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Abstract
We explore approximation algorithms for the d-dimensional geometric bin packing problem (dBP).
Caprara [8] gave a harmonic-based algorithm for dBP having an asymptotic approximation ratio
(AAR) of T d−1

∞ (where T∞ ≈ 1.691). However, their algorithm doesn’t allow items to be rotated.
This is in contrast to some common applications of dBP, like packing boxes into shipping containers.
We give approximation algorithms for dBP when items can be orthogonally rotated about all or a
subset of axes. We first give a fast and simple harmonic-based algorithm having AAR T d

∞. We next
give a more sophisticated harmonic-based algorithm, which we call HGaPk, having AAR T d−1

∞ (1 + ε).
This gives an AAR of roughly 2.860 + ε for 3BP with rotations, which improves upon the best-known
AAR of 4.5. In addition, we study the multiple-choice bin packing problem that generalizes the
rotational case. Here we are given n sets of d-dimensional cuboidal items and we have to choose
exactly one item from each set and then pack the chosen items. Our algorithms also work for the
multiple-choice bin packing problem. We also give fast and simple approximation algorithms for the
multiple-choice versions of dD strip packing and dD geometric knapsack.
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1 Introduction

Packing of rectangular and cuboidal items is a fundamental problem in computer science,
mathematics, and operations research. Packing problems find numerous applications in
practice, e.g., packing of concrete 3D items during storage or transportation [7], cutting
prescribed 2D pieces from cloth or metal sheet while minimizing the waste [16], etc. In this
paper, we study packing of d-dimensional (dD) cuboidal items (for d ≥ 2).

Let I be a set of n dD cuboidal items, where each item has length at most one in each
dimension. A feasible packing of items into a dD cuboid is a packing where items are placed
inside the cuboid parallel to the axes without any overlapping. A dD unit cube is a dD cuboid
of length one in each dimension. In the dD bin packing problem (dBP), we have to compute
a feasible packing of I (without rotating the items) into the minimum number of bins that
are dD unit cubes. Let optdBP(I) be the minimum number of bins needed to pack I.

dBP is NP-hard, as it generalizes the classic bin packing problem [9]. Thus, we study
approximation algorithms. For dBP, the worst-case approximation ratio usually occurs only
for small pathological instances. Thus, the standard performance measure is the asymptotic
approximation ratio (AAR). For an algorithm A, AAR is defined as:

lim
m→∞

sup
I∈I: opt(I)=m

A(I)
opt(I) ,

where I is the set of all problem instances. A(I) and opt(I) are the number of bins used by
A and the optimal algorithm, respectively, on I.
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32:2 Harmonic Algorithms for Packing d-Dimensional Cuboids

Coffman et al. [10] initiated the study of approximation algorithms for rectangle packing.
They studied algorithms such as First-Fit Decreasing Height (FFDH) and Next-Fit Decreasing
Height (NFDH). In his seminal paper, Caprara [8] devised a polynomial-time algorithm
for dBP called HDHk (Harmonic Decreasing Height), where k ∈ Z is a parameter to the
algorithm. HDHk has AAR equal to T d−1

k , where Tk is a decreasing function of k and
T∞ := limk→∞ Tk ≈ 1.691. HDHk is based on the harmonic algorithm [24] for 1BP.

A limitation of HDHk is that it does not allow rotation of items. This is in contrast to
some real-world problems, like packing boxes into shipping containers (d = 3), where items
can often be rotated orthogonally, i.e., 90◦ rotation around all or a subset of axes [1, 31].
Orientation constraints may sometimes limit the vertical orientation of a box to one dimension
(“This side up”) or to two (of three) dimensions (e.g., long but low and narrow box should
not be placed on its smallest surface). These constraints are introduced to deter goods and
packaging from being damaged and to ensure the stability of the load. One of our primary
contributions is presenting variants of HDHk that work for generalizations of dBP that capture
the notion of orthogonal rotation of items.

1.1 Prior Work
For 2BP, Bansal et al. [3] obtained AAR of T∞ + ε even for the case with rotations, using a
more sophisticated algorithm that used properties of harmonic rounding. Then there has
been a series of improvements [3, 19] culminating with the present best AAR of 1.406 [5], for
both the cases with and without orthogonal rotations. Bansal et al. [6] showed that dBP is
APX-hard for d ≥ 2, and gave an asymptotic PTAS for dBP when all items are dD squares.

Closely related to dBP is the dD strip packing problem (dSP), where we have to pack I

(without rotating the items) into a dD cuboid (called a strip) that has length one in the first
d − 1 dimensions and the minimum possible length (called height) in the dth dimension.

For 2SP, an asymptotic PTAS was given by Kenyon and Rémila [22]. Jansen and van
Stee [21] extended this to the case with orthogonal rotations. For 3SP, when rotations are
not allowed, Bansal et al. [4] gave a harmonic-based algorithm achieving AAR of T∞ + ε.
Recently, this has been improved to 1.5 + ε [20]. Miyazawa and Wakabayashi [25] studied
3SP and 3BP when rotations are allowed, and gave algorithms with AAR 2.64 and 4.89,
respectively. Epstein and van Stee [13] gave an improved AAR of 2.25 and 4.5 for 3SP and
3BP with rotations, respectively. The HDHk algorithm also works for dSP and has an AAR of
T d−1

k . For online dBP, there are harmonic-based T d
∞-asymptotic-approximation algorithms

[12, 11], which are optimal for O(1) memory algorithms.

1.2 Multiple-Choice Packing
We will now define the dD multiple-choice bin packing problem (dMCBP). This generalizes
dBP and captures the notion of orthogonal rotation of items. This perspective will be helpful in
designing algorithms for the rotational case. In dMCBP, we’re given a set I = {I1, I2, . . . , In},
where for each j, Ij is a set of items, henceforth called an itemset. We have to pick exactly
one item from each itemset and pack those items into the minimum number of bins. See
Figure 1 for an example of 2MCBP.

We can model rotations using multiple-choice packing: Given a set I of items, for each
item i ∈ I, create an itemset Ii that contains all allowed orientations of i. Then the optimal
solution to I := {Ii : i ∈ I} will tell us how to rotate and pack items in I.

Some algorithms for 2D bin packing with rotations assume that the bin is square [3, 19, 5].
This assumption holds without loss of generality when rotations are forbidden, because we
can scale the items. But if rotations are allowed, this won’t work because items i1 and i2
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Figure 1 2MCBP example: packing the input I = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}} into two bins.
Here items of the same color belong to the same itemset.

that are rotations of each other may stop being rotations of each other after they are scaled.
Multiple-choice packing algorithms can be used in this case. For each item i ∈ I, we will
create an itemset Ii that contains scaled orientations of i.

Multiple-choice packing problems have been studied before. Lawler gave an FPTAS for
the multiple-choice knapsack problem [23]. Patt-Shamir and Rawitz gave an algorithm for
multiple-choice vector bin packing having AAR O(log d) and a PTAS for multiple-choice
vector knapsack [27]. Similar notions have been studied in the scheduling of malleable or
moldable jobs [32, 18].

1.3 Our Contributions
After the introduction of the harmonic algorithm for online 1BP by Lee and Lee [24],
many variants have found widespread use in multidimensional packing problems (both
offline and online) [8, 3, 4, 2, 12, 11, 17, 28, 29]. They are also simple, fast, and easy to
implement. For example, among algorithms for 3SP, 2BP and 3BP with practical running
time, harmonic-based algorithms provide the best AAR.

In our work, we extend harmonic-based algorithms to dMCBP. dMCBP subsumes the
rotational case for geometric bin packing, and we believe dMCBP is an important natural
generalization of geometric bin packing that may be of independent interest.

In Section 3, we describe ideas from HDHk [8] that help us devise harmonic-based algorithms
for dMCBP. In Section 4, we show an O(Nd + nd log n)-time algorithm for dMCBP, called
fullhk, having an AAR of T d

k , where n is the number of itemsets and N is the total number
of items across all the n itemsets. fullhk is a fast and simple algorithm that works in two
stages: In the first stage, we select the smallest item from each itemset (we will precisely
define smallest in Section 4). In the second stage, we pack the selected items into bins using
a variant of the HDHk algorithm.

In Section 5, we show an algorithm for dMCBP, called HGaPk, having an AAR of T d−1
k (1+ε)

and having a running time of NO(1/ε2)n(1/ε)O(1/ε) +O(Nd+nd log n). For d ≥ 3, this matches
the present best AAR for the case where rotations are forbidden. Also, for large k, this
gives an AAR of roughly T 2

∞ ≈ 2.860 for 3D bin packing when orthogonal rotations are
allowed, which is an improvement over the previous best AAR of 4.5 [13], an improvement
after fourteen years.

Our techniques can be extended to some other packing problems, like strip packing and
geometric knapsack. In Appendix C of the full version of our paper [30], we define the dD
multiple-choice strip packing problem (dMCSP) and extend Caprara’s HDHk algorithm [8] to
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32:4 Harmonic Algorithms for Packing d-Dimensional Cuboids

dMCSP. The algorithm has AAR T d−1
k and runs in time O(Nd + nd log n), where n is the

number of itemsets and N is the total number of items across all itemsets. In Appendix D
of [30], we define the dD multiple-choice knapsack problem (dMCKS), and for any 0 < ε < 1,
we show an O(Nd+N log N +Nn/ε+nd log n)-time algorithm that is (1−ε)3−d-approximate.

2 Preliminaries

Let [n] := {1, 2, . . . , n}. For a set X, define sum(X) :=
∑

x∈X x. For an n-dimensional vector
v, define sum(v) :=

∑n
i=1 vi. For a set X ⊆ I of items and any function f : I 7→ R, f(X) is

defined to be
∑

i∈X f(i), unless stated otherwise.
The length of a dD item i in the jth dimension is denoted by ℓj(i). Define vol(i) :=∏d

j=1 ℓj(i). For a dD cuboid i, call the first d − 1 dimensions base dimensions and call the
dth dimension height. For a set I of items, |I| is the number of items in I. Let |P | denote
the number of bins used by a packing P of items into bins.

▶ Lemma 1. Consider the inequality x1 +x2 + . . .+xn ≤ s, where for each j ∈ [n], xj ∈ Z≥0.
Let N be the number of solutions to this inequality. Then N =

(
s+n

n

)
≤ (s + 1)n.

Proof. The proof of N =
(

s+n
n

)
is a standard result in combinatorics.

To prove N ≤ (s+1)n, note that we can choose each xj ∈ {0, 1, . . . , s} independently. ◀

2.1 Multiple-Choice Packing
Let I be a set of itemsets. Define flat(I) to be the union of all itemsets in I.

Let K be a set of items that contains exactly one item from each itemset in I. Formally,
for each itemset I ∈ I, |K ∩ I| = 1. Then K is called an assortment of I. Let Ψ(I) denote
the set of all assortments of I. In dMCBP, given an input instance I, we have to select an
assortment K ∈ Ψ(I) and output a bin packing of K, such that the number of bins used is
minimized. Therefore, optdMCBP(I) = minK∈Ψ(I) optdBP(K).

3 Important Ideas from the HDHk Algorithm

In this section, we will describe some important ideas behind the HDHk algorithm for dBP by
Caprara [8]. These ideas are the building blocks for our algorithms for dMCBP.

3.1 Weighting Functions
Fekete and Schepers [14] present a useful approach for obtaining lower bounds on the optimal
solution to bin packing problems. Their approach is based on weighting functions.

▶ Definition 2. g : [0, 1] 7→ [0, 1] is a weighting function iff for all m ∈ Z>0 and x ∈ [0, 1]m,
m∑

i=1
xi ≤ 1 =⇒

m∑
i=1

g(xi) ≤ 1

(Weighting functions are also called dual feasible functions (DFFs)).

▶ Theorem 3. Let I be a set of dD items that can be packed into a bin. Let g1, g2, . . . , gd

be weighting functions. For i ∈ I, define g(i) as the item whose length is gj(ℓj(i)) in the
jth dimension, for each j ∈ [d]. Then {g(i) : i ∈ I} can be packed into a dD bin (without
rotating the items).

Theorem 3 is proved in Appendix E of [30].
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3.2 The Harmonic Function
To obtain a lower-bound on optdBP(I) using Theorem 3, Caprara [8] defined a function fk.
For an integer constant k ≥ 3, fk : [0, 1] 7→ [0, 1] is defined as

fk(x) :=

 1
q x ∈

(
1

q+1 , 1
q

]
for q ∈ [k − 1]

k
k−2 x x ≤ 1

k

.

fk was originally defined and studied by Lee and Lee [24] for their online algorithm for 1BP,
except that they used k/(k − 1) instead of k/(k − 2). Define typek : [0, 1] 7→ [k] as

typek(x) :=

q x ∈
(

1
q+1 , 1

q

]
for q ∈ [k − 1]

k x ≤ 1
k

.

Define Tk to be the smallest positive constant such that Hk(x) := fk(x)/Tk is a weighting
function. We call Hk the harmonic weighting function. We can efficiently compute Tk as a
function of k using ideas from [24]. Table 1 lists the values of Tk for the first few k. It can
also be proven that Tk is a decreasing function of k and T∞ := limk→∞ Tk ≈ 1.6910302.

Table 1 Values of Tk.

k 3 4 5 6 7 ∞
Tk 3 2 11/6 = 1.83 7/4 = 1.75 26/15 = 1.73 ≈ 1.6910302

For a dD cuboid i, define fk(i) to be the cuboid whose length is fk(ℓj(i)) in the jth

dimension, for each j ∈ [d]. For a set I of dD cuboids, let fk(I) := {fk(i) : i ∈ I}. Similarly
define Hk(i) and Hk(I). Define type(i) to be a d-dimensional vector whose jth component is
typek(ℓj(i)). Note that there can be at most kd different values of type(i). Sometimes, for
the sake of convenience, we may express type(i) as an integer in [kd].

▶ Theorem 4. For a set of I of dD items, vol(fk(I)) ≤ T d
k optdBP(I).

Proof. Let m := optdBP(I). Let Jj be the items in the jth bin in the optimal bin packing of
I. By Theorem 3 and because Hk is a weighting function, Hk(Jj) fits in a bin. Therefore,

vol(fk(I)) =
m∑

j=1
T d

k vol(Hk(Jj)) ≤
m∑

j=1
T d

k = T d
k optdBP(I). ◀

3.3 The HDH-unit-packk Subroutine
From the HDHk algorithm by Caprara [8], we extracted out a useful subroutine, which we call
HDH-unit-packk, that satisfies the following useful property:

▶ Property 5. The algorithm HDH-unit-pack[t]
k (I) takes a sequence I of dD items such that

all items have type t and vol(fk(I − {last(I)})) < 1 (here last(I) is the last item in sequence
I). It returns a packing of I into a single dD bin in O(nd log n) time, where n := |I|.

We use HDH-unit-packk as a black-box subroutine in our algorithms, i.e., HDH-unit-packk

can be replaced by any algorithm that satisfies Property 5. See Appendix B of [30] for a
complete description of HDH-unit-packk and proof that it satisfies Property 5.

FSTTCS 2021
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4 Fast and Simple Algorithm for dMCBP (fullhk)

We will now describe an algorithm for dBP called the full-harmonic algorithm (fullhk). We
will then extend it to dMCBP. The fullhk algorithm works by first partitioning the items
based on their type vector (type vector is defined in Section 3.2). Then for each partition, it
repeatedly picks the smallest prefix J such that vol(fk(J)) ≥ 1 and packs J into a dD bin
using HDH-unit-packk. See Algorithm 1 for a more precise description of fullhk. Note that
fullhk(I) has a running time of O(|I|d log |I|).

Algorithm 1 fullhk(I): Returns a bin packing of dD items I.

1: Let P be an empty list.
2: for each type t do
3: I [t] = {i ∈ I : type(i) = t}.
4: while |I [t]| > 0 do
5: Find J , the smallest prefix of I [t] such that J = I [t] or vol(fk(J))) ≥ 1.
6: B = HDH-unit-pack[t]

k (J). // B is a packing of J into a dD bin.
7: Append B to the list P .
8: Remove J from I [t].
9: end while

10: end for
11: return the list P of bins.

▶ Theorem 6. The number of bins used by fullhk(I) is less than Q + vol(fk(I)), where Q

is the number of distinct types of items (so Q ≤ kd).

Proof. Let I [t] be the items in I of type t. Suppose fullhk(I) uses m[t] bins to pack I [t]. For
each type t, the first m[t] −1 bins have vol ·fk at least 1, so vol(fk(I [t])) > m[t] −1. Therefore,
total number of bins used is

∑Q
t=1 m[t] <

∑Q
t=1(1 + vol(fk(I [t]))) = Q + vol(fk(I)). ◀

By Theorems 4 and 6, fullhk(I) uses less than Q + T d
k optdBP(I) bins.

▶ Theorem 7. Let I be a dMCBP instance. Let K̂ := {argmini∈I vol(fk(i)) : I ∈ I}, i.e., K̂

is the assortment obtained by picking from each itemset the item i having the minimum value
of vol(fk(i)). Then the number of bins used by fullhk(K̂) is less than Q + T d

k optdMCBP(I),
where Q is the number of distinct types of items in flat(I) (so Q ≤ kd).

Proof. Let K∗ be the assortment in an optimal packing of I. So, vol(fk(K̂)) ≤ vol(fk(K∗)).
By Theorems 4 and 6, the number of bins used by fullhk(K̂) is less than

Q + vol(fk(K̂)) ≤ Q + vol(fk(K∗)) ≤ Q + T d
k optdBP(K∗) = Q + T d

k optdMCBP(I). ◀

We can compute K̂ in O(Nd) time and fullhk(K̂) in O(nd log n) time, where N :=
| flat(I)|, n := |I|. So, we get an O(Nd + nd log n)-time dMCBP algorithm having AAR T d

k .

4.1 dBP with Rotations
As mentioned before, we can solve the rotational version of dBP by reducing it to dMCBP.
Specifically, for each item i in the dBP instance, we create an itemset containing all orientations
of i, and we pack the resulting dMCBP instance using fullhk. Since an item can have up to
d! allowed orientations, this can take up to O(nd! + nd log n) time. Hence, the running time
is large when d is large. However, we can do better for some special cases.
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When the bin has the same length in each dimension, then for any item i, vol(fk(i)) is
independent of how we orient i. Hence, we can orient the items I arbitrarily and then pack
them using fullhk in O(nd log n) time.

Suppose there are no orientation constraints, i.e., all d! orientations of each item are
allowed. Let Lj be the length of the bin in the jth dimension, for each j ∈ [d]. To use
fullhk to pack I, we need to find the best orientation for each item i ∈ I, i.e., we need
to find a permutation π for each item i such that

∏d
j=1 fk

(
ℓπj

(i)/Lj

)
is minimized. This

can be formulated as a maximum-weight bipartite matching problem on a graph with d

vertices in each partition: for every u ∈ [d] and v ∈ [d], the edge (u, v) has a non-negative
weight of − log(fk(ℓu(i)/Lv)). So, using the Kuhn-Munkres algorithm [26], we can find
the best orientation for each item in O(d3) time. Hence, we can pack I using fullhk in
O(nd3 + nd log n) time.

5 Better Algorithm for dMCBP (HGaPk)

Here we describe a T d−1
k (1 + ε)-asymptotic-approximate algorithm for dMCBP based on

HDHk and Lueker and Fernandez de la Vega’s APTAS for 1BP [15]. We call our algorithm
Harmonic Guess-and-Pack (HGaPk). This improves upon fullhk that has AAR T d

k .

▶ Definition 8. For a dD item i, let h(i) := ℓd(i), w(i) :=
∏d−1

j=1 fk(ℓj(i)) and a(i) := w(i)h(i).
Let round(i) be a rectangle of height h(i) and width w(i). For a set X of dD items, define
w(X) :=

∑
i∈X w(i) and round(X) := {round(i) : i ∈ X}.

For any ε > 0, the algorithm HGaPk(I, ε) returns a bin packing of I, where I is a set
of dD itemsets. HGaPk first converts I to a set Î of 2D itemsets. It then computes Pbest,
which is a structured bin packing of Î (we formally define structured later). Finally, it uses
the algorithm inflate to convert Pbest into a bin packing of the dD itemsets I, where
| inflate(Pbest)| is very close to |Pbest|. See Algorithm 2 for a more precise description. We
show that |Pbest| ⪅ T d−1

k (1 + ε) opt(I), which proves that HGaPk has an AAR of T d−1
k (1 + ε).

This approach of converting items to 2D, packing them, and then converting back to dD is
very useful, because most of our analysis is about how to compute a structured 2D packing,
and a packing of 2D items is easier to visualize and reason about than a packing of dD items.

Algorithm 2 HGaPk(I, ε): Returns a bin packing of dD itemsets I, where ε ∈ (0, 1).

1: Let δ := ε/(2 + ε).
2: Î = {round(I) : I ∈ I}
3: Initialize Pbest to null.
4: for P ∈ guessShelves(Î, δ) do
5: P = chooseAndPack(Î, P, δ)
6: if P is not null and (Pbest is null or |P | ≤ |Pbest|) then
7: Pbest = P

8: end if
9: end for

10: return inflate(Pbest)

A 2D bin packing is called shelf-based if items are packed into shelves and the shelves are
packed into bins, where a shelf is a rectangle of width 1. See Figure 2 for an example. A
structured bin packing is a shelf-based bin packing where the heights of the shelves satisfy
some additional properties (we describe these properties later). The algorithm guessShelves

FSTTCS 2021
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repeatedly guesses the number and heights of shelves and computes a structured packing P of
those shelves into bins. Then for each packing P , the algorithm chooseAndPack(Î, P, δ) tries
to pack an assortment of Î into the shelves in P plus one additional shelf. If chooseAndPack
succeeds, call the resulting bin packing P ; else, chooseAndPack returns null. Pbest is the
value of P with the minimum number of bins across all guesses by guessShelves.

Figure 2 An example of shelf-based packing with 3 shelves.

To prove that HGaPk has AAR T d−1
k (1 + ε), we show that for some P ∗ ∈

guessShelves(Î, δ), we have |P ∗| ⪅ T d−1
k (1 + ε) opt(I) and chooseAndPack(Î, P ∗, δ) is

not null.
We will now precisely define structured packing and state the main theorems on HGaPk.

5.1 Structured Packing
▶ Definition 9 (Slicing). Slicing a 1D item i is the operation of replacing it by items i1 and i2
such that size(i1) + size(i2) = size(i). Slicing a rectangle i using a vertical cut is the operation
of replacing i by two rectangles i1 and i2 where h(i) = h(i1) = h(i2) and w(i) = w(i1)+w(i2).
Slicing i using a horizontal cut is the operation of replacing i by two rectangles i1 and i2
where w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2).

▶ Definition 10 (Shelf-based δ-fractional packing). Let δ ∈ (0, 1) be a constant. Let K be a
set of rectangular items. Items in KL := {i ∈ K : h(i) > δ} are called “δ-large” and items
in KS := K − KL are called “δ-small”. A δ-fractional bin packing of K is defined to be a
packing of K into bins where items in KL can be sliced (recursively) using vertical cuts only,
and items in KS can be sliced (recursively) using both horizontal and vertical cuts.

A shelf is a rectangle of width 1 into which we can pack items such that the bottom edge
of each item in the shelf touches the bottom edge of the shelf. A shelf can itself be packed
into a bin. A δ-fractional bin packing of K is called shelf-based iff (all slices of) all items in
KL are packed into shelves, the shelves are packed into the bins, and items in KS are packed
outside the shelves (and inside the bins). Packing of items into a shelf S is called tight iff
the top edge of some item (or slice) in S touches the top edge of S.

▶ Definition 11 (Structured packing). Let K be a set of rectangles and let P be a packing of
empty shelves into bins. Let H be the set of heights of shelves in P (note that H is not a
multiset, i.e., we only consider distinct heights of shelves). Then P is called structured for
(K, δ) iff |H| ≤ ⌈1/δ2⌉ and each element in H is the height of some δ-large item in K.

A shelf-based δ-fractional packing of K is called structured iff the shelves in the packing
are structured for (K, δ). Define soptδ(K) to be the number of bins in the optimal structured
δ-fractional packing of K.

HGaPk relies on the following key structural theorem. We formally prove it in Section 5.5
and give an outline of the proof here.
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▶ Theorem 12 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.
Then soptδ(round(I)) < T d−1

k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ.

Proof outline. Let Î := round(I). Let ÎL and ÎS be the δ-large and δ-small items in Î,
respectively. We give a simple greedy algorithm to pack ÎL into shelves. Let J be the shelves
output by this algorithm. We can treat J as a 1BP instance, and ÎS as a sliceable 1D item of
size a(ÎS). We prove that an optimal 1D bin packing of J ∪ ÎS gives us an optimal shelf-based
δ-fractional packing of Î.

We use linear grouping by Lueker and Fernandez de la Vega [15]. We partition J into
linear groups of size ⌊δ size(J)⌋ + 1 each. Let hj be the height of the first 1D item in the
jth group. Let J (hi) be the 1BP instance obtained by rounding up the height of each item
in the jth group to hj for all j. Then J (hi) contains at most ⌈1/δ2⌉ distinct sizes, so the
optimal packing of J (hi) ∪ ÎS gives us a structured δ-fractional packing of Î. Therefore,
soptδ(Î) ≤ opt(J (hi) ∪ ÎS). Let J (lo) be the 1BP instance obtained by rounding down the
height of each item in the jth group to hj+1 for all j. We prove that J (lo) contains at most
⌈1/δ2⌉ − 1 distinct sizes and that opt(J (hi) ∪ ÎS) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

We model packing J (lo) ∪ ÎS as a linear program, denoted by LP(Î), that has at most
⌈1/δ2⌉1/δ variables and ⌈1/δ2⌉ non-trivial constraints. The optimum extreme point solution to
LP(Î), therefore, has at most ⌈1/δ2⌉ positive entries, so opt(J (lo) ∪ ÎS) ≤ opt(LP(Î))+⌈1/δ2⌉.

We use techniques from Caprara [8] to obtain a monotonic weighting function η from
the optimal solution to the dual of LP(Î). For each item i ∈ I, we define p(i) := w(i)η(h(i))
and prove that p(I) ≥ opt(LP(Î)). By Theorem 3, we get that p(I) ≤ T d−1

k optdBP(I) and
a(ÎL) ≤ T d−1

k optdBP(I). Combining the above facts gives us an upper-bound on soptδ(Î) in
terms of optdBP(I). ◀

5.2 Subroutines
5.2.1 guessShelves

The algorithm guessShelves(Î, δ) takes a set Î of 2D itemsets and a constant δ ∈ (0, 1) as
input. We will design guessShelves so that it satisfies the following theorem.

▶ Theorem 13. guessShelves(Î, δ) returns all possible packings of empty shelves into
at most |Î| bins such that each packing is structured for (flat(Î), δ). guessShelves(Î, δ)
returns at most T := (N⌈1/δ2⌉ + 1)(n + 1)R packings, where N := | flat(Î)|, n := |Î|, and
R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ. Its running time is O(T ).

guessShelves works by first guessing at most ⌈1/δ2⌉ distinct heights of shelves. It then
enumerates all configurations, i.e., different ways in which shelves can be packed into a bin.
It then guesses the configurations in a bin packing of the shelves. guessShelves can be
easily implemented using standard techniques. For the sake of completeness, we give a more
precise description of guessShelves and prove Theorem 13 in Appendix A.2.

5.2.2 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a constant δ ∈ (0, 1), and a bin
packing P of empty shelves that is structured for (flat(Î), δ). It tries to pack an assortment
of Î into the shelves in P .

chooseAndPack works by rounding up the width of all δ-large items in Î to a multiple
of 1/n. This would increase the number of shelves required by 1, so it adds another empty
shelf. It then uses dynamic programming to pack an assortment into the shelves, such that
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the area of the chosen δ-small items is minimum. This is done by maintaining a dynamic
programming table that keeps track of the number of itemsets considered so far and the
remaining space in shelves of each type. If it is not possible to pack the items into the shelves,
then chooseAndPack outputs null. In Appendix A.3, we give the details of this algorithm
and formally prove the following theorems:

▶ Theorem 14. If there exists an assortment K̂ of Î having a structured δ-fractional bin
packing P , then chooseAndPack(Î, P, δ) does not output null.

▶ Theorem 15. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is
a shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P | + 1 and the
distinct shelf heights in P are the same as that in P .

▶ Theorem 16. chooseAndPack(Î, P, δ) runs in O(Nn2⌈1/δ2⌉) time. Here N := | flat(Î)|,
n := |Î|.

5.2.3 inflate

For a set I of dD items, inflate is an algorithm that converts a shelf-based packing of
round(I) into a packing of I having roughly the same number of bins.

For a dD item i, btype(i) (called base type) is defined to be a (d − 1)-dimensional vector
whose jth component is typek(ℓj(i)). Roughly, inflate(P ) works as follows: It first slightly
modifies the packing P so that items of different base types are in different shelves and
δ-small items are no longer sliced using horizontal cuts. Then it converts each 2D shelf to
a dD shelf of the same height using HDH-unit-packk (a dD shelf is a cuboid where the first
d − 1 dimensions are equal to 1).

In Appendix A.4, we formally describe inflate and prove the following theorem.

▶ Theorem 17. Let I be a set of dD items having Q distinct base types (there can be at
most kd−1 distinct base types, so Q ≤ kd−1). Let P be a shelf-based δ-fractional packing of
round(I) where shelves have t distinct heights. Then inflate(P ) returns a packing of I into
less than |P |/(1 − δ) + t(Q − 1) + 1 + δQ/(1 − δ) bins in O(|I|d log |I|) time.

Now that we have mentioned the guarantees of all the subroutines used by HGaPk, we can
prove the correctness and running time of HGaPk.

5.3 Correctness and Running Time of HGaPk

▶ Theorem 18. The number of bins used by HGaPk(I, ε) to pack I is less than

T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2
ε

+ 1
)2
⌉(

Q + ε

2

)
+ 3 + (Q + 3)ε

2 .

Here Q ≤ kd−1 is the number of distinct base types in flat(I).

Proof. Let K∗ be the assortment in an optimal bin packing of I. Let K̂∗ = round(K∗). Let
P ∗ be the optimal structured δ-fractional bin packing of K̂∗. Then |P ∗| = soptδ(K̂∗)
by the definition of sopt. By Theorem 13, P ∗ ∈ guessShelves(Î, δ). Let P

∗ =
chooseAndPack(Î, P ∗, δ). By Theorem 14, P

∗ is not null. By Theorem 15, Pbest is struc-
tured for (flat(Î), δ) and |Pbest| ≤ |P ∗| ≤ soptδ(K̂∗) + 1.
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By Theorem 17, we get that

| inflate(Pbest)| <
soptδ(K̂∗)

1 − δ
+
⌈

1
δ2

⌉
(Q − 1) + 1 + δQ + 1

1 − δ
.

By Theorem 12 (structural theorem) and using optdBP(K∗) = optdMCBP(I), we get

soptδ(K̂∗) < T d−1
k (1 + δ) optdMCBP(I) + ⌈1/δ2⌉ + 1 + δ.

Therefore, | inflate(Pbest)| is less than

T d−1
k

1 + δ

1 − δ
optdMCBP(I) +

⌈
1
δ2

⌉(
Q + δ

1 − δ

)
+ 3 + δ(3 + Q)

1 − δ

= T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2
ε

+ 1
)2
⌉(

Q + ε

2

)
+ 3 + (Q + 3)ε

2 . ◀

▶ Theorem 19. HGaPk(I, ε) runs in time O(N1+⌈1/δ2⌉nR+2⌈1/δ2⌉ + Nd + nd log n), where
n := |Î|, N := | flat(Î)|, δ := ε/(2 + ε) and R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ.

Proof. Follows from Theorems 13, 16, and 17. ◀

Appendix A.5 gives hints on improving the running time of HGaPk.

5.4 dBP with Rotations
We can solve the rotational version of dBP by reducing it to dMCBP and using the HGaPk

algorithm. Since each item can have up to d! orientations, the running time is polynomial in
nd!, which is large when d is large. But we can do better for some special cases.

When the bin has the same length in each dimension, then for any item i, w(i) :=∏d−1
j=1 fk(ℓj(i)) is invariant to permuting the first d − 1 dimensions. In the first step of HGaPk,

we replace each dD item i by a rectangle of width w(i) and height ℓd(i). So, instead of
considering all d! orientations, we just need to consider at most d different orientations, where
each orientation has a different length in the dth dimension.

Suppose there are no orientation constraints, i.e., all d! orientations of each item are
allowed. Let Lj be the length of the bin in the jth dimension, for each j ∈ [d]. Analogous to
the trick in Section 4.1, we first fix the dth dimension of the item and then optimally permute
the first d − 1 dimensions using a max-weight bipartite matching algorithm. Hence, we need
to consider only d orientations instead of d!.

5.5 Proof of the Structural Theorem
In this section, we give a formal proof of the Structural Theorem (Theorem 12).

5.5.1 Predecessors and Canonical Shelving
▶ Definition 20. Let I1 and I2 be sets of 1D items. I1 is called a predecessor of I2 (I1 ⪯ I2)
iff there exists a one-to-one mapping π : I1 7→ I2 such that ∀i ∈ I1, size(i) ≤ size(π(i)).

▶ Observation 21. Let I1 ⪯ I2 and π be the corresponding mapping. We can get a packing of
I1 from a packing of I2, by packing each i ∈ I1 in the place of π(i). Hence, opt(I1) ≤ opt(I2).
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▶ Definition 22 (Canonical shelving). Let I be a set of rectangles. Order the items in I in
non-increasing order of height (break ties arbitrarily but deterministically) and greedily pack
them into tight shelves, slicing items using vertical cuts if necessary. The set of shelves thus
obtained is called the canonical shelving of I, and is denoted by canShelv(I). (The canonical
shelving is unique because ties are broken deterministically.)

See Figure 3 for an example of canonical shelving.

1

0.3

2

0.4

3

0.4

4

0.5

5

0.9
6

0.25

1 2 3

0.3

3 4 5

5 6

0.5

Figure 3 Six items and their canonical shelving into three tight shelves of width 1. The items are
numbered by decreasing order of height. Each item has its width mentioned below it. Item 3 was
sliced into two items of widths 0.3 and 0.1. Item 5 was sliced into two items of widths 0.4 and 0.5.

Suppose a set I of rectangular items is packed into a set J of shelves. Then we can
interpret J as a 1BP instance where the height of each shelf is the size of the corresponding
1D item. We will now prove that the canonical shelving is optimal, i.e., any shelf-based bin
packing of items can be obtained by first computing the canonical shelving and then packing
the shelves into bins like a 1BP instance.

▶ Lemma 23. If J∗ := canShelv(I) and I can be packed into shelves J , then J∗ ⪯ J .

Proof. We say that a shelf is full if the total width of items in a shelf is 1. Arrange the
shelves J in non-increasing order of height, and arrange the items I in non-increasing order
of height. Then try to pack I into J using the following greedy algorithm: For each item i,
pack the largest possible slice of i into the first non-full shelf and pack the remaining slice (if
any) in the next shelf. If this greedy algorithm succeeds, then within each shelf of J , there is
a shelf of J∗, so J∗ ⪯ J . We will now prove that this greedy algorithm always succeeds.

For the sake of proof by contradiction, assume that the greedy algorithm failed, i.e., for
an item (or slice) i there was a non-full shelf S but h(i) > h(S). Let I ′ be the items (and
slices) packed before i and J ′ be the shelves before S. Therefore, w(I ′) = |J ′|.

Items in I ′ have height at least h(i), so shelves in J ′ have height at least h(i). Shelves
after J ′ have height less than h(i). So, J ′ is exactly the set of shelves of height at least
h(i). In the packing P , I ′ ∪ {i} can only be packed into shelves of height at least h(i), so
w(I ′) + w(i) ≤ |J ′|. This contradicts w(I ′) = |J ′|. So, the greedy algorithm cannot fail. ◀

5.5.2 Linear Grouping
Let I be a set of dD items. Let Î := round(I). Let δ ∈ (0, 1) be a constant. Let
ÎL := {i ∈ Î : h(i) > δ} and ÎS := Î − ÎL. Let J := canShelv(ÎL). Let m := |J |, i.e., J

contains m shelves. We can interpret ÎS as a single sliceable 1D item of size a(ÎS).
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To prove Theorem 12, we will show the existence of a structured δ-fractional packing of Î

into at most T d−1
k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ bins.

▶ Definition 24 (Linear grouping [15]). Arrange the 1D items J in non-increasing order of
size and number them from 1 to m. Let q := ⌊δ size(J)⌋ + 1. Let J1 be the first q items, J2 be
the next q items, and so on. Jj is called the jth linear group of J . This gives us t := ⌈m/q⌉
linear groups. Note that the last group, Jt, may have less than q items.

Let hj be the size of the first item in Jj. Let ht+1 := 0. For j ∈ [t − 1], let J
(lo)
j be the

items obtained by decreasing the height of items in Jj to hj+1. For j ∈ [t], let J
(hi)
j be the

items obtained by increasing the height of items in Jj to hj.
Let J (lo) :=

⋃t−1
j=1 J

(lo)
j and J (hi) :=

⋃t
j=1 J

(hi)
j . We call J (lo) a down-rounding of J and

J (hi) an up-rounding of J .

▶ Lemma 25. t ≤ ⌈1/δ2⌉.

Proof. Since each shelf in J has height more than δ, size(J) > |J |δ.

t :=
⌈

|J |
⌊δ size(J)⌋ + 1

⌉
≤
⌈

size(J)/δ

δ size(J)

⌉
=
⌈

1
δ2

⌉
. ◀

▶ Lemma 26. J (lo) ⪯ J ⪯ J (hi) ⪯ J (lo) ∪ J
(hi)
1 .

Proof. It is trivial to see that J (lo) ⪯ J ⪯ J (hi). For j ∈ [t − 1], all (1D) items in both J
(lo)
j

and J
(hi)
j+1 have height hj+1, and |Jj+1| ≤ q = |Jj |. Therefore, J

(hi)
j+1 ⪯ J

(lo)
j and hence

J (hi) = J
(hi)
1 ∪

t−1⋃
j=1

J
(hi)
j+1 ⪯ J

(hi)
1 ∪

t−1⋃
j=1

J
(lo)
j = J

(hi)
1 ∪ J (lo). ◀

▶ Lemma 27. size(J) < 1 + a(ÎL).

Proof. In the canonical shelving of ÎL, let Sj be the jth shelf. Let h(Sj) be the height of Sj .
Let a(Sj) be the total area of the items in Sj . Since the shelves are tight, items in Sj have
height at least h(Sj+1). So, a(Sj) ≥ h(Sj+1) and

size(J) =
|J|∑

j=1
h(Sj) ≤ 1 +

|J|−1∑
j=1

h(Sj+1) ≤ 1 +
|J|−1∑
j=1

a(Sj) < 1 + a(ÎL). ◀

▶ Lemma 28. soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

Proof. By the definition of canShelv, ÎL can be packed into J . By Lemma 26, J ⪯ J (hi), so
ÎL can be packed into J (hi). By Lemma 25, the number of distinct sizes in J (hi) is at most
⌈1/δ2⌉. So, the optimal 1D bin packing of J (hi) ∪ ÎS will give us a structured δ-fractional bin
packing of Î. Hence, soptδ(Î) ≤ opt(J (hi) ∪ ÎS). By Lemma 26 and Observation 21 we get

opt(J (hi) ∪ ÎS) ≤ opt(J (lo) ∪ J
(hi)
1 ∪ ÎS) ≤ opt(J (lo) ∪ ÎS) + opt(J (hi)

1 ).

By Lemma 27,

opt(J (hi)
1 ) ≤ |J (hi)

1 | ≤ q ≤ 1 + δ size(J) < 1 + δ(1 + a(ÎL)). ◀
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5.5.3 LP for Packing J (lo) ∪ ÎS

We will formulate an integer linear program for bin packing J (lo) ∪ ÎS .
Let C ∈ Zt−1

≥0 such that hC :=
∑t−1

j=1 Cjhj+1 ≤ 1. Then C is called a configuration. C

represents a set of 1D items that can be packed into a bin and where Cj items are from J
(lo)
j .

Let C be the set of all configurations. We can pack at most ⌈1/δ⌉ − 1 1D items into a bin
because ht > δ. By Lemma 1, we get |C| ≤

(⌈1/δ⌉−1+t−1
t−1

)
≤ ⌈1/δ2⌉1/δ.

Let xC be the number of bins packed according to configuration C. Bin packing J (lo) ∪ ÎS

is equivalent to finding the optimal integer solution to the following linear program, which
we denote as LP(Î).

min
x∈R|C|

∑
C∈C

xC

where
∑
C∈C

CjxC ≥ q ∀j ∈ [t − 1]∑
C∈C

(1 − hC)xC ≥ a(ÎS)

xC ≥ 0 ∀C ∈ C

Here the first set of constraints say that for each j ∈ [t − 1], all of the q := ⌊δ size(J)⌋ + 1
shelves J

(lo)
j should be covered by the configurations in x. The second constraint says that

we should be able to pack a(ÎS) into the non-shelf space in the bins.

▶ Lemma 29. opt(J (lo) ∪ ÎS) ≤ opt(LP(Î)) + t.

Proof. Let x∗ be an optimal extreme-point solution to LP(Î). Then x∗ has at most t non-zero
entries. Let x̂ be a vector where x̂C := ⌈x∗

C⌉. Then x̂ is an integral solution to LP(Î) and∑
C x̂C < t +

∑
C x∗

C = opt(LP(Î)) + t. ◀

The dual of LP(Î), denoted by DLP(Î), is

max
y∈Rt−1,z∈R

a(ÎS)z + q

t−1∑
j=1

yj

where
t−1∑
j=1

Cjyj + (1 − hC)z ≤ 1 ∀C ∈ C

z ≥ 0 and yj ≥ 0 ∀j ∈ [t − 1]

We will now see how to obtain a monotonic weighting function η : [0, 1] 7→ [0, 1] from
a feasible solution to DLP(Î). To do this, we adapt techniques from Caprara’s analysis of
HDHk [8]: we first describe a transformation to convert any feasible solution of DLP(Î) to a
feasible solution that is monotonic, and then show how to obtain a weighting function from
this monotonic solution. Such a weighting function will help us upper-bound opt(LP(Î)) in
terms of optdBP(I).

▶ Definition 30. Let (y, z) be a feasible solution to DLP(Î). Let ht+1 := 0 and for j ∈ [t − 1]
let ŷj := max(yj , ŷj+1 + (hj+1 − hj+2)z). Then (ŷ, z) is called the monotonization of (y, z).

▶ Lemma 31. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the monotonization
of (y, z). Then (ŷ, z) is a feasible solution to DLP(Î).
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Proof. (See Appendix A.1.) ◀

Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be the monotonization of
(y∗, z∗). Then define the function η : [0, 1] 7→ [0, 1] as

η(x) :=


ŷ1 if x ∈ [h2, 1]
ŷj if x ∈ [hj+1, hj), for 2 ≤ j ≤ t − 1
xz∗ if x < ht

.

▶ Lemma 32. η is a monotonic weighting function.

Proof. (See Appendix A.1.) ◀

▶ Lemma 33. For i ∈ I, let p(i) := η(h(i))w(i). Then opt(LP(Î)) ≤ p(I) ≤ T d−1
k optdBP(I).

Proof. Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be its monotonization.
In the canonical shelving of I, suppose a rectangular item i (or a slice thereof) lies in

shelf S where S ∈ Jj . Then h(i) ∈ [hj+1, hj ], where ht+1 := 0. This is because shelves
in J := canShelv(Î) are tight. If j = 1, then η(h(i)) = ŷ1 ≥ y∗

1 . If 2 ≤ j ≤ t − 1, then
η(h(i)) ∈ {ŷj−1, ŷj} ≥ ŷj ≥ y∗

j . We know that w(S) = 1 for each shelf S ∈ Jj for j ∈ [t − 1].

p(I) =
t∑

j=1

∑
S∈Jj

∑
i∈S

η(h(i))w(i) +
∑
i∈ÎS

η(h(i))w(i) (by definition of p)

≥
t−1∑
j=1

∑
S∈Jj

∑
i∈S

y∗
j w(i) +

∑
i∈ÎS

(h(i)z∗)w(i) (by definition of η)

=
t−1∑
j=1

y∗
j q + a(ÎS)z∗ (since w(Jj) = q for j ∈ [t − 1])

= opt(DLP(Î)). ((y∗, z∗) is optimal for DLP(Î))

By strong duality of linear programs, opt(LP(Î)) = opt(DLP(Î)) ≤ p(I). Since η and Hk are
weighting functions (by Lemma 32), we get that p(I) ≤ T d−1

k optdBP(I) by Theorem 3. ◀

▶ Theorem 12 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.
Then soptδ(round(I)) < T d−1

k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ.

Proof.

a(ÎL) ≤ a(Î) =
∑
i∈I

ℓd(i)
d−1∏
j=1

fk(ℓj(i))

 ≤ T d−1
k optdBP(I). (by Theorem 3)

soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ) (by Lemma 28)

≤ opt(LP(Î)) +
⌈

1
δ2

⌉
+ δT d−1

k optdBP(I) + (1 + δ) (by Lemmas 25 and 29)

≤ T d−1
k (1 + δ) optdBP(I) +

⌈
1
δ2

⌉
+ 1 + δ. (by Lemma 33)

◀
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A Details of the HGaPk Algorithm

A.1 Details of the Weighting Function from DLP(Î)
▶ Transformation 34. Let (y, z) be a feasible solution to DLP(Î) (see Section 5.5.3 for the
definition of DLP(Î)). Let s ∈ [t − 1]. Define yt := 0 and ht+1 := 0. Then change ys to
max(ys, ys+1 + (hs+1 − hs+2)z).

▶ Lemma 35. Let (y, z) be a feasible solution to DLP(Î) and (ŷ, z) be the result of applying
Transformation 34 to (y, z) with parameter s ∈ [t − 1]. Then (ŷ, z) is feasible for DLP(Î).

Proof. For a configuration C, let f(C, y, z) := CT y + (1 − hC)z, where CT y :=
∑t−1

j=1 Cjyj .
Since (y, z) is feasible for DLP(Î), f(C, y, z) ≤ 1. As per Transformation 34,

ŷj :=
{

max(ys, ys+1 + (hs+1 − hs+2)z) j = s

yj j ̸= s
.

If ys ≥ ys+1 + (hs+1 − hs+2)z, then ŷ = y, so (ŷ, z) would be feasible for DLP(Î). So now
assume that ys < ys+1 + (hs+1 − hs+2)z.

Let C be a configuration. Define Ct := 0. Let

Ĉj :=


0 j = s

Cs + Cs+1 j = s + 1
Cj otherwise

.
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Then, CT ŷ − ĈT y = Csŷs + Cs+1ŷs+1 − Ĉsys − Ĉs+1ys+1 = Cs(hs+1 − hs+2)z.
Also, h

Ĉ
− hC = Ĉshs+1 + Ĉs+1hs+2 − Cshs+1 − Cs+1hs+2 = −Cs(hs+1 − hs+2).

Since h
Ĉ

≤ hC ≤ 1, Ĉ is a configuration.

f(C, ŷ, z) = CT ŷ + (1 − hC)z

= (ĈT y + Cs(hs+1 − hs+2)z) + (1 − h
Ĉ

− Cs(hs+1 − hs+2))z

= f(Ĉ, y, z) ≤ 1.

Therefore, (ŷ, z) is feasible for DLP(Î). ◀

▶ Lemma 31. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the monotonization
of (y, z). Then (ŷ, z) is a feasible solution to DLP(Î).

Proof. (ŷ, z) can be obtained by multiple applications of Transformation 34: first with
s = t−1, then s = t−2, and so on till s = 1. By Lemma 35, (ŷ, z) is feasible for DLP(Î). ◀

▶ Lemma 32. η is a monotonic weighting function.

Proof. η is monotonic by the definition of monotonization.
Let X ⊆ (0, 1] be a finite set such that sum(X) ≤ 1. Let X0 := X ∩ [0, ht), let

X1 := X ∩ [h2, 1] and for 2 ≤ j ≤ t − 1, let Xj := X ∩ [hj+1, hj). Let C ∈ Zt−1
≥0 such that

Cj := |Xj |. Let hC :=
∑t−1

j=1 Cjhj+1.

1 ≥ sum(X) = sum(X0) +
t−1∑
j=1

sum(Xj)

≥ sum(X0) +
t−1∑
j=1

Cjhj+1 (for j ≥ 1, each element in Xj is at least hj+1)

= sum(X0) + hC .

Since hC ≤ 1 − sum(X0) ≤ 1, C is a configuration. Therefore,

∑
x∈X

η(x) =
t−1∑
j=0

∑
x∈Xj

η(x) = z∗ sum(X0) +
t−1∑
j=1

Cj ŷj (by definition of η)

≤ (1 − hC)z∗ + CT ŷ (hC ≤ 1 − sum(X0))

≤ 1. (C is a configuration and (ŷ, z∗) is feasible for DLP(Î) by Lemma 31)

◀

A.2 Guessing Shelves and Bins
We want guessShelves(Î, δ) to return all possible packings of empty shelves into at most
n := |Î| bins such that each packing is structured for (flat(Î), δ).

Let H := {h(i) : i ∈ flat(Î)}. Let N := | flat(Î)|. guessShelves(Î, δ) starts by picking
the distinct heights of shelves by iterating over all subsets of H of size at most ⌈1/δ2⌉. There
are at most N⌈1/δ2⌉ + 1 such subsets. Let H̃ := {h1, h2, . . . , ht} be one such guess, where
t ≤ ⌈1/δ2⌉. Without loss of generality, assume h1 > h2 > . . . > ht > δ.

Next, guessShelves needs to decide the number of shelves of each height and a packing
of those shelves into bins. Let C ∈ Zt

≥0 such that hC :=
∑t−1

j=1 Cjhj ≤ 1. Then C is called
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a configuration. C represents a set of shelves that can be packed into a bin and where Cj

shelves have height hj . Let C be the set of all configurations. We can pack at most ⌈1/δ⌉ − 1
items into a bin because ht > δ. By Lemma 1, we get

|C| ≤
(

⌈1/δ⌉ − 1 + t

t

)
≤
(

⌈1/δ⌉ − 1 + ⌈1/δ2⌉
⌈1/δ⌉ − 1

)
≤
(⌈

1
δ2

⌉
+ 1
)1/δ

.

There can be at most n bins, and guessShelves has to decide the configuration of each bin.
By Lemma 1, the number of ways of doing this is at most

(|C|+n
|C|
)

≤ (n + 1)|C|. Therefore,
guessShelves computes all configurations and then iterates over all

(|C|+n
|C|
)

combinations of
these configs. This completes the description of guessShelves and proves Theorem 13.

A.3 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a packing P of empty shelves
into bins and constant δ ∈ (0, 1). It tries to pack Î into P and one additional shelf. Before
we design chooseAndPack, let us see how to handle a special case. Î is called δ-simple iff
the width of each δ-large item in flat(Î) is a multiple of 1/|Î|.

Let P be a bin packing of empty shelves. Let h1 > h2 > . . . > ht be the distinct heights
of the shelves in P , where ht > δ. We will use dynamic programming to either pack a simple
instance Î into P or claim that no assortment of Î can be packed into P . Call this algorithm
simpleChooseAndPack(Î, P, δ).

Let Î := {I1, I2, . . . , In}. For j ∈ {0, 1, . . . , n}, define Îj := {I1, I2, . . . , Ij}, i.e., Îj

contains the first j itemsets from Î. Let u⃗ := [u1, u2, . . . , ut] ∈ {0, 1, . . . , n2}t be a vector.
Let Φ(j, u⃗) be the set of all assortments of Îj that can be packed into t shelves, where the
rth shelf has height hr and width ur/n. For a set K of items, define smallArea(K) as the
total area of δ-small items in K. Define g(j, u⃗) := minK∈Φ(j,u⃗) smallArea(K). If Φ(j, u⃗) = ∅,
then we let g(j, u⃗) = ∞.

We will show how to compute g(j, u⃗) for all j ∈ {0, 1, . . . , n} and all u⃗ ∈ {0, 1, . . . , n2}t

using dynamic programming. Let there be nr shelves in P having height hr. Then for j = n

and ur = nrn, Î can be packed into P iff g(j, u⃗) is at most the area of non-shelf space in P .
Note that in any solution K corresponding to g(j, u⃗), we can assume without loss of

generality that the item i from K ∩ Ij is placed in the smallest shelves possible. This is
because we can always swap i with the slices of items in those shelves. This observation
gives us the following recurrence relation for g(j, u⃗):

g(j, u⃗) =


∞ if uj < 0 for some j ∈ [t]
0 if n = 0 and uj ≥ 0 for all j ∈ [t]

mini∈Ij

(
smallArea({i})
+ g(j − 1, reduce(u⃗, i))

)
if n > 0 and uj ≥ 0 for all j ∈ [t]

(1)

Here reduce(u⃗, i) is a vector obtained as follows: If i is δ-small, then reduce(u⃗, i) := u⃗.
Otherwise, initialize x to w(i). Let pi be the largest integer r such that h(i) ≤ hr. For r

varying from pi to 2, subtract min(x, uj) from x and uj . Then subtract x from u1. The new
value of u⃗ is defined to be the output of reduce(u⃗, i).

The recurrence relation allows us to compute g(j, u⃗) for all j and u⃗ using dynamic program-
ming in time O(Nn2t) time, where N := | flat(Î)|. With a bit more work, we can also compute
the corresponding assortment K, if one exists. Therefore, simpleChooseAndPack(Î, P, δ)
computes a packing of Î into P if one exists, or returns null if no assortment of Î can be
packed into P .
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Now we will look at the case where Î is not δ-simple. Let Î ′ be the instance obtained
by rounding up the width of each δ-large item in Î to a multiple of 1/n, where n :=
|Î|. Let P be the bin packing obtained by adding another bin to P containing a single
shelf of height h1. chooseAndPack(Î, P, δ) computes Î ′ and P and returns the output of
simpleChooseAndPack(Î ′, P , δ).

▶ Theorem 15. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is
a shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P | + 1 and the
distinct shelf heights in P are the same as that in P .

Proof. Follows from the definition of simpleChooseAndPack. ◀

▶ Theorem 14. If there exists an assortment K̂ of Î having a structured δ-fractional bin
packing P , then chooseAndPack(Î, P, δ) does not output null.

Proof. Let K̂ ′ be the items obtained by rounding up the width of each item in K̂ to a
multiple of 1/n. Then K̂ ′ is an assortment of Î ′. We will show that K̂ ′ fits into P , so
simpleChooseAndPack(Î ′, P , δ) will not output null.

Slice each item i ∈ K̂ ′ into two pieces using a vertical cut such that one piece has width
equal to the original width of i in K̂, and the other piece has width less than 1/n. This splits
K̂ ′ into sets K̂ and T . T contains at most n items, each of width less than 1/n. Therefore,
we can pack K̂ into P and we can pack T into the newly-created shelf of height h1. Therefore,
K̂ ′ can be packed into P , so simpleChooseAndPack(Î ′, P , δ) won’t output null. ◀

▶ Theorem 16. chooseAndPack(Î, P, δ) runs in O(Nn2⌈1/δ2⌉) time. Here N := | flat(Î)|,
n := |Î|.

Proof. The running time of chooseAndPack(Î, P, δ) is dominated by computing g(j, u⃗) for
all j and u⃗, which takes O(Nn2t) time. Since P is structured for (Î, δ), the number of
distinct shelves in P , which is t, is at most ⌈1/δ2⌉. ◀

A.4 inflate

Let I be a set of dD items. Let P be a shelf-based δ-fractional bin packing of Î := round(I)
into m bins, where the shelves have t distinct heights: h1 > . . . > ht > δ. We will design an
algorithm inflate(P ) that packs I into approximately |P | bins. Let ÎL := {i ∈ Î : h(i) > δ}
and ÎS := Î − ÎL. Let there be Q distinct base types in I (so Q ≤ kd−1).

A.4.1 Separating Base Types
We will now impose an additional constraint over P : items in each shelf must have the same
btype. This will be helpful later, when we will try to compute a packing of dD items I.

Separating base types of ÎS is easy, since we can slice them in both directions. An analogy
is to think of a mixture of multiple immiscible liquids settling into equilibrium.

Let there be nj shelves of height hj . Let Îj be the items packed into shelves of height hj .
Therefore, w(Îj) ≤ nj . Let Îj,q ⊆ Îj be the items of base type q ∈ [Q].

For each q, pack Îj,q into ⌈w(Îj,q)⌉ shelves of height hj (slicing items if needed). For
these newly-created shelves, define the btype of the shelf to be the btype of the items in it.
Let the number of newly-created shelves of height hj be n′

j . Then

n′
j =

Q∑
q=1

⌈w(Îj,q)⌉ <

Q∑
q=1

w(Îj,q) + Q ≤ nj + Q =⇒ n′
j ≤ nj + Q − 1.

nj of these shelves can be packed into existing bins in place of the old shelves. The remaining
n′

j − nj ≤ Q − 1 shelves can be packed on the base of new bins.
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Therefore, by using at most t(Q − 1) new bins, we can ensure that for every shelf, all
items in that shelf have the same btype. These new bins don’t contain any items from ÎS .
Call this new bin packing P ′. This transformation takes O(|I|d log |I|) time.

A.4.2 Forbidding Horizontal Slicing
We will now use P ′ to compute a shelf-based bin packing P ′′ of Î where items in Î can be
sliced using vertical cuts only.

Let Îq,S be the items in ÎS of base type q. Pack items Îq,S into shelves using canShelv.
Suppose canShelv used mq shelves to pack Îq,S . For j ∈ [mq], let hq,j be the height of the
jth shelf. Let Hq :=

∑mq

j=1 hq,j and H :=
∑Q

q=1 Hq. Since for j ∈ [mq − 1], all items in the
jth shelf have height at least hq,j+1,

a(Îq,S) >

mq−1∑
j=1

hq,j+1 ≥ Hq − hq,1 ≥ Hq − δ.

Therefore, H < a(ÎS) + Qδ. Let ĴS be the set of these newly-created shelves.
Use Next-Fit to pack ĴS into the space used by ÎS in P ′. ÎS uses at most m bins in P ′

(recall that m := |P |). A height of less than δ will remain unpacked in each of those bins.
The total height occupied by ÎS in P ′ is a(ÎS). Therefore, Next-Fit will pack a height of
more than a(ÎS) − δm.

Some shelves in ĴS may still be unpacked. Their total height will be less than H −
(a(ÎS) − δm) < δ(Q + m). We will pack these shelves into new bins using Next-Fit. The
number of new bins used is at most ⌈δ(Q + m)/(1 − δ)⌉. Call this bin packing P ′′. The
number of bins in P ′′ is at most m′ := m + t(Q − 1) + ⌈δ(Q + m)/(1 − δ)⌉.

A.4.3 Shelf-Based dD packing
We will now show how to convert the packing P ′′ of Î that uses m′ bins into a packing of I

that uses m′ dD bins.
First, we repack the items into the shelves. For each q ∈ [Q], let Ĵq be the set of shelves

in P ′′ of btype q. Let Î [q] be the items packed into Ĵq. Compute Ĵ∗
q := canShelv(Î [q]) and

pack the shelves Ĵ∗
q into Ĵq. This is possible by Lemma 23.

This repacking gives us an ordering of shelves in Ĵq. Number the shelves from 1 onwards.
All items have at most 2 slices. If an item has 2 slices, and one slice is packed into shelf
number p, then the other slice is packed into shelf number p + 1. The slice in shelf p is called
the leading slice. Every shelf has at most one leading slice.

Let Sj be the jth shelf of Ĵq. Let Rj be the set of unsliced items in Sj and the item whose
leading slice is in Sj . Order the items in Rj arbitrarily, except that the sliced item, if any,
should be last. Then w(Rj − last(Rj)) < 1. So, we can use HDH-unit-pack[q]

k (Rj) to pack Rj

into a (d − 1)D bin. This (d − 1)D bin gives us a dD shelf whose height is the same as that
of Sj . On repeating this process for all shelves in Ĵq and for all q ∈ [Q], we get a packing of
I into shelves. Since each dD shelf corresponds to a shelf in P ′′ of the same height, we can
pack these dD shelves into bins in the same way as P ′′. This gives us a bin packing of I into
m′ bins.

A.4.4 The Algorithm
Appendices A.4.1–A.4.3 describe how to convert a shelf-based δ-fractional packing P of Î

having t distinct shelf heights into a shelf-based dD bin packing of I. We call this conversion
algorithm inflate.
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It is easy to see that the time taken by inflate is O(|I|d log |I|).
If P has m bins, then the number of bins in inflate(P ) is at most

m + t(Q − 1) +
⌈

δ(Q + m)
1 − δ

⌉
<

m

1 − δ
+ t(Q − 1) + 1 + δQ

1 − δ
.

This proves Theorem 17.

A.5 Improving Running Time
For simplicity of presentation, we left out some opportunities for improving the running time
of HGaPk. Here we briefly describe a way of speeding up HGaPk which reduces its running
time from O(N1+⌈1/δ2⌉nR+2⌈1/δ2⌉ + Nd + nd log n) to O(N1+⌈1/δ2⌉n2⌈1/δ2⌉ + Nd + nd log n).
Here N := | flat(Î)|, n := |Î|, δ := ε/(2 + ε) and R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ.

In guessShelves, we guess two things simultaneously: (i) the number and heights of
shelves (ii) the packing of the shelves into bins. This allows us to guess the optimal structured
δ-fractional packing. But we don’t need that; an approximate structured packing would do.

Therefore, we only guess the number and heights of shelves. We guess at most N⌈1/δ2⌉ + 1
distinct heights of shelves, and by Lemma 1, we guess at most (n + 1)⌈1/δ2⌉ vectors of
shelf-height frequencies. Then we can use Lueker and Fernandez de la Vega’s O(n log n)-time
APTAS for 1BP [15] to pack the shelves into bins.

Also, once we guess the distinct heights of shelves, we don’t need to run chooseAndPack
afresh for every packing of empty shelves. We can reuse the dynamic programming table.

The running time is, therefore,

O
(

N⌈1/δ2⌉
(

n⌈1/δ2⌉n log n + Nn2⌈1/δ2⌉
)

+ Nd + nd log n
)

= O(N1+⌈1/δ2⌉n2⌈1/δ2⌉ + Nd + nd log n).
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