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Abstract
This paper examines Automatic Complexity, a complexity notion introduced by Shallit and Wang
in 2001 [29]. We demonstrate that there exists a normal sequence T such that I(T ) = 0 and
S(T ) ≤ 1/2, where I(T ) and S(T ) are the lower and upper automatic complexity rates of T

respectively. We furthermore show that there exists a Champernowne sequence C, i.e. a sequence
formed by concatenating all strings of length one followed by concatenating all strings of length two
and so on, such that S(C) ≤ 2/3.
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1 Introduction

Due to the uncomputability of Kolmogorov complexity, finite-state automata and transducers
have acted as a popular setting to study the complexity of finite strings and infinite se-
quences. In this paper we examine the finite-state based complexity introduced by Shallit and
Wang, which is analogous to Sipser’s Distinguishing Complexity [30], known as Automatic
Complexity [29]. For a string x of length n, its automatic complexity A(x) is defined to be
the minimum number of states required by any deterministic finite-state automaton such
that x is the only string of length n the automaton accepts. A non-deterministic variation
was first examined by Hyde [15]. In their paper, Shallit and Wang found upper and lower
bounds for the automatic complexity of various sets of strings and of prefixes of the infinite
Thue-Morse sequence. Expanding on this line of research, Kjos-Hanssen has recently studied
the automatic complexity of Fibonacci and Tribonacci sequences [19].

We continue this line of research by examining the automatic complexity of some normal
sequences. A binary sequence is normal number in the sense of Borel [3] if for all n, every
string of length n occurs as a substring in the sequence with limiting frequency 2−n. The
complexity of normal sequences has been widely studied in the finite-state setting for many
years and a review of several old and new results can be found in [21].

Depending on how finite-state complexity is measured, normal sequences may have high or
low complexity. For instance, if complexity is defined as compressibility by lossless finite-state
compressors, normal sequences have maximum complexity. For example, combining results
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of Schnorr and Stimm [28] and Dai, Lathrop, Lutz and Mayordomo [10] demonstrates that
a sequence is normal if and only if it cannot be compressed by any lossless finite-state
compressor (see [2] for a proof). This is also true when the finite-state compressor is equipped
with a counter [1] or when the reading head is allowed to move in two directions [8]. Another
definition examines the length of the minimal input required to output a string via finite-state
transducers and has been used in [5, 7, 11, 12, 17]. It was demonstrated in Theorem 24
of [7] that in a complexity based on this approach, one can construct normal sequences with
minimal complexity.

As automatic complexity is more of a “combinatorial” rather than an “information content”
measurement2, this leads to the question as to how low can the automatic complexity of
normal sequences be? Previously the automatic complexity of finite strings produced by
linear feedback shift registers which have a maximal number of distinct substrings (otherwise
known as m-sequences) [20] along with sequences and finite strings which do not contain
k-powers, i.e. substrings of the form xk, have been studied [16, 19, 29]. Normal sequences by
definition contain xk as a substring infinitely often for every possible pair (x, k). Is there a
trade-off between the randomness of normal sequences resulting in high complexity, in the
sense that they contain every string as a substring infinitely often, and the fact that some of
those substrings have the form xk which results in low automatic complexity?

We explore this question by constructing a normal sequence T whose upper automatic
complexity rate S(T ) is bounded above by 1/2 and whose lower automatic complexity rate
I(T ) is 0. We then study a specific class of normal sequences known as Champernowne
sequences [9], i.e. sequences formed by concatenating all strings of length one followed by
all strings of length two and so on. It is widely known that Champernowne sequences are
incompressible by the Lempel-Ziv 78 algorithm and results by Lathrop and Strauss show
that all sequences incompressible by Lempel-Ziv 78 are normal [22]. Due to this restriction
on their construction, one may expect Champernowne sequences to have high automatic
complexity. However, we demonstrate that there exists a Champernowne sequence C built
via a method presented by Pierce and Shields in [25] that satisfies S(C) ≤ 2/3. It has
previously been seen that Champernowne sequences built via their method are compressible
by a variation of the Lempel-Ziv 77 [25] and the PPM∗ [18] compression algorithms.

2 Preliminaries

We work with the binary alphabet {0, 1} in this paper. A finite string is an element of {0, 1}∗.
A sequence is an element of {0, 1}ω. {0, 1}≤ωdenotes the set {0, 1}∗ ⋃

{0, 1}ω. The length of
a string x is denoted by |x|. We say |S| = ω for S ∈ {0, 1}ω. λ denotes the string of length 0.
{0, 1}n denotes the set of strings of length n. For x ∈ {0, 1}≤ω and 0 ≤ i < |x|, x[i] denotes
the (i+1)th bit of x with x[0] being the first bit. For x ∈ {0, 1}≤ω and 0 ≤ i ≤ j < |x|, x[i..j]
denotes the substring of x consisting of its (i+1)th through (j +1)th bits. For x ∈ {0, 1}∗ and
y ∈ {0, 1}≤ω, xy (sometimes written as x · y) denotes the string (or sequence) x concatenated
with y. For a string x, xn denotes x concatenated with itself n times. For x ∈ {0, 1}≤ω,
a substring y of x is called a k-power if y = uk for some string u. For x ∈ {0, 1}∗ and
y, z ∈ {0, 1}≤ω such that z = xy, we call x a prefix of z and y a suffix of z. We write x[i..]
to denote the suffix of x beginning with its (i + 1)th bit. The lexicographic-length ordering of
{0, 1}∗ is defined by saying for two strings x, y, x comes before y if either |x| < |y| or else
|x| = |y| with x[n] = 0 and y[n] = 1 for the smallest n such that x[n] ̸= y[n].

2 In an information content measurement, we would like there to be roughly 2n objects with a complexity
of n while it trivially holds that all strings of the form 0n and 1n have an automatic complexity of 2.
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Given strings x, w we use the following notation to count the number of times w occurs
as a substring in x. The number of occurrences of w as a substring of x is given by

occ(w, x) = |{i : x[i..i + |w| − 1] = w}|.

The block number of occurrences of w as a substring of x is given by

occb(w, x) = |{i : x[i..i + |w| − 1] = w ∧ i ≡ 0 mod |w|}|.

For example, occ(00, 0000) = 3 while occb(00, 0000) = 2.
Automatic complexity is based on finite automata.

▶ Definition 1. A deterministic finite-state automaton (DFA) is a 4-tuple M = (Q, q0, δ, F ),
where

Q is a non-empty, finite set of states,
q0 ∈ Q is the initial state,
δ : Q × {0, 1} → Q is the transition function,
F ⊆ Q is the set of final / accepting states.

A DFA M can be thought of as a function M : {0, 1}∗ → Q such that for all x ∈ {0, 1}∗ and
b ∈ {0, 1}, M is defined by the recursion M(λ) = q0 and M(xb) = δ(M(x), b). If M(x) ∈ F ,
we say M accepts x. We write L(M) to denote the language of M , i.e. the set of strings that
M accepts.

Shallit and Wang define automatic complexity as follows.

▶ Definition 2 ([29]). Let x ∈ {0, 1}∗. The automatic complexity of x, denoted by A(x), is
the minimal number of states required by any DFA M such that L(M)

⋂
{0, 1}|x| = {x}.

We say a DFA M uniquely accepts a string x if L(M)
⋂

{0, 1}|x| = {x}.

Shallit and Wang compute the following two ratios to examine the automatic complexity
of sequences.

▶ Definition 3. The lower and upper rates for the automatic complexity of a sequence T are
respectively given by

I(T ) = lim inf
m→∞

A(T [0..m])
m + 1 and, S(T ) = lim sup

m→∞

A(T [0..m])
m + 1 .

From the fact that for all x ∈ {0, 1}∗ it trivially holds that A(x) ≤ |x| + 2, it follows that for
all T ∈ {0, 1}ω, 0 ≤ I(T ) ≤ S(T ) ≤ 1.

Normal sequences and de Bruijn strings which we use to build normal sequences are
defined as follows.

▶ Definition 4. A sequence T ∈ {0, 1}ω is normal if for all x ∈ {0, 1}∗,

lim
m→∞

occ(x, T [0..m])
m + 1 = 2−|x|.

▶ Definition 5 ([4, 27]). A de Bruijn string of order n is a string u ∈ {0, 1}2n such that for
all w ∈ {0, 1}n, occ(w, u · u[0..n − 2]) = 1.

For example, 0011 and 00010111 are de Bruijn strings of order 2 and 3 respectively. We
generally use dn to denote a de Bruijn string of order n. It is known that there are 22n−1−n

de Bruijn strings of order n unique up to cycling, i.e. the two de Bruijn strings 0011 and
0110 are considered the same string for example when counting.

FSTTCS 2021



47:4 Normal Sequences with Non-Maximal Automatic Complexity

3 Normal Sequences with Low Automatic Complexity

In our first result we construct a normal sequence T such that I(T ) = 0, that is, infinitely
many prefixes have close to minimal automatic complexity. We furthermore show that
S(T ) ≤ 1/2, indicating that the sequence does not have high complexity. We require the
following variation of a result by Nandakumar and Vangapelli.

▶ Theorem 6 ([24]). Let f : N → N be increasing such that for all n, f(n) ≥ nn. Then
every sequence of the form T = d

f(1)
1 d

f(2)
2 d

f(3)
3 · · · where dn is a de Bruijn string of order n,

is normal 3.

▶ Theorem 7. There is a normal sequence T such that I(T ) = 0 and S(T ) ≤ 1
2 .

Proof. We recursively define the sequence T = T1T2 . . . and the function f : N → N as
follows. For all j ≥ 1, let dj be a de Bruijn string of order j such that if j is odd, dj begins
with a 1 and if j is even, dj begins with a 0. We set f(1) = 2 and T1 = d

f(1)
1 = d2

1. For j ≥ 2,
we define f(j) = |T1 . . . Tj−1||T1...Tj−1| and Tj = d

f(j)
j . Note that f(1) > 1 and for all j ≥ 2,

f(j) ≥ |Tj−1||Tj−1| and that |Tj−1| = 2j−1f(j − 1) ≥ j. Hence by Theorem 6, T is normal.
For simplicity, we write Tj for the prefix T1 · · · Tj of T .

We first show that I(T ) = 0. Consider a prefix of the form Tn. Tn is uniquely accepted
by the DFA M1 which has a state for each bit of Tn−1 followed by a loop of length 2n for
the string dn whose root state is the only accepting state, and an error state. M1 can be
seen in Figure 1. M1 has |Tn−1| + 2n + 1 states. Thus we have that

A(Tn)
|Tn|

≤ |Tn−1| + 2n + 1
|Tn| + |Tn−1|

= |Tn−1| + 2n + 1
2nf(n) + |Tn−1|

≤ max
{ |Tn−1|

2n|Tn−1||Tn−1|
,

2n + 1
|Tn−1|

}
≤ max

{ 1
2n

,
2n + 1

(n − 1)n−1

}
.

Hence it follows that I(T ) = 0.
Next consider an arbitrary prefix T [0..m] of T . Let n be largest such that Tn is a prefix

of T [0..m] but Tn+1 is not. Thus T [0..m] = Tn · w for some w ∈ {0, 1}∗ and is uniquely
accepted by the DFA M2 in Figure 1. M2 has a state for each bit of Tn−1, followed by a
loop of length 2n for the string dn, followed by a state for each bit of w and an error state.
M2 has |Tn−1| + 2n + |w| + 1 states.

Consider when 1 ≤ |w| ≤ 2n(f(n) − 1) + 2n+1. Note that

|Tn+1| = 2n+1f(n + 1) = 2n+1(f(n + 1) − 1) + 2n+1 > 2n(f(n) − 1) + 2n+1

so w can be this length. Note also that M2 has at most |Tn| + 2n+1 + 1 states for such w.

3 Nandakumar and Vangapelli’s original result was for when f(n) = nn. However, their argument easily
carries over for f(n) ≥ nn also and this fact has been used by other authors such as in [6, 7].
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Hence for such w we have that

A(T [0..m])
m + 1 ≤ |Tn−1| + 2n + |w| + 1

|Tn| + |w|

≤ |Tn−1| + 2n + 2n(f(n) − 1) + 2n+1 + 1
|Tn| + 2n(f(n) − 1) + 2n+1

= |Tn−1| + |Tn| + 2n+1 + 1
|Tn−1| + 2|Tn| + 2n

= |Tn−1| + 2n(|Tn−1||Tn−1| + 2) + 1
|Tn−1| + 2(2n|Tn−1||Tn−1|) + 2n

≤ max
{1 + 2n(|Tn−1||Tn−1|−1 + 2|Tn−1|−1)

1 + 2(2n|Tn−1||Tn−1|−1)
,

1
2n

}
. (1)

Note Equation (1) approaches 1/2 as n increases.
Furthermore consider when 2n(f(n) − 1) + 2n+1 < |w| ≤ |Tn+1|. Instead of looping on

dn, it becomes more beneficial to loop on dn+1 via a DFA similar to M1 in Figure 1 where
the accepting state is a single state in the loop depending on the length of w. Thus for
such prefixes A(Tn · w) ≤ |Tn| + 2n+1 + 1, i.e. it does not depend on w. Hence the ratio
A(T [0..m])/(m + 1) decreases and approaches I(T ) for such w.

Therefore, by Equation (1), S(T ) ≤ 1
2 . ◀

start
Tn−1

dn

start
Tn−1

dn

w

Figure 1 DFA M1 (left) and M2 (right) from Theorem 7. The error state (the state traversed to
if the bit seen is not the expected bit) and arrows to it are not included. By the construction of T ,
dn[0] ̸= w[0] to ensure determinism.

4 Automatic Complexity of Champernowne Sequences

In this section we present a Champernowne sequence with an upper automatic complexity
rate bounded above by 2/3.

▶ Definition 8. A sequence C is a Champernowne sequence if C = C1C2C3 . . . , such that
for each n, Cn is a concatenation of all strings of length n exactly once. That is, for all
x ∈ {0, 1}n, occb(x, Cn) = 1.

Unlike Champernowne’s original sequence which was a concatenation of all strings in
lexicogrpahic-length order (0100011011000...), we emphasise that the set of Champernowne
sequences do not require strings to be in length-lexicographic order for the construction.
There are 2n! possible choices for zone Cn in a Champernowne sequence. For instance,
00011011 and 11100001 are two possibilities for C2.

We now describe Pierce and Shields’ construction of Champernowne sequences from [25].
Suppose we wished to construct substring Cn. Let dn be a de Bruijn string of order n. For
0 ≤ j ≤ 2n − 1, let dn,j represent a cyclic shift to the left of the first j bits of dn. That is,

FSTTCS 2021
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dn,j = dn[j..2n − 1] · dn[0..j − 1]. We write dn instead of dn,0 when no cyclic shift occurs.
Note that each n can be written uniquely in the form n = 2st where s ≥ 0 and t ≥ 1 where
t is odd. Each substring Cn is broken into further substrings Cn = Bn,0 · Bn,1 · · · Bn,2s−1
where Bn,j is a concatenation of dn,j with itself t times. That is, Bn,j = (dn,j)t. Hence, for
example, if n is odd then Cn = (dn)n and if n = 2k for k ≥ 1, Cn = dndn,1 · · · dn,n−1.

To help the reader visualise this, the result of using the lexicographic least de Bruijn
strings of order 3, 4 and 6 to build C3, C4 and C6 via Pierce and Shields’ method are provided
in Figures 2 and 3. An algorithm to construct the lexicographic least de Bruijn strings
was first provided by Martin in 1934 which requires exponential space [23]. Later works by
Fredricksen, Kessler and Maiorana led to the FKM-algorithm which only requires O(n) space
to construct such strings [13, 14].

00010111 0000100110101111
00010111 0001001101011110
00010111 0010011010111100

0100110101111000

Figure 2 Concatenating the three rows on the left hand side produces the substring C3 and
concatenating the four rows on the right hand side produces the substring C4 if d3 and d4 are chosen
to be the least lexicographic de Bruijn string of their order respectively.

0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110

Figure 3 Concatenating the six rows produces the substring C6 where d6 is chosen to be the
lexicographic least de Bruijn string of order 6. The first three rows are B0 while the second three
rows are B1.

In Figures 2 and 3 above, the bits shaded in blue indicate the bits of each zone read on a
single traversal of the loops described in the proof of Theorem 11 and shown in Figure 5 in
the case where either n or n + 1 is 3, 4 or 6 respectively.

We re-present Pierce and Shields’ proof that their construction builds Champernowne
sequences using our notation below. The proof requires some basic results and definitions
which can be seen in an undergraduate group theory course. We omit specifics as they are
unimportant to the paper as a whole but point towards [26] for those interested.

▶ Lemma 9 ([25]). Let C ∈ {0, 1}ω be constructed via Pierce and Shields’ construction.
Then C is a Champernowne sequence.

Proof. Let C ∈ {0, 1}ω be as described. In order to show that C is a Champernowne
sequence we must show that for each zone Cn, for all x ∈ {0, 1}n, occb(x, Cn) = 1.

Consider substring Cn. Let G2n be the cyclic group of order 2n, i.e. G2n = ⟨x |x2n = e⟩,
where e = x0 is the identity element and x is the generator of the group. There exists
a bijective mapping f : G2n → {0, 1}n such that for 0 ≤ a < 2n, xa is mapped to the
substring of dn of length n beginning in position a when dn is viewed cyclically. That is,
f(e) = dn[0..n − 1], f(x) = dn[1..n], . . . f(x2n−1) = dn[2n − 1] · dn[0..n − 2].
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Let s ≥ 0 and t ≥ 1 where t is odd such that n = 2st. Consider the subgroup ⟨xn⟩ of
G2n . From group theory it follows that

|⟨xn⟩| = 2n

gcd(n, 2n) = 22st−s = 2n−s.

So

⟨xn⟩ =
2n−s−1⋃

i=0
{xin mod 2n

} = {e, xn, x2n, . . . x(2n−s−1)n mod 2n

}.

Concatenating the result of applying f to each element of ⟨xn⟩ beginning with e in the
natural order gives the string

σ = f(e) · f(xn) · f(x2n) · · · f(x(2n−s−1)n mod 2n

).

σ can be thought of as beginning with the prefix of dn of length n, cycling through dn in
blocks of size n until the block containing dn’s suffix of length n is seen. As (2n−sn)/2n = t,
we have that σ = (dn)t = B0.

As |G2n |/|⟨xn⟩| = 2s, there are 2s cosets of ⟨xn⟩ in G2n . As cosets are disjoint, each
represents a different set of 2n−s strings of {0, 1}n. Specifically each coset represents
some Bj = (dn,j)t block. Therefore, for each x ∈ {0, 1}n, for some j ∈ {0, . . . , 2s − 1},
occb(x, Bj) = 1 and occb(x, Bi) = 0 for each i ̸= j. Thus occb(x, Cn) = 1. ◀

Before examining the main result of this section, we require the following result from
number theory.

▶ Theorem 10. For a, b, c ∈ Z, consider the Diophantine equation ax + by = c. If there
exists a solution to the equation (x0, y0) where x0, y0 ∈ Z, then all other solutions (x′, y′)
such that x′, y′ ∈ Z are of the form x′ = x0 + (b/g)d and y′ = y0 − (a/g)d where d ∈ Z is
arbitrary and g = gcd(a, b).

Henceforth, we write PSC to denote the set of Champernowne sequences constructed
using Pierce and Shields’ method such that for each zone Cn of the sequences, a de Bruijn
string dn of order n with prefix 0n was used to construct it. In the following theorem we
show that there exists sequences in PSC which have non-maximal automatic complexity as
their upper automatic complexity rates are bounded above by 2/3. We also briefly discuss
their lower automatic complexity rates in Section 4.1.

▶ Theorem 11. There exists C ∈ PSC such that S(C) ≤ 2
3 .

Proof. Let C ∈ PSC and consider an arbitrary prefix C[0..m] of C. Again we use Cn to
denote the prefix C1C2 · · · Cn. Let n be largest such that Cn+1 is a prefix of C[0..m] but
Cn+2 is not.

To examine A(C[0..m]) we build automata which make use of two loops which exploit the
repetitions of the de Bruijn strings in Cn and Cn+1. The automata have a single accepting
state which depend on the length of the prefix being examined. There are four cases to
consider which are dependent on the the value of n and can be seen in Figure 5.

Case 1: n is a power of 2,
Case 2: n + 1 is a power of 2,
Case 3: n is even but not a power of 2,
Case 4: n + 1 is even but not a power of 2.

FSTTCS 2021
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Notation wise, we let vn be the string such that dn = 0n1vn. Note that dn[n] = 1 as
otherwise the string 0n would appear twice as a substring of dn. Also note that the final bit
of vn must be a 1.

Suppose we are in Case 3 where n = 2st where s ≥ 1 and t ≥ 3 where t is odd. We
examine Case 3 as later calculations which maximise the number of states needed require for
the possibility that n + 2 is even but not a power of 2.

Let pn+2 denote the prefix of Cn+2 such that C[0..m] = Cn+1pn+2. The automaton
for Case 3 in Figure 5 accepts C[0..m] by reading the prefix Cn−1 · 0n state by state, then
traversing the first loop 2s times, then reading 02s+1, then traversing the second loop fully n

times and then up to reading 1vn+1 on the n + 1th traversal of it. Then, depending on the
length of pn+2, we read the final 0n+1 of the second loop and exit it to read the remainder of
Cn+2[n + 1..] as needed. That is, if |pn+2| ≤ n + 1 then the final state is contained in the
last n + 1 states (including the root state) of the second loop of the DFA, else once finishing
the loop, we traverse through |pn+2| − (n + 1) extra states to the accepting state.

To see that C[0..m] is accepted by the DFA, note that the traversal through the DFA
described above can be factored as Cn−1xpn+2 where

x = 0n(1vndt−1
n 0n−1)2s

02s+1(1vn+10n+1)n(1vn+1).

Note that x = CnCn+1 since

x = 0n(1vndt−1
n 0n−1)2s

02s+1(1vn+10n+1)n(1vn+1)
= (0n1vndt−1

n )0n−1(1vndt−1
n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)

= B0(0n−11vndt−1
n 0)0n−2(1vndt−1

n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)
= B0B1(0n−21vndt−1

n 02)0n−3(1vndt−1
n 0n−1)2s−202s+1(1vn+10n+1)n(1vn+1)

· · · (Keep repeating this process of sectioning into the 2s blocks)
= B0B1 · · · B2s−10n−2s

02s+1(1vn+10n+1)n(1vn+1)
= Cn(0n+11vn+1)n+1 = CnCn+1.

Next we show that the DFA uniquely accepts C[0..m]. Note that all strings accepted
have length

|Cn−1| + n + (2nt − 1)a + 2s + 1 + 2n+1b + |pn+2| − (n + 1)

where a ≥ 0 and b ≥ 1 if |pn+1| < (n + 1), else b can possibly be 0 too. As stated
(a, b) = (2s, n + 1) is a solution to the Diophantine equation

|Cn−1| + n + (2nt − 1)a + 2s + 1 + 2n+1b + |pn+2| − (n + 1) = |C[0..m]|. (2)

By Theorem 10, as the first loop has odd length and the second has even length, all
solutions to (2) take the form (2s + 2n+1c, n + 1 − (2nt − 1)c) where c ∈ Z. As 2s = n/t

and t ≥ 3, we have that (n + 1) − (2nt − 1)c < 0 when c > 0 and 2s + 2n+1c < 0 when
c < 0, it follows that c = 0 is the only possibility that gives non-negative integer solutions,
i.e. C[0..m] is uniquely accepted by the DFA.

The number of states of the automaton is bounded above by

|Cn−1| + n + 2nt + 2s + 2n+1 + |pn+2|.

As 2s ≤ n/3, we then have that

A(C[0..m])
m + 1 ≤

|Cn−1| + 2nt + 4n
3 + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
. (3)
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Hence for |pn+2| ≤ 2n(n − t) − n
3 + 1 + 2n+2( n+2

2 ) we find that

A(C[0..m])
m + 1 ≤

|Cn−1| + 2nt + 4n
3 + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + |Cn| + n + 2n+1 + 1 + 2n+2( n+2

2 )
|Cn+1| − n

3 + 1 + 2n+2( n+2
2 )

=
|Cn| + n + 2n+1 + 1 + 2n+2( n+2

2 )
|Cn+1| − n

3 + 1 + 2n+2( n+2
2 )

. (4)

We note that taking the limit of (4) as n increases has a value of 2/3.

However as |pn+2| increases, it becomes more advantageous to use a loop for the repetitions
in Cn+2 as opposed to the loop for Cn (similar to the proof of Theorem 7). Worst case
scenario, n + 2 has the form 2s′

t′ for s′ ≥ 1 and t′ ≥ 3 where t′ is odd. This results in an
automaton of Case 4 in Figure 5 where the accepting state is one of that states of the second
loop. One can show the prefix is uniquely accepted as before with a similar argument. Such
an automaton requires at most |Cn| + 2n+1 + n + 1 + 2n+2( n+2

2 ) states (as t′ ≤ (n + 2)/2).
Hence for j ≥ 1 such that 2n(n − t) − n

3 + 1 + 2n+2(n+2
2 ) ≤ |pn+2| + j < |Cn+2| we use

the automaton from Case 4 and get that

A(C[0..m])
m + 1 ≤

|Cn| + n + 2n+1 + 1 + 2n+2( n+2
2 )

|Cn+1| − n
3 + 1 + 2n+2( n+2

2 ) + j
. (5)

One can see that for such pn+2, the number of states of the automaton used to calculate (5)
remains constant and the ratio decreases as j increases.

Similar calculations for the other three cases show that none achieve an upper bound
greater than 2/3 (see appendix). Therefore S(C) ≤ 2/3. ◀

4.1 Discussion on Lower Bounds for Champernowne Sequences

Let C ∈ PSC satisfy Theorem 11. As part of Theorem 11, we do not provide any insight
into the value of I(C). Currently many of the techniques for calculating lower bounds rely
on the absence of k-powers (such as proofs in [19, 29]). In particular, Shallit and Wang
show that for every x without k-powers, x satisfies A(x) ≥ (|x| + 1)/k. However, as C is a
Champernowne sequence, long enough prefixes contain k-powers, i.e. there eventually is a
substring x such that x = uk for some string u.

However, one can easily identify an upper bound for I(C) as follows. Consider prefixes of
the form Cn+1 where n is a power of 2, i.e. we are in Case 1. The automaton in Figure 5
for Case 1 where the final state is contained appropriately in the second loop will uniquely
accept the prefix and simple calculations give us that I(C) ≤ 1/4.

One prefix x of C such that A(x)/|x| < 1/4 which is in Case 1 is C65. The automaton
for Case 1 in Figure 5 which uniquely accepts C65 has n1 = |C63| + 264 + 265 + 128 states.
However, the number of states can be reduced further by using two more loops for zones
C62 and C63 instead of having a state for each of their bits. Consider the DFA M̂ shown in
Figure 4:

M̂ reads the prefix C61 · 062. It then traverses a loop for 1v62(d62)30061. It then reads 03

and enters a loop for the string (1v63063)21. Following this it reads 01v64063 and then enters
a loop for the string (1v64063)7. It then reads 065 and enters a loop for the string (1v65065)5,
with the final state being that state of this loop after reading (1v65065)4 · 1v65. M̂ can be
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thought of as combining the DFAs from Figure 5, but altering the length of the loops for the
zones. Strings of length |C65| that M̂ accepts satisfy the equation

|C61| + (262 · 31 − 1)a + (21 · 263)b + (7 · (264 − 1))c + (5 · 265)d + 65 + 264 = |C65| (6)

where it must hold that d ≥ 1.
a = 2, b = 3, c = 9 and d = 13 is the only non-negative integer solution to Equation (6)

and so M̂ uniquely accepts C65. M̂ has n2 = |C61| + 31 · 262 + 7 · 263 + 8 · 264 + 5 · 265 + 120
states which is less than n1. Hence M̂ gives us that A(C65)/|C65| < 0.173 < 1/4.

start
C61 · 062

(1v62(d62)30061)

03

(1v63063)21

(01v64063)

(1v64063)7

065

(1v65065)41v65065

Figure 4 Automaton M̂ for C65. The dashed arrows represent the missing states belonging to
their labels. The error state (the state traversed to if the bit seen is not the expected bit) and arrows
to it are not included.

While the above demonstrates that more than two loops can be used, the size of the
loops are limited in each case. The following proposition demonstrates that if reading a zone
Cj where j is odd, any loop traversed used to read a substring x of Cj , if |x| ≥ j then |x|
must be a multiple of 2j .

▶ Proposition 12. Let C ∈ PSC. Let j be odd and C ′ be a prefix of C containing the substring
Cj. Let p0, p1, . . . p2jj be the sequence of states an automaton which uniquely accepts C ′

traverses while reading Cj. If there is some subsequence of states pi, . . . pi+l, . . . pi+2l where
l ≥ j and for all 0 ≤ m ≤ l, pi+m = pi+l+m, then l must be a multiple of 2j.

Proof. Let C, C ′ and j be as above. First suppose a loop of length l is traversed where
j ≤ l ≤ 2j − 1. Let x be the substring of Cj read during the loop. Hence x = yz where
|y| = j and |z| ≤ 2j − j − 1. Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . Consider yzy which has length at most 2j + j − 1. By the
construction of Cj , yzy is a prefix of dj,k · dj,k[0..j − 2] for some k. By the nature of de
Bruijn stings, dj,k · dj,k[0..j − 2] contains every string of length j as a substring exactly once.
However, y is a substring of length j contained twice giving us a contradiction.

Next suppose a loop of length l is traversed where d · 2j < l < (d + 1) · 2j for some
d ≤ ⌊j/2⌋ as if d > ⌊j/2⌋, traversing the loop twice would result in a string longer than
Cn being read. Let x be the string read while traversing the loop. Hence x = yz where
|y| = d · 2j and 1 ≤ |z| < 2j . Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . By the construction of Cj , yzy = (dj,k)dz(dj,k)d for some k

where z is a prefix of dj,k. This forces z = λ or z = dj,k which is a contradiction. ◀

Similar results to the above proposition can be shown for n even also. For instance, if
n is a power of 2, loops of length larger than n in zone Cn have to be a multiple of 2n − 1.
Details can be found in the appendix.

▶ Question 13. Let C ∈ PSC satisfy Theorem 11. Is there a limit to the number of beneficial
loops we can use to ensure prefixes of C are uniquely accepted? Finding the value of I(C) is
left as an open question. For instance, is I(C) > 0?
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1start

Cn−10n

1

vn0n−1

0n+1

1

vn+10n+1Cn+2[n + 1..]

3start

0n−1

Cn−1

0n

1

vn

dt−1
n

02s+1

1

vn+10n+1Cn+2[n + 1..]

2start

Cn−10n

1

vn0n

0

1

vn+10nCn+2

4start

0n

Cn−10n

1

vn0n

0

1

vn+1

dt′−1
n+1

02s′
+1Cn+2[n + 2..]

Figure 5 Automaton for Case 1 (top left), Case 2 (top right), Case 3 (bottom left) and Case 4
(bottom right). The dashed arrows represent the missing states belonging to their labels. The error
state (the state traversed to if the bit seen is not the expected bit) and arrows to it are not included
in each of the four diagrams. We point the reader to Figures 2 and 3 to help visualise the bits read
on a single traversal of a loop.
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A Appendix

A.1 The other three cases for the proof of Theorem 11
The following is the reasoning for why Equation (4) from the proof of Theorem 11 gives us
the upper bound of S(C). We perform similar calculations as in the proof for Cases 1, 2 and
4 to see this.

Case 1. n is a power of 2.
Suppose we are in Case 1. Let pn+2 be such that C[0..m] = Cn+1pn+2. We have a

automaton as in Case 1. It requires at most |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2| states.
Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use an
automaton in the style of Case 4 since worst case scenario n + 2 has the form 2s′

t′. Such an
automaton has at most |Cn| + 1 + n + 2n+1 + 2n+2( n+2

2 ) states.
So for |pn+2| ≤ 2n(n − 1) − n + 2n+2( n+2

2 )

A(C[0..m])
m + 1 ≤ |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + 1 + 2n − n + 2n + 2n(n − 1) + 2n+1 + 2n+2( n+2

2 )
|Cn+1| − n + 2n(n − 1) + 2n+2( n+2

2 )

=
|Cn| + 1 + n + 2n+1 + 2n+2( n+2

2 )
|Cn+1| − n + 2n(n − 1) + 2n+2( n+2

2 )
.

FSTTCS 2021

https://doi.org/10.1109/SEQUEN.1997.666909
https://doi.org/10.1090/S0002-9904-1934-05988-3
https://doi.org/10.1007/s00224-014-9554-8
https://doi.org/10.1007/s00224-014-9554-8
https://doi.org/10.1007/978-1-4757-6048-4_32
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/BF00289514
https://doi.org/10.25596/jalc-2001-537
https://doi.org/10.1145/800061.808762


47:14 Normal Sequences with Non-Maximal Automatic Complexity

For j ≥ 1 such that 2n(n−1)−n+2n+2( n+2
2 ) ≤ |pn+2|+j < |Cn+2| we use an automaton

from Case 4 and have that

A(C[0..m])
m + 1 ≤

|Cn| + 1 + n + 2n+1 + 2n+2( n+2
2 )

|Cn+1| − n + 2n(n − 1) + 2n+2( n+2
2 ) + j

,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 1 + n + 2n+1 + 2n+2( n+2
2 )

|Cn+1| − n + 2n(n − 1) + 2n+2( n+2
2 )

= 4
7 <

2
3 .

Case 2. n + 1 is a power of 2
Suppose we are in Case 2. Let pn+2 be such that C[0..m] = Cn+1pn+2. We have a

automaton as in Case 2. It requires at most |Cn−1| + n + 2n + 2n+1 + |pn+2| states. Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use an
automaton in the style of Case 1 as n + 2 is odd and n + 1 is a power of 2. As the final state
will be contained in the second loop, such an automaton requires |Cn| + 2 + 2n + 2n+1 + 2n+2

states.
So for |pn+2| ≤ 2 + n + 2n(n − 1) + 2n+2

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤ |Cn−1| + 2 + n + n + 2n + 2n(n − 1) + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2

= |Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2
.

For j ≥ 1 such that 2 + n + 2n(n − 1) + 2n+2 ≤ |pn+2| + j < |Cn+2| we use an automaton
from Case 1 and have that

A(C[0..m])
m + 1 ≤ |Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2 + j
,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2
= 2

5 <
2
3 .

Case 4. n + 1 is even but not a power of 2
Suppose we are in Case 4, i.e. n + 1 = 2st for some s ≥ 1 and t ≥ 3 odd. Let pn+2 be

such that C[0..m] = Cn+1pn+2. We have a automaton as in Case 4. It requires at most
|Cn−1| + n + 2n + 2n+1t + |pn+2| states.

Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1t + |pn+2|

|Cn+1| + |pn+2|
.
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For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use
an automaton in the style of Case 3 as n + 2 is odd and n + 1 is even but not power of
2. As the final state will be contained in the second loop, such an automaton requires
|Cn| + n + 2n+1t + 2s + 2n+2 states. Hence, as 2s ≤ n/3 and we have that the number of
states required is bounded above by |Cn| + 4n/3 + 2n+1t + 2n+2.

So for |pn+2| ≤ n/3 + 2n(n − 1) + 2n+2

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1t + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + n + n

3 + 2n + 2n(n − 1) + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

=
|Cn| + 4n

3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

.

For j ≥ 1 such that n/3 + 2n(n − 1) + 2n+2 ≤ |pn+2| + j < |Cn+2| we use an automaton
from Case 3 and have that

A(C[0..m])
m + 1 ≤

|Cn| + 4n
3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2 + j

,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 4n
3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

≤ lim
n→∞

|Cn| + 4n
3 + 2n+1 (n+1)

2 + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

= 3
5 <

2
3 .

A.2 Analogous Result to Proposition 12
The following is analogous for Proposition 12 and demonstrates that if reading a zone Cj

where j = 2k for k ≥ 1, any loop traversed used to read a substring x of Cj , if |x| ≥ j then
|x| must be a multiple of 2j − 1.

▶ Proposition 14. Let C ∈ PSC. Let j = 2k for some k ≥ 1 and let C ′ be a prefix of
C containing the substring Cj. Let p0 → p1 → · · · → p2jj be the sequence of states an
automaton which uniquely accepts C ′ traverses while reading Cj . If there is some subsequence
of states pi → · · · pi+l → · · · pi+2l where l ≥ j and for all 0 ≤ m ≤ l, pi+m = pi+l+m, then l

must be a multiple of 2j − 1.

Proof. Let C, C ′, j and k be as above. Recall in such a case that

Cj = dj · dj,1 · dj,2 · · · dj,2j−1 = 0 · (dj [1..2j − 1])j · 0j−1

for some de Bruijn string dj . First suppose a loop of length l is traversed where j ≤ l ≤ 2j −2.
Let x be the substring of Cj read during the loop. Hence x = yz where |y| = j and
|z| ≤ 2j − j − 2. Suppose the loop is traversed twice in a row indicating that x2 = yzyz is
a substring of Cj . Consider yzy which has length at most 2j + j − 2. By the construction
of Cj , every substring of length 2j + j − 2 contains 2j − 1 of the strings of length j as a
substring exactly once where either 0j or 10j−1 is the remaining string that does not appear.
If y = 0j then 10j−1 is missing, otherwise 0j is missing due to this shift between instances of
the de Bruijn strings. However, y is then a substring of length j contained twice withing a
substring of length 2j + j − 2 giving us a contradiction.
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47:16 Normal Sequences with Non-Maximal Automatic Complexity

Next suppose a loop of length l is traversed where d(2j − 1) < l < (d + 1)(2j − 1) for
some d ≤ ⌊j/2⌋. Let x be the string read while traversing the loop. Hence x = yz where
|y| = d(2j − 1) and 1 ≤ |z| < 2j − 1. Note that y = (dj [i..2j − 1] · dj [1..i − 1])d for some
i ≥ 1 (i ̸= 0 as occ(0j , Cj) = 1). Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . By the construction of Cj , this means that z is a prefix of
dj [i..2j − 1] · dj [1..i − 1]. This forces z = λ or z = dj [i..2j − 1] · dj [1..i − 1] which contradicts
the length requirement of z. ◀
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