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Abstract
We consider the hospital-residents problem where both hospitals and residents can have lower quotas.
The input is a bipartite graph G = (R ∪ H, E), each vertex in R ∪ H has a strict preference ordering
over its neighbors. The sets R and H denote the sets of residents and hospitals respectively. Each
hospital has an upper and a lower quota denoting the maximum and minimum number of residents
that can be assigned to it. Residents have upper quota equal to one, however, there may be a
requirement that some residents must not be left unassigned in the output matching. We call this
as the residents’ lower quota.

We show that whenever the set of matchings satisfying all the lower and upper quotas is non-
empty, there always exists a matching that is popular among the matchings in this set. We give a
polynomial-time algorithm to compute such a matching.
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1 Introduction

The stable marriage problem and its many-to-one generalization, namely the hospital residents
(HR) problem, have been extensively investigated in the literature. In this work, we consider
a generalization of the HR problem where hospitals and residents both can specify demand
constraints. More formally, the input to our problem is a bipartite graph G = (R ∪ H, E)
where R denotes the set of residents, H denotes the set of hospitals, and an edge (r, h) ∈ E

denotes that r and h are mutually acceptable to each other. Every resident and hospital
specify a strict ranking of acceptable elements to them, and this ranking is called the
preference list of the agent. Every hospital h has two additional inputs associated with
it - q+(h), the capacity or upper quota of h, and q−(h), the demand or lower quota of h.
The upper quota denotes the maximum number of residents that can be matched to h, and
the lower quota denotes the minimum number of residents that must be assigned to h in
any feasible assignment. In practical scenarios, residents may also have demands. That is,
some residents must be matched in a round of assignments of residents (medical interns)
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30:2 HR with Two-Sided Lower Quotas

to hospitals. We model this by allowing residents to specify an integral lower quota as a
part of the input. Thus, associated with every resident r ∈ R we have q−(r) ∈ {0, 1} and
q+(r) = 1. We denote this as the HR2LQ problem. When all residents have lower quota zero,
it is denoted as the HRLQ problem, which is well investigated in the literature. A matching
M in G is a subset of the edge set E. Our goal for the HR2LQ problem is to compute a
feasible matching that is optimal with respect to the preferences specified by the agents.

▶ Definition 1 (Feasible matching). A feasible matching M in G = (R ∪ H, E) is a subset of
E such that q−(v) ≤ |M(v)| ≤ q+(v) for each v ∈ R∪H, where M(v) is the set of neighbours
of v assigned to v in M .

Before we discuss the notion of optimality, we outline the challenges that lower quotas pose
in the HRLQ problem, a special case of the HR2LQ problem. In the presence of two-sided
preferences but no lower quotas, stability is a well-accepted notion of optimality. Stable
matchings are characterized by the absence of a blocking pair.

▶ Definition 2 (Blocking pair). Given a matching M , a pair (r, h) ∈ E \ M is called a
blocking pair with respect to M if either r is unmatched or r prefers h over its matched
partner M(r) and either h is under-subscribed (|M(h)| < q+(h)) or h prefers r over at least
one of the residents matched to it, that is, some resident in M(h). A matching M is stable
if there is no blocking pair with respect to M .

A stable matching always exists; however, a stable and feasible matching need not exist
in the presence of lower quotas for even the hospitals alone (HRLQ problem). Nasre and
Nimbhorkar [20] used an alternate notion of optimality, namely popularity to circumvent the
problem. Informally, a matching is popular if no majority of agents wish to deviate from
the matching. In [20], the authors show that for every instance of the HRLQ problem, there
exists a feasible matching that is popular amongst the set of feasible matchings, and such
matching can be computed efficiently. In our work, we show that in the presence of lower
quotas on both sides of the bipartition, that is, in the HR2LQ setting, a matching that is
popular amongst the set of feasible matchings exists, and it can be efficiently computed.

The setting consisting of two-sided preferences and lower quotas has received a lot of
attention, e.g. Huang [9] investigate it for stable matchings where there are classifications
along with lower quotas. Fleiner and Kamiyama [6] consider stable matchings with matroid
constraints and lower quotas. Mnich and Schlotter [19] investigate lower quotas on both
sides in the restricted stable marriage setting (one-to-one). Popularity in the HR2LQ setting
has not been investigated so far. The HR2LQ problem is well motivated by several practical
applications. Hospital lower quotas are important for the smooth functioning of hospitals.
Similarly, some residents may have to be matched because of their economic backgrounds or
because they are unallocated from the previous year. Another setting where HR2LQ arise is
the allocation of mentors to students. The mentors need a group of students to carry out
discussion sessions, whereas it may be required that the students whose CGPA falls below a
certain threshold must get a mentor. Another application of HR2LQ is in elective allocation.
While allotting electives to students, it is natural to have a lower quota on electives denoting
the minimum number of students required for the elective to be offered, and the students
who are in their final semester must be assigned an elective.

Notion of popularity. The notion of popularity used here is the same as in [20]. It is based
on votes cast by each vertex to compare two given matchings M and N . A resident r votes
for M if r prefers M(r) over N(r), and vice versa. If M(r) = N(r) then r is indifferent
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between the two matchings, and hence does not cast any vote. If r is unmatched in M ,
we define M(r) = ⊥, and r prefers any hospital in its preference list over ⊥. We denote
voter(M, N) to denote the vote of r between M and N . It takes values 1, −1 or 0 depending
on whether r prefers M(r) over N(r) or vice versa, or is indifferent between them.

For a hospital h, there can be up to q+(h) residents in M(h) and N(h). If h is under-
subscribed in M or N then we assume that the remaining positions of h are matched to ⊥.
In this way, we can always assume that |M(h)| = |N(h)| = q+(h). So the hospital can cast
up to q+(h) votes. The hospital is indifferent between M and N as far as the residents in
M(h) ∩ N(h) are concerned. For the remaining residents, h needs to decide a correspondence
corrh for comparing M(h) \ N(h) to N(h) \ M(h). Then

voteh(M, N, corrh) =
∑

r∈M(h)\N(h)

voteh(r, corrh(r, M, N))

Here corrh(r, M, N) denotes the resident r′ ∈ N(h) \ M(h) corresponding to r, and
voteh(r, corrh(r, M, N)) is 1 if h prefers r over r′, is −1 if h prefers r′ over r, and 0 if
r = r′.

Finally the number of votes that the matching M gets over N is given by

∆(M, N, corr) =
∑
r∈R

voter(M, N) +
∑
h∈H

voteh(M, N, corrh)

▶ Definition 3 (Popular Matching [20]). A matching M is more popular than N (denoted
as M ≻corr N) under corr if ∆(M, N, corr) > 0. A matching M is popular if there is no
matching N such that N ≻corr M for any choice of corr from N to M .

Related work and techniques. The notion of popularity was introduced by Gärdenfors [7]
in 1975 as a majority assignment in the context of a full stable marriage problem. In 2005,
Abraham et al. [1] discussed an efficient algorithm for computing popular matching in
a bipartite graph where only one set of the partition has preferences. Since then popular
matchings have been well-studied and a vast literature [2, 10, 12, 8, 4, 18, 13] on popular
matchings is available.

Huang and Kavitha [10] and subsequently Kavitha [12] studied the popular matchings as
an alternative to stability in the stable marriage setting (where there are no lower quotas).
Their motivation was to obtain matchings larger in size than the stable matching, which are
optimal with respect to the preferences. Subsequently, for matchings in bipartite graphs
with two-sided preferences, popularity has been investigated in the many-to-one setting (HR
problem) [21], many-to-many setting [3] and the many-to-one setting with hospital lower
quotas (HRLQ problem) [20, 18].

Independent of our work, very recently, Kavitha [15] investigates popularity of a matching
in a stable marriage instance when both sides have lower quotas – denoted as critical nodes
in her work. Her approach is similar to ours and finds a maximum size popular matching
amongst the set of critical matchings. A critical matching is one which matches as many
critical nodes as possible. Thus, in her work, it is not required to have the guarantee that the
input instance admits a feasible matching, which is required in our work. We remark that our
algorithm is for the HR2LQ setting which allows lower-quotas (or equivalently critical nodes)
on both sides and non-unit upper-quotas on one side of the bipartition. Our algorithm can
be easily extended to compute a maximum size feasible popular matching.

We comment on the two related but seemingly different ways of computing a popular
matching used in the literature. The first approach used in [12, 18, 3] is what we term as the
modified Gale and Shapley (GS) approach. This involves the first round of proposals using
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the standard GS algorithm, followed by the second round of proposals where unmatched
vertices are allowed to propose with increased priority. This simple and elegant idea has its
origins in Kirlay’s work [17] on computing constant factor approximation to maximum sized
stable matching in the presence of ties in preferences.

The second approach used in [21, 4] is to simulate the modified GS algorithm via reducing
the original instance to a stable matching instance G′. A stable matching in G′ is mapped
to a popular matching in G. We call this the reduction approach. For example, in [20], the
authors use the reduction approach and convert the input HRLQ instance into an HR instance
where the standard GS algorithm is used to compute a matching. The reduced instance
consists of multiple copies of all the hospitals with a positive lower quota. A modified GS
approach on an HRLQ instance would involve giving multiple higher priorities to deficient
hospitals, i.e. the hospitals whose lower quotas are not met. The two different approaches are
indeed equivalent in the HRLQ setting since the reduction essentially simulates the modified
GS algorithm.

Extension to HR2LQ. A natural extension of the modified GS approach for HR2LQ would
be to execute one round of GS algorithm with say hospitals proposing, then letting deficient
hospitals (if any) propose with multiple higher priorities, and then letting deficient residents
(if any) propose with multiple higher priorities. In other words, one side, let’s say H, start
proposing using the standard GS algorithm to compute round 1 matching M1, which is stable.
If a hospital h remains deficient in M1 (|M1(h)| < q−(h)), then h is allowed to propose
with an increased priority. A resident will always accept the proposal from a higher priority
hospital by rejecting a lower priority one. A hospital keeps proposing with increased priority
if it exhausts its preference list and is left deficient at the current priority. The priority of a
hospital is increased (by one at a time) until it becomes non-deficient. It can be shown that
no hospital is deficient in the matching M2 obtained at the end of round 2. But a resident
may still be deficient and hence, a deficient resident r is allowed to propose (possibly with
increased priority) until it becomes non-deficient. In this process, another resident r′ may get
rejected for the first time by a hospital h because h has got a proposal from a higher priority
resident and |M(h)| = q+(h). Now at this point, r′ has two choices either (a) start proposing
from the beginning of its list or (b) propose the hospital just after h in its preference list and
continue. If r′ is such that q−(r′) = 0, then it continues proposing hospitals until either it
gets matched to some hospital or has exhausted its preference list. But if q−(r′) = 1 and r′

has exhausted its preference list without getting any match, then it starts proposing from the
beginning of the list with increased priority. In the end, we get the round 3 matching M3.

Note that in the HRLQ setting, the modified GS approach comprises only round 1 and
round 2 and gives a popular matching. But the example in Figure 1 shows that this approach
in the case of HR2LQ does not yield a popular matching using any of the two choices
mentioned above in round 3.

The round 1 matching computed by H-proposing GS algorithm is M1 = {(h1, ⊥), (h2, ⊥),
(h3, r3), (h4, r1), (h5, r2), (h6, ⊥), (h7, r5), (h8, ⊥)}. Note that the matching M1 is not feas-
ible as the hospitals h1, h2 and h6 are deficient. In round 2, these hospitals increase
their priority to 1 (from 0) and start proposing from the start of the list. In or-
der to remove the deficiency, h1 increases its priority to 2 whereas h2 and h6 got
matched while being at priority level 1. The matching M2 at the end of round 2 is
M2 = {(h2

1, r1), (h1
2, r2), (h3, r3), (h4, ⊥), (h5, ⊥), (h1

6, r5), (h7, ⊥), (h8, ⊥)}. In M2, the res-
ident r2 is deficient and hence round 3 starts.
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[0, 1] r1 : h4 h2 h1

[0, 1] r2 : h5 h2 h6 h1

[1, 1] r3 : h3 h2

[1, 1] r4 : h3

[0, 1] r5 : h7 h6 h8

(a) Preference List of Residents with
Quotas [q−(r), 1].

[1, 1] h1 : r1 r2

[1, 1] h2 : r1 r2 r3

[0, 1] h3 : r3 r4

[0, 1] h4 : r1

[0, 1] h5 : r2

[1, 1] h6 : r2 r5

[0, 1] h7 : r5

[0, 1] h8 : r5

(b) Preference List of Hospitals
with Quotas [q−(h), q+(h)].

Figure 1 Counter-example for the modified GS approach.

In round 3, r3 and r4 try to snatch h3 from each other and they raise their pri-
ority level to 1. The hospital h2 rejects r2 when it receives a proposal from r1

3
and this was the first rejection of r2 in this round. So, following the first choice of
round 3, r2 proposes h5 and got matched to it. This results in the matching M ′

3 =
{(h2

1, r1), (h1
2, r1

3), (h3, r2
4), (h4, ⊥), (h5, r2), (h1

6, r5), (h7, ⊥), (h8, ⊥)}. When we remove the
priority levels we get M ′ = {(h1, r1), (h2, r3), (h3, r4), (h5, r2), (h6, r5)}. If the procedure
follows the second choice of round 3, then r2 proposes to h6 which in turn reject r5 and
then r5 proposes to h8 and get matched to it. Round 3 ends here and it results in the
matching M ′′

3 = {(h2
1, r1), (h1

2, r1
3), (h3, r2

4), (h4, ⊥), (h5, ⊥), (h1
6, r2), (h7, ⊥), (h8, r5)} which

maps to M ′′ = {(h1, r1), (h2, r3), (h3, r4), (h6, r2), (h8, r5)}.
We remark that neither M ′ nor M ′′ is popular as there exists another matching M =

{(h1, r1), (h2, r6), (h3, r4), (h6, r2), (h7, r5)} which is more popular than both.
Although the modified GS approach does not work, a natural extension of the reduction

approach works. Thus we present a reduction from the HR2LQ problem to the HR problem
and show that a stable matching in the reduced HR instance can be translated to a popular
matching in the original instance. Thus the reduction approach works but seems to have no
straightforward analogous modified GS approach. Our correctness proof is inspired by the
one in [3], which uses LP duality to prove the popularity of their matching. They exhibit
a dual assignment as a certificate for the popularity of the matching. Dual certificate for
proving the popularity has been used earlier in the literature [13, 11, 5, 14, 16].

However, the algorithm in [3] uses a modified GS approach and has no lower quotas.
Also, in [3], only one side of the bipartition gets one higher priority. So the dual certificate
consists of a {±1, 0} assignment to all the dual variables. In contrast, our reduction makes
multiple copies of residents and hospitals. As a consequence, exhibiting the dual assignment
is more involved and needs weights linear in the size of the input instance.

Formally, our result is stated below:

▶ Theorem 4. In an HR2LQ instance that admits a feasible matching, there always exists
a matching that is popular amongst all the feasible matchings. Moreover, such a popular
matching can be computed in time polynomial in the size of the input instance.

Organization of the paper. We describe our reduction in Section 2. The feasibility and
popularity proofs appear in Section 3 and Section 4 respectively. Section 5 concludes the
paper.
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2 Reduction

Given an HR2LQ instance G = (H ∪ R, E) we construct an HR instance G′ = (H′ ∪ R′, E′)
as follows. Let µR and µH denote respectively the sum of lower quotas of residents and
hospitals in the instance G. That is, µR =

∑
r∈R q−(r) and µH =

∑
h∈H q−(h). Let Rlq

and Hlq denote the set of residents and set of hospitals with positive lower quota. That is,
Rlq = { r | r ∈ R and q−(r) = 1} and Hlq = { h | h ∈ H and q−(h) > 0}. A resident in Rlq

is called a lower-quota resident and a hospital in Hlq is called lower-quota hospital. Our
instance G′ has the following residents and hospitals:

1. Resident Copies: For every resident r ∈ Rlq, we have µR + 1 copies of r in G′. These
copies are r0, r1, . . . , rµR where rx is called the level-x copy of r. Note that all r ∈ Rlq

have both upper and lower quota equal to one in the HR2LQ instance G. The capacities
in G′ for these copies are: level-0 copy has capacity equal to the upper quota of r and all
other copies have capacity equal to the lower quota of r. That is,

q(rx) = 1 for 0 ≤ x ≤ µR

A resident r /∈ Rlq in G has exactly one copy r0 in G′ and we call it the level-0 copy of
the resident r. The capacity of the level-0 copy in G′ is q(r0) = 1. We denote this set of
copies of the residents as R′

c and call them true residents.
2. Hospital Copies: For every hospital h ∈ Hlq, we have µH + 1 copies of h in G′. These

copies are h0, h1, . . . , hµH where hy is called the level-y copy of h. The capacities in G′

for these copies are: level-0 copy has capacity equal to the upper quota of h and all other
copies have capacity equal to the lower quota of h. That is,

q(hy) = q+(h) if y = 0
= q−(h) if 1 ≤ y ≤ µH

A hospital h /∈ Hlq in G has exactly one copy h0 in G′ and we call it the level-0 copy of
the hospital. The capacity of the level-0 copy in G′ is q(h0) = q+(h). We denote this set
of copies of the hospitals as H′

c and call them true hospitals.
3. Dummy Hospitals: For every r ∈ Rlq we have µR many dummy hospitals. The role of

dummy hospitals is to ensure that in a stable matching in G′ at most, one true hospital
is matched across several copies of a lower-quota resident. We denote the set of dummy
hospitals corresponding to r ∈ Rlq as Dr which is defined as:

Dr = { dy
r | 0 ≤ y < µR }

4. Dummy Residents: For every h ∈ Hlq we have µH sets of dummy residents. As
with dummy hospitals, the role of the dummy residents is to ensure that in any stable
matching in G′, at most q+(h) many true residents are matched across several copies of
the lower-quota hospital. We denote the level-x set of dummy residents corresponding to
a lower-quota hospital h ∈ Hlq as Dx

h. The set is defined as follows:

Dx
h =

{
{dx

h,1, dx
h,2, . . . , dx

h,q+(h)} for x = 0
{dx

h,1, dx
h,2, . . . , dx

h,q−(h)} for 1 ≤ x < µH

We are now ready to define our resident set R′ and hospital set H′ in G′.

R′ = R′
c ∪

⋃
h∈Hlq

0≤x≤µH −1

Dx
h H′ = H′

c ∪
⋃

r∈Rlq

Dr

We now define our preference lists for the residents and the hospitals in G′. For any
vertex v ∈ R ∪ H, let ⟨listv⟩ denote the preference list of v in G. Let ⟨lqlistv⟩ denote the
preference list of v restricted to the lower-quota vertices in its preference list, where the
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relative ordering of the lower-quota vertices is preserved. Finally, for a particular level t, we
denote by ⟨lqlistv⟩t as the list of level-t copies of the lower-quota vertices in the preference
list of v. For example in G if a resident r has its preference list as h1, h2, h3, h4 where h2 and
h4 belong to Hlq, then ⟨listr⟩ = h1, h2, h3, h4 and ⟨lqlistr⟩ = h2, h4. Furthermore say t = 3,
then ⟨lqlistr⟩3 = h3

2, h3
4. We let the symbol ◦ denotes the concatenation of two preference

lists.

1. Preferences of true residents: For a resident r /∈ Rlq, we have exactly one copy r0 in
G′ whose preference list is obtained by concatenating the r’s highest level lower-quota
hospitals, followed by the next highest level lower-quota hospitals and so on finally
followed by all level-0 hospitals in its preference list. Formally, the list for r0 is defined
below.

r0 : ⟨lqlistr⟩µH ◦ ⟨lqlistr⟩µH −1 ◦ . . . ◦ ⟨lqlistr⟩1 ◦ ⟨listr⟩0

Recall that, for a resident r ∈ Rlq we have µR + 1 many copies of r in G′. Broadly,
the preference list of these copies are obtained by prefixing and suffixing dummies to
the preference list of r0 shown above. Hence we find it convenient to use the notation
⟨clonedlistr⟩ to denote the following:

⟨clonedlistr⟩ = ⟨lqlistr⟩µH ◦ ⟨lqlistr⟩µH −1 ◦ . . . ◦ ⟨lqlistr⟩1 ◦ ⟨listr⟩0

The preference lists of the µR + 1 copies of r can be defined using the ⟨clonedlistr⟩ as
given below.

r0 : ⟨clonedlistr⟩ ◦ d0
r

r1 : d0
r ◦ ⟨clonedlistr⟩ ◦ d1

r

...
rµR−1 : dµR−2

r ◦ ⟨clonedlistr⟩ ◦ dµR−1
r

rµR : dµR−1
r ◦ ⟨clonedlistr⟩

2. Preferences of true hospitals: For a hospital h /∈ Hlq, we have exactly one copy
h0 in G′ whose preference list is obtained by concatenating the hospital’s highest level
lower-quota residents, followed by the next highest level lower-quota residents and so on
finally followed by all level-0 residents in its preference list. Formally, the list for h0 is
defined below.

h0 : ⟨lqlisth⟩µR ◦ ⟨lqlisth⟩µR−1 ◦ . . . ◦ ⟨lqlisth⟩1 ◦ ⟨listh⟩0

As with lower-quota residents, we have µH + 1 many copies of a lower-quota hospitals in
G′. We will use the notation ⟨clonedlisth⟩ to denote the following:

⟨clonedlisth⟩ = ⟨lqlisth⟩µR ◦ ⟨lqlisth⟩µR−1 ◦ . . . ◦ ⟨lqlisth⟩1 ◦ ⟨listh⟩0

The preference lists of the µH + 1 copies of h can be defined using the ⟨clonedlisth⟩ as
given below. Note that for a level-y copy hy of h we have q(hy) many leading dummies,
followed by the cloned list of h followed by q(hy) many trailing dummies. The leading
dummies for hy are the trailing dummies for hy−1 and the the trailing dummies for hy

are leading dummies for hy+1. Recall that q(h0) = q+(h) and q(h1) = q−(h) and hence
q−(h) trailing dummies of h0 are the leading dummies of h1. Thus, k in h1’s preference
list denote the value k = q+(h) − q−(h) + 1.

h0 : ⟨clonedlisth⟩ ◦ d0
h,1, . . . , d0

h,q+(h)

h1 : d0
h,k, . . . , d0

h,q+(h) ◦ ⟨clonedlisth⟩ ◦ d1
h,1, . . . , d1

h,q−(h)

h2 : d1
h,1, . . . , d1

h,q−(h) ◦ ⟨clonedlisth⟩ ◦ d2
h,1, . . . , d2

h,q−(h)
...

hµH −1 : dµH −2
h,1 , . . . , dµH −2

h,q−(h) ◦ ⟨clonedlisth⟩ ◦ dµH −1
h,1 , . . . , dµH −1

h,q−(h)

hµH : dµH −1
h,1 , . . . , dµH −1

h,q−(h) ◦ ⟨clonedlisth⟩

FSTTCS 2021
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3. Preferences of dummy hospitals: All dummy hospitals have a preference list of length
two. The preference list of a dummy hospital dy

r for a lower quota resident r is:
dy

r : ry, ry+1

4. Preferences of dummy residents: We have several sets of dummy residents corres-
ponding to a lower-quota hospital h ∈ Hlq. The dummy residents, except for the first
k − 1 many level-0 dummy residents (k = q+(h) − q−(h) + 1) have a preference list of
length two. The preference lists of the dummy residents is given below.

dx
h,i : h0 x = 0, i ∈ {1, 2, . . . , k − 1}

: h0, h1 x = 0, i ∈ {k, . . . , q+(h)}
: hx, hx+1 x ∈ {1, 2, . . . , µH − 1}

The preference lists of dummy residents and dummy hospitals ensures that a stable
matching in G′ naturally maps to a popular matching in the original instance G.

This completes the description of our reduced instance G′. We illustrate this reduction in
Appendix A.1 using an example, where we convert the HR2LQ instance of Figure 1 to an
HR instance. In the next section, we describe the outline of our algorithm and show that if
the given HR2LQ instance admits a feasible matching, then the output of our algorithm is a
feasible matching.

3 Our algorithm and its feasibility

Given our reduction from an HR2LQ instance G to an HR instance G′, our algorithm to
compute a popular matching M is straightforward. We simply run the standard Gale-Shapley
algorithm on G′ and compute a stable matching Ms. We will first prove some useful properties
of the stable matching Ms which allows a natural way to obtain a matching M in G.

We call a vertex under-subscribed in a matching M if |M(v)| < q+(v). Note that for
residents, under-subscribed is the same as unmatched.

▶ Definition 5 (Active vertex). A hospital hy is active in Ms if hy is matched to at least
one true resident in Ms. Otherwise, we call hy inactive in which case it is matched to all
dummy residents. A resident rx is active in Ms if rx is matched to a true hospital in Ms,
else rx is inactive.

▶ Definition 6 (True edges). An edge e ∈ E′ is called a true edge if both the end points are
true vertices that is e = (rx, hy) where rx ∈ R′

c and hy ∈ H′
c.

Next, we describe some crucial properties of a stable matching Ms in the HR instance G′.
Our reduction, more specifically the placement of the set of dummy residents in preference
lists, ensures that a hospital h is not matched to more than q+(h) many true residents across
all the level copies h0, . . . , hµH in Ms. As Ms is a stable matching, at most two consecutive
level copies hy and hy+1 of h can be matched to true residents in Ms, otherwise there exists
a blocking pair w.r.t. Ms. All lower-level copies (less than y) are completely matched to
the respective trailing dummy residents, and all higher-level copies (greater than y + 1) are
completely matched to the respective leading dummy residents. Moreover, only the highest
level copy of a hospital can remain under-subscribed, and if it happens then, none of its
lower-level copies is matched to a true resident. Similar properties hold for resident copies as
well. That is, at most, one level copy of a resident is matched to a true hospital, and all
other level copies are matched to dummy hospitals in any stable matching. Moreover, if a
level-x copy of a resident is matched to some true hospital, then all its lower-level copies are
matched to the respective trailing dummy hospital, and the higher level copies are matched
to the respective leading dummy hospital. We formally list these properties of a stable
matching of G′ in Lemma 7. The proof appears in Appendix A.2.
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▶ Lemma 7. The stable matching Ms in G′ satisfies the following properties:
1. For any resident r ∈ R, Ms matches at most one true hospital across all the level copies

of r in G′. For any h ∈ H, Ms matches at most q+(h) true residents across all the level
copies of h in G′.

2. The matching Ms leaves only the highest level copy of the vertex (resident or hospital)
under-subscribed. In case of hospitals, for h ∈ Hlq, this implies that only hµH is possibly
under-subscribed in Ms. For a non lower-quota hospital h, the level-0 copy which is the
highest level copy may be under-subscribed in Ms. Similar claims hold true for residents.

3. If rx is active in Ms then,
a. Every resident ri where 0 ≤ i ≤ x − 1 is inactive in Ms and matched to its trailing

dummy hospital di
r.

b. Every resident ri where x + 1 ≤ i ≤ µR is inactive in Ms and matched to its leading
dummy hospital di−1

r .
4. If hy is active in Ms then

a. The hospital hy−1 must be matched to at least one dummy resident among its trailing
dummies, that is, in the set Dy−1

h .
b. Every hospital hj where 0 ≤ j ≤ y − 2 is inactive in Ms and fully-subscribed with its

trailing dummies, that is residents in Dj
h

c. Every hospital hj where y + 2 ≤ j ≤ µH is inactive in Ms and fully-subscribed with its
leading dummies, that is, residents in Dj−1

h .
5. For any resident at most one of its level copy is active in Ms. For any hospital h at most

two consecutive level copies are active in Ms.
6. If a level y, y > 0 copy of a hospital h is active in Ms, then h is matched to at most q−(h)

true residents in Ms. If the highest level copy hµH of a hospital h is under-subscribed in
Ms then none of its level-j copies for j < µH are active in Ms.

Lemma 8 below states that a stable matching in G′ cannot contain an edge whose both the
endpoints are active at higher levels. This allows us to define a simple map function that
maps the stable matching Ms in G′ to a feasible popular matching M in G.

▶ Lemma 8. For every true edge (rx, hy) in G′, if rx and hy are active in Ms, then at least
one of x and y must be 0.

Proof. For the sake of contradiction, let us assume that there is an edge (rx, hy) such
that x, y > 0 and both are active in Ms. Since, rx is matched to a true hospital, rx−1 must
get matched to its last dummy hospital dx−1

r by Part 3a in Lemma 7. So, rx−1 prefers hy−1

over Ms(rx−1) = dx−1
r . Similarly, since hy is active in Ms, hy−1 must be matched to at least

one of the trailing dummies in Ms say, d ∈ Dy−1
h . Thus, hy−1 prefers rx−1 over one of its

matched partner d. Hence, (rx−1, hy−1) is a blocking pair w.r.t. a stable matching Ms. ◀

From the above discussion, a mapping function that maps Ms of G′ to M in G is straight
forward. For each edge (rx, h0) or (r0, hy) in Ms, we include the edge (r, h) in M . We prove
that the mapping M is feasible for the original HR2LQ instance G by combining the two
claims given in Lemma 9. We give the proofs of these two feasibility claims in Appendix A.2.

▶ Lemma 9. Let M be the map of the stable matching Ms in G′, then following holds true:
1. If G admits a resident-feasible matching, then M is resident-feasible in G.
2. If G admits a hospital-feasible matching, then M is hospital-feasible for G.
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4 Popularity of our matching

Given a feasible matching N in the HR2LQ instance G = (R ∪ H, E) we construct a weighted
bipartite graph G̃N along with a matching N∗. The weight of an edge in G̃N is the sum of the
votes by the end vertices of that edge when compared to the matching N , and the matching
N∗ is a one-to-one matching corresponding to N . The construction of the matching N∗ is in
such a way that it matches all the clones of residents and hospitals in R ∪ H. We call N∗ an
(R ∪ H̃)- perfect matching (where H̃ is set of all the clones of hospitals). In other words, the
weight of an edge represents the sum of the votes by end vertices and the (R ∪ H̃)-perfect
matching N∗ has weight 0. Hence, to prove that N is popular, it suffices to show that the
maximum weight (R ∪ H̃)-perfect matching in G̃N has weight at most zero. For this, we
write a maximum weight matching LP for G̃N and exhibit a feasible dual assignment with
value zero. This is inspired from [3]; however, as mentioned earlier, our dual assignment is
considerably involved given that we have multiple levels for both residents and hospitals.

4.1 The graph G̃N corresponding to a feasible matching N

Now we describe the construction of the weighted graph G̃N corresponding to any feasible
matching N in G, and the one-to-one matching N∗ using the matching N .
1. Vertex set of G̃N : The graph G̃N has the vertex set as R ∪ H̃ ∪ L̃. The set R denotes

the same set of residents as in G. The set H̃ denotes clones of the original hospitals
where every hospital in H has upper quota many clones. That is,

H̃ = { hj | h ∈ H and 1 ≤ j ≤ q+(h)}
every h ∈ H has q+(h) many clones in H̃. Having these upper quota many clones
allows us to convert the many-to-one matching N to a one-to-one matching N∗. Finally,
the set L̃ = L̃r ∪ L̃h denotes the set of (dummy) last-resort vertices. For every non
lower-quota resident r we have a last resort hospital ℓr ∈ L̃r. For each vertex h ∈ H let
d(h) = q+(h) − q−(h) denote the difference between the upper quota and lower quota of
h. Corresponding to h we have d(h) many last-resort residents in L̃h. That is,

L̃r = { ℓr | r ∈ R and q−(r) = 0}
L̃h = { ℓhk

| h ∈ H and 1 ≤ k ≤ d(h)}
Thus a lower-quota resident and a hospital with a lower quota equal to its upper quota do
not have any last-resort vertices corresponding to it. These last-resort vertices are used
to convert N to an (R ∪ H̃)-perfect matching in G̃N . We call these vertices last-resorts
to avoid confusion with the dummies used in the reduction in Section 2.

2. The matching N∗: Given the feasible (many-to-one) matching N , we construct an
(R∪H̃)-perfect one-to-one matching N∗. For every edge (r, h) ∈ N we select an unselected
clone of h say hj and add the edge (r, hj) to N∗. For a resident r ∈ R which is unmatched
in N , we add the edge (r, ℓr) to N∗. For any h ∈ H which is under-subscribed in N ,
that is |N(h)| < q+(h), for every unmatched clone of h, say hj we match it to a unique
last-resort say ℓhj

and hence add the edge (hj , ℓhj
) to N∗. Thus our matching N∗ is a

one-to-one and (R ∪ H̃)-perfect matching.
3. The unmatched edges EU in G̃N : For every edge (r, h) ∈ E \ N , we add q+(h) many

edges to EU . That is, we add to the edge set the edges (r, hj) for every clone hj of h. We
also have unmatched edges from clones of hospitals to the last-resorts corresponding to the
hospitals. We have two cases depending on whether |N(h)| > q−(h) or |N(h)| = q−(h).
This construction is important for our dual feasible setting in the next section.
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For a hospital h where |N(h)| > q−(h) we have a complete bipartite graph between
the q+(h) many clones of h and all the last-resort vertices corresponding to h. Recall
that we have d(h) = q+(h) − q−(h) many last resorts corresponding to h. Thus we
add to EU edges of the form (ℓhk

, hj) where 1 ≤ k ≤ d(h) and 1 ≤ j ≤ q+(h).
For a hospital h where |N(h)| = q−(h), we have a complete bipartite graph between
the set of clones of h matched to last-resort vertices and all the last resort vertices
corresponding to h. Thus we add to EU edges of the form (ℓhk

, hj) where 1 ≤ k ≤ d(h)
and hj is matched to a last-resort in the above construction.

4. The edge set Ẽ and their weights: The edge set Ẽ = N∗ ∪ EU . Every edge
of N∗ is assigned a weight 0 and every edge (r, hj) of EU is assigned a weight =
voter(h, N∗(r)) + voteh(r, N∗(hj)) where r ∈ R and hj ∈ H̃. Every edge of the form
(r, ℓr) of EU is assigned a weight = voter(ℓr, N∗(r)) where r ∈ R and ℓr ∈ L̃r. Similarly,
every edge of the form (hj , ℓhk

) of EU is assigned a weight = voteh(ℓhk
, N∗(hj)) where

h ∈ H̃ and ℓhk
∈ L̃h.

This completes the description of the weighted bipartite graph G̃N . Now we use The-
orem 10, which gives the sufficient condition for the matching N to be popular, to prove the
popularity of the matching M computed by our algorithm. We will construct the matching
M∗ and the graph G̃M corresponding to the matching M . Our goal is to show that every
(R ∪ H̃)-perfect matching in G̃M has weight at most 0.

▶ Theorem 10. Let N be a feasible matching in G such that every (R ∪ H̃)-perfect matching
in G̃N has weight at most 0 then N is popular.

Proof. For any feasible matching T in G, we show a corresponding matching T ∗ in G̃N

such that T ∗ is an (R ∪ H̃)-perfect matching and wt(T ∗) = ∆(T, N, corr), where wt(T ∗)
denotes the sum of the weights of the edges in T ∗. We construct T ∗ as described next.
We find appropriate index j ∈ {1, ..., q+(h)} corresponding to each edge (r, h) ∈ T , where
(r, hj) ∈ Ẽ ∩ T ∗. For an unmatched resident r and an under-subscribed hospital h in T , we
add (r, ℓr) and (hk, ℓhj ) edges in T ∗ to make T ∗ an (R ∪ H̃)-perfect matching.

(i) For each edge e = (r, h) ∈ N ∩ T : if (r, hj) ∈ N∗ then we add the edge (r, hj) to T ∗.
(ii) For every edge (r, h) ∈ T \ N , we need to decide the index j such that (r, hj) ∈

T ∗. While evaluating the votes, h uses the correspondence function corrh. (a) If
corrh(r, T, N) = r′ then the matching N∗ must contain an edge (r′, hj) for some j. We
include the edge (r, hj) in T ∗. (b) If corrh(r, T, N) = ⊥ then we include (r, hj) in T ∗

for some j such that hj is unmatched so far in T ∗ and is not adjacent to any of the
corresponding last resorts. If there is no such hj then we arbitrarily choose a clone hi

such that (hi, ℓhi
) ∈ N∗ and include (hi, ℓhi

) in T ∗.
(iii) For any vertex vk ∈ R ∪ H̃ that is left unmatched in the above step, we select an

arbitrary but distinct j for 1 ≤ j ≤ q+(v) − q−(v) and include the edge (vk, ℓvk
) in T ∗.

Since T is a feasible matching in G, all the clones of every hospital h ∈ H which are not
adjacent to last resort vertices must get matched to a resident r ∈ R in T ∗. Other clones
of h get matched to either a resident or to the last resort. The graph G̃N contains exactly
q+(v) − q−(v) many last resorts for each vertex v and hence all the copies of v which are
not matched to a true vertex in step (i) or (ii) above must get matched to one of these last
resorts in step (iii). So, all the vertices in R ∪ H̃ are matched in T ∗. It is also easy to see
that T ∗ is a one-to-one matching in G̃N .

Next, we compute the weight of T ∗ and show that it is ∆(T, N, corr). Since every
(R ∪ H̃)-perfect matching in G̃N has weight at most 0, ∆(T, N, corr) = wt(T ∗) ≤ 0. This
says that there is no feasible matching T which is more popular than N . Hence N is popular
matching among all the feasible matchings.
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Figure 2 The graph G̃M corresponding to our feasible matching M . The bold edges represent
the edges in M∗. The values outside the ellipse denote the dual setting and are useful in Section 4.4.

wt(T ∗) =
∑

e∈T ∗

wt(e) =
∑

(r,hj)∈T ∗

wt(r, hj) +
∑

(vk,ℓvk
)∈T ∗

wt(vk, ℓvk
)

=
∑

(r,hj)∈T ∗

(voter(T ∗(r), N∗(r)) + votehj
(T ∗(hj), N∗(hj)))

+
∑

(vk,ℓvk
)∈T ∗

votevk
(ℓvk

, N∗(vk))

=
∑
r∈R

voter(T ∗(r), N∗(r)) +
∑
h∈H

q+(h)∑
i=1

voteh(T ∗(hi), N∗(hi))

=
∑
r∈R

voter(T, N) +
∑
h∈H

voteh(T, N, corrh)

= ∆(T, N, corr)

Thus it follows that ∆(T, N, corr) = wt(T ∗) which is at most 0 and hence N is popular. ◀

4.2 The graph G̃M corresponding to M obtained from Ms

For the HR2LQ instance G, consider the feasible matching M obtained from the stable
matching Ms in the reduced HR instance G′. We now use the construction described in
Section 4.1 to obtain the graph G̃M and the one-to-one (R ∪ H̃)-perfect matching M∗. Since
M was obtained from the stable matching Ms in G′, an edge (r, h) ∈ M corresponds to an
edge (rx, hy) ∈ Ms where rx and hy are level-x and level-y copies of the respective vertices.
Further, by Lemma 8 we know that at least one of x or y is zero. We use this property
crucially to partition the vertex set of G̃M . We partition the vertices as described below.
Figure 2 shows the high level partition of the vertex set as R0 ∪R1 ∪H̃0 ∪H̃1. Each partition
is further refined, for instance R0 is partitioned as R00 ∪ R01 ∪ . . . ∪ R0µH

. Recall the vertex
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set of G̃M which is given by R∪H̃∪L̃h ∪L̃r. We partition the residents (including last-resort
residents) R ∪ L̃h as R0 ∪ R1 and the hospitals (including last-resort hospitals) H̃ ∪ L̃r as
H̃0 ∪ H̃1. Note that the edges of M∗ are obtained from the edges of M and the matching M

is obtained from the stable matching Ms in G′. We use the edges of Ms, in particular, the
levels of the end points of the matched edges, to partition the vertices of G̃M . The vertices
of G̃M includes the upper quota many clones for every hospital and the last-resort vertices.

Partition of vertices of G̃M . Here, we define the sets R0x, R1x, H0y, H1y based on the
edges of Ms.

Let (rx, hy) be an edge in Ms. We consider three cases based on the values of x and y.
Note that the case x > 0, y > 0 does not arise due to Lemma 8.

1. If x = 0 and y > 0, then add r to R0y and add M∗(r) to H̃1y. We would like
to emphasize that we are using M∗(r) and not Ms(r). Since M∗ is a one-to-one
(R ∪ H̃)-perfect matching, M∗(v) is a uniquely defined vertex of G̃M for any vertex v

of G̃M .
2. If x > 0 and y = 0 then add r to R1x and add M∗(r) to H̃0x.
3. If x = 0 and y = 0 then add r to R00 and add M∗(r) to H̃00.
For any resident r ∈ R that is unmatched in Ms, we add r to R00 and M∗(r) to H00.
Note that M∗(r) is a last-resort hospital.
For any hospital h ∈ H that is under-subscribed in Ms, let hj be a clone of h which is
matched to a last-resort in M∗. We add hj to H00 and M∗(hj) to R00.
Finally, any last-resort resident not yet added to any partition is added to R00. Similarly
any last-resort hospital not yet added to any partition is added to H00.

We note that the set R0 =
⋃µH

x=1 R0x. The sets R1, H0, H1 are defined similarly. Figure 2
shows the graph G̃M . It is convenient to have the sets R0 and H1 drawn on the lower part
and the sets R1 and H0 drawn in the upper part. Furthermore, inside R0 we have the
sets R01, R02, . . . , R0µH

arranged from top to bottom. Similarly, we arrange the sets inside
R1, H0, H1 as shown in Figure 2. We now state the properties of the edges of the graph
viewed via the lens of the partition of the vertices in Lemma 11 and Lemma 12. For an edge
(u, v) where u ∈ Rax and v ∈ H̃by we say the edge is of the form Rax × H̃by.

▶ Lemma 11. The graph G̃M does not contain an edge of the form:
1. R1 × H̃1. That is, there is no edge in G̃M from the top right set of residents to the lower

left set of hospitals.
2. R1x × H̃0y where y < x − 1. That is, in the top set of residents and hospitals, there is no

steep downward edge in G̃M .
3. R0x × H̃1y for y > x + 1. That is, in the bottom set of residents and hospitals there is no

steep downward edge in G̃M .

Proof.
Proof of 1: Proof is immediate from Lemma 8. Because, if there exists an edge (r, h)

in G such that r ∈ R1 and hj ∈ H̃1 then in G′, there must exist an edge (rx, hy) with
x, y > 0. But then the edge (rx, hy) blocks Ms as they both prefer each other over some
of their matched partners.
Proof of 2: We prove this by contradiction. Suppose there exist an edge e = (r, hj) such

that r ∈ R1x and hj ∈ H̃0y for y ≤ x − 2. This means rx is matched to some h′0 and one
of the matched partner of h0 is some resident r′y. Now, consider the resident rx−1. This
resident must be matched to its trailing dummy hospital and hence prefers h0 over its
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matched partner. Any hospital prefers higher level resident over any lower level resident
and hence h0 prefers rx−1 over r′y. Thus, (rx−1, h0) blocks the stable matching Ms. This
is a contradiction.
Proof of 3: Proof is the same as the proof of 2 above. ◀

In Figure 2, the edges not present in G̃M are the dashed edges marked with a red cross
inside a circle. We now state the properties of the weights on the edges of G̃M . Note that
the weight of an edge of G̃M denotes the sum of the votes of the end-points when compared
to the matching M . Thus for e ∈ Ẽ, we have −2 ≤ wt(e) ≤ 2.

▶ Lemma 12. Let e = (r, hj) be any edge in G̃M such that r ∈ R and hj ∈ H̃. Then,
1. If e ∈ R1x × H̃0(x−1) then wt(e) = −2.
2. If e ∈ R1x × H̃0x then wt(e) ∈ {−2, 0}
3. If e ∈ R1x × H̃0y for y > x then wt(e) ≤ 2.
4. If e ∈ R0 × H̃0 then wt(e) ≤ 2. Moreover, if e ∈ R00 × H̃00 then wt(e) ≤ 0.
5. If e ∈ R0x × H̃1y for y < x then wt(e) ≤ 2.
6. If e ∈ R0x × H̃1x then wt(e) = 0 or −2.
7. If e ∈ R0x × H̃1(x+1) then wt(e) = −2.

Proof.
Proof of 1: The weight wt(e) for an edge e = (r, hj) is defined as wt(r, hj) =

voter(hj , M∗(r))+votehj
(r, M∗(hj)). So, our goal here is to show that voter(hj , M∗(r)) =

votehj
(r, M∗(hj)) = −1. Assume for the sake of contradiction that voter(hj , M∗(r)) ̸= −1

and votehj
(r, M∗(hj)) ̸= −1. Hence, we have three other possibilities [(+1,+1), (+1,-1)

and (-1,+1)] and all these three are covered in below two cases: (a) voter(hj , M∗(r)) = 1
and (b) voter(hj , M∗(r)) = −1. Suppose r ∈ R1x and hj ∈ H̃0(x−1). Consider the same
edge in the reduced graph G′. This is an edge between rx and h0, and h0 is matched
with some resident r′(x−1). First, we show that voter(hj , M∗(r)) ̸= 1 which implies
voter(hj , M∗(r)) = −1. If voter(hj , M∗(r)) = 1 then (rx, h0) is a blocking edge w.r.t.
the stable matching Ms in G′ because h0 always prefers higher level resident rx over the
lower level resident r′(x−1), one of its matched partner. Now, as voter(hj , M∗(r)) = −1,
the only other possibility left is voter(hj , M∗(r)) = −1 and votehj

(r, M∗(hj)) = +1 but
then consider the vertex rx−1 in G′, this vertex must be matched to its trailing dummy
and hence prefers h0 more. As h prefers r over its matched partner r′, h0 must prefer
rx−1 over r′(x−1). Again, we have a blocking edge (rx−1, h0) w.r.t. the stable matching
Ms in G′. Hence, wt(e) = −2.
Proof of 2: If e ∈ R1x × H̃0x then wt(e) cannot be +2, otherwise the same edge in G′

will be a blocking edge w.r.t. Ms. Hence, wt(e) can only be −2 or 0.
Proof of 3: The maximum possible weight for any e is 2.
Proof of 4: The largest possible weight wt(e) is +2. If e ∈ R00 × H̃00 and wt(e) = 2

then the same edge in G′ blocks Ms.
Proofs of 5, 6 and 7 follow from the earlier claims. ◀

4.3 Linear Program and its Dual
Given the weighted graph G̃M we use the standard linear program (LP) to compute a
maximum weight (R ∪ H̃)-perfect matching in G̃M . Recall that every edge e has a weight
associated with it which denotes the sum of the votes of the endpoints of the edge with
respect to the matching M . The LP and its dual (dual-LP) are given below. For the (primal)
LP we have a variable xe for every edge in Ẽ. We let δ(v) denote the set of edges incident
on the vertex v in the graph G̃M .
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LP: max
∑

e∈Ẽ

wt(e) · xe

subject to:∑
e∈δ(v)

xe = 1 ∀v ∈ R ∪ H̃

∑
e∈δ(ℓhk

)

xe ≤ 1 ∀ℓhk
∈ L̃h

xe ≥ 0 ∀e ∈ Ẽ

We obtain the dual of the above LP by associating a variable αv for every v ∈ R ∪ H̃ ∪ L̃.

dual-LP: min
∑

r∈R
αr +

∑
hj∈H̃

αhj
+

∑
ℓhk

∈L̃h

αℓhk

subject to:
αr + αhj

≥ wt(r, hj) ∀(r, hj) ∈ Ẽ where r ∈ R, hj ∈ H̃ (1)
αℓhk

+ αhj
≥ wt(ℓhk

, hj) ∀(ℓhk
, hj) ∈ Ẽ where ℓhk

∈ L̃h, hj ∈ H̃ (2)
αr ≥ wt(r, ℓr) ∀r ∈ R and q−(r) = 0 (3)

αℓhk
≥ 0 ∀ℓhk

∈ L̃h (4)

4.4 Dual Assignment and its correctness
In this section we present an assignment of values to the dual variables of the dual-LP and
prove that it is feasible as well as the sum of the dual values is zero. The dual assignment is
shown in Figure 2 in blue.

Set αr = +2x for all r ∈ R0x where 0 ≤ x ≤ µH .
Set αhj

= −2y for all hj ∈ H̃1y where 1 ≤ y ≤ µH .
Set αr = −2x for all r ∈ R1x where 1 ≤ x ≤ µR.
Set αhj

= +2y for all hj ∈ H̃0q where 0 ≤ y ≤ µR.
Set αℓhk

= 0 for the last resorts corresponding to a hospital h ∈ H are 0.

▶ Lemma 13. The above dual assignment is feasible, and the sum of the dual values is zero.

Proof. We prove that the dual assignment satisfies all (1), (2), (3), (4) of the dual LP. Eq
(4) holds because the last resorts corresponding to a hospital are assigned α-values 0. It is
clear from the partition of the vertices of R ∪ H̃ that all the non-lower quota residents are
only in R0. The α-values for all such residents are non-negative. Moreover, the wt(r, ℓr) for
a non lower-quota resident is at most 0. This implies that all the non-lower-quota residents
satisfy the Eq (3). Recall that there is no last resort corresponding to a lower-quota resident.

Next, we show that our dual assignment satisfies Eq (2). Since, wt(ℓhk
, hj) is at most 0,

it is sufficient to show that the LHS of the second inequality αℓhk
+ αhj

is at least 0. From
the partition of the vertices into subsets, it is easy to see that no non lower-quota copy of a
hospital is in H̃1 and, hence no vertex in H̃1 is connected to the corresponding last resorts.
This implies that all the copies (of hospitals) which are connected to corresponding last
resorts are in H̃0 and they are assigned α-value at least 0. Since αℓhk

= 0, the LHS of the
second inequality is at least 0.

Now, to show that the first inequality of the dual LP holds true for the above assignments,
we use the Lemma 11 and Lemma 12.
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Lemma 11 excludes all the edges which can not be there in G̃M .
Lemma 12(1) states that for every edge e ∈ R1x × H̃0(x−1), we have wt(e) = −2. As per
our dual assignment αr + αhj

= −2x + 2(x − 1) = −2 ≥ wt(e).
Lemma 12(2) states that for every edge e ∈ R1x × H̃0x, we have wt(e) = −2 or 0. As per
our dual assignment αr + αhj = −2x + 2x = 0 ≥ wt(e).
Lemma 12(3) states that for every edge e ∈ R1x × H̃0y such that y > x, we have wt(e) is
at most 2. As per our dual assignment αr + αhj

= −2x + 2y ≥ 2 ≥ wt(e).
Lemma 12(4) states that (a) for every edge e ∈ R00 × H̃00, we have wt(e) ≤ 0. As per
our dual assignment αr + αhj

= 0 ≥ wt(e). (b) for all other edges e ∈ R0 × H̃0, we have
wt(e) ≤ 2. Our dual assignment ensures that αr + αhj

≥ 2 ≥ wt(e).
Lemma 12(5) states that for every edge e ∈ R0x × H̃1y for y < x, we have wt(e) ≤ 2.
Our dual assignment ensures that αr + αhj

= 2x − 2y ≥ 2 ≥ wt(e).
Lemma 12(6) states that for every edge e ∈ R0x × H̃1x, we have wt(e) ≤ 0. As per our
dual assignment αr + αhj

= 2x − 2x = 0 ≥ wt(e).
Lemma 12(7) states that for every edge e ∈ R0x × H̃1(x+1), we have wt(e) = −2. In this
case also, αr + αhj

= 2x − 2(x + 1) = −2 ≥ wt(e).
Hence, all the edges of Ẽ satisfy inequality (1). As per our assignment, all the matched
edges (r, hj) has αr + αhj

= 0, and αr = 0 for all the residents r matched to last resorts and
αhj = 0 for all the clones hj of hospital h such that hj are matched to last resorts. Hence it
follows that

∑
v∈R∪H̃ αv = 0. ◀

Lemma 13 and the weak duality theorem together implies that the optimal value of the
primal LP is at most 0. That is, every matching in G̃M that matches all vertices in R ∪ H̃
has weight at most 0. Thus, by using Theorem 10, we establish the main result of this paper
stated in Theorem 4.

5 Discussion

In this paper, we addressed the problem of computing a popular, feasible matching in the
many-to-one setting when both sides are having lower quotas. This approach can suitably
be modified to compute a maximum size popular feasible matching. We comment on the
natural generalizations of our problem as follows:

Many-to-many setting with one sided lower-quotas: We call this setting as the
student course allocation problem with lower quotas for courses (SCLQ problem). The
simple modification of our reduction presented in the paper works for the SCLQ setting.
Many-to-many setting with two-sided lower-quotas: We denote this as the SC2LQ
problem. For the SC2LQ setting, there are non-trivial challenges in extending our
reduction. These are posed by the presence of capacities as well as lower quotas on both
the sides of the bipartition. We remark that these difficulties do not arise in the SCLQ
setting where only one side has lower quotas as well as in [3] there are no lower quotas on
either side of the bipartition.
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A Appendix

A.1 Illustration of Reduction Method

Following the reduction given in Section 2 we convert the HR2LQ instance of Fig-
ure 1 to an HR instance. The resulting reduced instance is shown in Figure 3.
The map of the hospital proposing stable matching in the reduced instance is M =
{(h1, r1), (h2, r3), (h3, r4), (h6, r2), (h7, r5)} which is popular. The level structure and dual
assignment is shown in Figure 4.
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Figure 3 Reduced HR instance corresponding to the counter example given in Figure 1.

A.2 Proofs from Section 3

Proof of Lemma 7.
Proof of 1: If r /∈ Rlq then r has only one copy in G′ with quota 1 and the result holds
trivially. So without loss of generality let us assume that r ∈ Rlq and hence G′ has µR + 1
copies of r. The total number of dummy hospitals corresponding to r is µR. Each dummy
hospital di

r contains only two true residents ri and ri+1. Also, each di
r is the top choice
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Figure 4 The graph G̃M corresponding to the example.

of ri+1 for 0 ≤ i ≤ µR. So, none of the dummy hospital can remain unmatched. This
implies that at most 1 copy of r can get matched to a true hospital.
If h /∈ Hlq then h has only one copy h0 in G′ with quota q+(h) and the result holds trivially.
So without loss of generality, let us assume that h ∈ Hlq and hence G′ has µH + 1 copies
of h. The total number of dummy residents for h in G′ is α = q+(h)+q−(h) ·(µH −1), and
the total capacity of all the copies of h in G′ is β = q+(h) + q−(h) · µH . Consider the set
of dummy residents D0

h ∪ . . . ∪ DµH −1
h corresponding to a lower quota hospital h. For any

y < µH , except y = 1, Dy−1
h are the most preferred q(hy) dummy residents of hy. Thus,

these dummy residents can never remain unmatched in a stable matching. The dummy
residents that can possibly remain unmatched are the subset of {d0

h,1, . . . , d0
h,q+(h)−q−(h)}

as these are the only dummy residents that are not the top choice of any copy of the
hospital h. Hence the number of dummy residents that can remain unmatched in any
stable matching of G′ is at most γ = q+(h) − q−(h). This implies that the total number
of true residents matched to h in Ms is at most β − α + γ = q+(h).
Proof of 2: If h /∈ Hlq then it has only one copy h0 with quota q+(h). So let us assume
that h ∈ Hlq. For each copy hy, where y < µH , there are exactly q(hy) dummy residents
of level-y as their top choice. Thus, hy cannot remain under-subscribed in any stable
matching Ms of G′, otherwise these dummy resident(s) form blocking pair(s) with hy.
This implies that only hµH can possibly be left under-subscribed in Ms.
If r /∈ Rlq, then its highest level copy r0 remains unmatched. So let us assume that r ∈ Rlq.
We note that none of the µR many dummy hospitals d0

r, d1
r, . . . , dµR−1

r corresponding to
r can be left unmatched in any stable matching. Otherwise , the unmatched dummy
hospital di

r forms a blocking pair with ri+1. So, at most, one copy of r can potentially be
left unmatched. Now, if a copy ri for 0 ≤ i ≤ µR − 1 is left unmatched then ri with its
last dummy di

r forms a blocking pair w.r.t. Ms.
Proof of 3: There are µR + 1 copies of a resident r ∈ Rlq and µR dummy hospitals
corresponding to it. From the proof of 1 above, we know that none of the dummy hospitals
corresponding to r can remain unmatched. The preference list of a dummy hospital di

r

contains ri and ri+1, and rx is active in Ms. This implies that the only possible way to
match ri in a stable matching is to match it with di

r, the corresponding trailing dummy,
where 0 ≤ i ≤ x − 1. Similarly, the only possible way to match ri in a stable matching is
to match it with di+1

r , the corresponding leading dummy, where x + 1 ≤ i ≤ µR.

FSTTCS 2021
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Proof of 4a: For the sake of contradiction, assume that hy−1 is not matched to any
resident d ∈ Dy−1

h and still hy is active. Note that there are exactly q(hy) many dummy
residents in the preference list of hy from the set Dy−1

h . Also, hy prefers all such dummy
residents over any true resident. Each dummy resident from the (y − 1)-th set, Dy−1

h has
only hy−1 and hy in its preference list. It means there is a dummy resident dj

h ∈ Dy−1
h

which is unmatched in Ms. But then (hy, dj
h) forms a blocking pair w.r.t. Ms.

Proof of 4b: If hy is active and hj is matched to a true resident r for some 0 ≤ j ≤ y − 2,
then (r, hy−1) is a blocking pair w.r.t. Ms. This is because, as proved above, hy−1 must
be matched to at least one resident in Dy−1

h and hy−1 prefers any true resident over any
dummy resident in Dy−1

h .
Proof of 4c: If hy is active then hj cannot be active for y + 2 ≤ j ≤ µH , otherwise, hj−1

must be matched to a resident from Dj−1
h . In this case, each true resident which is

matched to hy in Ms forms a blocking pair with hj−1, contradicting the stability of Ms.
Now we claim that each such hj is fully-subscribed with its leading dummies. This is
because if hy is active and hj is matched to any trailing dummy d ∈ Dj

h then a resident
r′ ∈ Ms(hy) forms a blocking pair with hj .
Proof of 5: The claim for a resident immediately follows from Part 1 above. So, let us
prove it for a hospital.
For the sake of contradiction, let us assume that h ∈ Rlq is a lower quota hospital such
that hx1 and hx2 are active where x2 < x1 − 1. Also, assume that hx1 and hx2 are
matched to r1 and r2 respectively. Then, hx1−1 must be matched to at least one dummy
residents from Dx1−1

h . But, Then, (r2, hx1−1) forms a blocking pair w.r.t. Ms.
Proof of 6: This follows from the fact that for any h, all the dummy residents of all the
copies get matched in a stable matching in G′, except possibly the q+(h) − q−(h) trailing
dummies of h0. This is because all of them are the top choice of some hi. The other part
is true because otherwise a true resident matched to the level-j copy and hµH form a
blocking pair with respect to Ms. ◀

Proof of Lemma 9. In Lemma 7, we proved that each resident is matched to at most one
hospital and each hospital h is matched to at most q+(h) many residents in G. Here, first we
show that each r ∈ Rlq gets matched to at least one hospital and, then we show that each
h ∈ Hlq gets matched to at least q−(h) many residents.

Let us assume for the sake of contradiction that M is not resident-feasible, and hence
M(r) = ⊥ for an r ∈ Rlq, but there exists a feasible matching N in G where r is matched.
Consider the decomposition of M ⊕N into (possibly non-simple) alternating paths and cycles.
The decomposition we use is the same as the one used in [21, 20]. As r is unmatched in M

but matched in N there must exist an alternating path ρ in M ⊕ N ending at r. Moreover,
the highest level copy rµR must remain unmatched in Ms by Part 2 of Lemma 7.
Case 1: The other end-point of ρ is a resident rk: Let ρ = ⟨r, h1, r1, h2, r2, . . . , hk, rk⟩,

where (hi, ri) ∈ M and rest of the edges are in N . We show that such a path can-
not exist and hence M must be feasible. The length of this path is even and hence rk

remains unmatched in N . It implies that rk is a non-lower quota resident. Since we do not
have multiple copies of a non-lower quota resident r, r0

k is matched to a non-dummy copy
of a hospital hk in Ms. Since rµR is unmatched in Ms, all the residents r ∈ Ms(h1), and
hence r1, must also be the highest level copy. If not, then (rµR , h0

1 blocks Ms because rµR

is unmatched and any copy of h1 prefers rµR over lower level copy of any resident. The
copy of r2 which is matched to h2 must be either rµR

2 or rµR−1
2 , otherwise, (h0

2, rµR−1
1 )

blocks Ms. Continuing in this way, we see that the matched copy of r3 must be in
{rµR

3 , rµR−1
3 , rµR−2

3 }, and matched copy of rk must be in {rµR

k , rµR−1
k , . . . , r

µR−(k−1)
k }.
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This implies that the path ρ goes downwards to level 0 but by at most one level for each
resident on ρ. Since rk is the 0th level copy, ρ must contain at least µR + 1 residents with
non-zero lower quota. But there are only µR residents with lower quota 0. So such a
path ρ cannot exist.

Case 2: The other end of ρ is a hospital h: Let ρ = ⟨r, h1, r1, h2, r2, . . . , hk, rk, h⟩, where
(hi, ri) ∈ M and rest of the edges are in N . It is clear that |M(h)| < |N(h)| ≤ q+(h),
that is, h is under-subscribed in M . Consider the first rp on ρ such that r0

p is active
in Ms. Such an rp must exist as proved in Claim 14 below. So, consider the sub-path
ρ′ = r, h1, r1, . . . , rp of ρ. Using the same argument as in the previous case, ρ′ must
contain at least µR + 1 lower-quota residents. Therefore ρ′, and consequently ρ cannot
exist.

▷ Claim 14. An alternating path ρ as considered in Case 2 above contains a resident rp

such that r0
p is active in Ms.

Proof of Claim 14. We consider the following two cases: (a) when h is only active at level 0
and, (b) when h is active at higher levels. In the first case, as h is under-subscribed in Ms,
r0

k must be active in Ms. This is because if ri
k is active for any i > 0 then (r0

k, h0) blocks Ms.
In the second case, from Lemma 8, rj

k cannot be active for any j > 0. So r0
k must be active.

◁

Now, we prove Part 2 of Lemma 9 by contradiction. Let us assume that M is not
hospital-feasible but there exists a matching N which is hospital-feasible. That is, there
exists h ∈ Hlq such that |M(h)| < q−(h) ≤ |N(h)|. Consider the decomposition of M ⊕ N

into (possibly non-simple) alternating paths and cycles.
As |M(h)| < |N(h)| there must exists a path ρ in M ⊕ N ending at h. Since h is deficient

in M , the highest level copy hµH must remain under-subscribed in Ms by Part 2 of Lemma 7.
Case 1: The other end of ρ is a hospital hk: Let ρ = ⟨h, r1, h1, . . . , rk−1, hk−1, rk, hk⟩,

where (ri, hi) ∈ M and rest of the edges are in N . We show that such a path can-
not exist and hence M must be feasible. The length of this path ρ is even and
|M(hk)| > |N(hk)| ≥ q−(hk). This implies that the higher level copies (level p for
p > 0) of hk are not active (Part 4 of Lemma 7). As hµH remains under-subscribed in
Ms, the copy of hospital h1 which is matched to r1 must be hµH

1 , otherwise, (r0
1, hµH )

forms a blocking pair w.r.t. Ms. From Part 4 of Lemma 7, hµH −p
1 for p > 1 cannot be

active in Ms. Similarly, the copies hµH −p
2 for p > 2 of h2 cannot be active in Ms. And,

the copies hµH −p
k for p > k cannot be active in Ms. In other words, the only active copy

of h is hµH , the active copies of h1 are in {hµH

1 , hµH −1
1 }, the active copies of h2 are in

{hµH

2 , hµH −1
2 , hµH −2

2 } and so on. This implies that we may go downwards in this way but
by at most one level for each hospital on ρ. As the only active copy of hk is h0

k and hence,
ρ must contain at least µH + 1 copies of lower quota hospitals but the sum of all the
lower quotas of hospitals is only µH . This is a contradiction.

Case 2: Other end of ρ is a resident r: Let ρ = ⟨h, r1, h1, r2, h2, . . . , rk, hk, r⟩, where
(ri, hi) ∈ M and rest of the edges are in N . We know that the only active copy of
h is hµH . Here, r is unmatched in M . If q−(r) = 0 then r0 remains unmatched in Ms

and hence, hk cannot be active at level above 0. In this case, the same argument as in
the previous case suffice to prove that such a path ρ cannot exist. The other case, when
q−(r) = 1, is not possible because of Part 1, which says that M is resident feasible but r

is unmatched. ◀
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