
On Classical Decidable Logics Extended with
Percentage Quantifiers and Arithmetics
Bartosz Bednarczyk #

Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wrocław, Poland

Maja Orłowska
Institute of Computer Science, University of Wrocław, Poland

Anna Pacanowska
Institute of Computer Science, University of Wrocław, Poland

Tony Tan #

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

Abstract
During the last decades, a lot of effort was put into identifying decidable fragments of first-order
logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded
fragment, depending on the type of restriction imposed on formulae from the language. Despite the
success of the mentioned logics in areas like formal verification and knowledge representation, such
first-order fragments are too weak to express even the simplest statistical constraints, required for
modelling of influence networks or in statistical reasoning.

In this work we investigate the extensions of these classical decidable logics with percentage
quantifiers, specifying how frequently a formula is satisfied in the indented model. We show,
surprisingly, that all the mentioned decidable fragments become undecidable under such extension,
sharpening the existing results in the literature. Our negative results are supplemented by decidability
of the two-variable guarded fragment with even more expressive counting, namely Presburger
constraints. Our results can be applied to infer decidability of various modal and description logics,
e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints.
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1 Introduction

Since the works of Church, Turing and Trakhtenbrot, it is well-known that the (finite)
satisfiability and validity problems for the First-Order Logic (FO) are undecidable [29]. Such
results motivated researchers to study restricted classes of FO that come with decidable
satisfiability problem, such as the prefix classes [9], fragments with fixed number of vari-
ables [28], restricted forms of quantification [1, 30] and the restricted use of negation [6].
These fragments have found many applications in the areas of knowledge representation,
automated reasoning and program verification, just to name a few. To the best of our
knowledge, none of the known decidable logics incorporate a feature that allows for stating
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even a very modest statistical property. For example, one may want to state that “to qualify
to be a major, one must have at least 51% of the total votes”, which may be useful to
formalise, e.g. the voting systems.

Our results. In this paper, we revisit the satisfiability problem for some of the most prom-
inent fragments of FO, namely the two-variable fragment FO2 and the guarded fragment GF.
We extend them with the so-called percentage quantifiers, in two versions: local and global.
Global percentage quantifiers are quantifiers of the form ∃=q%x φ(x), which states that
the formula φ(x) holds on exactly q% of the domain elements. Their local counterparts
are quantifiers of the form ∃=q%

R y φ(x, y), which intuitively means that exactly q% of the
R-successors of an element x satisfy φ.

In this paper, we show that both FO2 and GF become undecidable when extended
with percentage quantifiers of any type. In fact, the undecidability of GF already holds
for its three variable fragment GF3. Our results strengthen the existing undecidability
proofs of ALCISCC++ from [4] and of FO2 with equicardinality statements (implemented
via the Härtig quantifier) from [18] and contrast with the decidability of FO2 with counting
quantifiers (C2) [17, 23, 26] and modulo and ultimately-periodic counting quantifiers [8].

Additionally, we show that the decidability status of GF can be regained if we consider
GF2, i.e. the intersection of GF and FO2, which is still a relevant fragment of FO that
captures standard description logics up to ALCIHbself [5, 14]. We in fact show a stronger
result here: GF2 remains decidable when extended with local Presburger quantifiers, which
are essentially Presburger constraints on the neighbouring elements, e.g. we can say that the
number of red outgoing edges plus twice the number of blue outgoing edges is at least three
times as many as the number of green incoming edges.

We stress here that the semantics of global percentage quantifiers makes sense only
over finite domains and hence, we study the satisfiability problem over finite models only.
Similarly, the semantics of local percentage quantifiers only makes sense if the models
are finitely-branching. While we stick again to the finite structures, our results on local
percentage quantifiers also can be transferred to the case of (possibly infinite) finitely-
branching structures.

Related works. Some restricted fragments of GF2 extended with arithmetics, namely
the (multi) modal logics, were already studied in the literature [11, 20, 2, 4], where the
decidability results for their finite and unrestricted satisfiability were obtained. However, the
logics considered there do not allow the use of the inverse of relations. Since GF2 captures the
extensions of all the aforementioned logics with the inverse relations, our decidability results
subsume those in [11, 20, 2, 4]. We note that prior to our paper, it was an open question
whether any of these decidability results still hold when inverse relations are allowed [4]. In
our approach, despite the obvious difference in expressive power, we show that GF2 with
Presburger quantifiers can be encoded directly into the two-variable logic with counting
quantifiers [17, 23, 26], which we believe is relatively simple and avoids cumbersome reductions
of the satisfiability problem into integer programming.

2 Preliminaries

We employ the standard terminology from finite model theory [21]. We refer to structures/-
models with calligraphic letters A,B,M and to their universes with the corresponding capital
letters A,B,M . We work only on structures with finite universes over purely relational (i.e.
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constant- and function-free) signatures of arity ≤ 2 containing the equality predicate =. We
usually use a, b, . . . to denote elements of structures, ā, b̄, . . . for tuples of elements, x, y, . . .
for variables and x̄, ȳ, . . . for tuples of variables (all of these possibly with some decorations).
We write φ(x̄) to indicate that all free variables of φ are in x̄. We write M, x/a |= φ(x) to
denote that φ(x) holds in the structure M when the free variable x is assigned with element
a. Its generalization to arbitrary number of free variables is defined similarly. The (finite)
satisfiability problem is to decide whether an input formula has a (finite) model.

2.1 Percentage quantifiers
For a formula φ(x) with a single free-variable x, we write |φ(x)|M to denote the total number
of elements of M satisfying φ(x). Likewise, for an element a ∈ M and a formula φ(x, y) with
free variables x and y, we write |φ(x, y)|x/a

M to denote the total number of elements b ∈ M

such that (a, b) satisfies φ(x, y).
The percentage quantifiers are quantifiers of the form ∃=q%x φ(x, y), where q is a rational

number between 0 and 100, stating that exactly q% of domain elements satisfy φ(x, y) with
y known upfront. Formally:

M, y/a |= ∃=q%x φ(x, y) iff |φ(x, y)|y/a
M = q

100 · |M |.

Percentage quantifiers for other thresholds (e.g. for <) are defined analogously. We stress
here that the above quantifiers count globally, i.e. they take the whole universe of M into
account. This motivates us to define their local counterpart, as follows: for a binary1 relation
R and a rational q between 0 and 100, we define the quantifier ∃=q%

R y φ(x, y), which evaluates
to true whenever exactly q% of R-successors y of x satisfy φ(x, y). Formally,

M, x/a |= ∃=q%
R y φ(x, y) iff |R(x, y) ∧ φ(x, y)|x/a

M = q

100 · |R(x, y)|x/a
M .

We define the percentage quantifiers w.r.t. R− (i.e. the inverse of R) and for other thresholds
analogously.

2.2 Local Presburger quantifiers
The local Presburger quantifiers are expressions of the following form:

n∑
i=1

λi · #ri
y [φi(x, y)] ⊛ δ

where λi, δ are integers; ri is either R or R− for some binary relation R; φi(x, y) is a formula
with free variables x and y; and ⊛ is one of =, ̸=, ≤, ≥, <, >, ≡d or ̸≡d, where d ∈ N+. Here
≡d denotes the congruence modulo d. Note that the above formula has one free variable x.

Intuitively, the expression #ri
y [φi(x, y)] denotes the number of y’s that satisfy ri(x, y) ∧

φi(x, y) and evaluates to true on x, if the (in)equality ⊛ holds. Formally,

M, x/a |=
n∑

i=1
λi · #ri

y [φi(x, y)] ⊛ δ iff
n∑

i=1
λi · |ri(x, y) ∧ φi(x, y)|x/a

M ⊛ δ

Note that local percentage quantifiers can be expressed with Presburger quantifiers, e..g.
∃50%

R yφ(x, y) can be expressed as local Presburger quantifier: #R
y [φ(x, y)] − 1

2 #R
y [⊤] = 0.

1 Local percentage quantifiers for predicates of arity higher than two can also be defined but we will never
use them. Hence, for simplicity, we define such quantifiers only for binary relations.
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2.3 Logics

In this paper we mostly consider two fragments of first-order logic, namely the two-variable
fragment FO2 and the guarded fragment GF. The former logic is a fragment of FO in which
we can only use the variables x and y. By allowing local and global percentage quantifiers in
addition to the standard universal and existential quantifiers, we obtain the logics FO2

loc% and
FO2

gl%. The latter logic is defined by relativising quantifiers with relations. More formally,
GF is the smallest set of first-order formulae such that the following holds.

GF contains all atomic formulae R(x̄) and equalities between variables.
GF is closed under boolean connectives.
If ψ(x̄, ȳ) is in GF and γ(x̄, ȳ) is a relational atom containing all free variables of ψ, then
both ∀ȳ γ(x̄, ȳ) → ψ(x̄, ȳ) and ∃ȳ γ(x̄, ȳ) ∧ ψ(x̄, ȳ) are in GF.

By allowing global percentage quantifiers additionally in place of existential ones, we obtain
the logic GFgl%. We obtain the logic GFloc% by extending GF’s definition with the rule:2

∃=q%
R y φ(x, y) is in GFloc% iff φ(x, y) in GF with free variables x, y.

Similarly, we obtain GFpres by extending GF’s definition with the rule:∑n
i=1 λi · #ri

y [φi(x, y)] ⊛ δ is in GFpres iff φi(x, y) are in GF with free variables x, y.
Finally, we use GFk

gl%, GFk
loc% and GFk

pres to denote the k-variable fragments of the mentioned
logics. Specifically, we use GF2

gl%, GF2
loc% and GF2

pres for the two-variable fragments.

2.4 Semi-linear sets

Since we will exploit the semi-linear characterization of Presburger constraints, we introduce
some terminology. The term vector always means row vectors. For vectors v̄0, v̄1, . . . , v̄k ∈ Nℓ,
we write L(v̄0; v̄1, . . . , v̄k) to denote the set:

L(v̄0; v̄1, . . . , v̄k) :=
{
ū ∈ Nℓ ū = v̄0 +

∑k
i=1 niv̄i for some n1, . . . , nk ∈ N

}
A set S ⊆ Nℓ is a linear set, if S = L(v̄0; v̄1, . . . , v̄k), for some v̄0, v̄1, . . . , v̄k ∈ Nℓ. In this
case, the vector v̄0 is called the offset vector of S, and v̄1, . . . , v̄k are called the period vectors
of S. We denote by offset(S) the offset vector of S, i.e. v̄0 and prd(S) the set of period
vectors of S, i.e. {v̄1, . . . , v̄k}. A semilinear set is a finite union of linear sets.

The following theorem is a well-known result by Ginsburg and Spanier [13] which states
that every set S ⊆ Nℓ definable by Presburger formula is a semilinear set. See [13] for the
formal definition of Presburger formula.

▶ Theorem 1 ([13]). For every Presburger formula φ(x1, . . . , xℓ) with free variables
x1, . . . , xℓ, the set {ū ∈ Nℓ | φ(ū) holds in N} is semilinear. Moreover, given
the formula φ(x1, . . . , xℓ), one can effectively compute a set of tuples of vectors
{(v̄1,0, . . . , v̄1,k1), . . . , (v̄p,0, v̄p,1, . . . , v̄p,kp

)} such that {ū ∈ Nℓ | φ(ū) holds in N} is equal
to

⋃p
i=1 L(v̄i,0; v̄i,1, . . . , v̄i,ki

).

2 Note that R in the subscript of a quantifier serves the role of a “guard”.
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2.5 Types and neighbourhoods
A 1-type over a signature Σ is a maximally consistent set of unary predicates from Σ or
their negations, where each atom uses only one variable x. Similarly, a 2-type over Σ is a
maximally consistent set of binary predicates from Σ or their negations containing the atom
x ̸= y, where each atom or its negation uses two variables x and y.3

Note that 1-types and 2-types can be viewed as quantifier-free formulae that are the
conjunction of their elements. We will use the symbols π and η (possibly indexed) to
denote 1-type and 2-type, respectively. When viewed as formula, we write π(x) and η(x, y),
respectively. We write π(y) to denote formula π(x) with x being substituted with y. The
2-type that contains only the negations of atomic predicates is called the null type, denoted
by ηnull. Otherwise, it is called a non-null type.

For a Σ-structure M, the type of an element a ∈ M is the unique 1-type π that a satisfies
in M. Similarly, the type of a pair (a, b) ∈ M ×M , where a ̸= b, is the unique 2-type that
(a, b) satisfies in M. For an element a ∈ M , the η-neighbourhood of a, denoted by NM,η(a),
is the set of elements b such that η is the 2-type of (a, b). Formally,

NM,η(a) :=
{
b ∈ M M, x/a, y/b |= η(x, y)

}
.

The η-degree of a, denoted by degM,η(a), is the cardinality of NM,η(a).
Let η1, . . . , ηℓ be an enumeration of all the non-null types. The degree of a in M is defined

as the vector degM(a) := (degM,η1(a), · · · ,degM,ηℓ
(a)). Intuitively, degM(a) counts the

number of elements adjacent to a with non-null type. We note that our logic can be easily
extended with atomic predicates of the form of a linear constraint C over the variables
degη(x)’s or deg(x) ∈ S, where S is a semilinear set. Semantically, M, x/a |= C iff the
linear constraint C evaluates to true when each degη(x) is substituted with degM,η(a) and
M, x/a |= deg(x) ∈ S iff degM(a) ∈ S. We stress that these atomic predicates will only be
used to facilitate the proof of our decidability result.

3 Negative results

In this section we turn our attention to the negative results announced in the introduction.

3.1 Two-Variable Fragment
We start by proving that the two-variable fragment of FO extended with percentage quantific-
ation has undecidable finite satisfiability problem. Actually, in our proof, we will only use the
∃=50% quantifier. Our results strengthen the existing undecidability proofs of ALCISCC++

from [4] and of FO2 with equicardinality statements (implemented via the Härtig quantifier)
from [18]. Roughly speaking, our counting mechanism is weaker: we cannot write arbitrary
Presburger constraints (as it is done in [4]) nor compare sizes of any two sets (as it is done
in [18]). Nevertheless, we will see that in our framework we can express “functionality” of a
binary relation and “compare” cardinalities of sets, but under some technical assumptions of
dividing the intended models into halves. Due to such technicality, we cannot simply encode
the undecidability proofs of [4, 18] and we need to prepare our proof “from scratch”.

3 We should remark here that the standard definition of 2-type, such as in [16, 26], a 2-type also contains
unary predicates or its negation involving variable x or y. However, for our purpose, it is more convenient
to define a 2-type as consisting of only binary predicates that strictly use both variables x and y. Note
also that we view a binary predicate such as R(x, x) as a unary predicate.

FSTTCS 2021
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Our proof relies on encoding of Hilbert’s tenth problem, whose simplified version is
introduced below. In the classical version of Hilbert’s tenth problem we ask whether a
diophantine equation, i.e. a polynomial equation with integer coefficients, has a solution
over N. It is well-known that such problem is undecidable [22]. By employing some
routine transformations (e.g. by rearranging terms with negative coefficients, by replacing
exponentiation by multiplication and by introducing fresh variable for partial results of
multiplications or addition), one can reduce any diophantine equation to an equi-solvable
system of equations, where the only allowed operations are addition or multiplication of two
variables or assigning the value one to some of them. We refer to the problem of checking
solvability (over N) of such systems of equations as SHTP (simpler Hilbert’s tenth problem)
and present its precise definition next. Note that, by the described reduction, SHTP is
undecidable.

▶ Definition 2 (SHTP). An input of SHTP is a system of equations ε, where each of its
entries εi is in one of the following forms: (i) ui = 1, (ii) ui = vi + wi, (iii) ui = vi · wi,
where ui, vi, wi are pairwise distinct variables from some countably infinite set Var. In SHTP
we ask whether an input system of equations ε, as described before, has a solution over N.

3.1.1 Playing with percentage quantifiers
Before reducing SHTP to FO2

gl%, let us gain more intuitions of FO2
gl% and introduce a useful

trick employing percentage quantifiers to express equi-cardinality statements. Let M be a
finite structure and let Half,R, J be unary predicates. We say that M is (Half,R, J)-separated
whenever it satisfies the following conditions: (a) exactly half of the domain elements from
M satisfy Half (b) the satisfaction of R implies the satisfaction of Half (c) the satisfaction of
J implies the non-satisfaction of Half. Roughly speaking, the above conditions entail that
the elements satisfying R and those satisfying J are in different halves of the model. We
show that under these assumptions one can enforce the equality |R(x)|M = |J(x)|M. Indeed,
such a property can be expressed in FO2

gl% with the following formula φeq(Half,R, J):

A := |= φeq(Half,R, J) := ∃=50%x (Half(x) ∧ ¬R(x)) ∨ J(x)

Half ¬Half

R J

For intuitions on φeq(Half,R, J), consult the above picture. We basically take all the
elements satisfying Half (so exactly half of the domain elements, indicated by the green area).
Next, we discard the elements labelled with R (so we get the green area without the circle
inside) and replace them with the elements satisfying J (the red circle, note that JA and RA

are disjoint!). The total number of selected elements is equal to half of the domain, thus
|JM| = |RM|. The following fact is a direct consequence of the semantics of FO2

gl%.

▶ Fact 1. For (Half,R, J)-separated M we have M |= φeq(Half,R, J) iff |R(x)|M = |J(x)|M.

3.1.2 Undecidability proof
Until the end of this section, let us fix ε, a valid input of SHTP. By Var(ε) = {u, v, w, . . .}
we denote the set of all variables appearing in ε, and with |ε| we denote the total number of
entries in ε. Let M be a finite structure.

The main idea of the encoding is fairly simple: in the intended model M some elements
will be labelled with Au predicates, ranging over variables u ∈ Var(ε), and the number of
such elements will indicate the value of u in an example solution to ε. The only tricky part
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here is to encode multiplication of variables. Once ε contains an entry w = u · v, we need to
ensure that |Aw(x)|M = |Au(x)|M · |Av(x)|M holds. It is achieved by linking, via a binary
relation MultM, each element from AM

u with exactly |Av(x)|M elements satisfying Aw, which
relies on imposing equicardinality statements. To ensure that the performed multiplication
is correct, each element labelled with AM

w has exactly one predecessor from AM
u and hence

the relation MultM is backward-functional.
We start with a formula inducing a labelling of elements with variable predicates and

ensuring that all elements of M satisfy at most one variable predicate. Note that it can
happen that there will be auxiliary elements that are not labelled with any of the variable
predicates.

(φε
var) ∀x

∧
u ̸=v∈Var(ε) ¬(Au(x) ∧Av(x)).

We now focus on encoding the entries of ε. For an entry εi of the form ui = 1 we write:

(φui=1) ∃x Aui
(x) ∧ ∀x∀y (Aui

(x) ∧Aui
(y)) → x = y

▶ Fact 2. M |= φui=1 holds iff there is exactly one element in M satisfying Au(x).
To deal with entries εi of the form wi = ui + vi or wi = ui · vi we need to “prepare an area”
for the encoding, similarly to Section 3.1.1. First, we cover domain elements of M by layers.
The i-th layer is divided into halves with FHalf[i] and SHalf[i] predicates with:

(φi
halves) ∀x

(
FHalf[i](x) ↔ ¬SHalf[i](x)

)
∧ ∃=50%x FHalf[i](x)

▶ Fact 3. M |= φi
halves holds iff exactly half of the domain elements from M are labelled

with FHalf[i] and the other half of elements are labelled with SHalf[i].

Second, we need to ensure that in the i-th layer of M, the elements satisfying Aui
or Avi

are in the first half, whereas elements satisfying Awi
are in the second half. We do it with:

(φi
parti(ui, vi, wi)) ∀x

(
[(Aui(x)∨Avi(x)) → FHalf[i](x)] ∧ [Awi(x) → SHalf[i](x)]

)
▶ Fact 4. M |= φi

parti(ui, vi, wi) holds iff for all elements a ∈ M , if a satisfies Aui(x)∨Avi(x)
then a also satisfies FHalf[i](x) and if a satisfies Awi

(x) then a also satisfies SHalf[i](x).

Gathering the presented formulae, we call a structure M well-prepared, if it satisfies the
conjunction of all previous formulae over 1 ≤ i ≤ |ε| and over all entries εi from the system ε.
The forthcoming encodings will be given under the assumption of well-preparedness.

Now, for the encoding of addition, assume that εi is of the form ui + vi = wi. Thus in
our encoding, we would like to express that |Aui(x)|M + |Avi(x)|M = |Awi(x)|M, which
is clearly equivalent to |Awi

(x)|M − |Aui
(x)|M − |Avi

(x)|M = 0 and also to |Awi
(x)|M +

|FHalf[i](x)|M − |Aui
(x)|M − |Avi

(x)|M = |FHalf[i](x)|M. Knowing that exactly 50% of
domain elements of an intended model satisfy FHalf[i] and that Aui

, Avi
and Awi

label
disjoint parts of the model, we can write the obtained equation as an FO2

gl% formula:

(φi
add(ui, vi, wi)) ∃=50%x

(
Awi(x) ∨ (FHalf[i](x) ∧ ¬Aui(x) ∧ ¬Avi(x))

)
Note that the above formula is exactly the φeq(Half,R, J) formula from Section 3.1.1, with
Half = FHalf[i](x), J = Awi

and R defined as a union of Aui
and Avi

. Hence, we conclude:

▶ Lemma 3. A well-prepared M satisfies φi
add(ui, vi, wi) iff |Aui(x)|M+|Avi(x)|M =

|Awi
(x)|M.

FSTTCS 2021
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The only missing part is the encoding of multiplication. Take εi of the form ui · vi = wi.
As already described in the overview, our definition of multiplication requires three steps:

(link) A binary relation Multi
M links each element from AM

wi
to some element from AM

ui
.

(count) Each element from M satisfying Aui
(x) has exactly |Avi

(x)|M Multi
M-successors.

(bfunc) The binary relation Multi
M is backward-functional.

Such properties can be expressed with the help of ∃=50% quantifier, as presented below:

(φi
link(ui, wi)) ∀y Awi

(y) → ∃x Multi(x, y) ∧ ∀x∀y Multi(x, y) → (Aui
(x) ∧Awi

(y))
(φi

count(ui, vi, wi)) ∀x Aui
(x) → ∃=50%y

(
[SHalf[i](y) ∧ ¬Multi(x, y)] ∨Avi

(y)
)

(φi
bfunc(ui, vi, wi)) ∀x Awi

(x) → ∃=50%y
(

[SHalf[i](y) ∧ x ̸= y] ∨ Multi(y, x)
)

While the first formula, namely φi
link(ui, wi), is immediate to write, the next two are more

involved. A careful reader can notice that they are actually instances of φeq(Half,R, J)
formula from Section 3.1.1. In the case of φi

count(ui, vi, wi) we have Half = SHalf[i], J = Avi

and the Multi-successors of x play the role of elements labelled by R. For the last formula
one can see that we remove exactly one element from SHalf[i] (y that is equal to x) and
we replace it with the Multi-predecessors of x, which implies that there is the unique such
predecessor. We summarise the mentioned facts as follows:

▶ Lemma 4. Let M be a well-prepared structure satisfying φi
link(ui, wi). We have that (i) M

satisfies φi
count(ui, vi, wi) iff every a ∈ M satisfying Aui is connected via Multi to exactly |Avi |

elements satisfying Awi
and (ii) M satisfies φi

bfunc(ui, vi, wi) iff the binary relation Multi
M

linking elements satisfying Aui(x) with those satisfying Awi(x) is backward-functional.

Putting the last three properties together, we encode multiplication as their conjunction:

(φi
mult(ui, vi, wi)) φi

link(ui, vi, wi) ∧ φi
count(ui, vi, wi) ∧ φi

bfunc(ui, vi, wi)

▶ Lemma 5. If a well-prepared M satisfies φi
mult(ui, vi, wi), then |Aui

(x)|M·|Avi
(x)|M =

|Awi(x)|M.

Let φε
red be φε

var supplemented with a conjunction of formulae φεi
entry, where φεi

entry is
respectively: (i) φui=1 if εi is equal to ui=1, (ii) φi

halves ∧ φi
parti(ui, vi, wi) ∧ φi

add(ui, vi, wi)
for εi of the form ui + vi = wi and (iii) φi

halves ∧ φi
parti(ui, vi, wi) ∧ φi

mult(ui, vi, wi) for εi

of the form ui · vi = wi. As the last piece in the proof we show that each solution of the
system ε corresponds to some model of φε

red. Its proof is routine and relies on the correctness
of all previously announced facts (consult [7, Appendix B] for more details). Hence, by the
undecidability of SHTP, we immediately conclude:

▶ Theorem 6. The finite satisfiability problem for FO2
gl% is undecidable, even when the only

percentage quantifier allowed is ∃=50%.

Note that in our proof above, all the presented formulas can be easily transformed to
formulae under the local semantics of percentage quantifiers as follows. First, we introduce
a fresh binary symbol U and enforce it to be interpreted as the universal relation with
∀x∀y U(x, y). Then, we replace every occurrence of ∃=50%x φ by ∃=50%

U x φ. Obviously, the
resulting formula is FO2 formula with local percentage quantifiers. Thus we conclude:

▶ Corollary 7. The finite satisfiability problem for FO2
loc% is undecidable.
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3.2 Guarded Fragment
We now focus on the second seminal fragment of FO considered in this paper, namely on
the guarded-fragment GF. We start from the global semantics of percentage quantifiers.
Consider a unary predicate H, whose interpretation is constrained to label exactly half of
the domain with ∃=50%x H(x). We then employ the formula

∀x x = x → ∃=50%y [U(x, y) ∧ H(y)] ∧ ∃=50%y [U(x, y) ∧ ¬H(y)] ,

whose satisfaction by M entails that UM is the universal relation. Hence, by putting U as a
dummy guard in every formula in the undecidability proof of FO2

loc%, we conclude:

▶ Corollary 8. The finite satisfiability problem for GFgl% is undecidable, even when restricted
to its two-variable fragment GF2

gl%.

It turns out that the undecidability still holds for GF once we switch from the global to
the local semantics of percentage counting. In order to show it, we present a reduction from
GF3[F ] (i.e. the three-variable fragment of GF with a distinguished binary F interpreted as
a functional relation), whose finite satisfiability was shown to be undecidable in [15].

▶ Theorem 9. The finite satisfiability problem for GFloc% (and even GF3
loc%) is undecidable.

Proof sketch. By reduction from GF3[F ] it suffices to express that F is functional. Let H,R
be fresh binary relational symbols. We use a similar trick to the one from Section 3.1.1, where
H(x, ·) plays the role of Half (note that H may induce different partitions for different x),
R(·, y) plays the role of R and y in x = y plays the role of J.

The functionality of F can be expressed with:

φfunc := ∀x x = x → [(∀y F (x, y) → R(x, y)) ∧ (∃=50%
R y H(x, y))∧

(∀y F (x, y) → (¬H(x, y) ∨ x = y)) ∧ (∃=50%
R y ((H(x, y) ∧ x ̸= y) ∨ F (x, y)))]

In the appendix we will show that if M |= φfunc then F is indeed functional and every
structure M with functional F can be extended by H and R, such that φfunc holds. ◀

The similar proof techniques do not work for GF2, since GF2 with counting is decidable [27].
Thus, in the forthcoming section we show that decidability status transfers not only to GF2

with percentage counting, but also with Presburger arithmetics. This can be then applied to
infer decidability of several modal and description logics, see [7, Appendix A].

4 Positive results

We next show that the finite satisfiability problem for GF2
pres is decidable, as stated below.

▶ Theorem 10. The finite satisfiability problem for GF2
pres is decidable.

It is also worth pointing out that Theorem 10 together with a minor modification of existing
techniques [3] yields decidability of conjunctive query entailment problem for GF2

pres, i.e.
a problem of checking if an existentially quantified conjunction of atoms is entailed by
GF2

pres formula. This is a fundamental object of study in the area of logic-based knowledge
representation. All the proofs and appropriate definitions are moved to [7, Appendix D].

▶ Theorem 11. Finite conjunctive query entailment for GF2
pres is decidable.

FSTTCS 2021
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The rest of this section will be devoted to the proof of Theorem 10, which goes by
reduction to the two-variable fragment of FO with counting quantifiers ∃=k,∃≤k for k ∈ N
with their obvious semantics. Since the finite satisfiability of C2 is decidable [26], Theorem 10
follows.4

4.1 Transforming GF2
pres formulae into C2

It is convenient to work with formulae in the appropriate normal form. Following a routine
renaming technique (see e.g. [19]) we can convert in linear time a GF2

pres formula into the
following equisatisfiable normal form (over an extended signature):

Ψ0 := ∀x γ(x) ∧
n∧

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧

m∧
i=1

∀x
( ni∑

j=1
λi,j · #ri,j

y [x ̸= y] ⊛ δi

)
,

where γ(x) and each αi(x, y) are quantifier-free formulae, each ei(x, y) is atomic predicate
and all λi,j ’s and δi’s are integers, and ⊛ is as in Section 2.2.

Then, for every non-null type η, we replace each of the expressions #ri,j
y [x ̸= y] with the

sum of all the degrees degη(x) with η containing ri,j(x, y), i.e. the sum
∑

ri,j(x,y)∈η degη(x).
Moreover, since

∧
∀ commutes, we obtain the following formula:

Ψ′ := ∀x γ(x)∧
n∧

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧∀x

m∧
i=1

( ni∑
j=1

λi,j ·
∑

ri,j(x,y)∈η

degη(x) ⊛ δi

)

Note that the conjunction
∧m

i=1

( ∑ni

j=1 λi,j ·
∑

ri,j(x,y)∈η degη(x) ⊛ δi

)
is a Presburger

formula with free variables degη(x)’s, for every non-null type η.5 Thus, by Theorem 1, we
can compute a set of tuples of vectors {(v̄1,0, c̄1,1, . . . , v̄1,k1), . . . , (v̄p,0, v̄p,1, . . . , v̄p,kp

)} and
further rewrite Ψ′ into the following formula:

Ψ = ∀x γ(x) ∧
∧n

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧ ∀x deg(x) ∈ S

where S =
⋃p

i=1 L(c̄i,0; c̄i,1, . . . , c̄i,ki
). We stress that technically Ψ is no longer in GF2

pres.
In the following we will show how to transform Ψ into a C2 formula Ψ∗ such that they

are (finitely) equi-satisfiable. For every i = 1, . . . , p, let Si = L(v̄i,0; v̄i,1, . . . , v̄i,ki). Recall
that offset(Si) is the offset vector v̄i,0 and prd(Si) is the set of periodic vectors of Si, i.e.
{v̄i,1, . . . , v̄i,ki

}. Consider the following formulae ξ and ϕ.

ξ := ∀x

p∨
i=1

deg(x)=offset(Si) ∨ deg(x)∈prd(Si), ϕ := ∀x

p∧
i=1

deg(x) ̸=offset(Si) → ∃y φ(x, y)

where φ(x, y) is the conjunction expressing the following properties:
The 1-types of x and y equal. It can be expressed with the formula

∧
U U(x) ↔ U(y),

where U ranges over unary predicates appearing in Ψ.
deg(x) ∈ prd(Sj) and deg(y) = offset(Sj) for some 1 ≤ j ≤ p.

4 Note that we propose a reduction into C2, not into the guarded C2, which might seem to be more
appropriate. As we will see soon, a bit of non-guarded quantification is required in our proof.

5 Technically speaking, in the standard definition of Presburger formula, the equality f ≡d g is not
allowed. However, it can be rewritten as ∃x1∃x2(f + x1d = g + x2d).
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Note that deg(x) = offset(Si) can be written as a C2 formula. For example, if v̄i,0 =
(d1, . . . , dℓ), it is written as

∧ℓ
j=1 ∃=djy ηj(x, y). We can proceed with deg(x) ∈ prd(Si)

similarly, since prd(Si) contains only finitely many vectors. Finally, we put Ψ∗ to be

Ψ∗ := ∀x γ(x) ∧
n∧

i=1
∀x∀y ei(x, y) → αi(x, y) ∧ ξ ∧ ϕ.

We will show that Ψ and Ψ∗ are finitely equi-satisfiable, as stated formally below.

▶ Lemma 12. Ψ is finitely satisfiable if and only if Ψ∗ is.

We delegate the proof of Lemma 12 to the next section. We conclude by stating that
the complexity of our decision procedure is 3NExpTime. For more details of our analysis,
see Section 4.3. Note that if we follow the decision procedure described in [13] for converting a
system of linear equations to its semilinear set representation we will obtain a non-elementary
complexity. This is because we need to perform k−1 intersections, where k is the number of
linear constraints in the formula Ψ′, and the procedure in [13] for handling each intersection
yields an exponential blow-up. Instead, we use the results in [12, 25, 10] and obtain the
complexity 3NExpTime, which though still high, falls within the elementary class.

4.2 Correctness of the translation
Before we proceed with the proof, we need to define some terminology. Let M be a finite
model. Let a, b ∈ A be such that the 2-type of (a, b) is ηnull, i.e. the null-type and that
a and b have the same 1-type. Suppose c1, . . . , cs are all elements such that the 2-type of
each (a, cj), denoted by η′

j , is non-null. Likewise, d1, . . . , dt are all the elements such that
the 2-type of (b, dj), denoted by η′′

j , is non-null. Moreover, c1, . . . , cs, d1, . . . , dt are pair-wise
different.

“Merging” a and b into one new element â is defined similarly to the one in the graph-
theoretic sense where a and b are merged into â such that the following holds.

The 2-types of each (â, cj) are equal to the original 2-types of (a, cj), for all j = 1, . . . , s.
The 2-types of each (â, dj) are equal to the original 2-types of (a, dj), for all j = 1, . . . , t.
The 2-types of (â, a′) is the null type, for every a′ /∈ {c1, . . . , c2, d1, . . . , dt}.
The 1-type of â is the original 1-type of a (which is the same as the 1-type of b).

ra ������:η′
1

rc1pppXXXXXXz
η′

s rcs

rb ������:η′′
1

rd1pppXXXXXXz
η′′

t rdt

=⇒ râ

3
η′

1

rc1ppp
:η′

s rcs

zη′′
1

rd1ppp
s

η′′
t rdt

Note that we require that the original 2-type of (a, b) is the null type. Thus, after the
merging, the degree of â is the sum of the original degrees of a and b. Moreover, the 1-type
of â is the same as the original 1-type of a and b. Thus, if ∀x∀y ei(x, y) → αi(x, y) holds in
M, after the merging, it will still hold. Likewise, if ∀x γ(x) holds in M, it will still hold
after the merging.

For the inverse, we define the “splitting” of an element â into two elements a and b as
illustrated above, where the 1-type of a and b is the same as the 1-type of â and the 2-type
of (a, b) is set to be ηnull. After the splitting, the sum of the degrees of a and b is the same as
the original degree of â. Moreover, since the 2-type of (a, b) is ηnull, M, x/a, y/b ̸|= ei(x, y).
Thus, if ∀x∀y ei(x, y) → αi(x, y) holds in the original M, it will still hold after the splitting.
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▶ Lemma 13. If Ψ is finitely satisfiable then Ψ∗ is.

Proof. Let M be a finite model of Ψ. We will construct a finite model M∗ |= Ψ∗ by splitting
every element in M into several elements so that their degrees are either one of the offset
vectors of S or one of the period vectors.

Let a ∈ A and degM(a) ∈ Si, for some 1 ≤ i ≤ p. Suppose degM(a) = v̄i,0 +
∑ki

j=1 nj v̄i,j ,
for some n1, . . . , nki

≥ 0. Let N = 1 +
∑ki

j=1 nj . We split a into N elements b1, . . . , bN . Let
M∗ denote the resulting model after such splitting. Note that it should be finite since the
degree of a is finite. It is straightforward to show that M∗ |= Ψ∗. ◀

▶ Lemma 14. If Ψ∗ is finitely satisfiable then Ψ is.

Proof. Let M∗ be a finite model of Ψ∗. Note that the degree of every element in M∗ is
either the offset vector or one of the period vectors of Si, for some 1 ≤ i ≤ p. To construct
a finite model M |= Ψ, we can appropriately “merge” elements so that the degree of every
element is a vector in Si, for some 1 ≤ i ≤ p.

To this end, we call an element a in M∗ a periodic element, if its degree is not an offset
vector of some Si. Let N be the number of periodic elements in M∗. We make 3N copies of
M∗, which we denote by Mi,j , where 0 ≤ i ≤ 2 and 1 ≤ j ≤ N . Let M be a model obtained
by the disjoint union of all of Mi,j ’s, where for every b, b′ that do not come from the same
Mi,j , the 2-type of (b, b′) is the null-type.

We will show how to eliminate periodic elements in M by appropriately “merging” its
elements. We need the following terminology. Recall that S = S1 ∪ · · · ∪ Sp, where each
Si is a linear set. For two vectors ū and v̄, we say that ū and v̄ are compatible (w.r.t. the
semilinear set S), if there is Si such that ū is the offset vector of Si and v̄ is one of the period
vectors of Si. We say that two elements a and b in M are merge-able, if their 1-types are the
same and their degrees are compatible.

We show how to merge periodic elements in M0,j , for every j = 1, . . . , N .
Let b1, . . . , bN be the periodic elements in M0,j .
For each l = 1, . . . , N , let al be an offset element in M1,l such that every bl and al are
merge-able. (Such bl exists, since M∗ satisfies Ψ∗ and each Mi,j is isomorphic to M∗.)
Then, merge al and bl into one element, for every l = 1, . . . , k.

See below, for an illustration for the case when j = 1.

M0,1 q
b1

q
b2

· · · q
bN

M0,2

ppp
M0,N

M1,1q a1

M1,2q a2

ppp
M1,N

q aN

M2,1

M2,2

ppp
M2,N

Obviously, after this merging, there is no more periodic element in M0,j , for every
j = 1, . . . , N . We can perform similar merging between the periodic elements in M1,1 ∪ · · · ∪
M1,N and the offset elements in M2,1 ∪ · · · ∪ M2,N , and between the periodic elements in
M2,1 ∪ · · · ∪ M2,N and the offset elements in M0,1 ∪ · · · ∪ M0,N .

After such merging, there is no more periodic element in M and the degree of every
element is now a vector in Si, for some 1 ≤ i ≤ p. Moreover, since the merging preserves the
satisfiability of ∀x γ(x) and each ∀x∀y ei(x, y) → αi(x, y), the formula Ψ holds in M. That
is, Ψ is finitely satisfiable. ◀
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4.3 Complexity analysis of the decision procedure

We need to introduce more terminology. For a vector/matrix X, we write ∥X∥ to denote its
L∞-norm, i.e. the maximal absolute value of its entries. For a set of vector/matrices B, we
write ∥B∥ to denote maxX∈B ∥X∥.

Let P = {v̄1, . . . , v̄k} ⊆ Nℓ be a finite set of (row) vectors of natural number components.
To avoid clutter, we write L(ū;P ) to denote the linear set L(ū; v̄1, . . . , v̄k). For a finite set
B ⊆ Nℓ, we write L(B;P ) to denote the set

⋃
ū∈B L(ū;P ).

We will use the following fact from [12, 25]. See also Proposition 2 in [10].

▶ Proposition 15. Let A ∈ Zℓ×m and c̄ ∈ Zm. Let Γ be the space of the solutions of the
system x̄A = c̄ (over the set of natural numbers N).6 Then, there are finite sets B,P ⊆ Nℓ

such that the following holds.
L(B;P ) = Γ.
∥B∥ ≤ ((m+ 1)∥A∥ + ∥c̄∥ + 1)ℓ.
∥P∥ ≤ (m∥A∥ + 1)ℓ.
|B| ≤ (m+ 1)ℓ.
|P | ≤ mℓ.

By repeating some of the vectors, if necessary, we can assume that Proposition 15 states that
|B| = |P | = (m+ 1)ℓ.

Proposition 15 immediately implies the following naïve construction of the sets B and P
in deterministic double-exponential time (in the size of input A and c̄).

Enumerate all possible sets B,P ⊆ Nℓ of cardinality (m + 1)ℓ whose entries are all
bounded above by ((m+ 1)∥A∥ + ∥c̄∥ + 1)ℓ.
For each pair B,P , where P = {v̄1, . . . , v̄k}, check whether for every i1, . . . , ik ∈ N and
every ū ∈ B, the following equation holds.

(ū+
k∑

j=1
ij v̄j)A = c̄. (1)

The number of bits needed to represent the sets B and P is O(ℓ2(m + 1)ℓ logK), where
K = (m+ 1)∥A∥ + ∥c̄∥ + 1. Since Eq. 1 can be checked in deterministic exponential time
(more precisely, it takes non-deterministic polynomial time to check if there is i1, . . . , ik such
that Eq. 1 does not hold) in the length of the bit representation of the vectors in B, P , A
and the vector c̄, see, e.g. [24], constructing the sets B and P takes double-exponential time.

For completeness, we repeat the complexity analysis in Section 4. First, the formula
Ψ0 takes linear time in the size of the input formula. Constructing the formula Ψ′ requires
exponential time (in the number of binary predicates), i.e. ℓ = 2k − 1, where k is the
number of binary predicates. Thus, constructing the sets B and P takes deterministic triple
exponential time in the size of Ψ0. However, the size of B and P is O(22k(m+ 1)2k logK),
i.e. double exponential in the size of Ψ0. The C2 formulas ξ and ϕ are constructed in
polynomial time in the size of B and P . Since both the satisfiability and finite satisfiability of
C2 formulas is decidable in nondeterministic exponential time, we have another exponential
blow-up. Altogether, our decision procedure runs in 3NExpTime.

6 Recall that vectors in this paper are row vectors. So, x̄ and c̄ are row vectors of ℓ variables and m
constants, respectively.
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5 Concluding remarks

In the paper we studied the finite satisfiability problem for classical decidable fragments
of FO extended with percentage quantifiers (as well as arithmetics in the full generality),
namely the two-variable fragment FO2 and the guarded fragment GF. We have shown that
even in the presence of percentage quantifiers they quickly become undecidable.

The notable exception is the intersection of GF and FO2, i.e. the two-variable guarded
fragment, for which we have shown that it is decidable with elementary complexity, even
when extended with local Presburger arithmetics. The proof is quite simple and goes via
an encoding into the two-variable logic with counting (C2). One of the bottlenecks in our
decision procedure is the conversion of systems of linear equations into the semilinear set
representations, which incurs a double-exponential blow-up. We leave it for future work
whether a decision procedure with lower complexity is possible and/or whether the conversion
to semilinear sets is necessary.
We stress that our results are also applicable to the unrestricted satisfiability problem
(whenever the semantics of percentage quantifiers make sense), see [7, Appendix C].
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