 :: from(s(0)) —x 0 :: s(0) :: from(s(s(0))) —x - -.
Rs is not globally sufficiently complete either since u ¢ T'(C) for any u with from(0) Sz wu.
However, it can be shown that Rs is locally sufficiently complete on Tj (cf. Example 35). <

The notion of a derivation of the system in this section is defined similarly to Definition 7
except that the Fzpand rule is replaced by

FExpand
LU {t|H} {oi}i={{x— f(@)}] feCUF, sort(z) = sort(f(Z))}
T'U{to;|Ho;}; where z € V(t) and Z is a sequence of fresh variables

We write T~ I if TV is derived from T' by one of the derivation rules.
» Lemma 29. IfT'~~sI” and VP(T') then VP(I').
In addition, we have a lemma on preservation of sorts of guarded terms.

» Definition 30 (SrtP). For a set T of guarded terms, SrtP(T") means that for every t|H € T,
sort(t) € Sy and sort(u) € Sy for every u € H.

» Lemma 31. If T~ IV and SrtP(I") then SrtP(IV).

Proof. By case analysis depending on the rule used in the derivation step I' ~»5 I, In the
case of the Decompose rule, we use the condition S4 of Definition 26. <

FSTTCS 2021
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The predicate about the well-founded induction schema is defined as follows.

» Definition 32 (WISs). For a set T' of guarded terms, WISs(I') means that for every
t|1H € T' and every ground substitution o4, the following holds:

(Vu € H. Ywy € Ty. wy <ipo uoyg = SC(wy)) = SC(toy). (WIS 4)
» Lemma 33. Let '~ IV, VP(T') and SrtP(T). Then, WISs(I") implies WISs(T).
Proof. We prove that if

(Yu € H' . Yw, € Ty. wy <ipo ucy = SC(wy)) = SC(t'cy)
for every t'|H’ € I and every ground substitution o4, then

(Vu € H. Ywy € Ty. wy <ppo uosg = SC(wy)) = SC(toy)

for every ¢t|H € I" and every ground substitution o4. The proof proceeds by case analysis
depending on the rule used in the derivation step I' ~+; I'V. Here we only consider the cases
of Expand and Delete. The other cases are proved in the same way as those of Lemma 11.

(Expand) Then T' =X U {t'|H'} and IV = X U {t'0;|H’0;}i, where € V(t'), T is a sequence

of fresh variables, and {o;}; = {{x — f(Z)} | f € CUFy, sort(xz) = sort(f(Z))}. The case

t|H € X follows directly from the hypothesis for IV. Thus, it remains to show the case

t|H = ¢'|H’'. Let o, be a ground substitution such that (8): Vu € H. Yw, € Tp. wy <ipo

uoy = SC(wy). Our aim is to show SC(to,). For this, we distinguish two cases.

1. Suppose that there exists an index i such that to, = (to;)o; for some o7. This case is
proved similarly to the same case of the proof of Lemma 11.

2. Otherwise. Then we have to, = (t0)oy, for some 0 = {z — f(3)} with f € Fo N D. This
case is proved similarly to the case 2 of the proof of Lemma 11.

(Delete) Then I' =T U {t'|H'}, where t' <, u for some u € H'. The case t|H € I" follows
directly from the hypothesis for IV. Thus, it remains to show the case t|H = t'|H’. Let
o4 be a ground substitution such that Yu € H. Yw, € Ty. wy <ipo ucy = SC(wy). Since
t =t" <ipo u for some u € H' = H, we have to, <;p, uoy for some v € H, and by SrtP(T'),
we have to, € Ty. Hence SC(to,) holds. <

We are now ready to show the theorem on local sufficient completeness on Tj.

» Theorem 34. Let R be a TRS with a signature satisfying the conditions S1-S4 of
Definition 26, and let >y, be a lexicographic path order induced by some precedence > on F
such that f > g for every f € D and g € C. If {h(Z)|{h(Z)}} ~5s {} for every h € Fy, then
R is locally sufficiently complete on T.

Proof. Let {h(Z)|{h(Z)}} ~5s {} for every h € Fy. We prove SC(h(%)0,) for every h € F,
and every ground instance h(Z)8, by induction on T'(F) with respect to the order >,,. Let
h € Fy and consider the derivation {h(Z)|{h(Z)}} ~>s { }. Then by Lemmas 9 and 31, VP(T)
and STtP(T') hold for every I" appearing in the derivation. Since WISs({}) vacuously holds,
we have by Lemma 33 WISs({h(Z)|{h(Z)}}), i.e.,

(Vg € To. wy <ipo h(T)0, = SC(w,)) = SC(h(Z)0,) (WIS 5)

for each ground instance h(Z)§,. For every w, € Ty, we have wy, = f(¥)p, for some f € Fy
and some ground substitution p,. Hence, for every w, € Ty, wy <ipo h(Z)0, implies SC(wy)
by the induction hypothesis. Thus, by (WIS 5), we obtain SC(h(Z)6,). <
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{ sum(zy,zs)|{sum(z1,22)} }
{ sum(0,z2)|{sum(0,z2)}, sum(s(z3),z2)|{sum(s(z3),z2)} }
{ 0l{sum(0,22)}, sum(s(zs), )| fsum(s(zs), z2)} }
{ sum(s(zs), 22)[{sum(s(ws), z2)} }
{ sum(s(z3), [[)[{sum(s(z3), [[)},
sum(s(zs), x4 2 x5)|{sum(s(z3), 24 :: z5)},
sum(s(z3), from(zg))|{sum(s(z3), from(zs))}
* ol sum(s(s). )},
s Simplify { (x4,sum(x3,x5))|{sum(s( ) .%‘5)}

{

{

{

{

{

{

s Expand
s Simplify

s Decompose

s Expand

+(x6, sum(zs, from(s(x ))))|{sum( (x3), from(zg))}
+ x3,x5))|{sum(s(z3), x xs))

(
E (s, from(s(z ))))I{Sum( (3), from(z¢))} }

Z4,5UM
s Decompose

(
(zg,sum

*
Vs Delete

(21, x2) {+(z1,22)} }

+(0,z2) {+(0,22)}, +(s(x3), z2)[{+(s(z3),z2)} }
2a|{+(0,22)}, s(+(x3,22)) [{+(s(x3),22)} }

2o {+(0,22)}, +(s,z2)|{+(s(x3), 22)} }

}

Figure 5 Derivations for proving local sufficient completeness of R in Example 28.

~7s Ezpand
*
s Simplify

s Decompose

*
s Delete

Now we apply the theorem to the TRS of Example 28.

» Example 35. Consider the TRS R5 of Example 28. We show that Rj5 is locally sufficiently
complete on Ty, using Theorem 34. It is easily seen that the signature of R5 satisfies the
conditions S1-54 of Definition 26. Let >, be the lexicographic path order induced by the
precedence > buch that sum > + > from > 0,s,::,[|. In Figure 5, we give derivations of
{R(@)|{h(Z)}} ws {} for h € FoND. Also, using Decompose and Delete, we have derivations
{R(Z){W(&)}} ~5s {} for h € FyNC. Thus, by Theorem 34, we conclude that Rs is locally
sufficiently complete on Tj. |

6 Conclusion

We have presented simple derivation systems for proving sufficient completeness and two
types of local sufficient completeness. We have given transparent correctness proofs of the
derivation systems by introducing some suitable notions like well-founded induction schema.
This is in contrast to the approach and correctness proofs of [3, 4] which are involved. The
transparency allows us to provide derivation systems that deal with global and (two types of)
local sufficient completeness in a uniform manner. Our proof methods using the derivation
systems have been illustrated by applying them to some non-terminating TRSs.

The methods of [10] and our new methods are orthogonal in the following sense. In
our methods, a group of function symbols are simultaneously tested, while an individual
term pattern is tested in [10]. Then local sufficient completeness with signature restriction
discussed in Section 4 cannot be inspected by the methods of [10], since one cannot substitute
for a variable each term on a restricted signature (one can only substitute each term of the
same sort as the variable; for problems in Section 5, it might be possible that the proof
abilities of the two approaches are equivalent). On the other hand, any linear term pattern
that is not necessarily of the form f(z1,...,2,) can be tested in [10]. This is not possible by
the methods in the present paper.
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The methods of [15] and our methods are also orthogonal. Example 28 of the present
paper (i.e. Example 8 of [15]) is one of the examples that cannot be handled by the methods
of [15]. On the other hand, the running example of [15] is difficult to handle by the current
derivation systems (in [10] and the present paper), since they cannot help inducing a failing
derivation with a divergent sequence as seen in Figure 4 of [15].

Gaind et al. [5] have recently discussed a kind of local sufficient completeness with sort
partition, where the set Sy in our terminology (Definition 26) contains every sort that is the
codomain of some constructor. Earlier works [8, 13] discussed sufficient completeness relative
to a set of constructors, where non-terminating systems are transformed into terminating
ones using replacement restrictions of context-sensitive rewriting [12]. Detailed comparisons
between these approaches and ours are left as future work.

In the present paper, we employed lexicographic path orders to define the derivation
systems, but other simplification orders can be used if necessary. More generally, there would
be a way to give abstract conditions on orders and generate constraints for derivations to be
successful.

As a direction of further work, it is interesting to integrate the methods proposed in this
paper and those in the previous work [10, 15] into a unified framework for proving various
kinds of local sufficient completeness. Implementation of the methods and experiments to
examine to what extent they work are also left as future work.
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Proof Ability of the Method in Section 3

In this section, we compare the proof abilities of the method in [3, 4] and our method by the
derivation system in Section 3.

The next example is a modification of a TRS described in [3, page 125 (the right column)].

([3] discusses TRSs with possibly non-free constructors whereas we discuss TRSs with free
constructors in this paper.)

» Example 36. Consider a signature with S = {A} and

:{f:A—>A, a:A, b:A, C:A}

where C = {c: A}. Let Rg be the following TRS:

(1) a — b
) @) b)) - <
7Y @3 b - f(b)

(4) f(c) e

Then, using Theorem 12, we can show that R is sufficiently complete. Required derivations
are, €.g., {b|{b}} ~simpiipy {F(P)|{b}} ~simpriry {f(F(D))|{b}} ~simptiry {c[{b}} ~ Decompose
{}. However, as remarked in [3, page 125 (the right column)], these Simplify steps are not
represented by the abstract-narrow-based process of [3, 4]. |
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